US20210267666A1 - Electrosurgical device - Google Patents
Electrosurgical device Download PDFInfo
- Publication number
- US20210267666A1 US20210267666A1 US17/320,430 US202117320430A US2021267666A1 US 20210267666 A1 US20210267666 A1 US 20210267666A1 US 202117320430 A US202117320430 A US 202117320430A US 2021267666 A1 US2021267666 A1 US 2021267666A1
- Authority
- US
- United States
- Prior art keywords
- tips
- electrosurgical device
- actuation member
- switch
- electrosurgical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000004913 activation Effects 0.000 claims description 16
- 239000004033 plastic Substances 0.000 claims description 2
- 210000003811 finger Anatomy 0.000 description 16
- 238000000034 method Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 3
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 210000005224 forefinger Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1442—Probes having pivoting end effectors, e.g. forceps
- A61B18/1445—Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00059—Material properties
- A61B2018/00089—Thermal conductivity
- A61B2018/00101—Thermal conductivity low, i.e. thermally insulating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00107—Coatings on the energy applicator
- A61B2018/0013—Coatings on the energy applicator non-sticking
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00607—Coagulation and cutting with the same instrument
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/0091—Handpieces of the surgical instrument or device
- A61B2018/00916—Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device
- A61B2018/00958—Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device for switching between different working modes of the main function
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1442—Probes having pivoting end effectors, e.g. forceps
- A61B2018/1452—Probes having pivoting end effectors, e.g. forceps including means for cutting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1442—Probes having pivoting end effectors, e.g. forceps
- A61B2018/1462—Tweezers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2218/00—Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2218/001—Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
- A61B2218/007—Aspiration
Definitions
- This invention relates to a forceps-type electrosurgical device in particular, but not exclusively, to an electrosurgical device for use with a high frequency (RF) current.
- RF high frequency
- force-type electrosurgical device means an electrosurgical device which is suitable for providing the function of electrosurgical forceps.
- Electrosurgical forceps comprise a pair of opposed tips which are typically relatively moveable such that they may be used to grasp or engage objects such as biological tissue.
- a high frequency (RF) electric current is applied using the forceps such that the tips act as electrodes for passing the ac current into the tissue.
- electrosurgical forceps may, for example, be used to cut, coagulate, desiccate and/or fulgurate the tissue.
- electrosurgical devices are commonly used during surgery in order to stop bleeding by using an alternating current directly heat tissue and thereby reduce blood loss and/or improved surgical vision.
- the electrosurgical device is provided with an active electrode and a return electrode is attached to the patient.
- the electric current flows from the active electrode into the body and returns through the return electrode (which is connected to an earthing circuit).
- the current density decreases rapidly with distance away from the electrode such that the heating of tissue is localised to the tip of the electrosurgical device.
- a pair of electrodes for example the tips of forceps, are each connected to the supply circuit and no return electrode is required.
- the high frequency electric current flows through the device and tissue providing a localised heating of the tissue.
- electrosurgical forceps have a design which is substantially based upon traditional surgical forceps.
- electrosurgical forceps generally comprise a pair of elongate fingers connected at a rearward hinge such that the forward end of the forceps may be used to grasp or hold objects such as biological tissue.
- electrosurgical forceps are not typically optimised for use in electrosurgery. Accordingly, it would be desirable to provide a new forceps design which is specifically designed for use in electrosurgery so as to improve ease of use.
- a forceps type electrosurgical device comprising:
- a fixed elongate body a pair of moveable tips, arranged for engaging tissue in use and extending from a forward end of the body, the tips being relatively moveable between a first position in which the tips are spaced apart and a second position in which the tips are brought together;
- the body further comprising an actuation member moveable relative to the body and connected to the tips such that a user may move the actuation member to result in movement of the tips between the first and second positions
- the relative movement between the tips may be provided by one or both tips being moveably connected to the fixed elongate body.
- the moveable tips are typically resiliently biased towards the first position.
- the moveable tips may be resiliently biased towards the first position by the elongate body.
- the actuation member may be arranged to the tips together against the resilient bias.
- the body may comprise a spring member arranged to bias the tips towards the first position.
- the actuation member may be provided on an outer surface of the elongate body.
- the actuation member may be inwardly compressible.
- the actuation member may comprise a pair of finger receding portions provided on opposing sides of the body. For example, one or both of the finger receiving portions may be inwardly moveable relative to the body.
- the actuation member may conveniently be actuated by being squeezed between the fingers of an end user.
- the forceps may further comprise a suction port proximal to the tips.
- a further aspect of the invention provides an electrosurgical device comprising a pair of moveable tips at a forward end arranged for engaging tissue in use and a suction port proximal to such tips.
- the suction port may for example be provided at a forward most portion of the fixed elongate body.
- a conduit may be provided extending through the fixed elongate body.
- the conduit may extend from a connector at or proximal to the rear of the body for receiving a suction line to the suction port.
- the suction port may, therefore, be used to draw gas away from the tips through the elongate body of the device.
- the inclusion of an integral suction port may help to reduce the number of instruments required during a surgical procedure.
- the provision of suction local to the tips may reduce or limit the release of potentially harmful vapours and/or improve surgical vision.
- the electrosurgical device may comprise an electrical switch.
- the switch may be activated upon movement of the tips, for example the switch may be activated when the tips are moved to the second position.
- the activation may be automatic.
- An automatic switch arrangement may be particularly suitable for a bipolar device.
- the electrical switch may be engaged by a portion of the actuating member. Alternatively, the electrical switch may be engaged by a portion of the tips.
- the electrical switch may be disposed between the moveable portions of the actuation member such that it is physically engaged upon movement of the actuation member.
- the electrical switch may be provided on a fixed portion of the elongate body adjacent to the actuation member such that it is engaged upon movement of the actuation member.
- the switch may be provided on the actuation member and may be engaged by opposing movement portions of the actuation member. The switch may require a minimal engagement pressure in order to activate (for example to avoid premature or unintentional actuation of the surgical current).
- the body may further comprise an electrical activation button on an outer surface thereof.
- the button may take any conventional form (for example a compression button, a key, a slidable switch or the like).
- an activation button may be provided on an outer surface of the elongate body or on the outer surface of the actuation member.
- Such an externally provided activation button may typically be arranged to be physically activated by an end user.
- the activation button may be arranged such that it is deactivated when the tips are in the first position.
- the activation button may be spaced apart from an electrical switch (which is operated by the button) until the actuation member is moved relative to the body.
- the activation button may be electrically isolated until the actuation member is moved relative to the body.
- the electrical activation button may be arranged to enable selection between different modes of operation.
- the switch may enable selection of differing magnitude and/or waveforms of the applied current corresponding to different electrosurgical procedures (for example, cutting or coagulation).
- electrosurgical procedures for example, cutting or coagulation
- Such an arrangement may be particularly suitable for a monopolar surgical device.
- At least one of the tips of the electrosurgical device may comprise an outwardly facing surface having a sharp tapered profile.
- One of the tips may comprise an outwardly facing surface having a blunt profile (such that one tip has a sharp profile and the other has a blunt profile). This arrangement is particularly advantageous since it enables the sharp profile tip to be used during cutting procedures and the blunt tip profile to be used during coagulation procedures.
- an electrosurgical device comprising a pair of tips arranged for engaging tissue in use, the tips being relatively moveable between the first spaced apart position and a second position in which the tips are brought together, wherein one tip comprises an outwardly facing surface with a sharp tip profile and the other tip comprises an outwardly facing surface with a blunt profile.
- the tips may comprise inwardly facing opposing planar surfaces.
- the planar surfaces are generally parallel and spaced apart when the tips are in the first position.
- the inwardly facing surface may be arranged to abut when the tips are in the second position or may conveniently be used to grip tissue therebetween.
- the tips may curve outwardly.
- the outward curvature may for example be arranged such that the rear portion of the tips are adjacent to an outer portion of the body. This may for example provide a space between the rear portion of the tips to accommodate a suction port.
- the tips may taper from a rearward portion towards a point at the forward end.
- the fixed elongate body is typically formed from an insulting material.
- the fixed body may be plastic.
- the moveable tips may comprise thermally conductive tips.
- the tips may typically be metallic and may be coated for example the tips may be anodised and/or may be provided with a non stick coating such as Teflon or DLC (diamond like coating).
- the tips may be aluminium.
- FIG. 1A is a schematic three-dimensional view of a first embodiment of the invention with the tips in an open position;
- FIG. 1B is a schematic three-dimensional view of a first embodiment of the invention with the tips in a closed position;
- FIG. 1C is a close-up schematic three-dimensional view of a first embodiment of the invention with the tips in an open position;
- FIG. 1D is a close-up schematic three-dimensional view of a first embodiment of the invention with the tips in a closed position;
- FIG. 2 is a schematic three-dimensional cross-section of the first embodiment
- FIG. 3A is a schematic partial cross-section of the forward portion of the first embodiment in an open position
- FIG. 3B is a schematic partial cross-section of the forward portion of the first embodiment in a closed position
- FIG. 4A is a schematic detailed view of the tips for use in an embodiment of the invention from a selected direction;
- FIG. 4B is a schematic detailed view of the tips for use in an embodiment of the invention from a direction opposite the direction of the view of FIG. 4A ;
- FIG. 5 is a schematic three-dimensional view of a second embodiment of the invention.
- FIG. 6A is a schematic cross-section of the second embodiment in an open position
- FIG. 6B is a schematic cross-section of the second embodiment in a closed position.
- Front as used herein will be understood to refer to the end of the forceps (or components thereof) which, in use, are closest to the tissue on which a procedure is being carried out (i.e. the end which is facing the patient).
- Rear as used herein will be understood to refer to the end of the forceps (or components thereof) which, in use, are furthest from the tissue (i.e. the end which is facing the surgeon).
- Forward and rearward will, likewise, be understood to refer to the directions orientated towards the front and rear of the forceps.
- FIGS. 1 to 4 show a monopolar electrosurgical forceps-type device in accordance with a first embodiment of the invention.
- the device 1 generally comprises a fixed elongate body 10 having a pair of tips 20 provided at the forward end, a suction port 30 and an actuation member 40 including a button 50 . In use, the device 1 is connected to a suction line and RF power supply at a rearward portion.
- the body 10 is formed from an elongate and generally cylindrical body which has a pen like profile such that it can be easily gripped by a surgeon during use. A forward portion of the body 12 tapers forwardly towards the tips 20 .
- the body 10 has a substantially hollow profile such that a conduit 34 of a suction port 30 may be defined extending along the length of the body from an inlet 32 adjacent to the tips 20 to a suction line connection 36 at a rearward end 14 of the body 10 .
- the tips 20 a and 20 b are movably attached to the body 10 via a pair of flexible arms 44 a and 44 b of the actuation member 40 (which will be described in further detail below).
- the tips are connected to the arms by rivets 28 but any convenient fixation means may be used.
- Each tip 20 comprises a linear forward section 22 and an outwardly curved rearward section 24 .
- the forward sections 22 a, 22 b extend to a rounded forward end 129 and are provided with opposed planar inwardly facing surfaces faces 23 a, 23 b which are spaced apart in the open position of FIGS. 1 b and 1 d and are brought together in the closed position of FIGS.
- the outwardly curved rearward sections 24 allow the tips 20 to be attached at a radially outwardly position with respect to the body 10 .
- This curved profile provides a spacing between the rearward portions such that the inlet 32 of the suction port 30 may be positioned between the tips (and generally on the axial centre line of the body 10 ).
- the outwardly facing surfaces 26 a and 26 b of the tips 20 a and 20 b have non-matching profiles.
- the tips 20 are connected to the body 10 via an actuation member 40 which is moveably connected to the body 10 .
- the actuation member 40 comprises a pair of flexible, forwardly extending, arms 44 a and 44 b.
- the arms 44 a and 44 b are formed on opposing sides of the body 10 and are on a radially exterior portion of the body 10 .
- Each arm 44 a and 44 b is hingedly attached to the body 10 at its rearward end.
- One of the tips 20 a and 20 b is rigidly attached to a forward end of each arm 44 a and 44 b.
- the arms 44 a and 44 b In the closed position (shown in FIGS. 1 b and 1 d ) the arms 44 a and 44 b are seated within a pair of recesses 13 a and 13 b formed at opposing sides of the outer surface of the forward section 12 of the body 10 .
- the actuation member 40 further comprises two opposing finger receiving portions 42 a and 42 b which are provided on an outer surface of each arm 44 a and 44 b in circumferentially opposing positions.
- the finger receiving portions 42 are shaped and dimensioned so as to be gripped between the fingers (typically the thumb and forefinger in a pinching action) of an end user.
- the body further comprises a spring 12 (by seen in FIGS. 2 and 3 ) which is disposed between the arms 44 a and 44 b so as to bias the arms apart and into the open position shown in FIGS. 1 b and 1 d.
- the hinged connection between the body 10 and arms 44 may be resiliently outwardly biased (such that inward deflection of the arms 44 is by elastic deformation of the hinged connection or arm).
- a user activation button 50 is provided on the finger receiving portion 42 b of one of the arms 44 a.
- the button 50 comprises 50 comprises first button 50 a and a second button 50 b.
- Each button is arranged to activate different mode of operation of the forceps (in the illustrated embodiment 50 a is activates a “coagulate” mode and 50 b activates a “cut” mode).
- Each button comprises an outer surface 51 which is pressed in use by a user and which is resiliently outwardly biased towards the buttons disengaged position by a spring 52 .
- a shaft 53 projects inwardly from the underside of the surface 51 and is arranged to pass through an aperture 48 in the actuation member 40 when the button 50 is depressed.
- the shaft 53 may snap fit into the aperture 48 so as to be movably retained therein.
- the shaft 53 is arranged to engage an underlying electrical activation switch 54 (which may for example be a micro switch or a membrane switch) on the body 10 .
- the switch 54 may for example be formed as part of a PCB.
- a separate switch 54 a and 54 b is generally provided for each user activation button 50 a and 50 b. It may be noted from a comparison of FIGS. 3 a and 3 b that the relative position of each button 50 and switch 54 and/or the stroke of the shaft 53 is arranged such that the switch 54 can only be engaged by the shaft 53 of the button 50 when the actuation portion 40 is in the position shown in FIG. 3 a . In other words, the button 50 is deactivated until the actuation member 40 is moved to bring the tips 20 towards their closed position.
- each tip 20 comprises a linear forward section 22 and a curved rearward section 24 .
- the forward section 22 is the “active” section during electrosurgery and the curved section 24 is a connecting portion to the body 10 .
- the forward sections 22 a, 22 b are provided with opposed planar inwardly facing surfaces faces 23 a, 23 b which are spaced apart in the open position of FIGS. 1 b and 1 d and are brought together in the closed position of FIGS. 1 b and 1 d .
- One of the tips 20 a has an extension 27 which extends axially away from the outward facing surface 26 a of the tip 20 a and tapers so as to form a relatively sharp edge 28 .
- the other tip 20 b has an outwardly facing surface 26 b which has a rounded and relatively blunt profile.
- each surface may be suitable for different procedures.
- tissue may be engaged between the inwardly facing surfaces faces 23 a, 23 b (for example to weld tissue).
- the tips 20 a and 20 b may be brought together such that the planar inwardly facing surfaces faces 23 a, 23 b are abutting and the tips may effectively provide a single electrode.
- the surgeon may then select to use either the sharp face 26 a (e.g. for cutting) or the blunt face 26 b (e.g. for coagulating) depending upon the task to be performed.
- the provision of a multiple mode switch 50 allows the surgeon to easily switch between different pre-set profiles of RF current appropriate to the task in hand.
- FIGS. 5 and 6 show a bipolar electrosurgical forceps-type device in accordance with a second embodiment of the invention.
- the general arrangement of the device is similar to that of the first embodiment and corresponding features have been given reference numbers corresponding to those of the first embodiment but increased by 100 .
- the device 101 generally comprises a fixed elongate body 110 having a pair of tips 120 provided at the forward end, a suction port 130 and an actuation member 140 . In use the device 101 is connected to a suction line and RF power supply at a rearward portion of the body 110 .
- the body 110 is formed from an elongate body which has a pen like profile. A forward portion of the body 112 tapers forwardly towards the tips 120 . A rearward portion of the body 114 tapers rearwardly towards a connecting portion for connection to a suction line.
- the body 110 has a substantially hollow cross section such that a conduit 134 of the suction port 130 may extend along the length of the body from inlet 132 adjacent to tip 120 to a suction line connection 136 at the rearward end 114 of the body 110 . Tips 120 a and 120 b are moveably attached to the body 110 by the actuation member 140 . In contrast to the first embodiment, it may be noted that the tips extend rearwardly beyond the front of the body 110 and into an interior space within the hollow body 110 . The rearmost portion of the tips 124 are directly attached to the inward surface of the actuation member 140 .
- Each of the tips 120 a and 120 b has a substantially identical profile having a linear (and generally axially extending) inwardly facing surface 123 .
- the forward section 122 of each tip 120 is forwardly tapered such that the end 129 of each tip forms a relatively sharp point.
- the rearward most portion of the forward section 122 includes an outwardly directed step increase in thickness which is shaped and dimensioned so as to be received into a cut out 113 in the body 110 . This cut out 113 enables the forward most portion of the body 110 to extend beyond the forward section 112 of the tips 120 and positions the inlet 132 of the suction port 130 as close to the ends of the tip 120 as possible.
- the tips 120 a and 120 b are not provided with substantially parallel abutting surfaces but meet at a pinch point at the forward most end 129 of the tips 120 .
- the actuation member 140 comprises a pair of opposing finger receiving portions 142 a and 142 b which are hingebly connected to the body 110 and which extend from the interior of the body 110 to the outer surface of the device 101 .
- the finger receiving portions 142 are raised from the surface of the body 110 such that they may be easily located and gripped.
- the outer surface of the finger receiving portions 140 may be provided with a surface profile to assist gripping, for example they may be provided with a plurality of depressions.
- any inward movement of the actuation member 140 i.e. by being squeezed between the fingers of an end user acts to bring the tips 120 together until their ends 129 meet.
- the body further comprises a spring 12 which is disposed between the finger receiving portions 142 a and 142 b and is arranged to bias the actuation member 140 , and therefore the tips 20 towards the open position of FIGS. 5 and 6 b.
- An electrical activation switch 154 (which may for example be a micro switch or a membrane switch) is provided within the body 110 and is positioned between the moveable portions of the actuation member 140 .
- the electrical activation switch 154 could, for example, be positioned between the moveable tips 120 .
- the activation switch 154 is connected to one of the finger receiving portions 142 a and the other finger receiving portion 142 b is provided with an inwardly projecting switch engagement member 153 .
- the activation switch 154 is automatically engaged when the user squeezes the actuation member 140 together so as to close the tips 120 .
- this embodiment is a bipolar device actuation of the switch 154 enables the RF current to pass through one tip of the device to the other so as to return to the RF generator source (and in doing sopassing through and locally heating tissue proximal to or between the tips).
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Otolaryngology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
A forceps-type electrosurgical device is disclosed comprising, a fixed elongate body and a pair of moveable tips, arranged for engaging tissue in use, and extending from a forward end of the body. The tips are relatively moveable between a first position in which the tips are spaced apart and a second position in which the tips are brought together. The body further comprising an actuation member moveable relative to the body and connected to the tips such that a user may move the actuation member to result in movement of the tips between the first and second positions. The device may further comprise a suction port proximal to the tips.
Description
- This application is a continuation of U.S. patent application Ser. No. 16/366,326, filed Mar. 27, 2019, which is a continuation of U.S. patent application Ser. No. 14/888,178, filed Oct. 30, 2015, now abandoned, which is a 371 application of PCT International Application No. PCT/GB2014/051345, filed Apr. 30, 2014, which claims the benefit of Great Britain Patent Application No. 1307866.2 filed on May 1, 2013, the disclosures of which are hereby incorporated by reference in their entirety for all purposes.
- This invention relates to a forceps-type electrosurgical device in particular, but not exclusively, to an electrosurgical device for use with a high frequency (RF) current.
- As referred to herein a “forceps-type electrosurgical device” means an electrosurgical device which is suitable for providing the function of electrosurgical forceps.
- Electrosurgical forceps comprise a pair of opposed tips which are typically relatively moveable such that they may be used to grasp or engage objects such as biological tissue. During electrosurgery a high frequency (RF) electric current is applied using the forceps such that the tips act as electrodes for passing the ac current into the tissue. Depending upon the properties of the current and the manner in which the forceps engage the tissue electrosurgical forceps may, for example, be used to cut, coagulate, desiccate and/or fulgurate the tissue. In particular, electrosurgical devices are commonly used during surgery in order to stop bleeding by using an alternating current directly heat tissue and thereby reduce blood loss and/or improved surgical vision.
- Two primary types of electrosurgical device are known, namely bipolar and monopolar devices.
- In monopolar arrangements the electrosurgical device is provided with an active electrode and a return electrode is attached to the patient. The electric current flows from the active electrode into the body and returns through the return electrode (which is connected to an earthing circuit). The current density decreases rapidly with distance away from the electrode such that the heating of tissue is localised to the tip of the electrosurgical device.
- In bipolar devices, a pair of electrodes, for example the tips of forceps, are each connected to the supply circuit and no return electrode is required. When tissue is engaged by or proximal to the pair of electrodes, the high frequency electric current flows through the device and tissue providing a localised heating of the tissue.
- Conventionally, electrosurgical forceps have a design which is substantially based upon traditional surgical forceps. As such, electrosurgical forceps generally comprise a pair of elongate fingers connected at a rearward hinge such that the forward end of the forceps may be used to grasp or hold objects such as biological tissue. Being based upon traditional non-electrosurgical devices conventional electrosurgical forceps are not typically optimised for use in electrosurgery. Accordingly, it would be desirable to provide a new forceps design which is specifically designed for use in electrosurgery so as to improve ease of use.
- According to a first aspect of the present invention there is provided a forceps type electrosurgical device comprising:
- a fixed elongate body; a pair of moveable tips, arranged for engaging tissue in use and extending from a forward end of the body, the tips being relatively moveable between a first position in which the tips are spaced apart and a second position in which the tips are brought together;
- the body further comprising an actuation member moveable relative to the body and connected to the tips such that a user may move the actuation member to result in movement of the tips between the first and second positions
- It will be appreciated that the relative movement between the tips may be provided by one or both tips being moveably connected to the fixed elongate body.
- The moveable tips are typically resiliently biased towards the first position. For example, the moveable tips may be resiliently biased towards the first position by the elongate body. The actuation member may be arranged to the tips together against the resilient bias. The body may comprise a spring member arranged to bias the tips towards the first position.
- The actuation member may be provided on an outer surface of the elongate body. The actuation member may be inwardly compressible. The actuation member may comprise a pair of finger receding portions provided on opposing sides of the body. For example, one or both of the finger receiving portions may be inwardly moveable relative to the body. Thus, the actuation member may conveniently be actuated by being squeezed between the fingers of an end user.
- The forceps may further comprise a suction port proximal to the tips. This is considered novel and inventive in its own right and, accordingly a further aspect of the invention provides an electrosurgical device comprising a pair of moveable tips at a forward end arranged for engaging tissue in use and a suction port proximal to such tips.
- The suction port may for example be provided at a forward most portion of the fixed elongate body. A conduit may be provided extending through the fixed elongate body. For example the conduit may extend from a connector at or proximal to the rear of the body for receiving a suction line to the suction port.
- The suction port may, therefore, be used to draw gas away from the tips through the elongate body of the device. Advantageously, the inclusion of an integral suction port may help to reduce the number of instruments required during a surgical procedure. Further, the provision of suction local to the tips may reduce or limit the release of potentially harmful vapours and/or improve surgical vision.
- The electrosurgical device may comprise an electrical switch. The switch may be activated upon movement of the tips, for example the switch may be activated when the tips are moved to the second position. The activation may be automatic. An automatic switch arrangement may be particularly suitable for a bipolar device. The electrical switch may be engaged by a portion of the actuating member. Alternatively, the electrical switch may be engaged by a portion of the tips.
- The electrical switch may be disposed between the moveable portions of the actuation member such that it is physically engaged upon movement of the actuation member. For example, the electrical switch may be provided on a fixed portion of the elongate body adjacent to the actuation member such that it is engaged upon movement of the actuation member. Alternatively, the switch may be provided on the actuation member and may be engaged by opposing movement portions of the actuation member. The switch may require a minimal engagement pressure in order to activate (for example to avoid premature or unintentional actuation of the surgical current).
- In some embodiments the body may further comprise an electrical activation button on an outer surface thereof. The button may take any conventional form (for example a compression button, a key, a slidable switch or the like). For example, an activation button may be provided on an outer surface of the elongate body or on the outer surface of the actuation member. Such an externally provided activation button may typically be arranged to be physically activated by an end user. The activation button may be arranged such that it is deactivated when the tips are in the first position. For example, the activation button may be spaced apart from an electrical switch (which is operated by the button) until the actuation member is moved relative to the body. Alternatively, the activation button may be electrically isolated until the actuation member is moved relative to the body.
- The electrical activation button may be arranged to enable selection between different modes of operation. For example, the switch may enable selection of differing magnitude and/or waveforms of the applied current corresponding to different electrosurgical procedures (for example, cutting or coagulation). Such an arrangement may be particularly suitable for a monopolar surgical device.
- At least one of the tips of the electrosurgical device may comprise an outwardly facing surface having a sharp tapered profile. One of the tips may comprise an outwardly facing surface having a blunt profile (such that one tip has a sharp profile and the other has a blunt profile). This arrangement is particularly advantageous since it enables the sharp profile tip to be used during cutting procedures and the blunt tip profile to be used during coagulation procedures.
- This arrangement is considered novel and inventive in its own right and therefore according to a further aspect of the invention there is provided an electrosurgical device comprising a pair of tips arranged for engaging tissue in use, the tips being relatively moveable between the first spaced apart position and a second position in which the tips are brought together, wherein one tip comprises an outwardly facing surface with a sharp tip profile and the other tip comprises an outwardly facing surface with a blunt profile.
- The tips may comprise inwardly facing opposing planar surfaces. The planar surfaces are generally parallel and spaced apart when the tips are in the first position. The inwardly facing surface may be arranged to abut when the tips are in the second position or may conveniently be used to grip tissue therebetween.
- To the rear of the planar surfaces the tips may curve outwardly. The outward curvature may for example be arranged such that the rear portion of the tips are adjacent to an outer portion of the body. This may for example provide a space between the rear portion of the tips to accommodate a suction port.
- Alternatively, the tips may taper from a rearward portion towards a point at the forward end.
- The fixed elongate body is typically formed from an insulting material. For example, the fixed body may be plastic. The moveable tips may comprise thermally conductive tips. The tips may typically be metallic and may be coated for example the tips may be anodised and/or may be provided with a non stick coating such as Teflon or DLC (diamond like coating). In particular, the tips may be aluminium.
- Whilst the invention has been described above extends to any inventive of the features set out above or in the following description or drawings.
- A specific embodiment of the invention will now be described in detail, by way of example only, and with reference with the accompanying drawings in which
-
FIG. 1A is a schematic three-dimensional view of a first embodiment of the invention with the tips in an open position; -
FIG. 1B is a schematic three-dimensional view of a first embodiment of the invention with the tips in a closed position; -
FIG. 1C is a close-up schematic three-dimensional view of a first embodiment of the invention with the tips in an open position; -
FIG. 1D is a close-up schematic three-dimensional view of a first embodiment of the invention with the tips in a closed position; -
FIG. 2 is a schematic three-dimensional cross-section of the first embodiment; -
FIG. 3A is a schematic partial cross-section of the forward portion of the first embodiment in an open position; -
FIG. 3B is a schematic partial cross-section of the forward portion of the first embodiment in a closed position; -
FIG. 4A is a schematic detailed view of the tips for use in an embodiment of the invention from a selected direction; -
FIG. 4B is a schematic detailed view of the tips for use in an embodiment of the invention from a direction opposite the direction of the view ofFIG. 4A ; -
FIG. 5 is a schematic three-dimensional view of a second embodiment of the invention; -
FIG. 6A is a schematic cross-section of the second embodiment in an open position; and -
FIG. 6B is a schematic cross-section of the second embodiment in a closed position. - Front as used herein will be understood to refer to the end of the forceps (or components thereof) which, in use, are closest to the tissue on which a procedure is being carried out (i.e. the end which is facing the patient). Rear as used herein will be understood to refer to the end of the forceps (or components thereof) which, in use, are furthest from the tissue (i.e. the end which is facing the surgeon). Forward and rearward will, likewise, be understood to refer to the directions orientated towards the front and rear of the forceps.
-
FIGS. 1 to 4 show a monopolar electrosurgical forceps-type device in accordance with a first embodiment of the invention. The device 1 generally comprises a fixedelongate body 10 having a pair oftips 20 provided at the forward end, asuction port 30 and anactuation member 40 including abutton 50. In use, the device 1 is connected to a suction line and RF power supply at a rearward portion. - The
body 10 is formed from an elongate and generally cylindrical body which has a pen like profile such that it can be easily gripped by a surgeon during use. A forward portion of thebody 12 tapers forwardly towards thetips 20. Thebody 10 has a substantially hollow profile such that aconduit 34 of asuction port 30 may be defined extending along the length of the body from aninlet 32 adjacent to thetips 20 to asuction line connection 36 at a rearward end 14 of thebody 10. - The
tips 20 a and 20 b are movably attached to thebody 10 via a pair offlexible arms 44 a and 44 b of the actuation member 40 (which will be described in further detail below). The tips are connected to the arms byrivets 28 but any convenient fixation means may be used. Eachtip 20 comprises a linearforward section 22 and an outwardly curvedrearward section 24. Theforward sections 22 a, 22 b extend to a roundedforward end 129 and are provided with opposed planar inwardly facing surfaces faces 23 a, 23 b which are spaced apart in the open position ofFIGS. 1b and 1d and are brought together in the closed position ofFIGS. 1a and 1c such that they are generally parallel and abutting (although it will be appreciated that in use the closed position may not always involve the surfaces abutting as shown since tissue may be engaged therebetween). The outwardly curvedrearward sections 24 allow thetips 20 to be attached at a radially outwardly position with respect to thebody 10. This curved profile provides a spacing between the rearward portions such that theinlet 32 of thesuction port 30 may be positioned between the tips (and generally on the axial centre line of the body 10). As will be explained in further detail below (with reference toFIG. 4 ) the outwardly facingsurfaces 26 a and 26 b of thetips 20 a and 20 b have non-matching profiles. - The
tips 20 are connected to thebody 10 via anactuation member 40 which is moveably connected to thebody 10. Theactuation member 40 comprises a pair of flexible, forwardly extending,arms 44 a and 44 b. Thearms 44 a and 44 b are formed on opposing sides of thebody 10 and are on a radially exterior portion of thebody 10. Eacharm 44 a and 44 b is hingedly attached to thebody 10 at its rearward end. One of thetips 20 a and 20 b is rigidly attached to a forward end of eacharm 44 a and 44 b. In the closed position (shown inFIGS. 1b and 1d ) thearms 44 a and 44 b are seated within a pair ofrecesses forward section 12 of thebody 10. - The
actuation member 40 further comprises two opposingfinger receiving portions arm 44 a and 44 b in circumferentially opposing positions. The finger receiving portions 42 are shaped and dimensioned so as to be gripped between the fingers (typically the thumb and forefinger in a pinching action) of an end user. - The body further comprises a spring 12 (by seen in
FIGS. 2 and 3 ) which is disposed between thearms 44 a and 44 b so as to bias the arms apart and into the open position shown inFIGS. 1b and 1 d. Alternatively, the hinged connection between thebody 10 andarms 44 may be resiliently outwardly biased (such that inward deflection of thearms 44 is by elastic deformation of the hinged connection or arm). - As best seen in
FIG. 3 , auser activation button 50 is provided on thefinger receiving portion 42 b of one of the arms 44 a. Thebutton 50 comprises 50 comprises first button 50 a and asecond button 50 b. Each button is arranged to activate different mode of operation of the forceps (in the illustrated embodiment 50 a is activates a “coagulate” mode and 50 b activates a “cut” mode). Each button comprises an outer surface 51 which is pressed in use by a user and which is resiliently outwardly biased towards the buttons disengaged position by aspring 52. Ashaft 53 projects inwardly from the underside of the surface 51 and is arranged to pass through an aperture 48 in theactuation member 40 when thebutton 50 is depressed. Typically theshaft 53 may snap fit into the aperture 48 so as to be movably retained therein. Theshaft 53 is arranged to engage an underlying electrical activation switch 54 (which may for example be a micro switch or a membrane switch) on thebody 10. Theswitch 54 may for example be formed as part of a PCB. A separate switch 54 a and 54 b is generally provided for eachuser activation button 50 a and 50 b. It may be noted from a comparison ofFIGS. 3a and 3b that the relative position of eachbutton 50 andswitch 54 and/or the stroke of theshaft 53 is arranged such that theswitch 54 can only be engaged by theshaft 53 of thebutton 50 when theactuation portion 40 is in the position shown inFIG. 3a . In other words, thebutton 50 is deactivated until theactuation member 40 is moved to bring thetips 20 towards their closed position. - The profile and function of the
tips 20 will now be described in further detail with particular reference toFIG. 4 (in whichFIGS. 4a and 4b show views of the same embodiment form opposing directions). As mentioned above, eachtip 20 comprises a linearforward section 22 and a curvedrearward section 24. Theforward section 22 is the “active” section during electrosurgery and thecurved section 24 is a connecting portion to thebody 10. Theforward sections 22 a, 22 b are provided with opposed planar inwardly facing surfaces faces 23 a, 23 b which are spaced apart in the open position ofFIGS. 1b and 1d and are brought together in the closed position ofFIGS. 1b and 1d . One of thetips 20 a has anextension 27 which extends axially away from the outward facingsurface 26 a of thetip 20 a and tapers so as to form a relativelysharp edge 28. In contrast, the other tip 20 b has an outwardly facing surface 26 b which has a rounded and relatively blunt profile. - The provision of surfaces of different profiles improves the utility of the electrosurgical device since each surface may be suitable for different procedures. For example during some procedures tissue may be engaged between the inwardly facing surfaces faces 23 a, 23 b (for example to weld tissue). In other procedures the
tips 20 a and 20 b may be brought together such that the planar inwardly facing surfaces faces 23 a, 23 b are abutting and the tips may effectively provide a single electrode. The surgeon may then select to use either thesharp face 26 a (e.g. for cutting) or the blunt face 26 b (e.g. for coagulating) depending upon the task to be performed. Additionally, the provision of amultiple mode switch 50 allows the surgeon to easily switch between different pre-set profiles of RF current appropriate to the task in hand. -
FIGS. 5 and 6 show a bipolar electrosurgical forceps-type device in accordance with a second embodiment of the invention. The general arrangement of the device is similar to that of the first embodiment and corresponding features have been given reference numbers corresponding to those of the first embodiment but increased by 100. Thedevice 101 generally comprises a fixedelongate body 110 having a pair oftips 120 provided at the forward end, asuction port 130 and an actuation member 140. In use thedevice 101 is connected to a suction line and RF power supply at a rearward portion of thebody 110. - The
body 110 is formed from an elongate body which has a pen like profile. A forward portion of thebody 112 tapers forwardly towards thetips 120. A rearward portion of the body 114 tapers rearwardly towards a connecting portion for connection to a suction line. Thebody 110 has a substantially hollow cross section such that a conduit 134 of thesuction port 130 may extend along the length of the body frominlet 132 adjacent to tip 120 to a suction line connection 136 at the rearward end 114 of thebody 110. Tips 120 a and 120 b are moveably attached to thebody 110 by the actuation member 140. In contrast to the first embodiment, it may be noted that the tips extend rearwardly beyond the front of thebody 110 and into an interior space within thehollow body 110. The rearmost portion of thetips 124 are directly attached to the inward surface of the actuation member 140. - Each of the tips 120 a and 120 b has a substantially identical profile having a linear (and generally axially extending) inwardly facing
surface 123. The forward section 122 of eachtip 120 is forwardly tapered such that theend 129 of each tip forms a relatively sharp point. The rearward most portion of the forward section 122 includes an outwardly directed step increase in thickness which is shaped and dimensioned so as to be received into a cut out 113 in thebody 110. This cut out 113 enables the forward most portion of thebody 110 to extend beyond theforward section 112 of thetips 120 and positions theinlet 132 of thesuction port 130 as close to the ends of thetip 120 as possible. - It may also be noted that in contrast to the first embodiment, in the closed position (shown in
FIG. 6a ) the tips 120 a and 120 b are not provided with substantially parallel abutting surfaces but meet at a pinch point at the forward most end 129 of thetips 120. - The actuation member 140 comprises a pair of opposing
finger receiving portions 142 a and 142 b which are hingebly connected to thebody 110 and which extend from the interior of thebody 110 to the outer surface of thedevice 101. Conveniently, the finger receiving portions 142 are raised from the surface of thebody 110 such that they may be easily located and gripped. The outer surface of the finger receiving portions 140 may be provided with a surface profile to assist gripping, for example they may be provided with a plurality of depressions. As thetips 120 are directly connected to the inner surface of the finger receiving portions 142 any inward movement of the actuation member 140 (i.e. by being squeezed between the fingers of an end user) acts to bring thetips 120 together until theirends 129 meet. The body further comprises aspring 12 which is disposed between thefinger receiving portions 142 a and 142 b and is arranged to bias the actuation member 140, and therefore thetips 20 towards the open position ofFIGS. 5 and 6 b. - An electrical activation switch 154 (which may for example be a micro switch or a membrane switch) is provided within the
body 110 and is positioned between the moveable portions of the actuation member 140. Alternatively, theelectrical activation switch 154 could, for example, be positioned between themoveable tips 120. In the illustrated embodiment, theactivation switch 154 is connected to one of thefinger receiving portions 142 a and the other finger receiving portion 142 b is provided with an inwardly projectingswitch engagement member 153. Thus, as seen inFIG. 6 , theactivation switch 154 is automatically engaged when the user squeezes the actuation member 140 together so as to close thetips 120. As this embodiment is a bipolar device actuation of theswitch 154 enables the RF current to pass through one tip of the device to the other so as to return to the RF generator source (and in doing sopassing through and locally heating tissue proximal to or between the tips). - While the invention has been described above with reference to the preferred embodiments, it will be appreciated that various changes or modifications may be made without departing from the scope of the invention as defined in the appended claims.
Claims (15)
1. A forceps-type electrosurgical device comprising a pair of tips arranged for engaging tissue in use,
the tips being relatively moveable between a first spaced apart position and a second position in which the tips are brought together, wherein
one tip comprises an outwardly facing surface with a sharp tapered profile; and
the other tip comprises an outwardly facing surface with a blunt profile.
2. An electrosurgical device as claimed in claim 1 , wherein the tips are resiliently biased towards the first position by the elongate body.
3. An electrosurgical device as claimed in claim 1 , wherein the body further comprises an actuation member movable relative to the body and connected to the tips such that a user may move the actuation member to result in movement between the first and second positions.
4. An electrosurgical device as claimed in claim 3 , wherein the actuation member is provided on an outer surface of the elongate body and is inwardly compressible.
5. An electrosurgical device as claimed in claim 3 , wherein the actuation member comprises a pair of finger receiving portion provided on opposing sides of the body.
6. An electrosurgical device as claimed in claim 1 , wherein the device further comprises a suction port proximal to the tips.
7. An electrosurgical device as claimed in claim 6 , wherein the suction port is positioned between the tips.
8. An electrosurgical device as claimed in claim 1 , further comprising an electrical switch which is activated upon movement of the tips.
9. An electrosurgical device as claimed in claim 8 , wherein the electrical switch is engaged by an actuation member.
10. An electrosurgical device as claimed in claim 1 , wherein the body further comprises an electrical activation switch on an outer surface thereof.
11. An electrosurgical device as claimed in claim 10 , wherein the switch is deactivated when the tips are in the tips are in first position.
12. An electrosurgical device as claimed in claim 10 , wherein the switch enables selection between different modes of operation.
13. An electrosurgical device as claimed in claim 1 , wherein the tips comprise inwardly facing opposing planar surfaces.
14. An electrosurgical device as claimed in claim 1 , wherein the fixed body is plastic
15. An electrosurgical device as claimed in claim 14 , wherein the tips are thermally conductive tips.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/320,430 US20210267666A1 (en) | 2013-05-01 | 2021-05-14 | Electrosurgical device |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1307866.2 | 2013-05-01 | ||
GB1307866.2A GB2513613A (en) | 2013-05-01 | 2013-05-01 | Electrosurgical device |
PCT/GB2014/051345 WO2014177866A2 (en) | 2013-05-01 | 2014-04-30 | Electrosurgical device |
US201514888178A | 2015-10-30 | 2015-10-30 | |
US16/366,326 US11051874B2 (en) | 2013-05-01 | 2019-03-27 | Electrosurgical device |
US17/320,430 US20210267666A1 (en) | 2013-05-01 | 2021-05-14 | Electrosurgical device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/366,326 Continuation US11051874B2 (en) | 2013-05-01 | 2019-03-27 | Electrosurgical device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210267666A1 true US20210267666A1 (en) | 2021-09-02 |
Family
ID=48627137
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/888,178 Abandoned US20160058499A1 (en) | 2013-05-01 | 2014-04-30 | Electrosurgical device |
US16/366,326 Active US11051874B2 (en) | 2013-05-01 | 2019-03-27 | Electrosurgical device |
US17/320,430 Abandoned US20210267666A1 (en) | 2013-05-01 | 2021-05-14 | Electrosurgical device |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/888,178 Abandoned US20160058499A1 (en) | 2013-05-01 | 2014-04-30 | Electrosurgical device |
US16/366,326 Active US11051874B2 (en) | 2013-05-01 | 2019-03-27 | Electrosurgical device |
Country Status (7)
Country | Link |
---|---|
US (3) | US20160058499A1 (en) |
EP (1) | EP3024404B1 (en) |
JP (1) | JP2016521168A (en) |
CN (1) | CN105407823A (en) |
CA (2) | CA3131607A1 (en) |
GB (1) | GB2513613A (en) |
WO (1) | WO2014177866A2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10357306B2 (en) * | 2014-05-14 | 2019-07-23 | Domain Surgical, Inc. | Planar ferromagnetic coated surgical tip and method for making |
WO2017172082A1 (en) * | 2016-03-31 | 2017-10-05 | GYRUS ACMI, INC. (d/b/a OLYMPUS SURGICAL TECHNOLOGIES AMERICA) | Disengagement mechanism for electrosurgical forceps |
US11191586B2 (en) | 2019-07-02 | 2021-12-07 | Jamison Alexander | Removable tip for use with electrosurgical devices |
US11172979B2 (en) | 2019-07-02 | 2021-11-16 | Jamison Alexander | Removable tip for use with electrosurgical devices |
GR20200100249A (en) * | 2020-05-13 | 2021-12-09 | Χρηστος Πανοτοπουλος | MULTIFUNCTIONAL SURGICAL INSTRUMENT |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3807406A (en) * | 1971-06-25 | 1974-04-30 | Bio Medicus Inc | Instrument surgical with suction device |
US3916909A (en) * | 1973-08-01 | 1975-11-04 | Bio Medicus Inc | Suction surgical instrument of the forceps type |
US4041952A (en) * | 1976-03-04 | 1977-08-16 | Valleylab, Inc. | Electrosurgical forceps |
US5122139A (en) * | 1989-11-13 | 1992-06-16 | Select-Medizintechnik Hermann Sutter Gmbh | Medical coagulation instrument |
US5464405A (en) * | 1993-01-20 | 1995-11-07 | Ethicon Endo-Surgery, Inc. | Bipolar surgical tweezers |
US5843080A (en) * | 1996-10-16 | 1998-12-01 | Megadyne Medical Products, Inc. | Bipolar instrument with multi-coated electrodes |
US6210411B1 (en) * | 1998-05-11 | 2001-04-03 | Gebrueder Berchtold Gmbh & Co. | High frequency surgical instrument with a fluid infeed passage |
US20050124987A1 (en) * | 2003-12-09 | 2005-06-09 | Gyrus Medical Limited | Surgical instrument |
US6926717B1 (en) * | 2003-01-14 | 2005-08-09 | Jon C. Garito | Electrosurgical breast electrode |
US20090131933A1 (en) * | 2007-11-21 | 2009-05-21 | Ghabrial Ragae M | Bipolar forceps |
US9320563B2 (en) * | 2010-10-01 | 2016-04-26 | Applied Medical Resources Corporation | Electrosurgical instruments and connections thereto |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US853096A (en) * | 1906-06-16 | 1907-05-07 | Henry H Lewis | Depilatory instrument. |
US2417530A (en) * | 1944-12-09 | 1947-03-18 | Weiser Tobiah | Electrical hair removing instrument |
IT1207557B (en) * | 1982-05-10 | 1989-05-25 | Gianfranco Conti | THERMAL PLIER, MANUAL, FOR THE APPLICATION OF HINGES IN THE FRAMES, IN THERMOPLASTIC MATERIAL, OF THE GLASSES. |
JPS6036041A (en) * | 1983-08-09 | 1985-02-25 | 太田 富雄 | Dual electrode electric coagulating tweezers used in operation |
JPH0197447A (en) * | 1987-06-17 | 1989-04-14 | S & T Spingler Tritt Chirurgische Nadeln Gmbh | Bullet forceps or pincette |
US5169398A (en) * | 1990-09-21 | 1992-12-08 | Glaros Nicholas G | Electronic hair remover |
CA2106126A1 (en) * | 1992-09-23 | 1994-03-24 | Ian M. Scott | Bipolar surgical instruments |
US5306287A (en) * | 1992-10-30 | 1994-04-26 | Becker James H | Heated tissue forceps and method |
GB9502498D0 (en) * | 1995-02-09 | 1995-03-29 | Devlin Stuart L | Surgical instruments |
US5693052A (en) * | 1995-09-01 | 1997-12-02 | Megadyne Medical Products, Inc. | Coated bipolar electrocautery |
AU703455B2 (en) * | 1995-10-20 | 1999-03-25 | Ethicon Endo-Surgery, Inc. | Self protecting knife for curved jaw surgical instruments |
US5752972A (en) * | 1995-11-09 | 1998-05-19 | Hoogeboom; Thomas J. | Modular endoscopic surgical instrument |
US5891140A (en) * | 1996-12-23 | 1999-04-06 | Cardiothoracic Systems, Inc. | Electrosurgical device for harvesting a vessel especially the internal mammary artery for coronary artery bypass grafting |
US7083613B2 (en) * | 1997-03-05 | 2006-08-01 | The Trustees Of Columbia University In The City Of New York | Ringed forceps |
US5899900A (en) * | 1997-11-03 | 1999-05-04 | Burke; Robert E. | High frequency tweezer type epilator |
US6235027B1 (en) * | 1999-01-21 | 2001-05-22 | Garrett D. Herzon | Thermal cautery surgical forceps |
JP2000262533A (en) * | 1999-03-15 | 2000-09-26 | Olympus Optical Co Ltd | Surgical instrument |
US6228084B1 (en) * | 1999-04-06 | 2001-05-08 | Kirwan Surgical Products, Inc. | Electro-surgical forceps having recessed irrigation channel |
US6679881B1 (en) * | 2000-10-06 | 2004-01-20 | David Byrum Bybee | Bipolar tool for surgical use |
GB2383952B (en) * | 2002-01-09 | 2005-01-19 | Fulcrum | Surgical Tool |
JP4030377B2 (en) * | 2002-07-24 | 2008-01-09 | 白光株式会社 | Electrical component removal device |
FR2882645B1 (en) * | 2005-03-03 | 2007-04-27 | Jean Chaignaud | AUTOMATIC PRE-FINE BIPOLAR CLAMP FOR OPEN SURGERY |
US8484833B2 (en) * | 2008-03-31 | 2013-07-16 | Covidien Lp | Automated assembly device to tolerate blade variation |
US9402680B2 (en) * | 2008-05-27 | 2016-08-02 | Maquet Cardiovasular, Llc | Surgical instrument and method |
US8152806B2 (en) * | 2008-09-11 | 2012-04-10 | Black & Black Surgical, Inc. | Monopolar electrosurgical instrument |
EP2523620B1 (en) * | 2010-01-15 | 2019-06-19 | Medtronic Advanced Energy LLC | Electrosurgical device |
-
2013
- 2013-05-01 GB GB1307866.2A patent/GB2513613A/en not_active Withdrawn
-
2014
- 2014-04-30 CA CA3131607A patent/CA3131607A1/en active Pending
- 2014-04-30 EP EP14725918.8A patent/EP3024404B1/en active Active
- 2014-04-30 WO PCT/GB2014/051345 patent/WO2014177866A2/en active Application Filing
- 2014-04-30 CA CA2946235A patent/CA2946235C/en active Active
- 2014-04-30 CN CN201480037688.9A patent/CN105407823A/en active Pending
- 2014-04-30 JP JP2016511129A patent/JP2016521168A/en active Pending
- 2014-04-30 US US14/888,178 patent/US20160058499A1/en not_active Abandoned
-
2019
- 2019-03-27 US US16/366,326 patent/US11051874B2/en active Active
-
2021
- 2021-05-14 US US17/320,430 patent/US20210267666A1/en not_active Abandoned
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3807406A (en) * | 1971-06-25 | 1974-04-30 | Bio Medicus Inc | Instrument surgical with suction device |
US3916909A (en) * | 1973-08-01 | 1975-11-04 | Bio Medicus Inc | Suction surgical instrument of the forceps type |
US4041952A (en) * | 1976-03-04 | 1977-08-16 | Valleylab, Inc. | Electrosurgical forceps |
US5122139A (en) * | 1989-11-13 | 1992-06-16 | Select-Medizintechnik Hermann Sutter Gmbh | Medical coagulation instrument |
US5464405A (en) * | 1993-01-20 | 1995-11-07 | Ethicon Endo-Surgery, Inc. | Bipolar surgical tweezers |
US5843080A (en) * | 1996-10-16 | 1998-12-01 | Megadyne Medical Products, Inc. | Bipolar instrument with multi-coated electrodes |
US6210411B1 (en) * | 1998-05-11 | 2001-04-03 | Gebrueder Berchtold Gmbh & Co. | High frequency surgical instrument with a fluid infeed passage |
US6926717B1 (en) * | 2003-01-14 | 2005-08-09 | Jon C. Garito | Electrosurgical breast electrode |
US20050124987A1 (en) * | 2003-12-09 | 2005-06-09 | Gyrus Medical Limited | Surgical instrument |
US20090131933A1 (en) * | 2007-11-21 | 2009-05-21 | Ghabrial Ragae M | Bipolar forceps |
US9320563B2 (en) * | 2010-10-01 | 2016-04-26 | Applied Medical Resources Corporation | Electrosurgical instruments and connections thereto |
Also Published As
Publication number | Publication date |
---|---|
US20160058499A1 (en) | 2016-03-03 |
WO2014177866A3 (en) | 2014-12-24 |
JP2016521168A (en) | 2016-07-21 |
GB2513613A (en) | 2014-11-05 |
EP3024404C0 (en) | 2023-07-12 |
CN105407823A (en) | 2016-03-16 |
WO2014177866A2 (en) | 2014-11-06 |
US11051874B2 (en) | 2021-07-06 |
US20190282295A1 (en) | 2019-09-19 |
CA3131607A1 (en) | 2014-11-06 |
CA2946235A1 (en) | 2014-11-06 |
EP3024404A2 (en) | 2016-06-01 |
GB201307866D0 (en) | 2013-06-12 |
EP3024404B1 (en) | 2023-07-12 |
CA2946235C (en) | 2022-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210267666A1 (en) | Electrosurgical device | |
EP3895637B1 (en) | Surgical apparatus with jaw force limiter | |
EP3280340B1 (en) | Medical forceps with offset teeth | |
US9113909B2 (en) | Surgical vessel sealer and divider | |
US5527313A (en) | Bipolar surgical instruments | |
CA2934191C (en) | Surgical forceps | |
US7147637B2 (en) | Surgical instrument | |
US5735849A (en) | Endoscopic forceps with thumb-slide lock release mechanism | |
US20050149017A1 (en) | Movable handle for vessel sealer | |
WO2006020798A2 (en) | Combination argon plasma coagulation and electrocautery device and method | |
JP2000210296A (en) | Medical treatment tool | |
US20160249974A1 (en) | Combo device-sealer-transcollator-cutter-disector-tissue manipulator | |
US11419666B2 (en) | Advanced leverage instrument | |
US10660694B2 (en) | Vessel sealing instrument and switch assemblies thereof | |
US10292759B2 (en) | Electrosurgical device for vessel sealing | |
JP6227208B2 (en) | Energy treatment tool | |
US11065049B2 (en) | Electrosurgical device with asymmetric seal compression | |
US20120316541A1 (en) | Dual-purpose laparoscopic surgical device | |
US20170281264A1 (en) | Electrosurgical device for vessel sealing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |