US20210264362A1 - Distributed ledger system for claim payouts - Google Patents

Distributed ledger system for claim payouts Download PDF

Info

Publication number
US20210264362A1
US20210264362A1 US15/870,357 US201815870357A US2021264362A1 US 20210264362 A1 US20210264362 A1 US 20210264362A1 US 201815870357 A US201815870357 A US 201815870357A US 2021264362 A1 US2021264362 A1 US 2021264362A1
Authority
US
United States
Prior art keywords
insurance
distributed ledger
transaction
payment
servers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/870,357
Inventor
Ronny S. Bryant
Stacie A McCullough
Mitchell J. Hill
Jacob J. Alt
Jaime Skaggs
Shawn M. Call
Eric Bellas
Vicki King
Melinda Teresa Magerkurth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Farm Mutual Automobile Insurance Co
Original Assignee
State Farm Mutual Automobile Insurance Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Farm Mutual Automobile Insurance Co filed Critical State Farm Mutual Automobile Insurance Co
Priority to US15/870,357 priority Critical patent/US20210264362A1/en
Assigned to STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY reassignment STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALT, JACOB J., BELLAS, ERIC, CALL, SHAWN M., HILL, MITCHELL J., KING, VICKI, MAGERKURTH, MELINDA TERESA, MCCULLOUGH, STACIE A., SKAGGS, JAIME, BRYANT, RONNY S.
Publication of US20210264362A1 publication Critical patent/US20210264362A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/18File system types
    • G06F16/182Distributed file systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/27Replication, distribution or synchronisation of data between databases or within a distributed database system; Distributed database system architectures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/38Payment protocols; Details thereof
    • G06Q20/389Keeping log of transactions for guaranteeing non-repudiation of a transaction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0283Price estimation or determination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • G06Q30/0623Item investigation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/08Insurance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/16Real estate
    • G06Q50/163Real estate management
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/008Registering or indicating the working of vehicles communicating information to a remotely located station
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0808Diagnosing performance data
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/104Peer-to-peer [P2P] networks
    • H04L67/1061Peer-to-peer [P2P] networks using node-based peer discovery mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/06Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
    • H04L9/0643Hash functions, e.g. MD5, SHA, HMAC or f9 MAC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2756/00Output or target parameters relating to data
    • B60W2756/10Involving external transmission of data to or from the vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/903Querying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L2012/2847Home automation networks characterised by the type of home appliance used
    • H04L2209/38
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/50Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using hash chains, e.g. blockchains or hash trees

Definitions

  • an insured files a claim.
  • the insurance company (or a party contracted with the insurance company) will inspect the damage and provide an estimate to repair or replace the damaged property.
  • a number of parties may be paid.
  • the insurance company may pay the insured to cover the loss.
  • the insurance company may also pay one or more third parties, such as rental car companies, hotels, etc.
  • One or more centralized databases may be utilized to track the status of the claim and to track payment activity associated with the claim. This information stored at the centralized databases may not be readily accessible by the insured individual or by third parties who might otherwise be authorized to access the information.
  • a computer-implemented method for managing insurance claim payouts may include any one or more of the following: (A) configuring or implementing a plurality of servers, each of the plurality of servers maintaining a copy of a distributed ledger; (B) performing the following when a payment event pertaining to an insurance claim is detected: (i) generating, at a first server from the plurality of servers, a transaction record including data corresponding to the payment event; (ii) proposing the transaction record to one or more other servers from the plurality of servers; (iii) performing, via the plurality of servers, a consensus analysis of the transaction record utilizing a consensus mechanism; and/or (iv) when the consensus analysis indicates that the plurality of servers have formed a consensus, storing the transaction record at the distributed ledger by storing the transaction record to each copy of the distributed ledger at the plurality of servers; and/or (C) performing an insurance function based upon the transaction record stored to the distributed ledger.
  • the transaction may be stored to a blockchain on the distributed ledger
  • FIG. 1A depicts an exemplary database system in accordance with one aspect of the present disclosure.
  • FIG. 1B depicts an exemplary distributed ledger system in accordance with one aspect of the present disclosure.
  • FIG. 1C depicts an exemplary computer-implemented method for adding a transaction to a distributed ledger in accordance with one aspect of the present disclosure.
  • FIG. 2A depicts an exemplary transaction flow in accordance with one aspect of the present disclosure.
  • FIG. 2B depicts an exemplary block propagation flow in accordance with one aspect of the present disclosure.
  • FIG. 2C depicts an exemplary computer-implemented method for generating a block in a blockchain in accordance with one aspect of the present disclosure.
  • FIG. 3 depicts an exemplary sequence diagram in accordance with one aspect of the present disclosure.
  • FIG. 4 depicts an exemplary node in accordance with one aspect of the present disclosure.
  • FIG. 5 depicts an exemplary blockchain in accordance with one aspect of the present disclosure.
  • FIG. 6A depicts an exemplary computer-implemented method for tracking home events utilizing a distributed ledger in accordance with one aspect of the present disclosure.
  • FIG. 6B is a block diagram of exemplary nodes that may utilize the distributed ledger discussed with reference to FIG. 6A , in accordance with one aspect of the present disclosure.
  • FIG. 7 depicts an exemplary computer-implemented method for tracking vehicle events utilizing a distributed ledger in accordance with one aspect of the present disclosure.
  • FIG. 8 depicts an exemplary computer-implemented method for tracking insurance claim payment activity utilizing a distributed ledger in accordance with one aspect of the present disclosure.
  • FIG. 9 depicts an exemplary computer-implemented method for managing, via a distributed ledger, insurance information in accordance with one aspect of the present disclosure.
  • the present embodiments relate to, inter alia, systems and methods for using a distributed ledger to record information related to processes and services in the healthcare, automotive, and real estate industries.
  • a distributed ledger may be used to track and/or manage: (i) smart home and/or smart vehicle data; (ii) insurance claim payment activity; and/or (iii) insurance carrier discovery.
  • the distributed ledger is a blockchain system.
  • the systems and methods described herein allow for using a distributed ledger which gives the option for private information, and permissioned participants in the blockchain.
  • the systems and methods allow for a distributed consensus amongst businesses, consumers, and authorities, as to the validity of information and transactions stored on the distributed ledger.
  • each new block may be cryptographically linked to the previous block in order to form a “blockchain.”
  • a blockchain is a way of achieving a distributed consensus on the validity or invalidity of information.
  • a blockchain is a distributed database, or ledger, in which transactional records are maintained at each node of a peer to peer network.
  • the distributed ledger is comprised of groupings of “transactional records” (sometimes simply referred to as “transactions”) bundled together into a “block.”
  • transactional records sometimes simply referred to as “transactions”
  • each “transaction” or “transactional record” is a record of an update or change made to the distributed ledger.
  • the nature of the information included in each transactional record generally depends on the particular implementation of a given distributed ledger, and on the information the distributed ledger is intended to track.
  • Every creation or lookup of a transaction may be associated with a real-world “event.”
  • a distributed ledger may track a currency, wherein each transaction includes data identifying two parties and an amount of currency exchanged between the two parties.
  • the real-world “event” associated with the creation of the transaction is an exchange of currency between the two parties.
  • each node When a change to the distributed ledger is made (e.g., when a new transaction and/or block is created), each node must form a consensus as to how the change is integrated into the distributed ledger. Upon consensus, the agreed upon change is pushed out to each node so that each node maintains an identical copy of the updated distributed ledger. Any change that does not achieve a consensus is ignored. Accordingly, unlike a traditional system which may use a central authority, a single party cannot unilaterally alter the distributed ledger. This inability to modify past transactions lead to blockchains being generally described as trusted, secure, and immutable.
  • Some blockchains may be deployed in an open, decentralized, and permissionless manner meaning that any party may view information, submit new information, or join the blockchain as a node responsible for confirming information.
  • This open, decentralized, and permissionless approach to a blockchain has limitations.
  • these blockchains may not be good candidates for interactions that require information to be kept private, such as information related to a vehicle lifecycle process, or for interactions that require all participants to be vetted prior to their participation.
  • each transaction within a block may be assigned a hash value (i.e., an output of a cryptographic hash function, such as SHA-256 or MD5).
  • a hash value i.e., an output of a cryptographic hash function, such as SHA-256 or MD5
  • hash values may then be combined together utilizing data storage and cryptographic techniques (e.g., a Merkle Tree) to generate a hash value representative of the entire new block, and consequently the transactions stored in the block.
  • This hash value may then be combined with the hash value of the previous block to form a hash value included in the header of the new block, thereby cryptographically linking the new block to the blockchain.
  • the precise value utilized in the header of the new block may be dependent on the hash value for each transaction in the new block, as well as the hash value for each transaction in every prior block.
  • information stored in blockchains may be trusted, because the hash value generated for the new block and a nonce value (an arbitrary number used once) are used as inputs into a cryptographic puzzle.
  • the cryptographic puzzle may have a difficulty set by the nodes connected to the blockchain network, or the difficulty may be set by administrators of the blockchain network.
  • a solving node uses the hash value generated for the new block and repeatedly changes the value of the nonce until a solution for the puzzle is found. For example, finding the solution to the cryptographic puzzle may involve finding the nonce value that meets certain criteria (e.g., the nonce value begins with five zeros).
  • the solving node publishes the solution and the other nodes then verify that the solution is valid. Since the solution depends on the particular hash values for each transaction within the blockchain, if the solving node attempted to modify any transaction stored in the blockchain, the solution would not be verified by the other nodes. More specifically, if a single node attempts to modify a prior transaction within the blockchain, a cascade of different hash values may be generated for each tier of the cryptographic combination technique. This results in the header for one or more blocks being different than the corresponding header(s) in every other node that did not make the exact same modification.
  • FIG. 1A depicts an exemplary central authority database system 100 in accordance with one aspect of the present disclosure.
  • FIG. 1A includes a central authority 101 ; a plurality of nodes 103 , 105 , and 107 ; a central ledger 109 ; and a plurality of network connections 111 .
  • one of the nodes for example node 103 , issues a request to the central authority 101 to perform an action on data stored in the central ledger 109 .
  • This request may be a request to create, read, update, or delete data that is stored in the central ledger 109 .
  • the central authority 101 receives the request, processes the request, makes any necessary changes to the data stored in the central ledger 109 , and informs the requesting node (node 103 ) of the status of the request.
  • the central authority 101 may also send out status updates to the other nodes on the network about the change made, if any, to the data by node 103 .
  • all interaction with the data stored in the central ledger 109 occurs through the central authority 101 . In this way, the central authority functions as a gatekeeper of the data.
  • the central authority 101 may operate as a single point of entry for interacting with the data, and consequently the central authority 101 is a single point of failure for the entire database system 100 .
  • the central authority 101 is not accessible to the nodes in the database system 100 , then the data stored in the central ledger 109 is not accessible.
  • each individual node may keep its own databases and may periodically send a copy of its database to the central authority 101 , where the received databases are reconciled to form a single cohesive record of the data stored in the central ledger 109 .
  • FIG. 1B depicts an exemplary distributed ledger system 112 in accordance with an aspect of the present disclosure.
  • An example of a distributed ledger system 112 is the blockchain system described above.
  • FIG. 1B includes a plurality of nodes 102 , 104 , and 106 ; a distributed ledger 114 ; and a plurality of network connections 110 .
  • each node keeps a copy of the distributed ledger 114 .
  • Each copy of the distributed ledger 114 maintains a copy of a plurality of transactions 116 - 126 tracked in the distributed ledger 114 .
  • each of the transactions 116 - 126 (sometimes referred to as a “transactional records” or “transaction records”) is a record of an update or change made to the distributed ledger 114 .
  • the nature of the information included in each transactional record 116 - 126 generally depends on the particular implementation of the distributed ledger 114 , and on the information the distributed ledger 114 is intended to track.
  • each node 102 - 106 updates its copy of the distributed ledger 114 .
  • a consensus mechanism (sometimes referred to as a consensus protocol) may be used by the nodes in the distributed ledger system 112 to decide when it is appropriate to make changes to the distributed ledger 114 .
  • Example consensus mechanisms that may be used by the distributed ledger 114 include: proof of work, proof of stake, proof of activity, proof of burn, proof of capacity, and/or proof of elapsed time. Therefore, each node has its own copy of the distributed ledger 114 , which is identical to every other copy of the distributed ledger 114 stored by each other node.
  • the distributed ledger system 112 is more robust than a central authority database system such as the system 100 shown in FIG. 1A , because the distributed ledger system 112 is decentralized and no single point of failure exists.
  • the system 112 and distributed ledger 114 may be implemented using a number of different blockchain protocols, depending on the embodiment.
  • Example blockchain protocols that may be implemented include: Hyperledger Fabric, Ethereum, Corda, Ripple, ZCash, and Sawtooth.
  • the method 600 described with reference to FIG. 6A may be implemented to track loss history using the distributed ledger 114 in one embodiment in which the distributed ledger 114 is configured to utilize the Hyperledger Fabric protocol.
  • FIG. 1C is a flow chart of an exemplary computer-implemented method 150 for adding a transaction to the distributed ledger 114 in accordance with one aspect of the present disclosure.
  • the method 150 may be implemented, in whole or in part, by the nodes 102 - 106 in the system 112 shown in FIG. 1B , and may be saved to a memory of one or more of the nodes as one or more instructions or routines executable by a processor.
  • the method 150 begins when an event is detected.
  • the event may be any suitable trigger that results in the distributed ledger 114 being accessed and/or updated, and may vary depending on the implementation.
  • the event may be: (i) a home event pertaining to an insured home (such as the collection of new sensor data at the home, or of new insurance claim activity involving the home), (ii) a vehicle event (such as the collection of new sensor data at or by the vehicle, or of new insurance claim activity involving the vehicle), (iii) a payment event pertaining to an insurance claim, or (iv) an insurance event pertaining to an insured individual and/or policies carried by that individual.
  • data pertaining to the event may be generated and/or collected, and a transaction including and/or representing the data may be generated.
  • a node may broadcast the transaction (block 152 ).
  • the nature of the transaction depends on the implementation.
  • the ledger 114 tracks home events, and each home event may represent collected sensor data (e.g., from a smart thermostat, carbon monoxide detector, home computer, intelligent personal assistant, etc.) and/or data representing new insurance claim activity (e.g., the filing of a new claim, the generation of an estimate, the payment of a claim, etc.).
  • the transaction might include data about the property (e.g., property type, address of a home, type of data collected, etc.), owner (e.g., name, social security number, etc.), and/or claim (damage type, estimated loss, claim payout amount, etc.).
  • property type e.g., property type, address of a home, type of data collected, etc.
  • owner e.g., name, social security number, etc.
  • claim damage type, estimated loss, claim payout amount, etc.
  • One or more other nodes in the system 112 may receive the broadcastd transaction and attempt to form a consensus in order to verify the validity of the transaction (block 154 ).
  • the nodes may utilize a proof of work consensus protocol such as that already described. If the nodes are unable to reach consensus, the transaction is not added to the ledger 114 . When the nodes reach consensus, the transaction is added to the distributed ledger 156 . That is, a copy of the transaction is added to each copy of the ledger 114 held at each node 102 - 106 . Accordingly, the nodes 102 - 106 are able to maintain identical copies of the ledger 114 , thus maintaining consistency and accuracy of the ledger 114 without a single central authority.
  • FIG. 2A depicts an exemplary transaction flow 200 in accordance with one aspect of the present disclosure.
  • FIG. 2A includes a transactional record (“transaction”) 202 ; three different time frames 204 , 206 , and 208 ; the nodes 102 - 106 ; the network connections 110 ; and the distributed ledger 114 .
  • the transaction flow 200 may represent a sequential flow of the transaction 202 through a network (such as the network depicted in FIG. 1B ).
  • the node 102 generates the transaction 202 at time 204 .
  • the transaction 202 may include data that is stored in the distributed ledger 114 at the node 102 , or may include data received by the node 102 from outside the distributed ledger 114 .
  • the node 102 may transmit the newly generated transaction 202 to node 106 via the network connection 110 .
  • the node 106 receives the transaction 202 , and confirms that the information contained therein is correct. If the information contained in the transaction 202 is not correct, the node 106 may reject the transaction and not propagate the transaction 202 through the system. If the information contained in the transaction 202 is correct, the node 106 may transmit the transaction 202 to the node 104 .
  • the node 104 may receive the transaction 202 and may confirm or reject the transaction 202 . In some embodiments, the node 104 may not transmit the confirmed transaction 202 , because there are no further nodes to transmit to, or all the nodes in the network have already received transaction 202 .
  • any of the nodes may add the confirmed transaction 202 to their copy of the distributed ledger 114 , or to a block of transactions stored in the distributed ledger 114 .
  • confirming the transaction 202 includes checking cryptographic key-pairs for participants involved in the transaction 202 . Checking the cryptographic key-pairs may follow a method laid out by a consensus protocol, such as the consensus protocol discussed in FIG. 1B .
  • FIG. 2B depicts an exemplary block propagation flow 210 in accordance with one aspect of the present disclosure.
  • FIG. 2B includes two time frames 212 and 214 ; the node 106 and the node 104 ; the transactions 116 - 122 ; a set of blocks of transactions 216 A- 216 D; the distributed ledger 114 ; and a blockchain 218 .
  • the block propagation flow 210 may follow the blockchain system described above, or may follow another blockchain propagation algorithm.
  • the block propagation flow 210 may begin with the node 106 receiving the transaction 116 at time 212 .
  • the node 106 may add the transaction 116 to the block 216 A (which may be newly generated).
  • node 106 may solve a cryptographic puzzle and include the solution in the newly generated block 216 A as proof of the work done to generate the block 216 A. This proof of work may be similar to the proof of work described above which utilizes guessing a nonce value.
  • the transaction 116 may be added to a pool of transactions until enough transactions exist to form a block.
  • Node 106 may transmit the newly created block 216 A to the network at 220 . Before or after propagating the block 216 A, node 106 may add the block 216 A to its copy of the blockchain 218 .
  • node 104 may receive the block 216 A. Node 104 may verify that the block 216 A is valid by checking the solution to the cryptographic puzzle provided in the block 216 A. If the solution is accurate, then the node 104 may add the block 216 A to its blockchain 218 and transmit the block 216 A to the rest of the network at 222 .
  • one or more transactions 202 or events may relate to: smart contracts, loss history and loss history reports, insurance claims, vehicle sensor data, medical records, and/or insurance records.
  • FIG. 2C depicts an exemplary method 230 for generating the block 216 C shown in FIG. 2B , according to one embodiment.
  • the method 230 may be implemented by a processor of one or more of the nodes 102 - 106 , and may be implemented as part of a consensus mechanism. It will be understood that the method 230 is exemplary, and not every embodiment implements the method 230 .
  • a processor generates hash values 116 A- 122 A for each of the transactions 116 - 122 , using data associated with each of the transactions 116 - 122 as inputs for a hash function (step 232 ).
  • the processor then generates a hash value 117 using the hash values 116 A and 118 A as inputs for the hash function, and a hash value 121 using the hash values 120 A and 122 A as inputs for the hash function (step 234 ).
  • a hash for block 216 is generated using as inputs: a hash value of the “chained” block 216 B, the hash vales 117 and 121 , and a nonce value (step 236 ). Because every other node may have access to the block 216 B and to the transactions 116 - 122 , when a node publishes that a cryptographic puzzle has been solved utilizing the nonce value, the other nodes can confirm whether or not the solution is valid (because a change to any transaction 116 - 122 , or to any transaction in block 216 B, or to the nonce value, will result in a different hash value for block 216 C).
  • FIG. 3 depicts an exemplary sequence diagram 300 in accordance with one aspect of the present disclosure.
  • FIG. 3 includes the set of nodes 102 , 104 , and 106 .
  • the node 102 may generate a transaction.
  • the transaction may be transmitted from the node 102 to the node 106 .
  • the node 106 may validate the transaction.
  • the node 106 may transmit the transaction to node 104 .
  • node 104 may validate the transaction.
  • the node 106 may compile a block including the validated transaction.
  • Compiling a block may include generating a solution to a cryptographic puzzle and linking the block to other blocks, as described in the embodiments above.
  • the node 106 may transmit the block with the solution to both the node 102 and the node 104 .
  • both nodes may validate the solution to the block. Verifying may include checking a cryptographic key-pair as described above.
  • Verifying may include checking a cryptographic key-pair as described above.
  • the three nodes form a consensus that the solution is valid. Accordingly, in the shown example, all the nodes have formed a consensus on the blocks of transactions stored by all the nodes.
  • FIG. 4 is a block diagram of a node 102 , according to one embodiment. It will be understood that the nodes 104 and 106 may perform one or more of the functions that the node 102 is capable of performing, and may include one or more of the components included in the node 102 .
  • the node 102 may utilize the decentralized system 112 described with respect to FIG. 1B , the flows 200 and 210 of transactions and blocks described in FIGS. 2A and 2B , and/or the blockchain system 500 described below with reference to FIG. 5 .
  • the node 102 includes one or more of the following: at least one processor 402 , memory 404 , a communication module 406 , one or more external ports 410 , a user interface 412 , a blockchain manager 414 , smart contracts 416 , an operating system 418 , a display screen 420 , and input/output components 422 .
  • the node 102 may generate a new block of transactions using the blockchain manager 414 .
  • the node 102 may use the blockchain manager 414 in conjunction with the smart contracts 416 stored in memory 404 to execute the functionality disclosed herein.
  • the smart contracts 416 operate independent of the blockchain manager 414 or other applications.
  • the node 102 does not include one or more of the blockchain manager 414 or the smart contracts 416 .
  • the node 102 may have additional or less components than what is described.
  • the smart contracts may relate to, or be associated with, insureds and/or insured assets, including smart insurance contracts, smart maintenance contracts, smart health care contracts, smart repair or upkeep contracts, etc.
  • the node 102 as part of a decentralized ledger system 112 , or another decentralized or centralized network, may be used to handle systems that interact with and manipulate data and transactions designed for tracking loss history, vehicle sensor data, medical records, and/or insurance records.
  • FIG. 5 depicts an exemplary blockchain system 500 in accordance with an aspect of the present disclosure.
  • the system 500 includes a blockchain 502 that includes one or more blocks, including a block of transactions 504 .
  • the block 504 includes a Merkle Tree 506 that includes one or more transactions, including a transaction 508 that includes data 510 .
  • the Merkle Tree 506 may be the same Merkle Tree referred to above that cryptographically links transactions together.
  • the blockchain system 500 may utilize other methods of organizing transactions in a block.
  • the block of transactions 504 includes the transaction 508 , but may also include other transactions in some instances.
  • the block of transactions 504 has a size limit limiting the number of transactions that the block 504 may store.
  • the block 504 includes a reference to a previous block of transactions that was added to the blockchain 502 prior to the block 504 being added to the blockchain 502 . As such, and as described above, each block in the blockchain 502 is linked to every other block in the blockchain 502 .
  • the block of transactions 504 may organize the transactions it has received into a Merkle Tree 506 to facilitate access to the stored transactions.
  • the transactions may be hashed using a cryptographic hash algorithm, such as the algorithms discussed above, and the hash of each transaction may be stored in the tree. As the tree is constructed, the hash of each adjacent node at the same level is hashed together to create a new node that exists at a higher level in the tree. Therefore, the root of the tree, or the node at the top of the tree, is dependent upon the hash of each transaction stored below in the tree.
  • Each transaction 508 may include a set of data 510 .
  • the set of data 510 may include an identifier for the transaction (e.g., a unique string), and transaction data identifying the nature of the transaction and what the transactions entails.
  • the blockchain 218 shown in FIG. 2B may be similar to the blockchain 502 , and the transactions 116 - 126 shown in FIGS. 1B and 2B may be similar to the transaction 508 .
  • the ledger 114 may share some of the functionality of the system 500 , as well as the organization of blocks and transactions.
  • FIG. 6A depicts an exemplary computer-implemented method 600 A of maintaining a distributed ledger (e.g., including a blockchain) on a home.
  • the method 600 A may include detecting (via one or more local or remote processors, sensors, servers, and/or transceivers) a home event (block 602 ).
  • a home event may be an insurance event (e.g., a new claim is filed; an estimate is generated; a claim is paid; etc.) and/or a smart home event detected by one or more home-based sensors and/or generated by one or more home-based computers. Detecting the home event may include receiving (e.g., at the node 102 ) notification of the insurance event or smart home event.
  • the notification may include loss information, claim information, various sensor data, telematics data, intelligent home sensor or other data, mobile device data, and/or other data about insureds and insured assets, including that discussed elsewhere herein.
  • the notification(s) may be received via wireless communication or data transmission over one or more radio frequency links or digital communication channels, and stored in a local memory.
  • Example smart home events include: motion detected by a motion detector; a door opening or closing detected by a door sensor; a window opening or closing detected by a window sensor; a temperature reading obtained by a thermostat; a desired temperature setpoint (e.g., entered by a person) detected by a thermostat; a carbon monoxide reading obtained by a carbon monoxide detector; a smoke reading detected by a smoke detector; a light status detected by a light sensor; a water flow detected by a flow sensor; a utility meter (e.g., gas, water, electric, etc.) reading obtained by a utility meter; etc.
  • a desired temperature setpoint e.g., entered by a person
  • the method 600 A may include generating (via one or more local or remote processors, sensors, servers, and/or transceivers) a transaction and proposing the transaction (block 604 ).
  • the transaction may be generated by the node 102 , and the node 102 may broadcast the transaction to the nodes 104 and/or 106 .
  • the transaction may include data relating to the detected home event.
  • the transaction may include loss information, claim information, various sensor data, telematics data, intelligent home sensor or other data, mobile device data, and/or other data about the home, occupants in the home, the insured, etc.
  • the method 600 A may include performing a consensus analysis (block 606 ).
  • the nodes 102 , 104 , and 106 may attempt to form a consensus, using any suitable consensus protocol (such as the hashing and problem solving technique previously described) as to whether the transaction is valid.
  • any suitable consensus protocol such as the hashing and problem solving technique previously described
  • the broadcasted transaction is not added to the ledger 114 and notification that the transaction is invalid may be generated (block 608 ).
  • the method 600 A may include reaching consensus, adding the transaction to a block (block 610 ), and adding the block to a blockchain stored at the distributed ledger 114 if the block is not already part of the block chain (block 616 ).
  • the nodes 102 - 106 may reach consensus and may add the transaction to the distributed ledger 114 by each adding the transaction to a local copy of a block stored on a local copy of the distributed ledger 114 .
  • the method 600 A may include performing an insurance function using the distributed ledger 114 (block 618 ).
  • an insurance premium may be calculated based upon data (corresponding to one or more home events) stored at the ledger 114 .
  • damage to a home may be estimated based upon data stored at the ledger 114 .
  • one or more roof-based sensors and/or drone sensors may detect damage and write to the ledger 114 accordingly.
  • an insured individual may access the ledger 114 to review: the status of various smart devices in a home, utility readings, security notifications, camera feeds, etc.
  • the nodes that implement the method 600 A may be any one or more of the following: a server (e.g., of the insurance provider), a mobile device (e.g., a tablet, smart phone, or laptop of the insured or of a vendor), a desktop computer (e.g., of the insured or of a vendor), a smart device in a home (e.g., a smart thermostat, a smart carbon monoxide detector, a smart camera or microphone, or any other smart device), a home controller that manages other smart devices, a drone that surveys the home (e.g., for roof or siding damage), etc.
  • a server e.g., of the insurance provider
  • a mobile device e.g., a tablet, smart phone, or laptop of the insured or of a vendor
  • a desktop computer e.g., of the insured or of a vendor
  • a smart device in a home e.g., a smart thermostat, a smart carbon monoxide detector, a smart camera or microphone,
  • FIG. 6B is a block diagram of example nodes that may utilize the ledger 114 when implementing the method 600 A.
  • the example nodes may include in-home data sources 622 A- 622 E and an insurer server 624 , each of which may be connected to the others via communication links 110 .
  • Each of the in-home data sources 622 A- 622 E in FIG. 6B represents one or more devices at a building of an insurance policy holder.
  • the home automation system data source 622 A may be any suitable automation system for monitoring and controlling devices and appliances (e.g., doors, thermostats, lights, ovens, etc.) within a home.
  • the home security system data source 622 B may be any suitable security system, including, e.g., cameras, motion sensors, etc.
  • the utility meters data source 120 C may include utility meter devices, such as a water meter that includes a water volume sensor, a gas meter that includes a gas sensor, an electricity meter that includes an electricity sensor, etc.
  • the “event sensors” data source 120 D may include any of various other types of sensor devices, such as fire or smoke detectors, carbon monoxide detectors, thermostats, water detectors or flow meters (e.g., to detect a water leak), door/window sensors, glass break sensors, temperature sensors, humidity sensors, door lock sensors, energy monitors, etc.
  • data from different sources may be combined to determine whether an event has occurred. For example, data indicating that a power outage has occurred may be combined data indicating large amounts of rainfall to indicate that consumers may face a higher chance that their sump pumps aren't working and their homes or businesses might be experiencing water loss.
  • the smart appliances data source 622 E may include smart appliance devices that generate information relating to their usage, such as a smart refrigerator that indicates the temperature settings and how often the water filter is changed, a smart washing machine that generates repair/maintenance codes, or a smart light bulb, for example. Still other types of data sources, not shown in FIG. 6B , may also write or access the ledger 114 .
  • a camera in the home of a policy holder may provide video data which may be processed in order to detect movement and/or other behaviors and/or conditions (e.g., detecting smoke in the field of view of the camera). Not all data sources need be located in the interior of a monitored property, or in a living quarters portion of a residential property.
  • a tilt sensor that indicates whether a garage door is open, and/or an outdoor movement sensor or camera mounted on an exterior wall of a home, may provide data to the ledger 114 .
  • the event sensors data 622 D may include a smartphone with global positioning system (GPS) sensors that generate location data, which may be utilized to determine whether the smartphone owner (e.g., the policy holder or a family member) is at home.
  • GPS global positioning system
  • FIG. 7 depicts an exemplary computer-implemented method 700 of maintaining a distributed ledger (e.g., including a blockchain) on a vehicle.
  • the vehicle may be an autonomous vehicle or a non-autonomous vehicle, depending on the embodiment.
  • the method 700 may include detecting (via one or more local or remote processors, sensors, servers, and/or transceivers) a vehicle event (block 702 ).
  • a vehicle event may be an insurance event relating to a vehicle (e.g., a new claim is filed; an estimate is generated; a claim is paid; etc.) and/or a smart vehicle event detected by one or more vehicle-based sensors and/or generated by one or more vehicle-based computer systems.
  • Detecting the vehicle event may include receiving (e.g., at the node 102 ) notification of the insurance event or smart vehicle event.
  • the notification may include loss information, claim information, various sensor data, telematics data, intelligent vehicle sensor or other data, mobile device data, and/or other data about insureds and insured assets, including that discussed elsewhere herein.
  • the notification(s) may be received via wireless communication or data transmission over one or more radio frequency links or digital communication channels, and stored in a local memory.
  • Example smart vehicle events include: a motion or position detected by a motion or position sensor as a GPS chip, an accelerometer, a compass, a speedometer, a gyroscope, etc.; braking detected by a braking sensor; turn input detected by a steering wheel sensor; wheel position detected by a wheel sensor; engine temperature detected by a temperature gauge; oil temperature detected by a temperature gauge; a seatbelt status detected by a seatbelt and/or seat sensor; a lane detection detected by a laser or radar based sensor; a proximate vehicle detected by a laser or radar based sensor; environmental conditions of a road detected by one or more cameras and/or laser systems; a door opening or closing detected by a door sensor; a window opening or closing detected by a window sensor; a temperature reading obtained by a temperature gauge; a desired temperature setpoint (e.g., entered by a person) detected via a temperature control system; etc.
  • a desired temperature setpoint e.g., entered by a person
  • the method 700 may include generating (via one or more local or remote processors, sensors, servers, and/or transceivers) a transaction and proposing the transaction (block 704 ).
  • the transaction may be generated by the node 102 , and the node 102 may broadcast the transaction to the nodes 104 and/or 106 .
  • the transaction may include data relating to the detected vehicle event.
  • the transaction may include loss information, claim information, various sensor data, telematics data, intelligent home sensor or other data, mobile device data, and/or other data about the vehicle, the driver, the insured, etc.
  • the method 700 may include performing a consensus analysis (block 706 ).
  • the nodes 102 , 104 , and 106 may attempt to form a consensus, using any suitable consensus protocol (such as the hashing and problem solving technique previously described) as to whether the transaction is valid.
  • any suitable consensus protocol such as the hashing and problem solving technique previously described
  • the broadcasted transaction is not added to the ledger 114 and notification that the transaction is invalid may be generated (block 708 ).
  • the method 700 may include reaching consensus, adding the transaction to a block (block 710 ), and adding the block to a blockchain stored at the distributed ledger 114 if the block is not already part of the block chain (block 716 ).
  • the nodes 102 - 106 may reach consensus and may add the transaction to the distributed ledger 114 by each adding the transaction to a local copy of a block stored on a local copy of the distributed ledger 114 .
  • the method 700 may include performing an insurance function using the distributed ledger 114 (block 718 ).
  • an insurance premium may be calculated based upon data (corresponding to one or more home events) stored at the ledger 114 .
  • damage to a vehicle may be estimated based upon data stored at the ledger 114 .
  • an insured individual may access the ledger 114 to review: measurements from one or more location and/or position sensors in the vehicle; readings from one or more camera and/or laser systems for detecting proximate vehicles; one or more readings from a speedometer and/or trip meter; one or more parameters detected and/or generated by a vehicle-based computer; etc.
  • the nodes that implement the method 700 may be any one or more of the following: a server (e.g., of the insurance provider), a mobile device (e.g., a tablet, smart phone, or laptop of the insured or of a vendor), a desktop computer (e.g., of the insured or of a vendor), a smart sensor or device in a vehicle, an in-vehicle computer or “carputer,” etc.
  • a server e.g., of the insurance provider
  • a mobile device e.g., a tablet, smart phone, or laptop of the insured or of a vendor
  • a desktop computer e.g., of the insured or of a vendor
  • smart sensor or device in a vehicle e.g., an in-vehicle computer or “carputer,” etc.
  • a distributed ledger is utilized to track insurance claim payment activity.
  • the present embodiments may be configured to track estimates, offers, settlements, and payouts relating to insurance claims relating to injuries, property damage, (e.g., to homes, automobile, personal articles, or other insured assets), and other expenses (e.g., payments to vendors such as car repair shops, car rental companies, cleaning companies, contractors, etc.).
  • FIG. 8 depicts an exemplary computer-implemented method 800 for managing, via a distributed ledger, insurance claim payment activity.
  • the method 800 may be implemented, in whole or in part, by the system 112 shown in FIG. 1B .
  • the method 800 may be saved to a memory as one or more instructions or routines.
  • the method 800 may include detecting (via one or more local or remote processors, sensors, servers, and/or transceivers) a payment event relating to an insurance claim (block 802 ).
  • the payment event may be any one or more of: a calculation of an estimate, a submission of an offer, an arrival at a settlement, and/or an initiation and/or completion of a payment.
  • the estimate may be any one or more of: (i) an estimated cost to repair or replace damaged property (e.g., real estate such as a home, apartment, office building, industrial warehouse, etc.; a vehicle; personal property such as jewelry, clothes, electronics, etc.); (ii) an estimated cost to compensate for special damages (e.g., medical bills, out-of-pocket expenses, and/or lost income); and/or (iii) an estimated cost for other expenses (e.g., payments to vendors such as car repair shops, car rental companies, cleaning companies, contractors, etc.).
  • an estimated cost to repair or replace damaged property e.g., real estate such as a home, apartment, office building, industrial warehouse, etc.; a vehicle; personal property such as jewelry, clothes, electronics, etc.
  • special damages e.g., medical bills, out-of-pocket expenses, and/or lost income
  • an estimated cost for other expenses e.g., payments to vendors such as car repair shops, car rental companies, cleaning companies, contractors, etc.
  • the offer may be made by the insurer to the insured based upon the estimate.
  • the offer may be the same as the estimate, or may be adjusted based upon a number of factors (e.g., a determination of fault, such as either partially or wholly at fault).
  • the settlement may be an agreement reached between the insured and insurer as to the value of a payout. Depending on the circumstances, the settlement amount may be less than, equal to, or more than the offer.
  • the payment may be made by the insurer to the insured and/or to a vendor.
  • the node 102 After the payment event is detected, the node 102 generates a transaction including data pertaining to the payment event and broadcasts the transaction (block 804 ).
  • the transaction may include data relating to one or more of the following: (1) an amount of the estimate; (2) an indication of whether the estimate relates to property damage, personal injuries, and/or other expenses; (3) a date on which the estimate was calculated; (4) an assessor who calculated the estimate; (5) a description of the damage the estimate is based upon; (6) an indication of whether property is to be repaired or replace; (7) an indication of any particular special damages the estimate is based upon, such as medical costs, out-of-pocket expenses, and/or lost income; and/or (8) one or more vendors to be compensated based upon the estimate (e.g., when the estimate relates to a rental car cost or a repair cost).
  • the transaction may include data relating to one or more of the following: (1) an offer amount; (2) a date on which the offer was made; and/or (3) a party (e.g., the insured) to whom the offer was made.
  • the transaction may include data relating to one or more of the following: (1) a settlement amount; (2) a date on which the settlement was made; (3) a party (e.g., the insured) with whom the settlement was made.
  • the transaction may include data relating to one or more of the following: (1) the amount of the payment; (2) the date and/or time the payment was initiated; (3) the date and/or time the payment was completed; (4) the recipient of the payment (e.g., the insured or a vendor); and/or (5) a payment status indicating that the payment has been made.
  • the method 800 may include performing a consensus analysis (block 806 ).
  • the nodes 102 , 104 , and 106 may attempt to form a consensus, using any suitable consensus protocol (such as the hashing and problem solving technique previously described) as to whether the transaction is valid.
  • any suitable consensus protocol such as the hashing and problem solving technique previously described
  • the broadcasted transaction is not added to the ledger 114 and notification that the transaction is invalid may be generated (block 808 ).
  • the method 800 may include reaching consensus, adding the transaction to a block (block 810 ), and adding the block to a blockchain stored at the distributed ledger 114 if the block is not already part of the block chain (block 816 ).
  • the nodes 102 - 106 may reach consensus and may add the transaction to the distributed ledger 114 by each adding the transaction to a local copy of a block stored on a local copy of the distributed ledger 114 .
  • the method 800 may include performing an insurance function using the distributed ledger 114 (block 818 ).
  • an insured individual may file a claim; an insurance provider may assess damage and/or injury; the insurance provider may estimate a cost to repair or replace property and/or to treat an injury; the insurance provider may offer a claim payout; the insured individual may reject the offer and/or make a counter-offer; the insurance provider and the insured individual may reach a settlement; and/or the insurance provider may pay the claim.
  • the nodes that implement the method 800 may be any one or more of the following: a server (e.g., of the insurance provider), a mobile device (e.g., a tablet, smart phone, or laptop of the insured or of a vendor), a desktop computer (e.g., of the insured or of a vendor), etc.
  • the nodes may read and/or write to the distributed ledger 114 for any of a number of reasons.
  • an insurer may: calculate one or estimates and store data pertaining to the one or more estimates to the ledger 114 ; provide one or more offers for property damage, special damages, and/or other expenses, and store data pertaining to the one or more offers to the ledger 114 ; arrive at a settlement and store data pertaining to the settlement to the ledger 114 ; and/or make a payment on the claim and store data pertaining to the payment to the ledger 114 .
  • an insured may access the ledger 114 to view the insurers estimate, offer, settlement, and/or payment status. Further, the insured may write to the ledger 114 to accept an offer, reject an offer, broadcast a counter offer, and/or reach a settlement with the insurer. Similarly, a vendor may write to the ledger 114 to accept an offer, reject an offer, broadcast a counter offer, and/or accept a payment for services rendered (e.g., car repair, car rental, home repair, etc.).
  • services rendered e.g., car repair, car rental, home repair, etc.
  • a distributed ledger is utilized for insurance carrier discovery.
  • the present embodiments may be configured to track insured individuals, their insurance policies, the insurance companies holding each of their policies, etc. Such embodiments may be useful, for example, for facilitating exchange of insurance information between drivers after an automobile accident when drivers want to exchange insurance information and/or verify that the other is insured, facilitating subrogation (e.g., when an insurance company pays for an first insured party's losses but subsequently pursues reimbursement from an insurance company of a second at-fault party), and/or facilitating a determination of whether a driver has excess liability coverage.
  • FIG. 9 depicts an example method 900 for managing, via a distributed ledger, insurance information.
  • the method 900 may be implemented, in whole or in part, by the system 112 shown in FIG. 1B .
  • the method 900 may be saved to a memory as one or more instructions or routines.
  • the method 900 may include detecting (via one or more local or remote processors, sensors, servers, and/or transceivers) an insurance event (block 902 ).
  • the insurance event may be any one or more of: an insured acquiring an insurance policy; the insured updating the insurance policy; the insured filing a claim; etc.
  • the method 900 may include generating (e.g., by the node 102 ) a transaction including data pertaining to the insurance event and proposing the transaction (block 904 ).
  • the data may include: an identifier for the insured (e.g., a SSN and/or name); an identifier for each policy held by the insured; a description of each policy held by the insured; limits and premiums for each policy held by the insured; an insurance provider that provides each policy held by the insured; etc.
  • the method 900 may include performing a consensus analysis (block 906 ).
  • the nodes 102 , 104 , and 106 may attempt to form a consensus, using any suitable consensus protocol (such as the hashing and problem solving technique previously described) as to whether the transaction is valid.
  • any suitable consensus protocol such as the hashing and problem solving technique previously described
  • the broadcasted transaction is not added to the ledger 114 and notification that the transaction is invalid may be generated (block 808 ).
  • the method 900 may include reaching consensus, adding the transaction to a block (block 910 ), and adding the block to a blockchain stored at the distributed ledger 114 if the block is not already part of the block chain (block 816 ).
  • the nodes 102 - 106 may reach consensus and may add the transaction to the distributed ledger 114 by each adding the transaction to a local copy of a block stored on a local copy of the distributed ledger 114 .
  • the method 900 may include performing an insurance function using the distributed ledger 114 (block 918 ).
  • insured individuals may exchange insurance information after an automobile accident; a third party (e.g., a policeman) may verify that a driver has insurance; an insurance provider may subrogate a claim; an insurance provider and/or third party may make a determination as to whether an individual has excess liability coverage; etc.
  • a third party e.g., a policeman
  • an insurance provider may subrogate a claim; an insurance provider and/or third party may make a determination as to whether an individual has excess liability coverage; etc.
  • an insurance premium may be calculated based upon data (corresponding to one or more home events) stored at the ledger 114 .
  • damage to a vehicle may be estimated based upon data stored at the ledger 114 .
  • an insured individual may access the ledger 114 to review: measurements from one or more location and/or position sensors in the vehicle; readings from one or more camera and/or laser systems for detecting proximate vehicles; one or more readings from a speedometer and/or trip meter; one or more parameters detected and/or generated by a vehicle-based computer; etc.
  • the nodes that implement the method 900 may be any one or more of the following: a server (e.g., of the insurance provider), a mobile device (e.g., a tablet, smart phone, or laptop of the insured or of a vendor), a desktop computer (e.g., of the insured or of a vendor), etc.
  • the nodes may read and/or write to the distributed ledger 114 for any of a number of reasons. For example, an insurer may update the ledger 114 any time a new policy is generated or any time a policy is updated. As another example, an insured may access the ledger 114 to check his or her policies, carriers, limits, premiums, deductibles, etc. Similarly, a third party may access the ledger 114 to check an insureds policies, carriers, limits, etc.
  • the ledger 114 may be particularly useful after an accident, when drivers want to exchange insurance information or when someone wants to verify an insurance carrier of an insured individual.
  • an insurance customer may opt-in to a rewards, insurance discount, or other type of program (such as a UBI program).
  • an insurance provider remote server may collect data from the customer's mobile device, smart or autonomous vehicle, smart home controller, or other smart devices.
  • the data collected may be related to smart or autonomous vehicle functionality, smart home functionality (or home occupant preferences or preference profiles), and/or insured assets before (and/or after) an insurance-related event, including those events discussed elsewhere herein.
  • risk averse insureds, home or vehicle owners, or home, vehicle, or apartment occupants may receive discounts or insurance cost savings related to home, renters, personal articles, auto, and other types of insurance from the insurance provider.
  • telematics data, smart or autonomous vehicle data, mobile device data, smart or interconnected home data, and/or other data may be collected or received by an insurance provider remote server (e.g., via direct or indirect wireless communication or data transmission from a smart home controller, mobile device, or other customer computing device) after a customer affirmatively consents or otherwise opts-in to an insurance discount, reward, or other program.
  • the insurance provider may then analyze the data received with the customer's permission to provide benefits to the customer.
  • risk averse customers may receive insurance discounts or other insurance cost savings based upon data that reflects low risk behavior and/or technology that mitigates or prevents risk to (i) insured assets, such as homes, personal belongings, or vehicles, and/or (ii) individuals.
  • the embodiments described herein often utilize credit report information as an example of sensitive information, the embodiments described herein are not limited to such examples. Instead, the embodiments described herein may be implemented in any suitable environment in which it is desirable to identify and control specific type of information.
  • a financial institution may be a part of the process.
  • the aforementioned embodiments may be implemented by the financial institution to identify and contain bank account statements, brokerage account statements, tax documents, etc.
  • the aforementioned embodiments may be implemented by a lender to not only identify, re-route, and quarantine credit report information, but to apply similar techniques to prevent the dissemination of loan application documents that are preferably delivered to a client for signature in accordance with a more secure means (e.g., via a secure login to a web server) than via email.
  • a more secure means e.g., via a secure login to a web server
  • a user may be an insurance customer who may opt-in to a rewards, insurance discount, or other type of program.
  • an insurance provider remote server may collect data from the customer's mobile device, smart home controller, smart vehicle, autonomous vehicle, or other smart devices—such as with the customer's permission or affirmative consent.
  • the data collected may be related to smart or autonomous vehicle functionality, or smart home functionality (or home occupant preferences or preference profiles), and/or insured assets before (and/or after) an insurance-related event, including those events discussed elsewhere herein.
  • risk averse insureds, home or vehicle owners, passengers, or drivers may receive discounts or insurance cost savings related to home, renters, personal articles, auto, mobility, and other types of insurance from the insurance provider.
  • routines, subroutines, applications, or instructions may constitute either software (e.g., code embodied on a machine-readable medium or in a transmission signal) or hardware.
  • routines, etc. are tangible units capable of performing certain operations and may be configured or arranged in a certain manner.
  • one or more computer systems e.g., a standalone, client or server computer system
  • one or more hardware modules of a computer system e.g., a processor or a group of processors
  • software e.g., an application or application portion
  • a hardware module may be implemented mechanically or electronically.
  • a hardware module may comprise dedicated circuitry or logic that is permanently configured (e.g., as a special-purpose processor, such as a field programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)) to perform certain operations.
  • a hardware module may also comprise programmable logic or circuitry (e.g., as encompassed within a general-purpose processor or other programmable processor) that is temporarily configured by software to perform certain operations. It will be appreciated that the decision to implement a hardware module mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations.
  • the term “hardware module” should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired), or temporarily configured (e.g., programmed) to operate in a certain manner or to perform certain operations described herein.
  • hardware modules are temporarily configured (e.g., programmed)
  • each of the hardware modules need not be configured or instantiated at any one instance in time.
  • the hardware modules comprise a general-purpose processor configured using software
  • the general-purpose processor may be configured as respective different hardware modules at different times.
  • Software may accordingly configure a processor, for example, to constitute a particular hardware module at one instance of time and to constitute a different hardware module at a different instance of time.
  • Hardware modules may provide information to, and receive information from, other hardware modules. Accordingly, the described hardware modules may be regarded as being communicatively coupled. Where multiple of such hardware modules exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) that connect the hardware modules. In embodiments in which multiple hardware modules are configured or instantiated at different times, communications between such hardware modules may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware modules have access. For example, one hardware module may perform an operation and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware module may then, at a later time, access the memory device to retrieve and process the stored output. Hardware modules may also initiate communications with input or output devices, and may operate on a resource (e.g., a collection of information).
  • a resource e.g., a collection of information
  • processors may be temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented modules that operate to perform one or more operations or functions.
  • the modules referred to herein may, in some example embodiments, comprise processor-implemented modules.
  • the methods or routines described herein may be at least partially processor-implemented. For example, at least some of the operations of a method may be performed by one or more processors or processor-implemented hardware modules. The performance of certain of the operations may be distributed among the one or more processors, not only residing within a single machine, but deployed across a number of machines. In some example embodiments, the processor or processors may be located in a single location (e.g., within a home environment, an office environment or as a server farm), while in other embodiments the processors may be distributed across a number of locations.
  • the performance of certain of the operations may be distributed among the one or more processors, not only residing within a single machine, but deployed across a number of machines.
  • the one or more processors or processor-implemented modules may be located in a single geographic location (e.g., within a home environment, an office environment, or a server farm). In other example embodiments, the one or more processors or processor-implemented modules may be distributed across a number of geographic locations.
  • any reference to “one embodiment” or “an embodiment” means that a particular element, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment.
  • the appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
  • Coupled and “connected” along with their derivatives.
  • some embodiments may be described using the term “coupled” to indicate that two or more elements are in direct physical or electrical contact.
  • the term “coupled,” however, may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
  • the embodiments are not limited in this context.
  • the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion.
  • a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
  • “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Finance (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Mining & Analysis (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Tourism & Hospitality (AREA)
  • Technology Law (AREA)
  • Computing Systems (AREA)
  • Automation & Control Theory (AREA)
  • Medical Informatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Primary Health Care (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

Systems and methods are disclosed with respect to using a distributed ledger, such as a blockchain, for managing claim payment activity. In particular, the distributed ledger may be utilized to track the status of a claim and to track payment activity associated with the claim. For example, the distributed ledger may be utilized to track estimates, offers, settlements, and payouts relating to insurance claims relating to injuries, property damage, (e.g., to homes, automobile, personal articles, or other insured assets), and other expenses (e.g., payments to vendors such as car repair shops, car rental companies, cleaning companies, contractors, etc.).

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present disclosure claims the benefit of (i) U.S. Provisional Patent Application No. 62/500,049, titled “Distributed Ledger Systems,” filed on May 2, 2017; (ii) U.S. Provisional Patent Application No. 62/500,326, titled “Distributed Ledger System,” filed on May 2, 2017; (iii) U.S. Provisional Patent Application No. 62/508,133, titled “Distributed Ledger System for Managing Smart Home Data, Vehicle Data, Insurance Claim Payouts, and/or Insurance Carrier Discovery,” filed on May 18, 2017; (iv) U.S. Provisional Patent Application No. 62/545,262, titled “Distributed Ledger System for Managing Loss Histories,” filed on Aug. 22, 2017; (v) U.S. Provisional Patent Application No. 62/548,668, titled “Distributed Ledger System for Managing Vehicle Sensor Data Utilized to Develop Collision Profiles,” filed on Aug. 22, 2017; (vi) U.S. Provisional Patent Application No. 62/548,679, titled “Distributed Ledger System for Use with Vehicle Sensor Data and Usage Based Systems,” filed on Aug. 22, 2017; (vii) U.S. Provisional Patent Application No. 62/548,682, titled “Distributed Ledger System for Managing Medical Records,” filed on Aug. 22, 2017; (viii) U.S. Provisional Patent Application No. 62/548,692, titled “Distributed Ledger System for Insurance Record Management Systems,” filed on Aug. 22, 2017; (ix) U.S. Provisional Patent Application No. 62/548,741, titled “Distributed Ledger System for Smart Home Data,” filed on Aug. 22, 2017; (x) U.S. Provisional Patent Application No. 62/548,700, titled “Distributed Ledger System for Managing Smart Vehicle Data,” filed on Aug. 22, 2017; (xi) U.S. Provisional Patent Application No. 62/548,731, titled “Distributed Ledger System for Claim Payouts,” filed on Aug. 22, 2017; and (xii) U.S. Provisional Patent Application No. 62/548,748, titled “Distributed Ledger System for Carrier Discovery,” filed on Aug. 22, 2017; the entire disclosures of which are expressly incorporated herein by reference.
  • TECHNICAL FIELD
  • Systems and methods are disclosed with respect to using a distributed ledger for managing claim payment activity.
  • BACKGROUND
  • Generally speaking, after an insured loss occurs (e.g., a vehicle collision or damage to a home), an insured files a claim. The insurance company (or a party contracted with the insurance company) will inspect the damage and provide an estimate to repair or replace the damaged property. During the process, a number of parties may be paid. For example, the insurance company may pay the insured to cover the loss. The insurance company may also pay one or more third parties, such as rental car companies, hotels, etc. One or more centralized databases may be utilized to track the status of the claim and to track payment activity associated with the claim. This information stored at the centralized databases may not be readily accessible by the insured individual or by third parties who might otherwise be authorized to access the information.
  • BRIEF SUMMARY
  • In one aspect, a computer-implemented method for managing insurance claim payouts may include any one or more of the following: (A) configuring or implementing a plurality of servers, each of the plurality of servers maintaining a copy of a distributed ledger; (B) performing the following when a payment event pertaining to an insurance claim is detected: (i) generating, at a first server from the plurality of servers, a transaction record including data corresponding to the payment event; (ii) proposing the transaction record to one or more other servers from the plurality of servers; (iii) performing, via the plurality of servers, a consensus analysis of the transaction record utilizing a consensus mechanism; and/or (iv) when the consensus analysis indicates that the plurality of servers have formed a consensus, storing the transaction record at the distributed ledger by storing the transaction record to each copy of the distributed ledger at the plurality of servers; and/or (C) performing an insurance function based upon the transaction record stored to the distributed ledger. The transaction may be stored to a blockchain on the distributed ledger. The method may include additional, less, or alternate actions, including those discussed elsewhere herein.
  • Advantages will become more apparent to those of ordinary skill in the art from the following description of the preferred aspects, which have been shown and described by way of illustration. As will be realized, the present aspects may be capable of other and different aspects, and their details are capable of modification in various respects. Accordingly, the drawings and description are to be regarded as illustrative in nature and not as restrictive.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The figures described below depict various aspects of the system and methods disclosed herein. It should be understood that each figure depicts an embodiment of a particular aspect of the disclosed system and methods, and that each of the figures is intended to accord with a possible embodiment thereof. Further, wherever possible, the following description refers to the reference numerals included in the following figures, in which features depicted in multiple figures are designated with consistent reference numerals.
  • There are shown in the drawings arrangements which are presently discussed, it being understood, however, that the present embodiments are not limited to the precise arrangements and instrumentalities shown, wherein:
  • FIG. 1A depicts an exemplary database system in accordance with one aspect of the present disclosure.
  • FIG. 1B depicts an exemplary distributed ledger system in accordance with one aspect of the present disclosure.
  • FIG. 1C depicts an exemplary computer-implemented method for adding a transaction to a distributed ledger in accordance with one aspect of the present disclosure.
  • FIG. 2A depicts an exemplary transaction flow in accordance with one aspect of the present disclosure.
  • FIG. 2B depicts an exemplary block propagation flow in accordance with one aspect of the present disclosure.
  • FIG. 2C depicts an exemplary computer-implemented method for generating a block in a blockchain in accordance with one aspect of the present disclosure.
  • FIG. 3 depicts an exemplary sequence diagram in accordance with one aspect of the present disclosure.
  • FIG. 4 depicts an exemplary node in accordance with one aspect of the present disclosure.
  • FIG. 5 depicts an exemplary blockchain in accordance with one aspect of the present disclosure.
  • FIG. 6A depicts an exemplary computer-implemented method for tracking home events utilizing a distributed ledger in accordance with one aspect of the present disclosure.
  • FIG. 6B is a block diagram of exemplary nodes that may utilize the distributed ledger discussed with reference to FIG. 6A, in accordance with one aspect of the present disclosure.
  • FIG. 7 depicts an exemplary computer-implemented method for tracking vehicle events utilizing a distributed ledger in accordance with one aspect of the present disclosure.
  • FIG. 8 depicts an exemplary computer-implemented method for tracking insurance claim payment activity utilizing a distributed ledger in accordance with one aspect of the present disclosure.
  • FIG. 9 depicts an exemplary computer-implemented method for managing, via a distributed ledger, insurance information in accordance with one aspect of the present disclosure.
  • The figures depict aspects of the present embodiments for purposes of illustration only. One skilled in the art will readily recognize from the following discussion that alternate aspects of the structures and methods illustrated herein may be employed without departing from the principles of the invention described herein.
  • DETAILED DESCRIPTION
  • The present embodiments relate to, inter alia, systems and methods for using a distributed ledger to record information related to processes and services in the healthcare, automotive, and real estate industries. For example, a distributed ledger may be used to track and/or manage: (i) smart home and/or smart vehicle data; (ii) insurance claim payment activity; and/or (iii) insurance carrier discovery. In some embodiments, the distributed ledger is a blockchain system. The systems and methods described herein allow for using a distributed ledger which gives the option for private information, and permissioned participants in the blockchain. In particular, the systems and methods allow for a distributed consensus amongst businesses, consumers, and authorities, as to the validity of information and transactions stored on the distributed ledger.
  • The above listed examples, and disclosed systems and methods, may use an application of distributed ledgers, where each new block may be cryptographically linked to the previous block in order to form a “blockchain.”
  • A blockchain is a way of achieving a distributed consensus on the validity or invalidity of information. As opposed to using a central authority, a blockchain is a distributed database, or ledger, in which transactional records are maintained at each node of a peer to peer network. Commonly, the distributed ledger is comprised of groupings of “transactional records” (sometimes simply referred to as “transactions”) bundled together into a “block.” Generally speaking, each “transaction” or “transactional record” is a record of an update or change made to the distributed ledger. The nature of the information included in each transactional record generally depends on the particular implementation of a given distributed ledger, and on the information the distributed ledger is intended to track.
  • Every creation or lookup of a transaction may be associated with a real-world “event.” For example, a distributed ledger may track a currency, wherein each transaction includes data identifying two parties and an amount of currency exchanged between the two parties. In such an example, the real-world “event” associated with the creation of the transaction is an exchange of currency between the two parties.
  • When a change to the distributed ledger is made (e.g., when a new transaction and/or block is created), each node must form a consensus as to how the change is integrated into the distributed ledger. Upon consensus, the agreed upon change is pushed out to each node so that each node maintains an identical copy of the updated distributed ledger. Any change that does not achieve a consensus is ignored. Accordingly, unlike a traditional system which may use a central authority, a single party cannot unilaterally alter the distributed ledger. This inability to modify past transactions lead to blockchains being generally described as trusted, secure, and immutable.
  • Some blockchains may be deployed in an open, decentralized, and permissionless manner meaning that any party may view information, submit new information, or join the blockchain as a node responsible for confirming information. This open, decentralized, and permissionless approach to a blockchain has limitations. As an example, these blockchains may not be good candidates for interactions that require information to be kept private, such as information related to a vehicle lifecycle process, or for interactions that require all participants to be vetted prior to their participation.
  • In any event, to create a new block, each transaction within a block may be assigned a hash value (i.e., an output of a cryptographic hash function, such as SHA-256 or MD5). These hash values may then be combined together utilizing data storage and cryptographic techniques (e.g., a Merkle Tree) to generate a hash value representative of the entire new block, and consequently the transactions stored in the block. This hash value may then be combined with the hash value of the previous block to form a hash value included in the header of the new block, thereby cryptographically linking the new block to the blockchain. To this end, the precise value utilized in the header of the new block may be dependent on the hash value for each transaction in the new block, as well as the hash value for each transaction in every prior block.
  • According to certain aspects disclosed herein, information stored in blockchains may be trusted, because the hash value generated for the new block and a nonce value (an arbitrary number used once) are used as inputs into a cryptographic puzzle. The cryptographic puzzle may have a difficulty set by the nodes connected to the blockchain network, or the difficulty may be set by administrators of the blockchain network. In one example of the cryptographic puzzle, a solving node uses the hash value generated for the new block and repeatedly changes the value of the nonce until a solution for the puzzle is found. For example, finding the solution to the cryptographic puzzle may involve finding the nonce value that meets certain criteria (e.g., the nonce value begins with five zeros).
  • When a solution to the cryptographic puzzle is found, the solving node publishes the solution and the other nodes then verify that the solution is valid. Since the solution depends on the particular hash values for each transaction within the blockchain, if the solving node attempted to modify any transaction stored in the blockchain, the solution would not be verified by the other nodes. More specifically, if a single node attempts to modify a prior transaction within the blockchain, a cascade of different hash values may be generated for each tier of the cryptographic combination technique. This results in the header for one or more blocks being different than the corresponding header(s) in every other node that did not make the exact same modification.
  • Exemplary Database & Distributed Ledger
  • FIG. 1A depicts an exemplary central authority database system 100 in accordance with one aspect of the present disclosure. FIG. 1A includes a central authority 101; a plurality of nodes 103, 105, and 107; a central ledger 109; and a plurality of network connections 111. In one exemplary operation of the database system 100, one of the nodes, for example node 103, issues a request to the central authority 101 to perform an action on data stored in the central ledger 109. This request may be a request to create, read, update, or delete data that is stored in the central ledger 109.
  • In such an example, the central authority 101 receives the request, processes the request, makes any necessary changes to the data stored in the central ledger 109, and informs the requesting node (node 103) of the status of the request. The central authority 101 may also send out status updates to the other nodes on the network about the change made, if any, to the data by node 103. In the database system 100, all interaction with the data stored in the central ledger 109 occurs through the central authority 101. In this way, the central authority functions as a gatekeeper of the data.
  • Accordingly, the central authority 101 may operate as a single point of entry for interacting with the data, and consequently the central authority 101 is a single point of failure for the entire database system 100. As such, if the central authority 101 is not accessible to the nodes in the database system 100, then the data stored in the central ledger 109 is not accessible. In another example, each individual node may keep its own databases and may periodically send a copy of its database to the central authority 101, where the received databases are reconciled to form a single cohesive record of the data stored in the central ledger 109.
  • Conversely, FIG. 1B depicts an exemplary distributed ledger system 112 in accordance with an aspect of the present disclosure. An example of a distributed ledger system 112 is the blockchain system described above. FIG. 1B includes a plurality of nodes 102, 104, and 106; a distributed ledger 114; and a plurality of network connections 110. In the distributed ledger system 112, each node keeps a copy of the distributed ledger 114.
  • Each copy of the distributed ledger 114 maintains a copy of a plurality of transactions 116-126 tracked in the distributed ledger 114. Generally speaking, each of the transactions 116-126 (sometimes referred to as a “transactional records” or “transaction records”) is a record of an update or change made to the distributed ledger 114. The nature of the information included in each transactional record 116-126 generally depends on the particular implementation of the distributed ledger 114, and on the information the distributed ledger 114 is intended to track.
  • As changes are made to the distributed ledger 114, each node 102-106 updates its copy of the distributed ledger 114. A consensus mechanism (sometimes referred to as a consensus protocol) may be used by the nodes in the distributed ledger system 112 to decide when it is appropriate to make changes to the distributed ledger 114. Example consensus mechanisms that may be used by the distributed ledger 114 include: proof of work, proof of stake, proof of activity, proof of burn, proof of capacity, and/or proof of elapsed time. Therefore, each node has its own copy of the distributed ledger 114, which is identical to every other copy of the distributed ledger 114 stored by each other node. The distributed ledger system 112 is more robust than a central authority database system such as the system 100 shown in FIG. 1A, because the distributed ledger system 112 is decentralized and no single point of failure exists.
  • The system 112 and distributed ledger 114 may be implemented using a number of different blockchain protocols, depending on the embodiment. Example blockchain protocols that may be implemented include: Hyperledger Fabric, Ethereum, Corda, Ripple, ZCash, and Sawtooth. For example, the method 600 described with reference to FIG. 6A may be implemented to track loss history using the distributed ledger 114 in one embodiment in which the distributed ledger 114 is configured to utilize the Hyperledger Fabric protocol.
  • FIG. 1C is a flow chart of an exemplary computer-implemented method 150 for adding a transaction to the distributed ledger 114 in accordance with one aspect of the present disclosure. The method 150 may be implemented, in whole or in part, by the nodes 102-106 in the system 112 shown in FIG. 1B, and may be saved to a memory of one or more of the nodes as one or more instructions or routines executable by a processor.
  • The method 150 begins when an event is detected. The event may be any suitable trigger that results in the distributed ledger 114 being accessed and/or updated, and may vary depending on the implementation. For example, depending on the embodiment, the event may be: (i) a home event pertaining to an insured home (such as the collection of new sensor data at the home, or of new insurance claim activity involving the home), (ii) a vehicle event (such as the collection of new sensor data at or by the vehicle, or of new insurance claim activity involving the vehicle), (iii) a payment event pertaining to an insurance claim, or (iv) an insurance event pertaining to an insured individual and/or policies carried by that individual.
  • After the event occurs, data pertaining to the event may be generated and/or collected, and a transaction including and/or representing the data may be generated. A node may broadcast the transaction (block 152). The nature of the transaction depends on the implementation. In one embodiment, the ledger 114 tracks home events, and each home event may represent collected sensor data (e.g., from a smart thermostat, carbon monoxide detector, home computer, intelligent personal assistant, etc.) and/or data representing new insurance claim activity (e.g., the filing of a new claim, the generation of an estimate, the payment of a claim, etc.). The transaction might include data about the property (e.g., property type, address of a home, type of data collected, etc.), owner (e.g., name, social security number, etc.), and/or claim (damage type, estimated loss, claim payout amount, etc.).
  • One or more other nodes in the system 112 may receive the broadcastd transaction and attempt to form a consensus in order to verify the validity of the transaction (block 154). The nodes may utilize a proof of work consensus protocol such as that already described. If the nodes are unable to reach consensus, the transaction is not added to the ledger 114. When the nodes reach consensus, the transaction is added to the distributed ledger 156. That is, a copy of the transaction is added to each copy of the ledger 114 held at each node 102-106. Accordingly, the nodes 102-106 are able to maintain identical copies of the ledger 114, thus maintaining consistency and accuracy of the ledger 114 without a single central authority.
  • Exemplary Transaction Flow & Block Propagation Flow
  • FIG. 2A depicts an exemplary transaction flow 200 in accordance with one aspect of the present disclosure. FIG. 2A includes a transactional record (“transaction”) 202; three different time frames 204, 206, and 208; the nodes 102-106; the network connections 110; and the distributed ledger 114. The transaction flow 200 may represent a sequential flow of the transaction 202 through a network (such as the network depicted in FIG. 1B).
  • In the shown example, the node 102 generates the transaction 202 at time 204. The transaction 202 may include data that is stored in the distributed ledger 114 at the node 102, or may include data received by the node 102 from outside the distributed ledger 114. The node 102 may transmit the newly generated transaction 202 to node 106 via the network connection 110.
  • At time 206, the node 106 receives the transaction 202, and confirms that the information contained therein is correct. If the information contained in the transaction 202 is not correct, the node 106 may reject the transaction and not propagate the transaction 202 through the system. If the information contained in the transaction 202 is correct, the node 106 may transmit the transaction 202 to the node 104.
  • At time 208, the node 104 may receive the transaction 202 and may confirm or reject the transaction 202. In some embodiments, the node 104 may not transmit the confirmed transaction 202, because there are no further nodes to transmit to, or all the nodes in the network have already received transaction 202.
  • In some embodiments, at any of time frames 204, 206, or 208, any of the nodes may add the confirmed transaction 202 to their copy of the distributed ledger 114, or to a block of transactions stored in the distributed ledger 114. In some embodiments, confirming the transaction 202 includes checking cryptographic key-pairs for participants involved in the transaction 202. Checking the cryptographic key-pairs may follow a method laid out by a consensus protocol, such as the consensus protocol discussed in FIG. 1B.
  • FIG. 2B depicts an exemplary block propagation flow 210 in accordance with one aspect of the present disclosure. FIG. 2B includes two time frames 212 and 214; the node 106 and the node 104; the transactions 116-122; a set of blocks of transactions 216A-216D; the distributed ledger 114; and a blockchain 218. The block propagation flow 210 may follow the blockchain system described above, or may follow another blockchain propagation algorithm.
  • The block propagation flow 210 may begin with the node 106 receiving the transaction 116 at time 212. When node 106 confirms that the transaction 116 is valid, the node 106 may add the transaction 116 to the block 216A (which may be newly generated). As part of adding the transaction 116 to the block 216A, node 106 may solve a cryptographic puzzle and include the solution in the newly generated block 216A as proof of the work done to generate the block 216A. This proof of work may be similar to the proof of work described above which utilizes guessing a nonce value. In other embodiments, the transaction 116 may be added to a pool of transactions until enough transactions exist to form a block. Node 106 may transmit the newly created block 216A to the network at 220. Before or after propagating the block 216A, node 106 may add the block 216A to its copy of the blockchain 218.
  • At time 214, node 104 may receive the block 216A. Node 104 may verify that the block 216A is valid by checking the solution to the cryptographic puzzle provided in the block 216A. If the solution is accurate, then the node 104 may add the block 216A to its blockchain 218 and transmit the block 216A to the rest of the network at 222.
  • In one embodiment, one or more transactions 202 or events may relate to: smart contracts, loss history and loss history reports, insurance claims, vehicle sensor data, medical records, and/or insurance records.
  • FIG. 2C depicts an exemplary method 230 for generating the block 216C shown in FIG. 2B, according to one embodiment. The method 230 may be implemented by a processor of one or more of the nodes 102-106, and may be implemented as part of a consensus mechanism. It will be understood that the method 230 is exemplary, and not every embodiment implements the method 230.
  • In the method 230, a processor generates hash values 116A-122A for each of the transactions 116-122, using data associated with each of the transactions 116-122 as inputs for a hash function (step 232). The processor then generates a hash value 117 using the hash values 116A and 118A as inputs for the hash function, and a hash value 121 using the hash values 120A and 122A as inputs for the hash function (step 234). Finally, when generating block 216C, a hash for block 216 is generated using as inputs: a hash value of the “chained” block 216B, the hash vales 117 and 121, and a nonce value (step 236). Because every other node may have access to the block 216B and to the transactions 116-122, when a node publishes that a cryptographic puzzle has been solved utilizing the nonce value, the other nodes can confirm whether or not the solution is valid (because a change to any transaction 116-122, or to any transaction in block 216B, or to the nonce value, will result in a different hash value for block 216C).
  • Exemplary Sequence Diagram
  • FIG. 3 depicts an exemplary sequence diagram 300 in accordance with one aspect of the present disclosure. FIG. 3 includes the set of nodes 102, 104, and 106. At time 302, the node 102 may generate a transaction. At time 304, the transaction may be transmitted from the node 102 to the node 106. At time 306, the node 106 may validate the transaction. At time 308, if the transaction is valid, the node 106 may transmit the transaction to node 104. At time 310, node 104 may validate the transaction. At time 312, the node 106 may compile a block including the validated transaction. Compiling a block may include generating a solution to a cryptographic puzzle and linking the block to other blocks, as described in the embodiments above. At time 314, once the block is compiled, the node 106 may transmit the block with the solution to both the node 102 and the node 104.
  • At time 316, both nodes may validate the solution to the block. Verifying may include checking a cryptographic key-pair as described above. At time 318, the three nodes form a consensus that the solution is valid. Accordingly, in the shown example, all the nodes have formed a consensus on the blocks of transactions stored by all the nodes.
  • Exemplary Node
  • FIG. 4 is a block diagram of a node 102, according to one embodiment. It will be understood that the nodes 104 and 106 may perform one or more of the functions that the node 102 is capable of performing, and may include one or more of the components included in the node 102. The node 102 may utilize the decentralized system 112 described with respect to FIG. 1B, the flows 200 and 210 of transactions and blocks described in FIGS. 2A and 2B, and/or the blockchain system 500 described below with reference to FIG. 5.
  • The node 102 includes one or more of the following: at least one processor 402, memory 404, a communication module 406, one or more external ports 410, a user interface 412, a blockchain manager 414, smart contracts 416, an operating system 418, a display screen 420, and input/output components 422. In some embodiments, the node 102 may generate a new block of transactions using the blockchain manager 414. Similarly, the node 102 may use the blockchain manager 414 in conjunction with the smart contracts 416 stored in memory 404 to execute the functionality disclosed herein.
  • In some embodiments, the smart contracts 416 operate independent of the blockchain manager 414 or other applications. In some embodiments, the node 102 does not include one or more of the blockchain manager 414 or the smart contracts 416. In some embodiments, the node 102 may have additional or less components than what is described. The smart contracts may relate to, or be associated with, insureds and/or insured assets, including smart insurance contracts, smart maintenance contracts, smart health care contracts, smart repair or upkeep contracts, etc.
  • The node 102, as part of a decentralized ledger system 112, or another decentralized or centralized network, may be used to handle systems that interact with and manipulate data and transactions designed for tracking loss history, vehicle sensor data, medical records, and/or insurance records.
  • Exemplary Blockchain System
  • FIG. 5 depicts an exemplary blockchain system 500 in accordance with an aspect of the present disclosure. The system 500 includes a blockchain 502 that includes one or more blocks, including a block of transactions 504. The block 504 includes a Merkle Tree 506 that includes one or more transactions, including a transaction 508 that includes data 510. The Merkle Tree 506 may be the same Merkle Tree referred to above that cryptographically links transactions together. In some embodiments, the blockchain system 500 may utilize other methods of organizing transactions in a block.
  • As noted, the block of transactions 504 includes the transaction 508, but may also include other transactions in some instances. In some embodiments, the block of transactions 504 has a size limit limiting the number of transactions that the block 504 may store. In one exemplary implementation, the block 504 includes a reference to a previous block of transactions that was added to the blockchain 502 prior to the block 504 being added to the blockchain 502. As such, and as described above, each block in the blockchain 502 is linked to every other block in the blockchain 502.
  • In some embodiments, the block of transactions 504 may organize the transactions it has received into a Merkle Tree 506 to facilitate access to the stored transactions. The transactions may be hashed using a cryptographic hash algorithm, such as the algorithms discussed above, and the hash of each transaction may be stored in the tree. As the tree is constructed, the hash of each adjacent node at the same level is hashed together to create a new node that exists at a higher level in the tree. Therefore, the root of the tree, or the node at the top of the tree, is dependent upon the hash of each transaction stored below in the tree. Each transaction 508 may include a set of data 510. The set of data 510 may include an identifier for the transaction (e.g., a unique string), and transaction data identifying the nature of the transaction and what the transactions entails.
  • In some embodiments, the blockchain 218 shown in FIG. 2B may be similar to the blockchain 502, and the transactions 116-126 shown in FIGS. 1B and 2B may be similar to the transaction 508. In some embodiments, the ledger 114 may share some of the functionality of the system 500, as well as the organization of blocks and transactions.
  • Smart Home Data
  • In one embodiment, a distributed ledger is utilized to track smart home data. FIG. 6A depicts an exemplary computer-implemented method 600A of maintaining a distributed ledger (e.g., including a blockchain) on a home. The method 600A may include detecting (via one or more local or remote processors, sensors, servers, and/or transceivers) a home event (block 602).
  • A home event may be an insurance event (e.g., a new claim is filed; an estimate is generated; a claim is paid; etc.) and/or a smart home event detected by one or more home-based sensors and/or generated by one or more home-based computers. Detecting the home event may include receiving (e.g., at the node 102) notification of the insurance event or smart home event. The notification may include loss information, claim information, various sensor data, telematics data, intelligent home sensor or other data, mobile device data, and/or other data about insureds and insured assets, including that discussed elsewhere herein. For instance, the notification(s) may be received via wireless communication or data transmission over one or more radio frequency links or digital communication channels, and stored in a local memory.
  • Example smart home events include: motion detected by a motion detector; a door opening or closing detected by a door sensor; a window opening or closing detected by a window sensor; a temperature reading obtained by a thermostat; a desired temperature setpoint (e.g., entered by a person) detected by a thermostat; a carbon monoxide reading obtained by a carbon monoxide detector; a smoke reading detected by a smoke detector; a light status detected by a light sensor; a water flow detected by a flow sensor; a utility meter (e.g., gas, water, electric, etc.) reading obtained by a utility meter; etc.
  • The method 600A may include generating (via one or more local or remote processors, sensors, servers, and/or transceivers) a transaction and proposing the transaction (block 604). The transaction may be generated by the node 102, and the node 102 may broadcast the transaction to the nodes 104 and/or 106. The transaction may include data relating to the detected home event. For example, the transaction may include loss information, claim information, various sensor data, telematics data, intelligent home sensor or other data, mobile device data, and/or other data about the home, occupants in the home, the insured, etc.
  • The method 600A may include performing a consensus analysis (block 606). For example, the nodes 102, 104, and 106 may attempt to form a consensus, using any suitable consensus protocol (such as the hashing and problem solving technique previously described) as to whether the transaction is valid. In instances when consensus is not reached, the broadcasted transaction is not added to the ledger 114 and notification that the transaction is invalid may be generated (block 608).
  • The method 600A may include reaching consensus, adding the transaction to a block (block 610), and adding the block to a blockchain stored at the distributed ledger 114 if the block is not already part of the block chain (block 616). For example, the nodes 102-106 may reach consensus and may add the transaction to the distributed ledger 114 by each adding the transaction to a local copy of a block stored on a local copy of the distributed ledger 114.
  • The method 600A may include performing an insurance function using the distributed ledger 114 (block 618). For example, an insurance premium may be calculated based upon data (corresponding to one or more home events) stored at the ledger 114. As another example, damage to a home may be estimated based upon data stored at the ledger 114. To illustrate, one or more roof-based sensors and/or drone sensors may detect damage and write to the ledger 114 accordingly. As yet another example, an insured individual may access the ledger 114 to review: the status of various smart devices in a home, utility readings, security notifications, camera feeds, etc.
  • The nodes that implement the method 600A may be any one or more of the following: a server (e.g., of the insurance provider), a mobile device (e.g., a tablet, smart phone, or laptop of the insured or of a vendor), a desktop computer (e.g., of the insured or of a vendor), a smart device in a home (e.g., a smart thermostat, a smart carbon monoxide detector, a smart camera or microphone, or any other smart device), a home controller that manages other smart devices, a drone that surveys the home (e.g., for roof or siding damage), etc. Advantageously, after the blockchain has been updated, each of the nodes 102, 104, and 106 can access and review the transaction including the information relating to the home event.
  • FIG. 6B is a block diagram of example nodes that may utilize the ledger 114 when implementing the method 600A. The example nodes may include in-home data sources 622A-622E and an insurer server 624, each of which may be connected to the others via communication links 110.
  • Each of the in-home data sources 622A-622E in FIG. 6B represents one or more devices at a building of an insurance policy holder. The home automation system data source 622A may be any suitable automation system for monitoring and controlling devices and appliances (e.g., doors, thermostats, lights, ovens, etc.) within a home. The home security system data source 622B may be any suitable security system, including, e.g., cameras, motion sensors, etc. The utility meters data source 120C may include utility meter devices, such as a water meter that includes a water volume sensor, a gas meter that includes a gas sensor, an electricity meter that includes an electricity sensor, etc. The “event sensors” data source 120D may include any of various other types of sensor devices, such as fire or smoke detectors, carbon monoxide detectors, thermostats, water detectors or flow meters (e.g., to detect a water leak), door/window sensors, glass break sensors, temperature sensors, humidity sensors, door lock sensors, energy monitors, etc. In certain embodiments, data from different sources may be combined to determine whether an event has occurred. For example, data indicating that a power outage has occurred may be combined data indicating large amounts of rainfall to indicate that consumers may face a higher chance that their sump pumps aren't working and their homes or businesses might be experiencing water loss.
  • The smart appliances data source 622E may include smart appliance devices that generate information relating to their usage, such as a smart refrigerator that indicates the temperature settings and how often the water filter is changed, a smart washing machine that generates repair/maintenance codes, or a smart light bulb, for example. Still other types of data sources, not shown in FIG. 6B, may also write or access the ledger 114. For example, a camera in the home of a policy holder may provide video data which may be processed in order to detect movement and/or other behaviors and/or conditions (e.g., detecting smoke in the field of view of the camera). Not all data sources need be located in the interior of a monitored property, or in a living quarters portion of a residential property. For example, a tilt sensor that indicates whether a garage door is open, and/or an outdoor movement sensor or camera mounted on an exterior wall of a home, may provide data to the ledger 114. Further, not all data sources need be permanent fixtures. For example, the event sensors data 622D may include a smartphone with global positioning system (GPS) sensors that generate location data, which may be utilized to determine whether the smartphone owner (e.g., the policy holder or a family member) is at home.
  • Smart Vehicle Data
  • In one embodiment, a distributed ledger is utilized to track smart vehicle data. FIG. 7 depicts an exemplary computer-implemented method 700 of maintaining a distributed ledger (e.g., including a blockchain) on a vehicle. The vehicle may be an autonomous vehicle or a non-autonomous vehicle, depending on the embodiment. The method 700 may include detecting (via one or more local or remote processors, sensors, servers, and/or transceivers) a vehicle event (block 702).
  • A vehicle event may be an insurance event relating to a vehicle (e.g., a new claim is filed; an estimate is generated; a claim is paid; etc.) and/or a smart vehicle event detected by one or more vehicle-based sensors and/or generated by one or more vehicle-based computer systems. Detecting the vehicle event may include receiving (e.g., at the node 102) notification of the insurance event or smart vehicle event. The notification may include loss information, claim information, various sensor data, telematics data, intelligent vehicle sensor or other data, mobile device data, and/or other data about insureds and insured assets, including that discussed elsewhere herein. For instance, the notification(s) may be received via wireless communication or data transmission over one or more radio frequency links or digital communication channels, and stored in a local memory.
  • Example smart vehicle events include: a motion or position detected by a motion or position sensor as a GPS chip, an accelerometer, a compass, a speedometer, a gyroscope, etc.; braking detected by a braking sensor; turn input detected by a steering wheel sensor; wheel position detected by a wheel sensor; engine temperature detected by a temperature gauge; oil temperature detected by a temperature gauge; a seatbelt status detected by a seatbelt and/or seat sensor; a lane detection detected by a laser or radar based sensor; a proximate vehicle detected by a laser or radar based sensor; environmental conditions of a road detected by one or more cameras and/or laser systems; a door opening or closing detected by a door sensor; a window opening or closing detected by a window sensor; a temperature reading obtained by a temperature gauge; a desired temperature setpoint (e.g., entered by a person) detected via a temperature control system; etc.
  • The method 700 may include generating (via one or more local or remote processors, sensors, servers, and/or transceivers) a transaction and proposing the transaction (block 704). The transaction may be generated by the node 102, and the node 102 may broadcast the transaction to the nodes 104 and/or 106. The transaction may include data relating to the detected vehicle event. For example, the transaction may include loss information, claim information, various sensor data, telematics data, intelligent home sensor or other data, mobile device data, and/or other data about the vehicle, the driver, the insured, etc.
  • The method 700 may include performing a consensus analysis (block 706). For example, the nodes 102, 104, and 106 may attempt to form a consensus, using any suitable consensus protocol (such as the hashing and problem solving technique previously described) as to whether the transaction is valid. In instances when consensus is not reached, the broadcasted transaction is not added to the ledger 114 and notification that the transaction is invalid may be generated (block 708).
  • The method 700 may include reaching consensus, adding the transaction to a block (block 710), and adding the block to a blockchain stored at the distributed ledger 114 if the block is not already part of the block chain (block 716). For example, the nodes 102-106 may reach consensus and may add the transaction to the distributed ledger 114 by each adding the transaction to a local copy of a block stored on a local copy of the distributed ledger 114.
  • The method 700 may include performing an insurance function using the distributed ledger 114 (block 718). For example, an insurance premium may be calculated based upon data (corresponding to one or more home events) stored at the ledger 114. As another example, damage to a vehicle may be estimated based upon data stored at the ledger 114. As yet another example, an insured individual may access the ledger 114 to review: measurements from one or more location and/or position sensors in the vehicle; readings from one or more camera and/or laser systems for detecting proximate vehicles; one or more readings from a speedometer and/or trip meter; one or more parameters detected and/or generated by a vehicle-based computer; etc.
  • The nodes that implement the method 700 may be any one or more of the following: a server (e.g., of the insurance provider), a mobile device (e.g., a tablet, smart phone, or laptop of the insured or of a vendor), a desktop computer (e.g., of the insured or of a vendor), a smart sensor or device in a vehicle, an in-vehicle computer or “carputer,” etc.
  • Insurance Claim Payouts
  • In one embodiment, a distributed ledger is utilized to track insurance claim payment activity. The present embodiments may be configured to track estimates, offers, settlements, and payouts relating to insurance claims relating to injuries, property damage, (e.g., to homes, automobile, personal articles, or other insured assets), and other expenses (e.g., payments to vendors such as car repair shops, car rental companies, cleaning companies, contractors, etc.).
  • FIG. 8 depicts an exemplary computer-implemented method 800 for managing, via a distributed ledger, insurance claim payment activity. The method 800 may be implemented, in whole or in part, by the system 112 shown in FIG. 1B. The method 800 may be saved to a memory as one or more instructions or routines.
  • The method 800 may include detecting (via one or more local or remote processors, sensors, servers, and/or transceivers) a payment event relating to an insurance claim (block 802). The payment event may be any one or more of: a calculation of an estimate, a submission of an offer, an arrival at a settlement, and/or an initiation and/or completion of a payment.
  • The estimate may be any one or more of: (i) an estimated cost to repair or replace damaged property (e.g., real estate such as a home, apartment, office building, industrial warehouse, etc.; a vehicle; personal property such as jewelry, clothes, electronics, etc.); (ii) an estimated cost to compensate for special damages (e.g., medical bills, out-of-pocket expenses, and/or lost income); and/or (iii) an estimated cost for other expenses (e.g., payments to vendors such as car repair shops, car rental companies, cleaning companies, contractors, etc.).
  • The offer may be made by the insurer to the insured based upon the estimate. The offer may be the same as the estimate, or may be adjusted based upon a number of factors (e.g., a determination of fault, such as either partially or wholly at fault). The settlement may be an agreement reached between the insured and insurer as to the value of a payout. Depending on the circumstances, the settlement amount may be less than, equal to, or more than the offer. The payment may be made by the insurer to the insured and/or to a vendor.
  • After the payment event is detected, the node 102 generates a transaction including data pertaining to the payment event and broadcasts the transaction (block 804). For example, when the payment event is a calculation of an estimate, the transaction may include data relating to one or more of the following: (1) an amount of the estimate; (2) an indication of whether the estimate relates to property damage, personal injuries, and/or other expenses; (3) a date on which the estimate was calculated; (4) an assessor who calculated the estimate; (5) a description of the damage the estimate is based upon; (6) an indication of whether property is to be repaired or replace; (7) an indication of any particular special damages the estimate is based upon, such as medical costs, out-of-pocket expenses, and/or lost income; and/or (8) one or more vendors to be compensated based upon the estimate (e.g., when the estimate relates to a rental car cost or a repair cost).
  • When the payment event is a submission of an offer, the transaction may include data relating to one or more of the following: (1) an offer amount; (2) a date on which the offer was made; and/or (3) a party (e.g., the insured) to whom the offer was made.
  • When the payment event is an arrival at a settlement, the transaction may include data relating to one or more of the following: (1) a settlement amount; (2) a date on which the settlement was made; (3) a party (e.g., the insured) with whom the settlement was made.
  • When the payment event is a payment, the transaction may include data relating to one or more of the following: (1) the amount of the payment; (2) the date and/or time the payment was initiated; (3) the date and/or time the payment was completed; (4) the recipient of the payment (e.g., the insured or a vendor); and/or (5) a payment status indicating that the payment has been made.
  • The method 800 may include performing a consensus analysis (block 806). For example, the nodes 102, 104, and 106 may attempt to form a consensus, using any suitable consensus protocol (such as the hashing and problem solving technique previously described) as to whether the transaction is valid. In instances when consensus is not reached, the broadcasted transaction is not added to the ledger 114 and notification that the transaction is invalid may be generated (block 808).
  • The method 800 may include reaching consensus, adding the transaction to a block (block 810), and adding the block to a blockchain stored at the distributed ledger 114 if the block is not already part of the block chain (block 816). For example, the nodes 102-106 may reach consensus and may add the transaction to the distributed ledger 114 by each adding the transaction to a local copy of a block stored on a local copy of the distributed ledger 114.
  • The method 800 may include performing an insurance function using the distributed ledger 114 (block 818). For example, an insured individual may file a claim; an insurance provider may assess damage and/or injury; the insurance provider may estimate a cost to repair or replace property and/or to treat an injury; the insurance provider may offer a claim payout; the insured individual may reject the offer and/or make a counter-offer; the insurance provider and the insured individual may reach a settlement; and/or the insurance provider may pay the claim.
  • The nodes that implement the method 800 may be any one or more of the following: a server (e.g., of the insurance provider), a mobile device (e.g., a tablet, smart phone, or laptop of the insured or of a vendor), a desktop computer (e.g., of the insured or of a vendor), etc. The nodes may read and/or write to the distributed ledger 114 for any of a number of reasons. For example, an insurer may: calculate one or estimates and store data pertaining to the one or more estimates to the ledger 114; provide one or more offers for property damage, special damages, and/or other expenses, and store data pertaining to the one or more offers to the ledger 114; arrive at a settlement and store data pertaining to the settlement to the ledger 114; and/or make a payment on the claim and store data pertaining to the payment to the ledger 114.
  • Further, an insured may access the ledger 114 to view the insurers estimate, offer, settlement, and/or payment status. Further, the insured may write to the ledger 114 to accept an offer, reject an offer, broadcast a counter offer, and/or reach a settlement with the insurer. Similarly, a vendor may write to the ledger 114 to accept an offer, reject an offer, broadcast a counter offer, and/or accept a payment for services rendered (e.g., car repair, car rental, home repair, etc.).
  • Insurance Carrier Discovery
  • In one embodiment, a distributed ledger is utilized for insurance carrier discovery. The present embodiments may be configured to track insured individuals, their insurance policies, the insurance companies holding each of their policies, etc. Such embodiments may be useful, for example, for facilitating exchange of insurance information between drivers after an automobile accident when drivers want to exchange insurance information and/or verify that the other is insured, facilitating subrogation (e.g., when an insurance company pays for an first insured party's losses but subsequently pursues reimbursement from an insurance company of a second at-fault party), and/or facilitating a determination of whether a driver has excess liability coverage.
  • FIG. 9 depicts an example method 900 for managing, via a distributed ledger, insurance information. The method 900 may be implemented, in whole or in part, by the system 112 shown in FIG. 1B. The method 900 may be saved to a memory as one or more instructions or routines.
  • The method 900 may include detecting (via one or more local or remote processors, sensors, servers, and/or transceivers) an insurance event (block 902). The insurance event may be any one or more of: an insured acquiring an insurance policy; the insured updating the insurance policy; the insured filing a claim; etc.
  • The method 900 may include generating (e.g., by the node 102) a transaction including data pertaining to the insurance event and proposing the transaction (block 904). The data may include: an identifier for the insured (e.g., a SSN and/or name); an identifier for each policy held by the insured; a description of each policy held by the insured; limits and premiums for each policy held by the insured; an insurance provider that provides each policy held by the insured; etc.
  • The method 900 may include performing a consensus analysis (block 906). For example, the nodes 102, 104, and 106 may attempt to form a consensus, using any suitable consensus protocol (such as the hashing and problem solving technique previously described) as to whether the transaction is valid. In instances when consensus is not reached, the broadcasted transaction is not added to the ledger 114 and notification that the transaction is invalid may be generated (block 808).
  • The method 900 may include reaching consensus, adding the transaction to a block (block 910), and adding the block to a blockchain stored at the distributed ledger 114 if the block is not already part of the block chain (block 816). For example, the nodes 102-106 may reach consensus and may add the transaction to the distributed ledger 114 by each adding the transaction to a local copy of a block stored on a local copy of the distributed ledger 114.
  • The method 900 may include performing an insurance function using the distributed ledger 114 (block 918). For example, insured individuals may exchange insurance information after an automobile accident; a third party (e.g., a policeman) may verify that a driver has insurance; an insurance provider may subrogate a claim; an insurance provider and/or third party may make a determination as to whether an individual has excess liability coverage; etc.
  • For example, an insurance premium may be calculated based upon data (corresponding to one or more home events) stored at the ledger 114. As another example, damage to a vehicle may be estimated based upon data stored at the ledger 114. As yet another example, an insured individual may access the ledger 114 to review: measurements from one or more location and/or position sensors in the vehicle; readings from one or more camera and/or laser systems for detecting proximate vehicles; one or more readings from a speedometer and/or trip meter; one or more parameters detected and/or generated by a vehicle-based computer; etc.
  • The nodes that implement the method 900 may be any one or more of the following: a server (e.g., of the insurance provider), a mobile device (e.g., a tablet, smart phone, or laptop of the insured or of a vendor), a desktop computer (e.g., of the insured or of a vendor), etc. The nodes may read and/or write to the distributed ledger 114 for any of a number of reasons. For example, an insurer may update the ledger 114 any time a new policy is generated or any time a policy is updated. As another example, an insured may access the ledger 114 to check his or her policies, carriers, limits, premiums, deductibles, etc. Similarly, a third party may access the ledger 114 to check an insureds policies, carriers, limits, etc. The ledger 114 may be particularly useful after an accident, when drivers want to exchange insurance information or when someone wants to verify an insurance carrier of an insured individual.
  • ADDITIONAL CONSIDERATIONS
  • With the foregoing, an insurance customer may opt-in to a rewards, insurance discount, or other type of program (such as a UBI program). After the insurance customer provides their affirmative consent, an insurance provider remote server may collect data from the customer's mobile device, smart or autonomous vehicle, smart home controller, or other smart devices. The data collected may be related to smart or autonomous vehicle functionality, smart home functionality (or home occupant preferences or preference profiles), and/or insured assets before (and/or after) an insurance-related event, including those events discussed elsewhere herein. In return, risk averse insureds, home or vehicle owners, or home, vehicle, or apartment occupants may receive discounts or insurance cost savings related to home, renters, personal articles, auto, and other types of insurance from the insurance provider.
  • In one aspect, telematics data, smart or autonomous vehicle data, mobile device data, smart or interconnected home data, and/or other data, including the types of data discussed elsewhere herein, may be collected or received by an insurance provider remote server (e.g., via direct or indirect wireless communication or data transmission from a smart home controller, mobile device, or other customer computing device) after a customer affirmatively consents or otherwise opts-in to an insurance discount, reward, or other program. The insurance provider may then analyze the data received with the customer's permission to provide benefits to the customer. As a result, risk averse customers may receive insurance discounts or other insurance cost savings based upon data that reflects low risk behavior and/or technology that mitigates or prevents risk to (i) insured assets, such as homes, personal belongings, or vehicles, and/or (ii) individuals.
  • This detailed description is to be construed as exemplary only and does not describe every possible embodiment, as describing every possible embodiment would be impractical, if not impossible. One may be implement numerous alternate embodiments, using either current technology or technology developed after the filing date of this application.
  • Further to this point, although the embodiments described herein often utilize credit report information as an example of sensitive information, the embodiments described herein are not limited to such examples. Instead, the embodiments described herein may be implemented in any suitable environment in which it is desirable to identify and control specific type of information. As part of implementing the automotive claims process, vehicle loss history, and the lifecycle of a vehicle identification number, a financial institution may be a part of the process. For example, the aforementioned embodiments may be implemented by the financial institution to identify and contain bank account statements, brokerage account statements, tax documents, etc. To provide another example, the aforementioned embodiments may be implemented by a lender to not only identify, re-route, and quarantine credit report information, but to apply similar techniques to prevent the dissemination of loan application documents that are preferably delivered to a client for signature in accordance with a more secure means (e.g., via a secure login to a web server) than via email.
  • With the foregoing, a user may be an insurance customer who may opt-in to a rewards, insurance discount, or other type of program. After the insurance customer provides their affirmative consent, an insurance provider remote server may collect data from the customer's mobile device, smart home controller, smart vehicle, autonomous vehicle, or other smart devices—such as with the customer's permission or affirmative consent. The data collected may be related to smart or autonomous vehicle functionality, or smart home functionality (or home occupant preferences or preference profiles), and/or insured assets before (and/or after) an insurance-related event, including those events discussed elsewhere herein. In return, risk averse insureds, home or vehicle owners, passengers, or drivers may receive discounts or insurance cost savings related to home, renters, personal articles, auto, mobility, and other types of insurance from the insurance provider.
  • Furthermore, although the present disclosure sets forth a detailed description of numerous different embodiments, it should be understood that the legal scope of the description is defined by the words of the claims set forth at the end of this patent and equivalents. The detailed description is to be construed as exemplary only and does not describe every possible embodiment since describing every possible embodiment would be impractical. Numerous alternative embodiments may be implemented, using either current technology or technology developed after the filing date of this patent, which would still fall within the scope of the claims. Although the following text sets forth a detailed description of numerous different embodiments, it should be understood that the legal scope of the description is defined by the words of the claims set forth at the end of this patent and equivalents. The detailed description is to be construed as exemplary only and does not describe every possible embodiment since describing every possible embodiment would be impractical. Numerous alternative embodiments may be implemented, using either current technology or technology developed after the filing date of this patent, which would still fall within the scope of the claims.
  • Throughout this specification, plural instances may implement components, operations, or structures described as a single instance. Although individual operations of one or more methods are illustrated and described as separate operations, one or more of the individual operations may be performed concurrently, and nothing requires that the operations be performed in the order illustrated. Structures and functionality presented as separate components in example configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements fall within the scope of the subject matter herein.
  • Additionally, certain embodiments are described herein as including logic or a number of routines, subroutines, applications, or instructions. These may constitute either software (e.g., code embodied on a machine-readable medium or in a transmission signal) or hardware. In hardware, the routines, etc., are tangible units capable of performing certain operations and may be configured or arranged in a certain manner. In exemplary embodiments, one or more computer systems (e.g., a standalone, client or server computer system) or one or more hardware modules of a computer system (e.g., a processor or a group of processors) may be configured by software (e.g., an application or application portion) as a hardware module that operates to perform certain operations as described herein.
  • In various embodiments, a hardware module may be implemented mechanically or electronically. For example, a hardware module may comprise dedicated circuitry or logic that is permanently configured (e.g., as a special-purpose processor, such as a field programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)) to perform certain operations. A hardware module may also comprise programmable logic or circuitry (e.g., as encompassed within a general-purpose processor or other programmable processor) that is temporarily configured by software to perform certain operations. It will be appreciated that the decision to implement a hardware module mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations.
  • Accordingly, the term “hardware module” should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired), or temporarily configured (e.g., programmed) to operate in a certain manner or to perform certain operations described herein. Considering embodiments in which hardware modules are temporarily configured (e.g., programmed), each of the hardware modules need not be configured or instantiated at any one instance in time. For example, where the hardware modules comprise a general-purpose processor configured using software, the general-purpose processor may be configured as respective different hardware modules at different times. Software may accordingly configure a processor, for example, to constitute a particular hardware module at one instance of time and to constitute a different hardware module at a different instance of time.
  • Hardware modules may provide information to, and receive information from, other hardware modules. Accordingly, the described hardware modules may be regarded as being communicatively coupled. Where multiple of such hardware modules exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) that connect the hardware modules. In embodiments in which multiple hardware modules are configured or instantiated at different times, communications between such hardware modules may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware modules have access. For example, one hardware module may perform an operation and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware module may then, at a later time, access the memory device to retrieve and process the stored output. Hardware modules may also initiate communications with input or output devices, and may operate on a resource (e.g., a collection of information).
  • The various operations of example methods described herein may be performed, at least partially, by one or more processors that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented modules that operate to perform one or more operations or functions. The modules referred to herein may, in some example embodiments, comprise processor-implemented modules.
  • Similarly, the methods or routines described herein may be at least partially processor-implemented. For example, at least some of the operations of a method may be performed by one or more processors or processor-implemented hardware modules. The performance of certain of the operations may be distributed among the one or more processors, not only residing within a single machine, but deployed across a number of machines. In some example embodiments, the processor or processors may be located in a single location (e.g., within a home environment, an office environment or as a server farm), while in other embodiments the processors may be distributed across a number of locations.
  • The performance of certain of the operations may be distributed among the one or more processors, not only residing within a single machine, but deployed across a number of machines. In some example embodiments, the one or more processors or processor-implemented modules may be located in a single geographic location (e.g., within a home environment, an office environment, or a server farm). In other example embodiments, the one or more processors or processor-implemented modules may be distributed across a number of geographic locations.
  • Unless specifically stated otherwise, discussions herein using words such as “processing,” “computing,” “calculating,” “determining,” “presenting,” “displaying,” or the like may refer to actions or processes of a machine (e.g., a computer) that manipulates or transforms data represented as physical (e.g., electronic, magnetic, or optical) quantities within one or more memories (e.g., volatile memory, non-volatile memory, or a combination thereof), registers, or other machine components that receive, store, transmit, or display information.
  • As used herein any reference to “one embodiment” or “an embodiment” means that a particular element, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
  • Some embodiments may be described using the expression “coupled” and “connected” along with their derivatives. For example, some embodiments may be described using the term “coupled” to indicate that two or more elements are in direct physical or electrical contact. The term “coupled,” however, may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other. The embodiments are not limited in this context.
  • As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Further, unless expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
  • In addition, use of the “a” or “an” are employed to describe elements and components of the embodiments herein. This is done merely for convenience and to give a general sense of the description. This description, and the claims that follow, should be read to include one or at least one and the singular also includes the plural unless it is obvious that it is meant otherwise.
  • The patent claims at the end of this patent application are not intended to be construed under 35 U.S.C. § 112(f) unless traditional means-plus-function language is expressly recited, such as “means for” or “step for” language being explicitly recited in the claim(s).

Claims (20)

1. A computer-implemented method for managing insurance claim payouts, the method comprising:
implementing a plurality of servers, each of the plurality of servers maintaining a copy of a distributed ledger;
detecting a payment, by an insurer to a vendor, of a monetary amount associated with an insurance claim filed by an insured;
responding to detecting the payment, by the insurer to the vendor, of the monetary amount associated with the insurance claim by storing to the distributed ledger a transaction record representing the payment event and including the monetary amount, wherein storing the transaction record includes:
(i) generating, at a first server from the plurality of servers, the transaction record representing the payment event;
(ii) proposing the transaction record to one or more other servers from the plurality of servers;
(iii) performing, via the plurality of servers, a consensus analysis of the transaction record utilizing a consensus mechanism; and
(iv) when the consensus analysis indicates that the plurality of servers have formed a consensus, storing the transaction record at the distributed ledger by storing the transaction record to each copy of the distributed ledger at the plurality of servers; and
performing an insurance function based upon the transaction record stored to the distributed ledger.
2. (canceled)
3. The method of claim 2, wherein the payment is a payment to repair or replace damaged property.
4. The method of claim 1, wherein the plurality of servers include: an insurance provider server; a vendor server; and a mobile device of an insured individual.
5. The method of claim 1, wherein the insurance function is a payment of a claim.
6. The method of claim 1, wherein the insurance function is any one or more of: providing an offer; accepting the offer; providing a counter-offer; and submitting an estimate.
7. The method of claim 1, wherein the data corresponding to the payment event further includes any one or more of the following: an identifier for an insured individual filing the insurance claim; and an identifier for an insurance provider with whom the insurance claim was filed.
8. The method of claim 1, wherein the data corresponding to the payment event includes any one or more of the following: an identifier for a policy corresponding to the insurance claim; a description of the policy; one or more limits for the policy; and one or more premiums for the policy.
9. The method of claim 1, wherein storing the transaction record at the distributed ledger comprises: storing the transaction to a block.
10. The method of claim 9, wherein performing the consensus analysis comprises generating a hash value for the transaction, and utilizing the hash value for the transaction to generate a hash value for the block.
11. The method of claim 1, wherein the consensus mechanism is: a proof of work mechanism, a proof of stake mechanism, or a proof of activity mechanism.
12. The method of claim 1, wherein the consensus mechanism is: a proof of burn mechanism, a proof of capacity mechanism, or a proof of elapsed time mechanism.
13. A system for managing insurance claim payouts, the system comprising:
a plurality of servers maintaining a distributed ledger for tracking payment events pertaining to insurance claims, wherein each of the plurality of servers includes a memory storing: (A) a copy of the distributed ledger, and (B) instructions that, when executed, cause the respective server to:
(i) detect a payment, by an insurer to a vendor, of a monetary amount associated with an insurance claim filed by an insured;
(ii) respond to detecting the payment, by the insurer to the vendor, by generating, at the respective server, a transaction record representing the payment and including the monetary amount;
wherein the plurality of servers are configured to: (i) perform a consensus analysis of the broadcasted transaction record utilizing a consensus mechanism; (ii) store the transaction record at the distributed ledger when the consensus analysis indicates that the plurality of servers have formed a consensus by storing the transaction record to each copy of the distributed ledger at the plurality of servers; and (iii) perform an insurance function based upon the transaction record stored to the distributed ledger.
14. (canceled)
15. The system of claim 14, wherein the payment is a payment to repair or replace damaged property.
16. The system of claim 13, wherein the plurality of servers include: an insurance provider server; a vendor server; and a mobile device of an insured individual.
17. The system of claim 13, wherein the insurance function is a payment of a claim.
18. The system of claim 13, wherein the insurance function is any one or more of: providing an offer; accepting the offer; providing a counter-offer; and submitting an estimate.
19. The system of claim 13, wherein the data corresponding to the payment event further includes any one or more of the following: an identifier for an insured individual filing the insurance claim; and an identifier for an insurance provider with whom the insurance claim was filed.
20. The system of claim 13, wherein the data corresponding to the payment event further includes any one or more of the following: an identifier for a policy corresponding to the insurance claim; a description of the policy; one or more limits for the policy; and one or more premiums for the policy.
US15/870,357 2017-05-02 2018-01-12 Distributed ledger system for claim payouts Abandoned US20210264362A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/870,357 US20210264362A1 (en) 2017-05-02 2018-01-12 Distributed ledger system for claim payouts

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US201762500049P 2017-05-02 2017-05-02
US201762500326P 2017-05-02 2017-05-02
US201762508133P 2017-05-18 2017-05-18
US201762545262P 2017-08-14 2017-08-14
US201762548700P 2017-08-22 2017-08-22
US201762548668P 2017-08-22 2017-08-22
US201762548692P 2017-08-22 2017-08-22
US201762548748P 2017-08-22 2017-08-22
US201762548731P 2017-08-22 2017-08-22
US201762548682P 2017-08-22 2017-08-22
US201762548679P 2017-08-22 2017-08-22
US201762548741P 2017-08-22 2017-08-22
US15/870,357 US20210264362A1 (en) 2017-05-02 2018-01-12 Distributed ledger system for claim payouts

Publications (1)

Publication Number Publication Date
US20210264362A1 true US20210264362A1 (en) 2021-08-26

Family

ID=74659182

Family Applications (12)

Application Number Title Priority Date Filing Date
US15/870,357 Abandoned US20210264362A1 (en) 2017-05-02 2018-01-12 Distributed ledger system for claim payouts
US15/870,350 Active 2038-05-24 US11037377B1 (en) 2017-05-02 2018-01-12 Distributed ledger system for managing smart vehicle data
US15/870,292 Abandoned US20210264526A1 (en) 2017-05-02 2018-01-12 Distributed ledger system for use with vehicle sensor data and usage based systems
US15/870,282 Abandoned US20210350469A1 (en) 2017-05-02 2018-01-12 Distributed ledger system for managing vehicle sensor data utilized to develop collision profiles
US15/870,332 Abandoned US20210279808A1 (en) 2017-05-02 2018-01-12 Distributed ledger system for insurance record management systems
US15/870,271 Active 2038-07-16 US12026780B1 (en) 2017-05-02 2018-01-12 Distributed ledger system for managing loss histories for properties
US15/870,364 Active 2038-05-15 US10929931B1 (en) 2017-05-02 2018-01-12 Distributed ledger system for carrier discovery
US15/870,343 Abandoned US20210264527A1 (en) 2017-05-02 2018-01-12 Distributed Ledger System for Managing Smart Home Data
US15/870,298 Active 2039-01-29 US11217332B1 (en) 2017-05-02 2018-01-12 Distributed ledger system for managing medical records
US17/177,825 Active 2038-02-09 US11756128B2 (en) 2017-05-02 2021-02-17 Distributed ledger system for managing smart vehicle data
US18/202,365 Pending US20230298108A1 (en) 2017-05-02 2023-05-26 Distributed ledger system for managing smart data
US18/643,856 Pending US20240273638A1 (en) 2017-05-02 2024-04-23 Distributed ledger system for managing loss histories for properties

Family Applications After (11)

Application Number Title Priority Date Filing Date
US15/870,350 Active 2038-05-24 US11037377B1 (en) 2017-05-02 2018-01-12 Distributed ledger system for managing smart vehicle data
US15/870,292 Abandoned US20210264526A1 (en) 2017-05-02 2018-01-12 Distributed ledger system for use with vehicle sensor data and usage based systems
US15/870,282 Abandoned US20210350469A1 (en) 2017-05-02 2018-01-12 Distributed ledger system for managing vehicle sensor data utilized to develop collision profiles
US15/870,332 Abandoned US20210279808A1 (en) 2017-05-02 2018-01-12 Distributed ledger system for insurance record management systems
US15/870,271 Active 2038-07-16 US12026780B1 (en) 2017-05-02 2018-01-12 Distributed ledger system for managing loss histories for properties
US15/870,364 Active 2038-05-15 US10929931B1 (en) 2017-05-02 2018-01-12 Distributed ledger system for carrier discovery
US15/870,343 Abandoned US20210264527A1 (en) 2017-05-02 2018-01-12 Distributed Ledger System for Managing Smart Home Data
US15/870,298 Active 2039-01-29 US11217332B1 (en) 2017-05-02 2018-01-12 Distributed ledger system for managing medical records
US17/177,825 Active 2038-02-09 US11756128B2 (en) 2017-05-02 2021-02-17 Distributed ledger system for managing smart vehicle data
US18/202,365 Pending US20230298108A1 (en) 2017-05-02 2023-05-26 Distributed ledger system for managing smart data
US18/643,856 Pending US20240273638A1 (en) 2017-05-02 2024-04-23 Distributed ledger system for managing loss histories for properties

Country Status (1)

Country Link
US (12) US20210264362A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200394718A1 (en) * 2018-02-08 2020-12-17 2Bc Innovations, Llc Utilizing a portfolio of blockchain-encoded rived longevity-contingent instruments
US20230274033A1 (en) * 2021-01-11 2023-08-31 Micro Focus Llc Blockchain auditing system and method

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10102587B1 (en) * 2014-07-21 2018-10-16 State Farm Mutual Automobile Insurance Company Methods of pre-generating insurance claims
US10788229B2 (en) * 2017-05-10 2020-09-29 Johnson Controls Technology Company Building management system with a distributed blockchain database
US10943680B1 (en) * 2017-09-07 2021-03-09 Massachusetts Mutual Life Insurance Company Intelligent health-based blockchain
US20200349653A1 (en) * 2018-02-08 2020-11-05 2Bc Innovations, Llc Servicing a portfolio of blockchain-encoded rived longevity-contingent instruments
US10756904B1 (en) * 2018-02-22 2020-08-25 EMC IP Holding Company LLC Efficient and secure distributed ledger maintenance
DE102018203994A1 (en) * 2018-03-15 2019-09-19 Robert Bosch Gmbh System and method for the decentralized execution of transactions
US11909858B1 (en) * 2018-06-21 2024-02-20 Thomson Reuters Enterprise Centre Gmbh System and method for generating and performing a smart contract
EP3821578B1 (en) * 2018-07-13 2022-02-09 Telefonaktiebolaget LM Ericsson (publ) Verification of lawful interception data
CN109033406B (en) * 2018-08-03 2020-06-05 上海点融信息科技有限责任公司 Method, apparatus and storage medium for searching blockchain data
CN109033403B (en) * 2018-08-03 2020-05-12 上海点融信息科技有限责任公司 Method, apparatus and storage medium for searching blockchain data
US12061452B2 (en) * 2018-08-24 2024-08-13 Tyco Fire & Security Gmbh Building management system with blockchain ledger
WO2020047106A1 (en) 2018-08-28 2020-03-05 Eris Digital Holdings, Llc Blockchain-enabled electronic futures trading system with optional computerized delivery of cryptocurrency
SG11202102184WA (en) * 2018-09-15 2021-04-29 Zillion Insurance Services Inc Method and collaborative platform for intelligent purchase decisions
KR20200050150A (en) * 2018-11-01 2020-05-11 현대자동차주식회사 System and method of processing traffic information using block-chain technology
DE102018219719A1 (en) * 2018-11-16 2020-05-20 Volkswagen Aktiengesellschaft Vehicle, network component, method, computer program and device for generating an identifier for an equipment state of a vehicle
WO2020124067A1 (en) * 2018-12-14 2020-06-18 Carrier Corporation Alarm management system with blockchain technology
US11899817B2 (en) 2019-01-31 2024-02-13 Salesforce, Inc. Systems, methods, and apparatuses for storing PII information via a metadata driven blockchain using distributed and decentralized storage for sensitive user information
US11971874B2 (en) * 2019-01-31 2024-04-30 Salesforce, Inc. Systems, methods, and apparatuses for implementing efficient storage and validation of data and metadata within a blockchain using distributed ledger technology (DLT)
US11887037B2 (en) * 2019-02-19 2024-01-30 Oracle International Corporation Generating and applying a prediction model based on blockchain data
US20220084128A1 (en) * 2019-04-16 2022-03-17 Erich Lawson Spangenberg System and method for providing patent title insurance with centralized and distributed data architectures
US20200387975A1 (en) * 2019-04-16 2020-12-10 Erich Lawson Spangenberg System and method for providing patent title insurance with centralized and distributed data architectures
US11880349B2 (en) 2019-04-30 2024-01-23 Salesforce, Inc. System or method to query or search a metadata driven distributed ledger or blockchain
US11676143B2 (en) * 2019-05-16 2023-06-13 Coinbase, Inc. Systems and methods for blockchain transaction management
EP3984042A1 (en) * 2019-06-13 2022-04-20 Koninklijke Philips N.V. Privacy ensuring personal health record data sharing
US20200409929A1 (en) * 2019-06-25 2020-12-31 Rm Acquisition, Llc D/B/A Rand Mcnally Cloud-coupled connected sensor data and telematics
JP7314813B2 (en) * 2020-01-29 2023-07-26 トヨタ自動車株式会社 VEHICLE CONTROL METHOD, VEHICLE CONTROL DEVICE, AND SERVER
CN115136178A (en) * 2020-02-21 2022-09-30 松下电器(美国)知识产权公司 Control method, control device, and program
US11657441B2 (en) * 2020-04-03 2023-05-23 Toyota Motor North America, Inc. Profile-based service for transports
US20210319411A1 (en) * 2020-04-09 2021-10-14 Blockchain FOB Systems and methods for tracking equipment lifetimes and generating history reports to the same
US11544797B1 (en) * 2020-08-07 2023-01-03 Stripe, Inc. Systems and methods for immutable historic records from cloud storage systems
US20220392004A1 (en) 2021-06-03 2022-12-08 State Farm Mutual Automobile Insurance Company Method and system for verifying settlement demands for subrogation claims using a distributed ledger
KR102589095B1 (en) * 2021-07-09 2023-10-13 주식회사 퀀텀게이트 Method for managing tachograph data based on blockchain network, apparatus and system for performing the same
US20230185614A1 (en) * 2021-12-10 2023-06-15 Honda Motor Co., Ltd. System and method for providing decentralized vehicle computing using blockchain
US20240119534A1 (en) * 2022-10-05 2024-04-11 State Farm Mutual Automobile Insurance Company Systems and methods for generating, maintaining, and using portable data on a blockchain

Family Cites Families (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499182A (en) 1994-12-07 1996-03-12 Ousborne; Jeffrey Vehicle driver performance monitoring system
US8271336B2 (en) * 1999-11-22 2012-09-18 Accenture Global Services Gmbh Increased visibility during order management in a network-based supply chain environment
US20020022976A1 (en) 2000-05-19 2002-02-21 Hartigan William R. Method and system for providing online insurance information
US20070185743A1 (en) 2000-11-09 2007-08-09 Jinks Jill K System for automated insurance underwriting
WO2004088560A1 (en) 2003-04-02 2004-10-14 F-Technologies Ltd. Methods and systems for the management of insurance claims and property
WO2005003885A2 (en) 2003-07-07 2005-01-13 Sensomatix Ltd. Traffic information system
US20050108063A1 (en) 2003-11-05 2005-05-19 Madill Robert P.Jr. Systems and methods for assessing the potential for fraud in business transactions
US20060212195A1 (en) 2005-03-15 2006-09-21 Veith Gregory W Vehicle data recorder and telematic device
US20060282342A1 (en) 2005-05-06 2006-12-14 Leigh Chapman Image-based inventory tracking and reports
GB0605069D0 (en) 2006-03-14 2006-04-26 Airmax Group Plc Method and system for driver style monitoring and analysing
US9067565B2 (en) 2006-05-22 2015-06-30 Inthinc Technology Solutions, Inc. System and method for evaluating driver behavior
US10231077B2 (en) 2007-07-03 2019-03-12 Eingot Llc Records access and management
US8577703B2 (en) 2007-07-17 2013-11-05 Inthinc Technology Solutions, Inc. System and method for categorizing driving behavior using driver mentoring and/or monitoring equipment to determine an underwriting risk
EP2212842B1 (en) * 2007-10-03 2014-06-18 Gmx Sas System and method for secure management of transactions
US8041635B1 (en) 2007-12-05 2011-10-18 United Services Automobile Association (Usaa) Systems and methods for automated payment processing
US8508336B2 (en) * 2008-02-14 2013-08-13 Proxense, Llc Proximity-based healthcare management system with automatic access to private information
US8433588B2 (en) 2008-06-10 2013-04-30 Progressive Casualty Insurance Company Customizable insurance system
US20090327006A1 (en) 2008-06-26 2009-12-31 Certiclear, Llc System, method and computer program product for authentication, fraud prevention, compliance monitoring, and job reporting programs and solutions for service providers
US8106769B1 (en) 2009-06-26 2012-01-31 United Services Automobile Association (Usaa) Systems and methods for automated house damage detection and reporting
US8604920B2 (en) 2009-10-20 2013-12-10 Cartasite, Inc. Systems and methods for vehicle performance analysis and presentation
US20110213628A1 (en) 2009-12-31 2011-09-01 Peak David F Systems and methods for providing a safety score associated with a user location
US9558520B2 (en) 2009-12-31 2017-01-31 Hartford Fire Insurance Company System and method for geocoded insurance processing using mobile devices
US20110320492A1 (en) 2010-06-24 2011-12-29 DriveMeCrazy, Inc. System and method for tracking vehicle operation through user-generated driving incident reports
US8489433B2 (en) 2010-07-29 2013-07-16 Insurance Services Office, Inc. System and method for estimating loss propensity of an insured vehicle and providing driving information
US8355935B2 (en) 2010-08-31 2013-01-15 Intuit Inc. Third party information transfer
US20120066007A1 (en) 2010-09-14 2012-03-15 Ferrick David P System and Method for Tracking and Sharing Driving Metrics with a Plurality of Insurance Carriers
US9311271B2 (en) 2010-12-15 2016-04-12 Andrew William Wright Method and system for logging vehicle behavior
US20140278582A1 (en) * 2013-03-15 2014-09-18 Oferta, Inc. Systems and methods for facilitating requests and quotations for insurance
US10490304B2 (en) 2012-01-26 2019-11-26 Netspective Communications Llc Device-driven non-intermediated blockchain system over a social integrity network
US20130274955A1 (en) 2012-04-13 2013-10-17 Walter Steven Rosenbaum Method for analyzing operation characteristics of a vehicle driver
US20170220998A1 (en) 2012-06-14 2017-08-03 Gregory William Horn Automated service management system with rule-based, cascading action requests
US9195914B2 (en) 2012-09-05 2015-11-24 Google Inc. Construction zone sign detection
US9501799B2 (en) 2012-11-08 2016-11-22 Hartford Fire Insurance Company System and method for determination of insurance classification of entities
US9141582B1 (en) 2012-12-19 2015-09-22 Allstate Insurance Company Driving trip and pattern analysis
US8756085B1 (en) 2013-03-15 2014-06-17 State Farm Mutual Automobile Insurance Company Systems and methods for assessing property damage
US20140278585A1 (en) * 2013-03-15 2014-09-18 Tomorrow's Solution Inc. Systems and Methods for Providing Centralized Insurance Claim Processing and Plan Management
EP2992692B1 (en) 2013-05-04 2018-08-29 DECHARMS, Christopher Mobile security technology
US20150006205A1 (en) 2013-06-28 2015-01-01 Christopher Corey Chase System and method providing automobile insurance resource tool
US10269009B1 (en) * 2013-06-28 2019-04-23 Winklevoss Ip, Llc Systems, methods, and program products for a digital math-based asset exchange
US20150170112A1 (en) * 2013-10-04 2015-06-18 Erly Dalvo DeCastro Systems and methods for providing multi-currency platforms comprising means for exchanging and interconverting tangible and virtual currencies in various transactions, banking operations, and wealth management scenarios
US20150310476A1 (en) 2014-04-24 2015-10-29 Elizabeth M. Gadwa System and method for attention based currency
US10340038B2 (en) 2014-05-13 2019-07-02 Nant Holdings Ip, Llc Healthcare transaction validation via blockchain, systems and methods
US9727921B2 (en) * 2014-06-09 2017-08-08 State Farm Mutual Automobile Insurance Company Systems and methods for processing damage to insured properties or structures
US20160027121A1 (en) 2014-06-19 2016-01-28 Berkeley Point Capital Llc Insurance risk management systems and methods
US20160048923A1 (en) 2014-08-15 2016-02-18 Swyfft, Llc Method and system for estimating economic losses from hail storms
US20210166320A1 (en) 2014-10-06 2021-06-03 State Farm Mutual Automobile Insurance Company System and method for obtaining and/or maintaining insurance coverage
US20160171619A1 (en) * 2014-12-16 2016-06-16 Hartford Fire Insurance Company Dynamic underwriting system
US20160217532A1 (en) * 2015-01-23 2016-07-28 Sure, Inc. Securing Claim Data via Block-Chains for a Peer to Peer Platform
US11386404B2 (en) 2015-02-04 2022-07-12 Ripple Luxembourg S.A. Temporary consensus subnetwork in a distributed network for payment processing
US10430889B1 (en) 2015-02-23 2019-10-01 Allstate Insurance Company Determining an event
US11023968B2 (en) 2015-03-05 2021-06-01 Goldman Sachs & Co. LLC Systems and methods for updating a distributed ledger based on partial validations of transactions
CN106251144A (en) * 2015-06-05 2016-12-21 地气股份有限公司 Electronic money management method and electronic money node apparatus
CA2932204A1 (en) 2015-06-25 2016-12-25 Alaya Care Inc. Method for predicting adverse events for home healthcare of remotely monitored patients
US9298806B1 (en) * 2015-07-08 2016-03-29 Coinlab, Inc. System and method for analyzing transactions in a distributed ledger
EP3125489B1 (en) 2015-07-31 2017-08-09 BRITISH TELECOMMUNICATIONS public limited company Mitigating blockchain attack
US10366204B2 (en) 2015-08-03 2019-07-30 Change Healthcare Holdings, Llc System and method for decentralized autonomous healthcare economy platform
US10402792B2 (en) 2015-08-13 2019-09-03 The Toronto-Dominion Bank Systems and method for tracking enterprise events using hybrid public-private blockchain ledgers
US9818239B2 (en) 2015-08-20 2017-11-14 Zendrive, Inc. Method for smartphone-based accident detection
US10762573B2 (en) 2015-09-03 2020-09-01 Metropolitan Life Insurance Co. System and method for sensor-enhanced insurance coverage and monitoring service
US9824453B1 (en) * 2015-10-14 2017-11-21 Allstate Insurance Company Three dimensional image scan for vehicle
US10726493B1 (en) 2015-10-20 2020-07-28 United Services Automobile Association (Usaa) System and method for incentivizing driving characteristics by monitoring operational data and providing feedback
WO2017069874A1 (en) 2015-10-21 2017-04-27 Manifold Technology, Inc. Event synchronization systems and methods
US10607293B2 (en) * 2015-10-30 2020-03-31 International Business Machines Corporation Automated insurance toggling for self-driving vehicles
US10198705B2 (en) * 2015-11-19 2019-02-05 Hartford Fire Insurance Company System for electronic communication exchange
US10586062B1 (en) 2015-11-23 2020-03-10 United Services Automobile Association (Usaa) Systems and methods to track, store, and manage events, rights and liabilities
US20180253702A1 (en) 2015-11-24 2018-09-06 Gartland & Mellina Group Blockchain solutions for financial services and other transactions-based industries
US10833843B1 (en) * 2015-12-03 2020-11-10 United Services Automobile Association (USAA0 Managing blockchain access
WO2017098519A1 (en) 2015-12-08 2017-06-15 Tallysticks Limited A system and method for automated financial transaction validation, processing and settlement using blockchain smart contracts
US10013573B2 (en) 2015-12-16 2018-07-03 International Business Machines Corporation Personal ledger blockchain
US10521780B1 (en) 2015-12-16 2019-12-31 United Services Automobile Association (Usaa) Blockchain based transaction management
CN109075971B (en) 2016-02-08 2022-02-18 林赛·莫洛尼 System and method for document information authenticity verification
US10430883B1 (en) 2016-02-12 2019-10-01 Allstate Insurance Company Dynamic usage-based policies
JP6877448B2 (en) 2016-02-23 2021-05-26 エヌチェーン ホールディングス リミテッドNchain Holdings Limited Methods and systems for guaranteeing computer software using distributed hash tables and blockchain
US9855785B1 (en) * 2016-04-04 2018-01-02 Uipco, Llc Digitally encoded seal for document verification
US10546296B2 (en) * 2016-04-13 2020-01-28 Paypal, Inc. Public ledger authentication system
US10720232B2 (en) * 2016-04-13 2020-07-21 Accenture Global Solutions Limited Distributed healthcare records management
EP3239686B1 (en) 2016-04-26 2024-09-18 Walter Steven Rosenbaum Method for determining driving characteristics of a vehicle
US9646029B1 (en) 2016-06-02 2017-05-09 Swirlds, Inc. Methods and apparatus for a distributed database within a network
US9811863B1 (en) 2016-06-09 2017-11-07 Paulmar Software, Inc. Database management system
US10341309B1 (en) 2016-06-13 2019-07-02 Allstate Insurance Company Cryptographically protecting data transferred between spatially distributed computing devices using an intermediary database
JP6849705B2 (en) 2016-06-24 2021-03-24 スイス リインシュランス カンパニー リミテッド Autonomous or partially autonomous vehicles, including automated risk control systems, and corresponding methods
US10755327B2 (en) 2016-07-18 2020-08-25 Royal Bank Of Canada Distributed ledger platform for vehicle records
US10417217B2 (en) 2016-08-05 2019-09-17 Chicago Mercantile Exchange Inc. Systems and methods for blockchain rule synchronization
CA3037123A1 (en) 2016-08-08 2018-02-15 The Dun & Bradstreet Corporation Trusted platform and integrated bop applications for networking bop components
US20180046992A1 (en) 2016-08-10 2018-02-15 Jpmorgan Chase Bank, N.A. Systems and methods for account reconciliation using a distributed ledger
US11146535B2 (en) * 2016-10-12 2021-10-12 Bank Of America Corporation System for managing a virtual private ledger and distributing workflow of authenticated transactions within a blockchain distributed network
US10679221B1 (en) 2016-10-20 2020-06-09 Massachusetts Mutual Life Insurance Company Systems and methods for trigger based synchronized updates in a distributed records environment
US10733616B1 (en) 2016-10-20 2020-08-04 Massachusets Mutual Life Insurance Company Systems and methods for trigger based synchronized updates in a distributed records environment
US10685009B1 (en) 2016-10-20 2020-06-16 Massachusetts Mutual Life Insurance Company Systems and methods for trigger based synchronized updates in a distributed records environment
US10713727B1 (en) 2016-11-23 2020-07-14 State Farm Mutual Automobile Insurance Company Systems and methods for building and utilizing an autonomous vehicle-related event blockchain
US10862959B2 (en) 2016-11-28 2020-12-08 Keir Finlow-Bates Consensus system and method for adding data to a blockchain
US20180157688A1 (en) * 2016-12-03 2018-06-07 Dell Products, Lp Ledger-chained distributed information handling systems and methods
US20180165416A1 (en) * 2016-12-09 2018-06-14 Cognitive Scale, Inc. Method for Providing Healthcare-Related, Blockchain-Associated Cognitive Insights Using Blockchains
US20180165598A1 (en) * 2016-12-09 2018-06-14 Cognitive Scale, Inc. Method for Providing Financial-Related, Blockchain-Associated Cognitive Insights Using Blockchains
US20190303931A1 (en) 2016-12-21 2019-10-03 Renato Valencia Method of, system for, data processing device, and integrated circuit device for implementing a distributed, ledger-based processing and recording of an electronic financial transaction
US10715331B2 (en) 2016-12-28 2020-07-14 MasterCard International Incorported Method and system for providing validated, auditable, and immutable inputs to a smart contract
US20180205546A1 (en) 2016-12-31 2018-07-19 Assetvault Limited Systems, methods, apparatuses for secure management of legal documents
US20180218455A1 (en) 2017-01-30 2018-08-02 Dais Technology, Inc. System for creating and utilizing smart policies on a blockchain
US11341488B2 (en) 2017-02-06 2022-05-24 Northern Trust Corporation Systems and methods for issuing and tracking digital tokens within distributed network nodes
US9998286B1 (en) 2017-02-17 2018-06-12 Accenture Global Solutions Limited Hardware blockchain consensus operating procedure enforcement
US20180247376A1 (en) 2017-02-27 2018-08-30 HealthshareBlox, LLC Automated transaction validation with distributed ledger
US20180267539A1 (en) 2017-03-17 2018-09-20 Jeanne Louise Shih Distributive networks of groups of moveable autonomous devices
WO2018165472A1 (en) 2017-03-08 2018-09-13 Ip Oversight Corporation System and method for creating commodity asset-secured tokens from reserves
US10310918B2 (en) 2017-03-22 2019-06-04 International Business Machines Corporation Information sharing among mobile apparatus
US10771421B2 (en) * 2017-03-31 2020-09-08 Intel Corporation Systems and methods for fair information exchange using publish-subscribe with blockchain
US12026685B2 (en) 2017-04-21 2024-07-02 Blockdaemon Inc. Method and apparatus for blockchain management
US10554649B1 (en) 2017-05-22 2020-02-04 State Farm Mutual Automobile Insurance Company Systems and methods for blockchain validation of user identity and authority
SG11202000311WA (en) 2017-07-13 2020-02-27 Jpmorgan Chase Bank Na Systems and methods for automated decentralized multilateral transaction processing
US10878512B1 (en) 2017-08-07 2020-12-29 United Services Automobile Association (Usaa) Blockchain technology for storing electronic medical records to enable instant life insurance underwriting
WO2019036056A1 (en) 2017-08-18 2019-02-21 United Parcel Service Of America, Inc. Immutable electronic platform for insurance selection
US10805085B1 (en) 2017-08-24 2020-10-13 United Services Automobile Association (Usaa) PKI-based user authentication for web services using blockchain
US10891694B1 (en) 2017-09-06 2021-01-12 State Farm Mutual Automobile Insurance Company Using vehicle mode for subrogation on a distributed ledger
US10872381B1 (en) 2017-09-06 2020-12-22 State Farm Mutual Automobile Insurance Company Evidence oracles
WO2019070853A1 (en) 2017-10-04 2019-04-11 The Dun & Bradstreet Corporation System and method for identity resolution across disparate distributed immutable ledger networks
US11063744B2 (en) 2017-10-20 2021-07-13 Sap Se Document flow tracking using blockchain
US20190172059A1 (en) 2017-12-05 2019-06-06 Bank Of America Corporation Real-time net settlement by distributed ledger system
WO2019126390A1 (en) 2017-12-19 2019-06-27 Baton Systems, Inc. Financial settlement systems and methods
US11263641B2 (en) 2018-03-08 2022-03-01 International Business Machines Corporation Cognitive operational vehicle blockchain for privileges, licensing, evaluation, authorization, and training
US10796393B2 (en) 2018-03-14 2020-10-06 Motorola Solutions, Inc. System for validating and appending incident-related data records in an inter-agency distributed electronic ledger
US20190287140A1 (en) 2018-03-19 2019-09-19 Mastercard International Incorporated Method and system for vehicle valuation using telematics
EP3578433B1 (en) 2018-04-10 2020-08-12 Walter Steven Rosenbaum Method for estimating an accident risk of an autonomous vehicle
US11407410B2 (en) 2018-04-10 2022-08-09 Walter Steven Rosenbaum Method and system for estimating an accident risk of an autonomous vehicle
US20220340148A1 (en) 2018-04-10 2022-10-27 Walter Steven Rosenbaum Method for estimating an accident risk of an autonomous vehicle
JP6684850B2 (en) 2018-05-16 2020-04-22 株式会社日立製作所 Distributed ledger system, distributed ledger subsystem, and distributed ledger node
US10606669B2 (en) 2018-06-08 2020-03-31 Optum, Inc. Domain and event type-specific consensus process for a distributed ledger
US20190392438A1 (en) 2018-06-26 2019-12-26 bootstrap legal Inc. Method and System for Modifying a Smart Contract on a Distributed Ledger
US20200020037A1 (en) 2018-07-12 2020-01-16 Louis Idrobo Automated Anti Health Insurance Fraud and Abuse Methods and System
TWI656496B (en) 2018-08-16 2019-04-11 楊少銘 Weakly centralized fund trading system and method thereof
US11842322B2 (en) 2018-08-22 2023-12-12 Equinix, Inc. Smart contract interpreter
US20200177373A1 (en) 2018-11-14 2020-06-04 Royal Bank Of Canada System and method for storing contract data structures on permissioned distributed ledgers
US20200226677A1 (en) 2019-01-11 2020-07-16 Bank Of America Corporation Syndicated loan distributed ledger pass-through processing
US11416934B2 (en) 2019-02-05 2022-08-16 Edmon Blount System and method for securities finance smart contracts on blockchains and distributed ledgers
US11636425B2 (en) 2019-02-22 2023-04-25 Jon Kirkegaard Decentralized ledger supply chain planning interchange
US20200279328A1 (en) 2019-03-01 2020-09-03 Mosaique LLC Multi-party Financial Services Agreements
US11762842B2 (en) 2019-03-18 2023-09-19 Jio Platforms Limited Systems and methods for asynchronous delayed updates in virtual distributed ledger networks
EP3730375B1 (en) 2019-04-24 2021-10-20 Walter Steven Rosenbaum Method and system for analysing the control of a vehicle
US20230060300A1 (en) 2019-04-24 2023-03-02 Walter Steven Rosenbaum Method and system for analyzing the control of a vehicle
US20200394321A1 (en) 2019-06-11 2020-12-17 International Business Machines Corporation Document redaction and reconciliation
US11972004B2 (en) 2019-06-11 2024-04-30 International Business Machines Corporation Document redaction and reconciliation
US11321307B2 (en) 2019-06-25 2022-05-03 Optum, Inc. Orchestrated consensus validation for distributed ledgers using heterogeneous validation pools
US20210065293A1 (en) 2019-08-29 2021-03-04 The Lendingcoin, Inc. Distributed ledger lending
BR112022003989A2 (en) 2019-09-06 2022-05-31 Bosonic Inc System and method for providing a blockchain-based registration process
AU2020401191A1 (en) 2019-12-09 2022-07-21 Eris Digital Holdings, Llc Electronic trading and settlement system for blockchain-integrated cryptographic difficulty-based financial instruments
CN112074861B (en) 2020-06-12 2024-09-06 支付宝实验室(新加坡)有限公司 Blockchain-based messaging service for time-sensitive events
EP4190660A1 (en) 2021-12-06 2023-06-07 Walter Steven Rosenbaum Method and system for determining an operation requirement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200394718A1 (en) * 2018-02-08 2020-12-17 2Bc Innovations, Llc Utilizing a portfolio of blockchain-encoded rived longevity-contingent instruments
US20230274033A1 (en) * 2021-01-11 2023-08-31 Micro Focus Llc Blockchain auditing system and method
US12039089B2 (en) 2021-01-11 2024-07-16 Micro Focus Llc Blockchain auditing system and method
US12050720B2 (en) 2021-01-11 2024-07-30 Micro Focus Llc Blockchain auditing system and method

Also Published As

Publication number Publication date
US20240273638A1 (en) 2024-08-15
US20210350469A1 (en) 2021-11-11
US12026780B1 (en) 2024-07-02
US20210264527A1 (en) 2021-08-26
US11217332B1 (en) 2022-01-04
US10929931B1 (en) 2021-02-23
US20230298108A1 (en) 2023-09-21
US11037377B1 (en) 2021-06-15
US20210174609A1 (en) 2021-06-10
US20210264526A1 (en) 2021-08-26
US20210279808A1 (en) 2021-09-09
US11756128B2 (en) 2023-09-12

Similar Documents

Publication Publication Date Title
US11756128B2 (en) Distributed ledger system for managing smart vehicle data
US11748330B2 (en) Systems and methods for analyzing vehicle sensor data via a blockchain
US12020326B1 (en) Systems and methods for usage based insurance via blockchain

Legal Events

Date Code Title Description
AS Assignment

Owner name: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRYANT, RONNY S.;MCCULLOUGH, STACIE A.;HILL, MITCHELL J.;AND OTHERS;SIGNING DATES FROM 20171219 TO 20180103;REEL/FRAME:045503/0860

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION