US20210254427A1 - Seal elements for annular control devices - Google Patents

Seal elements for annular control devices Download PDF

Info

Publication number
US20210254427A1
US20210254427A1 US17/180,349 US202117180349A US2021254427A1 US 20210254427 A1 US20210254427 A1 US 20210254427A1 US 202117180349 A US202117180349 A US 202117180349A US 2021254427 A1 US2021254427 A1 US 2021254427A1
Authority
US
United States
Prior art keywords
seal element
seal
wear
fluid
drill pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/180,349
Inventor
Robert van Kuilenburg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noble Rig Holdings Ltd
Original Assignee
Noble Rig Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noble Rig Holdings Ltd filed Critical Noble Rig Holdings Ltd
Priority to US17/180,349 priority Critical patent/US20210254427A1/en
Assigned to NOBLE RIG HOLDINGS LIMITED reassignment NOBLE RIG HOLDINGS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VAN KUILENBURG, Robert
Publication of US20210254427A1 publication Critical patent/US20210254427A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/08Wipers; Oil savers
    • E21B33/085Rotatable packing means, e.g. rotating blow-out preventers
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/08Wipers; Oil savers
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • E21B47/07Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/74Sealings of sliding-contact bearings
    • F16C33/741Sealings of sliding-contact bearings by means of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/162Special parts or details relating to lubrication or cooling of the sealing itself
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/18Sealings between relatively-moving surfaces with stuffing-boxes for elastic or plastic packings
    • F16J15/182Sealings between relatively-moving surfaces with stuffing-boxes for elastic or plastic packings with lubricating, cooling or draining means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/441Free-space packings with floating ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/447Labyrinth packings
    • F16J15/4472Labyrinth packings with axial path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/54Other sealings for rotating shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2352/00Apparatus for drilling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0629Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion
    • F16C32/064Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion the liquid being supplied under pressure
    • F16C32/0644Details of devices to control the supply of liquids to the bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0629Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion
    • F16C32/064Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion the liquid being supplied under pressure
    • F16C32/0651Details of the bearing area per se

Definitions

  • This disclosure relates to the field of rotatable annular sealing devices used in well drilling. More specifically, the disclosure relates to rotatable annular sealing devices used during drilling operations for managing pressure in a well annulus, that is, the space between drill pipe used to move a drill bit, and the wall of the well.
  • Managed pressure drilling techniques are used to maintain fluid pressure in the annulus (the space between open formations and the drilling tool string) of a drilling well within a range between the exposed formation fluid (“pore”) pressure and the exposed formation mechanical failure (“fracture”) pressure.
  • This pressure range or “window” is sometimes referred to as the “drilling margin” and represents the pressure range within which little or no formation fluid flows into the well and little or no drilling fluid is lost to the formation itself.
  • drilling fluids are typically weighted (made more dense than plain water to exert higher fluid pressure), other factors contribute to the pressure acting on the exposed formations in the well. Such factors include fluid friction, drilling tool rotation, and applied surface back pressure (“ASBP”).
  • ASBP applied surface back pressure
  • MPD Managed pressure drilling
  • ASBP surface back pressure
  • the drilling rig may apply additional surface back pressure to increase the well fluid pressure acting on the formation or may drill ahead with back pressure to allow for rapid well pressure reduction to mitigate fluid losses.
  • surface back pressure may be increased to offset the loss of circulating friction pressure that occurs as the rig mud pumps are stopped.
  • ECD equivalent circulating density
  • ESD equivalent static density
  • MPD systems may allow the drilling rig to more quickly detect warning signs of a potentially hazardous situation in a well. With the annulus closed, all returning fluids from the well may be measured with greater accuracy, enabling faster fluid influx and loss detection than is available using conventional drilling techniques wherein the annulus remains open. Faster detection, and consequent faster response time, may result, in the case of a fluid influx event, in a smaller influx volume because the duration of the underbalanced condition can be reduced. Smaller influxes are typically easier to circulate out of the well because there is typically less gas or light annular fluids that place less stress on weaker formations.
  • the MPD system may be used to apply surface back pressure to the well to stop the influx before it becomes necessary to operate the blowout preventer (“BOP”).
  • BOP blowout preventer
  • the annular sealing system may include a rotating control device (“RCD”), an active control device (“ACD”), or other type of annular seal that is configured to close the annulus surrounding the drill string while it rotates. The annulus is thus encapsulated such that it is not exposed to the atmosphere.
  • the drill string isolation tool is disposed directly below the annular sealing system and includes an annular packer that encapsulates the well and maintains annular pressure when drill string rotation has stopped, as well as when the annular sealing system, or components thereof, are being installed, serviced, removed, or otherwise disengaged.
  • the flow spool is disposed directly below the drill string isolation tool and, as part of a pressurized fluid return system, diverts fluids from below the annular seal to the surface.
  • the flow spool is in fluid communication with a choke manifold, typically disposed on a platform of the drilling rig.
  • the choke manifold is in fluid communication with a mud-gas separator, shakers, or other fluids processing system.
  • the pressure tight seal on the annulus allows for the precise control of wellbore pressure by actively controlling choke settings (aperture or opening) of the choke manifold and the corresponding application of surface back pressure.
  • MPD systems are increasingly being used in deep water and ultra-deep water applications where the precise management of wellbore pressure is required for technical, environmental, and/or safety reasons.
  • the disclosed method may determine the state of the annular seal, the state of one or more sealing elements, take actions to maintain the annular seal as one or more sealing elements transition from new to worn, and provide advance notice of the impending failure of one or more sealing elements so as to avoid a catastrophic annular seal failure while a marine riser is pressurized. Operations may be conducted proactively rather than reactively, and one or more sealing elements may be replaced well in advance of failure, but potentially later than an unmonitored maintenance schedule would dictate. The one or more failing sealing elements may be proactively replaced without depressurizing the marine riser, prior to seal failure or replacement may be planned well in advance and coordinated with other rig operations to improve efficiency and maintain the safety of the drilling rig and personnel.
  • FIG. 5A shows a partial cross-sectional view of an ACD-type annular sealing system (e.g., 300 of FIG. 3 in the '394 publication) with dual seal sleeve 200 and drill pipe 330 disposed therein, where upper annular packer system 310 a and lower annular packer system 310 b are in a disengaged state.
  • the ACD-type annular sealing system typically includes redundant sealing elements 100 a and 100 b that are engaged or disengaged at the same time.
  • upper annular packer system 310 a and lower annular packer system 310 b are disengaged, upper annular packer 420 a and lower annular packer 420 b are disengaged and upper sealing element 100 a and lower sealing element 100 b are relaxed such that the annulus surrounding drill pipe 330 is unsealed.
  • FIG. 5B of the WO '394 publication shows a partial cross-sectional view of the ACD-type annular sealing system with a dual seal sleeve 200 and drill pipe 330 disposed therein, where an upper annular packer system 310 a and a lower annular packer system 310 b are in an engaged state.
  • redundant sealing elements 100 a and 100 b are typically engaged or disengaged at the same time, the upper annular packer system 310 a and the lower annular packer system 310 b may be operated independently of one another.
  • a hydraulically actuated piston 510 a travels, causing the elastomer or rubber portion of the upper annular packer 420 a to travel within an upper radiused housing 410 a .
  • the upper annular packer 420 a causes the upper sealing element 100 a to make contact, and form an interference fit with the drill pipe 330 .
  • the upper seal insert 120 a and upper buffer material 130 a make contact and form an interference fit with a circumference of the drill pipe 330 .
  • a hydraulically actuated piston 510 b travels causing the elastomer or rubber portion of the lower annular packer 420 b to travel within the lower radiused housing 410 b .
  • the lower annular packer 420 b causes the lower sealing element 100 b to make contact, and form an interference fit with the drill pipe 330 .
  • the lower seal insert 120 b and the lower buffer material 130 b make contact and form an interference fit with the circumference of the drill pipe 330 .
  • FIG. 5C of the WO '394 publication shows a partial cross-sectional view of the ACD-type annular sealing system with a dual seal sleeve 200 and the drill pipe 330 disposed therein, where the upper annular packer system 310 a and the lower annular packer system 310 b are in an engaged state and lubrication is injected into a lubrication chamber 550 via a lubrication injection port 320 .
  • the lubricant pressure in the lubrication chamber 550 may be maintained just above wellbore pressure by injecting lubrication fluid 530 that may be comprised of, for example, active drilling mud, into the cavity (not independently illustrated).
  • the hydraulic closing pressures (not shown) of the upper annular packer system 310 a and the lower annular packer system 310 b of the ACD-type annular sealing system that are configured to engage the upper sealing element 100 a and the lower sealing element 100 b , respectively, may be adjusted independently to maintain the desired lubricant pressure within the lubrication chamber 550 .
  • the lubrication fluid 530 cools and lubricates the upper sealing element 100 a and the lower sealing element 100 b .
  • the injected lubrication fluid 530 that lubricates lower sealing element 100 b may eventually work its way below the lower sealing element 100 b and join the return flow of fluids (not shown) to the choke manifold (not shown) disposed on the surface (not shown).
  • the lubrication fluid 530 that lubricates the upper sealing element 100 a may be collected in the drilling fluid trip tank (not shown).
  • the hydraulic closing pressures (not shown) of the upper annular packer system 310 a and the lower annular packer system 310 b of the ACD-type annular sealing system may be actively and independently adjusted to maintain the annular seal (not independently illustrated).
  • the seal element includes an elastomer seal sleeve having an annular opening therein and arranged to be radially compressed to contact an exterior of a pipe disposed within the elastomer seal element.
  • the elastomer seal sleeve comprises at least one of a wear resistant material disposed on an interior surface of the annular opening and a lubricant channel on the interior surface.
  • the wear resistant material comprises longitudinally oriented wear bars.
  • the wear resistant material comprises at least one circumferentially oriented wear ring.
  • the lubricant channel comprises recesses forming a fluid bearing.
  • the lubricant channel comprises at least one helical groove.
  • the lubricant channel comprises an asymmetrical cross section.
  • the cross section comprises a taper on one side of the cross section.
  • the interior surface comprises a sawtooth shape.
  • Some embodiments further comprise a wiper seal disposed on at least one longitudinal end of the seal sleeve.
  • the interior surface is shaped in the form of a labyrinth seal arranged to distribute a differential pressure across the seal element through a plurality of labyrinth chambers.
  • a pitch of the lubricant channel is selected to provide maximized fluid lift with respect to effective linear speed between the exterior surface of the pipe and the interior surface of the annular opening.
  • the elastomer seal material comprises at least one sensor.
  • the at least one sensor comprises a resistance sensor formed from material chosen to wear at a rate related to wear of the elastomer seal material.
  • the at least one sensor comprises a temperature sensor.
  • FIG. 1 shows components an ACD seal element and how such seal element can close to perform its intended function.
  • FIG. 2A shows an example embodiment of wear resistant material applied to the wear surface of a seal element.
  • FIGS. 2B and 2C show example embodiments of a wear resistant material applied to the wear surface of a seal element.
  • FIG. 3 shows an example embodiment of a seal element having a lubrication channel.
  • FIG. 4 shows another example embodiment of a seal having a lubrication channel having a larger contact area than the lubrication channel shown in FIG. 3 .
  • FIG. 5 shows an example embodiment of a lubrication groove on a seal surface of a seal element.
  • FIG. 6 shows an expanded view of the example embodiment of a lubrication groove shown in FIG. 5 to highlight contact between the seal element and drill pipe extended through the seal element.
  • FIG. 7 shows graphically an explanation of the principle of operation of a lubrication groove.
  • FIGS. 7A through 7D show graphically a method for optimizing arrangement of a lubrication groove with reference to fluid leakage and wear properties.
  • FIGS. 7EA and 7EB illustrate effects of angle of net effective speed and helix angle on the speed of motion between drill pipe and seal material.
  • FIG. 8 shows another example embodiment of a lubrication groove having contra wound helical configuration to effect lubrication in both directions of rotation of the drill pipe.
  • FIG. 9 shows an example embodiment of a fluid bearing used in connection with a seal element according to the present disclosure
  • FIG. 10 graphically illustrates the mechanism of a fluid bearing made according to FIG. 9 .
  • FIG. 11 shows an example embodiment of sealing elements used with a fluid bearing having contact sealing elements on both longitudinal ends of the seal element.
  • FIG. 12 shows an example embodiment of wiper elements used with a fluid seal according to the present disclosure.
  • FIG. 13 shows temperature sensors included in some embodiments of a fluid seal element according to the present disclosure.
  • FIG. 14 shows an example embodiment of a labyrinth-type seal element according to the present disclosure.
  • FIG. 1 shows in simplified form the mechanism of sealing against a rotating pipe as effected by ACD seal elements.
  • a seal element 12 in an ACD 100 may be urged against the exterior surface of a drill pipe 10 by means known in the art such as application of hydraulic pressure or mechanical constriction.
  • the seal element 12 may be made from elastomer or other flexible material that can have its shape changed to be urged into contact with the drill pipe 10 .
  • P actuation Depending on the force used to actuate the seal element 12 , the seal element 12 contacts the drill pipe 10 with an actuation pressure denoted by P actuation .
  • Drill pipe is used herein to mean any rotating part of a string of drilling tools that will pass through the seal element 12 .
  • the differential pressure across the seal element 12 ⁇ P seal , is the difference between the pressure on one side 11 of the ACD and on the other side 13 of the ACD.
  • the drill pipe 10 rotates inside the seal element 12 as shown at DP rotation .
  • the combination of differential pressure ⁇ P seal , rotation of the drill pipe 10 against the seal element 12 and actuation pressure P actuation contribute to seal element wear.
  • Two factors that may be affected to increase seal life include: increasing the wear resistant properties of the seal element 12 material, consistent with the requirement not to cause excessive wear on the drill pipe 10 , to reduce differential pressure across the seal element (thus reducing the required actuation pressure); and reducing the contact between the surface of the drill pipe 10 and the seal element 12 .
  • the differential pressure ⁇ P seal may be the difference between the fluid pressure inside a well below the ACD 100 and atmospheric pressure above the ACD 100 .
  • the ACD 100 is thus designed to handle differential pressure ⁇ P seal of the maximum expected fluid pressure in the well.
  • FIG. 2A shows an example embodiment of a seal element 22 having one or more wear reducing material strips 22 A applied to the inner (pipe contact) surface of the seal element 22 .
  • the wear resistant material strip(s) 22 A may make contact with the drill pipe ( 10 in FIG. 1 ), thereby reducing contact between the seal element material (e.g., elastomer as explained above) and the drill pipe ( 10 in FIG. 1 ).
  • Example material that may be used in some embodiments for the wear resistant material 22 A comprises DELRIN brand synthetic resinous plastic. DELRIN is a registered trademark of du Pont Polymers, Inc., Wilmington, Del. Another material that may be used is OKROT wear resistant material. OKROT is a registered trademark of Trelleborg Sealing Solutions Germany GmbH, Schockenriedstr. 1, 70565 Stuttgart, Germany. Other materials for the wear resistant material 22 A may comprise soft metals such as aluminum.
  • the wear resistant material 22 A in the present example embodiment may extend over the entire inner surface of the seal element 22 as shown in FIG. 2A .
  • the wear resistant material may be applied only to part 22 B of the interior surface of the seal element 22 .
  • the part 22 B may be chosen to be that portion of the seal element 22 expected to come into contact with the drill pipe ( 10 in FIG. 1 ) by reason of the change in shape of the seal element 22 effected by pressurizing its interior as shown in the “expanded” view 22 - 2 .
  • the unpressurized shape of the seal element 22 is shown at 22 - 1 .
  • the wear resistant material 22 may be in the form of “pucks”, disks or annular rings as shown at 22 C in FIG. 2C .
  • Embodiments such as shown in FIGS. 2B and 2C may provide increased wear resistance to the seal element 22 , while maintaining a higher degree of flexibility to the seal element 22 than may be the case when the entire interior surface of the seal element 22 is covered by the wear resistant material as shown as 22 A in FIG. 2A .
  • FIG. 3 shows an example embodiment of a seal element 32 having a lubricant channel 36 extending between a lubricant source 30 and the wear surface 34 of the seal element 32 .
  • the lubricant source 30 may be a lubricant reservoir filled with, e.g., oil or grease.
  • the lubricant source 30 may be drilling fluid (mud) applied at a selected pressure that balances pressure applied to the high pressure side 37 of the seal element 32 .
  • FIG. 4 shows a variation of the embodiment of FIG. 3 , in which the seal element 42 comprises a larger lubricant contact area 40 formed in the wear surface 44 of the seal element 42 .
  • the larger area 40 may act as a fluid bearing. Fluid bearings are well known in the art, including arrangements to make such bearings self-centering.
  • FIG. 5 shows an example embodiment of a seal element 50 in which a lubricant channel 52 has been formed in the wear surface 54 of the seal element 50 .
  • the lubricant channel 52 may be in the form of a groove shaped to urge drilling fluid (mud) to move through the channel as the drill pipe ( 10 in FIG. 1 ) moves within the seal element 50 .
  • the groove 52 may be, for example, helically shaped.
  • FIG. 6 illustrates in larger scale what is shown in FIG. 5 with reference to the lubricant channel 52 , and shows the area of contact between the drill pipe 10 and the channel/seal element 50 .
  • the principle of operation of the lubricant channel is illustrated in FIG. 7 . As the drill pipe 10 rotates within the seal element 50 , a properly shaped lubricant channel will cause drilling fluid to be moved (“dragged”).
  • the amount of fluid flow through the lubricant channel 52 may be limited to an amount that can be removed efficiently using pumps or other fluid removal, while limiting the possibility of uncontrolled flow in the event fluid enters the well in the form of a “kick” (uncontrolled entry).
  • the pitch direction of the helix the net flow direction can be chosen to match operational requirements (up or down).
  • FIG. 8 shows another example embodiment of a seal element 50 according to the principle of the embodiments shown in FIGS. 5 and 6 .
  • the embodiment of the seal element 50 in FIG. 8 may comprise two, opposed lay helical grooves 52 A, 52 B, whereby rotation of the drill pipe ( 10 in FIG. 1 ) within the seal element 50 tends to move drilling fluid toward the axial center of the seal element 50 .
  • This may provide the advantage of creating a high pressure area in the middle with very limited fluid leakage in either direction. Due to the high pressure the fluid will be forced between the drill pipe and the sealing material, thus reducing the wear on the seal material.
  • FIGS. 7A through 7D show graphically a method for optimizing arrangement of a lubrication groove with reference to fluid leakage and wear properties.
  • FIG. 7A shows the drill pipe 10 rotating within the actuated seal element 50 .
  • the effective speed of the drill pipe 10 in the longitudinal direction, shown as DPL is caused by moving the drill pipe in longitudinal direction.
  • the effective speed DPL can be caused by the drilling rate of penetration which is usually low speed during drilling, and during tripping which is usually at high speed.
  • Total net effective speed is the vector addition of DPL and RPM (drill pipe rotation rate) induced speed.
  • FIG. 7B The resulting transverse direction of the speed of the drill pipe, with the helical lubrication channel 52 as a reference is the difference of the angle of the net effective speed ( ⁇ ) and the angle of the helix ( ⁇ ).
  • V_HT can be used to provide “lift” to minimize contact between the seal element ( 50 in FIG. 7A ) and the drill pipe ( 10 in FIG. 7A ).
  • FIG. 7C shows an embodiment of the lubricant channel 52 designed to take advantage of the principle of fluid lift.
  • an asymmetrical cross section for the lubrication channel 52 for example, a channel that comprises a main groove 52 C with substantially square walls, and on one side a tapered wall 52 D, the lifting capacity can be maximized.
  • Determining the optimized pitch angle with reference to expected rotation speed is shown graphically in FIG. 7D .
  • the vertical axis shows the values in a dimensionless way by dividing the actual value with the maximum value encountered.
  • the fluid lift force, shown by curve 70 is related to fluid properties of the drilling fluid, the actuation force applied to the seal element ( 50 in FIG. 7A ) and the drill pipe effective speed in the direction transverse to the axis of the seal element ( 50 in FIG. 7A ), It may be observed that drill pipe effective speed in the transverse direction is a function of drill pipe diameter (and consequently effective linear speed of the pipe surface with respect to the seal surface) and the drill pipe RPM.
  • Effective drill pipe speed in the axial direction is related to the drill pipe speed in the transverse direction and the lay angle (beta) of the lubricant channel ( 52 in FIG. 7A ).
  • the fluid leakage through the seal element ( 52 in FIG. 7A ) is shown by curve 72 .
  • Optimal values for drill pipe transverse speed and lay angle of the lubricant channel are those which maximize the lift force and minimize the fluid leakage for chosen values of drill pipe RPM and drill pipe diameter. It is recognized that, although the graph is showing only a two dimensional graph, determining the optimal point is a multidimensional problem as depicted by the number of variables on the horizontal axis.
  • FIG. 9 shows an example embodiment of a seal element 90 having a fluid bearing inner surface 92 .
  • the inner surface 92 may be generally sawtooth-shaped.
  • FIG. 10 shows a detailed view of part of the seal element shown in FIG. 9 , and at 94 , shows a seal pressure curve 94 with reference to the sawtooth shape of the inner surface.
  • an effective negative pressure zone 94 A may be created in the area where the inner surface is closest to the surface of the drill pipe 10 .
  • This negative pressure area can exists due to the fact of the higher surrounding pressures and needs to be avoided as much as possible.
  • Such negative pressure may nullify the positive effects of the saw tooth shape pressure built 94 and could have the effect of the drill pipe touching the sealing material again. Proper design of the inner surface shape can minimize or remove this effect.
  • the fluid bearing may be oriented at an oblique angle to the axis of the drill pipe to assist fluid pumping, as in the embodiments explained with reference to FIGS. 5 through 9 .
  • FIG. 12 shows various embodiments such as explained above having a wiper seal 120 at one longitudinal end. Any of the seal elements explained above may be improved by the addition of the wiper seal on one longitudinal end of the seal element 12 .
  • the wiper seal 120 may be elastomer, metal mesh or other material maintained in close contact with the drill pipe 10 to exclude drill cuttings and other debris from entering the contact area between the drill pipe 10 and the seal element wear surface.
  • FIG. 13 shows an example embodiment of a seal element 12 , which may be according to any of the embodiments explained herein, having sensors 130 embedded in the seal element 12 proximate the seal surface 132 at spaced apart locations.
  • the sensors 130 could be of various types such as resistance sensors or temperature sensors. By monitoring seal temperature, impending seal failure may be warned in advance.
  • Resistance sensors may wear at a rate corresponding to wear of the elastomers of the seal material so as to provide an indication of the amount of elastomer seal material removed using a relationship (which may be empirically determined) between resistance and wear of the elastomer seal material by comparing original resistance to actual resistance. Other sensor types could be used in some embodiments.
  • FIG. 14 shows another example embodiment, wherein the seal element 140 is formed so that it has a labyrinth seal surface 142 .
  • Such seal surface distributes the differential pressure applied to the seal element 140 across a plurality of seal surfaces between the drill pipe 10 and the seal element 140 , thus reducing the required activation pressure. Reduced activation pressure may reduce wear rate for any particular material used as the seal element 140 .

Abstract

A seal element for an annular control device includes an elastomer seal sleeve having an annular opening therein and arranged to be radially compressed to contact an exterior of a pipe disposed within the elastomer seal element. The elastomer seal sleeve comprises at least one of a wear resistant material disposed on an interior surface of the annular opening and a lubricant channel on the interior surface.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • Priority is claimed from U.S. Provisional Application No. 62/978,589 filed on Feb. 19, 2020, which application is incorporated herein by reference in its entirety.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not Applicable
  • NAMES OF THE PARTIES TO A JOINT RESEARCH AGREEMENT
  • Not Applicable.
  • BACKGROUND
  • This disclosure relates to the field of rotatable annular sealing devices used in well drilling. More specifically, the disclosure relates to rotatable annular sealing devices used during drilling operations for managing pressure in a well annulus, that is, the space between drill pipe used to move a drill bit, and the wall of the well.
  • Managed pressure drilling techniques are used to maintain fluid pressure in the annulus (the space between open formations and the drilling tool string) of a drilling well within a range between the exposed formation fluid (“pore”) pressure and the exposed formation mechanical failure (“fracture”) pressure. This pressure range or “window” is sometimes referred to as the “drilling margin” and represents the pressure range within which little or no formation fluid flows into the well and little or no drilling fluid is lost to the formation itself. While drilling fluids are typically weighted (made more dense than plain water to exert higher fluid pressure), other factors contribute to the pressure acting on the exposed formations in the well. Such factors include fluid friction, drilling tool rotation, and applied surface back pressure (“ASBP”). Failure to precisely control these factors can result in a well control event, including the unintentional influx of formation fluids into the wellbore or the loss of expensive drilling fluids to the exposed formations. Consequently, deviation from the drilling margin can substantially increase drilling costs and expose the drilling rig and personnel to dangerous conditions including, potentially, a blowout.
  • Managed pressure drilling (“MPD”) systems seal the annulus between the drilling tool string and the wellbore wall for all in-well operations, including rotating the drill string and stripping. Sealing the annulus improves the ability of the drilling rig to manage well annulus pressure. With the wellbore annulus sealed, MPD systems allow for the application of surface back pressure (ASBP) to the well. The drilling rig may apply additional surface back pressure to increase the well fluid pressure acting on the formation or may drill ahead with back pressure to allow for rapid well pressure reduction to mitigate fluid losses. During connections (times during which segments are added to or removed from the drill string), surface back pressure may be increased to offset the loss of circulating friction pressure that occurs as the rig mud pumps are stopped. Typically, applied back pressure is increased during connections by an amount proportional to the difference between the equivalent circulating density (“ECD”), that is the effective density of the drilling fluid when it is flowing in the well, and the equivalent static density (“ESD”), that is, the fluid pressure when the drilling fluid is not moving.
  • MPD systems may allow the drilling rig to more quickly detect warning signs of a potentially hazardous situation in a well. With the annulus closed, all returning fluids from the well may be measured with greater accuracy, enabling faster fluid influx and loss detection than is available using conventional drilling techniques wherein the annulus remains open. Faster detection, and consequent faster response time, may result, in the case of a fluid influx event, in a smaller influx volume because the duration of the underbalanced condition can be reduced. Smaller influxes are typically easier to circulate out of the well because there is typically less gas or light annular fluids that place less stress on weaker formations. In the event an unintentional influx is introduced into the well, the MPD system may be used to apply surface back pressure to the well to stop the influx before it becomes necessary to operate the blowout preventer (“BOP”). By avoiding BOP operation, it is possible to eliminate drawdown pressure acting on the formation following mud pump shutdown and closure of the BOP, and further reduce the influx volume.
  • Conventional MPD systems include an annular sealing system, a drill string isolation tool, and a flow spool, or equivalents thereof, that actively manage wellbore pressure during drilling and other operations. The annular sealing system may include a rotating control device (“RCD”), an active control device (“ACD”), or other type of annular seal that is configured to close the annulus surrounding the drill string while it rotates. The annulus is thus encapsulated such that it is not exposed to the atmosphere. The drill string isolation tool is disposed directly below the annular sealing system and includes an annular packer that encapsulates the well and maintains annular pressure when drill string rotation has stopped, as well as when the annular sealing system, or components thereof, are being installed, serviced, removed, or otherwise disengaged. The flow spool is disposed directly below the drill string isolation tool and, as part of a pressurized fluid return system, diverts fluids from below the annular seal to the surface. The flow spool is in fluid communication with a choke manifold, typically disposed on a platform of the drilling rig. The choke manifold is in fluid communication with a mud-gas separator, shakers, or other fluids processing system. The pressure tight seal on the annulus allows for the precise control of wellbore pressure by actively controlling choke settings (aperture or opening) of the choke manifold and the corresponding application of surface back pressure. MPD systems are increasingly being used in deep water and ultra-deep water applications where the precise management of wellbore pressure is required for technical, environmental, and/or safety reasons.
  • International Application Publication No. WO 2019/118394 filed by Johnson et al. discloses a method of ACD/RCD seal condition monitoring. The disclosed method may determine the state of the annular seal, the state of one or more sealing elements, take actions to maintain the annular seal as one or more sealing elements transition from new to worn, and provide advance notice of the impending failure of one or more sealing elements so as to avoid a catastrophic annular seal failure while a marine riser is pressurized. Operations may be conducted proactively rather than reactively, and one or more sealing elements may be replaced well in advance of failure, but potentially later than an unmonitored maintenance schedule would dictate. The one or more failing sealing elements may be proactively replaced without depressurizing the marine riser, prior to seal failure or replacement may be planned well in advance and coordinated with other rig operations to improve efficiency and maintain the safety of the drilling rig and personnel.
  • With reference to the WO '394 publication, FIG. 5A therein shows a partial cross-sectional view of an ACD-type annular sealing system (e.g., 300 of FIG. 3 in the '394 publication) with dual seal sleeve 200 and drill pipe 330 disposed therein, where upper annular packer system 310 a and lower annular packer system 310 b are in a disengaged state. As noted above, the ACD-type annular sealing system typically includes redundant sealing elements 100 a and 100 b that are engaged or disengaged at the same time. When upper annular packer system 310 a and lower annular packer system 310 b are disengaged, upper annular packer 420 a and lower annular packer 420 b are disengaged and upper sealing element 100 a and lower sealing element 100 b are relaxed such that the annulus surrounding drill pipe 330 is unsealed.
  • Continuing, FIG. 5B of the WO '394 publication shows a partial cross-sectional view of the ACD-type annular sealing system with a dual seal sleeve 200 and drill pipe 330 disposed therein, where an upper annular packer system 310 a and a lower annular packer system 310 b are in an engaged state. As noted above, while redundant sealing elements 100 a and 100 b are typically engaged or disengaged at the same time, the upper annular packer system 310 a and the lower annular packer system 310 b may be operated independently of one another. When the upper annular packer system 310 a is engaged, a hydraulically actuated piston 510 a travels, causing the elastomer or rubber portion of the upper annular packer 420 a to travel within an upper radiused housing 410 a. When sufficiently engaged, the upper annular packer 420 a causes the upper sealing element 100 a to make contact, and form an interference fit with the drill pipe 330. Specifically, the upper seal insert 120 a and upper buffer material 130 a make contact and form an interference fit with a circumference of the drill pipe 330. Similarly, when the lower annular packer system 310 b is engaged, a hydraulically actuated piston 510 b travels causing the elastomer or rubber portion of the lower annular packer 420 b to travel within the lower radiused housing 410 b. When sufficiently engaged, the lower annular packer 420 b causes the lower sealing element 100 b to make contact, and form an interference fit with the drill pipe 330. Specifically, the lower seal insert 120 b and the lower buffer material 130 b make contact and form an interference fit with the circumference of the drill pipe 330.
  • Continuing, FIG. 5C of the WO '394 publication shows a partial cross-sectional view of the ACD-type annular sealing system with a dual seal sleeve 200 and the drill pipe 330 disposed therein, where the upper annular packer system 310 a and the lower annular packer system 310 b are in an engaged state and lubrication is injected into a lubrication chamber 550 via a lubrication injection port 320. When drilling ahead, the lubricant pressure in the lubrication chamber 550 may be maintained just above wellbore pressure by injecting lubrication fluid 530 that may be comprised of, for example, active drilling mud, into the cavity (not independently illustrated). The hydraulic closing pressures (not shown) of the upper annular packer system 310 a and the lower annular packer system 310 b of the ACD-type annular sealing system that are configured to engage the upper sealing element 100 a and the lower sealing element 100 b, respectively, may be adjusted independently to maintain the desired lubricant pressure within the lubrication chamber 550. The lubrication fluid 530 cools and lubricates the upper sealing element 100 a and the lower sealing element 100 b. Because of the rotation of the drill pipe 330 and the imperfect seal formed by the sealing elements 100 a and 100 b, the injected lubrication fluid 530 that lubricates lower sealing element 100 b may eventually work its way below the lower sealing element 100 b and join the return flow of fluids (not shown) to the choke manifold (not shown) disposed on the surface (not shown). The lubrication fluid 530 that lubricates the upper sealing element 100 a may be collected in the drilling fluid trip tank (not shown). In one or more embodiments of the present invention, the hydraulic closing pressures (not shown) of the upper annular packer system 310 a and the lower annular packer system 310 b of the ACD-type annular sealing system may be actively and independently adjusted to maintain the annular seal (not independently illustrated).
  • The foregoing is intended to illustrate the importance of and typical operation of example annular seals in an MPD system, and is not intended to limit the scope of the present disclosure in any way.
  • In view of the importance of MPD systems, and the essential aspect of ACDs/RCDs in making MPD systems work, there is a need for improved seal elements in such devices.
  • SUMMARY
  • One aspect of the present disclosure is a seal element for an annular control device. The seal element includes an elastomer seal sleeve having an annular opening therein and arranged to be radially compressed to contact an exterior of a pipe disposed within the elastomer seal element. The elastomer seal sleeve comprises at least one of a wear resistant material disposed on an interior surface of the annular opening and a lubricant channel on the interior surface.
  • In some embodiments, the wear resistant material comprises longitudinally oriented wear bars.
  • In some embodiments, the wear resistant material comprises at least one circumferentially oriented wear ring.
  • In some embodiments, the lubricant channel comprises recesses forming a fluid bearing.
  • In some embodiments, the lubricant channel comprises at least one helical groove.
  • In some embodiments, the lubricant channel comprises an asymmetrical cross section.
  • In some embodiments, the cross section comprises a taper on one side of the cross section.
  • In some embodiments, the interior surface comprises a sawtooth shape.
  • Some embodiments further comprise a wiper seal disposed on at least one longitudinal end of the seal sleeve.
  • In some embodiments, the interior surface is shaped in the form of a labyrinth seal arranged to distribute a differential pressure across the seal element through a plurality of labyrinth chambers.
  • In some embodiments, a pitch of the lubricant channel is selected to provide maximized fluid lift with respect to effective linear speed between the exterior surface of the pipe and the interior surface of the annular opening.
  • In some embodiments, the elastomer seal material comprises at least one sensor.
  • In some embodiments, the at least one sensor comprises a resistance sensor formed from material chosen to wear at a rate related to wear of the elastomer seal material.
  • In some embodiments, the at least one sensor comprises a temperature sensor.
  • Other aspects and possible advantages will be apparent from the description and claims that follow.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows components an ACD seal element and how such seal element can close to perform its intended function.
  • FIG. 2A shows an example embodiment of wear resistant material applied to the wear surface of a seal element.
  • FIGS. 2B and 2C show example embodiments of a wear resistant material applied to the wear surface of a seal element.
  • FIG. 3 shows an example embodiment of a seal element having a lubrication channel.
  • FIG. 4 shows another example embodiment of a seal having a lubrication channel having a larger contact area than the lubrication channel shown in FIG. 3.
  • FIG. 5 shows an example embodiment of a lubrication groove on a seal surface of a seal element.
  • FIG. 6 shows an expanded view of the example embodiment of a lubrication groove shown in FIG. 5 to highlight contact between the seal element and drill pipe extended through the seal element.
  • FIG. 7 shows graphically an explanation of the principle of operation of a lubrication groove.
  • FIGS. 7A through 7D show graphically a method for optimizing arrangement of a lubrication groove with reference to fluid leakage and wear properties.
  • FIGS. 7EA and 7EB illustrate effects of angle of net effective speed and helix angle on the speed of motion between drill pipe and seal material.
  • FIG. 8 shows another example embodiment of a lubrication groove having contra wound helical configuration to effect lubrication in both directions of rotation of the drill pipe.
  • FIG. 9 shows an example embodiment of a fluid bearing used in connection with a seal element according to the present disclosure,
  • FIG. 10 graphically illustrates the mechanism of a fluid bearing made according to FIG. 9.
  • FIG. 11 shows an example embodiment of sealing elements used with a fluid bearing having contact sealing elements on both longitudinal ends of the seal element.
  • FIG. 12 shows an example embodiment of wiper elements used with a fluid seal according to the present disclosure.
  • FIG. 13 shows temperature sensors included in some embodiments of a fluid seal element according to the present disclosure.
  • FIG. 14 shows an example embodiment of a labyrinth-type seal element according to the present disclosure.
  • DETAILED DESCRIPTION
  • FIG. 1 shows in simplified form the mechanism of sealing against a rotating pipe as effected by ACD seal elements. A seal element 12 in an ACD 100 may be urged against the exterior surface of a drill pipe 10 by means known in the art such as application of hydraulic pressure or mechanical constriction. The seal element 12 may be made from elastomer or other flexible material that can have its shape changed to be urged into contact with the drill pipe 10. Depending on the force used to actuate the seal element 12, the seal element 12 contacts the drill pipe 10 with an actuation pressure denoted by Pactuation. “Drill pipe” is used herein to mean any rotating part of a string of drilling tools that will pass through the seal element 12. The differential pressure across the seal element 12, ΔPseal, is the difference between the pressure on one side 11 of the ACD and on the other side 13 of the ACD.
  • The drill pipe 10 rotates inside the seal element 12 as shown at DProtation. The combination of differential pressure ΔPseal, rotation of the drill pipe 10 against the seal element 12 and actuation pressure Pactuation contribute to seal element wear. Two factors that may be affected to increase seal life (wear resistance) include: increasing the wear resistant properties of the seal element 12 material, consistent with the requirement not to cause excessive wear on the drill pipe 10, to reduce differential pressure across the seal element (thus reducing the required actuation pressure); and reducing the contact between the surface of the drill pipe 10 and the seal element 12. It will be appreciated that the differential pressure ΔPseal may be the difference between the fluid pressure inside a well below the ACD 100 and atmospheric pressure above the ACD 100. The ACD 100 is thus designed to handle differential pressure ΔPseal of the maximum expected fluid pressure in the well.
  • FIG. 2A shows an example embodiment of a seal element 22 having one or more wear reducing material strips 22A applied to the inner (pipe contact) surface of the seal element 22. The wear resistant material strip(s) 22A may make contact with the drill pipe (10 in FIG. 1), thereby reducing contact between the seal element material (e.g., elastomer as explained above) and the drill pipe (10 in FIG. 1). Example material that may be used in some embodiments for the wear resistant material 22A comprises DELRIN brand synthetic resinous plastic. DELRIN is a registered trademark of du Pont Polymers, Inc., Wilmington, Del. Another material that may be used is OKROT wear resistant material. OKROT is a registered trademark of Trelleborg Sealing Solutions Germany GmbH, Schockenriedstr. 1, 70565 Stuttgart, Germany. Other materials for the wear resistant material 22A may comprise soft metals such as aluminum. The wear resistant material 22A in the present example embodiment may extend over the entire inner surface of the seal element 22 as shown in FIG. 2A.
  • In some embodiments as shown in FIG. 2B, the wear resistant material may be applied only to part 22B of the interior surface of the seal element 22. The part 22B may be chosen to be that portion of the seal element 22 expected to come into contact with the drill pipe (10 in FIG. 1) by reason of the change in shape of the seal element 22 effected by pressurizing its interior as shown in the “expanded” view 22-2. The unpressurized shape of the seal element 22 is shown at 22-1.
  • In some embodiments, the wear resistant material 22 may be in the form of “pucks”, disks or annular rings as shown at 22C in FIG. 2C. Embodiments such as shown in FIGS. 2B and 2C may provide increased wear resistance to the seal element 22, while maintaining a higher degree of flexibility to the seal element 22 than may be the case when the entire interior surface of the seal element 22 is covered by the wear resistant material as shown as 22A in FIG. 2A.
  • FIG. 3 shows an example embodiment of a seal element 32 having a lubricant channel 36 extending between a lubricant source 30 and the wear surface 34 of the seal element 32. In some embodiments, the lubricant source 30 may be a lubricant reservoir filled with, e.g., oil or grease. In some embodiments, the lubricant source 30 may be drilling fluid (mud) applied at a selected pressure that balances pressure applied to the high pressure side 37 of the seal element 32. FIG. 4 shows a variation of the embodiment of FIG. 3, in which the seal element 42 comprises a larger lubricant contact area 40 formed in the wear surface 44 of the seal element 42. The larger area 40 may act as a fluid bearing. Fluid bearings are well known in the art, including arrangements to make such bearings self-centering.
  • FIG. 5 shows an example embodiment of a seal element 50 in which a lubricant channel 52 has been formed in the wear surface 54 of the seal element 50. The lubricant channel 52 may be in the form of a groove shaped to urge drilling fluid (mud) to move through the channel as the drill pipe (10 in FIG. 1) moves within the seal element 50. The groove 52 may be, for example, helically shaped.
  • FIG. 6 illustrates in larger scale what is shown in FIG. 5 with reference to the lubricant channel 52, and shows the area of contact between the drill pipe 10 and the channel/seal element 50. The principle of operation of the lubricant channel is illustrated in FIG. 7. As the drill pipe 10 rotates within the seal element 50, a properly shaped lubricant channel will cause drilling fluid to be moved (“dragged”). By suitable selection of the width of the lubricant channel 52 and pitch of a helically shaped lubricant channel, the amount of fluid flow through the lubricant channel 52 may be limited to an amount that can be removed efficiently using pumps or other fluid removal, while limiting the possibility of uncontrolled flow in the event fluid enters the well in the form of a “kick” (uncontrolled entry). By selecting the pitch direction of the helix the net flow direction can be chosen to match operational requirements (up or down).
  • FIG. 8 shows another example embodiment of a seal element 50 according to the principle of the embodiments shown in FIGS. 5 and 6. The embodiment of the seal element 50 in FIG. 8 may comprise two, opposed lay helical grooves 52A, 52B, whereby rotation of the drill pipe (10 in FIG. 1) within the seal element 50 tends to move drilling fluid toward the axial center of the seal element 50. This may provide the advantage of creating a high pressure area in the middle with very limited fluid leakage in either direction. Due to the high pressure the fluid will be forced between the drill pipe and the sealing material, thus reducing the wear on the seal material.
  • FIGS. 7A through 7D show graphically a method for optimizing arrangement of a lubrication groove with reference to fluid leakage and wear properties.
  • FIG. 7A shows the drill pipe 10 rotating within the actuated seal element 50. The effective speed of the drill pipe 10 in the longitudinal direction, shown as DPL is caused by moving the drill pipe in longitudinal direction. The effective speed DPL can be caused by the drilling rate of penetration which is usually low speed during drilling, and during tripping which is usually at high speed. Total net effective speed is the vector addition of DPL and RPM (drill pipe rotation rate) induced speed. The foregoing is shown graphically in FIG. 7B. The resulting transverse direction of the speed of the drill pipe, with the helical lubrication channel 52 as a reference is the difference of the angle of the net effective speed (α) and the angle of the helix (β). Net effective speed (V_Nett) along the lubrication channel 52 is a function of the effective speed DPL and the rotary speed RPM of the drill pipe 10 and the angle of the helix lubrication channel 52 provided by V_HL=cos(α−β)*V_Nett. The transverse speed (perpendicular to the lubrication channel 52) is given by V_HT=Sin(Alpha-Beta)*V_Nett. The foregoing are illustrated in FIGS. 7EA and 7EB.
  • V_HT can be used to provide “lift” to minimize contact between the seal element (50 in FIG. 7A) and the drill pipe (10 in FIG. 7A).
  • FIG. 7C shows an embodiment of the lubricant channel 52 designed to take advantage of the principle of fluid lift. By choosing an asymmetrical cross section for the lubrication channel 52, for example, a channel that comprises a main groove 52C with substantially square walls, and on one side a tapered wall 52D, the lifting capacity can be maximized. There is an optimal pitch angle with respect to expected drill pipe rotational speed and channel geometry which maximizes lift, while minimizing leakage.
  • Determining the optimized pitch angle with reference to expected rotation speed is shown graphically in FIG. 7D. The vertical axis shows the values in a dimensionless way by dividing the actual value with the maximum value encountered. The fluid lift force, shown by curve 70, is related to fluid properties of the drilling fluid, the actuation force applied to the seal element (50 in FIG. 7A) and the drill pipe effective speed in the direction transverse to the axis of the seal element (50 in FIG. 7A), It may be observed that drill pipe effective speed in the transverse direction is a function of drill pipe diameter (and consequently effective linear speed of the pipe surface with respect to the seal surface) and the drill pipe RPM. Effective drill pipe speed in the axial direction is related to the drill pipe speed in the transverse direction and the lay angle (beta) of the lubricant channel (52 in FIG. 7A). The fluid leakage through the seal element (52 in FIG. 7A) is shown by curve 72. Optimal values for drill pipe transverse speed and lay angle of the lubricant channel are those which maximize the lift force and minimize the fluid leakage for chosen values of drill pipe RPM and drill pipe diameter. It is recognized that, although the graph is showing only a two dimensional graph, determining the optimal point is a multidimensional problem as depicted by the number of variables on the horizontal axis.
  • FIG. 9 shows an example embodiment of a seal element 90 having a fluid bearing inner surface 92. The inner surface 92 may be generally sawtooth-shaped.
  • FIG. 10 shows a detailed view of part of the seal element shown in FIG. 9, and at 94, shows a seal pressure curve 94 with reference to the sawtooth shape of the inner surface. Because of the sawtooth shape of the inner surface, an effective negative pressure zone 94A may be created in the area where the inner surface is closest to the surface of the drill pipe 10. This negative pressure area can exists due to the fact of the higher surrounding pressures and needs to be avoided as much as possible. Such negative pressure may nullify the positive effects of the saw tooth shape pressure built 94 and could have the effect of the drill pipe touching the sealing material again. Proper design of the inner surface shape can minimize or remove this effect.
  • As illustrated in FIG. 11, addition of flat, disk shaped seal elements 90 on the upper and lower longitudinal ends of the seal element 110 may improve overall sealing. In some embodiments, the fluid bearing may be oriented at an oblique angle to the axis of the drill pipe to assist fluid pumping, as in the embodiments explained with reference to FIGS. 5 through 9.
  • FIG. 12 shows various embodiments such as explained above having a wiper seal 120 at one longitudinal end. Any of the seal elements explained above may be improved by the addition of the wiper seal on one longitudinal end of the seal element 12. The wiper seal 120 may be elastomer, metal mesh or other material maintained in close contact with the drill pipe 10 to exclude drill cuttings and other debris from entering the contact area between the drill pipe 10 and the seal element wear surface.
  • FIG. 13 shows an example embodiment of a seal element 12, which may be according to any of the embodiments explained herein, having sensors 130 embedded in the seal element 12 proximate the seal surface 132 at spaced apart locations. The sensors 130 could be of various types such as resistance sensors or temperature sensors. By monitoring seal temperature, impending seal failure may be warned in advance. Resistance sensors may wear at a rate corresponding to wear of the elastomers of the seal material so as to provide an indication of the amount of elastomer seal material removed using a relationship (which may be empirically determined) between resistance and wear of the elastomer seal material by comparing original resistance to actual resistance. Other sensor types could be used in some embodiments.
  • In FIG. 14 shows another example embodiment, wherein the seal element 140 is formed so that it has a labyrinth seal surface 142. Such seal surface distributes the differential pressure applied to the seal element 140 across a plurality of seal surfaces between the drill pipe 10 and the seal element 140, thus reducing the required activation pressure. Reduced activation pressure may reduce wear rate for any particular material used as the seal element 140.
  • In light of the principles and example embodiments described and illustrated herein, it will be recognized that the example embodiments can be modified in arrangement and detail without departing from such principles. The foregoing discussion has focused on specific embodiments, but other configurations are also contemplated. In particular, even though expressions such as in “an embodiment,” or the like are used herein, these phrases are meant to generally reference embodiment possibilities, and are not intended to limit the disclosure to particular embodiment configurations. As used herein, these terms may reference the same or different embodiments that are combinable into other embodiments. As a rule, any embodiment referenced herein is freely combinable with any one or more of the other embodiments referenced herein, and any number of features of different embodiments are combinable with one another, unless indicated otherwise. Although only a few examples have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible within the scope of the described examples. Accordingly, all such modifications are intended to be included within the scope of this disclosure as defined in the following claims.

Claims (14)

What is claimed is:
1. A seal element for an annular control device, comprising:
an elastomer seal sleeve having an annular opening therein and arranged to be radially compressed to contact an exterior of a pipe disposed within the elastomer seal element;
wherein the elastomer seal sleeve comprises at least one of a wear resistant material disposed on an interior surface of the annular opening and a lubricant channel on the interior surface.
2. The seal element of claim 1 wherein the wear resistant material comprises longitudinally oriented wear bars.
3. The seal element of claim 1 wherein the wear resistant material comprises at least one circumferentially oriented wear ring.
4. The seal element of claim 1 wherein the lubricant channel comprises recesses forming a fluid bearing.
5. The seal element of claim 1 wherein the lubricant channel comprises at least one helical groove.
6. The seal element of claim 1 wherein the lubricant channel comprises an asymmetrical cross section.
7. The seal element of claim 6 comprising a taper on one side of the cross section.
8. The seal element of claim 1 wherein the interior surface comprises a sawtooth shape.
9. The seal element of claim 1 further comprising a wiper seal disposed on at least one longitudinal end of the seal sleeve.
10. The seal element of claim 1 wherein the interior surface is shaped in the form of a labyrinth seal arranged to distribute a differential pressure across the seal element through a plurality of labyrinth chambers.
11. The seal element of claim 1 wherein a pitch of the lubricant channel is selected to provide maximized fluid lift with respect to effective linear speed between the exterior surface of the pipe and the interior surface of the annular opening.
12. The seal element of claim 1 wherein the elastomer seal material comprises at least one sensor.
13. The seal element of claim 12 wherein the at least one sensor comprises a resistance sensor formed from material chosen to wear at a rate related to wear of the elastomer seal material.
14. The seal element of claim 12 wherein the at least one sensor comprises a temperature sensor.
US17/180,349 2020-02-19 2021-02-19 Seal elements for annular control devices Abandoned US20210254427A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/180,349 US20210254427A1 (en) 2020-02-19 2021-02-19 Seal elements for annular control devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202062978589P 2020-02-19 2020-02-19
US17/180,349 US20210254427A1 (en) 2020-02-19 2021-02-19 Seal elements for annular control devices

Publications (1)

Publication Number Publication Date
US20210254427A1 true US20210254427A1 (en) 2021-08-19

Family

ID=77272579

Family Applications (2)

Application Number Title Priority Date Filing Date
US17/180,349 Abandoned US20210254427A1 (en) 2020-02-19 2021-02-19 Seal elements for annular control devices
US17/890,195 Pending US20220389785A1 (en) 2020-02-19 2022-08-17 Seal elements for annular control devices

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/890,195 Pending US20220389785A1 (en) 2020-02-19 2022-08-17 Seal elements for annular control devices

Country Status (5)

Country Link
US (2) US20210254427A1 (en)
EP (1) EP4107363A1 (en)
AU (1) AU2021224216A1 (en)
BR (1) BR112022016388A2 (en)
WO (1) WO2021168269A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3472518A (en) * 1966-10-24 1969-10-14 Texaco Inc Dynamic seal for drill pipe annulus
US5549156A (en) * 1995-06-06 1996-08-27 Borden; B. Michael Shock absorber & Wiper
US7270890B2 (en) * 2002-09-23 2007-09-18 Siemens Power Generation, Inc. Wear monitoring system with embedded conductors
US6932350B1 (en) * 2003-09-26 2005-08-23 Ideal Electric Company Windback labyrinth seal that accommodates a pressure differential for rotating shafts
US7726416B2 (en) * 2007-08-27 2010-06-01 Theresa J. Williams, legal representative Bearing assembly retaining apparatus and well drilling equipment comprising same
US8844652B2 (en) * 2007-10-23 2014-09-30 Weatherford/Lamb, Inc. Interlocking low profile rotating control device
US9175542B2 (en) * 2010-06-28 2015-11-03 Weatherford/Lamb, Inc. Lubricating seal for use with a tubular
CA2861895C (en) * 2011-12-29 2020-02-25 Weatherford/Lamb, Inc. Annular sealing in a rotating control device
CA2893128A1 (en) * 2012-12-31 2014-07-03 Halliburton Energy Services, Inc. Monitoring a condition of a component in a rotating control device of a drilling system using embedded sensors

Also Published As

Publication number Publication date
EP4107363A1 (en) 2022-12-28
BR112022016388A2 (en) 2022-10-11
AU2021224216A1 (en) 2022-09-15
US20220389785A1 (en) 2022-12-08
WO2021168269A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
US8096711B2 (en) Seal cleaning and lubricating bearing assembly for a rotating flow diverter
DK2585671T3 (en) OIL FIELD EQUIPMENT AND RELATED APPARATUS AND PROCEDURE
US9284811B2 (en) Universal rotating flow head having a modular lubricated bearing pack
US20170044857A1 (en) Method of operating a drilling system
EP3701123B1 (en) Seal condition monitoring
EP2529077B1 (en) Underwater stuffing box and a method for running a drill string through the stuffing box
GB2520533A (en) Pressure containment device
CA2888307C (en) Redundant seal apparatus and method
AU2012258322A1 (en) Seabed well influx control system
CA3091994A1 (en) Improved rotating control device for land rigs
WO2010082831A1 (en) Stuffing box for accommodating geometrical differences between passing, rotating drill pipes and pipe couplings
EP3390849B1 (en) Rotating control device having a partition seal assembly
JP2014503727A (en) Method and apparatus for reducing lubricant pressure pulsations in a rotary cone rock bit
US20210254427A1 (en) Seal elements for annular control devices
US4262759A (en) Combination seal and pressure relief valve for sealed drill string unit
RU2811712C1 (en) Sealing element for annular control device
US20100051290A1 (en) Pressure Actuated Piston Type Casing Fill-up Valve and Methods of Use Thereof
US20200182006A1 (en) Rotating Control Device with Mechanical Seal
CA3111310A1 (en) Rotating control device seal
US9863195B2 (en) Passive pressure and load balancing bearing
JP2022548562A (en) Wash pipe system and method
CA2135404A1 (en) Top drive apparatus
CA2508625A1 (en) Rotating flow diverter

Legal Events

Date Code Title Description
AS Assignment

Owner name: NOBLE RIG HOLDINGS LIMITED, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VAN KUILENBURG, ROBERT;REEL/FRAME:056121/0796

Effective date: 20210224

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION