US20210246212A1 - Anti-gpiib/iiia antibodies and uses thereof - Google Patents
Anti-gpiib/iiia antibodies and uses thereof Download PDFInfo
- Publication number
- US20210246212A1 US20210246212A1 US17/096,458 US202017096458A US2021246212A1 US 20210246212 A1 US20210246212 A1 US 20210246212A1 US 202017096458 A US202017096458 A US 202017096458A US 2021246212 A1 US2021246212 A1 US 2021246212A1
- Authority
- US
- United States
- Prior art keywords
- seq
- acid sequences
- antibody
- set forth
- nos
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000027455 binding Effects 0.000 claims abstract description 320
- 239000000427 antigen Substances 0.000 claims abstract description 240
- 102000036639 antigens Human genes 0.000 claims abstract description 240
- 108091007433 antigens Proteins 0.000 claims abstract description 240
- 239000012634 fragment Substances 0.000 claims abstract description 194
- 102100025306 Integrin alpha-IIb Human genes 0.000 claims abstract description 155
- 101710149643 Integrin alpha-IIb Proteins 0.000 claims abstract description 154
- 238000000034 method Methods 0.000 claims abstract description 117
- 102000003886 Glycoproteins Human genes 0.000 claims abstract description 22
- 108090000288 Glycoproteins Proteins 0.000 claims abstract description 22
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 308
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 281
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 231
- 229920001184 polypeptide Polymers 0.000 claims description 225
- 102000015081 Blood Coagulation Factors Human genes 0.000 claims description 195
- 108010039209 Blood Coagulation Factors Proteins 0.000 claims description 195
- 239000003114 blood coagulation factor Substances 0.000 claims description 195
- 150000007523 nucleic acids Chemical class 0.000 claims description 157
- 210000004027 cell Anatomy 0.000 claims description 100
- 241000282414 Homo sapiens Species 0.000 claims description 83
- 108010047041 Complementarity Determining Regions Proteins 0.000 claims description 78
- 108090000623 proteins and genes Proteins 0.000 claims description 71
- 208000032843 Hemorrhage Diseases 0.000 claims description 64
- 102000004169 proteins and genes Human genes 0.000 claims description 56
- 208000034158 bleeding Diseases 0.000 claims description 49
- 230000000740 bleeding effect Effects 0.000 claims description 49
- 102100023804 Coagulation factor VII Human genes 0.000 claims description 44
- 108010023321 Factor VII Proteins 0.000 claims description 43
- 102000039446 nucleic acids Human genes 0.000 claims description 43
- 108020004707 nucleic acids Proteins 0.000 claims description 43
- 229940012413 factor vii Drugs 0.000 claims description 40
- 239000013598 vector Substances 0.000 claims description 39
- 210000004369 blood Anatomy 0.000 claims description 37
- 239000008280 blood Substances 0.000 claims description 37
- 208000009292 Hemophilia A Diseases 0.000 claims description 30
- 239000002773 nucleotide Substances 0.000 claims description 29
- 125000003729 nucleotide group Chemical group 0.000 claims description 29
- 102100026735 Coagulation factor VIII Human genes 0.000 claims description 25
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 claims description 25
- 201000003542 Factor VIII deficiency Diseases 0.000 claims description 22
- 238000002360 preparation method Methods 0.000 claims description 21
- 239000008194 pharmaceutical composition Substances 0.000 claims description 20
- 102100022641 Coagulation factor IX Human genes 0.000 claims description 18
- 208000015294 blood coagulation disease Diseases 0.000 claims description 17
- 238000004519 manufacturing process Methods 0.000 claims description 15
- 210000003205 muscle Anatomy 0.000 claims description 13
- 239000003112 inhibitor Substances 0.000 claims description 12
- 208000014674 injury Diseases 0.000 claims description 12
- 230000008733 trauma Effects 0.000 claims description 11
- 208000009429 hemophilia B Diseases 0.000 claims description 10
- 108010076282 Factor IX Proteins 0.000 claims description 8
- 238000012258 culturing Methods 0.000 claims description 8
- 229960004222 factor ix Drugs 0.000 claims description 8
- 210000004978 chinese hamster ovary cell Anatomy 0.000 claims description 7
- 239000003937 drug carrier Substances 0.000 claims description 7
- 208000010392 Bone Fractures Diseases 0.000 claims description 5
- 206010072043 Central nervous system haemorrhage Diseases 0.000 claims description 5
- 208000012671 Gastrointestinal haemorrhages Diseases 0.000 claims description 5
- 206010018985 Haemorrhage intracranial Diseases 0.000 claims description 5
- 206010061249 Intra-abdominal haemorrhage Diseases 0.000 claims description 5
- 208000008574 Intracranial Hemorrhages Diseases 0.000 claims description 5
- 206010028024 Mouth haemorrhage Diseases 0.000 claims description 5
- 208000009613 Oral Hemorrhage Diseases 0.000 claims description 5
- 208000030304 gastrointestinal bleeding Diseases 0.000 claims description 5
- 208000002085 hemarthrosis Diseases 0.000 claims description 5
- 230000003472 neutralizing effect Effects 0.000 claims description 5
- 210000000574 retroperitoneal space Anatomy 0.000 claims description 5
- 108010054218 Factor VIII Proteins 0.000 claims description 4
- 102000001690 Factor VIII Human genes 0.000 claims description 4
- 229960000301 factor viii Drugs 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 abstract description 38
- 238000011282 treatment Methods 0.000 abstract description 23
- 102000008394 Immunoglobulin Fragments Human genes 0.000 abstract description 16
- 108010021625 Immunoglobulin Fragments Proteins 0.000 abstract description 16
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 13
- 208000035475 disorder Diseases 0.000 abstract description 7
- 230000006806 disease prevention Effects 0.000 abstract 1
- 235000001014 amino acid Nutrition 0.000 description 157
- 229940024606 amino acid Drugs 0.000 description 150
- 150000001413 amino acids Chemical class 0.000 description 149
- 125000005647 linker group Chemical group 0.000 description 147
- 230000008685 targeting Effects 0.000 description 62
- 235000018102 proteins Nutrition 0.000 description 54
- 230000000694 effects Effects 0.000 description 49
- 108091028043 Nucleic acid sequence Proteins 0.000 description 45
- 108010013773 recombinant FVIIa Proteins 0.000 description 41
- 108010054265 Factor VIIa Proteins 0.000 description 40
- 229940012414 factor viia Drugs 0.000 description 40
- 238000006467 substitution reaction Methods 0.000 description 40
- 102000009027 Albumins Human genes 0.000 description 35
- 108010088751 Albumins Proteins 0.000 description 35
- 230000001976 improved effect Effects 0.000 description 35
- 102000005962 receptors Human genes 0.000 description 35
- 108020003175 receptors Proteins 0.000 description 35
- 229920001612 Hydroxyethyl starch Polymers 0.000 description 33
- 238000003776 cleavage reaction Methods 0.000 description 33
- 229920001223 polyethylene glycol Polymers 0.000 description 31
- 108010062466 Enzyme Precursors Proteins 0.000 description 30
- 102000010911 Enzyme Precursors Human genes 0.000 description 30
- 239000002202 Polyethylene glycol Substances 0.000 description 30
- 229940050526 hydroxyethylstarch Drugs 0.000 description 28
- UHBYWPGGCSDKFX-VKHMYHEASA-N gamma-carboxy-L-glutamic acid Chemical compound OC(=O)[C@@H](N)CC(C(O)=O)C(O)=O UHBYWPGGCSDKFX-VKHMYHEASA-N 0.000 description 27
- 239000000203 mixture Substances 0.000 description 25
- 239000013604 expression vector Substances 0.000 description 24
- 230000007017 scission Effects 0.000 description 24
- 241000699670 Mus sp. Species 0.000 description 23
- 206010053567 Coagulopathies Diseases 0.000 description 21
- 102100035233 Furin Human genes 0.000 description 21
- 238000012545 processing Methods 0.000 description 21
- 239000003814 drug Substances 0.000 description 20
- 108090001126 Furin Proteins 0.000 description 19
- 108010076504 Protein Sorting Signals Proteins 0.000 description 19
- 238000001727 in vivo Methods 0.000 description 19
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 18
- 241000699666 Mus <mouse, genus> Species 0.000 description 18
- 230000035602 clotting Effects 0.000 description 18
- 230000035772 mutation Effects 0.000 description 18
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 17
- 241001529936 Murinae Species 0.000 description 17
- 210000002381 plasma Anatomy 0.000 description 17
- 108020004414 DNA Proteins 0.000 description 16
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 16
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 16
- 108010000499 Thromboplastin Proteins 0.000 description 16
- 102000002262 Thromboplastin Human genes 0.000 description 16
- 238000013169 thromboelastometry Methods 0.000 description 16
- 101800001415 Bri23 peptide Proteins 0.000 description 15
- 101800000655 C-terminal peptide Proteins 0.000 description 15
- 102400000107 C-terminal peptide Human genes 0.000 description 15
- -1 antibodies Proteins 0.000 description 15
- 230000006870 function Effects 0.000 description 15
- 230000001965 increasing effect Effects 0.000 description 15
- 230000009261 transgenic effect Effects 0.000 description 15
- 102100038950 Proprotein convertase subtilisin/kexin type 7 Human genes 0.000 description 14
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 14
- 239000002253 acid Substances 0.000 description 14
- 125000000539 amino acid group Chemical group 0.000 description 14
- 238000003556 assay Methods 0.000 description 14
- 208000024659 Hemostatic disease Diseases 0.000 description 13
- 102100026120 IgG receptor FcRn large subunit p51 Human genes 0.000 description 13
- 102100036365 Proprotein convertase subtilisin/kexin type 5 Human genes 0.000 description 13
- 102000004338 Transferrin Human genes 0.000 description 13
- 108090000901 Transferrin Proteins 0.000 description 13
- 210000004602 germ cell Anatomy 0.000 description 13
- 229920000642 polymer Polymers 0.000 description 13
- 239000012581 transferrin Substances 0.000 description 13
- 102000004190 Enzymes Human genes 0.000 description 12
- 108090000790 Enzymes Proteins 0.000 description 12
- 108010049003 Fibrinogen Proteins 0.000 description 12
- 102000008946 Fibrinogen Human genes 0.000 description 12
- 101710177940 IgG receptor FcRn large subunit p51 Proteins 0.000 description 12
- 102000035195 Peptidases Human genes 0.000 description 12
- 108091005804 Peptidases Proteins 0.000 description 12
- 229940088598 enzyme Drugs 0.000 description 12
- 229940012952 fibrinogen Drugs 0.000 description 12
- 230000003834 intracellular effect Effects 0.000 description 12
- 229940124597 therapeutic agent Drugs 0.000 description 12
- 230000001225 therapeutic effect Effects 0.000 description 12
- 108060003951 Immunoglobulin Proteins 0.000 description 11
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 11
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 11
- 108010020950 Integrin beta3 Proteins 0.000 description 11
- 102000008607 Integrin beta3 Human genes 0.000 description 11
- 108010022052 Proprotein Convertase 5 Proteins 0.000 description 11
- 239000004365 Protease Substances 0.000 description 11
- 230000015271 coagulation Effects 0.000 description 11
- 238000005345 coagulation Methods 0.000 description 11
- 108020001507 fusion proteins Proteins 0.000 description 11
- 102000037865 fusion proteins Human genes 0.000 description 11
- 102000018358 immunoglobulin Human genes 0.000 description 11
- 230000000069 prophylactic effect Effects 0.000 description 11
- 108010014173 Factor X Proteins 0.000 description 10
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 10
- 235000004279 alanine Nutrition 0.000 description 10
- 239000012071 phase Substances 0.000 description 10
- 208000012908 vascular hemostatic disease Diseases 0.000 description 10
- 241001465754 Metazoa Species 0.000 description 9
- 108010029485 Protein Isoforms Proteins 0.000 description 9
- 102000001708 Protein Isoforms Human genes 0.000 description 9
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 9
- 230000004913 activation Effects 0.000 description 9
- 230000001154 acute effect Effects 0.000 description 9
- 229940012426 factor x Drugs 0.000 description 9
- 235000019419 proteases Nutrition 0.000 description 9
- 239000011780 sodium chloride Substances 0.000 description 9
- 235000002639 sodium chloride Nutrition 0.000 description 9
- 208000031220 Hemophilia Diseases 0.000 description 8
- 101001098833 Homo sapiens Proprotein convertase subtilisin/kexin type 6 Proteins 0.000 description 8
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 8
- 102100038946 Proprotein convertase subtilisin/kexin type 6 Human genes 0.000 description 8
- 101710180647 Proprotein convertase subtilisin/kexin type 7 Proteins 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 238000012217 deletion Methods 0.000 description 8
- 230000037430 deletion Effects 0.000 description 8
- 238000000684 flow cytometry Methods 0.000 description 8
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 8
- 238000003780 insertion Methods 0.000 description 8
- 230000037431 insertion Effects 0.000 description 8
- 239000003446 ligand Substances 0.000 description 8
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 8
- 108091033319 polynucleotide Proteins 0.000 description 8
- 102000040430 polynucleotide Human genes 0.000 description 8
- 239000002157 polynucleotide Substances 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 239000003981 vehicle Substances 0.000 description 8
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 7
- 101001098872 Homo sapiens Proprotein convertase subtilisin/kexin type 7 Proteins 0.000 description 7
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 7
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 7
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 7
- 102000006437 Proprotein Convertases Human genes 0.000 description 7
- 108010044159 Proprotein Convertases Proteins 0.000 description 7
- 150000007513 acids Chemical class 0.000 description 7
- 238000012575 bio-layer interferometry Methods 0.000 description 7
- 230000021615 conjugation Effects 0.000 description 7
- 230000007812 deficiency Effects 0.000 description 7
- 230000029087 digestion Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 230000000670 limiting effect Effects 0.000 description 7
- 239000013612 plasmid Substances 0.000 description 7
- 239000003805 procoagulant Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000002560 therapeutic procedure Methods 0.000 description 7
- 210000001519 tissue Anatomy 0.000 description 7
- 241000894006 Bacteria Species 0.000 description 6
- 238000002965 ELISA Methods 0.000 description 6
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 6
- 239000004471 Glycine Substances 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 108090000190 Thrombin Proteins 0.000 description 6
- 230000009471 action Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 201000010099 disease Diseases 0.000 description 6
- 230000004927 fusion Effects 0.000 description 6
- 239000001963 growth medium Substances 0.000 description 6
- 210000004408 hybridoma Anatomy 0.000 description 6
- 238000010348 incorporation Methods 0.000 description 6
- 102000006495 integrins Human genes 0.000 description 6
- 108010044426 integrins Proteins 0.000 description 6
- 238000001990 intravenous administration Methods 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- 229940068953 recombinant fviia Drugs 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 6
- 238000001356 surgical procedure Methods 0.000 description 6
- 229960004072 thrombin Drugs 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 5
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 5
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 5
- 102100037732 Neuroendocrine convertase 2 Human genes 0.000 description 5
- 102100036371 Proprotein convertase subtilisin/kexin type 4 Human genes 0.000 description 5
- 230000001580 bacterial effect Effects 0.000 description 5
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 5
- 230000004071 biological effect Effects 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 210000004899 c-terminal region Anatomy 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 239000008121 dextrose Substances 0.000 description 5
- 238000002022 differential scanning fluorescence spectroscopy Methods 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 229930182817 methionine Natural products 0.000 description 5
- 150000003904 phospholipids Chemical class 0.000 description 5
- 238000003752 polymerase chain reaction Methods 0.000 description 5
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 230000002035 prolonged effect Effects 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 108010093297 tetrapeptide carbamate Proteins 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 102000014914 Carrier Proteins Human genes 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- 101001022148 Homo sapiens Furin Proteins 0.000 description 4
- 101001078143 Homo sapiens Integrin alpha-IIb Proteins 0.000 description 4
- 102000008100 Human Serum Albumin Human genes 0.000 description 4
- 108091006905 Human Serum Albumin Proteins 0.000 description 4
- 108010091135 Immunoglobulin Fc Fragments Proteins 0.000 description 4
- 102000018071 Immunoglobulin Fc Fragments Human genes 0.000 description 4
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 4
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 4
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 4
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 4
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 4
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 4
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 4
- 108090000526 Papain Proteins 0.000 description 4
- 102000012479 Serine Proteases Human genes 0.000 description 4
- 108010022999 Serine Proteases Proteins 0.000 description 4
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 4
- 239000004473 Threonine Substances 0.000 description 4
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 4
- 229940030225 antihemorrhagics Drugs 0.000 description 4
- 108091008324 binding proteins Proteins 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000023555 blood coagulation Effects 0.000 description 4
- 229910001424 calcium ion Inorganic materials 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 210000000170 cell membrane Anatomy 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000010494 dissociation reaction Methods 0.000 description 4
- 230000005593 dissociations Effects 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 238000004520 electroporation Methods 0.000 description 4
- 229930195712 glutamate Natural products 0.000 description 4
- 230000013595 glycosylation Effects 0.000 description 4
- 238000006206 glycosylation reaction Methods 0.000 description 4
- 239000002874 hemostatic agent Substances 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 230000005847 immunogenicity Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 150000002632 lipids Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 229940039716 prothrombin Drugs 0.000 description 4
- 238000003127 radioimmunoassay Methods 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 230000014616 translation Effects 0.000 description 4
- 229920000945 Amylopectin Polymers 0.000 description 3
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 3
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 3
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 3
- 241000701022 Cytomegalovirus Species 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 102000009123 Fibrin Human genes 0.000 description 3
- 108010073385 Fibrin Proteins 0.000 description 3
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 101001043564 Homo sapiens Prolow-density lipoprotein receptor-related protein 1 Proteins 0.000 description 3
- 108020004684 Internal Ribosome Entry Sites Proteins 0.000 description 3
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 3
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 3
- 125000000510 L-tryptophano group Chemical group [H]C1=C([H])C([H])=C2N([H])C([H])=C(C([H])([H])[C@@]([H])(C(O[H])=O)N([H])[*])C2=C1[H] 0.000 description 3
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 102100032132 Neuroendocrine convertase 1 Human genes 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 102000057297 Pepsin A Human genes 0.000 description 3
- 108090000284 Pepsin A Proteins 0.000 description 3
- 102100033237 Pro-epidermal growth factor Human genes 0.000 description 3
- 108090000545 Proprotein Convertase 2 Proteins 0.000 description 3
- 101710180646 Proprotein convertase subtilisin/kexin type 4 Proteins 0.000 description 3
- 108010094028 Prothrombin Proteins 0.000 description 3
- 102100027378 Prothrombin Human genes 0.000 description 3
- 229930003448 Vitamin K Natural products 0.000 description 3
- 208000037919 acquired disease Diseases 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000002983 circular dichroism Methods 0.000 description 3
- 230000009852 coagulant defect Effects 0.000 description 3
- 230000001268 conjugating effect Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 230000006240 deamidation Effects 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 229950003499 fibrin Drugs 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 229940084986 human chorionic gonadotropin Drugs 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 210000005229 liver cell Anatomy 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000002703 mutagenesis Methods 0.000 description 3
- 231100000350 mutagenesis Toxicity 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- SHUZOJHMOBOZST-UHFFFAOYSA-N phylloquinone Natural products CC(C)CCCCC(C)CCC(C)CCCC(=CCC1=C(C)C(=O)c2ccccc2C1=O)C SHUZOJHMOBOZST-UHFFFAOYSA-N 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 3
- 229940126586 small molecule drug Drugs 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000011285 therapeutic regimen Methods 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 235000019168 vitamin K Nutrition 0.000 description 3
- 239000011712 vitamin K Substances 0.000 description 3
- 150000003721 vitamin K derivatives Chemical class 0.000 description 3
- 229940046010 vitamin k Drugs 0.000 description 3
- 229940075601 voluven Drugs 0.000 description 3
- 108010047303 von Willebrand Factor Proteins 0.000 description 3
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- IYMAXBFPHPZYIK-BQBZGAKWSA-N Arg-Gly-Asp Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O IYMAXBFPHPZYIK-BQBZGAKWSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 102000002110 C2 domains Human genes 0.000 description 2
- 108050009459 C2 domains Proteins 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 108010009900 Endothelial Protein C Receptor Proteins 0.000 description 2
- 102000009839 Endothelial Protein C Receptor Human genes 0.000 description 2
- 108010071241 Factor XIIa Proteins 0.000 description 2
- 108010080805 Factor XIa Proteins 0.000 description 2
- 108010074860 Factor Xa Proteins 0.000 description 2
- 108010087819 Fc receptors Proteins 0.000 description 2
- 102000009109 Fc receptors Human genes 0.000 description 2
- 108010088842 Fibrinolysin Proteins 0.000 description 2
- 102000005720 Glutathione transferase Human genes 0.000 description 2
- 108010070675 Glutathione transferase Proteins 0.000 description 2
- 101001015004 Homo sapiens Integrin beta-3 Proteins 0.000 description 2
- 101001128694 Homo sapiens Neuroendocrine convertase 1 Proteins 0.000 description 2
- 101000601394 Homo sapiens Neuroendocrine convertase 2 Proteins 0.000 description 2
- 101000896414 Homo sapiens Nuclear nucleic acid-binding protein C1D Proteins 0.000 description 2
- 101001072067 Homo sapiens Proprotein convertase subtilisin/kexin type 4 Proteins 0.000 description 2
- 101001072081 Homo sapiens Proprotein convertase subtilisin/kexin type 5 Proteins 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- 108010001831 LDL receptors Proteins 0.000 description 2
- 102000000853 LDL receptors Human genes 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 241000588650 Neisseria meningitidis Species 0.000 description 2
- 102100021852 Neuronal cell adhesion molecule Human genes 0.000 description 2
- 101710130688 Neuronal cell adhesion molecule Proteins 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 102100021923 Prolow-density lipoprotein receptor-related protein 1 Human genes 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- 108700011201 Streptococcus IgG Fc-binding Proteins 0.000 description 2
- 238000000692 Student's t-test Methods 0.000 description 2
- 102000007238 Transferrin Receptors Human genes 0.000 description 2
- 108010033576 Transferrin Receptors Proteins 0.000 description 2
- 108700019146 Transgenes Proteins 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 102100039066 Very low-density lipoprotein receptor Human genes 0.000 description 2
- 101710177612 Very low-density lipoprotein receptor Proteins 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 208000027276 Von Willebrand disease Diseases 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 230000009824 affinity maturation Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000003124 biologic agent Substances 0.000 description 2
- 230000008827 biological function Effects 0.000 description 2
- 229960000182 blood factors Drugs 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 230000021523 carboxylation Effects 0.000 description 2
- 238000006473 carboxylation reaction Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 239000007979 citrate buffer Substances 0.000 description 2
- 230000004540 complement-dependent cytotoxicity Effects 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000000113 differential scanning calorimetry Methods 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 125000003827 glycol group Chemical group 0.000 description 2
- 230000023597 hemostasis Effects 0.000 description 2
- 230000002439 hemostatic effect Effects 0.000 description 2
- 239000000833 heterodimer Substances 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000000099 in vitro assay Methods 0.000 description 2
- 238000001361 intraarterial administration Methods 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 238000011813 knockout mouse model Methods 0.000 description 2
- 239000000787 lecithin Substances 0.000 description 2
- 229940067606 lecithin Drugs 0.000 description 2
- 235000010445 lecithin Nutrition 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 150000004668 long chain fatty acids Chemical class 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000002887 multiple sequence alignment Methods 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 229940055729 papain Drugs 0.000 description 2
- 235000019834 papain Nutrition 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 229940111202 pepsin Drugs 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 230000004962 physiological condition Effects 0.000 description 2
- 229940012957 plasmin Drugs 0.000 description 2
- 230000010118 platelet activation Effects 0.000 description 2
- 210000004623 platelet-rich plasma Anatomy 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 230000001323 posttranslational effect Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 235000019833 protease Nutrition 0.000 description 2
- 238000000159 protein binding assay Methods 0.000 description 2
- 230000006337 proteolytic cleavage Effects 0.000 description 2
- 238000010188 recombinant method Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- 208000037921 secondary disease Diseases 0.000 description 2
- 238000002864 sequence alignment Methods 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 238000001542 size-exclusion chromatography Methods 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 235000010356 sorbitol Nutrition 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000013268 sustained release Methods 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- 238000012353 t test Methods 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- 208000012137 von Willebrand disease (hereditary or acquired) Diseases 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 1
- 102100033400 4F2 cell-surface antigen heavy chain Human genes 0.000 description 1
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 101800001401 Activation peptide Proteins 0.000 description 1
- 102400000069 Activation peptide Human genes 0.000 description 1
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 1
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 1
- 235000019489 Almond oil Nutrition 0.000 description 1
- 108010032595 Antibody Binding Sites Proteins 0.000 description 1
- 108091023037 Aptamer Proteins 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 241001112741 Bacillaceae Species 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000701822 Bovine papillomavirus Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 101710082751 Carboxypeptidase S1 homolog A Proteins 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 108090000317 Chymotrypsin Proteins 0.000 description 1
- 229940122295 Clotting factor inhibitor Drugs 0.000 description 1
- 108050006018 Coagulation factor VII Proteins 0.000 description 1
- 102000000989 Complement System Proteins Human genes 0.000 description 1
- 108010069112 Complement System Proteins Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- GUBGYTABKSRVRQ-WFVLMXAXSA-N DEAE-cellulose Chemical compound OC1C(O)C(O)C(CO)O[C@H]1O[C@@H]1C(CO)OC(O)C(O)C1O GUBGYTABKSRVRQ-WFVLMXAXSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 241000588921 Enterobacteriaceae Species 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 108010029144 Factor IIa Proteins 0.000 description 1
- 108010048049 Factor IXa Proteins 0.000 description 1
- 108010014172 Factor V Proteins 0.000 description 1
- 201000007176 Factor XII Deficiency Diseases 0.000 description 1
- 108010071289 Factor XIII Proteins 0.000 description 1
- 108010008177 Fd immunoglobulins Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- BCCRXDTUTZHDEU-VKHMYHEASA-N Gly-Ser Chemical compound NCC(=O)N[C@@H](CO)C(O)=O BCCRXDTUTZHDEU-VKHMYHEASA-N 0.000 description 1
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 206010059484 Haemodilution Diseases 0.000 description 1
- 241000606768 Haemophilus influenzae Species 0.000 description 1
- 102100021519 Hemoglobin subunit beta Human genes 0.000 description 1
- 108091005904 Hemoglobin subunit beta Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000800023 Homo sapiens 4F2 cell-surface antigen heavy chain Proteins 0.000 description 1
- 101000766306 Homo sapiens Serotransferrin Proteins 0.000 description 1
- 101000635804 Homo sapiens Tissue factor Proteins 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-O Htris Chemical compound OCC([NH3+])(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-O 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- 206010021137 Hypovolaemia Diseases 0.000 description 1
- 108010073807 IgG Receptors Proteins 0.000 description 1
- 102100032999 Integrin beta-3 Human genes 0.000 description 1
- 102000001399 Kallikrein Human genes 0.000 description 1
- 108060005987 Kallikrein Proteins 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- 125000000998 L-alanino group Chemical group [H]N([*])[C@](C([H])([H])[H])([H])C(=O)O[H] 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 1
- 125000000010 L-asparaginyl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])C(=O)N([H])[H] 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- 125000000393 L-methionino group Chemical group [H]OC(=O)[C@@]([H])(N([H])[*])C([H])([H])C(SC([H])([H])[H])([H])[H] 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 108010058141 LDL-Receptor Related Proteins Proteins 0.000 description 1
- 102000006259 LDL-Receptor Related Proteins Human genes 0.000 description 1
- 208000034693 Laceration Diseases 0.000 description 1
- 102000008192 Lactoglobulins Human genes 0.000 description 1
- 108010060630 Lactoglobulins Proteins 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 108010015372 Low Density Lipoprotein Receptor-Related Protein-2 Proteins 0.000 description 1
- 102100029185 Low affinity immunoglobulin gamma Fc region receptor III-B Human genes 0.000 description 1
- 102100021922 Low-density lipoprotein receptor-related protein 2 Human genes 0.000 description 1
- 241000282567 Macaca fascicularis Species 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 241000713333 Mouse mammary tumor virus Species 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 102000005348 Neuraminidase Human genes 0.000 description 1
- 108010006232 Neuraminidase Proteins 0.000 description 1
- 101710151472 Neuroendocrine convertase 1 Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 101000882917 Penaeus paulensis Hemolymph clottable protein Proteins 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 241000235648 Pichia Species 0.000 description 1
- 108010022425 Platelet Glycoprotein GPIIb-IIIa Complex Proteins 0.000 description 1
- 241001505332 Polyomavirus sp. Species 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 108010076181 Proinsulin Proteins 0.000 description 1
- 101800004937 Protein C Proteins 0.000 description 1
- 102000017975 Protein C Human genes 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 101800001700 Saposin-D Proteins 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 101100383370 Squalus acanthias CFTR gene Proteins 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 108090000787 Subtilisin Proteins 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 101150006914 TRP1 gene Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 241000011102 Thera Species 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 101800001690 Transmembrane protein gp41 Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 108091005605 Vitamin K-dependent proteins Proteins 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000009056 active transport Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 239000008168 almond oil Substances 0.000 description 1
- 102000004139 alpha-Amylases Human genes 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 229940024171 alpha-amylase Drugs 0.000 description 1
- 229920005603 alternating copolymer Polymers 0.000 description 1
- 229960002684 aminocaproic acid Drugs 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000002266 amputation Methods 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 238000001286 analytical centrifugation Methods 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000000181 anti-adherent effect Effects 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000001567 anti-fibrinolytic effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940082620 antifibrinolytics Drugs 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 108010072041 arginyl-glycyl-aspartic acid Proteins 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 238000002820 assay format Methods 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 230000002051 biphasic effect Effects 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 108010006025 bovine growth hormone Proteins 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- BPKIGYQJPYCAOW-FFJTTWKXSA-I calcium;potassium;disodium;(2s)-2-hydroxypropanoate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].C[C@H](O)C([O-])=O BPKIGYQJPYCAOW-FFJTTWKXSA-I 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005251 capillar electrophoresis Methods 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 108020001778 catalytic domains Proteins 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 238000011210 chromatographic step Methods 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 229960002376 chymotrypsin Drugs 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 229940105772 coagulation factor vii Drugs 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000007748 combinatorial effect Effects 0.000 description 1
- 230000004154 complement system Effects 0.000 description 1
- 239000003636 conditioned culture medium Substances 0.000 description 1
- 208000011664 congenital factor XI deficiency Diseases 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- HRLIOXLXPOHXTA-NSHDSACASA-N dexmedetomidine Chemical compound C1([C@@H](C)C=2C(=C(C)C=CC=2)C)=CN=C[N]1 HRLIOXLXPOHXTA-NSHDSACASA-N 0.000 description 1
- 229960004253 dexmedetomidine Drugs 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 125000002228 disulfide group Chemical group 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 239000006274 endogenous ligand Substances 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940095399 enema Drugs 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000006277 exogenous ligand Substances 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 230000006624 extrinsic pathway Effects 0.000 description 1
- 108010092367 factor VII clotting antigen Proteins 0.000 description 1
- 201000007219 factor XI deficiency Diseases 0.000 description 1
- 229940012444 factor xiii Drugs 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 230000008175 fetal development Effects 0.000 description 1
- 239000003527 fibrinolytic agent Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 230000006251 gamma-carboxylation Effects 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 230000004545 gene duplication Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000002518 glial effect Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000002303 glucose derivatives Chemical class 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 125000000404 glutamine group Chemical group N[C@@H](CCC(N)=O)C(=O)* 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 229940047650 haemophilus influenzae Drugs 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 210000002767 hepatic artery Anatomy 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 102000053437 human LRP1 Human genes 0.000 description 1
- 102000054226 human PCSK7 Human genes 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 239000012642 immune effector Substances 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 210000003000 inclusion body Anatomy 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 230000006623 intrinsic pathway Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 210000005075 mammary gland Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 108010068617 neonatal Fc receptor Proteins 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 239000002687 nonaqueous vehicle Substances 0.000 description 1
- 239000000346 nonvolatile oil Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229920000765 poly(2-oxazolines) Polymers 0.000 description 1
- 229920001584 poly(acrylomorpholines) Polymers 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229950008882 polysorbate Drugs 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 230000002947 procoagulating effect Effects 0.000 description 1
- 125000001500 prolyl group Chemical group [H]N1C([H])(C(=O)[*])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical class CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 1
- 229960000856 protein c Drugs 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- XNSAINXGIQZQOO-SRVKXCTJSA-N protirelin Chemical compound NC(=O)[C@@H]1CCCN1C(=O)[C@@H](NC(=O)[C@H]1NC(=O)CC1)CC1=CN=CN1 XNSAINXGIQZQOO-SRVKXCTJSA-N 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 238000009256 replacement therapy Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 1
- 125000005629 sialic acid group Chemical group 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000011476 stem cell transplantation Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000004960 subcellular localization Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000002511 suppository base Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 206010043554 thrombocytopenia Diseases 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- GYDJEQRTZSCIOI-LJGSYFOKSA-N tranexamic acid Chemical compound NC[C@H]1CC[C@H](C(O)=O)CC1 GYDJEQRTZSCIOI-LJGSYFOKSA-N 0.000 description 1
- 229960000401 tranexamic acid Drugs 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 125000000430 tryptophan group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C2=C([H])C([H])=C([H])C([H])=C12 0.000 description 1
- 108010087967 type I signal peptidase Proteins 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000009777 vacuum freeze-drying Methods 0.000 description 1
- 230000003966 vascular damage Effects 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 238000013389 whole blood assay Methods 0.000 description 1
- 238000002424 x-ray crystallography Methods 0.000 description 1
- 238000002689 xenotransplantation Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2839—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the integrin superfamily
- C07K16/2848—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the integrin superfamily against integrin beta3-subunit-containing molecules, e.g. CD41, CD51, CD61
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/64—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
- C12N9/6421—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
- C12N9/6424—Serine endopeptidases (3.4.21)
- C12N9/6437—Coagulation factor VIIa (3.4.21.21)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y304/00—Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
- C12Y304/21—Serine endopeptidases (3.4.21)
- C12Y304/21021—Coagulation factor VIIa (3.4.21.21)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56966—Animal cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/55—Fab or Fab'
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/565—Complementarity determining region [CDR]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/567—Framework region [FR]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/94—Stability, e.g. half-life, pH, temperature or enzyme-resistance
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/30—Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/31—Fusion polypeptide fusions, other than Fc, for prolonged plasma life, e.g. albumin
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/33—Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/70—Fusion polypeptide containing domain for protein-protein interaction
- C07K2319/74—Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/705—Assays involving receptors, cell surface antigens or cell surface determinants
- G01N2333/70546—Integrin superfamily, e.g. VLAs, leuCAM, GPIIb/GPIIIa, LPAM
- G01N2333/70557—Integrin beta3-subunit-containing molecules, e.g. CD41, CD51, CD61
Definitions
- Clotting factors have been administered to patients to improve hemostasis for some time.
- the advent of recombinant DNA technology has significantly improved treatment for patients with clotting disorders, allowing for the development of safe and consistent protein therapeutics.
- recombinant activated factor VII has become widely used for the treatment of major bleeding, such as that which occurs in patients having hemophilia A or B, deficiency of coagulation Factors XI or VII, defective platelet function, thrombocytopenia, or von Willebrand's disease.
- Treatment of hemophilia by replacement therapy is targeting restoration of clotting activity.
- Strategies to extend the half-life of clotting factors include pegylation (Rostin J, et al., Bioconj. Chem., 2000; 11:387-96), glycopegylation (Stennicke H R, et al., Thromb.
- Recombinant FVIIa (rFVIIa; Jurlander B et al., Semin. Thromb. Hemost., 2001; 27(4):373-84) is used to treat bleeding episodes in (i) hemophilia patients with neutralizing antibodies against FVIII or FIX (inhibitors), (ii) patients with FVII deficiency, or (iii) patients with hemophilia A or B with inhibitors undergoing surgical procedures.
- Prior recombinant rFVIIa preparations sometimes display poor efficacy. Repeated doses of FVIIa at high concentration are often required to control a bleed, due to its low affinity for activated platelets, short half-life, and poor enzymatic activity in the absence of tissue factor. Accordingly, there is an unmet medical need for better treatment and prevention options for patients with coagulation disorders (e.g., hemophilia patients with inhibitors in which the activity of the FVIIa protein is increased).
- the present disclosure features antibodies and antigen-binding fragments thereof that bind to GPIIb/IIIa. These antibodies can specifically bind the GPIIb subunit and/or the GPIIb/IIIa complex. They are capable of targeting the non-active form of the GPIIb/IIIa receptor.
- the anti-GPIIb/IIIa antibodies and antigen-binding fragments thereof described herein can be used, for example, to target or ferry any agent of interest (e.g., a therapeutic molecule such as a clotting factor) to platelets.
- the clotting factor FVIIa has low affinity for platelets, the site of action for clot formation.
- one approach to increase activity of a clotting factor like FVIIa is to target this clotting factor to platelet receptors via targeting moieties (e.g., Fab or scFv of an anti-GPIIb/IIIa antibody), which can increase the affinity of FVIIa for platelets thereby boosting activity.
- targeting moieties e.g., Fab or scFv of an anti-GPIIb/IIIa antibody
- Such chimeric molecules can include a heterologous moiety to improve the pharmacokinetic parameters of the molecules such as its half-life.
- the anti-GPIIb/IIIa antibodies and antigen-binding fragments thereof of this disclosure can be used as diagnostics, for example, by conjugation to a detectable label, and also for isolating or separating platelets from a sample.
- this disclosure provides an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region that is at least 75% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218.
- the heavy chain variable region is at least 76% identical, at least 77% identical, at least 78% identical, at least 79% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218.
- these antibodies have an apparent monovalent affinity that is improved over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7. In some embodiments, these antibodies have an apparent monovalent affinity that is about 1 to 5 ⁇ 10 ⁇ 8 M (e.g., 1 ⁇ 10 ⁇ 8 M; 1.5 ⁇ 10 ⁇ 8 M; 2 ⁇ 10 ⁇ 8 M; 2.5 ⁇ 10 ⁇ 8 M; 3 ⁇ 10 ⁇ 8 M; 3.5 ⁇ 10 ⁇ 8 M; 4 ⁇ 10 ⁇ 8 M; 4.5 ⁇ 10 ⁇ 8 M; 5 ⁇ 10 ⁇ 8 M). In certain embodiments, these antibodies have an improved off-rate over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- this disclosure provides an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a light chain variable region that is at least 75% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 4, 6, 8, or 10.
- the light chain variable region is at least 76% identical, at least 77% identical, at least 78% identical, at least 79% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 4, 6, 8, or 10.
- this disclosure provides an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region that is at least 75% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218, and a light chain variable region that is at least 75% identical to the amino acid sequence set forth in any one of SEQ ID NOs:4, 6, 8, or 10.
- GPIIb/IIIa glycoprotein IIb/IIIa
- the heavy chain variable region is at least 76% identical, at least 77% identical, at least 78% identical, at least 79% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218
- the light chain variable region is at least 76% identical, at least 77% identical, at least 78% identical, at least 79% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical
- the heavy chain variable region is at least 80% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218 and the light chain variable region is at least 80% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 4, 6, 8, or 10. In certain embodiments, the heavy chain variable region is at least 85% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218 and the light chain variable region is at least 85% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 4, 6, 8, or 10.
- the heavy chain variable region is at least 90% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218 and the light chain variable region is at least 90% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 4, 6, 8, or 10.
- the heavy chain variable region is at least 95% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218 and the light chain variable region is at least 95% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 4, 6, 8, or 10.
- the heavy chain variable region is at least 97% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218 and the light chain variable region is at least 97% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 4, 6, 8, or 10.
- the heavy chain variable region is identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218 and the light chain variable region is identical to the amino acid sequence set forth in any one of SEQ ID NOs: 4, 6, 8, or 10.
- the heavy chain variable region is identical to the amino acid sequence set forth in SEQ ID NO: 7 and the light chain variable region is identical to the amino acid sequence set forth in SEQ ID NO:4.
- the heavy chain variable region is identical to the amino acid sequence set forth in SEQ ID NO: 12 and the light chain variable region is identical to the amino acid sequence set forth in SEQ ID NO:8.
- the heavy chain variable region is identical to the amino acid sequence set forth in SEQ ID NO:11 and the light chain variable region is identical to the amino acid sequence set forth in SEQ ID NO:10.
- these antibodies have an apparent monovalent affinity that is improved over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- these antibodies have an apparent monovalent affinity that is about 1 to 5 ⁇ 10 ⁇ 8 M (e.g., 1 ⁇ 10 ⁇ 8 M; 1.5 ⁇ 10 ⁇ 8 M; 2 ⁇ 10 ⁇ 8 M; 2.5 ⁇ 10 ⁇ 8 M; 3 ⁇ 10 ⁇ 8 M; 3.5 ⁇ 10 ⁇ 8 M; 4 ⁇ 10 ⁇ 8 M; 4.5 ⁇ 10 ⁇ 8 M; 5 ⁇ 10 ⁇ 8 M).
- these antibodies have an improved off-rate over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- the disclosure features an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region that is at least 75% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 5, 7, 9, 11, 12, or 197-218, and a light chain variable region that is at least 75% identical to the amino acid sequence set forth in SEQ ID NO:4.
- the heavy chain variable region that is at least 80% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 5, 7, 9, 11, 12, or 197-218, and the light chain variable region is at least 80% identical to the amino acid sequence set forth in SEQ ID NO:4.
- the heavy chain variable region that is at least 85% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 5, 7, 9, 11, 12, or 197-218, and the light chain variable region is at least 85% identical to the amino acid sequence set forth in SEQ ID NO:4.
- the heavy chain variable region that is at least 90% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 5, 7, 9, 11, 12, or 197-218, and the light chain variable region is at least 90% identical to the amino acid sequence set forth in SEQ ID NO:4.
- the heavy chain variable region that is at least 95% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 5, 7, 9, 11, 12, or 197-218, and the light chain variable region is at least 95% identical to the amino acid sequence set forth in SEQ ID NO:4.
- the heavy chain variable region that is at least 97% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 5, 7, 9, 11, 12, or 197-218, and the light chain variable region is at least 97% identical to the amino acid sequence set forth in SEQ ID NO:4.
- the heavy chain variable region that is identical to the amino acid sequence set forth in any one of SEQ ID NOs: 5, 7, 9, 11, 12, or 197-218, and the light chain variable region is identical to the amino acid sequence set forth in SEQ ID NO:4.
- these antibodies have an apparent monovalent affinity that is improved over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- these antibodies have an apparent monovalent affinity that is about 1 to 5 ⁇ 10 ⁇ 8 M (e.g., 1 ⁇ 10 ⁇ 8 M; 1.5 ⁇ 10 ⁇ 8 M; 2 ⁇ 10 ⁇ 8 M; 2.5 ⁇ 10 ⁇ 8 M; 3 ⁇ 10 ⁇ 8 M; 3.5 ⁇ 10 ⁇ 8 M; 4 ⁇ 10 ⁇ 8 M; 4.5 ⁇ 10 ⁇ 8 M; 5 ⁇ 10 ⁇ 8 M).
- these antibodies have an improved off-rate over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- the disclosure features an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region that is at least 75% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218, and a light chain variable region that is at least 75% identical to the amino acid sequence set forth in SEQ ID NO:10.
- the heavy chain variable region that is at least 80% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218, and the light chain variable region is at least 80% identical to the amino acid sequence set forth in SEQ ID NO:10.
- the heavy chain variable region that is at least 85% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218, and the light chain variable region is at least 85% identical to the amino acid sequence set forth in SEQ ID NO:10.
- the heavy chain variable region that is at least 90% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218, and the light chain variable region is at least 90% identical to the amino acid sequence set forth in SEQ ID NO:10.
- the heavy chain variable region that is at least 95% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218, and the light chain variable region is at least 95% identical to the amino acid sequence set forth in SEQ ID NO:10.
- the heavy chain variable region that is at least 97% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218, and the light chain variable region is at least 97% identical to the amino acid sequence set forth in SEQ ID NO:10.
- the heavy chain variable region that is identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218, and the light chain variable region is identical to the amino acid sequence set forth in SEQ ID NO:10.
- these antibodies have an apparent monovalent affinity that is improved over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- these antibodies have an apparent monovalent affinity that is about 1 to 5 ⁇ 10 ⁇ 8 M (e.g., 1 ⁇ 10 ⁇ 8 M; 1.5 ⁇ 10 ⁇ 8 M; 2 ⁇ 10 ⁇ 8 M; 2.5 ⁇ 10 ⁇ 8 M; 3 ⁇ 10 ⁇ 8 M; 3.5 ⁇ 10 ⁇ 8 M; 4 ⁇ 10 ⁇ 8 M; 4.5 ⁇ 10 ⁇ 8 M; 5 ⁇ 10 ⁇ 8 M).
- these antibodies have an improved off-rate over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- the disclosure relates to an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region that is identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218, except for a total of 1 to 10 (i.e., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) amino acid substitutions, deletions, or insertions.
- these antibodies have an apparent monovalent affinity that is improved over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- these antibodies have an apparent monovalent affinity that is about 1 to 5 ⁇ 10 ⁇ 8 M (e.g., 1 ⁇ 10 ⁇ 8 M; 1.5 ⁇ 10 ⁇ 8 M; 2 ⁇ 10 ⁇ 8 M; 2.5 ⁇ 10 ⁇ 8 M; 3 ⁇ 10 ⁇ 8 M; 3.5 ⁇ 10 ⁇ 8 M; 4 ⁇ 10 ⁇ 8 M; 4.5 ⁇ 10 ⁇ 8 M; 5 ⁇ 10 ⁇ 8 M).
- these antibodies have an improved off-rate over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- the disclosure provides an antibody antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a light chain variable region that is identical to the amino acid sequence set forth in any one of SEQ ID NOs: 4, 6, 8, or 10, except for a total of 1 to 10 (i.e., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) amino acid substitutions, deletions, or insertions.
- these antibodies have an apparent monovalent affinity that is improved over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- these antibodies have an apparent monovalent affinity that is about 1 to 5 ⁇ 10 ⁇ 8 M (e.g., 1 ⁇ 10 ⁇ 8 M; 1.5 ⁇ 10 ⁇ 8 M; 2 ⁇ 10 ⁇ 8 M; 2.5 ⁇ 10 ⁇ 8 M; 3 ⁇ 10 ⁇ 8 M; 3.5 ⁇ 10 ⁇ 8 M; 4 ⁇ 10 ⁇ 8 M; 4.5 ⁇ 10 ⁇ 8 M; 5 ⁇ 10 ⁇ 8 M).
- these antibodies have an improved off-rate over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- the disclosure relates to an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises (i) a heavy chain variable region that is identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218, except for a total of 1 to 10 amino acid substitutions, deletions, or insertions; and (ii) a light chain variable region that is identical to the amino acid sequence set forth in any one of SEQ ID NOs: 4, 6, 8, or 10, except for a total of 1 to 10 amino acid substitutions, deletions, or insertions.
- a heavy chain variable region that is identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218, except for a total of 1 to 10 amino acid substitutions, deletions, or insertions
- a light chain variable region that is identical to the amino acid sequence set forth in any one of S
- these antibodies have an apparent monovalent affinity that is improved over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7. In some embodiments, these antibodies have an apparent monovalent affinity that is about 1 to 5 ⁇ 10 ⁇ 8 M (e.g., 1 ⁇ 10 ⁇ 8 M; 1.5 ⁇ 10 ⁇ 8 M; 2 ⁇ 10 ⁇ 8 M; 2.5 ⁇ 10 ⁇ 8 M; 3 ⁇ 10 ⁇ 8 M; 3.5 ⁇ 10 ⁇ 8 M; 4 ⁇ 10 ⁇ 8 M; 4.5 ⁇ 10 ⁇ 8 M; 5 ⁇ 10 ⁇ 8 M). In certain embodiments, these antibodies have an improved off-rate over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTYYPDSVKR (SEQ ID NO:26), and GGDYGYALDY (SEQ ID NO:27), respectively.
- CDR complementarity determining region
- AYAMS SEQ ID NO:25
- SISSGGTTYYPDSVKR SEQ ID NO:26
- GGDYGYALDY SEQ ID NO:27
- the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTYYPDSVKR (SEQ ID NO:26), and GGDYSYALDY (SEQ ID NO:245), respectively.
- these antibodies have an apparent monovalent affinity that is improved over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- these antibodies have an apparent monovalent affinity that is about 1 to 5 ⁇ 10 ⁇ 8 M (e.g., 1 ⁇ 10 ⁇ 8 M; 1.5 ⁇ 10 ⁇ 8 M; 2 ⁇ 10 ⁇ 8 M; 2.5 ⁇ 10 ⁇ 8 M; 3 ⁇ 10 ⁇ 8 M; 3.5 ⁇ 10 ⁇ 8 M; 4 ⁇ 10 ⁇ 8 M; 4.5 ⁇ 10 ⁇ 8 M; 5 ⁇ 10 ⁇ 8 M).
- these antibodies have an improved off-rate over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTYYPDSVER (SEQ ID NO:241), and GGDYSYALDY (SEQ ID NO:245), respectively.
- these antibodies have an apparent monovalent affinity that is improved over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- these antibodies have an apparent monovalent affinity that is about 1 to 5 ⁇ 10 ⁇ 8 M (e.g., 1 ⁇ 10 ⁇ 8 M; 1.5 ⁇ 10 ⁇ 8 M; 2 ⁇ 10 ⁇ 8 M; 2.5 ⁇ 10 ⁇ 8 M; 3 ⁇ 10 ⁇ 8 M; 3.5 ⁇ 10 ⁇ 8 M; 4 ⁇ 10 ⁇ 8 M; 4.5 ⁇ 10 ⁇ 8 M; 5 ⁇ 10 ⁇ 8 M).
- these antibodies have an improved off-rate over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSDGTTYYPDSVKR (SEQ ID NO:242), and GGDYSYALDY (SEQ ID NO:245), respectively.
- these antibodies have an apparent monovalent affinity that is improved over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- these antibodies have an apparent monovalent affinity that is about 1 to 5 ⁇ 10 ⁇ 8 M (e.g., 1 ⁇ 10 ⁇ 8 M; 1.5 ⁇ 10 ⁇ 8 M; 2 ⁇ 10 ⁇ 8 M; 2.5 ⁇ 10 ⁇ 8 M; 3 ⁇ 10 ⁇ 8 M; 3.5 ⁇ 10 ⁇ 8 M; 4 ⁇ 10 ⁇ 8 M; 4.5 ⁇ 10 ⁇ 8 M; 5 ⁇ 10 ⁇ 8 M).
- these antibodies have an improved off-rate over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTDYPDSVKR (SEQ ID NO:243), and GGDYGYALDY (SEQ ID NO:27), respectively.
- these antibodies have an apparent monovalent affinity that is improved over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- these antibodies have an apparent monovalent affinity that is about 1 to 5 ⁇ 10 ⁇ 8 M (e.g., 1 ⁇ 10 ⁇ 8 M; 1.5 ⁇ 10 ⁇ 8 M; 2 ⁇ 10 ⁇ 8 M; 2.5 ⁇ 10 ⁇ 8 M; 3 ⁇ 10 ⁇ 8 M; 3.5 ⁇ 10 ⁇ 8 M; 4 ⁇ 10 ⁇ 8 M; 4.5 ⁇ 10 ⁇ 8 M; 5 ⁇ 10 ⁇ 8 M).
- these antibodies have an improved off-rate over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), GISSGGTTYYPDSVKR (SEQ ID NO:244), and GGDYGYALDY (SEQ ID NO:27), respectively.
- these antibodies have an apparent monovalent affinity that is improved over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- these antibodies have an apparent monovalent affinity that is about 1 to 5 ⁇ 10 ⁇ 8 M (e.g., 1 ⁇ 10 ⁇ 8 M; 1.5 ⁇ 10 ⁇ 8 M; 2 ⁇ 10 ⁇ 8 M; 2.5 ⁇ 10 ⁇ 8 M; 3 ⁇ 10 ⁇ 8 M; 3.5 ⁇ 10 ⁇ 8 M; 4 ⁇ 10 ⁇ 8 M; 4.5 ⁇ 10 ⁇ 8 M; 5 ⁇ 10 ⁇ 8 M).
- these antibodies have an improved off-rate over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- the antibody or the antigen-binding fragment thereof comprises a light chain variable region comprising CDR1, CDR2, and CDR3, consisting of the amino acid sequences RASSSVNYMY (SEQ ID NO:28), YTSNLAP (SEQ ID NO:29), and QQFSSSPWT (SEQ ID NO:30), respectively.
- these antibodies have an apparent monovalent affinity that is improved over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- these antibodies have an apparent monovalent affinity that is about 1 to 5 ⁇ 10 ⁇ 8 M (e.g., 1 ⁇ 10 ⁇ 8 M; 1.5 ⁇ 10 ⁇ 8 M; 2 ⁇ 10 ⁇ 8 M; 2.5 ⁇ 10 ⁇ 8 M; 3 ⁇ 10 ⁇ 8 M; 3.5 ⁇ 10 ⁇ 8 M; 4 ⁇ 10 ⁇ 8 M; 4.5 ⁇ 10 ⁇ 8 M; 5 ⁇ 10 ⁇ 8 M).
- these antibodies have an improved off-rate over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- the antibody or the antigen-binding fragment thereof comprises (i) a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTYYPDSVKR (SEQ ID NO:26), and GGDYGYALDY (SEQ ID NO:27), respectively; and (ii) a light chain variable region comprising CDR1, CDR2, and CDR3, consisting of the amino acid sequences RASSSVNYMY (SEQ ID NO:28), YTSNLAP (SEQ ID NO:29), and QQFSSSPWT (SEQ ID NO:30), respectively.
- CDR complementarity determining region
- the antibody or the antigen-binding fragment thereof comprises (i) a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTYYPDSVKR (SEQ ID NO:26), and GGDYSYALDY (SEQ ID NO:245), respectively; and (ii) a light chain variable region comprising CDR1, CDR2, and CDR3, consisting of the amino acid sequences RASSSVNYMY (SEQ ID NO:28), YTSNLAP (SEQ ID NO:29), and QQFSSSPWT (SEQ ID NO:30), respectively.
- CDR complementarity determining region
- the antibody or the antigen-binding fragment thereof comprises (i) a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTYYPDSVER (SEQ ID NO:241), and GGDYSYALDY (SEQ ID NO:245), respectively; and (ii) a light chain variable region comprising CDR1, CDR2, and CDR3, consisting of the amino acid sequences RASSSVNYMY (SEQ ID NO:28), YTSNLAP (SEQ ID NO:29), and QQFSSSPWT (SEQ ID NO:30), respectively.
- CDR complementarity determining region
- CDR2 complementarity determining region
- CDR3 consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTYYPDSVER (SEQ ID NO:241), and GGDYSYALDY (SEQ ID NO:245),
- the antibody or the antigen-binding fragment thereof comprises (i) a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSDGTTYYPDSVKR (SEQ ID NO:242), and GGDYSYALDY (SEQ ID NO:245), respectively; and (ii) a light chain variable region comprising CDR1, CDR2, and CDR3, consisting of the amino acid sequences RASSSVNYMY (SEQ ID NO:28), YTSNLAP (SEQ ID NO:29), and QQFSSSPWT (SEQ ID NO:30), respectively.
- CDR complementarity determining region
- CDR2 complementarity determining region
- CDR3 consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSDGTTYYPDSVKR (SEQ ID NO:242), and GGDYSYALDY (SEQ ID NO:24
- the antibody or the antigen-binding fragment thereof comprises (i) a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTDYPDSVKR (SEQ ID NO:243), and GGDYGYALDY (SEQ ID NO:27), respectively; and (ii) a light chain variable region comprising CDR1, CDR2, and CDR3, consisting of the amino acid sequences RASSSVNYMY (SEQ ID NO:28), YTSNLAP (SEQ ID NO:29), and QQFSSSPWT (SEQ ID NO:30), respectively.
- the antibody or the antigen-binding fragment thereof comprises (i) a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), GISSGGTTYYPDSVKR (SEQ ID NO:244), and GGDYGYALDY (SEQ ID NO:27), respectively; and (ii) a light chain variable region comprising CDR1, CDR2, and CDR3, consisting of the amino acid sequences RASSSVNYMY (SEQ ID NO:28), YTSNLAP (SEQ ID NO:29), and QQFSSSPWT (SEQ ID NO:30), respectively.
- CDR complementarity determining region
- the disclosure features an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTYYPDSVKR (SEQ ID NO:26), and GGDYSYALDY (SEQ ID NO:245), respectively.
- CDR complementarity determining region
- the disclosure features an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTYYPDSVER (SEQ ID NO:241), and GGDYSYALDY (SEQ ID NO:245), respectively.
- CDR complementarity determining region
- CDR2 complementarity determining region
- CDR3 amino acid sequences AYAMS
- SISSGGTTYYPDSVER SEQ ID NO:241
- GGDYSYALDY SEQ ID NO:245
- the disclosure features an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSDGTTYYPDSVKR (SEQ ID NO:242), and GGDYSYALDY (SEQ ID NO:245), respectively.
- CDR complementarity determining region
- CDR2 complementarity determining region
- CDR3 consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSDGTTYYPDSVKR (SEQ ID NO:242), and GGDYSYALDY (SEQ ID NO:245), respectively.
- the disclosure features an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTDYPDSVKR (SEQ ID NO:243), and GGDYGYALDY (SEQ ID NO:27), respectively.
- CDR complementarity determining region
- SEQ ID NO:243 SISSGGTTDYPDSVKR
- GGDYGYALDY SEQ ID NO:27
- the disclosure features an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), GISSGGTTYYPDSVKR (SEQ ID NO:244), and GGDYGYALDY (SEQ ID NO:27), respectively.
- CDR complementarity determining region
- AYAMS SEQ ID NO:25
- GISSGGTTYYPDSVKR SEQ ID NO:244
- GGDYGYALDY SEQ ID NO:27
- the disclosure provides an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTYYPDSVKR (SEQ ID NO:26), and GGDYSYALDY (SEQ ID NO:245), respectively; and a light chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences RASSSVNYMY (SEQ ID NO:28), YTSNLAP (SEQ ID NO:29), and QQFSSSPWT (SEQ ID NO:30), respectively.
- CDR complementarity determining region
- CDR2 a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consist
- the disclosure provides an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTYYPDSVER (SEQ ID NO:241), and GGDYSYALDY (SEQ ID NO:245), respectively; and a light chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences RASSSVNYMY (SEQ ID NO:28), YTSNLAP (SEQ ID NO:29), and QQFSSSPWT (SEQ ID NO:30), respectively.
- CDR complementarity determining region
- CDR2 a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consist
- the disclosure provides an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSDGTTYYPDSVKR (SEQ ID NO:242), and GGDYSYALDY (SEQ ID NO:245), respectively; and a light chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences RASSSVNYMY (SEQ ID NO:28), YTSNLAP (SEQ ID NO:29), and QQFSSSPWT (SEQ ID NO:30), respectively.
- CDR complementarity determining region
- the disclosure provides an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTDYPDSVKR (SEQ ID NO:243), and GGDYGYALDY (SEQ ID NO:27), respectively; and a light chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences RASSSVNYMY (SEQ ID NO:28), YTSNLAP (SEQ ID NO:29), and QQFSSSPWT (SEQ ID NO:30), respectively.
- CDR complementarity determining region
- the disclosure provides an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), GISSGGTTYYPDSVKR (SEQ ID NO:244), and GGDYGYALDY (SEQ ID NO:27), respectively; and a light chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences RASSSVNYMY (SEQ ID NO:28), YTSNLAP (SEQ ID NO:29), and QQFSSSPWT (SEQ ID NO:30), respectively.
- CDR complementarity determining region
- the antibody or antigen-binding fragment thereof has an apparent monovalent affinity that is about 1 to about 5 ⁇ 10 ⁇ 8 M.
- the antibody or the antigen-binding fragment thereof is an Fab, an Fab′, an F(ab′)2, an Facb, an Fv, an Fd, a diabody, an scFv, or an sc(Fv)2.
- the antibody or the antigen-binding fragment thereof is an Fab.
- the disclosure relates to a chimeric molecule comprising the anti-GPIIb/IIIa antibody or antigen-binding fragment thereof described herein and a heterologous moiety.
- the heterologous moiety of the chimeric molecule comprises a clotting factor.
- the clotting factor is FVII, FIX, or FX.
- the clotting factor is FVII zymogen (e.g., A or B isoform), activatable FVII, activated FVII (FVIIa), FIX zymogen, activatable FIX, activated FIX (FIXa), FX zymogen, activatable FX, or activated FX (FXa).
- the clotting factor comprises a single polypeptide chain.
- the clotting factor comprises two polypeptide chains.
- the heterologous moiety of the chimeric molecule comprises a small molecule drug.
- the chimeric molecule further includes a linker.
- the linker is a peptide linker.
- the peptide linker can comprise at least two, at least three, at least four, at least five, at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, or at least 100 amino acids.
- the peptide linker comprises a peptide having the formula [(Gly) x -Ser y ] z where x is from 1 to 4, y is 0 or 1, and z is from 1 to 50 (SEQ ID NO: 153).
- the chimeric molecule comprises a second heterologous moiety.
- the second heterologous moiety comprises a half-life extending moiety.
- the half-life extending moiety can be, e.g., an XTEN, albumin, albumin binding polypeptide or fatty acid, an Fc region, transferrin, PAS, the C-terminal peptide (CTP) of the ⁇ subunit of human chorionic gonadotropin, polyethylene glycol (PEG), hydroxyethyl starch (HES), albumin-binding small molecules, vWF, and a clearance receptor or a fragment thereof which blocks binding of the chimeric molecule to a clearance receptor.
- half-life extending moiety is an XTEN.
- the XTEN is AE144.
- the XTEN is AE288.
- the chimeric molecule comprises two half-life extending moieties.
- a linker connects the half-life extending molecule to the first heterologous moiety such as a clotting factor (e.g., Factor VII).
- the disclosure relates to a chimeric molecule comprising the anti-GPIIb/IIIa antibody or antigen-binding fragment thereof described herein, a Factor VII comprising a heavy chain and a light chain, and a half-life extending moiety.
- the antibody or antigen-binding fragment thereof is an Fab or an scFv.
- the light chain of the Factor VII is linked to/associated with the heavy chain of the Factor VII, which in turn is linked to the half-life extending moiety, and the half-life extending moiety is linked to the anti-GPIIb/IIIa antibody or antigen-binding fragment thereof (e.g., Fab or scFv).
- the “linking” between these moieties can either be by direct covalent bonds between these moieties or via linkers (e.g., peptide linkers).
- the disclosure features a chimeric molecule that has an amino acid sequence that is at least 65% identical, at least 70% identical, at least 75% identical, at least 76% identical, at least 77% identical, at least 78% identical, at least 79% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to the amino acid sequence set forth in SEQ ID NO: 74 or SEQ ID NO: 77.
- this chimeric molecule associates with an amino acid sequence that is at least 65% identical, at least 70% identical, at least 75% identical, at least 76% identical, at least 77% identical, at least 78% identical, at least 79% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to the amino acid sequence set forth in SEQ ID NO: 75 or SEQ ID NO: 76.
- the chimeric molecule comprises, consists essentially of, or consists of the amino acid sequence set forth in SEQ ID NO: 74. In another embodiment, the chimeric molecule comprises, consists essentially of, or consists of the amino acid sequence set forth in or SEQ ID NO: 77. In certain embodiments, these chimeric molecules associates with an amino acid sequence comprising, consisting essentially of, or consisting of the amino acid sequence set forth in SEQ ID NO: 75. In certain embodiments, these chimeric molecules associates with an amino acid sequence comprising, consisting essentially of, or consisting of the amino acid sequence set forth in SEQ ID NO: 76.
- these chimeric molecules may comprise additional half-life extending moieties (e.g., AE144, AE288). In certain embodiments, these chimeric molecules may comprise one or more (e.g., 1, 2, 3, 4) linkers between Factor VII and the half-life extending moiety. In certain embodiments, these chimeric molecules may comprise additional linkers (e.g., 2, 3, 4) between the half-life extending moiety and the light chain of the Fab.
- the disclosure features a chimeric molecule that has an amino acid sequence that is at least 65% identical, at least 70% identical, at least 75% identical, at least 76% identical, at least 77% identical, at least 78% identical, at least 79% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to the amino acid sequence set forth in SEQ ID NO: 247.
- this chimeric molecule includes at least one, at least two, or all three of CDRs of SEQ ID NO:4.
- the above-described chimeric molecule associates with an amino acid sequence that is at least 65% identical, at least 70% identical, at least 75% identical, at least 76% identical, at least 77% identical, at least 78% identical, at least 79% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to the amino acid sequence set forth in SEQ ID NO: 75.
- the chimeric molecule comprises, consists essentially of, or consists of the amino acid sequence set forth in SEQ ID NO: 247. In certain embodiments, the chimeric molecule associates with an amino acid sequence comprising, consisting essentially of, or consisting of the amino acid sequence set forth in SEQ ID NO: 75. In certain embodiments, these chimeric molecules may comprise additional half-life extending moieties (e.g., AE144, AE288). In certain embodiments, these chimeric molecules may comprise one or more (e.g., 1, 2, 3, 4) linkers between Factor VII and the half-life extending moiety. In certain embodiments, these chimeric molecules may comprise additional linkers (e.g., 2, 3, 4) between the half-life extending moiety and the light chain of the Fab.
- additional half-life extending moieties e.g., AE144, AE288
- these chimeric molecules may comprise one or more (e.g., 1, 2, 3, 4) linkers between Factor VII and
- the disclosure features a chimeric molecule comprising a clotting factor (e.g., FVII, FIX, or FX), an anti-GPIIb/IIIa antibody or antigen-binding fragment thereof, and a half-life extending moiety (e.g., XTEN).
- This chimeric molecule may comprise one or more linkers (e.g., 6 ⁇ (GGGGS) (SEQ ID NO:170)).
- the optional linker(s) can be between the clotting factor and the anti-GPIIb/IIIa antibody or antigen-binding fragment thereof and/or between the anti-GPIIb/IIIa antibody or antigen-binding fragment thereof and the half-life extending moiety.
- the chimeric molecule comprises FVII, which may be the FVII zymogen (A or B isoform), activatable FVII, or activated FVII.
- the chimeric molecule comprises FVII, a 6 ⁇ (GGGGS) linker (SEQ ID NO:170), an Fab that binds GPIIb/IIIa, and an XTEN (e.g., AE288).
- the chimeric molecule comprises FVII, a 6 ⁇ (GGGGS) linker (SEQ ID NO:170), an Fab that binds GPIIb/IIIa, two XTENs (e.g., AE288), and another linker.
- a 6 ⁇ (GGGGS) linker SEQ ID NO:170
- an Fab that binds GPIIb/IIIa two XTENs (e.g., AE288), and another linker.
- FIGS. 17 and 20 Non-limiting examples of chimeric molecules of this aspect are shown in FIGS. 17 and 20 .
- the chimeric molecule comprises an amino acid sequence that is at least 65% identical, at least 70% identical, at least 75% identical, at least 76% identical, at least 77% identical, at least 78% identical, at least 79% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to the amino acid sequence set forth in SEQ ID NO:74.
- this chimeric molecule includes at least one, at least two, or all three of the CDRs of SEQ ID NO:4.
- the above-described chimeric molecule associates with a second chimeric molecule comprising an amino acid sequence that is at least 65% identical, at least 70% identical, at least 75% identical, at least 76% identical, at least 77% identical, at least 78% identical, at least 79% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to the amino acid sequence set forth in SEQ ID NO:252.
- this second chimeric molecule includes at least one, at least two, or all three of the CDRs of SEQ ID NO:7.
- the chimeric molecule comprises, consists essentially of, or consists of the amino acid sequence set forth in SEQ ID NO:74 and associates with a second chimeric molecule with an amino acid sequence comprising, consisting essentially of, or consisting of the amino acid sequence set forth in SEQ ID NO:252.
- these chimeric molecules may comprise additional half-life extending moieties (e.g., AE144, AE288).
- these chimeric molecules may comprise one or more (e.g., 1, 2, 3, 4) linkers between Factor VII and the half-life extending moiety. In certain embodiments, these chimeric molecules may comprise additional linkers (e.g., 2, 3, 4) between the half-life extending moiety and the light and/or heavy chain of the Fab. In certain embodiments of this aspect, the chimeric molecule (e.g., polypeptides comprising SEQ ID NOs.: 74 and 252 that associate with each other) binds to the ectodomain of GP11b/IIIa with a KD of about 10 ⁇ 6 M to about 10 ⁇ 8 M.
- the chimeric molecule e.g., polypeptides comprising SEQ ID NOs.: 74 and 252 that associate with each other
- the chimeric molecule e.g., polypeptides comprising SEQ ID NOs.:74 and 252 that associate with each other
- this disclosure provides a pharmaceutical composition
- a pharmaceutical composition comprising the anti-GPIIb/IIIa antibody or antigen-binding fragment thereof (e.g., Fab or scFv) and a pharmaceutically acceptable carrier.
- this disclosure provides a pharmaceutical composition comprising the chimeric molecules described herein and a pharmaceutically acceptable carrier.
- methods for reducing the frequency or degree of a bleeding episode in a subject in need thereof involve administering to the subject (e.g., a human subject) an effective amount of a composition comprising the antibody or antigen-binding fragment thereof or the chimeric molecule described herein.
- the subject has developed or has a tendency to develop an inhibitor against Factor VIII (“FVIII”), Factor IX (“FIX”), or both.
- the inhibitor against FVIII or FIX can be, e.g., a neutralizing antibody against FVIII, FIX, or both.
- the bleeding episode is the result of or caused by hemarthrosis, muscle bleed, oral bleed, hemorrhage, hemorrhage into muscles, oral hemorrhage, trauma, trauma capitis, gastrointestinal bleeding, intracranial hemorrhage, intra-abdominal hemorrhage, intrathoracic hemorrhage, bone fracture, central nervous system bleeding, bleeding in the retropharyngeal space, bleeding in the retroperitoneal space, bleeding in the illiopsoas sheath, or any combinations thereof.
- the disclosure relates to a method of treating a blood coagulation disorder in a subject in need thereof.
- the method involves administering to the subject (e.g., a human subject) an effective amount of a composition comprising the antibody or antigen-binding fragment thereof, or the chimeric molecule described herein.
- the blood coagulation disorder is hemophilia A or hemophilia B.
- the disclosure provides a composition comprising the antibody or antigen-binding fragment thereof, or the chimeric molecule described herein for use in reducing the frequency or degree of a bleeding episode in a subject (e.g., human) in need thereof.
- a subject e.g., human
- the subject has developed or has a tendency to develop an inhibitor against Factor VIII (“FVIII”), Factor IX (“FIX”), or both.
- the inhibitor against FVIII or FIX can be, e.g., a neutralizing antibody against FVIII, FIX, or both.
- the bleeding episode is the result of or caused by hemarthrosis, muscle bleed, oral bleed, hemorrhage, hemorrhage into muscles, oral hemorrhage, trauma, trauma capitis, gastrointestinal bleeding, intracranial hemorrhage, intra-abdominal hemorrhage, intrathoracic hemorrhage, bone fracture, central nervous system bleeding, bleeding in the retropharyngeal space, bleeding in the retroperitoneal space, bleeding in the illiopsoas sheath, or any combinations thereof.
- the disclosure provides a composition comprising the antibody or antigen-binding fragment thereof, or the chimeric molecule described herein for use in treating a blood coagulation disorder in a subject (e.g., human) in need thereof.
- a blood coagulation disorder is hemophilia A or hemophilia B.
- the disclosure relates to the use of a composition comprising the antibody or antigen-binding fragment thereof, or the chimeric molecule described herein in the preparation of a medicament for use in reducing the frequency or degree of a bleeding episode in a subject (e.g., human) in need thereof.
- the bleeding episode is the result of or caused by hemarthrosis, muscle bleed, oral bleed, hemorrhage, hemorrhage into muscles, oral hemorrhage, trauma, trauma capitis, gastrointestinal bleeding, intracranial hemorrhage, intra-abdominal hemorrhage, intrathoracic hemorrhage, bone fracture, central nervous system bleeding, bleeding in the retropharyngeal space, bleeding in the retroperitoneal space, bleeding in the illiopsoas sheath, or any combinations thereof.
- the disclosure relates to the use of a composition comprising the antibody or antigen-binding fragment thereof, or the chimeric molecule described herein in the preparation of a medicament for use in treating a blood coagulation disorder in a subject (e.g., human) in need thereof.
- a blood coagulation disorder is hemophilia A or hemophilia B.
- the disclosure features a method of detecting platelets.
- the method involves contacting a human blood preparation with an anti-GPIIb/IIIa antibody or antigen-binding fragment thereof described herein and detecting cells in the blood preparation to which the antibody or antigen-binding fragment thereof binds.
- the anti-GPIIb/IIIa antibody or antigen-binding fragment thereof is linked or conjugated to a detectable label (e.g., a fluorescent label, a radioactive label).
- the disclosure provides a method for enriching platelets.
- This method comprises contacting a human blood preparation with an anti-GPIIb/IIIa antibody or antigen-binding fragment thereof described herein and enriching cells to which the antibody or antigen-binding fragment thereof are bound as compared to those cells in the blood preparation that are not bound by the antibody or antigen-binding fragment thereof.
- the disclosure provides a method for isolating or enriching resting platelets (as opposed to activated platelets).
- This method comprises contacting a human blood preparation with an anti-GPIIb/IIIa antibody or antigen-binding fragment thereof described herein and enriching cells to which the antibody or antigen-binding fragment thereof are bound as compared to those cells in the blood preparation that are not bound by the antibody or antigen-binding fragment thereof.
- the disclosure also provides an isolated nucleic acid comprising a nucleotide sequence that is at least 75% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to a nucleotide sequence selected from the group consisting of SEQ ID NOs: 13-22, 59-68, and 219-240.
- the disclosure provides a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence that is at least 75% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 3 to 12, 74-77, and 197-218.
- the disclosure provides an isolated protein encoded by the above nucleic acid molecules.
- the disclosure provides a recombinant vector comprising the nucleic acids described herein.
- the disclosure features a host cell comprising such recombinant vectors.
- the disclosure provides an expression vector comprising a DNA comprising a nucleotide sequence that encodes the amino acid sequence set forth in SEQ ID NO:77.
- the disclosure provides an expression vector comprising a DNA comprising a nucleotide sequence that encodes the amino acid sequence set forth in SEQ ID NO:247.
- the disclosure provides an expression vector comprising a DNA comprising a nucleotide sequence that encodes the amino acid sequence set forth in SEQ ID NO:75. In yet another embodiment, the disclosure provides an expression vector comprising a DNA comprising a nucleotide sequence that encodes the amino acid sequence set forth in SEQ ID NO: 76.
- such expression vectors are either singly transformed/transfected into a host cell (e.g., 293, CHO) or transformed together (e.g., the expression vectors encoding the amino acid sequence set forth in SEQ ID NO:77 and 75; or the expression vectors encoding the amino acid sequence set forth in SEQ ID NO:77 and 76; or he expression vectors encoding the amino acid sequence set forth in SEQ ID NO:247 and 75).
- the host cell is cultured under conditions that allow the expression of the polypeptides encoded by these nucleic acids and involve isolating the polypeptides.
- the Factor VII that is a component of SEQ ID NO:77 is activated.
- the Factor VII that is a component of SEQ ID NO:247 is activated.
- the disclosure provides a method of preparing an anti-GPIIb/IIIa antibody or antigen-binding fragment thereof.
- the method comprises culturing a host cell comprising recombinant vectors comprising the nucleic acid sequences set forth in SEQ ID NOs: 14 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 15 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 16 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 17 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 18 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 13 and 22; the nucleic acid sequences set forth in SEQ ID NOs: 14 and 22; the nucleic acid sequences set forth in SEQ ID NOs: 15 and 22; the nucleic acid sequences set forth in SEQ ID NOs: 16 and 22; the nucleic acid sequences set forth in SEQ ID NOs: 17 and 22;
- the disclosure features a method of preparing a chimeric molecule described herein.
- the method comprises culturing a host cell comprising recombinant vectors comprising the nucleic acid sequences encoding the amino acid sequences set forth in SEQ ID NOs: 74 and 75; or the nucleic acid sequences encoding the amino acid sequences set forth in SEQ ID NOs: 74 and 76; under conditions appropriate for expression and production of the chimeric molecule.
- the method further comprises isolating the chimeric molecule.
- the host cell is a 293 cell, a CHO cell or a DG44i cell.
- the disclosure features a method of preparing a chimeric molecule described herein.
- the method comprises culturing a host cell comprising recombinant vectors comprising the nucleic acid sequences encoding the amino acid sequences set forth in SEQ ID NOs: 77 and 75; or the nucleic acid sequences encoding the amino acid sequences set forth in SEQ ID NOs: 77 and 76; under conditions appropriate for expression and production of the chimeric molecule.
- the method further comprises isolating the chimeric molecule.
- the host cell is a 293 cell, a CHO cell or a DG44i cell.
- the disclosure features a method of preparing a chimeric molecule described herein.
- the method comprises culturing a host cell comprising recombinant vectors comprising the nucleic acid sequences encoding the amino acid sequences set forth in SEQ ID NOs: 247 and 75; under conditions appropriate for expression and production of the chimeric molecule.
- the method further comprises isolating the chimeric molecule.
- the host cell is a 293 cell, a CHO cell or a DG44i cell.
- FIG. 1 is an alignment of the variable heavy chain (VH) amino acid sequences of six humanized 34D10 VH regions with the VH region of 34D10 (i.e., the murine anti-integrin GPIIb/IIIa antibody).
- the mutations in the humanized versions VH1 to VH5 compared to the humanized VH0 CDR graft are shown in bold, lower case font.
- the amino acids that differ between the 34D10 VH region and the humanized 34D10 VH CDR graft are highlighted in gray.
- the CDR regions (VHCDR1, VHCDR2, and VHCDR3) are underlined.
- FIG. 2 is an alignment of the variable light chain (VL) amino acid sequences of four humanized 34D10 VL regions with the VL region of 34D10 (i.e., the murine anti-integrin GPIIb/IIIa antibody).
- VL variable light chain
- the mutations in the humanized versions VL1 to VL3 compared to the humanized VL0 CDR graft are shown in bold, lower case font.
- the amino acids that differ between the 34D10 VL region and the humanized 34D10 VL CDR graft are highlighted in gray.
- the CDR regions (VLCDR1, VLCDR2, and VLCDR3) are underlined.
- FIG. 3 is a bar graph depicting the binding affinity for GPIIb/IIIa of humanized Fab fragments of 34D10.
- FIG. 4A is a diagrammatic representation of the structure of the chimeric molecules FVII-245/Fab-033, FVII-250/Fab-036, and FVII-250/Fab-037.
- the “6 ⁇ (GGGGS) linker” has the amino acid sequence of SEQ ID NO: 170.
- FIG. 4B is a graph comparing the clotting time (CT) in seconds for different concentrations (nM) of FactorVIIa-linked Fab fragments of murine 34D10 (FVII-245/Fab-033) and humanized 34D10 (FVII-250/Fab-036 (VL0/VH5) and FVII-250/Fab-037 (VL0/VH2)).
- CT clotting time
- FIG. 4C is a graph comparing the clotting time (CT) in seconds for different concentrations (nM) of FactorVIIa-linked Fab fragments of murine 34D10 (FVII-245/Fab-033) and mouse 34D10 in scFv format recombinantly fused to rFVIIa (FVII-189).
- FIG. 4D is a graph comparing the clotting time (CT) in seconds for different concentrations (nM) of mouse 34D10 in scFv format recombinantly fused to rFVIIa (FVII-189) and recombinant FVIIa.
- FIG. 5A is a diagrammatic representation of the structure of the chimeric molecules FVII-251/Fab-036 and FVII-251/Fab-037.
- the “6 ⁇ (GGGGS) linker” has the amino acid sequence of SEQ ID NO: 170.
- FIG. 5B is a graph comparing the clotting time (CT) in seconds for different concentrations (nM) of FactorVIIa-linked via XTEN AE288 and a linker to either Fab fragments of humanized 34D10 (FVII-251/Fab-036 (VL0/VH5) and FVII-251/Fab-037 (VL0/VH2)) or Fab fragments of murine 34D10 (FVII-200).
- CT clotting time
- nM clotting time
- FIG. 5C is a graph comparing the clotting time (CT) in seconds for different concentrations (nM) of FVII-251/Fab-036 (VL0/VH5) against recombinant FVIIa.
- FIG. 6 is a graphical depiction of the ex vivo activity measured by rotational thromboelastometry (ROTEM) of FVII-251/Fab-037 and rFVIIa in transgenic hemophilia
- ROTEM rotational thromboelastometry
- FIGS. 7A-F show possible configurations for chimeric molecules comprising the heavy and light chains of a clotting factor (e.g., a FVII), an Fab or scFv targeting moiety (e.g., derived for GPIIb/IIIa-specific antibodies), a heterologous moiety (e.g., a half-life extending moiety), and at least one optional linker.
- a clotting factor e.g., a FVII
- an Fab or scFv targeting moiety e.g., derived for GPIIb/IIIa-specific antibodies
- a heterologous moiety e.g., a half-life extending moiety
- FIG. 8 shows possible configuration for chimeric molecules comprising one or two heterologous moieties (H1 and/or H2) and scFv moieties derived for GPIIb/IIIa-specific antibodies. It is to be understood that an Fab from the humanized anti-GPIIb/IIIa antibodies can be used instead of the scFv in these chimeric molecules.
- FIG. 9 depicts the plasma activity of both rFVIIa (open circles) and FVII-251/Fab-037 (black circles) as percentile of injected dose over time (hours) as determined by the VIIa-rTF FVIIa-activity assay, using rFVIIa or FVII-251/Fab037 as respective matched self standards. Mean ⁇ SD.
- FIG. 10 is a graph showing the acute efficacy of FVII-251/Fab-037 compared to rFVIIa in tail clip bleeding model. Results presented are individual and median blood loss over 30 minutes for treatments and dosing as indicated. P values for vehicle versus all other treatments are indicated. Data indicate similar or improved efficacy in mice dosed with 3 nmol/kg and 10 nmol/kg FVII-251/Fab-037 compared to mice dosed with 100 nmol/kg rFVIIa.
- FIG. 11 is an alignment of the variable heavy chain (VH) amino acid sequences of 22 affinity matured variants of the humanized 34D10 VH2 (SEQ ID NO: 7) (i.e., an anti-integrin GPIIb/IIIa antibody).
- VH variable heavy chain
- SEQ ID NO: 7 i.e., an anti-integrin GPIIb/IIIa antibody.
- the mutations identified in the humanized sequence compared to the humanized VH2 are shown in bold, lower case font.
- the CDR regions (VHCDR1, VHCDR2, and VHCDR3) are underlined.
- FIG. 12A-E shows the measurement of binding by Bio-Layer Interferometry (BLI) of the indicated yeast purified Fab to sensor-associated GPIIb/IIIa (SEQ ID NOs.: 23 and 24), as a function of time.
- BLI Bio-Layer Interferometry
- FIG. 12F is a table listing the apparent monovalent affinity (K D ) and apparent dissociation rate (K dis ) of the indicated yeast purified Fab.
- FIG. 13 is a table listing the calculated melting temperatures for the indicated antibodies in the Fab format as performed by differential scanning fluorimetry.
- FIG. 14A is a graphical depiction of the ex-vivo activity measured by rotational thromboelastometry (ROTEM) of FVII-265/Fab-037 and rFVIIa in human alphaIIb transgenic HemA mice with a fully humanized ⁇ IIb subunit in the ⁇ IIb/ ⁇ 3 integrin.
- ROTEM rotational thromboelastometry
- FIG. 14B depicts the ex-vivo activity of FVII-251/Fab-037 and rFVIIa in HemA mice, in which the murine ⁇ IIb/ ⁇ 3 integrin is not targeted by the Fab-037 moiety.
- FIG. 15A is a graph showing the plasma PK as measured by soluble tissue factor (sTF)-prothrombin time (PT) activity of FVIIa and FVII-251/Fab-037 dosed at 10 nmol/kg, showing an approximately 5-fold decreased clearance of plasma levels of FVII-251/Fab-037 compared to rFVIIa.
- sTF soluble tissue factor
- PT prothrombin time
- FIG. 15B is a graph comparing the clotting time (CT) in seconds as measured in whole blood by ROTEM at the indicated time points, comparing recombinant FVII-251/Fab37 to FVIIa both dosed at 10 nmol/kg over time in human ⁇ IIb transgenic HemA mice.
- CT clotting time
- FIG. 16 is a graph showing the prolonged efficacy of 10 nmol/kg FVII-265/Fab-037 compared with 100 nmol/kg rFVIIa in a modified prolonged tail clip bleeding efficacy model.
- FIG. 17 shows the configuration of FVII-250 (SEQ ID NO:74)/Fab-062 (SEQ ID NO:252).
- the FVIIa molecule is fused to the Fab light chain VL0/CL via a 6 ⁇ (GGGGS) linker (SEQ ID NO:170).
- VL0/CL forms a dimer with Fab-062 (Fab heavy chain) via a disulfide bond.
- Fab-062 comprises an XTEN fused to the N-terminus of the VH2/CH1 heavy chain.
- FIG. 18 displays the results of surface plasmon resonance experiments showing the binding of FVII-250/Fab-062 to biotinylated GPIIb/IIIa immobilized on a streptavidin chip.
- FIG. 19 shows the results of rotational thromboelastometry (ROTEM) experiments measuring the activities of FVII-250/Fab-062 and recombinant FVIIa in whole blood from a hemophilia donor.
- ROTEM rotational thromboelastometry
- FIG. 20 illustrates non-limiting examples of possible configurations for chimeric molecules comprising the heavy and light chain of a clotting factor, a Fab targeting moiety, one or two heterologous moieties (e.g., half-life extension moieties), and optional linkers.
- This disclosure features antibodies and antigen-binding fragments that specifically bind GPIIb/IIIa, an integrin that is expressed specifically and at high levels on platelets.
- the GPIIb/IIIa receptors change from a bent low ligand affinity conformation to an extended high ligand affinity conformation.
- Activated GPIIb/IIIa receptor binds fibrinogen and modulates platelet aggregation.
- the anti-GPIIb/IIIa antibodies described herein are capable of targeting the non-active form of the receptor.
- the anti-GPIIb/IIIa antibodies and antigen-binding fragments derived from these antibodies do not activate platelets, and can be used, for example, to target agents (e.g., therapeutic agents such as clotting factors or other molecules capable of having a pharmacological effect in platelets) to the platelet surface.
- target agents e.g., therapeutic agents such as clotting factors or other molecules capable of having a pharmacological effect in platelets
- these antibodies and antigen-binding fragments thereof can be used for diagnostics, for example, by conjugation to a detectable label, and also used for isolating and separating platelets from a sample.
- chimeric molecules comprising the anti-GPIIb/IIIa antibodies and antigen-binding fragments thereof disclosed herein as targeting moieties, and one or more (e.g., one, two, three, four) heterologous moieties.
- the chimeric molecules can comprise a heterologous moiety comprising a therapeutic molecule (e.g., a procoagulant molecule such as a clotting factor), and optionally a second heterologous moiety comprising, for example, a pharmacokinetic (PK) enhancing moiety (i.e., a molecule which can improve various pharmacokinetic properties, e.g., half-life).
- PK pharmacokinetic
- the heterologous moieties can optionally be connected by linkers (e.g., peptide linkers).
- the targeting moiety of the chimeric molecule e.g., an Fab or scFv of an anti-GPIIb/IIIa antibody described herein
- linkers e.g., a peptide linker
- Exemplary anti-GPIIb/IIIa antibodies and antigen-binding fragments thereof, as well as exemplary constructs (chimeric molecules) comprising such antibodies and antigen-binding fragments thereof (e.g., scFv or F(ab)) are illustrated in the instant description and figures. See, e.g., the chimeric molecules having the structures set forth in FIGS. 7A-F and 8 .
- the disclosure also provides polynucleotides encoding the antibodies and antigen-binding fragments thereof as well as the chimeric molecule constructs described herein.
- this disclosure relates to methods of using the anti-GPIIWIIIa antibodies and antigen-binding fragments thereof in the treatment of coagulation deficiencies such as hemophilia well as coagulation deficiencies other than hemophilia characterized by an impaired thrombin generation and life-threatening bleeding.
- antibody means an immunoglobulin molecule that recognizes and specifically binds to a target, such as a protein (e.g., the GPIIb/IIIa receptor, a subunit thereof, or the receptor complex), polypeptide, peptide, carbohydrate, polynucleotide, lipid, or combinations of the foregoing through at least one antigen recognition site within the variable region of the immunoglobulin molecule.
- a typical antibody comprises at least two heavy (HC) chains and two light (LC) chains interconnected by disulfide bonds. Each heavy chain is comprised of a “heavy chain variable region” or “heavy chain variable domain” (abbreviated herein as VH) and a heavy chain constant region.
- the heavy chain constant region is comprised of three domains, CH1, CH2, and CH3.
- Each light chain is comprised of a “light chain variable region” or “light chain variable domain” (abbreviated herein as VL) and a light chain constant region.
- the light chain constant region is comprised of one domain, Cl.
- the VH and VL regions can be further subdivided into regions of hypervariablity, termed Complementarity Determining Regions (CDR), interspersed with regions that are more conserved, termed framework regions (FRs).
- CDR Complementarity Determining Regions
- FRs framework regions
- Each VH and VL region is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4.
- variable regions of the heavy and light chains contain a binding domain that interacts with an antigen.
- the term “antibody” encompasses intact polyclonal antibodies, intact monoclonal antibodies, antibody fragments (such as Fab, Fab′, F(ab′)2, Fd, Facb, and Fv fragments), single chain Fv (scFv), minibodies (e.g., sc(Fv)2, diabody), multispecific antibodies such as bispecific antibodies generated from at least two intact antibodies, chimeric antibodies, humanized antibodies, human antibodies, fusion proteins comprising an antigen determination portion of an antibody, and any other modified immunoglobulin molecule comprising an antigen recognition site so long as the antibodies exhibit the desired biological activity.
- the term “antibody” includes whole antibodies and any antigen-binding fragment or single chains thereof. Antibodies can be naked or conjugated to other molecules such as toxins, radioisotopes, small molecule drugs, polypeptides, etc.
- antibody fragment refers to a portion of an intact antibody and refers to the antigenic determining variable regions of an intact antibody. It is known in the art that the antigen binding function of an antibody can be performed by fragments of a full-length antibody. Examples of antigen-binding antibody fragments include, but are not limited to Fab, Fab′, F(ab′)2, Facb, Fd, and Fv fragments, linear antibodies, single chain antibodies, and multispecific antibodies formed from antibody fragments. In some instances, antibody fragments may be prepared by proteolytic digestion of intact or whole antibodies. For example, antibody fragments can be obtained by treating the whole antibody with an enzyme such as papain, pepsin, or plasmin. Papain digestion of whole antibodies produces F(ab)2 or Fab fragments; pepsin digestion of whole antibodies yields F(ab′)2 or Fab′; and plasmin digestion of whole antibodies yields Facb fragments.
- Fab refers to an antibody fragment that is essentially equivalent to that obtained by digestion of immunoglobulin (typically IgG) with the enzyme papain.
- the heavy chain segment of the Fab fragment is the Fd piece.
- Such fragments can be enzymatically or chemically produced by fragmentation of an intact antibody, recombinantly produced from a gene encoding the partial antibody sequence, or it can be wholly or partially synthetically produced.
- F(ab′)2 refers to an antibody fragment that is essentially equivalent to a fragment obtained by digestion of an immunoglobulin (typically IgG) with the enzyme pepsin at pH 4.0-4.5.
- fragments can be enzymatically or chemically produced by fragmentation of an intact antibody, recombinantly produced from a gene encoding the partial antibody sequence, or it can be wholly or partially synthetically produced.
- Fv refers to an antibody fragment that consists of one NH and one N domain held together by noncovalent interactions.
- scFv or “scFv molecule” includes binding molecules which consist of one light chain variable domain (VL) or a portion thereof, and one heavy chain variable domain (VH) or a portion thereof, wherein each variable domain (or a portion thereof) is derived from the same or different antibodies.
- Single chain Fv molecules preferably comprise an scFv linker interposed between the VH domain and the VL domain.
- Exemplary scFv molecules are known in the art and are described, for example, in U.S. Pat. No.
- scFv linker refers to a moiety interposed between the VL and VH domains of the scFv.
- the scFv linkers preferably maintain the scFv molecule in an antigen-binding conformation.
- a scFv linker comprises or consists of an scFv linker peptide.
- an scFv linker peptide comprises or consists of a Gly-Ser peptide linker.
- an scFv linker comprises a disulfide bond.
- GPIIb/IIIa antibody refers to an antibody that is capable of specifically binding to the GPIIb/IIIa receptor with sufficient affinity such that the antibody is useful as a therapeutic agent or diagnostic reagent in targeting GPIIb/IIIa.
- the extent of binding of an anti-GPIIb/IIIa antibody disclosed herein to an unrelated, non-GPIIb/IIIa protein is less than about 10% of the binding of the antibody to GPIIb/IIIa as measured, e.g., by a radioimmunoassay (RIA), BIACORETM (using recombinant GPIIb/IIIa as the analyte and antibody as the ligand, or vice versa), or other binding assays known in the art.
- RIA radioimmunoassay
- BIACORETM using recombinant GPIIb/IIIa as the analyte and antibody as the ligand, or vice versa
- an antibody that binds to GPIIb/IIIa has a dissociation constant (KD) of ⁇ 1 ⁇ M, ⁇ 100 nM, ⁇ 50 nM, ⁇ 10 nM, ⁇ 1 nM, ⁇ 0.1 nM, ⁇ 10 pM, ⁇ 1 pM, or ⁇ 0.1 pM.
- KD dissociation constant
- % identical between two polypeptide (or polynucleotide) sequences refers to the number of identical matched positions shared by the sequences over a comparison window, taking into account additions or deletions (i.e., gaps) that must be introduced for optimal alignment of the two sequences.
- a matched position is any position where an identical nucleotide or amino acid is presented in both the target and reference sequence. Gaps presented in the target sequence are not counted since gaps are not nucleotides or amino acids. Likewise, gaps presented in the reference sequence are not counted since target sequence nucleotides or amino acids are counted, not nucleotides or amino acids from the reference sequence.
- the percentage of sequence identity is calculated by determining the number of positions at which the identical amino acid residue or nucleic acid base occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity.
- the comparison of sequences and determination of percent sequence identity between two sequences can be accomplished using readily available software both for online use and for download. Suitable software programs are available from various sources, and for alignment of both protein and nucleotide sequences.
- One suitable program to determine percent sequence identity is bl2seq, part of the BLAST suite of program available from the U.S.
- Bl2seq performs a comparison between two sequences using either the BLASTN or BLASTP algorithm.
- BLASTN is used to compare nucleic acid sequences
- BLASTP is used to compare amino acid sequences.
- Other suitable programs are, e.g., Needle, Stretcher, Water, or Matcher, part of the EMBOSS suite of bioinformatics programs and also available from the European Bioinformatics Institute (EBI) at www.ebi.ac.uk/Tools/psa.
- the percentage identity “X” of a first amino acid sequence to a second sequence amino acid is calculated as 100 ⁇ (Y/Z), where Y is the number of amino acid residues scored as identical matches in the alignment of the first and second sequences (as aligned by visual inspection or a particular sequence alignment program) and Z is the total number of residues in the second sequence. If the length of a first sequence is longer than the second sequence, the percent identity of the first sequence to the second sequence will be higher than the percent identity of the second sequence to the first sequence.
- sequence alignment for the calculation of a percent sequence identity is not limited to binary sequence-sequence comparisons exclusively driven by primary sequence data. Sequence alignments can be derived from multiple sequence alignments.
- ClustalW2 One suitable program to generate multiple sequence alignments is ClustalW2, available from www.clustal.org (ClustalX is a version of the ClustalW2 program ported to the Windows environment).
- Another suitable program is MUSCLE, available from www.drive5.com/muscle.
- ClustalW2 and MUSCLE are alternatively available, e.g., from the EBI.
- targeting moiety refers to a moiety capable of interacting with a target molecule (e.g., the GPIIb/IIIa receptor, or a molecule comprising the ⁇ and/or ⁇ subunits of the GPIIb/IIIa receptor).
- target molecule e.g., the GPIIb/IIIa receptor, or a molecule comprising the ⁇ and/or ⁇ subunits of the GPIIb/IIIa receptor.
- Targeting moieties having limited cross-reactivity are generally preferred.
- suitable targeting moieties include, for example, any member of a specific binding pair, antibodies, monoclonal antibodies, or derivatives or analogs thereof, including without limitation: Fv fragments, single chain Fv (scFv) fragments, Fab′ fragments, F(ab′)2 fragments, single domain antibodies, camelized antibodies and antibody fragments, humanized antibodies and antibody fragments, and multivalent versions of the foregoing; multivalent binding reagents including without limitation: monospecific or bispecific antibodies, such as disulfide stabilized Fv fragments, scFv tandems ((scFv) fragments), diabodies, tribodies or tetrabodies, which typically are covalently linked or otherwise stabilized (i.e., leucine zipper or helix stabilized) scFv fragments; and other targeting moieties include for example, aptamers, receptors, ligands, and fusion proteins.
- linked refers to linkage via a peptide bonds (e.g., genetic fusion), chemical conjugation, or other means known in the art.
- peptide bonds e.g., genetic fusion
- chemical conjugation e.g., chemical conjugation
- one way in which molecules or moieties can be linked employs peptide linkers that link the molecules or moieties via peptide bonds.
- association with refers to a covalent or non-covalent bond formed between a first amino acid chain and a second amino acid chain.
- the term “associated with” means a covalent, non-peptide bond or a non-covalent bond.
- the term “associated with” refers to a covalent, non-peptide bond or a non-covalent bond that is not chemically crosslinked. In another embodiment, it means a covalent bond except a peptide bond. In some embodiments this association is indicated by a colon, i.e., (:).
- CH:CFL refers to a dimer comprising a heavy chain of a clotting factor (CFH) disulfide bonded to a light chain of a clotting factor (CFL) in a N-terminus to C-terminus orientation.
- moiety refers to a component part or constituent of a chimeric molecule of the present disclosure.
- heterologous moiety refers to a moiety genetically fused, conjugated, and/or otherwise associated to a targeting molecule (e.g., GPIIb/IIIa antibody or antigen-binding molecule thereof).
- therapeutic agent refers to any biological or chemical agent used in the treatment of a disease or disorder.
- Therapeutic agents include any suitable biologically active chemical compounds, biologically derived components such as cells, peptides, antibodies, and polynucleotides, and radiochemical therapeutic agents such as radioisotopes.
- the therapeutic agent comprises a clotting factor.
- the term “stability” refers to an art-recognized measure of the maintenance of one or more physical properties of the chimeric molecule in response to an environmental condition (e.g., an elevated or lowered temperature).
- the physical property can be the maintenance of the covalent structure of the chimeric molecule (e.g., the absence of proteolytic cleavage, unwanted oxidation or deamidation).
- the physical property can also be the presence of the chimeric molecule in a properly folded state (e.g., the absence of soluble or insoluble aggregates or precipitates).
- the stability of the chimeric molecule is measured by assaying a biophysical property of the chimeric molecule, for example thermal stability, pH unfolding profile, stable removal of glycosylation, solubility, biochemical function (e.g., ability to bind to a protein, receptor or ligand), etc., and/or combinations thereof.
- biochemical function is demonstrated by the binding affinity of the interaction.
- a measure of protein stability is thermal stability, i.e., resistance to thermal challenge. Stability can be measured using methods known in the art, such as, HPLC (high performance liquid chromatography), SEC (size exclusion chromatography), DLS (dynamic light scattering), etc.
- Methods to measure thermal stability include, but are not limited to differential scanning calorimetry (DSC), differential scanning fluorimetry (DSF), circular dichroism (CD), and thermal challenge assay.
- clotting factor refers to molecules, or analogs thereof, naturally occurring or recombinantly produced which prevent or decrease the duration of a bleeding episode in a subject. In other words, it means molecules having pro-clotting activity, i.e., are responsible for the conversion of fibrinogen into a mesh of insoluble fibrin causing the blood to coagulate or clot.
- clotting factor encompasses clotting factors (e.g., vWF, FV, FVa, FVII, FVIIa, FVIII, FVIIIa, FIX, FIXa, FX, FXa, FXI, FXIa, FXII, FXIIa, FXIII, or FXIIIa), fragments, variants, analogs, or derivatives thereof, naturally occurring, recombinantly produced, or synthetically produced which prevent or decrease the duration of a bleeding episode in a subject.
- clotting factors e.g., vWF, FV, FVa, FVII, FVIIa, FVIII, FVIIIa, FIX, FIXa, FX, FXa, FXI, FXIa, FXIIa, FXIII, or FXIIIa
- fragments, variants, analogs, or derivatives thereof naturally occurring, recombinantly produced, or synthetically produced which prevent or decrease
- activatable clotting factor refers to a clotting factor in an inactive form (e.g., in its zymogen form) that is capable of being converted to an active form.
- zymogen-like protein or polypeptide refers to a protein that has been activated by proteolytic cleavage, but still exhibits properties that are associated with a zymogen, such as, for example, low or no activity, or a conformation that resembles the conformation of the zymogen form of the protein.
- the two-chain activated form of FVII when it is not bound to tissue factor, the two-chain activated form of FVII is a zymogen-like protein; it retains a conformation similar to the uncleaved FVII zymogen, and, thus, exhibits very low activity.
- the two-chain activated form of FVII undergoes conformational change and acquires its full activity as a coagulation factor.
- half-life extending moiety refers to a heterologous moiety which increases the in vivo half-life of a protein, for example, a chimeric molecule.
- the term “half-life” refers to a biological half-life of a particular protein or polypeptide (e.g., a clotting factor or a chimeric molecule disclosed herein) in vivo.
- Half-life can be represented by the time required for half the quantity administered to a subject to be cleared from the circulation and/or other tissues in the animal.
- a clearance curve of a given polypeptide or chimeric molecule of the invention is constructed as a function of time, the curve is usually biphasic with a rapid ⁇ -phase and longer ⁇ -phase.
- the ⁇ -phase typically represents an equilibration of the administered Fc polypeptide between the intra- and extra-vascular space and is, in part, determined by the size of the polypeptide.
- the ⁇ -phase typically represents the catabolism of the polypeptide in the intravascular space.
- procoagulant compounds of the invention are monophasic, and thus do not have an alpha phase, but just the single beta phase.
- the term half-life as used herein refers to the half-life of the procoagulant compound in the ⁇ -phase.
- the typical ⁇ -phase half-life of a human antibody in humans is 21 days.
- In vivo half-life of a chimeric molecule can be determined by any method known to those of skill in the art.
- the half-life extending moiety can comprise an attachment site for a non-polypeptide moiety (e.g., PEG).
- GPIIb/IIIa and “GPIIb/IIIa receptor” refer to glycoprotein IIb/IIIa (also known as integrin ⁇ IIb ⁇ 3), an integrin complex found on platelets. Integrins are composed of two chains, an a subunit and a ⁇ subunit, which are held together by noncovalent bonds in a calcium dependent manner. GPIIb constitutes the a subunit, which comprises divalent cation binding domains, whereas GPIIIa is a pro typical 13 subunit ( ⁇ 3). On each circulating platelet, there are about 35,000 to 100,000 GPIIb/IIIa complexes: most are distributed on the platelet surface, while a smaller pool is found in an internal reserve.
- the GPIIb/IIIa complex does not interact with its plasma ligands until platelets have been activated by exogenous agonists such as ADP or thrombin. When this occurs, an inside-out signal is generated that results in a conformational change in the extracellular portion of the complex that renders the molecule capable of binding fibrinogen and other ligands.
- amino acid sequence of human GPIIb is provided below:
- This disclosure provides antibodies and antigen-binding fragments thereof that specifically bind to GPIIb/IIIa.
- the antibodies and antigen-binding fragments thereof bind the GPIIb/IIIa receptors located on the surface of platelets.
- the antibodies and antigen-binding fragments thereof bind the GPIIb/IIIa found within the platelets.
- the anti-GPIIb/IIIa antibodies and antigen binding fragments can bind the GPIIb subunit of the receptor and/or the GPIIb/IIIa complex. These antibodies do not activate the platelets and also do not compete with fibrinogen for binding to GPIIb/IIIa.
- an anti-GPIIb/IIIa antibody is the murine antibody, 34D10.
- This antibody was obtained as follows: Hybridomas were generated from BALB/C mice immunized with plasmids containing DNA sequences encoding GPIIb/IIIa according to methods known in the art. Hybridomas were then screened for binding to human and cynomolgus monkey platelets using flow cytometry, and for binding to GPIIb/IIIa using Enzyme-linked immunosorbent assays (ELISA).
- ELISA Enzyme-linked immunosorbent assays
- the supernatants from non-activating hybridomas were subject to additional characterization assays (i) to confirm antibody binding to human and cynomolgus platelets, (ii) to determine antibody binding specificity for the ⁇ and/or ⁇ subunit of GPIIb/IIIa, and (iii) to determine whether the antibodies can compete with fibrinogen for binding to platelets.
- Fibrinogen is the natural ligand of GPIIb/IIIa and its binding to GPIIb/IIIa is essential to mediate platelet aggregation. Thus, the antibodies that compete with the binding of fibrinogen to GPIIb/IIIa were excluded from the selection.
- 34D10 was identified in the process and determined to be an antibody that does not activate platelets, that does not compete with the binding of fibrinogen to GPIIb/IIIa, and that binds both the a subunit of GPIIb/IIIa and the GPIIb/IIIa complex.
- the amino acid sequences of the heavy chain variable domain (VH) and light chain variable domain (VL) of the murine anti-GPIIb/IIIa antibody, 34D10, are provided below (the CDRs according to Kabat are underlined).
- VHCDR1 (SEQ ID NO: 1) VHCDR1 EVKLVESGGGLVKPGGSLKLSCAASGFTFS AYAMS WVRQTPEKRLEWVA VHCDR2 SISSGGTTYYPDSVKR RFTIS VHCDR3 RDNARNILYLQMSSLRSEDTAMYYCTR GGDYGYALDY WGQGTSVTVSS 34D10 VL: (SEQ ID NO: 2) VLCDR1 ENVLTQSPAIMSASLGEKVTMSC RASSSVNYMY WYQQKSDASPKLWIY VLCDR2 YTSNLA PGVPARFSGS VLCDR3 GSGNSYSLTISSMEGEDAATYYC QQFSSSPWT FGGGTKLEIK
- the 34D10 antibody was humanized as described in Example 1.
- This example discloses six exemplary humanized heavy chain variable regions termed VH0, VH1, VH2, VH3, VH4, and VH5, with the amino acid sequences set forth in SEQ ID NOs: 3, 5, 7, 9, 11 and 12, respectively, and four exemplary humanized light chain variable regions termed VL0, VL1, VL2, and VL3, with the amino acid sequences set forth in SEQ ID NOs: 4, 6, 8, and 10, respectively.
- VH0 can pair with VL0, VL1, VL2, or VL3
- VH1 can pair with VL0, VL1, VL2, or VL3
- VH2 can pair with VL0, VL1, VL2, or VL3
- VH3 can pair with VL0, VL1, VL2, or VL3
- VH4 can pair with VL0, VL1, VL2, or VL3
- VH5 can pair with VL0, VL1, VL2, or VL3.
- the heavy chain variable region and light chain variable regions disclosed in Example 1 can form 24 different VH-VL pairs. All of these antibodies are considered part of this disclosure.
- these antibodies can comprise a kappa light chain constant region.
- these antibodies can comprise a lambda light chain constant region.
- the light chain constant region comprises the following amino acid sequence:
- the light chain constant region comprises an amino acid sequence that is at least 65% identical, at least 70% identical, at least 75% identical, at least 76% identical, at least 77% identical, at least 78% identical, at least 79% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical to SEQ ID NO:56.
- the antibodies of this disclosure can also comprise a heavy chain constant region.
- the heavy chain constant region is from an IgG1 or IgG4 antibody.
- the heavy chain constant region comprises the following amino acid sequence:
- the heavy chain constant region comprises an amino acid sequence that is at least 65% identical, at least 70% identical, at least 75% identical, at least 76% identical, at least 77% identical, at least 78% identical, at least 79% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical to SEQ ID NO:57.
- the heavy chain constant region comprises the following amino acid sequence:
- the amino acid sequences of the heavy and light chain CDRs 1, 2, and 3, as well as the framework regions (FRs) 1, 2, 3, 4 of the six heavy chain variable regions and the four light chain variable regions of the exemplary humanized anti-GPIIb/IIIa antibodies described in Example 1 are provided below in Table 1.
- the CDRs are based upon the Kabat numbering system.
- the antibodies of this disclosure can comprise CDRs of 34D10 according to any CDR definition (e.g., Kabat, Chothia, enhanced Chothia, contact, IMGT, AbM).
- the CDRs of an antibody according to the different CDR definitions can be determined, e.g., by using the AbYsis database (www.bioinforg.uk/abysis/sequence input/key annotation/key annotation.cgi).
- VH-CDR1 is at positions 31-35
- VH-CDR2 is a positions 50-65
- VH-CDR3 is at positions 95-102
- VL-CDR1, VL-CDR2, and VL-CDR3 are at positions 24-34, 50-56 and 89-97, respectively.
- VH-CDR1 is at positions 26-32 (Chothia numbering)
- VH-CDR2 is at positions 52-56
- VH-CDR3 is at positions 95-102
- VL-CDR1 is at positions 24-34
- VL-CDR2 is at positions 50-56
- VL-CDR3 is at positions 89-97.
- VH-CDR1 is at positions 30-35 (Chothia numbering)
- VH-CDR2 is at positions 47-58
- VH-CDR3 is at positions 93-101
- VL-CDR1 is at positions 30-36
- VL-CDR2 is at positions 46-55
- VL-CDR3 is at positions 89-96.
- VH-CDR1 is at positions 26 to 35
- VH-CDR2 is at positions 51 to 57
- VH-CDR3 is at positions 93 to 102
- VL-CDR1 is at positions 27 to 32
- VL-CDR2 is at positions 50 to 52
- VL-CDR3 is at positions 89 to 97.
- the humanized antibodies can include the three CDRs of the VH of 34D10 (according to any CDR definition) in the context of any suitable heavy chain human acceptor framework.
- a suitable heavy chain human acceptor framework is an amino acid sequence that is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of the germline humIGHV3/OR16-13, with framework region 4 (FR4) from human consensus subgroup Heavy III.
- FR4 framework region 4
- the heavy chain human acceptor framework is an amino acid sequence that is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of the germline humIGHV3-15.
- the heavy chain human acceptor framework is an amino acid sequence that is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of the germline humIGHV3-7.
- the heavy chain human acceptor framework is an amino acid sequence that is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of the germline humIGHV3-53.
- the heavy chain human acceptor framework is an amino acid sequence that is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of the germline humIGHV3-66.
- the humanized antibodies can include the three CDRs of the VL of 34D10 (according to any CDR definition) in the context of any suitable light chain human acceptor framework.
- a suitable light chain human acceptor framework is an amino acid sequence that is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of the germline humIGKV3-15, with framework region 4 (FR4) from human consensus subgroup Kappa I.
- the light chain human acceptor framework is an amino acid sequence that is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of the germline humIGKV1-NL1.
- the heavy chain human acceptor framework is an amino acid sequence that is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of the germline humIGKV1D-43.
- Antibodies or antigen-binding fragments thereof can be selected for use based on higher affinity or avidity for GPIIb or the GPIIb/IIIa complex and/or reduced immunogenicity than previously known anti-GPIIb/IIIa antibodies. Methods of determining potency, affinity or avidity, and immunogenicity of antibodies are within the skill of the ordinary artisan.
- This disclosure also includes antibodies or antigen-binding fragments thereof that specifically bind GPIIb and/or the GPIIb/IIIa complex that have heavy chain variable regions that are: at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequences set forth in any one of SEQ ID NOs.: 3, 5, 7, 9, 11, 12, or 197-218.
- This disclosure also provides antibodies or antigen-binding fragments thereof that specifically bind GPIIb and/or the GPIIb/IIIa complex that have heavy chain variable regions that are identical to the amino acid sequences set forth in any one of SEQ ID NOs.: 3, 5, 7, 9, 11, 12, or 197-218 except for a total of 1 to 40, 1 to 30, 1 to 20, 1 to 10, 1 to 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, 1 to 2, or 1 amino acid substitutions, deletions, or insertions.
- these antibodies or antigen-binding fragments thereof have at least one, at least two, at least three, at least four, at least five, or all six of the CDRs of 34D10 (wherein the CDRs can be according to any CDR definition).
- these antibodies or antigen-binding fragments thereof have light chain variable regions that are: at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequences set forth in any one of SEQ ID NOs.: 4, 6, 8, or 10.
- This disclosure also provides antibodies or antigen-binding fragments thereof that specifically bind GPIIb and/or the GPIIb/IIIa complex that have light chain variable regions that are identical to the amino acid sequences set forth in any one of SEQ ID NOs.: 4, 6, 8, or 10 except for a total of 1 to 40, 1 to 30, 1 to 20, 1 to 10, 1 to 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, 1 to 2, or 1 amino acid substitutions, deletions, or insertions.
- these antibodies or antigen-binding fragments thereof have at least one, at least two, at least three, at least four, at least five, or all six of the CDRs of 34D10 (wherein the CDRs can be according to any CDR definition).
- these antibodies or antigen-binding fragments thereof do not compete with fibrinogen for binding to GPIIb/IIIa.
- these antibodies or antigen-binding fragments thereof do not activate platelets.
- Exemplary antibodies or antigen-binding fragments thereof described herein that specifically bind GPIIb and/or the GPIIb/IIIa complex comprise amino acid sequences that are: at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequences set forth in: (i) SEQ ID NOs.: 5 and 4; (ii) SEQ ID NOs.: 7 and 4; (iii) SEQ ID NOs.: 9 and 4; (iv) SEQ ID NOs.: 11 and 4; (v) SEQ ID NOs.: 12 and 4;
- these antibodies or antigen-binding fragments thereof have at least one, at least two, at least three, at least four, at least five, or all six of the CDRs of 34D10 (wherein the CDRs can be according to any CDR definition). In some embodiments, these antibodies or antigen-binding fragments thereof do not compete with fibrinogen for binding to GPIIb/IIIa. In some embodiments, these antibodies or antigen-binding fragments thereof do not activate platelets.
- the VH and or VL region of the anti-GPIIb/IIIa antibodies or antigen-binding fragments thereof described herein can be linked to a constant region (e.g., a wild-type human Fc region or an Fc region that includes one or more alterations).
- the antibody has a light chain constant region derived from a human kappa sequence.
- the antibody has a light chain constant region derived from a human lambda sequence.
- the light chain constant region comprises a human subgroup kappa 1 sequence.
- the antibody has an isotype selected from the group consisting of IgG1, IgG2, IgG3, and IgG4.
- the heavy chain constant region can be a wild-type human Fc region, or a human Fc region that includes one or more amino acid substitutions.
- the antibodies can have mutations that stabilize the disulfide bond between the two heavy chains of an immunoglobulin, such as mutations in the hinge region of IgG4, as disclosed in the art (e.g., Angal et al., Mol. Immunol., 30:105-08 (1993)). See also, e.g., U.S. 2005/0037000.
- the heavy chain constant region can also have substitutions that modify the properties of the antibody (e.g., decrease one or more of: Fc receptor binding, antibody glycosylation, deamidation, binding to complement, or methionine oxidation).
- the antibodies may have mutations such as those described in U.S. Pat. Nos. 5,624,821 and 5,648,260. In some embodiments, the antibody is modified to reduce or eliminate effector function.
- the heavy chain constant region has one or more of the following mutations: S228P; N297Q; and T299A (numbering according to Kabat).
- the heavy chain constant region can be chimeric, e.g., the Fc region can comprise the CH1 and CH2 domains of an IgG antibody of the IgG4 isotype, and the CH3 domain from an IgG antibody of the IgGlisotype (see, e.g., U.S. Patent Appl. No.
- the humanized anti-GPIIb/IIIa antibodies described herein have a chimeric constant region comprising the CH1 and CH2 domains of an IgG antibody of the IgG4 isotype, and the CH3 domain from an IgG antibody of the IgGlisotype and further contain the S228P and N297Q mutations (numbering according to Kabat).
- the anti-GPIIb/IIIa antibody or antigen-binding molecule thereof comprises or consists of (i) a single chain Fv (“scFv”); (ii) a diabody; (iii) an sc(Fv)2; (iv) a polypeptide chain of an antibody; (v) F(ab′)2; or (vi) F(ab).
- the antigen-binding fragment is an Fab molecule.
- the fragment antigen-binding (Fab fragment) is a region on an antibody that binds to antigens.
- the antigen-binding fragment is a single-chain fragment variable (scFv).
- scFv single-chain fragment variable
- An scFv is comprised of the variable regions of the heavy and light chains of an antibody. It is only half the size of the Fab fragment and yet retains the original specificity of the parent immunoglobulin. Methods of making an ScFv are well known in the art (see, e.g., Ahmad et al., Clinical and Developmental Immunology, vol. 2012, Article ID 980250, 15 pages, 2012. doi:10.1155/2012/980250).
- the anti-GPIIb/IIIa antibody or antigen-binding molecule thereof can be a targeting moiety. These targeting moieties are useful in ferrying an agent of interest (e.g., a therapeutic agent, a coagulation factor, a small molecule drug) to platelets.
- an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein can target GPIIb/IIIa located on the surface of platelets.
- the present disclosure also provides “chimeric molecules” comprising, for example, at least one of the GPIIb/IIIa antibodies or antigen-binding fragments thereof disclosed herein that is linked and/or conjugated and/or otherwise associated with at least one heterologous moiety.
- the heterologous moiety is an agent that to be ferried or delivered to a platelet or its local environment.
- an agent can be e.g., a therapeutic agent such as a clotting factor (e.g., rFVIIa).
- a chimeric molecule disclosed herein encompasses any molecule comprising (i) a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein (e.g., an Fab or scFv derived from a humanized 34D10 antibody), and (ii) at least one (e.g., one two, three, four) heterologous moiety (e.g., a therapeutic moiety, a clotting factor, a half-life extending moiety) and optionally including one or more linkers.
- a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein e.g., an Fab or scFv derived from a humanized 34D10 antibody
- heterologous moiety e.g., a therapeutic moiety, a clotting factor, a half-life extending moiety
- a chimeric molecule is a chimeric protein, i.e., a chimeric molecule in which all its components (heterologous moieties and/or linkers) are polypeptides.
- Other chimeric molecules can comprise non-polypeptide heterologous moieties (e.g., PEG, lipids, carbohydrates, nucleic acids, small molecule therapeutic agents, radionuclides, fluorescent probes, etc.) and/or non-polypeptide linkers.
- a chimeric molecule comprises a first amino acid sequence derived from a first source, bonded, covalently or non-covalently, to a second amino acid sequence derived from a second source, wherein the first and second source are not the same.
- a first source and a second source that are not the same can include two different biological entities, or two different proteins from the same biological entity, or a biological entity and a non-biological entity.
- a chimeric molecule can include for example, a protein derived from at least two different biological sources.
- a biological source can include any non-synthetically produced nucleic acid or amino acid sequence (e.g., a genomic or cDNA sequence, a plasmid or viral vector, a native virion or a mutant or analog, as further described herein, of any of the above).
- a synthetic source can include a protein or nucleic acid sequence produced chemically and not by a biological system (e.g., solid phase synthesis of amino acid sequences).
- a chimeric molecule can also include a protein derived from at least 2 different synthetic sources or a protein derived from at least one biological source and at least one synthetic source.
- a chimeric molecule can also comprise a first amino acid sequence derived from a first source, covalently or non-covalently linked to a nucleic acid, derived from any source or a small organic or inorganic molecule derived from any source.
- the chimeric molecule can also comprise a linker molecule between the first and second amino acid sequence or between the first amino acid sequence and the nucleic acid, or between the first amino acid sequence and the small organic or inorganic molecule.
- the chimeric molecule has, for example, a formula: (i) Ab-(L)-H or (ii) H-(L)-Ab, wherein, H is a heterologous moiety; L is an optional linker; and, Ab is an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein.
- One or more copies e.g., one, two, three, four) of the same heterologous moiety may be included in the chimeric molecule.
- the chimeric molecule further comprises a second heterologous moiety. Accordingly, in some embodiments, the chimeric molecule has a formula selected from:
- Ab is an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein; H1 is a first heterologous moiety, H2 is a second heterologous moiety, L1 is a first optional linker, and L2 is a second optional linker.
- One or more copies (e.g., one, two, three, four) of the same heterologous moiety may be included in the chimeric molecule.
- first heterologous moiety and the second heterologous moiety are the same. In other embodiments, the first heterologous moiety and the second heterologous moiety are different. In some embodiments, L1 and L2 are the same. In other embodiments, L1 and L2 are different.
- chimeric molecule formulas disclosed are oriented from N-terminus (left) to C-terminus (right).
- the chimeric molecule formulas disclosed herein are non-limiting examples of chimeric molecules comprising the disclosed anti-GPIIb/IIIa antibodies or antigen-binding fragments thereof.
- the formulas can comprise further sequences at their N-terminal or C-terminal ends, or inserted between elements of the formula.
- a chimeric molecule can comprise one, two, three, four, five, or more than five heterologous moieties.
- the hyphen (-) in a formula indicates a peptide bond or one or more amino acids.
- Exemplary chimeric molecules are presented in FIGS. 7A-F and 8 .
- a chimeric protein comprises a first polypeptide chain and a second polypeptide chain, which are associated with each other.
- the first polypeptide chain comprises a light chain of a clotting factor (e.g., FVII) and a heterologous moiety (e.g., a half-life extending moiety)
- the second polypeptide chain comprises a heavy chain of the clotting factor (e.g., FVII) and a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein.
- the first polypeptide chain comprises a light chain of a clotting factor (e.g., FVII) and a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein
- the second polypeptide chain comprises a heavy chain of the clotting factor (e.g., FVII) and a heterologous moiety (e.g., a half-life extending moiety).
- the first polypeptide chain comprises a light chain of a clotting factor (e.g., FVII) and the second polypeptide chain comprises a heavy chain of the clotting factor (e.g., FVII), a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein, and a heterologous moiety (e.g., a half-life extending moiety).
- a clotting factor e.g., FVII
- FVII a heavy chain of the clotting factor
- GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein e.g., a heterologous moiety
- the first polypeptide chain comprises a light chain of a clotting factor (e.g., FVII) and the second polypeptide chain comprises a heavy chain of the clotting factor (e.g., FVII), a heterologous moiety (e.g., a half-life extending moiety), and a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein.
- a clotting factor e.g., FVII
- FVII a heavy chain of the clotting factor
- heterologous moiety e.g., a half-life extending moiety
- the first polypeptide chain comprises a light chain of a clotting factor (e.g., FVII), a heterologous moiety (e.g., a half-life extending moiety), and a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein, and the second polypeptide chain comprises a heavy chain of the clotting factor (e.g., FVII).
- a clotting factor e.g., FVII
- heterologous moiety e.g., a half-life extending moiety
- the second polypeptide chain comprises a heavy chain of the clotting factor (e.g., FVII).
- the first polypeptide chain comprises a light chain of a clotting factor (e.g., FVII), a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein, and a heterologous moiety (e.g., a half-life extending moiety), and the second polypeptide chain comprises a heavy chain of the clotting factor (e.g., FVII).
- a clotting factor e.g., FVII
- heterologous moiety e.g., a half-life extending moiety
- the chimeric molecule comprises a formula wherein:
- the first polypeptide chain comprises CF L -H or H-CF L and the second polypeptide chain comprises CF H -Ab or Ab-CF H ;
- the first polypeptide chain comprises CF L -Ab or Ab-CF L and the second polypeptide chain comprises CF H —H or H-CF H ;
- the first polypeptide chain comprises CF L and the second polypeptide chain comprises CF H -Ab-H or H-Ab-CF H ;
- the first polypeptide chain comprises CF L and the second polypeptide chain comprises CF H -H-Ab or Ab-H-CF H ;
- the first polypeptide chain comprises CF L -H-Ab or Ab-H-CF L and the second polypeptide chain comprises CF H ;
- the first polypeptide chain comprises CF L -Ab-H or H-Ab-CF L and the second polypeptide chain comprises CF H ;
- CF L is a light chain of a clotting factor (e.g., FVII);
- CF H is a heavy chain of the clotting factor (e.g., FVII);
- Ab is an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof and H is a heterologous moiety (e.g., a half-life extending moiety).
- the clotting factor is independently selected from the group consisting of FVII, FIX, FX, and any combinations thereof.
- This disclosure also provides a chimeric molecule comprising a first polypeptide chain and a second polypeptide chain, which are associated with each other, (1) wherein the first polypeptide chain comprises a light chain of a clotting factor (e.g., FVII, FIX, or FX), and a targeting moiety, which binds to a platelet, and the second polypeptide chain comprises a heavy chain of the clotting factor (e.g., FVII, FIX, or FX) and a heterologous moiety (e.g., a half-life extending moiety); (2) wherein the first polypeptide chain comprises a light chain of a clotting factor (e.g., FVII) and a heterologous moiety (e.g., a half-life extending moiety), and the second polypeptide chain comprises a heavy chain of the clotting factor (e.g., FVII, FIX, or FX) and a targeting moiety, which binds
- the phrases “which binds to a platelet,” “binding to a platelet,” and variants thereof generally refer to the specific binding of (i) a GPIIb/IIIa antibody or antigen-binding molecule thereof or (ii) a chimeric molecule of the present disclosure to an antigenic site on the surface of the platelet, e.g., an epitope on the extracellular domains of the ⁇ and/or ⁇ subunits of the GPIIb/IIIa receptor. It is known to a person skilled in the art that GPIIb/IIIa is present in two pools, a plasma membrane pool present in the platelet's resting state and an internal pool of GPIIb/IIIa which is expressed upon platelet activation.
- the binding of an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof to platelets, or the binding of a chimeric molecule of the present disclosure to platelets can refer to binding to the plasma membrane pool and/or to the internal pool of GPIIb/IIIa.
- the chimeric molecule comprises a first polypeptide chain and a second polypeptide chain, which are associated with each other, (1) wherein the first polypeptide chain comprises CF L -H or H-CF L and the second polypeptide chain comprises CF H -Ab or Ab-CF H ; (2) wherein the first polypeptide chain comprises CF L -Ab or Ab-CF L and the second polypeptide chain comprises CF H —H or H-CF H ; (3) wherein the first polypeptide chain comprises CF L -H-Ab or Ab-H-CF L and the second polypeptide chain comprises CF H ; or (4) wherein the first polypeptide chain comprises CF L -Ab-H or H-Ab-CF L and the second polypeptide chain comprises CF H ; wherein, H is a heterologous moiety (e.g., a half-life extending moiety), CF H is a heavy chain of a clotting factor (e.g., FVII), CF L is a heterologous
- the association between the first polypeptide chain and the second polypeptide chain in the chimeric molecule is a covalent bond or a non-covalent bond.
- the association between the first polypeptide chain and the second polypeptide chain in the chimeric molecule is a covalent bond between the heavy chain and the light chain of the clotting factor (e.g., FVII, FIX, or FX).
- the covalent bond is a disulfide bond.
- the present disclosure also provides a chimeric molecule comprising a single polypeptide chain, which comprises, from N terminus to C terminus, (i) a light chain of a clotting factor (e.g., FVII, FIX, or FX), a heterologous moiety (e.g., a half-life extending moiety), a protease cleavage site, a heavy chain of the clotting factor (e.g., FVII, FIX, or FX), and a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof) which binds to a platelet or (ii) a light chain of a clotting factor (e.g., FVII), a targeting moiety, which binds to a platelet, a protease cleavage site, a heavy chain of the clotting factor (e.g., FVII, FIX, or FX), and
- the clotting factor is FVII. In other embodiments, the clotting factor is FIX or FX. In yet other embodiments, the clotting factor is FVII, FIX, or FX.
- the protease cleavage site is an intracellular processing site. In some embodiments, the intracellular processing site is processed by a proprotein convertase. In some embodiments, the proprotein convertase is selected from the group consisting of PC5, PACE, PC7, and any combinations thereof.
- heterologous moiety or moieties of the chimeric molecules disclosed herein can comprise, consist of, or consist essentially of, for example, prophylactic and/or therapeutic agents (e.g., clotting factors), molecules capable of improving a pharmacokinetic (PK) property (e.g., plasma half-life extending moieties), and detectable moieties (e.g., fluorescent molecules or radionuclides).
- the heterologous moiety comprises a clotting factor (e.g., a Factor VII).
- a heterologous moiety comprises a molecule that can modify a physicochemical property of a chimeric molecule lacking such heterologous moiety.
- a heterologous moiety can improve one or more pharmacokinetic properties without significantly affecting its biological activity or function (e.g., procoagulant activity in chimeric molecules comprising a clotting factor).
- a heterologous moiety increases stability of the chimeric molecule of the invention or a fragment thereof.
- the heterologous moiety is a polypeptide comprising, consisting essentially of, or consisting of at least about 10, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2500, 3000, or 4000 amino acids.
- the heterologous moiety is a polypeptide comprising, consisting essentially of, or consisting of about 100 to about 200 amino acids, about 200 to about 300 amino acids, about 300 to about 400 amino acids, about 400 to about 500 amino acids, about 500 to about 600 amino acids, about 600 to about 700 amino acids, about 700 to about 800 amino acids, about 800 to about 900 amino acids, or about 900 to about 1000 amino acids.
- heterologous moieties are discussed below.
- the chimeric molecules of this disclosure comprise at least one polypeptide heterologous moiety which is (i) a clotting factor, or (ii) a procoagulant peptide (e.g., a synthetic procoagulant peptide).
- Blood coagulation is a process that involves a complex interaction of various blood factors that eventually result in a fibrin clot.
- the blood factor which participate in what has been referred to as the coagulation “cascade”, are enzymatically inactive proteins (proenzymes or zymogens) that are converted to proteolytic enzymes by the action of an activator (which itself is an activated clotting factor).
- Coagulation factors that have undergone such a conversion are generally referred to as “active factors”, and are designated by the addition of the letter “a” to the name of the coagulation factor (e.g. Factor VIIa).
- the clotting factor is independently selected from the group consisting of factor FVII (“FVII”), factor IX (“FIX”), or factor X (“FX”), and any combinations thereof.
- the clotting factor can be, for example, FVII zymogen, activatable FVII, activated FVII (FVIIa), FIX zymogen, activatable FIX, activated FIX (FIXa), FX zymogen, activatable FX, or activated FX (FXa).
- the clotting factor can comprise a single polypeptide chain or two polypeptide chains (I the heavy chain and the light chain of FVII).
- the chimeric molecule comprises a FVII or activated FVII (FVIIa) clotting factor.
- the chimeric molecule of the invention comprises a FIX or activated FIX (FIXa) clotting factor. In other embodiments, the chimeric molecule comprises a FX or activated FX (FXa) clotting factor.
- the chimeric molecule comprises a single clotting factor, which in the chimeric molecule is represented by a formula as H, H1 or H2.
- the chimeric molecule comprises two clotting factors.
- the two clotting factors are the same, whereas in other embodiments, the two clotting factors are different.
- one clotting factor is a fragment of a clotting factor (e.g., a heavy chain of a clotting factor such as FVII) and the second clotting factor is a fragment of the same clotting factor (e.g., a light chain of a clotting factor such as FVIII).
- the chimeric molecule comprises more than two clotting factors.
- the chimeric molecule comprises a clotting factor which is a mature form of Factor VII or a variant thereof.
- Factor VII Factor VII
- FVII, F7 also referred to as Factor 7, coagulation factor VII, serum factor VII, serum prothrombin conversion accelerator, SPCA, proconvertin and eptacog alpha
- FVII includes a Gla domain, two EGF domains (EGF-1 and EGF-2), and a serine protease domain (or peptidase Si domain) that is highly conserved among all members of the peptidase Si family of serine proteases, such as for example with chymotrypsin.
- the chimeric molecule comprises a Factor VIIa.
- the Factor VIIa is recombinant.
- FVII can occur as a single chain zymogen, an activated zymogen-like two-chain polypeptide, or a fully activated two-chain form.
- the zymogen composed of a single chain polypeptide is converted to a two-chain form connected by disulfide bonds by the action of Factor Xa in the presence of calcium ions and phospholipids, thrombin, or by the action of factor XIIa (without additional cofactors).
- This hydrolysis of Factor VII is accompanied by an at least 85-fold increase in the Factor VII coagulant activity compared to the single chain form (see, e.g., Radcliffe et al., J. Biol.
- the amino acid sequence of the B isoform of FVII zymogen is provided below (the signal sequence (boldened), propeptide sequence (underlined); the peptide bond between R and I (boldened and underlined) is cleaved to activate FVII):
- the chimeric molecules of this disclosure can include any FVII zymogen (e.g., the A or B isoforms) so long as intended results are achieved (e.g., effectiveness in treatment of a coagulation or hemostatic disorder).
- FVII zymogen e.g., the A or B isoforms
- amino acid sequence of the light chain of FVII is provided below:
- amino acid sequence of the heavy chain of FVII is provided below:
- This disclosure also encompasses any allelic variants of FVII.
- FVII variants that are encompassed by this disclosure include those with increased specific activity, e.g., mutations that increase the activity of FVII by increasing its enzymatic activity (K cat or K m ).
- Such variants have been described in the art and include, e.g., mutant forms of the molecule as described for example in Persson, Semin Hematol., 41 (1Suppl 1):89-92 (2004); Persson et al., Proc. Natl. Acad Sci. USA 98:13583 (2001); Petrovan and Ruf, J. Biol. Chem. 276:6616 (2001); Persson et al., J. Biol. Chem.
- a variant form of FVII includes mutations, e.g., V158D-E296V-M298Q.
- a variant form of FVII includes a replacement of amino acids 608-619 (LQQSRKVGDSPN (SEQ ID NO:82), corresponding to the 170-loop) from the FVII mature sequence with amino acids EASYPGK (SEQ ID NO:83) from the 170-loop of trypsin.
- High specific activity variants of FVII are also known in the art. For example, Simioni et al. ( N. E. Journal of Medicine 361:1671, 2009) describe an R338L mutation. Chang et al. ( J. Biol. Chem.
- FVIIa Full activation, which occurs upon conformational change from a zymogen-like form, occurs upon binding to its co-factor, i.e., tissue factor. Also, mutations can be introduced that result in the conformation change in the absence of tissue factor.
- co-factor i.e., tissue factor.
- reference to FVIIa includes both two-chain forms thereof: the zymogen-like form, and the fully activated two-chain form.
- the chimeric molecule comprises a clotting factor which is a mature form of Factor IX or a variant thereof.
- Factor IX circulates as a 415 amino acid, single chain plasma zymogen. See, Vysotchin et al., J Biol. Chem. 268:8436 (1993).
- the amino acid sequence of FIX zymogen is provided below (the signal sequence is underlined (1-28); the propeptide sequence (29-46) is boldened):
- the zymogen of FIX is activated by FXIa or by the tissue factor/FVIIa complex. Specific cleavages between arginine-alanine 145-146 and arginine-valine 180-181 result in a light chain and a heavy chain linked by a single disulfide bond between cysteine 132 and cysteine 289 (Bajaj et al., Biochemistry 22:4047 (1983)).
- FIX The structural organization of FIX is similar to that of the vitamin K-dependent blood clotting proteins FVII, FX and protein C.
- the approximately 45 amino acids of the amino terminus comprise the gamma-carboxyglutamic acid, or Gla, domain.
- This is followed by two epidermal growth factor homology domains (EGF), an activation peptide and the catalytic “heavy chain” which is a member of the serine protease family (Vysotchin et al., J. Biol. Chem. 268:8436 (1993); Spitzer et al., Biochemical Journal 265:219 (1990); Brandstetter et al., Proc. Natl. Acad Sci. USA 92:9796 (1995)).
- EGF epidermal growth factor homology domains
- the chimeric molecule comprises a clotting factor which is a mature form of Factor X.
- Factor X is a vitamin-K dependent glycoprotein with a molecular weight of 58.5 kDa, which is secreted from liver cells into the plasma as a zymogen.
- factor X is produced as a prepropeptide with a signal peptide consisting in total of 488 amino acids.
- the amino acid sequence of FX zymogen is provided below (the signal sequence (1-23) is underlined and the propeptide (24-40) is boldened):
- the signal peptide is cleaved off by signal peptidase during export into the endoplasmic reticulum.
- the propeptide sequence is cleaved off after gamma carboxylation took place at the first 11 glutamic acid residues at the N-terminus of the mature N-terminal chain.
- a further processing step occurs by cleavage between Arg182 and Ser183. This processing step also leads concomitantly to the deletion of the tripeptide Arg180-Lys181-Arg182.
- the resulting secreted factor X zymogen consists of an N-terminal light chain of 139 amino acids (M, 16,200) and a C-terminal heavy chain of 306 amino acids (M, 42,000) which are covalently linked via a disulfide bridge between Cys172 and Cys342. Further posttranslational processing steps include the ⁇ -hydroxylation of Asp103 as well as N- and O-type glycosylation.
- heterologous moieties in the chimeric molecules disclosed herein can also comprise precursor truncated forms thereof that have activity, allelic variants and species variants, variants encoded by splice variants, and other variants, including polypeptides that have at least 40%, 45%, 50%, 55%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or more sequence identity to the mature form of the clotting factor and which retain the ability to promote clot formation.
- modified FVII polypeptides and variants thereof which retain at least one activity of FVII, such as TF binding, factor X binding, phospholipid binding, and/or coagulant activity of FVII can be employed.
- the activity can be altered, such as reduced or increased, as compared to a wild-type clotting factor so long as the level of activity retained is sufficient to yield a detectable effect.
- modified polypeptides include, but are not limited to, tissue-specific isoforms and allelic variants thereof, synthetic molecules prepared by translation of nucleic acids, proteins generated by chemical synthesis, such as syntheses that include ligation of shorter polypeptides, through recombinant methods, proteins isolated from human and non-human tissue and cells, chimeric polypeptides and modified forms thereof.
- the clotting factors can also consist of fragments or portions of WT molecules that are of sufficient length or include appropriate regions to retain at least one activity (upon activation if needed) of a full-length mature polypeptide. Exemplary clotting factor variants are known in the art.
- the “Gla domain” refers to the conserved membrane binding motif which is present in vitamin K-dependent proteins, such as prothrombin, coagulation factors VII, IX and X, proteins C, S, and Z. These proteins require vitamin K for the posttranslational synthesis of ⁇ -carboxyglutamic acid, an amino acid clustered in the N-terminal Gla domain of these proteins. All glutamic residues present in the domain are potential carboxylation sites and many of them are therefore modified by carboxylation. In the presence of calcium ions, the Gla domain interacts with phospholipid membranes that include phosphatidylserine. The Gla domain also plays a role in binding to the FVIIa cofactor, tissue factor (TF).
- TF tissue factor
- the Gla domain of FVIIa is loaded with seven Ca 2+ ions, projects three hydrophobic side chains in the direction of the cell membrane for interaction with phospholipids on the cell surface, and has significant contact with the C-terminal domain of TF.
- the Gla domain of factor VII comprises the uncommon amino acid ⁇ -carboxyglutamic acid (Gla), which plays a vital role in the binding of clotting factors to negatively charged phospholipid surfaces.
- the Gla domain is responsible for the high-affinity binding of calcium ions. It starts at the N-terminal extremity of the mature form of proteins and ends with a conserved aromatic residue.
- a conserved Gla-x(3)-Gla-x-Cys motif is found in the middle of the domain which seems to be important for substrate recognition by the carboxylase.
- Gla domain has been found to be important in the sequence of events whereby the protease domain of FVIIa initiates contact with sTF (Osterlund et al., Biochem. Biophys. Res. Commun. 337:1276 (2005)).
- clearance of clotting factors can be significantly mediated through Gla interactions, e.g., on liver cells and clearance receptors, e.g., EPCR.
- the chimeric molecule comprises a heterologous moiety comprising a clotting factor modified to lack a Gla domain.
- the Gla domain is responsible for mediating clearance of clotting factors via multiple pathways, such as binding to liver cells, clearance receptors such as EPCR, etc. Thus, eliminating the Gla domain has beneficial effects on half-life of clotting factors.
- Gla domain is also generally required for activity by localizing clotting factors to sites of coagulation, the inclusion of a platelet targeting domain moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof) targets the Gla deleted clotting factor to platelets.
- the chimeric molecule comprises a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof) and a heterologous moiety comprising a clotting factor that lacks a Gla domain.
- a targeting moiety e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof
- a heterologous moiety comprising a clotting factor that lacks a Gla domain.
- the Gla domain is present at the amino terminus of the light chain and consists of amino acids 1-35.
- the Gla domains of the exemplary clotting factors disclosed herein are known in the art.
- the Gla domain can be removed using standard molecular biology techniques, replaced with a targeting domain, and the modified light chain incorporated into a construct of the invention.
- a cleavage site can be introduced into constructs lacking a Gla domain to facilitate activation of the molecule.
- such a cleavage site can be introduced between the amino acids that are
- a cleavage site can be introduced into chimeric molecules comprising a clotting factor that lacks a Gla domain to facilitate activation of the molecule.
- a cleavage site can be introduced between the amino acids that are cleaved when the clotting factor is activated (e.g., between amino acids 152 and 153 in the case of Factor VII).
- Exemplary clotting factors lacking a Gla domain are known in the art.
- Exemplary clotting factors are those of mammalian, e.g., human, origin.
- the chimeric molecule comprises at last one heterologous moiety that is a “half-life extending moiety.”
- Half-life extending moieties can comprise, for example, (i) XTEN polypeptides; (ii) Fc; (iii) albumin, (iv) albumin binding polypeptide or fatty acid, (v) the C-terminal peptide (CTP) of the (3 subunit of human chorionic gonadotropin, (vi) PAS; (vii) HAP; (viii) transferrin; (ix) polyethylene glycol (PEG); (x) hydroxyethyl starch (HES), (xi) polysialic acids (PSAs); (xii) a clearance receptor or fragment thereof which blocks binding of the chimeric molecule to a clearance receptor; (xiii) low complexity peptides; (xiv) vWF; or (xv) any combinations thereof.
- the half-life extending moiety comprises an Fc region. In other embodiments, the half-life extending moiety comprises two Fc regions fused by a linker.
- Exemplary heterologous moieties also include, e.g., FcRn binding moieties (e.g., complete Fc regions or portions thereof which bind to FcRn), single chain Fc regions (scFc regions, e.g., as described in U.S. Publ. No. 2008-0260738, and Intl. Publ. Nos. WO 2008-012543 and WO 2008-1439545), or processable scFc regions.
- a heterologous moiety can include an attachment site for a non-polypeptide moiety such as polyethylene glycol (PEG), hydroxyethyl starch (HES), polysialic acid, or any derivatives, variants, or combinations of these moieties.
- PEG polyethylene glycol
- HES hydroxyethyl starch
- polysialic acid or any derivatives, variants, or combinations of these moieties.
- a chimeric molecule of the disclosure comprises at least one (e.g., one, two, three, or four) half-like extending moiety which increases the in vivo half-life of the chimeric molecule compared with the in vivo half-life of the corresponding chimeric molecule lacking such heterologous moiety.
- In vivo half-life of a chimeric molecule can be determined by any method known to those of skill in the art, e.g., activity assays (chromogenic assay or one stage clotting aPTT assay), ELISA, etc.
- the presence of one or more half-life extending moiety results in the half-life of the chimeric molecule to be increased compared to the half-life of the corresponding chimeric molecule lacking such one or more half-life extending moieties.
- the half-life of the chimeric molecule comprising a half-life extending moiety is at least about 1.5 times, at least about 2 times, at least about 2.5 times, at least about 3 times, at least about 4 times, at least about 5 times, at least about 6 times, at least about 7 times, at least about 8 times, at least about 9 times, at least about 10 times, at least about 11 times, or at least about 12 times longer than the in vivo half-life of the corresponding chimeric molecule lacking such half-life extending moiety.
- the half-life of the chimeric molecule comprising a half-life extending moiety is about 1.5-fold to about 20-fold, about 1.5 fold to about 15 fold, or about 1.5 fold to about 10 fold longer than the in vivo half-life of the corresponding chimeric molecule lacking such half-life extending moiety.
- the half-life of chimeric molecule comprising a half-life extending moiety is extended about 2-fold to about 10-fold, about 2-fold to about 9-fold, about 2-fold to about 8-fold, about 2-fold to about 7-fold, about 2-fold to about 6-fold, about 2-fold to about 5-fold, about 2-fold to about 4-fold, about 2-fold to about 3-fold, about 2.5-fold to about 10-fold, about 2.5-fold to about 9-fold, about 2.5-fold to about 8-fold, about 2.5-fold to about 7-fold, about 2.5-fold to about 6-fold, about 2.5-fold to about 5-fold, about 2.5-fold to about 4-fold, about 2.5-fold to about 3-fold, about 3-fold to about 10-fold, about 3-fold to about 9-fold, about 3-fold to about 8-fold, about 3-fold to about 7-fold, about 3-fold to about 6-fold, about 3-fold to about 5-fold, about 3-fold to about 4-fold, about 4-fold to about 6 fold, about 5-fold to about 7-fold, or about 6-fold to about 8 fold as
- XTEN sequence refers to extended length polypeptides with non-naturally occurring, substantially non-repetitive sequences that are composed mainly of small hydrophilic amino acids, with the sequence having a low degree or no secondary or tertiary structure under physiologic conditions.
- XTENs can serve as a carrier, conferring certain desirable pharmacokinetic, physicochemical and pharmaceutical properties when linked to a clotting factor, a heavy chain of a clotting factor, a light chain or a clotting factor, a targeting moiety, or any other sequences or molecules on the chimeric molecule.
- Such desirable properties include but are not limited to enhanced pharmacokinetic parameters and solubility characteristics.
- “XTEN” specifically excludes antibodies or antibody fragments such as single-chain antibodies or Fc fragments of a light chain or a heavy chain.
- the chimeric molecules of the invention can include a single XTEN polypeptide or two or more (e.g., two, three, four, five) XTEN polypeptides.
- a chimeric molecule comprises a FVII, a first XTEN polypeptide, a second XTEN polypeptide, and an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof.
- the chimeric molecule thus can comprise a formula of FVII-(L1)-X1-(L2)-Ab-(L3)-X2, X2-(L1)-Ab-(L2)-X1-(L3)-FVII, FVII-(L1)-X1-(L2)-X2-(L3)-Ab, or Ab-(L3)-X2-(L2)-X1-(L1)-FVII, wherein FVII comprises FVIIa, X1 is a first XTEN polypeptide, X2 is a second XTEN polypeptide, Ab is an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof as described above, L1 is a first optional linker, L2 is a second optional linker, and L3 is a third optional linker.
- a chimeric molecule comprises two polypeptide chains associated with each other, the first polypeptide chain comprising a light chain of FVII and a first XTEN polypeptide the second polypeptide chain comprising a heavy chain of FVII, a second XTEN polypeptide, and a targeting moiety, which binds to a platelet, in any order.
- a chimeric molecule comprises two polypeptide chains associated with each other, the first polypeptide chain comprising a light chain of FVII and the first XTEN polypeptide a second polypeptide chain comprising, from N-terminus to C-terminus, a heavy chain of FVII, a second XTEN polypeptide, and a targeting moiety, which binds to a platelet or a heavy chain of FVII, a targeting moiety, which binds to a platelet, and a second XTEN polypeptide.
- FVII-(L1)-X1-(L2)-Ab-(L3)-X2 in which FVII comprises FVIIa, L1 is a first optional linker, X1 is a first optional XTEN polypeptide, L2 is a second optional linker, Ab is an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof as described above (e.g., an Fab, scFv, etc.), L3 is a third optional linker, and X2 is a second XTEN polypeptide which may be the same of different from the first optional XTEN polypeptide.
- the first XTEN polypeptide is present in the molecule. Illustrative non-limiting examples of these embodiments are shown in FIGS. 17 and 20 .
- the XTEN sequence of the invention is a peptide or a polypeptide having greater than about 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1200, 1400, 1600, 1800, or 2000 amino acid residues.
- XTEN is a peptide or a polypeptide having greater than about 20 to about 3000 amino acid residues, greater than 30 to about 2500 residues, greater than 40 to about 2000 residues, greater than 50 to about 1500 residues, greater than 60 to about 1000 residues, greater than 70 to about 900 residues, greater than 80 to about 800 residues, greater than 90 to about 700 residues, greater than 100 to about 600 residues, greater than 110 to about 500 residues, or greater than 120 to about 400 residues.
- the XTEN sequence of the invention can comprise one or more sequence motif of 9 to 14 amino acid residues or an amino acid sequence at least 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the sequence motif, wherein the motif comprises, consists essentially of, or consists of 4 to 6 types of amino acids selected from the group consisting of glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P). See US 2010-0239554 A1.
- the XTEN comprises non-overlapping sequence motifs in which about 80%, or at least about 85%, or at least about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% or about 100% of the sequence consists of multiple units of non-overlapping sequences selected from a single motif family selected from TABLE 2, resulting in a family sequence.
- family means that the XTEN has motifs selected only from a single motif category from TABLE 2; i.e., AD, AE, AF, AG, AM, AQ, BC, or BD XTEN, and that any other amino acids in the XTEN not from a family motif are selected to achieve a needed property, such as to permit incorporation of a restriction site by the encoding nucleotides, incorporation of a cleavage sequence, or to achieve a better linkage to FVII.
- an XTEN sequence comprises multiple units of non-overlapping sequence motifs of the AD motif family, or of the AE motif family, or of the AF motif family, or of the AG motif family, or of the AM motif family, or of the AQ motif family, or of the BC family, or of the BD family, with the resulting XTEN exhibiting the range of homology described above.
- the XTEN comprises multiple units of motif sequences from two or more of the motif families of TABLE 2. These sequences can be selected to achieve desired physical/chemical characteristics, including such properties as net charge, hydrophilicity, lack of secondary structure, or lack of repetitiveness that are conferred by the amino acid composition of the motifs, described more fully below.
- the motifs incorporated into the XTEN can be selected and assembled using the methods described herein to achieve an XTEN of about 36 to about 3000 amino acid residues. Additional, non-limiting, examples of XTENs linked to FVII are disclosed in U.S. Patent Publication No. 2012/0263701, which is incorporated herein by reference in its entirety.
- XTEN can have varying lengths.
- the length of the XTEN polypeptide(s) is chosen based on the property or function to be achieved in the fusion protein.
- XTEN can be short or intermediate length sequence or longer sequence that can serve as carriers.
- the XTEN include short segments of about 6 to about 99 amino acid residues, intermediate lengths of about 100 to about 399 amino acid residues, and longer lengths of about 400 to about 1000 and up to about 3000 amino acid residues.
- the XTEN linked to FVII e.g., heavy chain or light chain
- a targeting moiety can have lengths of about 6, about 12, about 36, about 40, about 42, about 72, about 96, about 144, about 288, about 400, about 500, about 576, about 600, about 700, about 800, about 864, about 900, about 1000, about 1500, about 2000, about 2500, or up to about 3000 amino acid residues in length.
- the XTEN sequences is about 6 to about 50, about 50 to about 100, about 100 to 150, about 150 to 250, about 250 to 400, about 400 to about 500, about 500 to about 900, about 900 to 1500, about 1500 to 2000, or about 2000 to about 3000 amino acid residues in length.
- one or more of the XTEN used herein has about 42 amino acids, about 72 amino acids, about 108 amino acids, about 144 amino acids, about 180 amino acids, about 216 amino acids, about 252 amino acids, about 288 amino acids, about 324 amino acids, about 360 amino acids, about 396 amino acids, about 432 amino acids, about 468 amino acids, about 504 amino acids, about 540 amino acids, about 576 amino acids, about 612 amino acids, about 624 amino acids, about 648 amino acids, about 684 amino acids, about 720 amino acids, about 756 amino acids, about 792 amino acids, about 828 amino acids, about 836 amino acids, about 864 amino acids, about 875 amino acids, about 912 amino acids, about 923 amino acids, about 948 amino acids, about 1044 amino acids, about 1140
- the XTEN polypeptide used in the invention is at least 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to a sequence selected from the group consisting of AE42, AG42, AE42_2, AE42_3, AE48, AM48, AE72, AE72_2, AE72_3, AG72, AE108, AG108, AE144, AF144, AE144_2, AE144_3, AG144, AE180, AG180, AE216, AG216, AE252, AG252, AE288, AG288, AE295, AE324, AG324, AE360, AG360, AE396, AG396, AE432, AG432, AE468, AG468, AE504, AG504, AF504, AE540, AG540, AF540, AD576, AE576, AF576, AG576, AE612, AG612, AE624,
- the XTEN sequence is at least 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to an amino acid sequence selected from the group consisting of AE42, AE864, AE576, AE288, AE144, AG864, AG576, AG288, AG144, and any combinations thereof.
- the XTEN sequence is selected from the group consisting of AE42, AE864, AE576, AE288, AE144, AG864, AG576, AG288, AG144, and any combinations thereof.
- the XTEN sequence is AE144.
- the XTEN sequence is AE288.
- the amino acid sequences for certain XTEN sequences of the invention are shown in TABLE 3.
- the XTEN has less than 100% of its amino acids consisting of 4, 5, or 6 types of amino acid selected from glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P), or less than 100% of the sequence consisting of the sequence motifs from Table 2 or the XTEN sequences of Table 3, the other amino acid residues of the XTEN are selected from any of the other 14 natural L-amino acids, but are preferentially selected from hydrophilic amino acids such that the XTEN sequence contains at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least about 99% hydrophilic amino acids.
- An individual amino acid or a short sequence of amino acids other than glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P) may be incorporated into the XTEN to achieve a needed property, such as to permit incorporation of a restriction site by the encoding nucleotides, or to facilitate linking to a payload component, or incorporation of a cleavage sequence.
- the XTEN amino acids that are not glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P) are either interspersed throughout the XTEN sequence, are located within or between the sequence motifs, or are concentrated in one or more short stretches of the XTEN sequence such as at or near the N- or C-terminus.
- hydrophobic amino acids impart structure to a polypeptide, the invention provides that the content of hydrophobic amino acids in the XTEN utilized in the conjugation constructs will typically be less than 5%, or less than 2%, or less than 1% hydrophobic amino acid content.
- Hydrophobic residues that are less favored in construction of XTEN include tryptophan, phenylalanine, tyrosine, leucine, isoleucine, valine, and methionine. Additionally, one can design the XTEN sequences to contain less than 5% or less than 4% or less than 3% or less than 2% or less than 1% or none of the following amino acids: methionine (to avoid oxidation), asparagine and glutamine (to avoid deamidation). In other embodiments, the amino acid content of methionine and tryptophan in the XTEN component used in the conjugation constructs is typically less than 5%, or less than 2%, and most preferably less than 1%.
- the XTEN will have a sequence that has less than 10% amino acid residues with a positive charge, or less than about 7%, or less that about 5%, or less than about 2% amino acid residues with a positive charge, the sum of methionine and tryptophan residues will be less than 2%, and the sum of asparagine and glutamine residues will be less than 5% of the total XTEN sequence.
- the XTEN polypeptide used in the invention affects the physical or chemical property, e.g., pharmacokinetics, of the chimeric molecule of the present disclosure.
- the XTEN sequence used in the present disclosure can exhibit one or more of the following advantageous properties: conformational flexibility, enhanced aqueous solubility, high degree of protease resistance, low immunogenicity, low binding to mammalian receptors, or increased hydrodynamic (or Stokes) radii.
- the XTEN polypeptide linked to FVII or a targeting moiety in in this invention increases pharmacokinetic properties such as longer terminal half-life or increased area under the curve (AUC), so that the chimeric molecule described herein stays in vivo for an increased period of time compared to wild type clotting factor.
- the XTEN polypeptide used in this invention increases pharmacokinetic properties such as longer terminal half-life or increased area under the curve (AUC), so that the clotting factor stays in vivo for an increased period of time compared to wild type FVIIa.
- a variety of methods and assays can be employed to determine the physical/chemical properties of proteins comprising the XTEN polypeptide. Such methods include, but are not limited to analytical centrifugation, EPR, HPLC-ion exchange, HPLC-size exclusion, HPLC-reverse phase, light scattering, capillary electrophoresis, circular dichroism, differential scanning calorimetry, fluorescence, HPLC-ion exchange, HPLC-size exclusion, IR, NMR, Raman spectroscopy, refractometry, and UV/Visible spectroscopy. Additional methods are disclosed in Amau et al., Prot Expr and Purif 48, 1-13 (2006).
- XTEN polypeptides that can be used according to the present disclosure and are disclosed in U.S. Pat. Nos. 7,855,279 and 7,846,445, US Patent Publication Nos. 2009/0092582 A1, 2010/0239554 A1, 2010/0323956 A1, 2011/0046060 A1, 2011/0046061 A1, 2011/0077199 A1, 2011/0172146 A1, 2013/0017997 A1, or 2012/0263701 A1, International Patent Publication Nos. WO 2010091122 A1, WO 2010144502 A2, WO 2010144508 A1, WO 2011028228 A1, WO 2011028229 A1, or WO 2011028344 A2; or US 2012/0178691.
- the chimeric molecule comprises at least one heterologous moiety comprising a Fc region.
- Fc or “Fc region” as used herein means a functional neonatal Fc receptor (FcRn) binding partner comprising an Fc domain, variant, or fragment thereof, unless otherwise specified.
- An FcRn binding partner is any molecule that can be specifically bound by the FcRn receptor with consequent active transport by the FcRn receptor of the FcRn binding partner.
- Fc includes any variants of IgG Fc that are functional.
- Fc-FcRn contacts are all within a single Ig heavy chain.
- FcRn binding partners include, but are not limited to, whole IgG, the Fc fragment of IgG, and other fragments of IgG that include the complete binding region of FcRn.
- An Fc can comprise the CH2 and CH3 domains of an immunoglobulin with or without the hinge region of the immunoglobulin.
- Fc fragments, variants, or derivatives which maintain the desirable properties of an Fc region in a chimeric molecule, e.g., an increase in half-life, e.g., in vivo half-life.
- Myriad mutants, fragments, variants, and derivatives are described, e.g., in PCT Publication Nos. WO2011/069164, WO2012/006623, WO2012/006635, or WO 2012/006633, all of which are incorporated herein by reference in their entireties.
- the chimeric molecule comprises a dotting factor (e.g., a FVII), a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof), and an Fc region.
- a dotting factor e.g., a FVII
- a targeting moiety e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof
- the chimeric molecule comprises a heterologous moiety comprising one genetically fused Fc region or a portion thereof within a single polypeptide chain (i.e., a single-chain Fc (scFc) region).
- a single-chain Fc (scFc) region i.e., a single-chain Fc (scFc) region.
- scFc single-chain Fc
- An exemplary single-chain human IgG1 Fc amino acid sequence is provided below (the Gly/Ser linker is underlined):
- the unprocessed polypeptides comprise at least two immunoglobulin constant regions or portions thereof (e.g., Fc moieties or domains (e.g., 2, 3, 4, 5, 6, or more Fc moieties or domains)) within the same linear polypeptide chain that are capable of folding (e.g., intramolecularly or intermolecularly folding) to form one functional scFc region which is linked by an Fc peptide linker.
- Fc moieties or domains e.g., 2, 3, 4, 5, 6, or more Fc moieties or domains
- a polypeptide of the invention is capable of binding, via its scFc region, to at least one Fc receptor (e.g., an FcRn, an Fc ⁇ R receptor (e.g., Fc ⁇ RIII), or a complement protein (e.g., C1q)) in order to improve half-life or trigger an immune effector function (e.g., antibody-dependent cytotoxicity (ADCC), phagocytosis, or complement-dependent cytotoxicity (CDCC) and/or to improve manufacturability).
- Fc receptor e.g., an FcRn, an Fc ⁇ R receptor (e.g., Fc ⁇ RIII), or a complement protein (e.g., C1q)
- ADCC antibody-dependent cytotoxicity
- phagocytosis phagocytosis
- CDC complement-dependent cytotoxicity
- the chimeric molecule comprises a dotting factor (e.g., a FVII), a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof), and an scFc region.
- a dotting factor e.g., a FVII
- a targeting moiety e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof
- an scFc region e.g., a dotting factor (e.g., a FVII)
- a targeting moiety e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof
- the chimeric molecule comprises a heterologous moiety comprising albumin or a functional fragment thereof.
- Human serum albumin HSA, or HA
- HSA Human serum albumin
- HA a protein of 609 amino acids in its full-length form
- albumin includes full-length albumin or a functional fragment, variant, derivative, or analog thereof. Examples of albumin or the fragments or variants thereof are disclosed in US Pat. Publ. Nos. US2008/0194481, US2008/0004206, US2008/0161243, US2008/0261877, or US2008/0153751 or PCT Appl. Publ.
- the chimeric molecule comprises a clotting factor (e.g., a FVII), a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof), and an albumin.
- a clotting factor e.g., a FVII
- a targeting moiety e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof
- an albumin e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof
- a heterologous moiety can comprise an albumin binding moiety, which comprises an albumin binding peptide, a bacterial albumin binding domain, an albumin-binding antibody fragment, or any combinations thereof.
- the albumin binding protein can be a bacterial albumin binding protein, an antibody or an antibody fragment including domain antibodies (see, e.g., U.S. Pat. No. 6,696,245).
- An albumin binding protein for example, can be a bacterial albumin binding domain, such as the one of streptococcal protein G (Konig and Skerra (1998) J. Immunol. Methods 218, 73-83).
- albumin binding peptides that can be used as conjugation partner are, for instance, those having a Cys-Xaa 1 -Xaa 2 -Xaa 3 -Xaa 4 -Cys consensus sequence (SEQ ID NO: 134), wherein Xaa 1 is Asp, Asn, Ser, Thr, or Trp; Xaa 2 is Asn, Gln, H is, Ile, Leu, or Lys; Xaa 3 is Ala, Asp, Phe, Trp, or Tyr; and Xaa 4 is Asp, Gly, Leu, Phe, Ser, or Thr as described in U.S. Pub. No. US2003/0069395 or Dennis et al. (2002) J. Biol. Chem. 277, 35035-35043.
- albumin-binding peptides include a series of peptides having the core sequence DICLPRWGCLW (SEQ ID NO:135) such as:
- albumin binding moiety 2-(3-maleimidopropanamido)-6-(4-(4-iodophenyl)butanamido) hexanoate (“Albu” tag) as disclosed by Trussel et al., Bioconjugate Chem. 20:2286-2292 (2009).
- Fatty acids, in particular long chain fatty acids (LCFA) and long chain fatty acid-like albumin-binding compounds can be used to extend the in vivo half-life of chimeric molecules of the invention.
- LCFA-like albumin-binding compound 16-(1-(3-(9-(((2,5-dioxopyrrolidin-1-yloxy)carbonyloxy)-methyi)-7-sulfo-9H-fluoren-2-ylamino)-3-oxopropyl)-2,5-dioxopyrrolidin-3-ylthio) hexadecanoic acid (see, e.g., WO 2010/140148).
- the chimeric molecule comprises a clotting factor (e.g., a FVII), a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof), and an albumin binding polypeptide or lipid.
- a clotting factor e.g., a FVII
- a targeting moiety e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof
- an albumin binding polypeptide or lipid e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof
- a chimeric molecule disclosed herein comprises at least one heterologous moiety comprising one 13 subunit of the C-terminal peptide (CTP) of human chorionic gonadotropin or fragment, variant, or derivative thereof.
- CTP C-terminal peptide
- the insertion of one or more CTP peptides into a recombinant protein is known to increase the in vivo half-life of that protein. See, e.g., U.S. Pat. No. 5,712,122, incorporated by reference herein in its entirety.
- Exemplary CTP peptides include DPRFQDSSSSKAPPPSLPSPSRLPGPSDTPIL (SEQ ID NO:140) or SSSSKAPPPSLPSPSRLPGPSDTPILPQ (SEQ ID NO:141). See, e.g., U.S. Patent Appl. Publ. No. US 2009/0087411, incorporated by reference.
- the chimeric molecule comprises two heterologous moieties that are CTP sequences. In some embodiments, three of the heterologous moieties are CTP sequences. In some embodiments, four of the heterologous moieties are CTP sequences. In some embodiments, five of the heterologous moieties are CTP sequences. In some embodiments, six or more of the heterologous moieties are CTP sequences.
- the chimeric molecule comprises a clotting factor (e.g., a FVII), a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof), and a CTP.
- a clotting factor e.g., a FVII
- a targeting moiety e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof
- CTP CTP
- At least one heterologous moiety is a PAS sequence.
- a PAS sequence as used herein, means an amino acid sequence comprising mainly alanine and serine residues or comprising mainly alanine, serine, and proline residues, the amino acid sequence forming random coil conformation under physiological conditions.
- the PAS sequence is a building block, an amino acid polymer, or a sequence cassette comprising, consisting essentially of, or consisting of alanine, serine, and proline which can be used as a part of the heterologous moiety in the chimeric molecule.
- an amino acid polymer also can form random coil conformation when residues other than alanine, serine, and proline are added as a minor constituent in the PAS sequence.
- amino acids other than alanine, serine, and proline can be added in the PAS sequence to a certain degree, e.g., up to about 12%, i.e., about 12 of 100 amino acids of the PAS sequence, up to about 10%, i.e., about 10 of 100 amino acids of the PAS sequence, up to about 9%, i.e., about 9 of 100 amino acids, up to about 8%, i.e., about 8 of 100 amino acids, about 6%, i.e., about 6 of 100 amino acids, about 5%, i.e., about 5 of 100 amino acids, about 4%, i.e., about 4 of 100 amino acids, about 3%, i.e., about 3 of 100 amino acids, about 2%, i.e., about 2 of 100 amino acids, about 1%, i.e., about 1 of 100 of the amino acids.
- amino acids different from alanine, serine and proline can be selected from Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Thr, Trp, Tyr, and Val.
- the PAS sequence stretch forms a random coil conformation and thereby can mediate an increased in vivo and/or in vitro stability to the chimeric molecule. Since the random coil domain does not adopt a stable structure or function by itself, the biological activity mediated by the activatable clotting factor in the chimeric molecule is essentially preserved.
- the PAS sequences that form random coil domain are biologically inert, especially with respect to proteolysis in blood plasma, immunogenicity, isoelectric point/electrostatic behavior, binding to cell surface receptors or internalization, but are still biodegradable, which provides clear advantages over synthetic polymers such as PEG.
- Non-limiting examples of the PAS sequences forming random coil conformation comprise an amino acid sequence selected from the group consisting of ASPAAPAPASPAAPAPSAPA (SEQ ID NO:142), AAPASPAPAAPSAPAPAAPS (SEQ ID NO:143), APSSPSPSAPSSPSPASPSS (SEQ ID NO:144), APSSPSPSAPSSPSPASPS (SEQ ID NO:145), SSPSAPSPSSPASPSPSSPA (SEQ ID NO:146), AASPAAPSAPPAAASPAAPSAPPA (SEQ ID NO:147), and ASAAAPAAASAAASAPSAAA (SEQ ID NO:148), or any combinations thereof. Additional examples of PAS sequences are known from, e.g., US Pat. Publ. No. 2010/0292130 and PCT Appl. Publ. No. WO2008/155134 A1.
- the chimeric molecule comprises a clotting factor (e.g., a FVII), a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof), and a PAS.
- a clotting factor e.g., a FVII
- a targeting moiety e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof
- PAS a PAS.
- At least one heterologous moiety is a glycine-rich homo-amino-acid polymer (HAP).
- HAP sequence can comprise a repetitive sequence of glycine, which has at least 50 amino acids, at least 100 amino acids, 120 amino acids, 140 amino acids, 160 amino acids, 180 amino acids, 200 amino acids, 250 amino acids, 300 amino acids, 350 amino acids, 400 amino acids, 450 amino acids, or 500 amino acids in length.
- the HAP sequence is capable of extending half-life of a moiety fused to or linked to the HAP sequence.
- Non-limiting examples of the HAP sequence includes, but are not limited to (Gly) n , (SEQ ID NO:149), (Gly 4 Ser) n (SEQ ID NO:150), or Ser(Gly 4 Ser) n (SEQ ID NO:151), wherein n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20.
- n is 20, 21, 22, 23, 24, 25, 26, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40.
- n is 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, or 200. See, e.g., Schlapschy M et al., Protein Eng. Design Selection, 20: 273-284 (2007).
- the chimeric molecule comprises a clotting factor (e.g., a FVII), a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof), and a HAP.
- a clotting factor e.g., a FVII
- a targeting moiety e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof
- HAP HAP
- At least one heterologous moiety is transferrin or a peptide or fragment, variant, or derivative thereof.
- Any transferrin can be used to make the chimeric molecules of the invention.
- wild-type human TF TF
- TF is a 679 amino acid protein, of approximately 75 KDa (not accounting for glycosylation), with two main domains, N (about 330 amino acids) and C (about 340 amino acids), which appear to originate from a gene duplication.
- N domain comprises two subdomains, N1 domain and N2 domain
- C domain comprises two subdomains, C1 domain and C2 domain.
- the transferrin heterologous moiety includes a transferrin splice variant.
- a transferrin splice variant can be a splice variant of human transferrin, e.g., Genbank Accession AAA61140.
- the transferrin portion of the chimeric molecule includes one or more domains of the transferrin sequence, e.g., N domain, C domain, N1 domain, N2 domain, C1 domain, C2 domain or any combinations thereof.
- Transferrin transports iron through transferrin receptor (TfR)-mediated endocytosis. After the iron is released into an endosomal compartment and Tf-TfR complex is recycled to cell surface, the Tf is released back extracellular space for next cycle of iron transporting.
- Tf possesses a long half-life that is in excess of 14-17 days (Li et al., Trends Pharmacol. Sci. 23:206-209 (2002)).
- Transferrin fusion proteins have been studied for half-life extension, targeted deliver for cancer therapies, oral delivery and sustained activation of proinsulin (Brandsma et al., Biotechnol. Adv., 29: 230-238 (2011); Bai et al., Proc. Natl. Acad. Sci. USA 102:7292-7296 (2005); Kim et al., J. Pharmacol. Exp. Ther., 334:682-692 (2010); Wang et al., J. Controlled Release 155:386-392 (2011)).
- the chimeric molecule comprises a clotting factor (e.g., a FVII), a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof), and a transferrin.
- a clotting factor e.g., a FVII
- a targeting moiety e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof
- transferrin e.g., transferrin
- At least one heterologous moiety is a soluble polymer known in the art, including, but not limited to, polyethylene glycol, ethylene glycol/propylene glycol copolymers, carboxymethylcellulose, dextran, or polyvinyl alcohol.
- the chimeric molecule comprising a PEG heterologous moiety further comprises a heterologous moiety selected from an immunoglobulin constant region or portion thereof (e.g., an Fc region), a PAS sequence, HES, and albumin, fragment, or variant thereof.
- the chimeric molecule comprises an activatable clotting factor or fragment thereof and a PEG heterologous moiety, wherein the chimeric molecule further comprises a heterologous moiety selected from an immunoglobulin constant region or portion thereof (e.g., an Fc moiety), a PAS sequence, HES, and albumin, fragment, or variant thereof.
- a heterologous moiety selected from an immunoglobulin constant region or portion thereof (e.g., an Fc moiety), a PAS sequence, HES, and albumin, fragment, or variant thereof.
- the chimeric molecule comprises a clotting factor or fragment thereof, a second clotting factor or fragment thereof, and a PEG heterologous moiety, wherein the chimeric molecule further comprises a heterologous moiety selected from an immunoglobulin constant region or portion thereof (e.g., an Fc moiety), a PAS sequence, HES, and albumin, fragment, or variant thereof.
- an immunoglobulin constant region or portion thereof e.g., an Fc moiety
- a PAS sequence e.g., HES, and albumin, fragment, or variant thereof.
- the chimeric molecule comprises a clotting factor or fragment thereof, a synthetic procoagulant polypeptide, and a PEG heterologous moiety, wherein the chimeric molecule further comprises a heterologous moiety selected from an immunoglobulin constant region or portion thereof (e.g., an Fc region), a PAS sequence, HES, and albumin, fragment, or variant thereof.
- an immunoglobulin constant region or portion thereof e.g., an Fc region
- PAS sequence e.g., HES, and albumin, fragment, or variant thereof.
- the chimeric molecule comprises two synthetic procoagulant peptides and a PEG heterologous moiety, wherein the chimeric molecule further comprises a heterologous moiety selected from the group consisting of an immunoglobulin constant region or portion thereof (e.g., an Fc region), a PAS sequence, HES, and albumin, fragment, or variant thereof.
- a heterologous moiety selected from the group consisting of an immunoglobulin constant region or portion thereof (e.g., an Fc region), a PAS sequence, HES, and albumin, fragment, or variant thereof.
- the chimeric molecule comprises a clotting factor or fragment thereof, a clotting factor cofactor (e.g., Tissue Factor if the clotting factor is Factor VII), and a PEG heterologous moiety, wherein the chimeric molecule further comprises a heterologous moiety selected from an immunoglobulin constant region or portion thereof (e.g., an Fc region), a PAS sequence, HES, and albumin, fragment, or variant thereof.
- a clotting factor cofactor e.g., Tissue Factor if the clotting factor is Factor VII
- PEG heterologous moiety e.g., a PEG heterologous moiety
- the chimeric molecule further comprises a heterologous moiety selected from an immunoglobulin constant region or portion thereof (e.g., an Fc region), a PAS sequence, HES, and albumin, fragment, or variant thereof.
- the polymer can be of any molecular weight, and can be branched or unbranched.
- the molecular weight is between about 1 kDa and about 100 kDa for ease in handling and manufacturing. Other sizes can be used, depending on the desired profile (e.g., the duration of sustained release desired, the effects, if any on biological activity, the ease in handling, the degree or lack of antigenicity and other known effects of the polyethylene glycol to a protein or analog).
- the polyethylene glycol can have an average molecular weight of about 200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10,000, 10,500, 11,000, 11,500, 12,000, 12,500, 13,000, 13,500, 14,000, 14,500, 15,000, 15,500, 16,000, 16,500, 17,000, 17,500, 18,000, 18,500, 19,000, 19,500, 20,000, 25,000, 30,000, 35,000, 40,000, 45,000, 50,000, 55,000, 60,000, 65,000, 70,000, 75,000, 80,000, 85,000, 90,000, 95,000, or 100,000 kDa.
- the polyethylene glycol can have a branched structure.
- Branched polyethylene glycols are described, for example, in U.S. Pat. No. 5,643,575; Morpurgo et al., Appl. Biochem. Biotechnol. 56:59-72 (1996); Vorobjev et al., Nucleosides Nucleotides 18:2745-2750 (1999); and Caliceti et al., Bioconjug. Chem. 10:638-646 (1999), each of which is incorporated herein by reference in its entirety.
- the number of polyethylene glycol moieties attached to each chimeric molecule of the invention can also vary.
- the PEGylated chimeric molecule can be linked, on average, to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 17, 20, or more polyethylene glycol molecules.
- the average degree of substitution within ranges such as 1-3, 2-4, 3-5, 4-6, 5-7, 6-8, 7-9, 8-10, 9-11, 10-12, 11-13, 12-14, 13-15, 14-16, 15-17, 16-18, 17-19, or 18-20 polyethylene glycol moieties per protein molecule. Methods for determining the degree of substitution are discussed, for example, in Delgado et al., Crit. Rev. Thera. Drug Carrier Sys. 9:249-304 (1992).
- the chimeric molecule can be PEGylated.
- a PEGylated chimeric molecule comprises at least one polyethylene glycol (PEG) molecule.
- the polymer can be water-soluble.
- Non-limiting examples of the polymer can be poly(alkylene oxide), poly(vinyl pyrrolidone), poly(vinyl alcohol), polyoxazoline, or poly(acryloylmorpholine). Additional types of polymer-conjugation to clotting factors are disclosed in U.S. Pat. No. 7,199,223. See also, Singh et al. Curr. Med. Chem. 15:1802-1826 (2008).
- the chimeric molecule comprises a clotting factor (e.g., a FVII), a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof), and a PEG.
- a clotting factor e.g., a FVII
- a targeting moiety e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof
- PEG a PEG
- At least one heterologous moiety is a polymer, e.g., hydroxyethyl starch (HES) or a derivative thereof.
- HES hydroxyethyl starch
- HES is a derivative of naturally occurring amylopectin and is degraded by alpha-amylase in the body.
- HES is a substituted derivative of the carbohydrate polymer amylopectin, which is present in corn starch at a concentration of up to 95% by weight.
- HES exhibits advantageous biological properties and is used as a blood volume replacement agent and in hemodilution therapy in the clinics (Sommermeyer et al., Whypharmazie, 8(8), 271-278 (1987); and Weidler et al., Arzneim .- Anlagen/Drug Res., 41, 494-498 (1991)).
- Amylopectin contains glucose moieties, wherein in the main chain alpha-1,4-glycosidic bonds are present and at the branching sites alpha-1,6-glycosidic bonds are found.
- the physical-chemical properties of this molecule are mainly determined by the type of glycosidic bonds. Due to the nicked alpha-1,4-glycosidic bond, helical structures with about six glucose-monomers per turn are produced.
- the physico-chemical as well as the biochemical properties of the polymer can be modified via substitution. The introduction of a hydroxyethyl group can be achieved via alkaline hydroxyethylation.
- HES is mainly characterized by the molecular weight distribution and the degree of substitution.
- the degree of substitution denoted as DS, relates to the molar substitution, is known to the skilled people. See Sommermeyer et al., Rohpharmazie, 8(8), 271-278 (1987), as cited above, in particular p. 273.
- hydroxyethyl starch has a mean molecular weight (weight mean) of from 1 to 300 kD, from 2 to 200 kD, from 3 to 100 kD, or from 4 to 70 kD.
- Hydroxyethyl starch can further exhibit a molar degree of substitution of from 0.1 to 3, preferably 0.1 to 2, more preferred, 0.1 to 0.9, preferably 0.1 to 0.8, and a ratio between C2:C6 substitution in the range of from 2 to 20 with respect to the hydroxyethyl groups.
- HES having a mean molecular weight of about 130 kD is a HES with a degree of substitution of 0.2 to 0.8 such as 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, or 0.8, preferably of 0.4 to 0.7 such as 0.4, 0.5, 0.6, or 0.7.
- HES with a mean molecular weight of about 130 kD is VOLUVEN® from Fresenius.
- VOLUVEN® is an artificial colloid, employed, e.g., for volume replacement used in the therapeutic indication for therapy and prophylaxis of hypovolemia.
- VOLUVEN® is a mean molecular weight of 130,000+/ ⁇ 20,000 D, a molar substitution of 0.4 and a C2:C6 ratio of about 9:1.
- ranges of the mean molecular weight of hydroxyethyl starch are, e.g., 4 to 70 kD or 10 to 70 kD or 12 to 70 kD or 18 to 70 kD or 50 to 70 kD or 4 to 50 kD or 10 to 50 kD or 12 to 50 kD or 18 to 50 kD or 4 to 18 kD or 10 to 18 kD or 12 to 18 kD or 4 to 12 kD or 10 to 12 kD or 4 to 10 kD.
- the mean molecular weight of hydroxyethyl starch employed is in the range of from more than 4 kD and below 70 kD, such as about 10 kD, or in the range of from 9 to 10 kD or from 10 to 11 kD or from 9 to 11 kD, or about 12 kD, or in the range of from 11 to 12 kD) or from 12 to 13 kD or from 11 to 13 kD, or about 18 kD, or in the range of from 17 to 18 kD or from 18 to 19 kD or from 17 to 19 kD, or about 30 kD, or in the range of from 29 to 30, or from 30 to 31 kD, or about 50 kD, or in the range of from 49 to 50 kD or from 50 to 51 kD or from 49 to 51 kD.
- the heterologous moiety can be a mixture of hydroxyethyl starches having different mean molecular weights and/or different degrees of substitution and/or different ratios of C2: C6 substitution. Therefore, mixtures of hydroxyethyl starches can be employed having different mean molecular weights and different degrees of substitution and different ratios of C2: C6 substitution, or having different mean molecular weights and different degrees of substitution and the same or about the same ratio of C2:C6 substitution, or having different mean molecular weights and the same or about the same degree of substitution and different ratios of C2:C6 substitution, or having the same or about the same mean molecular weight and different degrees of substitution and different ratios of C2:C6 substitution, or having different mean molecular weights and the same or about the same degree of substitution and the same or about the same ratio of C2:C6 substitution, or having the same or about the same mean molecular weights and different degrees of substitution and the same ratio of C2:C6 substitution, or having the same or about the
- the chimeric molecule comprises a clotting factor (e.g., a FVII), a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof), and a HES.
- a clotting factor e.g., a FVII
- a targeting moiety e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof
- HES HES
- At least one heterologous moiety is a polymer, e.g., polysialic acids (PSAs) or a derivative thereof.
- PSAs polysialic acids
- Polysialic acids (PSAs) are naturally occurring unbranched polymers of sialic acid produced by certain bacterial strains and in mammals in certain cells Roth J., et al. (1993) in Polysialic Acid: From Microbes to Man, eds. Roth J., Rutishauser U., Troy F. A. (Birkhauser Verlag, Basel, Switzerland), pp 335-348.
- compositions of different polysialic acids also varies such that there are homopolymeric forms i.e. the alpha-2,8-linked polysialic acid comprising the capsular polysaccharide of E. coli strain Kl and the group-B meningococci, which is also found on the embryonic form of the neuronal cell adhesion molecule (N-CAM).
- N-CAM neuronal cell adhesion molecule
- Heteropolymeric forms also exist—such as the alternating alpha-2,8 alpha-2,9 polysialic acid of E. coli strain K92 and group C polysaccharides of N. meningitidis .
- Sialic acid can also be found in alternating copolymers with monomers other than sialic acid such as group W135 or group Y of N. meningitidis .
- Polysialic acids have important biological functions including the evasion of the immune and complement systems by pathogenic bacteria and the regulation of glial adhesiveness of immature neurons during fetal development (wherein the polymer has an anti-adhesive function) Cho and Troy, P.N.A.S, USA, 91 (1994) 11427-11431, although there are no known receptors for polysialic acids in mammals.
- the alpha-2,8-linked polysialic acid of E. coli strain Kl is also known as ‘colominic acid’ and is used (in various lengths) to exemplify the present disclosure.
- Various methods of attaching or conjugating polysialic acids to a polypeptide have been described (for example, see U.S. Pat. No. 5,846,951; WO-A-0187922, and US 2007/0191597 A1, which are incorporated herein by reference in their entireties.
- the chimeric molecule comprises a clotting factor (e.g., FVII), a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof), and a PSA.
- a clotting factor e.g., FVII
- a targeting moiety e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof
- the in vivo half-life of a chimeric molecule of the invention can be extended where the chimeric molecule comprises at least one heterologous molecule comprising a clearance receptor, fragment, variant, or derivative thereof.
- the chimeric molecule comprises Factor X
- soluble forms of clearance receptors such as the low density lipoprotein-related protein receptor LRP1, or fragments thereof, can block binding of Factor X to clearance receptors and thereby extend its in vivo half-life.
- LRP1 is a 600 kDa integral membrane protein that is implicated in the receptor-mediate clearance of a variety of proteins, such as FVIII or X. See, e.g., Narita et al., Blood 91:555-560 (1998); Lenting et al., Haemophilia 16:6-16 (2010).
- the amino acid sequence of an exemplary human LRP1 protein is provided below (signal peptide underlined and transmembrane segment boldened; NCBI Reference Sequence: CAA32112):
- LDLR low-density lipoprotein receptor
- VLDLR very low-density lipoprotein receptor
- LRP-2 megalin
- the chimeric molecule comprises a clotting factor (e.g., a FVII), a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof), and a clearance receptor, fragment, variant, or derivative thereof.
- a clotting factor e.g., a FVII
- a targeting moiety e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof
- a clearance receptor fragment, variant, or derivative thereof.
- linker or “linker moiety” (represented as L, L1, or L2 in the formulas disclosed herein) refers to a peptide or polypeptide sequence (e.g., a synthetic peptide or polypeptide sequence), or a non-peptide linker for which its main function is to connect two domains in a linear amino acid sequence of a polypeptide chain, for example, two heterologous moieties in a chimeric molecule of the invention.
- linkers are interposed between two heterologous moieties, between a heterologous moiety and a targeting moiety, which binds to a platelet (e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein), between a clotting factor (either the heavy chain or the light chain) and a targeting moiety, which binds to a platelet (e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein), or between a clotting factor (either the heavy chain or the light chain) and a heterologous moiety.
- a platelet e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein
- a clotting factor either the heavy chain or the light chain
- each of the linkers can be the same or different.
- linkers provide flexibility to the chimeric molecule.
- Linkers are not typically cleaved; however in certain embodiments, such cleavage can be desirable.
- a linker can comprise one or more protease-cleavable sites, which can be located within the sequence of the linker or flanking the linker at either end of the sequence of the linker.
- the chimeric molecule comprises one or more linkers, wherein one or more of the linkers comprise a peptide linker. In other embodiments, one or more of the linkers comprise a non-peptide linker. In some embodiments, the peptide linker can comprise at least two amino, at least three, at least four, at least five, at least 10, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, or at least 100 amino acids. In other embodiments, the peptide linker can comprise at least 200, at least 300, at least 400, at least 500, at least 600, at least 700, at least 800, at least 900, or at least 1,000 amino acids.
- the peptide linker can comprise at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 amino acids.
- the peptide linker can comprise 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 amino acids.
- the peptide linker can comprise 1-5 amino acids, 1-10 amino acids, 1-20 amino acids, 1-30 amino acids, 5-25 amino acids, 5-30 amino acids, 10-30 amino acids, 10-50 amino acids, 50-100 amino acids, 100-200 amino acids, 200-300 amino acids, 300-400 amino acids, 400-500 amino acids, 500-600 amino acids, 600-700 amino acids, 700-800 amino acids, 800-900 amino acids, 900-1000, 1000-1100, 1100-1200, 1200-1300, 1300-1400, 1400-1500, 1500-1600, 1600-1700, 1700-1800, 1800-1900, or 1900-2000 amino acids.
- peptide linkers are well known in the art, for example peptide linkers according to the formula [(Gly) x -Ser y ] z where x is from 1 to 4, y is 0 or 1, and z is from 1 to 50 (SEQ ID NO:153). In certain embodiments z is from 1 to 6.
- the peptide linker comprises the sequence G n , where n can be an integer from 1 to 100 (SEQ ID NO:249).
- the sequence of the peptide linker is GGGG (SEQ ID NO:154).
- the peptide linker can comprise the sequence (GA) n (SEQ ID NO:163).
- the peptide linker can comprise the sequence (GGS) n (SEQ ID NO:155). In other embodiments, the peptide linker comprises the sequence (GGGS) n (SEQ ID NO:156). In still other embodiments, the peptide linker comprises the sequence (GGS) n (GGGGS) n (SEQ ID NO:157). In these instances, n can be an integer from 1-100. In other instances, n can be an integer from 1-20, i.e., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20.
- linkers include, but are not limited to, GGG, SGGSGGS (SEQ ID NO:158), GGSGGSGGSGGSGGG (SEQ ID NO:159), GGSGGSGGGGSGGGGS (SEQ ID NO:160), GGSGGSGGSGGSGGSGGS (SEQ ID NO:161), or GGGGSGGGGSGGGGS (SEQ ID NO:162).
- the linker is a poly-G sequence (GGGG) n , where n can be an integer from 1-100 (SEQ ID NO:164).
- An exemplary Gly/Ser peptide linker comprises the amino acid sequence (Gly 4 Ser) n (SEQ ID NO:250), wherein n is an integer that is the same or higher than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 46, 50, 55, 60, 70, 80, 90, or 100.
- n 1, i.e., the linker is (Gly 4 Ser) (SEQ ID NO:165).
- n 2, i.e., the linker is (Gly 4 Ser) 2 (SEQ ID NO:166).
- n 3, i.e., the linker is (Gly 4 Ser) 3 (SEQ ID NO:167).
- n 5, i.e., the linker is (Gly 4 Ser) 5 (SEQ ID NO:169).
- n 6, i.e., the linker is (Gly 4 Ser) 6 (SEQ ID NO:170).
- n 8, i.e., the linker is (Gly 4 Ser) 8 (SEQ ID NO:172).
- n 9, i.e., the linker is (Gly 4 Ser) 9 (SEQ ID NO:173).
- n 10, i.e., the linker is (Gly 4 Ser) 10 (SEQ ID NO:174).
- Another exemplary Gly/Ser peptide linker comprises the amino acid sequence Ser(Gly 4 Ser) n (SEQ ID NO:251), wherein n is an integer that is the same or higher than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 46, 50, 55, 60, 70, 80, 90, or 100.
- n 1, i.e., the linker is Ser(Gly 4 Ser) (SEQ ID NO:175).
- n 2, i.e., the linker is Ser(Gly 4 Ser) 2 (SEQ ID NO: 176).
- n 3, i.e., the linker is Ser(Gly 4 Ser) 3 (SEQ ID NO:177).
- n 5, i.e., the linker is Ser(Gly 4 Ser) 5 (SEQ ID NO:179).
- n 6, i.e., the linker is Ser(Gly 4 Ser) 6 (SEQ ID NO:180).
- n 8, i.e., the linker is Ser(Gly 4 Ser) 8 (SEQ ID NO:182).
- said Gly/Ser peptide linker can be inserted between two other sequences of the peptide linker (e.g., any of the peptide linker sequences described herein).
- a Gly/Ser peptide linker is attached at one or both ends of another sequence of the peptide linker (e.g., any of the peptide linker sequences described herein).
- two or more Gly/Ser linkers are incorporated in series in a peptide linker.
- a peptide linker of the invention comprises at least a portion of an upper hinge region (e.g., derived from an IgG1, IgG2, IgG3, or IgG4 molecule), at least a portion of a middle hinge region (e.g., derived from an IgG1, IgG2, IgG3, or IgG4 molecule) and a series of Gly/Ser amino acid residues (e.g., a Gly/Ser linker such as (Gly 4 Ser) n ) (SEQ ID NO:165)).
- an upper hinge region e.g., derived from an IgG1, IgG2, IgG3, or IgG4 molecule
- a middle hinge region e.g., derived from an IgG1, IgG2, IgG3, or IgG4 molecule
- Gly/Ser amino acid residues e.g., a Gly/Ser linker such as (Gly 4 Ser) n
- a particular type of linker which can be present in an heterologous moiety, for example an activatable clotting factor, is herein referred to as a “cleavable linker” which comprises a heterologous protease-cleavage site (e.g., a factor XIa or thrombin cleavage site) that is not naturally occurring in the clotting factor and which can include additional linkers on either the N terminal of C terminal or both sides of the cleavage site.
- exemplary locations for such sites include, e.g., placement between a heavy chain of a clotting factor zymogen and a light chain of a clotting factor zymogen.
- Peptide linkers can be introduced into polypeptide sequences using techniques known in the art. Modifications can be confirmed by DNA sequence analysis. Plasmid DNA can be used to transform host cells for stable production of the polypeptides produced.
- a chimeric molecule can comprise a protease cleavage site linking, for example, a light chain of a clotting factor zymogen and a heavy chain of the clotting factor zymogen (e.g., FVII).
- a protease-cleavage site linking a light chain of a clotting factor zymogen and a heavy chain of the clotting factor zymogen can be selected from any protease-cleavage site known in the art.
- the protease-cleavage site is cleaved by a protease selected from the group consisting of factor XIa, factor XIIa, kallikrein, factor VIIa, factor IXa, factor Xa, factor IIa (thrombin), and any combinations thereof.
- the protease-cleavage sites allow the light chain and the heavy chain of the clotting factor to be cleaved and dissociated from each other at the site of injury.
- Exemplary FXIa cleavage sites include, e.g., KLTR (SEQ ID NO:185), DFTR (SEQ ID NO:186), TQSFNDFTR (SEQ ID NO:187) and SVSQTSKLTR (SEQ ID NO:188).
- Exemplary thrombin cleavage sites include, e.g., DFLAEGGGVR (SEQ ID NO:189), TTKIKPR (SEQ ID NO:190), LVPRG (SEQ ID NO:191) and ALRPR (SEQ ID NO:192).
- the protease-cleavage site can be combined with an intracellular processing site for efficient cleavage and activation.
- an activatable clotting factor in the chimeric molecule can comprise a heterodimer, which comprises a light chain of a clotting factor associated with a heavy chain of the clotting factor by a covalent bond, wherein the N-terminus of the heavy chain of the clotting factor is linked to a protease-cleavage site.
- the protease-cleavage site can be cleaved off at the site of coagulation, thus activating the clotting factor.
- Such constructs can be designed by inserting an intracellular processing site between the light chain of the clotting factor zymogen and the protease-cleavage site, which is linked to the heavy chain of the clotting factor zymogen.
- the intracellular processing site inserted therein can be processed (cleaved) by an intracellular processing enzyme upon expression in a host cell, thereby allowing formation of a zymogen-like heterodimer.
- intracellular processing enzymes examples include furin, a yeast Kex2, PCSK1 (also known as PC1/Pc3), PCSK2 (also known as PC2), PCSK3 (also known as furin or PACE), PCSK4 (also known as PC4), PCSK5 (also known as PC5 or PC6), PCSK6 (also known as PACE4), or PCSK7 (also known as PC7/LPC, PC8, or SPC7).
- PCSK1 also known as PC1/Pc3
- PCSK2 also known as PC2
- PCSK3 also known as furin or PACE
- PCSK4 also known as PC4
- PCSK5 also known as PC5 or PC6
- PCSK7 also known as PC7/LPC, PC8, or SPC7.
- Other processing sites are known in the art. In constructs that include more than one processing or cleavage site, it will be understood that such sites can be the same or different.
- the chimeric molecule comprises, consists essentially of, or consists of, a polypeptide that has an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to the amino acid sequence set forth in SEQ ID NO:74.
- one or more linkers can be introduced between the light and heavy chain of Factor VII.
- the linker(s) can be a peptide linker.
- the Fab light chain of this chimeric molecule can associate, e.g., with the Fab heavy chain comprising a polypeptide sequence that has an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to the amino acid sequence set forth in SEQ ID Nos. 75 or 76.
- the chimeric molecule comprises, consists essentially of, or consists of, a polypeptide that has an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to the amino acid sequence set forth in SEQ ID NO: 77.
- This chimeric molecule includes the light and heavy chains of Factor VII, a linker having the amino acid sequence: GSPGTSESATPESGPGSEPATSGSETP (SEQ ID NO: 195), an XTEN termed AE288 (a half-life extending moiety), a GSSS (SEQ ID NO: 196) linker, a (G4S)6 (SEQ ID NO:170) linker, and the Fab light chain of a humanized GPIIb/IIIa antibody described herein.
- one or more of the linkers noted above can be eliminated (e.g., SEQ ID NOs: 195 and/or 196) from the chimeric molecule.
- one or more (e.g., 1, 2, 3, 4) linkers can be introduced between the light and heavy chain of Factor VII.
- the linker(s) can be a peptide linker.
- the heavy chain of Factor VII can precede the light chain of Factor VII in the chimeric molecule.
- the Fab light chain of this chimeric molecule can associate, e.g., with a polypeptide comprising an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to an amino acid sequence set forth in SEQ ID Nos. 75 or 76.
- the above-described chimeric molecules can be modified, e.g., to include additional linkers (e.g., between the Factor VII and the half-life extending moiety and between the half-life extending moiety and the anti-GPIIb/IIIa antibody or antigen-binding fragment thereof). In certain instances there can be one or more (e.g., 1, 2, 3, 4) linkers between these components of the chimeric molecule.
- linkers e.g., between the Factor VII and the half-life extending moiety and between the half-life extending moiety and the anti-GPIIb/IIIa antibody or antigen-binding fragment thereof.
- linkers e.g., between the Factor VII and the half-life extending moiety and between the half-life extending moiety and the anti-GPIIb/IIIa antibody or antigen-binding fragment thereof.
- linkers e.g., between the Factor VII and the half-life extending moiety and between the half-life extending moiety and the
- the chimeric molecules can comprise an scFv of the anti-GPIIb/IIIa antibody, a diabody, sc(Fv)2, or a whole anti-GPIIb/IIIa antibody.
- the chimeric molecule is a two polypeptide chain comprising either (i) the light chain of Factor VII and the heavy chain of Factor VII-scFv or heavy chain of Factor VII-half-life extending moiety-scFv chimeric molecule; or (ii) the heavy chain of Factor VII and the light chain of Factor VII-scFv or light chain of Factor VII-half-life extending moiety-scFv chimeric molecule.
- the Factor VII of the chimeric molecule is activated. Activation of Factor VII can occur by the cleavage of the Arg152-Ile153 peptide bond of Factor VII to create a two chain FVII polypeptide. In one embodiment, the Factor VII of the chimeric molecule is activated by concentrating the chimeric polypeptide to about 4 mg/ml at a pH of 8.0 and incubating the polypeptide at 4° C. for several minutes to an hour (e.g., 1, 2, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 or 60 minutes).
- an hour e.g., 1, 2, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 or 60 minutes.
- the present disclosure also provides a nucleic acid molecule or a set of nucleic acid molecules encoding (i) a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein, or (ii) any of the chimeric molecules disclosed herein, or (iii) a complement thereof.
- the invention includes a nucleic acid molecule encoding a polypeptide chain, which comprises a light chain of a clotting factor (e.g., FVII, FIX, or FX), a heterologous moiety (e.g., a half-life extending moiety), an intracellular processing site, a heavy chain of the clotting factor (e.g., FVII, FIX, or FX), and a targeting moiety which binds to a platelet (e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof).
- a clotting factor e.g., FVII, FIX, or FX
- a heterologous moiety e.g., a half-life extending moiety
- an intracellular processing site e.g., a heavy chain of the clotting factor (e.g., FVII, FIX, or FX)
- a targeting moiety which binds to
- the nucleic acid molecule of the invention encodes a polypeptide chain comprising a light chain of a clotting factor (e.g., FVII, FIX, or FX), a targeting moiety which binds to a platelet (e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof), an intracellular processing site, a heavy chain of the clotting factor (e.g., FVII, FIX, or FX), and a heterologous moiety (e.g., a half-life extending moiety).
- a clotting factor e.g., FVII, FIX, or FX
- a targeting moiety which binds to a platelet e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof
- an intracellular processing site e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof
- the nucleic acid molecule encodes a polypeptide chain comprising a light chain of a clotting factor (e.g., FVII, FIX, or FX), an intracellular processing site, a heavy chain of the clotting factor (e.g., FVII, FIX, or FX), a heterologous moiety (e.g., a half-life extending moiety), and a targeting moiety which binds to a platelet (e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof).
- a clotting factor e.g., FVII, FIX, or FX
- an intracellular processing site e.g., a heavy chain of the clotting factor (e.g., FVII, FIX, or FX)
- a heterologous moiety e.g., a half-life extending moiety
- a targeting moiety which binds to a platelet e
- the nucleic acid molecule encodes a polypeptide chain comprising a light chain of a clotting factor (e.g., FVII, FIX, or FX), an intracellular processing site, a heavy chain of the clotting factor (e.g., FVII, FIX, or FX), a targeting moiety which binds to a platelet (e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof), and a heterologous moiety (e.g., a half-life extending moiety).
- a clotting factor e.g., FVII, FIX, or FX
- a targeting moiety which binds to a platelet e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof
- a heterologous moiety e.g., a half-life extending moiety
- the nucleic acid molecule encodes a polypeptide chain comprising a light chain of a clotting factor (e.g., FVII, FIX, or FX), a heavy chain of the clotting factor (e.g., FVII, FIX, or FX), at least one (e.g., one two, three, four) heterologous moiety (e.g., a half-life extending moiety such as the XTEN, AE144 or AE288), and a targeting moiety which binds to a platelet (e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof such as an scFv, or the light and/or heavy chain of an Fab).
- a clotting factor e.g., FVII, FIX, or FX
- a heavy chain of the clotting factor e.g., FVII, FIX, or FX
- at least one e.g.,
- the nucleic acid molecule comprises a set of nucleotide sequences, a first nucleotide sequence encoding a first polypeptide chain comprising a light chain of a clotting factor (e.g., FVII, FIX, or FX) and a heterologous moiety (e.g., a half-life extending moiety) and a second nucleotide sequence encoding a second polypeptide chain comprising a heavy chain of the clotting factor (e.g., FVII, FIX, or FX) and a targeting moiety which binds to a platelet (e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof).
- a clotting factor e.g., FVII, FIX, or FX
- a heterologous moiety e.g., a half-life extending moiety
- a second nucleotide sequence encoding a second polypeptid
- the nucleic acid molecule comprises a set of nucleotide sequences, a first nucleotide sequence encoding a first polypeptide chain comprising a light chain of a clotting factor (e.g., FVII, FIX, or FX) and a targeting moiety which binds to a platelet (e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof) and a second nucleotide sequence encoding a second polypeptide chain comprising a heavy chain of the clotting factor (e.g., FVII, FIX, or FX) and a heterologous moiety (e.g., a half-life extending moiety).
- a clotting factor e.g., FVII, FIX, or FX
- a targeting moiety which binds to a platelet
- a second nucleotide sequence encoding a second polypeptide chain comprising a heavy chain
- the nucleic acid molecule comprises a set of nucleotide sequences, a first nucleotide sequence encoding a light chain of a clotting factor (e.g., FVII, FIX, or FX) and a second nucleotide sequence encoding a heavy chain of the clotting factor (e.g., FVII, FIX, or FX), a heterologous moiety (e.g., a half-life extending moiety), and a targeting moiety which binds to a platelet (e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof).
- a clotting factor e.g., FVII, FIX, or FX
- a heterologous moiety e.g., a half-life extending moiety
- a targeting moiety which binds to a platelet e.g., an anti-GPIIb/IIIa antibody or antigen-bind
- the nucleic acid molecule comprises a set of nucleotide sequences, a first nucleotide sequence encoding a light chain of a clotting factor (e.g., FVII, FIX, or FX) and a second nucleotide sequence encoding a heavy chain of the clotting factor (e.g., FVII, FIX, or FX), a targeting moiety which binds to a platelet (e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof), and a heterologous moiety (e.g., a half-life extending moiety).
- a clotting factor e.g., FVII, FIX, or FX
- a targeting moiety which binds to a platelet e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof
- a heterologous moiety e.g., a half-life
- the nucleic acid molecule comprises a set of nucleotide sequences, a first nucleotide sequence encoding a first polypeptide chain comprising a light chain of a clotting factor (e.g., FVII, FIX, or FX), a heavy chain of the clotting factor (e.g., FVII, FIX, or FX), at least one (e.g., one two, three, four) heterologous moiety (e.g., a half-life extending moiety such as the XTEN, AE144 or AE288), and either the light chain or the heavy chain of an Fab of an anti-GPIIb/IIIa antibody described herein; and a second nucleotide sequence encoding the corresponding heavy or light chain of the Fab of the anti-GPIIb/IIIa antibody.
- a clotting factor e.g., FVII, FIX, or FX
- a heavy chain of the clotting factor
- the instant disclosure also provides a method for producing a GPIIb/IIIa antibody or antigen-binding molecule thereof or chimeric molecule disclosed herein, such method comprising culturing the host cell disclosed herein and recovering the antibody, antigen-binding molecule thereof, or the chimeric molecule from the culture medium.
- a variety of methods are available for recombinantly producing a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein, or a chimeric molecule disclosed herein. It will be understood that because of the degeneracy of the code, a variety of nucleic acid sequences will encode the amino acid sequence of the polypeptide.
- the desired polynucleotide can be produced by de novo solid-phase DNA synthesis or by PCR mutagenesis of an earlier prepared polynucleotide.
- a first expression vector comprising a DNA comprising a nucleic acid encoding the amino acid sequence of the chimeric polypeptide set forth in SEQ ID NO:77 is transfected into a host cell (e.g., 293, CHO, COS) and the host cell is cultured under conditions that allow for the expression of the chimeric polypeptide.
- the chimeric polypeptide is recovered from the cell or culture medium.
- a second expression vector comprising a DNA comprising a nucleic acid encoding the amino acid sequence of the heavy chain of the Fab set forth in SEQ ID NOs.
- a host cell e.g., 293, CHO, COS
- the heavy chain of the Fab is recovered from the cell or culture medium.
- the chimeric polypeptide and the heavy chain of the Fab are contacted together to permit the heavy chain of the Fab to associate with the light chain of the Fab in the chimeric polypeptide.
- a host cell e.g., 293, CHO, COS
- a host cell is co-transfected with the first and second expression vectors described above and the host cell is cultured under conditions that allow for the expression of the chimeric polypeptide and the heavy chain of the Fab.
- the chimeric polypeptide and the heavy chain are isolated from the cell or culture medium.
- the heavy chain of the Fab is already associated with the light chain of the Fab in the chimeric polypeptide when the polypeptides are isolated from the cell or culture medium.
- the heavy chain of the Fab is not already associated with the light chain of the Fab in the chimeric polypeptide when the polypeptides are isolated from the cell or culture medium and an additional step is required to facilitate their association.
- the Factor VII of the chimeric molecule is activated. Activation of Factor VII can occur by the cleavage of the Arg152-Ile153 peptide bond of Factor VII to create a two chain FVII polypeptide.
- the Factor VII of the chimeric molecule is activated by concentrating the chimeric polypeptide (with or without the heavy chain Fab that associates with the light chain Fab of the chimeric polypeptide) to about 4 mg/ml at a pH of 8.0 and incubating the polypeptide at 4° C. for several minutes to an hour (e.g., 1, 2, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 or 60 minutes).
- Oligonucleotide-mediated mutagenesis is one method for preparing a substitution, in-frame insertion, or alteration (e.g., altered codon) to introduce a codon encoding an amino acid substitution (e.g., into a GPIIb/IIIa antibody variant).
- the starting polypeptide DNA is altered by hybridizing an oligonucleotide encoding the desired mutation to a single-stranded DNA template. After hybridization, a DNA polymerase is used to synthesize an entire second complementary strand of the template that incorporates the oligonucleotide primer.
- genetic engineering e.g., primer-based PCR mutagenesis
- an alteration as defined herein, for producing a polynucleotide encoding a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein, or any of the chimeric molecules disclosed herein.
- a polynucleotide sequence encoding a polypeptide is inserted into an appropriate expression vehicle, i.e., a vector which contains the necessary elements for the transcription and translation of the inserted coding sequence, or in the case of an RNA viral vector, the necessary elements for replication and translation.
- an appropriate expression vehicle i.e., a vector which contains the necessary elements for the transcription and translation of the inserted coding sequence, or in the case of an RNA viral vector, the necessary elements for replication and translation.
- the nucleic acid encoding the polypeptide (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein, or any of the chimeric molecules disclosed herein) is inserted into the vector in proper reading frame.
- the expression vector is then transfected into a suitable target cell which will express the polypeptide. Transfection techniques known in the art include, but are not limited to, calcium phosphate precipitation (Wigler et al. 1978 , Cell 14:725) and electroporation (Neumann et al. 1982 , EMBO J. 1:841).
- eukaryotic cells can be utilized to express the polypeptides described herein (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein, or any of the chimeric molecules disclosed herein) in eukaryotic cells.
- the eukaryotic cell is an animal cell, including mammalian cells (e.g., 293 cells, PerC6, CHO, BHK, Cos, HeLa cells).
- the DNA encoding the polypeptide can also code for a signal sequence that will permit the polypeptide to be secreted.
- a signal sequence that will permit the polypeptide to be secreted.
- the signal sequence is cleaved by the cell to form the mature chimeric molecule.
- Various signal sequences are known in the art, e.g., native FVII signal sequence, native FIX signal sequence, native FX signal sequence, native GPIIb signal sequence, native GPIIIa signal sequence, and the mouse IgK light chain signal sequence.
- the polypeptide e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein, or any of the chimeric molecules disclosed herein
- the polypeptide can be recovered by lysing the cells.
- transgenic animals refers to non-human animals that have incorporated a foreign gene into their genome. Because this gene is present in germline tissues, it is passed from parent to offspring. Exogenous genes are introduced into single-celled embryos (Brinster et al. 1985 , Proc. Natl. Acad. Sci. USA 82:4438). Methods of producing transgenic animals are known in the art including transgenics that produce immunoglobulin molecules (Wagner et al. 1981 , Proc.
- the expression vectors can encode for tags that permit for easy purification or identification of the recombinantly produced polypeptide.
- tags include, but are not limited to, vector pUR278 (Ruther et al. 1983 , EMBO J. 2:1791) in which the polypeptide (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein, or any of the chimeric molecules disclosed herein) coding sequence can be ligated into the vector in frame with the lac z coding region so that a hybrid polypeptide is produced;
- pGEX vectors can be used to express proteins with a glutathione S-transferase (GST) tag.
- the vectors include cleavage sites, e.g., for PreCission Protease (Pharmacia, Peapack, N. J.) for easy removal of the tag after purification.
- Expression vectors can include expression control sequences including, but not limited to, promoters (e.g., naturally-associated or heterologous promoters), enhancers, signal sequences, splice signals, enhancer elements, and transcription termination sequences.
- promoters e.g., naturally-associated or heterologous promoters
- enhancers e.g., signal sequences, splice signals, enhancer elements, and transcription termination sequences.
- the expression control sequences are eukaryotic promoter systems in vectors capable of transforming or transfecting eukaryotic host cells.
- Expression vectors can also utilize DNA elements which are derived from animal viruses such as bovine papilloma virus, polyoma virus, adenovirus, vaccinia virus, baculovirus, retroviruses (RSV, MMTV or MOMLV), cytomegalovirus (CMV), or SV40 virus. Others involve the use of polycistronic systems with internal ribosome binding sites.
- Commonly used expression vectors contain selection markers (e.g., ampicillin-resistance, hygromycin-resistance, tetracycline resistance or neomycin resistance) to permit detection of those cells transformed with the desired DNA sequences (see, e.g., Itakura et al., U.S. Pat. No. 4,704,362).
- Cells which have integrated the DNA into their chromosomes can be selected by introducing one or more markers which allow selection of transfected host cells.
- the marker can provide for prototrophy to an auxotrophic host, biocide resistance (e.g., antibiotics) or resistance to heavy metals such as copper.
- the selectable marker gene can either be directly linked to the DNA sequences to be expressed, or introduced into the same cell by cotransformation.
- An exemplary expression vector is NEOSPLA (U.S. Pat. No. 6,159,730).
- This vector contains the cytomegalovirus promoter/enhancer, the mouse beta globin major promoter, the SV40 origin of replication, the bovine growth hormone polyadenylation sequence, neomycin phosphotransferase exon 1 and exon 2, the dihydrofolate reductase gene and leader sequence.
- This vector has been found to result in very high level expression of antibodies upon incorporation of variable and constant region genes, transfection in cells, followed by selection in G418 containing medium and methotrexate amplification.
- Vector systems are also taught in U.S. Pat. Nos.
- polypeptides of the invention can be expressed using polycistronic constructs.
- polycistronic constructs multiple gene products of interest such as multiple polypeptides of multimer binding protein can be produced from a single polycistronic construct.
- IRES internal ribosome entry site
- Compatible IRES sequences are disclosed in U.S. Pat. No. 6,193,980 which is also incorporated herein. Those skilled in the art will appreciate that such expression systems can be used to effectively produce the full range of polypeptides disclosed in the instant application.
- the expression vector can be introduced into an appropriate host cell. That is, the host cells can be transformed.
- Introduction of the plasmid into the host cell can be accomplished by various techniques well known to those of skill in the art. These include, but are not limited to, transfection (including electrophoresis and electroporation), protoplast fusion, calcium phosphate precipitation, cell fusion with enveloped DNA, microinjection, and infection with intact virus. See, Ridgway, A. A. G. “Mammalian Expression Vectors” Chapter 24.2, pp. 470-472 Vectors, Rodriguez and Denhardt, Eds. (Butterworths, Boston, Mass. 1988).
- plasmid introduction into the host is via electroporation.
- the transformed cells are grown under conditions appropriate to the production of the light chains and heavy chains, and assayed for heavy and/or light chain protein synthesis.
- exemplary assay techniques include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), flow cytometry, immunohistochemistry, and the like.
- the term “transformation” refers in a broad sense to the introduction of DNA into a recipient host cell that changes the genotype and consequently results in a change in the recipient cell.
- “host cells” refers to cells that have been transformed with vectors constructed using recombinant DNA techniques and encoding at least one heterologous gene.
- the terms “cell” and “cell culture” are used interchangeably to denote the source of polypeptide unless it is clearly specified otherwise. In other words, recovery of polypeptide from the “cells” can mean either from spun down whole cells, or from the cell culture containing both the medium and the suspended cells.
- a host cell endogenously expresses an enzyme (or the enzymes) necessary to cleave a scFc linker (e.g., if such a linker is present and contains intracellular processing site(s)) during processing to form the mature polypeptide. During this processing, the scFc linker can be substantially removed to reduce the presence of extraneous amino acids.
- a host cell is transformed to express one or more enzymes which are exogenous to the cell such that processing of a scFc linker occurs or is improved.
- an enzyme which can be endogenously or exogenously expressed by a cell is a member of the furin family of enzymes.
- Complete cDNA and amino acid sequences of human furin i.e., PACE
- PACE Proliferative Reactivation protein
- U.S. Pat. No. 5,460,950, issued to Barr et al. describes recombinant PACE and the coexpression of PACE with a substrate precursor polypeptide of a heterologous protein to improve expression of active, mature heterologous protein.
- 5,935,815 likewise describes recombinant human furin (i.e., PACE) and the coexpression of furin with a substrate precursor polypeptide of a heterologous protein to improve expression of active, mature heterologous protein.
- PACE recombinant human furin
- Possible substrate precursors disclosed in this patent include a precursor of Factor IX.
- PCSK1 also known as PC1/Pc3
- PCSK2 also known as PC2
- PCSK3 also known as furin or PACE
- PCSK4 also known as PC4
- PCSK5 also known as PC5 or PC6
- PCSK6 also known as PACE4
- PCSK7 also known as PC7/LPC, PC8, or SPC7. While these various members share certain conserved overall structural features, they differ in their tissue distribution, subcellular localization, cleavage specificities, and preferred substrates.
- PCSK7 also known as PC7/LPC, PC8, or SPC7
- proprotein convertases generally include, beginning from the amino terminus, a signal peptide, a propeptide (that can be autocatalytically cleaved), a subtilisin-like catalytic domain characterized by Asp, His, Ser, and Asn/Asp residues, and a Homo B domain that is also essential for catalytic activity and characterized by an Arg-Gly-Asp (RGD) sequence.
- PACE, PACE4, and PC5 also include a Cys-rich domain, the function of which is unknown.
- PC5 has isoforms with and without a transmembrane domain; these different isoforms are known as PCSB and PCSA, respectively.
- PACE and PACE4 have been reported to have partially overlapping but distinct substrates.
- PACE4 in striking contrast to PACE, has been reported to be incapable of processing the precursor polypeptide of FIX.
- U.S. Pat. No. 5,840,529 discloses nucleotide and amino acid sequences for human PC7 and the notable ability of PC7, as compared to other PC family members, to cleave HIV gp160 to gp120 and gp41.
- Nucleotide and amino acid sequences of rodent PC5 were first described as PC5 by Lusson et al. (1993) Proc Natl Acad Sci USA 90:6691-5 and as PC6 by Nakagawa et al. (1993) J Biochem (Tokyo) 113:132-5.
- U.S. Pat. No. 6,380,171 discloses nucleotide and amino acid sequences for human PCSA, the isoform without the transmembrane domain. The sequences of these enzymes and method of cloning them are known in the art.
- Genes encoding the polypeptides of the invention can also be expressed in non-mammalian cells such as bacteria or yeast or plant cells.
- non-mammalian cells such as bacteria or yeast or plant cells.
- various unicellular non-mammalian microorganisms such as bacteria can also be transformed; i.e., those capable of being grown in cultures or fermentation.
- Bacteria which are susceptible to transformation, include members of the enterobacteriaceae, such as strains of Escherichia coli or Salmonella ; Bacillaceae, such as Bacillus subtilis; Pneumococcus; Streptococcus , and Haemophilus influenzae . It will further be appreciated that, when expressed in bacteria, the polypeptides typically become part of inclusion bodies. The polypeptides must be isolated, purified and then assembled into functional molecules.
- eukaryotic microbes can also be used. Saccharomyces cerevisiae , or common baker's yeast, is the most commonly used among eukaryotic microorganisms although a number of other strains are commonly available.
- the plasmid YRp7 for example, (Stinchcomb et al., Nature, 282:39 (1979); Kingsman et al., Gene, 7:141 (1979); Tschemper et al., Gene, 10:157 (1980)) is commonly used.
- This plasmid already contains the TRP1 gene which provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example ATCC No. 44076 or PEP4-1 (Jones, Genetics, 85:12 (1977)).
- the presence of the trpl lesion as a characteristic of the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan.
- yeast hosts such Pichia can also be employed.
- Yeast expression vectors having expression control sequences (e.g., promoters), an origin of replication, termination sequences and the like as desired.
- Typical promoters include 3-phosphoglycerate kinase and other glycolytic enzymes.
- Inducible yeast promoters include, among others, promoters from alcohol dehydrogenase, isocytochrome C, and enzymes responsible for methanol, maltose, and galactose utilization.
- polypeptide-coding nucleotide sequences can be incorporated in transgenes for introduction into the genome of a transgenic animal and subsequent expression in the milk of the transgenic animal (see, e.g., U.S. Pat. Nos. 5,741,957; 5,304,489; and 5,849,992).
- Suitable transgenes include coding sequences for polypeptides in operable linkage with a promoter and enhancer from a mammary gland specific gene, such as casein or beta lactoglobulin.
- tissue culture conditions include homogeneous suspension culture, e.g. in an airlift reactor or in a continuous stirrer reactor, or immobilized or entrapped cell culture, e.g. in hollow fibers, microcapsules, on agarose microbeads or ceramic cartridges.
- the solutions of polypeptides can be purified by the customary chromatography methods, for example gel filtration, ion-exchange chromatography, chromatography over DEAE-cellulose or (immuno-) affinity chromatography, e.g., after preferential biosynthesis of a synthetic hinge region polypeptide or prior to or subsequent to the HIC chromatography step described herein.
- An affinity tag sequence e.g. a His(6) tag (SEQ ID NO: 246)
- SEQ ID NO: 246 can optionally be attached or included within the polypeptide sequence to facilitate downstream purification.
- the chimeric molecules can be purified according to standard procedures of the art, including ammonium sulfate precipitation, affinity column chromatography, HPLC purification, gel electrophoresis and the like (see generally Scopes, Protein Purification (Springer-Verlag, N.Y., (1982)) and see specifically the methods used in the instant Examples. Substantially pure proteins of at least about 90 to 95% homogeneity are preferred, and 98 to 99% or more homogeneity most preferred, for pharmaceutical uses.
- compositions comprising one or more of:
- administering can be used, for example, to reduce the frequency or degree of a bleeding episode in a subject in need, and/or reducing or preventing an occurrence of a bleeding episode in a subject in need thereof.
- the subject has developed or has a tendency to develop an inhibitor against treatment with FVIII, FIX, or both.
- the inhibitor against FVIII or FIX is a neutralizing antibody against FVIII, FIX, or both.
- the bleeding episode can be caused by a blood coagulation disorder, for example, hemophilia A or hemophilia B.
- the bleeding episode can be the result of hemarthrosis, muscle bleed, oral bleed, hemorrhage, hemorrhage into muscles, oral hemorrhage, trauma, trauma capitis, gastrointestinal bleeding, intracranial hemorrhage, intra-abdominal hemorrhage, intrathoracic hemorrhage, bone fracture, central nervous system bleeding, bleeding in the retropharyngeal space, bleeding in the retroperitoneal space, bleeding in the illiopsoas sheath, or any combinations thereof.
- the subject is a human subject.
- a pharmaceutical composition may include a “therapeutically effective amount” of an agent described herein. Such effective amounts can be determined based on the effect of the administered agent, or the combinatorial effect of agents if more than one agent is used.
- a therapeutically effective amount of an agent may also vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the compound to elicit a desired response in the individual, e.g., amelioration of at least one disorder parameter or amelioration of at least one symptom of the disorder.
- a therapeutically effective amount is also one in which any toxic or detrimental effects of the composition are outweighed by the therapeutically beneficial effects.
- the pharmaceutical composition e.g., a composition comprising the polypeptide(s) or nucleic acid molecule(s) encoding the polypeptide(s)
- the pharmaceutical composition is one in which the clotting factor is present in activatable form when administered to a subject.
- an activatable molecule can be activated in vivo at the site of clotting after administration to a subject.
- the antibodies, antigen-binding fragments thereof and chimeric molecules of the disclosure can be useful in methods of treating a subject with a disease or condition.
- the disease or condition can include, but is not limited to, hemostatic or coagulation disorders.
- this disclosure provides a method of treating, ameliorating, or preventing a hemostatic disorder to a subject comprising administering a therapeutically effective amount of a chimeric molecule of the disclosure which comprises a clotting factor.
- the treatment, amelioration, and prevention by the chimeric molecule can be a bypass therapy.
- the subject in the bypass therapy can have already developed an inhibitor to a clotting factor, e.g., FVIII or FIX, or is subject to developing a clotting factor inhibitor.
- a chimeric molecule composition of the invention is administered in combination with at least one other agent that promotes hemostasis.
- hemostatic agent can include a FV, FVII, FVIII, FIX, FX, FXI, FXII, FXIII, prothrombin, or fibrinogen or activated forms of any of the preceding.
- the clotting factor or hemostatic agent can also include anti-fibrinolytic drugs, e.g., epsilon-amino-caproic acid, tranexamic acid.
- the chimeric molecules of the invention treat or prevent a hemostatic disorder by promoting the formation of a fibrin clot.
- the chimeric molecule of the invention can activate any member of a coagulation cascade.
- the clotting factor can be a participant in the extrinsic pathway, the intrinsic pathway or both.
- a chimeric molecule of the invention can be used to treat hemostatic disorders, e.g., those known to be treatable with the particular clotting factor present in the chimeric molecule.
- hemostatic disorders that can be treated by administration of the chimeric molecule of the invention include, but are not limited to, hemophilia A, hemophilia B, von Willebrand's disease, Factor XI deficiency (PTA deficiency), Factor XII deficiency, as well as deficiencies or structural abnormalities in fibrinogen, prothrombin, Factor V, Factor VII, Factor X, or Factor XIII.
- the hemostatic disorder is an inherited disorder.
- the subject has hemophilia A, and the chimeric molecule comprises activated or protease-activatable FVII linked to or associated with a GPIIb/IIIa antibody or antigen-binding molecule thereof and a half-life extending heterologous moiety.
- the subject has hemophilia A and the chimeric molecule comprises activated or protease-activatable FVII linked to or associated with an Fab or scFv of an GPIIb/IIIa antibody and a half-life extending heterologous moiety.
- the subject has hemophilia B and the chimeric molecule comprises activated or protease-activatable FVII or FX linked to or associated with a GPIIb/IIIa antibody or antigen-binding molecule thereof and a half-life extending heterologous moiety.
- the subject has inhibitory antibodies to FVIII or FVIIIa and the chimeric molecule comprises activated or protease-activatable FVII linked to or associated with a GPIIb/IIIa antibody or antigen-binding molecule thereof and a half-life extending heterologous moiety.
- the subject has inhibitory antibodies against FIX or FIXa and the chimeric molecule comprises activated or protease-activatable FVII linked to or associated with a GPIIb/IIIa antibody or antigen-binding molecule thereof and a half-life extending heterologous moiety.
- the subject has inhibitory antibodies to FVIII or FVIIIa and the chimeric molecule comprises activated or protease-activatable FX linked to or associated with a GPIIb/IIIa antibody or antigen-binding molecule thereof and a half-life extending heterologous moiety.
- the subject has inhibitory antibodies against FIX or FIXa and the chimeric molecule comprises activated or protease-activatable FX linked to or associated with a GPIIb/IIIa antibody or antigen-binding molecule thereof and a half-life extending heterologous moiety.
- Chimeric molecules of the invention comprising a clotting factor can be used to prophylactically treat a subject with a hemostatic or coagulation disorder.
- Chimeric molecules of the invention comprising a clotting factor can be used to treat an acute bleeding episode in a subject with a hemostatic disorder.
- the hemostatic disorder is the result of a deficiency in a clotting factor, e.g., FVII, FIX, or FVIII.
- a clotting factor e.g., FVII, FIX, or FVIII.
- the hemostatic disorder can be the result of a defective clotting factor.
- the hemostatic disorder can be an acquired disorder.
- the acquired disorder can result from an underlying secondary disease or condition.
- the unrelated condition can be, as an example, but not as a limitation, cancer, an autoimmune disease, or pregnancy.
- the acquired disorder can result from old age or from medication to treat an underlying secondary disorder (e.g. cancer chemotherapy).
- the invention thus relates to a method of treating a subject in need of a general hemostatic agent comprising administering a therapeutically effective amount of at least one chimeric molecule of the invention.
- the subject in need of a general hemostatic agent is undergoing, or is about to undergo, surgery.
- the chimeric molecule of the invention can be administered prior to or after surgery as a prophylactic.
- the chimeric molecule of the invention can be administered during or after surgery to control an acute bleeding episode.
- the surgery can include, but is not limited to, liver transplantation, liver resection, or stem cell transplantation.
- the chimeric molecule of the invention can be used to treat a subject having an acute bleeding episode who does not have a hemostatic disorder.
- the acute bleeding episode can result from severe trauma, e.g., surgery, an automobile accident, wound, laceration gun shot, or any other traumatic event resulting in uncontrolled bleeding.
- the antibodies, antigen-binding fragments thereof, chimeric molecules, or nucleic acids encoding same of the disclosure can be administered intravenously, subcutaneously, intramuscularly, or via any mucosal surface, e.g., orally, sublingually, buccally, sublingually, nasally, rectally, vaginally or via pulmonary route.
- the chimeric molecule can be implanted within or linked to a biopolymer solid support that allows for the slow release of the chimeric molecule to the desired site.
- the route and/or mode of administration of the antibody or antigen-binding fragment thereof can also be tailored for the individual case, e.g., by monitoring the subject,
- the pharmaceutical composition can take the form of tablets or capsules prepared by conventional means.
- the composition can also be prepared as a liquid for example a syrup or a suspension.
- the liquid can include suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats), emulsifying agents (lecithin or acacia), non-aqueous vehicles (e.g., almond oil, oily esters, ethyl alcohol, or fractionated vegetable oils), and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid).
- the preparations can also include flavoring, coloring and sweetening agents.
- the composition can be presented as a dry product for constitution with water or another suitable vehicle.
- composition can take the form of tablets, lozenges or fast dissolving films according to conventional protocols.
- chimeric molecules for use according to the present disclosure are conveniently delivered in the form of an aerosol spray from a pressurized pack or nebulizer (e.g., in PBS), with a suitable propellant.
- the route of administration of the polypeptides of the invention is parenteral.
- parenteral as used herein includes intravenous, intraarterial, intraperitoneal, intramuscular, subcutaneous, rectal or vaginal administration.
- the intravenous form of parenteral administration is preferred. While all these forms of administration are clearly contemplated as being within the scope of the invention, a form for administration would be a solution for injection, in particular for intravenous or intraarterial injection or drip.
- a suitable pharmaceutical composition for injection can comprise a buffer (e.g., acetate, phosphate or citrate buffer), a surfactant (e.g. polysorbate), optionally a stabilizer agent (e.g., human albumin), etc.
- the polypeptides can be delivered directly to the site of the adverse cellular population thereby increasing the exposure of the diseased tissue to the therapeutic agent.
- Preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions.
- non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate.
- Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media.
- pharmaceutically acceptable carriers include, but are not limited to, 0.01-0.1M and preferably 0.05M phosphate buffer or 0.8% saline.
- Intravenous vehicles include sodium phosphate solutions, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's, or fixed oils.
- Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers, such as those based on Ringer's dextrose, and the like.
- Preservatives and other additives can also be present such as for example, antimicrobials, antioxidants, chelating agents, and inert gases and the like.
- compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions.
- the composition must be sterile and should be fluid to the extent that easy syringability exists. It should be stable under the conditions of manufacture and storage and will preferably be preserved against the contaminating action of microorganisms, such as bacteria and fungi.
- the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof.
- the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal and the like.
- isotonic agents for example, sugars, polyalcohols, such as mannitol, sorbitol, or sodium chloride in the composition.
- Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.
- sterile injectable solutions can be prepared by incorporating an active compound (e.g., a polypeptide by itself or in combination with other active agents) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated herein, as required, followed by filtered sterilization.
- an active compound e.g., a polypeptide by itself or in combination with other active agents
- dispersions are prepared by incorporating the active compound into a sterile vehicle, which contains a basic dispersion medium and the required other ingredients from those enumerated above.
- the preferred methods of preparation are vacuum drying and freeze-drying, which yields a powder of an active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- the preparations for injections are processed, filled into containers such as ampoules, bags, bottles, syringes or vials, and sealed under aseptic conditions according to methods known in the art. Further, the preparations can be packaged and sold in the form of a kit. Such articles of manufacture will preferably have labels or package inserts indicating that the associated compositions are useful for treating a subject suffering from, or predisposed to clotting disorders.
- the pharmaceutical composition can also be formulated for rectal administration as a suppository or retention enema, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
- Effective doses of the compositions of the present disclosure, for the treatment of conditions vary depending upon many different factors, including means of administration, target site, physiological state of the patient, whether the patient is human or an animal, other medications administered, and whether treatment is prophylactic or therapeutic.
- the patient is a human but non-human mammals including transgenic mammals can also be treated.
- Treatment dosages can be titrated using routine methods known to those of skill in the art to optimize safety and efficacy.
- the dose of a biologically active moiety can range from about 90 to 270 ⁇ g/kg or 0.090 to 0.270 mg/kg. In another embodiment, the dose of a biologically active moiety (e.g., comprising FX), can range from about 1 ⁇ g/kg to 400 mg/kg.
- Dosages can range from 1000 ⁇ g/kg to 0.1 ng/kg body weight. In one embodiment, the dosing range is 1 ug/kg to 100 ⁇ g/kg.
- the protein can be administered continuously or at specific timed intervals.
- In vitro assays can be employed to determine optimal dose ranges and/or schedules for administration.
- In vitro assays that measure clotting factor activity are known in the art, e.g., STA-CLOT VIIa-rTF clotting assay. Additionally, effective doses can be extrapolated from dose-response curves obtained from animal models, e g., a hemophiliac dog (Mount et al. 2002 , Blood 99: 2670).
- Doses intermediate in the above ranges are also intended to be within the scope of the invention.
- Subjects can be administered such doses daily, on alternative days, weekly or according to any other schedule determined by empirical analysis.
- An exemplary treatment entails administration in multiple dosages over a prolonged period, for example, of at least six months.
- two or more polypeptides can be administered simultaneously, in which case the dosage of each polypeptide administered falls within the ranges indicated.
- Polypeptides of the invention can be administered on multiple occasions. Intervals between single dosages can be daily, weekly, monthly or yearly. Intervals can also be irregular as indicated by measuring blood levels of modified polypeptide or antigen in the patient. Alternatively, polypeptides can be administered as a sustained release formulation, in which case less frequent administration is required. Dosage and frequency vary depending on the half-life of the polypeptide in the patient.
- compositions containing the polypeptides of the invention or a cocktail thereof are administered to a patient not already in the disease state to enhance the patient's resistance or minimize effects of disease. Such an amount is defined to be a “prophylactic effective dose.”
- a relatively low dosage is administered at relatively infrequent intervals over a long period of time. Some patients continue to receive treatment for the rest of their lives.
- Polypeptides of the invention can optionally be administered in combination with other agents that are effective in treating the disorder or condition in need of treatment (e.g., prophylactic or therapeutic).
- the administration of polypeptides of the invention in conjunction or combination with an adjunct therapy means the sequential, simultaneous, coextensive, concurrent, concomitant or contemporaneous administration or application of the therapy and the disclosed polypeptides.
- Those skilled in the art will appreciate that the administration or application of the various components of the combined therapeutic regimen can be timed to enhance the overall effectiveness of the treatment. A skilled artisan (e.g., a physician) would be readily be able to discern effective combined therapeutic regimens without undue experimentation based on the selected adjunct therapy and the teachings of the instant specification.
- polypeptides of the instant invention can be used in conjunction or combination with an agent or agents (e.g., to provide a combined therapeutic regimen).
- agents with which a polypeptide of the invention can be combined include agents that represent the current standard of care for a particular disorder being treated. Such agents can be chemical or biologic in nature.
- biological or “biologic agent” refers to any pharmaceutically active agent made from living organisms and/or their products which is intended for use as a therapeutic.
- the amount of agent to be used in combination with the polypeptides of the instant invention can vary by subject or can be administered according to what is known in the art. See for example, Bruce A Chabner et al., Antineoplastic Agents, in Goodman & Gilman's The Pharmacological Basis of Therapeutics 1233-1287 ((Hardman et al., eds., 9th ed. 1996). In another embodiment, an amount of such an agent consistent with the standard of care is administered.
- the polypeptides of the present disclosure can be administered in a pharmaceutically effective amount for the in vivo treatment of clotting disorders.
- the polypeptides of the invention can be formulated to facilitate administration and promote stability of the active agent.
- pharmaceutical compositions in accordance with the present disclosure comprise a pharmaceutically acceptable, non-toxic, sterile carrier such as physiological saline, non-toxic buffers, preservatives and the like.
- the pharmaceutical compositions of the present disclosure can be administered in single or multiple doses to provide for a pharmaceutically effective amount of the polypeptide.
- a chimeric molecule of the invention is administered as a nucleic acid molecule.
- Nucleic acid molecules can be administered using techniques known in the art, including via vector, plasmid, liposome, DNA injection, electroporation, gene gun, intravenously injection or hepatic artery infusion. Vectors for use in gene therapy embodiments are known in the art.
- the chimeric molecule of the invention can be administered to a human or other animal in accordance with the aforementioned methods of treatment in an amount sufficient to produce a therapeutic or prophylactic effect.
- the instant disclosure also provides a method to target or deliver a therapeutic or prophylactic agent (e.g., a clotting factor such as FVII) to the surface of platelets, wherein the method comprises fusing the agent to one of the GPIIb/IIIa antibodies or antigen-binding fragments thereof disclosed herein.
- a therapeutic or prophylactic agent e.g., a clotting factor such as FVII
- the disclosure provides a method to increase the activity of a therapeutic or prophylactic agent (e.g., a clotting factor such as FVII) comprising fusing the agent to a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein.
- a therapeutic or prophylactic agent e.g., a clotting factor such as FVII
- the disclosure provides a method to improve the pharmacokinetic properties of a clotting factor comprising fusing the clotting factor to the GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein.
- these methods further comprise fusing or conjugating a clotting factor and/or the GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein to a half-life extending moiety.
- the therapeutic or prophylactic agent is a FVII, a FIX, or a FX.
- the present disclosure also provides a method of measuring the level of platelets in plasma of a subject in need thereof comprising contacting the GPIIb/IIIa antibody or antigen binding molecule thereof disclosed herein with the plasma from the subject and measuring the level of platelets in plasma.
- This method can further comprise fusing or conjugating the clotting factor and/or the GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein to a detectable heterologous moiety, for example, a fluorescent molecule or a radionuclide.
- This disclosure also provides a method of isolating or separating platelets from other cells in a sample (e.g., a blood sample).
- the method comprises contacting the sample with an GPIIb/IIIa antibody or antigen binding molecule thereof disclosed herein and separating the cells that have bound to the GPIIb/IIIa antibody or antigen binding molecule thereof from the unbound fraction.
- the disclosure also provides a method of detecting platelets in a sample (e.g., blood sample) of a subject comprising contacting the sample with a detectably labeled GPIIb/IIIa antibody or antigen binding molecule.
- the detectable label can be, for example, a fluorescent molecule or a radionuclide.
- Five additional heavy chain regions (VH1 to 5) and three additional light chain regions (VL1 to 3) were created by combining several mutations in the human acceptor frameworks of the CDR grafts compared to the CDR-grafted chains (i.e., VH0 and VL0).
- the majority of the mutations that were made in the human acceptor frameworks were backmutations to the amino acid of the mature murine framework to help maintain the structure of the 34D10 CDRs.
- the germline humIGKV3-15 with framework region FR4 from human consensus subgroup Kappa I was chosen as the light chain acceptor framework.
- the VL0 CDR graft employed the FR4 region from the corresponding human consensus subgroup, Kappa III, which is the same as the FR4 sequence of the human consensus subgroup most similar to the mature murine, Kappa I, namely FGQGTKVEIK (SEQ ID NO:49).
- This FR4 sequence differs at two positions from 34D10's FR4,
- the germline humIGHV3/OR16-13 with framework region FR4 from human consensus subgroup Heavy III was chosen as the heavy chain acceptor framework.
- the VH0 CDR graft used the FR4 region from the human consensus that best matched 34D10 VH, human consensus subgroup Heavy III.
- This framework region 4 sequence is WGQGTLVTVSS (SEQ ID NO: 34), differing from murine only by having that L108, which is S in the 34D10 VH and the murine consensus Heavy III(D).
- FIGS. 1 and 2 Alignments of the amino acid sequences of 34D10 VH and VL with the six humanized 34D10 variable heavy chain regions and four humanized 34D10 variable light chain regions are shown in FIGS. 1 and 2 , respectively.
- Example 2 Flow Cytometry Studies to Determine the Binding of the Humanized Fabs to Human Platelets and Surface Plasmon Resonance Studies to Determine the Affinity of Humanized Fabs for Purified GPIIb/IIIa
- Human platelets were purified from platelet-rich plasma (PRP) using a Sepharose CL-2B column (GE Healthcare) in platelet buffer (15 mM HEPES, 138 mM NaCl, 5 mM CaCl 2 , 2.7 mM KCl, 1 mM MgCl 2 , 5.5 mM dextrose, 1 mg/ml BSA, pH 7.4) following methods known in the art. Humanized Fab at different increasing concentrations was incubated with the gel-purified platelets for 20 minutes at room temperature.
- EC 50 was calculated as the Fab concentration that shows a mean fluorescence signal (MFI) equal to one half of the maximal mean fluorescence signal (maximal signal observed at saturation of Fab binding).
- binding assays were performed using surface plasmon resonance (SPR) technology.
- SPR surface plasmon resonance
- biotinylated human GPIIb/IIIa ectodomain protein was generated as described in Zhu et al. Molecular Cell, 32(6): 849-861 (2008).
- the GPIIb/IIIa ectodomain protein was immobilized on an SPR chip coated with streptavidin (GE Healthcare).
- streptavidin GE Healthcare
- FVII-245 i.e., the fusion of the light and heavy chain of FVII via a linker (underlined) to the light chain domain of 34D10 (variable domain boldened; constant region italicized) is provided below:
- the amino acid sequence of the Fab heavy chain of Fab-033 (the VH domain is underlined; the constant region is boldened) is provided below:
- This Fab heavy chain associates with the Fab light chain in FVII-245.
- the amino acid sequence of FVII-250 i.e., the fusion of the light and heavy chain of FVII via a linker (underlined) to the L0 Fab light chain (boldened) is provided below:
- amino acid sequence of the H2 chain of Fab-037 (the VH2 domain is underlined) is provided below:
- FIG. 4A A schematic diagram of these chimeric constructs is depicted in FIG. 4A .
- FVIIa-XTEN AE288
- FVII-251/Fab-037 and FVII-251/Fab-036 FVII-200
- the targeting moiety was an scFv version of mouse 34D10 (instead of an Fab).
- the amino acid sequence of FVII-251 i.e., the fusion of the light and heavy chain of FVII via a linker (SEQ ID NO:195) to an XTEN (AE288) (italicized and underlined) and linkers (SEQ ID NO:196 and 170) (bold italics (SEQ ID NO:196) and underlined (SEQ ID NO:170)) to the Fab light chain L0 (boldened)
- SEQ ID NO:195 an XTEN
- AE288 italicized and underlined
- linkers SEQ ID NO:196 and 170
- the amino acid sequence of FVII-200 is provided below.
- the structure of this construct is as follows: light chain of FVII followed by heavy chain of FVII fused to a linker (SEQ ID NO: 195) followed by XTEN followed by a GSSS linker (SEQ ID NO:196) and a (G4S)6 (SEQ ID NO: 170) linker fused to the VL domain of 34D10 fused to (G4S)4 (SEQ ID NO:168) linker fused to the VH domain of 34D10 (the XTEN, AE288 is italicized and underlined; the G45 (SEQ ID NO:165) linkers are underlined; the VL of the 34D10 scFv is boldened and the VH of the 34D10 scFv is italicized):
- DNA encoding the protein sequences were synthesized, cloned into an expression vector, and expressed in HEK 293 cells by transient transfection following methods known in the art. Protein was purified from the conditioned media following methods known in the art.
- FVII-245//Fab-033 and FVII-189 (mouse 34D10 in scFv format recombinantly fused to rFVIIa) also showed comparable activity by ROTEM ( FIG. 4C ), demonstrating that the targeting moiety works equally well as an scFv or Fab format.
- FVII-189 displays much higher activity than rFVIIa by ROTEM ( FIG. 4D ) and from this it can be inferred that FVII-250 with the humanized Fab also displays activity by ROTEM much greater than rFVIIa.
- FIG. 5A The same experiments were performed with the FVIIa-XTEN fusion proteins ( FIG. 5A ).
- FVII-251/Fab-037 and FVII-251/Fab-036 were compared to FVII-200 carrying the mouse version of the targeting moiety.
- FIG. 5B shows that the activity of all three proteins is similar, indicating that the humanized and mouse targeting moieties have similar properties.
- FVII-251/Fab-037 was compared to recombinant FVIIa (rFVIIa) ( FIG. 5C ).
- FVII-251/Fab-037 displays greater activity than rFVIIa, demonstrating that the humanized targeting moiety (L0/H2) can target FVIIa to platelets and increase its activity.
- Example 5 Ex Vivo Activity of Humanized 34D10 Fab Linked to Factor VIIa Compared with Recombinant Factor VIIa (rFVIIa) in Transgenic Hemophilia A Mice
- mice with a fully humanized ⁇ IIb subunit in the ⁇ IIb/ ⁇ 3 integrin were dosed with 10 nmol/kg of rFVIIa or FVII-251/Fab-037 (i.e., Factor VIIa linked to XTEN linked to the VL0/VH2 h34D10 Fab).
- rFVIIa or FVII-251/Fab-037 i.e., Factor VIIa linked to XTEN linked to the VL0/VH2 h34D10 Fab.
- ROTEM rotational thromboelastometry
- FVII-251/Fab-037 showed shorter clotting times at 5 minutes post-dosing, indicating increased acute ex vivo activity.
- FVII-251/Fab-037 displayed shorter clotting times than rFVIIa at all the timepoints, and the clotting time for FVII-251/Fab-037 at 6 hours post-dosing was comparable to the clotting time of rFVIIa at 1 hour post-dosing, suggesting a 6-fold improvement in the prolonged ex vivo efficacy for FVII-251/Fab-037 compared with rFVIIa.
- ROTEM ex-vivo rotational thromboelastometry
- rFVIIa and FVII-251/Fab-037 showed comparable plasma recovery at 5 minutes post-dosing and FVII-251/Fab-037 showed decreased clearance and higher plasma activity levels compared to equal molar dosed rFVIIa over all time points measured, consistent with improved pharmacokinetic properties.
- mice expressing only human alphaIIb in place of murine alphaIIb on platelets (HemA-Tg-hu-alphaIIb mice), were created by crossing hemophilia A (HemA) knock-out mice (exon 16, Bi et al., Nat. Genet., 10(1):119-121,1995) with mouse alphaIIb knock-out mice (Emambokus et al., Immunity, 19(1):33-45, 2003), which were transgenic for human alphaIIb integrin expression (Thornton et al., Blood, 100(10):3588-3596, 2002). For experiments the mice were crossed to homogenicity, resulting in HemA mice, expressing human all), murine beta3 integrin heterodimers on all platelets.
- Acute efficacy was studied in a blinded murine tail-clip bleeding model, in which total blood loss in dosed mice is measured after tail tip amputation, as described previously (Dumont et al., Blood, 119(13):3024-3030, 2012). Briefly, male HemA-Tg hu- ⁇ IIb mice (8-13 wks) were anesthetized with a cocktail of 50 mg/kg ketamine and 0.5 mg/kg dexmedetomidine. The tails were immersed in 37° C.
- TIS 2-amino-2-hydroxymethyl-propane-1, 3-diol
- 5 minutes post-dosing the 4 mm distal tip of the tail was clipped and submerged into a pre-weighted tube containing 11 mL saline for the period
- Example 8 Affinity Maturation of a Humanized 34D10 Antibody
- nucleic acid sequence encoding humanized 34D10 VH2 (the amino acid sequence is set forth in SEQ ID NO: 7) was subjected to multiple cycles of error-prone polymerase chain reaction (PCR) according to published methods (Zaccolo et al., J. Mol. Biol., 255(4):589-603, 1996; Van Deventer and Wittrup, Methods Mol. Biol., 1131:151-81, 2014).
- PCR polymerase chain reaction
- the pool of mutated 34D10 VH2 nucleic acid sequences and a nucleic acid sequence encoding 34D10 VL0 (SEQ ID NO: 19) were then introduced into the Adimab platform, resulting in an Adimab expression library size of approximately 10 6 antibodies (see, US Patent Publications 20100056386 and 20090181855 to Adimab, Inc. as well as references cited therein).
- a nucleic acid sequence encoding 34D10 VH2 (SEQ ID NO: 15) and a nucleic acid sequence encoding 34D10 VL0 were introduced into the Adimab yeast platform.
- the antibodies purified from yeast were screened for binding to target antigen (hGPIIb-SEQ ID NO:23 and hGPIIIa-SEQ ID NO:24) using Bio-Layer Interferometry (BLI) in a monovalent assay format.
- BLI was performed on the OctetRed94 instrument, manufactured by ForteBio, according to standard procedures.
- the present disclosure identifies 22 unique VH sequences with improvements in affinity and/or off-rate when compared to the parental VH (amino acid sequence: SEQ ID NO:7; nucleic acid sequence: SEQ ID NO: 15) ( FIG. 11 ).
- the BLI binding profiles of all VH ( FIG. 12A ) as well as examples of individual affinity matured VH sequences (SEQ ID NOs: 197, 202, 205) in comparison to the parental clone (amino acid sequences: SEQ ID NOs: 7 and 4; nucleic acid sequences: 15 and 19) are disclosed herein ( FIGS. 12B-E ).
- FIG. 12F A table listing the apparent monovalent affinity and dissociation rates of the 22 disclosed VH sequences paired with the parental 34D10 VL0 (amino acid sequence: SEQ ID NO:4; nucleic acid sequence: SEQ ID NO: 19) purified from yeast, as determined by BLI in the monovalent format, is depicted in FIG. 12F .
- yeast purified Fab of the 22 unique VH ( FIG. 11 ) with parental VL0 were subjected to thermal denaturation by differential scanning fluorimetry (DSF). Measurements were conducted on an Mx3005p real-time PCR system (Agilent Technologies) in a 96-well format using 10 ⁇ g of Fab in 50 ⁇ l PBS (at pH 7.0) supplemented with SYPRO orange fluorophor. Derivation of the melting temperature (T m ) was performed as described in Pepinsky et al., Protein Sci., 19(5):954-662010. A table listing the calculated T m is provided in FIG. 13 .
- amino acid and nucleic acid sequences of the 22 VH sequences obtained by the affinity maturation of h34D10 VH2 by the methods described above are provided below:
- FVII-265 was generated to remove a GSSS (SEQ ID NO: 196) linker sequence in FVII-251 (see, Example 3) located between the XTEN sequence and the (Gly 4 Ser) 6 (SEQ ID NO:170) linker.
- the amino acid sequence of FVII-265 is provided below (from N terminus to C-terminus: the amino acid sequence of the light chain of FVII is underlined; this is followed by the amino acid sequence of the heavy chain of FVII, which is boldened and italicized; this is followed by a linker having the amino acid sequence set forth in SEQ ID NO:195; which is followed by the XTEN (AE288) sequence which is both italicized and underlined; followed by a (Gly 4 Ser) 6 (SEQ ID NO:170) linker that is double underlined; and which is followed by the Fab light chain L0 (boldened)):
- Fab-037 (SEQ ID NO:75) associates with the Fab light chain in FVII-265.
- Example 11 Improved Pharmacokinetics of FVII-251/Fab-037 Compared with rFVIIa in Human (Mb Transgenic HemA Mice Correlates with Prolonged and Improved ROTEM Clotting Time Efficacy
- sTF soluble tissue factor
- PT prothrombin time
- Prolonged bleeding efficacy was studied in a blinded murine tail-clip bleeding model in human ⁇ IIb-transgenic HemA mice ( FIG. 16 ). Prolonged protection was determined in a modified version of the acute tail-clip amputation efficacy model as described in Example 7.
- blood loss over a 30 minute time frame was measured after a tail-tip amputation applied 5 minutes post-dosing.
- the tail-tip amputations are performed at a later time points post-dosing, blood loss is again measured over a 30 minute period.
- tail-tip amputations were performed at 2, 4 and 6 hours post-dosing.
- blood loss was measured at 5 min and 2 hours-post dosing of 100 nmol/kg intravenous dosed FVIIa.
- Blood loss is indicated as % blood loss, compared to blood loss as measured in vehicle dosed mice at similar time points post-dosing. Indicated are the median blood loss and the statistical significance. The latter was calculated using unpaired two-tailed t-test in GraphPad Prism 6. Such two tailed t-tests showed that the 100 nmol/kg dose of FVIIa significant reduces blood loss at 5 minutes post-dosing and is not advantageous at 2 hours post-dosing.
- the amino acid sequence of the Fab-062 is provided below.
- the XTEN sequence is in bold (note that a glutamic acid (E) is added at the N-terminus of AE288) and the VH2 domain of the Fab is underlined.
- DNA encoding the above protein sequence was synthesized, cloned into an expression vector, and expressed in HEK 293 cells by transient transfection. The fusion protein was then purified from the conditioned media.
- binding assays were performed using surface plasmon resonance (SPR) technology.
- SPR surface plasmon resonance
- biotinylated human GPIIb/IIIa ectodomain protein was generated as described in Zhu et al. Molecular Cell, 32(6): 849-861 (2008).
- the GPIIb/IIIa ectodomain protein was immobilized on an SPR chip coated with streptavidin (GE Healthcare).
- streptavidin GE Healthcare
- FVII-250/Fab-062 The activity of FVII-250/Fab-062 was determined by rotational thromboelastometry (ROTEM) assays using whole blood from hemophilia donors. The activity in whole blood is platelet-dependent, and coagulation was initiated by recalcification of the blood. FVII-250/Fab-062 displays enhanced activity compared to FVIIa, indicated by faster clotting times for FVII-250/Fab-062 than FVIIa at equivalent concentrations ( FIG. 19 ). These data demonstrate that this Fab targeting moiety, with an XTEN moiety at the N-terminus of the Fab heavy chain, can target FVIIa to platelets and increase its potency.
- ROTEM rotational thromboelastometry
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Immunology (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Urology & Nephrology (AREA)
- Cell Biology (AREA)
- Hematology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Food Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
- This patent application is a continuation application of U.S. patent application Ser. No. 15/521,102, filed Apr. 21, 2017, which is the National Stage of International Application No. PCT/US2015/057187, filed on Oct. 23, 2015, which claims the benefit of U.S. Provisional Patent Application Nos. 62/067,783, filed Oct. 23, 2014; 62/110,883, filed Feb. 2, 2015; and 62/184,044, filed Jun. 24, 2015, each of which are incorporated by reference in their entirety herein.
- The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Oct. 23, 2015, is named 13751-0225WO1_SL.txt and is 333,632 bytes in size.
- Clotting factors have been administered to patients to improve hemostasis for some time. The advent of recombinant DNA technology has significantly improved treatment for patients with clotting disorders, allowing for the development of safe and consistent protein therapeutics. For example, recombinant activated factor VII has become widely used for the treatment of major bleeding, such as that which occurs in patients having hemophilia A or B, deficiency of coagulation Factors XI or VII, defective platelet function, thrombocytopenia, or von Willebrand's disease.
- Although such recombinant molecules are effective, there is a need for improved versions which localize the therapeutic agent to sites of coagulation, have improved pharmacokinetic properties, improved manufacturability, reduced thrombogenicity, or enhanced activity, or more than one of these characteristics.
- Treatment of hemophilia by replacement therapy is targeting restoration of clotting activity. There are plasma-derived and recombinant clotting factor products available to treat bleeding episodes on-demand or to prevent bleeding episodes from occurring by treating prophylactically. Based on the half-life of these products, treatment regimens require frequent intravenous administration. Such frequent administration is painful and inconvenient. Strategies to extend the half-life of clotting factors include pegylation (Rostin J, et al., Bioconj. Chem., 2000; 11:387-96), glycopegylation (Stennicke H R, et al., Thromb. Haemost., 2008; 100:920-8), formulation with pegylated liposomes (Spira J, et al., Blood, 2006; 108:3668-3673, Pan J, et al., Blood, 2009; 114:2802-2811) and conjugation with albumin (Schulte S., Thromb. Res., 2008; 122 Suppl 4:S14-9).
- Recombinant FVIIa (rFVIIa; Jurlander B et al., Semin. Thromb. Hemost., 2001; 27(4):373-84) is used to treat bleeding episodes in (i) hemophilia patients with neutralizing antibodies against FVIII or FIX (inhibitors), (ii) patients with FVII deficiency, or (iii) patients with hemophilia A or B with inhibitors undergoing surgical procedures. Prior recombinant rFVIIa preparations sometimes display poor efficacy. Repeated doses of FVIIa at high concentration are often required to control a bleed, due to its low affinity for activated platelets, short half-life, and poor enzymatic activity in the absence of tissue factor. Accordingly, there is an unmet medical need for better treatment and prevention options for patients with coagulation disorders (e.g., hemophilia patients with inhibitors in which the activity of the FVIIa protein is increased).
- The present disclosure features antibodies and antigen-binding fragments thereof that bind to GPIIb/IIIa. These antibodies can specifically bind the GPIIb subunit and/or the GPIIb/IIIa complex. They are capable of targeting the non-active form of the GPIIb/IIIa receptor. The anti-GPIIb/IIIa antibodies and antigen-binding fragments thereof described herein can be used, for example, to target or ferry any agent of interest (e.g., a therapeutic molecule such as a clotting factor) to platelets. For example, the clotting factor FVIIa has low affinity for platelets, the site of action for clot formation. Thus, one approach to increase activity of a clotting factor like FVIIa is to target this clotting factor to platelet receptors via targeting moieties (e.g., Fab or scFv of an anti-GPIIb/IIIa antibody), which can increase the affinity of FVIIa for platelets thereby boosting activity. Such chimeric molecules can include a heterologous moiety to improve the pharmacokinetic parameters of the molecules such as its half-life. In addition to their use as targeting moieties, the anti-GPIIb/IIIa antibodies and antigen-binding fragments thereof of this disclosure can be used as diagnostics, for example, by conjugation to a detectable label, and also for isolating or separating platelets from a sample.
- In one aspect, this disclosure provides an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region that is at least 75% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218. In certain embodiments, the heavy chain variable region is at least 76% identical, at least 77% identical, at least 78% identical, at least 79% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218. In certain embodiments, these antibodies have an apparent monovalent affinity that is improved over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7. In some embodiments, these antibodies have an apparent monovalent affinity that is about 1 to 5×10−8M (e.g., 1×10−8M; 1.5×10−8M; 2×10−8M; 2.5×10−8M; 3×10−8M; 3.5×10−8M; 4×10−8M; 4.5×10−8M; 5×10−8M). In certain embodiments, these antibodies have an improved off-rate over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- In another aspect, this disclosure provides an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a light chain variable region that is at least 75% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 4, 6, 8, or 10. In certain embodiments, the light chain variable region is at least 76% identical, at least 77% identical, at least 78% identical, at least 79% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 4, 6, 8, or 10.
- In another aspect, this disclosure provides an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region that is at least 75% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218, and a light chain variable region that is at least 75% identical to the amino acid sequence set forth in any one of SEQ ID NOs:4, 6, 8, or 10. In certain embodiments, the heavy chain variable region is at least 76% identical, at least 77% identical, at least 78% identical, at least 79% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218 In certain embodiments, the light chain variable region is at least 76% identical, at least 77% identical, at least 78% identical, at least 79% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 4, 6, 8, or 10. In certain embodiments, the heavy chain variable region is at least 80% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218 and the light chain variable region is at least 80% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 4, 6, 8, or 10. In certain embodiments, the heavy chain variable region is at least 85% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218 and the light chain variable region is at least 85% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 4, 6, 8, or 10. In some embodiments, the heavy chain variable region is at least 90% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218 and the light chain variable region is at least 90% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 4, 6, 8, or 10. In other embodiments, the heavy chain variable region is at least 95% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218 and the light chain variable region is at least 95% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 4, 6, 8, or 10. In yet other embodiments, the heavy chain variable region is at least 97% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218 and the light chain variable region is at least 97% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 4, 6, 8, or 10. In a certain embodiment, the heavy chain variable region is identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218 and the light chain variable region is identical to the amino acid sequence set forth in any one of SEQ ID NOs: 4, 6, 8, or 10. In one specific embodiment, the heavy chain variable region is identical to the amino acid sequence set forth in SEQ ID NO: 7 and the light chain variable region is identical to the amino acid sequence set forth in SEQ ID NO:4. In another specific embodiment, the heavy chain variable region is identical to the amino acid sequence set forth in SEQ ID NO: 12 and the light chain variable region is identical to the amino acid sequence set forth in SEQ ID NO:8. In yet another specific embodiment, the heavy chain variable region is identical to the amino acid sequence set forth in SEQ ID NO:11 and the light chain variable region is identical to the amino acid sequence set forth in SEQ ID NO:10. In certain embodiments, these antibodies have an apparent monovalent affinity that is improved over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7. In some embodiments, these antibodies have an apparent monovalent affinity that is about 1 to 5×10−8M (e.g., 1×10−8M; 1.5×10−8M; 2×10−8M; 2.5×10−8M; 3×10−8M; 3.5×10−8M; 4×10−8M; 4.5×10−8M; 5×10−8M). In certain embodiments, these antibodies have an improved off-rate over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- In another aspect, the disclosure features an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region that is at least 75% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 5, 7, 9, 11, 12, or 197-218, and a light chain variable region that is at least 75% identical to the amino acid sequence set forth in SEQ ID NO:4. In one embodiment, the heavy chain variable region that is at least 80% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 5, 7, 9, 11, 12, or 197-218, and the light chain variable region is at least 80% identical to the amino acid sequence set forth in SEQ ID NO:4. In another embodiment, the heavy chain variable region that is at least 85% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 5, 7, 9, 11, 12, or 197-218, and the light chain variable region is at least 85% identical to the amino acid sequence set forth in SEQ ID NO:4. In one embodiment, the heavy chain variable region that is at least 90% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 5, 7, 9, 11, 12, or 197-218, and the light chain variable region is at least 90% identical to the amino acid sequence set forth in SEQ ID NO:4. In another embodiment, the heavy chain variable region that is at least 95% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 5, 7, 9, 11, 12, or 197-218, and the light chain variable region is at least 95% identical to the amino acid sequence set forth in SEQ ID NO:4. In yet another embodiment, the heavy chain variable region that is at least 97% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 5, 7, 9, 11, 12, or 197-218, and the light chain variable region is at least 97% identical to the amino acid sequence set forth in SEQ ID NO:4. In a specific embodiment, the heavy chain variable region that is identical to the amino acid sequence set forth in any one of SEQ ID NOs: 5, 7, 9, 11, 12, or 197-218, and the light chain variable region is identical to the amino acid sequence set forth in SEQ ID NO:4. In certain embodiments, these antibodies have an apparent monovalent affinity that is improved over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7. In some embodiments, these antibodies have an apparent monovalent affinity that is about 1 to 5×10−8M (e.g., 1×10−8M; 1.5×10−8M; 2×10−8M; 2.5×10−8M; 3×10−8M; 3.5×10−8M; 4×10−8M; 4.5×10−8M; 5×10−8M). In certain embodiments, these antibodies have an improved off-rate over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- In another aspect, the disclosure features an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region that is at least 75% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218, and a light chain variable region that is at least 75% identical to the amino acid sequence set forth in SEQ ID NO:10. In one embodiment, the heavy chain variable region that is at least 80% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218, and the light chain variable region is at least 80% identical to the amino acid sequence set forth in SEQ ID NO:10. In another embodiment, the heavy chain variable region that is at least 85% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218, and the light chain variable region is at least 85% identical to the amino acid sequence set forth in SEQ ID NO:10. In one embodiment, the heavy chain variable region that is at least 90% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218, and the light chain variable region is at least 90% identical to the amino acid sequence set forth in SEQ ID NO:10. In another embodiment, the heavy chain variable region that is at least 95% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218, and the light chain variable region is at least 95% identical to the amino acid sequence set forth in SEQ ID NO:10. In yet another embodiment, the heavy chain variable region that is at least 97% identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218, and the light chain variable region is at least 97% identical to the amino acid sequence set forth in SEQ ID NO:10. In a specific embodiment, the heavy chain variable region that is identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218, and the light chain variable region is identical to the amino acid sequence set forth in SEQ ID NO:10. In certain embodiments, these antibodies have an apparent monovalent affinity that is improved over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7. In some embodiments, these antibodies have an apparent monovalent affinity that is about 1 to 5×10−8M (e.g., 1×10−8M; 1.5×10−8M; 2×10−8M; 2.5×10−8M; 3×10−8M; 3.5×10−8M; 4×10−8M; 4.5×10−8M; 5×10−8M). In certain embodiments, these antibodies have an improved off-rate over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- In another aspect, the disclosure relates to an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region that is identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218, except for a total of 1 to 10 (i.e., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) amino acid substitutions, deletions, or insertions. In certain embodiments, these antibodies have an apparent monovalent affinity that is improved over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7. In some embodiments, these antibodies have an apparent monovalent affinity that is about 1 to 5×10−8M (e.g., 1×10−8M; 1.5×10−8M; 2×10−8M; 2.5×10−8M; 3×10−8M; 3.5×10−8M; 4×10−8M; 4.5×10−8M; 5×10−8M). In certain embodiments, these antibodies have an improved off-rate over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- In a further aspect, the disclosure provides an antibody antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a light chain variable region that is identical to the amino acid sequence set forth in any one of SEQ ID NOs: 4, 6, 8, or 10, except for a total of 1 to 10 (i.e., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) amino acid substitutions, deletions, or insertions. In certain embodiments, these antibodies have an apparent monovalent affinity that is improved over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7. In some embodiments, these antibodies have an apparent monovalent affinity that is about 1 to 5×10−8M (e.g., 1×10−8M; 1.5×10−8M; 2×10−8M; 2.5×10−8M; 3×10−8M; 3.5×10−8M; 4×10−8M; 4.5×10−8M; 5×10−8M). In certain embodiments, these antibodies have an improved off-rate over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- In yet another aspect, the disclosure relates to an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises (i) a heavy chain variable region that is identical to the amino acid sequence set forth in any one of SEQ ID NOs: 3, 5, 7, 9, 11, 12, or 197-218, except for a total of 1 to 10 amino acid substitutions, deletions, or insertions; and (ii) a light chain variable region that is identical to the amino acid sequence set forth in any one of SEQ ID NOs: 4, 6, 8, or 10, except for a total of 1 to 10 amino acid substitutions, deletions, or insertions. In certain embodiments, these antibodies have an apparent monovalent affinity that is improved over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7. In some embodiments, these antibodies have an apparent monovalent affinity that is about 1 to 5×10−8M (e.g., 1×10−8M; 1.5×10−8M; 2×10−8M; 2.5×10−8M; 3×10−8M; 3.5×10−8M; 4×10−8M; 4.5×10−8M; 5×10−8M). In certain embodiments, these antibodies have an improved off-rate over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- In certain embodiments of all of the above aspects, the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTYYPDSVKR (SEQ ID NO:26), and GGDYGYALDY (SEQ ID NO:27), respectively.
- In other embodiments of all of the above aspects, the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTYYPDSVKR (SEQ ID NO:26), and GGDYSYALDY (SEQ ID NO:245), respectively. In certain embodiments, these antibodies have an apparent monovalent affinity that is improved over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7. In some embodiments, these antibodies have an apparent monovalent affinity that is about 1 to 5×10−8M (e.g., 1×10−8M; 1.5×10−8M; 2×10−8M; 2.5×10−8M; 3×10−8M; 3.5×10−8M; 4×10−8M; 4.5×10−8M; 5×10−8M). In certain embodiments, these antibodies have an improved off-rate over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- In other embodiments of all of the above aspects, the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTYYPDSVER (SEQ ID NO:241), and GGDYSYALDY (SEQ ID NO:245), respectively. In certain embodiments, these antibodies have an apparent monovalent affinity that is improved over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7. In some embodiments, these antibodies have an apparent monovalent affinity that is about 1 to 5×10−8M (e.g., 1×10−8M; 1.5×10−8M; 2×10−8M; 2.5×10−8M; 3×10−8M; 3.5×10−8M; 4×10−8M; 4.5×10−8M; 5×10−8M). In certain embodiments, these antibodies have an improved off-rate over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- In other embodiments of all of the above aspects, the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSDGTTYYPDSVKR (SEQ ID NO:242), and GGDYSYALDY (SEQ ID NO:245), respectively. In certain embodiments, these antibodies have an apparent monovalent affinity that is improved over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7. In some embodiments, these antibodies have an apparent monovalent affinity that is about 1 to 5×10−8M (e.g., 1×10−8M; 1.5×10−8M; 2×10−8M; 2.5×10−8M; 3×10−8M; 3.5×10−8M; 4×10−8M; 4.5×10−8M; 5×10−8M). In certain embodiments, these antibodies have an improved off-rate over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- In other embodiments of all of the above aspects, the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTDYPDSVKR (SEQ ID NO:243), and GGDYGYALDY (SEQ ID NO:27), respectively. In certain embodiments, these antibodies have an apparent monovalent affinity that is improved over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7. In some embodiments, these antibodies have an apparent monovalent affinity that is about 1 to 5×10−8M (e.g., 1×10−8M; 1.5×10−8M; 2×10−8M; 2.5×10−8M; 3×10−8M; 3.5×10−8M; 4×10−8M; 4.5×10−8M; 5×10−8M). In certain embodiments, these antibodies have an improved off-rate over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- In other embodiments of all of the above aspects, the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), GISSGGTTYYPDSVKR (SEQ ID NO:244), and GGDYGYALDY (SEQ ID NO:27), respectively. In certain embodiments, these antibodies have an apparent monovalent affinity that is improved over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7. In some embodiments, these antibodies have an apparent monovalent affinity that is about 1 to 5×10−8M (e.g., 1×10−8M; 1.5×10−8M; 2×10−8M; 2.5×10−8M; 3×10−8M; 3.5×10−8M; 4×10−8M; 4.5×10−8M; 5×10−8M). In certain embodiments, these antibodies have an improved off-rate over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7.
- In certain embodiments of all of the above aspects, the antibody or the antigen-binding fragment thereof comprises a light chain variable region comprising CDR1, CDR2, and CDR3, consisting of the amino acid sequences RASSSVNYMY (SEQ ID NO:28), YTSNLAP (SEQ ID NO:29), and QQFSSSPWT (SEQ ID NO:30), respectively. In certain embodiments, these antibodies have an apparent monovalent affinity that is improved over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7. In some embodiments, these antibodies have an apparent monovalent affinity that is about 1 to 5×10−8M (e.g., 1×10−8M; 1.5×10−8M; 2×10−8M; 2.5×10−8M; 3×10−8M; 3.5×10−8M; 4×10−8M; 4.5×10−8M; 5×10−8M). In certain embodiments, these antibodies have an improved off-rate over an antibody comprising a VH comprising an amino acid sequence set forth in SEQ ID NO:7. In certain embodiments of all of the above aspects, the antibody or the antigen-binding fragment thereof comprises (i) a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTYYPDSVKR (SEQ ID NO:26), and GGDYGYALDY (SEQ ID NO:27), respectively; and (ii) a light chain variable region comprising CDR1, CDR2, and CDR3, consisting of the amino acid sequences RASSSVNYMY (SEQ ID NO:28), YTSNLAP (SEQ ID NO:29), and QQFSSSPWT (SEQ ID NO:30), respectively.
- In certain embodiments of all of the above aspects, the antibody or the antigen-binding fragment thereof comprises (i) a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTYYPDSVKR (SEQ ID NO:26), and GGDYSYALDY (SEQ ID NO:245), respectively; and (ii) a light chain variable region comprising CDR1, CDR2, and CDR3, consisting of the amino acid sequences RASSSVNYMY (SEQ ID NO:28), YTSNLAP (SEQ ID NO:29), and QQFSSSPWT (SEQ ID NO:30), respectively.
- In certain embodiments of all of the above aspects, the antibody or the antigen-binding fragment thereof comprises (i) a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTYYPDSVER (SEQ ID NO:241), and GGDYSYALDY (SEQ ID NO:245), respectively; and (ii) a light chain variable region comprising CDR1, CDR2, and CDR3, consisting of the amino acid sequences RASSSVNYMY (SEQ ID NO:28), YTSNLAP (SEQ ID NO:29), and QQFSSSPWT (SEQ ID NO:30), respectively.
- In certain embodiments of all of the above aspects, the antibody or the antigen-binding fragment thereof comprises (i) a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSDGTTYYPDSVKR (SEQ ID NO:242), and GGDYSYALDY (SEQ ID NO:245), respectively; and (ii) a light chain variable region comprising CDR1, CDR2, and CDR3, consisting of the amino acid sequences RASSSVNYMY (SEQ ID NO:28), YTSNLAP (SEQ ID NO:29), and QQFSSSPWT (SEQ ID NO:30), respectively.
- In certain embodiments of all of the above aspects, the antibody or the antigen-binding fragment thereof comprises (i) a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTDYPDSVKR (SEQ ID NO:243), and GGDYGYALDY (SEQ ID NO:27), respectively; and (ii) a light chain variable region comprising CDR1, CDR2, and CDR3, consisting of the amino acid sequences RASSSVNYMY (SEQ ID NO:28), YTSNLAP (SEQ ID NO:29), and QQFSSSPWT (SEQ ID NO:30), respectively.
- In certain embodiments of all of the above aspects, the antibody or the antigen-binding fragment thereof comprises (i) a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), GISSGGTTYYPDSVKR (SEQ ID NO:244), and GGDYGYALDY (SEQ ID NO:27), respectively; and (ii) a light chain variable region comprising CDR1, CDR2, and CDR3, consisting of the amino acid sequences RASSSVNYMY (SEQ ID NO:28), YTSNLAP (SEQ ID NO:29), and QQFSSSPWT (SEQ ID NO:30), respectively.
- In one aspect, the disclosure features an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTYYPDSVKR (SEQ ID NO:26), and GGDYSYALDY (SEQ ID NO:245), respectively.
- In another aspect, the disclosure features an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTYYPDSVER (SEQ ID NO:241), and GGDYSYALDY (SEQ ID NO:245), respectively.
- In another aspect, the disclosure features an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSDGTTYYPDSVKR (SEQ ID NO:242), and GGDYSYALDY (SEQ ID NO:245), respectively.
- In another aspect, the disclosure features an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTDYPDSVKR (SEQ ID NO:243), and GGDYGYALDY (SEQ ID NO:27), respectively.
- In a further aspect, the disclosure features an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), GISSGGTTYYPDSVKR (SEQ ID NO:244), and GGDYGYALDY (SEQ ID NO:27), respectively.
- In yet another aspect, the disclosure provides an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTYYPDSVKR (SEQ ID NO:26), and GGDYSYALDY (SEQ ID NO:245), respectively; and a light chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences RASSSVNYMY (SEQ ID NO:28), YTSNLAP (SEQ ID NO:29), and QQFSSSPWT (SEQ ID NO:30), respectively.
- In yet another aspect, the disclosure provides an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTYYPDSVER (SEQ ID NO:241), and GGDYSYALDY (SEQ ID NO:245), respectively; and a light chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences RASSSVNYMY (SEQ ID NO:28), YTSNLAP (SEQ ID NO:29), and QQFSSSPWT (SEQ ID NO:30), respectively.
- In yet another aspect, the disclosure provides an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSDGTTYYPDSVKR (SEQ ID NO:242), and GGDYSYALDY (SEQ ID NO:245), respectively; and a light chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences RASSSVNYMY (SEQ ID NO:28), YTSNLAP (SEQ ID NO:29), and QQFSSSPWT (SEQ ID NO:30), respectively.
- In yet another aspect, the disclosure provides an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), SISSGGTTDYPDSVKR (SEQ ID NO:243), and GGDYGYALDY (SEQ ID NO:27), respectively; and a light chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences RASSSVNYMY (SEQ ID NO:28), YTSNLAP (SEQ ID NO:29), and QQFSSSPWT (SEQ ID NO:30), respectively.
- In yet another aspect, the disclosure provides an antibody or antigen-binding fragment thereof that specifically binds to glycoprotein IIb/IIIa (GPIIb/IIIa), wherein the antibody or the antigen-binding fragment thereof comprises a heavy chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences AYAMS (SEQ ID NO:25), GISSGGTTYYPDSVKR (SEQ ID NO:244), and GGDYGYALDY (SEQ ID NO:27), respectively; and a light chain variable region comprising complementarity determining region (CDR)1, CDR2, and CDR3, consisting of the amino acid sequences RASSSVNYMY (SEQ ID NO:28), YTSNLAP (SEQ ID NO:29), and QQFSSSPWT (SEQ ID NO:30), respectively.
- In certain embodiments of the above aspects, the antibody or antigen-binding fragment thereof has an apparent monovalent affinity that is about 1 to about 5×10−8 M.
- In certain embodiments of all of the above aspects, the antibody or the antigen-binding fragment thereof is an Fab, an Fab′, an F(ab′)2, an Facb, an Fv, an Fd, a diabody, an scFv, or an sc(Fv)2. In a specific embodiment, the antibody or the antigen-binding fragment thereof is an Fab.
- In another aspect, the disclosure relates to a chimeric molecule comprising the anti-GPIIb/IIIa antibody or antigen-binding fragment thereof described herein and a heterologous moiety.
- In certain embodiments of this aspect, the heterologous moiety of the chimeric molecule comprises a clotting factor. In some embodiments, the clotting factor is FVII, FIX, or FX. In some embodiments, the clotting factor is FVII zymogen (e.g., A or B isoform), activatable FVII, activated FVII (FVIIa), FIX zymogen, activatable FIX, activated FIX (FIXa), FX zymogen, activatable FX, or activated FX (FXa). In one embodiment, the clotting factor comprises a single polypeptide chain. In another embodiment, the clotting factor comprises two polypeptide chains. In certain embodiments, the heterologous moiety of the chimeric molecule comprises a small molecule drug.
- In certain embodiments of this aspect, the chimeric molecule further includes a linker. In some embodiments, the linker is a peptide linker. The peptide linker can comprise at least two, at least three, at least four, at least five, at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, or at least 100 amino acids. In some embodiments, the peptide linker comprises a peptide having the formula [(Gly)x-Sery]z where x is from 1 to 4, y is 0 or 1, and z is from 1 to 50 (SEQ ID NO: 153).
- In certain embodiments of this aspect, the chimeric molecule comprises a second heterologous moiety. In some embodiments, the second heterologous moiety comprises a half-life extending moiety. The half-life extending moiety can be, e.g., an XTEN, albumin, albumin binding polypeptide or fatty acid, an Fc region, transferrin, PAS, the C-terminal peptide (CTP) of the β subunit of human chorionic gonadotropin, polyethylene glycol (PEG), hydroxyethyl starch (HES), albumin-binding small molecules, vWF, and a clearance receptor or a fragment thereof which blocks binding of the chimeric molecule to a clearance receptor. In one embodiment, half-life extending moiety is an XTEN. In a specific embodiment, the XTEN is AE144. In another specific embodiment, the XTEN is AE288. In certain embodiments, the chimeric molecule comprises two half-life extending moieties. In certain embodiments, a linker connects the half-life extending molecule to the first heterologous moiety such as a clotting factor (e.g., Factor VII).
- In a further aspect, the disclosure relates to a chimeric molecule comprising the anti-GPIIb/IIIa antibody or antigen-binding fragment thereof described herein, a Factor VII comprising a heavy chain and a light chain, and a half-life extending moiety. In certain embodiments, the antibody or antigen-binding fragment thereof is an Fab or an scFv. In one embodiment, the light chain of the Factor VII is linked to/associated with the heavy chain of the Factor VII, which in turn is linked to the half-life extending moiety, and the half-life extending moiety is linked to the anti-GPIIb/IIIa antibody or antigen-binding fragment thereof (e.g., Fab or scFv). The “linking” between these moieties can either be by direct covalent bonds between these moieties or via linkers (e.g., peptide linkers).
- In another aspect, the disclosure features a chimeric molecule that has an amino acid sequence that is at least 65% identical, at least 70% identical, at least 75% identical, at least 76% identical, at least 77% identical, at least 78% identical, at least 79% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to the amino acid sequence set forth in SEQ ID NO: 74 or SEQ ID NO: 77. In certain embodiments, this chimeric molecule associates with an amino acid sequence that is at least 65% identical, at least 70% identical, at least 75% identical, at least 76% identical, at least 77% identical, at least 78% identical, at least 79% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to the amino acid sequence set forth in SEQ ID NO: 75 or SEQ ID NO: 76. In one embodiment, the chimeric molecule comprises, consists essentially of, or consists of the amino acid sequence set forth in SEQ ID NO: 74. In another embodiment, the chimeric molecule comprises, consists essentially of, or consists of the amino acid sequence set forth in or SEQ ID NO: 77. In certain embodiments, these chimeric molecules associates with an amino acid sequence comprising, consisting essentially of, or consisting of the amino acid sequence set forth in SEQ ID NO: 75. In certain embodiments, these chimeric molecules associates with an amino acid sequence comprising, consisting essentially of, or consisting of the amino acid sequence set forth in SEQ ID NO: 76. In certain embodiments, these chimeric molecules may comprise additional half-life extending moieties (e.g., AE144, AE288). In certain embodiments, these chimeric molecules may comprise one or more (e.g., 1, 2, 3, 4) linkers between Factor VII and the half-life extending moiety. In certain embodiments, these chimeric molecules may comprise additional linkers (e.g., 2, 3, 4) between the half-life extending moiety and the light chain of the Fab.
- In another aspect, the disclosure features a chimeric molecule that has an amino acid sequence that is at least 65% identical, at least 70% identical, at least 75% identical, at least 76% identical, at least 77% identical, at least 78% identical, at least 79% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to the amino acid sequence set forth in SEQ ID NO: 247. In certain embodiments, this chimeric molecule includes at least one, at least two, or all three of CDRs of SEQ ID NO:4. In certain embodiments, the above-described chimeric molecule associates with an amino acid sequence that is at least 65% identical, at least 70% identical, at least 75% identical, at least 76% identical, at least 77% identical, at least 78% identical, at least 79% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to the amino acid sequence set forth in SEQ ID NO: 75. In one embodiment, the chimeric molecule comprises, consists essentially of, or consists of the amino acid sequence set forth in SEQ ID NO: 247. In certain embodiments, the chimeric molecule associates with an amino acid sequence comprising, consisting essentially of, or consisting of the amino acid sequence set forth in SEQ ID NO: 75. In certain embodiments, these chimeric molecules may comprise additional half-life extending moieties (e.g., AE144, AE288). In certain embodiments, these chimeric molecules may comprise one or more (e.g., 1, 2, 3, 4) linkers between Factor VII and the half-life extending moiety. In certain embodiments, these chimeric molecules may comprise additional linkers (e.g., 2, 3, 4) between the half-life extending moiety and the light chain of the Fab.
- In another aspect, the disclosure features a chimeric molecule comprising a clotting factor (e.g., FVII, FIX, or FX), an anti-GPIIb/IIIa antibody or antigen-binding fragment thereof, and a half-life extending moiety (e.g., XTEN). This chimeric molecule may comprise one or more linkers (e.g., 6×(GGGGS) (SEQ ID NO:170)). The optional linker(s) can be between the clotting factor and the anti-GPIIb/IIIa antibody or antigen-binding fragment thereof and/or between the anti-GPIIb/IIIa antibody or antigen-binding fragment thereof and the half-life extending moiety. In certain embodiments of this aspect, the chimeric molecule comprises FVII, which may be the FVII zymogen (A or B isoform), activatable FVII, or activated FVII. In certain embodiments of this aspect, the chimeric molecule comprises FVII, a 6×(GGGGS) linker (SEQ ID NO:170), an Fab that binds GPIIb/IIIa, and an XTEN (e.g., AE288). In other embodiments of this aspect, the chimeric molecule comprises FVII, a 6×(GGGGS) linker (SEQ ID NO:170), an Fab that binds GPIIb/IIIa, two XTENs (e.g., AE288), and another linker. Non-limiting examples of chimeric molecules of this aspect are shown in
FIGS. 17 and 20 . In certain embodiments of this aspect, the chimeric molecule comprises an amino acid sequence that is at least 65% identical, at least 70% identical, at least 75% identical, at least 76% identical, at least 77% identical, at least 78% identical, at least 79% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to the amino acid sequence set forth in SEQ ID NO:74. In certain embodiments, this chimeric molecule includes at least one, at least two, or all three of the CDRs of SEQ ID NO:4. In certain embodiments of this aspect, the above-described chimeric molecule associates with a second chimeric molecule comprising an amino acid sequence that is at least 65% identical, at least 70% identical, at least 75% identical, at least 76% identical, at least 77% identical, at least 78% identical, at least 79% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to the amino acid sequence set forth in SEQ ID NO:252. In certain embodiments, this second chimeric molecule includes at least one, at least two, or all three of the CDRs of SEQ ID NO:7. In one embodiment, the chimeric molecule comprises, consists essentially of, or consists of the amino acid sequence set forth in SEQ ID NO:74 and associates with a second chimeric molecule with an amino acid sequence comprising, consisting essentially of, or consisting of the amino acid sequence set forth in SEQ ID NO:252. In certain embodiments, these chimeric molecules may comprise additional half-life extending moieties (e.g., AE144, AE288). In certain embodiments, these chimeric molecules may comprise one or more (e.g., 1, 2, 3, 4) linkers between Factor VII and the half-life extending moiety. In certain embodiments, these chimeric molecules may comprise additional linkers (e.g., 2, 3, 4) between the half-life extending moiety and the light and/or heavy chain of the Fab. In certain embodiments of this aspect, the chimeric molecule (e.g., polypeptides comprising SEQ ID NOs.: 74 and 252 that associate with each other) binds to the ectodomain of GP11b/IIIa with a KD of about 10−6 M to about 10−8M. In specific embodiments, the chimeric molecule (e.g., polypeptides comprising SEQ ID NOs.:74 and 252 that associate with each other) binds to the ectodomain of GP11b/IIIa with a KD of 1 to 10×10−7M. - In one aspect, this disclosure provides a pharmaceutical composition comprising the anti-GPIIb/IIIa antibody or antigen-binding fragment thereof (e.g., Fab or scFv) and a pharmaceutically acceptable carrier. In another aspect, this disclosure provides a pharmaceutical composition comprising the chimeric molecules described herein and a pharmaceutically acceptable carrier.
- In a different aspect, methods for reducing the frequency or degree of a bleeding episode in a subject in need thereof are provided. These methods involve administering to the subject (e.g., a human subject) an effective amount of a composition comprising the antibody or antigen-binding fragment thereof or the chimeric molecule described herein. In some embodiments, the subject has developed or has a tendency to develop an inhibitor against Factor VIII (“FVIII”), Factor IX (“FIX”), or both. The inhibitor against FVIII or FIX can be, e.g., a neutralizing antibody against FVIII, FIX, or both. In certain embodiments, the bleeding episode is the result of or caused by hemarthrosis, muscle bleed, oral bleed, hemorrhage, hemorrhage into muscles, oral hemorrhage, trauma, trauma capitis, gastrointestinal bleeding, intracranial hemorrhage, intra-abdominal hemorrhage, intrathoracic hemorrhage, bone fracture, central nervous system bleeding, bleeding in the retropharyngeal space, bleeding in the retroperitoneal space, bleeding in the illiopsoas sheath, or any combinations thereof.
- In another aspect, the disclosure relates to a method of treating a blood coagulation disorder in a subject in need thereof. The method involves administering to the subject (e.g., a human subject) an effective amount of a composition comprising the antibody or antigen-binding fragment thereof, or the chimeric molecule described herein. In certain embodiments, the blood coagulation disorder is hemophilia A or hemophilia B.
- In one aspect the disclosure provides a composition comprising the antibody or antigen-binding fragment thereof, or the chimeric molecule described herein for use in reducing the frequency or degree of a bleeding episode in a subject (e.g., human) in need thereof. In some embodiments, the subject has developed or has a tendency to develop an inhibitor against Factor VIII (“FVIII”), Factor IX (“FIX”), or both. The inhibitor against FVIII or FIX can be, e.g., a neutralizing antibody against FVIII, FIX, or both. In certain embodiments, the bleeding episode is the result of or caused by hemarthrosis, muscle bleed, oral bleed, hemorrhage, hemorrhage into muscles, oral hemorrhage, trauma, trauma capitis, gastrointestinal bleeding, intracranial hemorrhage, intra-abdominal hemorrhage, intrathoracic hemorrhage, bone fracture, central nervous system bleeding, bleeding in the retropharyngeal space, bleeding in the retroperitoneal space, bleeding in the illiopsoas sheath, or any combinations thereof.
- In another aspect the disclosure provides a composition comprising the antibody or antigen-binding fragment thereof, or the chimeric molecule described herein for use in treating a blood coagulation disorder in a subject (e.g., human) in need thereof. In certain embodiments, the blood coagulation disorder is hemophilia A or hemophilia B.
- In a further aspect, the disclosure relates to the use of a composition comprising the antibody or antigen-binding fragment thereof, or the chimeric molecule described herein in the preparation of a medicament for use in reducing the frequency or degree of a bleeding episode in a subject (e.g., human) in need thereof. In certain embodiments, the bleeding episode is the result of or caused by hemarthrosis, muscle bleed, oral bleed, hemorrhage, hemorrhage into muscles, oral hemorrhage, trauma, trauma capitis, gastrointestinal bleeding, intracranial hemorrhage, intra-abdominal hemorrhage, intrathoracic hemorrhage, bone fracture, central nervous system bleeding, bleeding in the retropharyngeal space, bleeding in the retroperitoneal space, bleeding in the illiopsoas sheath, or any combinations thereof.
- In yet another aspect, the disclosure relates to the use of a composition comprising the antibody or antigen-binding fragment thereof, or the chimeric molecule described herein in the preparation of a medicament for use in treating a blood coagulation disorder in a subject (e.g., human) in need thereof. In certain embodiments, the blood coagulation disorder is hemophilia A or hemophilia B.
- In a different aspect, the disclosure features a method of detecting platelets. The method involves contacting a human blood preparation with an anti-GPIIb/IIIa antibody or antigen-binding fragment thereof described herein and detecting cells in the blood preparation to which the antibody or antigen-binding fragment thereof binds. In some embodiments, the anti-GPIIb/IIIa antibody or antigen-binding fragment thereof is linked or conjugated to a detectable label (e.g., a fluorescent label, a radioactive label).
- In yet another aspect, the disclosure provides a method for enriching platelets. This method comprises contacting a human blood preparation with an anti-GPIIb/IIIa antibody or antigen-binding fragment thereof described herein and enriching cells to which the antibody or antigen-binding fragment thereof are bound as compared to those cells in the blood preparation that are not bound by the antibody or antigen-binding fragment thereof.
- In another aspect, the disclosure provides a method for isolating or enriching resting platelets (as opposed to activated platelets). This method comprises contacting a human blood preparation with an anti-GPIIb/IIIa antibody or antigen-binding fragment thereof described herein and enriching cells to which the antibody or antigen-binding fragment thereof are bound as compared to those cells in the blood preparation that are not bound by the antibody or antigen-binding fragment thereof.
- The disclosure also provides an isolated nucleic acid comprising a nucleotide sequence that is at least 75% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to a nucleotide sequence selected from the group consisting of SEQ ID NOs: 13-22, 59-68, and 219-240.
- In another aspect, the disclosure provides a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence that is at least 75% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 3 to 12, 74-77, and 197-218.
- In another aspect, the disclosure provides an isolated protein encoded by the above nucleic acid molecules. In yet another aspect, the disclosure provides a recombinant vector comprising the nucleic acids described herein. In a further aspect, the disclosure features a host cell comprising such recombinant vectors. In one embodiment, the disclosure provides an expression vector comprising a DNA comprising a nucleotide sequence that encodes the amino acid sequence set forth in SEQ ID NO:77. In another embodiment, the disclosure provides an expression vector comprising a DNA comprising a nucleotide sequence that encodes the amino acid sequence set forth in SEQ ID NO:247. In another embodiment, the disclosure provides an expression vector comprising a DNA comprising a nucleotide sequence that encodes the amino acid sequence set forth in SEQ ID NO:75. In yet another embodiment, the disclosure provides an expression vector comprising a DNA comprising a nucleotide sequence that encodes the amino acid sequence set forth in SEQ ID NO: 76. In certain embodiments, such expression vectors are either singly transformed/transfected into a host cell (e.g., 293, CHO) or transformed together (e.g., the expression vectors encoding the amino acid sequence set forth in SEQ ID NO:77 and 75; or the expression vectors encoding the amino acid sequence set forth in SEQ ID NO:77 and 76; or he expression vectors encoding the amino acid sequence set forth in SEQ ID NO:247 and 75). In certain embodiments, the host cell is cultured under conditions that allow the expression of the polypeptides encoded by these nucleic acids and involve isolating the polypeptides. In certain instances the Factor VII that is a component of SEQ ID NO:77 is activated. In certain instances the Factor VII that is a component of SEQ ID NO:247 is activated.
- In another aspect, the disclosure provides a method of preparing an anti-GPIIb/IIIa antibody or antigen-binding fragment thereof. The method comprises culturing a host cell comprising recombinant vectors comprising the nucleic acid sequences set forth in SEQ ID NOs: 14 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 15 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 16 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 17 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 18 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 13 and 22; the nucleic acid sequences set forth in SEQ ID NOs: 14 and 22; the nucleic acid sequences set forth in SEQ ID NOs: 15 and 22; the nucleic acid sequences set forth in SEQ ID NOs: 16 and 22; the nucleic acid sequences set forth in SEQ ID NOs: 17 and 22; the nucleic acid sequences set forth in SEQ ID NOs: 18 and 22; the nucleic acid sequences set forth in SEQ ID NOs: 18 and 21; the nucleic acid sequences set forth in SEQ ID NOs: 219 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 220 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 221 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 222 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 223 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 224 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 225 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 226 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 227 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 228 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 229 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 230 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 231 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 232 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 233 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 234 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 235 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 236 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 237 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 238 and 19; the nucleic acid sequences set forth in SEQ ID NOs: 239 and 19; or the nucleic acid sequences set forth in SEQ ID NOs: 240 and 19, under conditions appropriate for expression and production of the antibody or antigen-binding fragment thereof. The method further comprises isolating the antibody or antigen-binding fragment thereof. In certain embodiments, the host cell is a 293 cell, a CHO cell or a DG44i cell.
- In a further aspect, the disclosure features a method of preparing a chimeric molecule described herein. For example, the method comprises culturing a host cell comprising recombinant vectors comprising the nucleic acid sequences encoding the amino acid sequences set forth in SEQ ID NOs: 74 and 75; or the nucleic acid sequences encoding the amino acid sequences set forth in SEQ ID NOs: 74 and 76; under conditions appropriate for expression and production of the chimeric molecule. The method further comprises isolating the chimeric molecule. In certain embodiments, the host cell is a 293 cell, a CHO cell or a DG44i cell.
- In one aspect, the disclosure features a method of preparing a chimeric molecule described herein. For example, the method comprises culturing a host cell comprising recombinant vectors comprising the nucleic acid sequences encoding the amino acid sequences set forth in SEQ ID NOs: 77 and 75; or the nucleic acid sequences encoding the amino acid sequences set forth in SEQ ID NOs: 77 and 76; under conditions appropriate for expression and production of the chimeric molecule. The method further comprises isolating the chimeric molecule. In certain embodiments, the host cell is a 293 cell, a CHO cell or a DG44i cell.
- In another aspect, the disclosure features a method of preparing a chimeric molecule described herein. For example, the method comprises culturing a host cell comprising recombinant vectors comprising the nucleic acid sequences encoding the amino acid sequences set forth in SEQ ID NOs: 247 and 75; under conditions appropriate for expression and production of the chimeric molecule. The method further comprises isolating the chimeric molecule. In certain embodiments, the host cell is a 293 cell, a CHO cell or a DG44i cell.
- Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the exemplary methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present application, including definitions, will control. The materials, methods, and examples are illustrative only and not intended to be limiting.
- Other features and advantages of the invention will be apparent from the following detailed description, and from the claims.
-
FIG. 1 is an alignment of the variable heavy chain (VH) amino acid sequences of six humanized 34D10 VH regions with the VH region of 34D10 (i.e., the murine anti-integrin GPIIb/IIIa antibody). The mutations in the humanized versions VH1 to VH5 compared to the humanized VH0 CDR graft are shown in bold, lower case font. The amino acids that differ between the 34D10 VH region and the humanized 34D10 VH CDR graft are highlighted in gray. The CDR regions (VHCDR1, VHCDR2, and VHCDR3) are underlined. -
FIG. 2 is an alignment of the variable light chain (VL) amino acid sequences of four humanized 34D10 VL regions with the VL region of 34D10 (i.e., the murine anti-integrin GPIIb/IIIa antibody). The mutations in the humanized versions VL1 to VL3 compared to the humanized VL0 CDR graft are shown in bold, lower case font. The amino acids that differ between the 34D10 VL region and the humanized 34D10 VL CDR graft are highlighted in gray. The CDR regions (VLCDR1, VLCDR2, and VLCDR3) are underlined. -
FIG. 3 is a bar graph depicting the binding affinity for GPIIb/IIIa of humanized Fab fragments of 34D10. -
FIG. 4A is a diagrammatic representation of the structure of the chimeric molecules FVII-245/Fab-033, FVII-250/Fab-036, and FVII-250/Fab-037. The “6×(GGGGS) linker” has the amino acid sequence of SEQ ID NO: 170. -
FIG. 4B is a graph comparing the clotting time (CT) in seconds for different concentrations (nM) of FactorVIIa-linked Fab fragments of murine 34D10 (FVII-245/Fab-033) and humanized 34D10 (FVII-250/Fab-036 (VL0/VH5) and FVII-250/Fab-037 (VL0/VH2)). -
FIG. 4C is a graph comparing the clotting time (CT) in seconds for different concentrations (nM) of FactorVIIa-linked Fab fragments of murine 34D10 (FVII-245/Fab-033) and mouse 34D10 in scFv format recombinantly fused to rFVIIa (FVII-189). -
FIG. 4D is a graph comparing the clotting time (CT) in seconds for different concentrations (nM) of mouse 34D10 in scFv format recombinantly fused to rFVIIa (FVII-189) and recombinant FVIIa. -
FIG. 5A is a diagrammatic representation of the structure of the chimeric molecules FVII-251/Fab-036 and FVII-251/Fab-037. The “6×(GGGGS) linker” has the amino acid sequence of SEQ ID NO: 170. -
FIG. 5B is a graph comparing the clotting time (CT) in seconds for different concentrations (nM) of FactorVIIa-linked via XTEN AE288 and a linker to either Fab fragments of humanized 34D10 (FVII-251/Fab-036 (VL0/VH5) and FVII-251/Fab-037 (VL0/VH2)) or Fab fragments of murine 34D10 (FVII-200). -
FIG. 5C is a graph comparing the clotting time (CT) in seconds for different concentrations (nM) of FVII-251/Fab-036 (VL0/VH5) against recombinant FVIIa. -
FIG. 6 is a graphical depiction of the ex vivo activity measured by rotational thromboelastometry (ROTEM) of FVII-251/Fab-037 and rFVIIa in transgenic hemophilia A mice with a fully humanized αIIb subunit in the αIIb/β3 integrin. Mice were dosed with 10 nmol/kg of rFVIIa or FVII-251/Fab-037. The data each time point is the average+/−standard deviation of 3 mice. -
FIGS. 7A-F show possible configurations for chimeric molecules comprising the heavy and light chains of a clotting factor (e.g., a FVII), an Fab or scFv targeting moiety (e.g., derived for GPIIb/IIIa-specific antibodies), a heterologous moiety (e.g., a half-life extending moiety), and at least one optional linker. -
FIG. 8 shows possible configuration for chimeric molecules comprising one or two heterologous moieties (H1 and/or H2) and scFv moieties derived for GPIIb/IIIa-specific antibodies. It is to be understood that an Fab from the humanized anti-GPIIb/IIIa antibodies can be used instead of the scFv in these chimeric molecules. -
FIG. 9 depicts the plasma activity of both rFVIIa (open circles) and FVII-251/Fab-037 (black circles) as percentile of injected dose over time (hours) as determined by the VIIa-rTF FVIIa-activity assay, using rFVIIa or FVII-251/Fab037 as respective matched self standards. Mean±SD. -
FIG. 10 is a graph showing the acute efficacy of FVII-251/Fab-037 compared to rFVIIa in tail clip bleeding model. Results presented are individual and median blood loss over 30 minutes for treatments and dosing as indicated. P values for vehicle versus all other treatments are indicated. Data indicate similar or improved efficacy in mice dosed with 3 nmol/kg and 10 nmol/kg FVII-251/Fab-037 compared to mice dosed with 100 nmol/kg rFVIIa. -
FIG. 11 is an alignment of the variable heavy chain (VH) amino acid sequences of 22 affinity matured variants of the humanized 34D10 VH2 (SEQ ID NO: 7) (i.e., an anti-integrin GPIIb/IIIa antibody). The mutations identified in the humanized sequence compared to the humanized VH2 are shown in bold, lower case font. The CDR regions (VHCDR1, VHCDR2, and VHCDR3) are underlined. -
FIG. 12A-E shows the measurement of binding by Bio-Layer Interferometry (BLI) of the indicated yeast purified Fab to sensor-associated GPIIb/IIIa (SEQ ID NOs.: 23 and 24), as a function of time. -
FIG. 12F is a table listing the apparent monovalent affinity (KD) and apparent dissociation rate (Kdis) of the indicated yeast purified Fab. -
FIG. 13 is a table listing the calculated melting temperatures for the indicated antibodies in the Fab format as performed by differential scanning fluorimetry. -
FIG. 14A is a graphical depiction of the ex-vivo activity measured by rotational thromboelastometry (ROTEM) of FVII-265/Fab-037 and rFVIIa in human alphaIIb transgenic HemA mice with a fully humanized αIIb subunit in the αIIb/β3 integrin. -
FIG. 14B depicts the ex-vivo activity of FVII-251/Fab-037 and rFVIIa in HemA mice, in which the murine αIIb/β3 integrin is not targeted by the Fab-037 moiety. -
FIG. 15A is a graph showing the plasma PK as measured by soluble tissue factor (sTF)-prothrombin time (PT) activity of FVIIa and FVII-251/Fab-037 dosed at 10 nmol/kg, showing an approximately 5-fold decreased clearance of plasma levels of FVII-251/Fab-037 compared to rFVIIa. -
FIG. 15B is a graph comparing the clotting time (CT) in seconds as measured in whole blood by ROTEM at the indicated time points, comparing recombinant FVII-251/Fab37 to FVIIa both dosed at 10 nmol/kg over time in human αIIb transgenic HemA mice. -
FIG. 16 is a graph showing the prolonged efficacy of 10 nmol/kg FVII-265/Fab-037 compared with 100 nmol/kg rFVIIa in a modified prolonged tail clip bleeding efficacy model. -
FIG. 17 shows the configuration of FVII-250 (SEQ ID NO:74)/Fab-062 (SEQ ID NO:252). The FVIIa molecule is fused to the Fab light chain VL0/CL via a 6×(GGGGS) linker (SEQ ID NO:170). VL0/CL forms a dimer with Fab-062 (Fab heavy chain) via a disulfide bond. Fab-062 comprises an XTEN fused to the N-terminus of the VH2/CH1 heavy chain. -
FIG. 18 displays the results of surface plasmon resonance experiments showing the binding of FVII-250/Fab-062 to biotinylated GPIIb/IIIa immobilized on a streptavidin chip. -
FIG. 19 shows the results of rotational thromboelastometry (ROTEM) experiments measuring the activities of FVII-250/Fab-062 and recombinant FVIIa in whole blood from a hemophilia donor. -
FIG. 20 illustrates non-limiting examples of possible configurations for chimeric molecules comprising the heavy and light chain of a clotting factor, a Fab targeting moiety, one or two heterologous moieties (e.g., half-life extension moieties), and optional linkers. - This disclosure features antibodies and antigen-binding fragments that specifically bind GPIIb/IIIa, an integrin that is expressed specifically and at high levels on platelets. Upon activation, the GPIIb/IIIa receptors change from a bent low ligand affinity conformation to an extended high ligand affinity conformation. Activated GPIIb/IIIa receptor binds fibrinogen and modulates platelet aggregation. The anti-GPIIb/IIIa antibodies described herein are capable of targeting the non-active form of the receptor. The anti-GPIIb/IIIa antibodies and antigen-binding fragments derived from these antibodies do not activate platelets, and can be used, for example, to target agents (e.g., therapeutic agents such as clotting factors or other molecules capable of having a pharmacological effect in platelets) to the platelet surface. In addition to their use as platelet-targeting moieties, these antibodies and antigen-binding fragments thereof can be used for diagnostics, for example, by conjugation to a detectable label, and also used for isolating and separating platelets from a sample.
- This disclosure also provides chimeric molecules comprising the anti-GPIIb/IIIa antibodies and antigen-binding fragments thereof disclosed herein as targeting moieties, and one or more (e.g., one, two, three, four) heterologous moieties. For example, the chimeric molecules can comprise a heterologous moiety comprising a therapeutic molecule (e.g., a procoagulant molecule such as a clotting factor), and optionally a second heterologous moiety comprising, for example, a pharmacokinetic (PK) enhancing moiety (i.e., a molecule which can improve various pharmacokinetic properties, e.g., half-life). The heterologous moieties can optionally be connected by linkers (e.g., peptide linkers). In addition the targeting moiety of the chimeric molecule (e.g., an Fab or scFv of an anti-GPIIb/IIIa antibody described herein) can optionally be connected to the heterologous moiety or moieties by linkers (e.g., a peptide linker). Exemplary anti-GPIIb/IIIa antibodies and antigen-binding fragments thereof, as well as exemplary constructs (chimeric molecules) comprising such antibodies and antigen-binding fragments thereof (e.g., scFv or F(ab)) are illustrated in the instant description and figures. See, e.g., the chimeric molecules having the structures set forth in
FIGS. 7A-F and 8. - The disclosure also provides polynucleotides encoding the antibodies and antigen-binding fragments thereof as well as the chimeric molecule constructs described herein.
- In addition, this disclosure relates to methods of using the anti-GPIIWIIIa antibodies and antigen-binding fragments thereof in the treatment of coagulation deficiencies such as hemophilia well as coagulation deficiencies other than hemophilia characterized by an impaired thrombin generation and life-threatening bleeding.
- In order to provide a clear understanding of the specification and claims, the following definitions are provided below.
- It is understood that wherever embodiments are described herein with the language “comprising,” otherwise analogous embodiments described in terms of “consisting of” and/or “consisting essentially of” are also provided.
- The term “antibody” means an immunoglobulin molecule that recognizes and specifically binds to a target, such as a protein (e.g., the GPIIb/IIIa receptor, a subunit thereof, or the receptor complex), polypeptide, peptide, carbohydrate, polynucleotide, lipid, or combinations of the foregoing through at least one antigen recognition site within the variable region of the immunoglobulin molecule. A typical antibody comprises at least two heavy (HC) chains and two light (LC) chains interconnected by disulfide bonds. Each heavy chain is comprised of a “heavy chain variable region” or “heavy chain variable domain” (abbreviated herein as VH) and a heavy chain constant region. The heavy chain constant region is comprised of three domains, CH1, CH2, and CH3. Each light chain is comprised of a “light chain variable region” or “light chain variable domain” (abbreviated herein as VL) and a light chain constant region. The light chain constant region is comprised of one domain, Cl. The VH and VL regions can be further subdivided into regions of hypervariablity, termed Complementarity Determining Regions (CDR), interspersed with regions that are more conserved, termed framework regions (FRs). Each VH and VL region is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. The variable regions of the heavy and light chains contain a binding domain that interacts with an antigen. As used herein, the term “antibody” encompasses intact polyclonal antibodies, intact monoclonal antibodies, antibody fragments (such as Fab, Fab′, F(ab′)2, Fd, Facb, and Fv fragments), single chain Fv (scFv), minibodies (e.g., sc(Fv)2, diabody), multispecific antibodies such as bispecific antibodies generated from at least two intact antibodies, chimeric antibodies, humanized antibodies, human antibodies, fusion proteins comprising an antigen determination portion of an antibody, and any other modified immunoglobulin molecule comprising an antigen recognition site so long as the antibodies exhibit the desired biological activity. Thus, the term “antibody” includes whole antibodies and any antigen-binding fragment or single chains thereof. Antibodies can be naked or conjugated to other molecules such as toxins, radioisotopes, small molecule drugs, polypeptides, etc.
- The term “antigen binding fragment” refers to a portion of an intact antibody and refers to the antigenic determining variable regions of an intact antibody. It is known in the art that the antigen binding function of an antibody can be performed by fragments of a full-length antibody. Examples of antigen-binding antibody fragments include, but are not limited to Fab, Fab′, F(ab′)2, Facb, Fd, and Fv fragments, linear antibodies, single chain antibodies, and multispecific antibodies formed from antibody fragments. In some instances, antibody fragments may be prepared by proteolytic digestion of intact or whole antibodies. For example, antibody fragments can be obtained by treating the whole antibody with an enzyme such as papain, pepsin, or plasmin. Papain digestion of whole antibodies produces F(ab)2 or Fab fragments; pepsin digestion of whole antibodies yields F(ab′)2 or Fab′; and plasmin digestion of whole antibodies yields Facb fragments.
- The term “Fab” refers to an antibody fragment that is essentially equivalent to that obtained by digestion of immunoglobulin (typically IgG) with the enzyme papain. The heavy chain segment of the Fab fragment is the Fd piece. Such fragments can be enzymatically or chemically produced by fragmentation of an intact antibody, recombinantly produced from a gene encoding the partial antibody sequence, or it can be wholly or partially synthetically produced. The term “F(ab′)2” refers to an antibody fragment that is essentially equivalent to a fragment obtained by digestion of an immunoglobulin (typically IgG) with the enzyme pepsin at pH 4.0-4.5. Such fragments can be enzymatically or chemically produced by fragmentation of an intact antibody, recombinantly produced from a gene encoding the partial antibody sequence, or it can be wholly or partially synthetically produced. The term “Fv” refers to an antibody fragment that consists of one NH and one N domain held together by noncovalent interactions.
- As used herein the term “scFv” or “scFv molecule” includes binding molecules which consist of one light chain variable domain (VL) or a portion thereof, and one heavy chain variable domain (VH) or a portion thereof, wherein each variable domain (or a portion thereof) is derived from the same or different antibodies. Single chain Fv molecules preferably comprise an scFv linker interposed between the VH domain and the VL domain. Exemplary scFv molecules are known in the art and are described, for example, in U.S. Pat. No. 5,892,019; Ho et al., Gene, 77:51 (1989); Bird et al., Science, 242:423 (1988); Pantoliano et al., Biochemistry, 30:10117 (1991); Milenic et al., Cancer Research, 51:6363 (1991); Takkinen et al., Protein Engineering, 4:837 (1991). The term “scFv linker” as used herein refers to a moiety interposed between the VL and VH domains of the scFv. The scFv linkers preferably maintain the scFv molecule in an antigen-binding conformation. In one embodiment, a scFv linker comprises or consists of an scFv linker peptide. In certain embodiments, an scFv linker peptide comprises or consists of a Gly-Ser peptide linker. In other embodiments, an scFv linker comprises a disulfide bond.
- The terms “GPIIb/IIIa antibody,” “anti-GPIIb/IIIa antibody,” “anti-GPIIb/IIIa,” “antibody that binds to GPIIb/IIIa” and any grammatical variations thereof refer to an antibody that is capable of specifically binding to the GPIIb/IIIa receptor with sufficient affinity such that the antibody is useful as a therapeutic agent or diagnostic reagent in targeting GPIIb/IIIa. The extent of binding of an anti-GPIIb/IIIa antibody disclosed herein to an unrelated, non-GPIIb/IIIa protein is less than about 10% of the binding of the antibody to GPIIb/IIIa as measured, e.g., by a radioimmunoassay (RIA), BIACORE™ (using recombinant GPIIb/IIIa as the analyte and antibody as the ligand, or vice versa), or other binding assays known in the art. In certain embodiments, an antibody that binds to GPIIb/IIIa has a dissociation constant (KD) of ≤1 μM, ≤100 nM, ≤50 nM, ≤10 nM, ≤1 nM, ≤0.1 nM, ≤10 pM, ≤1 pM, or ≤0.1 pM.
- The term “% identical” between two polypeptide (or polynucleotide) sequences refers to the number of identical matched positions shared by the sequences over a comparison window, taking into account additions or deletions (i.e., gaps) that must be introduced for optimal alignment of the two sequences. A matched position is any position where an identical nucleotide or amino acid is presented in both the target and reference sequence. Gaps presented in the target sequence are not counted since gaps are not nucleotides or amino acids. Likewise, gaps presented in the reference sequence are not counted since target sequence nucleotides or amino acids are counted, not nucleotides or amino acids from the reference sequence. The percentage of sequence identity is calculated by determining the number of positions at which the identical amino acid residue or nucleic acid base occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity. The comparison of sequences and determination of percent sequence identity between two sequences can be accomplished using readily available software both for online use and for download. Suitable software programs are available from various sources, and for alignment of both protein and nucleotide sequences. One suitable program to determine percent sequence identity is bl2seq, part of the BLAST suite of program available from the U.S. government's National Center for Biotechnology Information BLAST web site (blast.ncbi.nlm.nih.gov). Bl2seq performs a comparison between two sequences using either the BLASTN or BLASTP algorithm. BLASTN is used to compare nucleic acid sequences, while BLASTP is used to compare amino acid sequences. Other suitable programs are, e.g., Needle, Stretcher, Water, or Matcher, part of the EMBOSS suite of bioinformatics programs and also available from the European Bioinformatics Institute (EBI) at www.ebi.ac.uk/Tools/psa. In certain embodiments, the percentage identity “X” of a first amino acid sequence to a second sequence amino acid is calculated as 100×(Y/Z), where Y is the number of amino acid residues scored as identical matches in the alignment of the first and second sequences (as aligned by visual inspection or a particular sequence alignment program) and Z is the total number of residues in the second sequence. If the length of a first sequence is longer than the second sequence, the percent identity of the first sequence to the second sequence will be higher than the percent identity of the second sequence to the first sequence. One skilled in the art will appreciate that the generation of a sequence alignment for the calculation of a percent sequence identity is not limited to binary sequence-sequence comparisons exclusively driven by primary sequence data. Sequence alignments can be derived from multiple sequence alignments. One suitable program to generate multiple sequence alignments is ClustalW2, available from www.clustal.org (ClustalX is a version of the ClustalW2 program ported to the Windows environment). Another suitable program is MUSCLE, available from www.drive5.com/muscle. ClustalW2 and MUSCLE are alternatively available, e.g., from the EBI.
- As used herein, the term “targeting moiety” refers to a moiety capable of interacting with a target molecule (e.g., the GPIIb/IIIa receptor, or a molecule comprising the α and/or β subunits of the GPIIb/IIIa receptor). Targeting moieties having limited cross-reactivity are generally preferred. In certain embodiments, suitable targeting moieties include, for example, any member of a specific binding pair, antibodies, monoclonal antibodies, or derivatives or analogs thereof, including without limitation: Fv fragments, single chain Fv (scFv) fragments, Fab′ fragments, F(ab′)2 fragments, single domain antibodies, camelized antibodies and antibody fragments, humanized antibodies and antibody fragments, and multivalent versions of the foregoing; multivalent binding reagents including without limitation: monospecific or bispecific antibodies, such as disulfide stabilized Fv fragments, scFv tandems ((scFv) fragments), diabodies, tribodies or tetrabodies, which typically are covalently linked or otherwise stabilized (i.e., leucine zipper or helix stabilized) scFv fragments; and other targeting moieties include for example, aptamers, receptors, ligands, and fusion proteins.
- The terms “linked” or “fused” refers to linkage via a peptide bonds (e.g., genetic fusion), chemical conjugation, or other means known in the art. For example, one way in which molecules or moieties can be linked employs peptide linkers that link the molecules or moieties via peptide bonds.
- The term “associated with” refers to a covalent or non-covalent bond formed between a first amino acid chain and a second amino acid chain. In one embodiment, the term “associated with” means a covalent, non-peptide bond or a non-covalent bond. In another embodiment, the term “associated with” refers to a covalent, non-peptide bond or a non-covalent bond that is not chemically crosslinked. In another embodiment, it means a covalent bond except a peptide bond. In some embodiments this association is indicated by a colon, i.e., (:). For example, when representing the structure of the clotting factor, “CFH:CFL” refers to a dimer comprising a heavy chain of a clotting factor (CFH) disulfide bonded to a light chain of a clotting factor (CFL) in a N-terminus to C-terminus orientation.
- The term “moiety” refers to a component part or constituent of a chimeric molecule of the present disclosure.
- The term “heterologous moiety” refers to a moiety genetically fused, conjugated, and/or otherwise associated to a targeting molecule (e.g., GPIIb/IIIa antibody or antigen-binding molecule thereof).
- The term “therapeutic agent” refers to any biological or chemical agent used in the treatment of a disease or disorder. Therapeutic agents include any suitable biologically active chemical compounds, biologically derived components such as cells, peptides, antibodies, and polynucleotides, and radiochemical therapeutic agents such as radioisotopes. In some embodiments, the therapeutic agent comprises a clotting factor.
- The term “stability” refers to an art-recognized measure of the maintenance of one or more physical properties of the chimeric molecule in response to an environmental condition (e.g., an elevated or lowered temperature). In certain embodiments, the physical property can be the maintenance of the covalent structure of the chimeric molecule (e.g., the absence of proteolytic cleavage, unwanted oxidation or deamidation). In other embodiments, the physical property can also be the presence of the chimeric molecule in a properly folded state (e.g., the absence of soluble or insoluble aggregates or precipitates). In one embodiment, the stability of the chimeric molecule is measured by assaying a biophysical property of the chimeric molecule, for example thermal stability, pH unfolding profile, stable removal of glycosylation, solubility, biochemical function (e.g., ability to bind to a protein, receptor or ligand), etc., and/or combinations thereof. In another embodiment, biochemical function is demonstrated by the binding affinity of the interaction. In one embodiment, a measure of protein stability is thermal stability, i.e., resistance to thermal challenge. Stability can be measured using methods known in the art, such as, HPLC (high performance liquid chromatography), SEC (size exclusion chromatography), DLS (dynamic light scattering), etc. Methods to measure thermal stability include, but are not limited to differential scanning calorimetry (DSC), differential scanning fluorimetry (DSF), circular dichroism (CD), and thermal challenge assay.
- The term “clotting factor” refers to molecules, or analogs thereof, naturally occurring or recombinantly produced which prevent or decrease the duration of a bleeding episode in a subject. In other words, it means molecules having pro-clotting activity, i.e., are responsible for the conversion of fibrinogen into a mesh of insoluble fibrin causing the blood to coagulate or clot. The term “clotting factor,” as used herein encompasses clotting factors (e.g., vWF, FV, FVa, FVII, FVIIa, FVIII, FVIIIa, FIX, FIXa, FX, FXa, FXI, FXIa, FXII, FXIIa, FXIII, or FXIIIa), fragments, variants, analogs, or derivatives thereof, naturally occurring, recombinantly produced, or synthetically produced which prevent or decrease the duration of a bleeding episode in a subject.
- The term “activatable clotting factor” refers to a clotting factor in an inactive form (e.g., in its zymogen form) that is capable of being converted to an active form.
- As used herein, a “zymogen-like” protein or polypeptide refers to a protein that has been activated by proteolytic cleavage, but still exhibits properties that are associated with a zymogen, such as, for example, low or no activity, or a conformation that resembles the conformation of the zymogen form of the protein. For example, when it is not bound to tissue factor, the two-chain activated form of FVII is a zymogen-like protein; it retains a conformation similar to the uncleaved FVII zymogen, and, thus, exhibits very low activity. Upon binding to tissue factor, the two-chain activated form of FVII undergoes conformational change and acquires its full activity as a coagulation factor.
- As used herein, the term “half-life extending moiety” refers to a heterologous moiety which increases the in vivo half-life of a protein, for example, a chimeric molecule. The term “half-life” refers to a biological half-life of a particular protein or polypeptide (e.g., a clotting factor or a chimeric molecule disclosed herein) in vivo. Half-life can be represented by the time required for half the quantity administered to a subject to be cleared from the circulation and/or other tissues in the animal. When a clearance curve of a given polypeptide or chimeric molecule of the invention is constructed as a function of time, the curve is usually biphasic with a rapid α-phase and longer β-phase. The α-phase typically represents an equilibration of the administered Fc polypeptide between the intra- and extra-vascular space and is, in part, determined by the size of the polypeptide. The β-phase typically represents the catabolism of the polypeptide in the intravascular space. In some embodiments, procoagulant compounds of the invention are monophasic, and thus do not have an alpha phase, but just the single beta phase. In certain embodiments, the term half-life as used herein refers to the half-life of the procoagulant compound in the β-phase. The typical β-phase half-life of a human antibody in humans is 21 days. In vivo half-life of a chimeric molecule can be determined by any method known to those of skill in the art. In certain embodiments, the half-life extending moiety can comprise an attachment site for a non-polypeptide moiety (e.g., PEG).
- The terms “GPIIb/IIIa” and “GPIIb/IIIa receptor” refer to glycoprotein IIb/IIIa (also known as integrin αIIbβ3), an integrin complex found on platelets. Integrins are composed of two chains, an a subunit and a β subunit, which are held together by noncovalent bonds in a calcium dependent manner. GPIIb constitutes the a subunit, which comprises divalent cation binding domains, whereas GPIIIa is a pro typical 13 subunit (β3). On each circulating platelet, there are about 35,000 to 100,000 GPIIb/IIIa complexes: most are distributed on the platelet surface, while a smaller pool is found in an internal reserve. The GPIIb/IIIa complex does not interact with its plasma ligands until platelets have been activated by exogenous agonists such as ADP or thrombin. When this occurs, an inside-out signal is generated that results in a conformational change in the extracellular portion of the complex that renders the molecule capable of binding fibrinogen and other ligands. The amino acid sequences of the two chains of this platelet receptor can be found in Uniprot entries P05106 (ITB3_HUMAN; GPIIIa: CD61; integrin beta-3; integrin β3) and P08514 (ITA2B_HUMAN; GPIIb; CD41; integrin alpha-2b; integrin αII) as published in Universal Protein Resource (Uniprot) database release 2013_05 (May 1, 2013), which are incorporated by reference in their entireties.
- The amino acid sequence of human GPIIb is provided below:
-
(SEQ ID NO: 23) MARALCPLQALWLLEWVLLLLGPCAAPPAWALNLDPVQLTFYAGPNGSQF GFSLDFHKDSHGRVAIVVGAPRTLGPSQEETGGVFLCPWRAEGGQCPSLL FDLRDETRNVGSQTLQTFKARQGLGASVVSWSDVIVACAPWQHWNVLEKT EEAEKTPVGSCFLAQPESGRRAEYSPCRGNTLSRIYVENDFSWDKRYCEA GFSSVVTQAGELVLGAPGGYYFLGLLAQAPVADIFSSYRPGILLWHVSSQ SLSFDSSNPEYFDGYWGYSVAVGEFDGDLNTTEYVVGAPTWSWTLGAVEI LDSYYQRLHRLRGEQMASYFGHSVAVTDVNGDGRHDLLVGAPLYMESRAD RKLAEVGRVYLFLQPRGPHALGAPSLLLTGTQLYGRFGSAIAPLGDLDRD GYNDIAVAAPYGGPSGRGQVLVFLGQSEGLRSRPSQVLDSPFPTGSAFGF SLRGAVDIDDNGYPDLIVGAYGANQVAVYRAQPVVKASVQLLVQDSLNPA VKSCVLPQTKTPVSCFNIQMCVGATGHNIPQKLSLNAELQLDRQKPRQGR RVLLLGSQQAGTTLNLDLGGKHSPICHTTMAFLRDEADFRDKLSPIVLSL NVSLPPTEAGMAPAVVLHGDTHVQEQTRIVLDCGEDDVCVPQLQLTASVT GSPLLVGADNVLELQMDAANEGEGAYEAELAVHLPQGAHYMRALSNVEGF ERLICNQKKENETRVVLCELGNPMKKNAQIGIAMLVSVGNLEEAGESVSF QLQIRSKNSQNPNSKIVLLDVPVRAEAQVELRGNSFPASLVVAAEEGERE QNSLDSWGPKVEHTYELHNNGPGTVNGLHLSIHLPGQSQPSDLLYILDIQ PQGGLQCFPQPPVNPLKVDWGLPIPSPSPIHPAHHKRDRRQIFLPEPEQP SRLQDPVLVSCDSAPCTVVQCDLQEMARGQRAMVTVLAFLWLPSLYQRPL DQFVLQSHAWFNVSSLPYAVPPLSLPRGEAQVWTQLLRALEERA - The amino acid sequence of human GPIIIa is provided below:
-
(SEQ ID NO: 24) MRARPRPRPLWATVLALGALAGVGVGGPNICTTRGVSSCQQCLAVSPMCA WCSDEALPLGSPRCDLKENLLKDNCAPESIEFPVSEARVLEDRPLSDKGS GDSSQVTQVSPQRIALRLRPDDSKNFSIQVRQVEDYPVDIYYLMDLSYSM KDDLWSIQNLGTKLATQMRKLTSNLRIGFGAFVDKPVSPYMYISPPEALE NPCYDMKTTCLPMFGYKHVLTLTDQVTRFNEEVKKQSVSRNRDAPEGGFD AIMQATVCDEKIGWRNDASHLLVFTTDAKTHIALDGRLAGIVQPNDGQCH VGSDNHYSASTTMDYPSLGLMTEKLSQKNINLIFAVTENVVNLYQNYSEL IPGTTVGVLSMDSSNVLQLIVDAYGKIRSKVELEVRDLPEELSLSFNATC LNNEVIPGLKSCMGLKIGDTVSFSIEAKVRGCPQEKEKSFTIKPVGFKDS LIVQVTFDCDCACQAQAEPNSHRCNNGNGTFECGVCRCGPGWLGSQCECS EEDYRPSQQDECSPREGQPVCSQRGECLCGQCVCHSSDFGKITGKYCECD DFSCVRYKGEMCSGHGQCSCGDCLCDSDWTGYYCNCTTRTDTCMSSNGLL CSGRGKCECGSCVCIQPGSYGDTCEKCPTCPDACTFKKECVECKKFDRGA LHDENTCNRYCRDEIESVKELKDTGKDAVNCTYKNEDDCVVRFQYYEDSS GKSILYVVEEPECPKG - This disclosure provides antibodies and antigen-binding fragments thereof that specifically bind to GPIIb/IIIa. In certain embodiments, the antibodies and antigen-binding fragments thereof bind the GPIIb/IIIa receptors located on the surface of platelets. In other embodiments, the antibodies and antigen-binding fragments thereof bind the GPIIb/IIIa found within the platelets. The anti-GPIIb/IIIa antibodies and antigen binding fragments can bind the GPIIb subunit of the receptor and/or the GPIIb/IIIa complex. These antibodies do not activate the platelets and also do not compete with fibrinogen for binding to GPIIb/IIIa.
- One example of an anti-GPIIb/IIIa antibody is the murine antibody, 34D10. This antibody was obtained as follows: Hybridomas were generated from BALB/C mice immunized with plasmids containing DNA sequences encoding GPIIb/IIIa according to methods known in the art. Hybridomas were then screened for binding to human and cynomolgus monkey platelets using flow cytometry, and for binding to GPIIb/IIIa using Enzyme-linked immunosorbent assays (ELISA). To determine binding to human and monkey platelets, gel-purified human or monkey (cynomolgus) platelets in Tyrode's buffer were incubated with hybridoma supernatant and antibody binding was detected by flow cytometry. The binding of supernatants from hybridomas to human GPIIb/IIIa (αIIbβ) was also determined by using ELISA. The supernatants from hybridomas which tested positive in the ELISA assays were mixed with platelets and screened for platelet activation using flow cytometry. The antibodies that did not activate platelets upon binding to GPIIb/IIIa were selected. The supernatants from non-activating hybridomas were subject to additional characterization assays (i) to confirm antibody binding to human and cynomolgus platelets, (ii) to determine antibody binding specificity for the α and/or β subunit of GPIIb/IIIa, and (iii) to determine whether the antibodies can compete with fibrinogen for binding to platelets. Fibrinogen is the natural ligand of GPIIb/IIIa and its binding to GPIIb/IIIa is essential to mediate platelet aggregation. Thus, the antibodies that compete with the binding of fibrinogen to GPIIb/IIIa were excluded from the selection. 34D10 was identified in the process and determined to be an antibody that does not activate platelets, that does not compete with the binding of fibrinogen to GPIIb/IIIa, and that binds both the a subunit of GPIIb/IIIa and the GPIIb/IIIa complex. The amino acid sequences of the heavy chain variable domain (VH) and light chain variable domain (VL) of the murine anti-GPIIb/IIIa antibody, 34D10, are provided below (the CDRs according to Kabat are underlined).
-
34D10 VH: (SEQ ID NO: 1) VHCDR1 EVKLVESGGGLVKPGGSLKLSCAASGFTFSAYAMSWVRQTPEKRLEWVA VHCDR2 SISSGGTTYYPDSVKRRFTIS VHCDR3 RDNARNILYLQMSSLRSEDTAMYYCTRGGDYGYALDYWGQGTSVTVSS 34D10 VL: (SEQ ID NO: 2) VLCDR1 ENVLTQSPAIMSASLGEKVTMSCRASSSVNYMYWYQQKSDASPKLWIY VLCDR2 YTSNLAPGVPARFSGS VLCDR3 GSGNSYSLTISSMEGEDAATYYCQQFSSSPWTFGGGTKLEIK - The 34D10 antibody was humanized as described in Example 1. This example discloses six exemplary humanized heavy chain variable regions termed VH0, VH1, VH2, VH3, VH4, and VH5, with the amino acid sequences set forth in SEQ ID NOs: 3, 5, 7, 9, 11 and 12, respectively, and four exemplary humanized light chain variable regions termed VL0, VL1, VL2, and VL3, with the amino acid sequences set forth in SEQ ID NOs: 4, 6, 8, and 10, respectively. Each of these VH chains can pair with any of the VL chains: i.e., VH0 can pair with VL0, VL1, VL2, or VL3; VH1 can pair with VL0, VL1, VL2, or VL3; VH2 can pair with VL0, VL1, VL2, or VL3; VH3 can pair with VL0, VL1, VL2, or VL3; VH4 can pair with VL0, VL1, VL2, or VL3; and VH5 can pair with VL0, VL1, VL2, or VL3. Thus, the heavy chain variable region and light chain variable regions disclosed in Example 1 can form 24 different VH-VL pairs. All of these antibodies are considered part of this disclosure. In some embodiments, these antibodies can comprise a kappa light chain constant region. In other embodiments, these antibodies can comprise a lambda light chain constant region. In one embodiment, the light chain constant region comprises the following amino acid sequence:
-
(SEQ ID NO: 56) RTVA APSVFIFPPS DEQLKSGTAS VVCLLNNFYP REAKVQWKVD NALQSGNSQE SVTEQDSKDS TYSLSSTLTL SKADYEKHKV YACEVTHQGL SSPVTKSFNR GEC - In other embodiments, the light chain constant region comprises an amino acid sequence that is at least 65% identical, at least 70% identical, at least 75% identical, at least 76% identical, at least 77% identical, at least 78% identical, at least 79% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical to SEQ ID NO:56.
- The antibodies of this disclosure can also comprise a heavy chain constant region. In certain embodiments the heavy chain constant region is from an IgG1 or IgG4 antibody. In one embodiment, the heavy chain constant region comprises the following amino acid sequence:
-
(SEQ ID NO: 57) A STKGPSVFPLA PSSKSTSGGT AALGCLVKDY FPEPVTVSWN SGALTSGVHT FPAVLQSSGL YSLSSVVTVP SSSLGTQTYI CNVNHKPSNT KVDKKVEPKS C.
In other embodiments, the heavy chain constant region comprises an amino acid sequence that is at least 65% identical, at least 70% identical, at least 75% identical, at least 76% identical, at least 77% identical, at least 78% identical, at least 79% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, or at least 99% identical to SEQ ID NO:57. In another embodiment, the heavy chain constant region comprises the following amino acid sequence: -
(SEQ ID NO: 58) ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGV HTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVES KYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQED PEVQFNWYVDGVEVHNAKTKPREEQFQSTYRVVSVLTVLHQDWLNGKEYK CKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVK GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPG - The amino acid sequences of the heavy and
light chain CDRs -
TABLE 1 Humanized 34D10 (h34D10) CDR and FR Amino Acid Sequences SEQ ID Domain NO Sequence VH CDR1 25 AYAMS VH CDR2 26 SISSGGTTYYPDSVKR VH101 CDR2 241 SISSGGTTYYPDSVER VH108 CDR2 242 SISSDGTTYYPDSVKR VH109 CDR2 243 SISSGGTTDYPDSVKR VH112 CDR2 244 GISSGGTTYYPDSVKR VH CDR3 27 GGDYGYALDY VH100 CDR3 245 GGDYSYALDY VL CDR1 28 RASSSVNYMY VL CDR2 29 YTSNLAP VL CDR3 30 QQFSSSPWT VH0 FR1 31 EVQLVESGGGLVQPGGSLRLSCAASGFTFS VH0 FR2 32 WVRQAPGKGLVWV VH0 FR3 33 QFTISRDNAKNTLYLQMNSLRAEDMAVYYCTR VH0 FR4 34 WGQGTLVTVSS VH1 FR1 35 EVQLVQSGGGLVQPGESLRLSCAASGFTFS VH1 FR2 36 WVRQAPGKGLEWVS VH1 FR3 33 QFTISRDNAKNTLYLQMNSLRAEDMAVYYCTR VH1 FR4 34 WGQGTLVTVSS VH2 FR1 37 EVQLVESGGGLVKPGGSLRLSCAASGFTFS VH2 FR2 38 WVRQAPGKGLVWVA VH2 FR3 39 QFTISRDNAKNTLYLQMNSLRAEDTAVYYCTR VH2 FR4 34 WGQGTLVTVSS VH3 FR1 40 EVQLVQSGGGLVKPGESLRLSCAASGFTFS VH3 FR2 41 WVRQAPGKGLEWVA VH3 FR3 42 RFTISRDNAKNTLYLQMNSLRAEDTAVYYCTR VH3 FR4 34 WGQGTLVTVSS VH4 FR1 40 EVQLVQSGGGLVKPGESLRLSCAASGFTFS VH4 FR2 41 WVRQAPGKGLEWVA VH4 FR3 43 RFTISRDNSRNTLYLQMNSLRAEDTAVYYCTR VH4 FR4 34 WGQGTLVTVSS VH5 FR1 44 EVKLVESGGGLVKPGGSLRLSCAASGFTFS VH5 FR2 41 WVRQAPGKGLEWVA VH5 FR3 45 RFTISRDNARNTLYLQMNSLRAEDTAVYYCTR VH5 FR4 34 WGQGTLVTVSS VL0 FR1 46 EIVMTQSPATLSVSPGERATLSC VL0 FR2 47 WYQQKPGQAPRLLIY VL0 FR3 48 GIPARFSGSGSGTEFTLTISSLQSEDFAVYYC VL0 FR4 49 FGQGTKVEIK VL1 FR1 50 EIVLTQSPATLSVSPGERATLSC VL1 FR2 47 WYQQKPGQAPRLLIY VL1 FR3 51 GVPARFSGSGSGTEFTLTISSLQSEDFAVYYC VL1 FR4 49 FGQGTKVEIK VL2 FR1 52 EIVLTQSPATLSASPGERVTMSC VL2 FR2 53 WYQQKPGQSPRLLIY VL2 FR3 54 GVPARFSGSGSGTEYTLTISSLQSEDFAVYYC VL2 FR4 49 FGQGTKVEIK VL3 FR1 55 ENVMTQSPATLSASPGERVTMSC VL3 FR2 53 WYQQKPGQSPRLLIY VL3 FR3 54 GVPARFSGSGSGTEYTLTISSLQSEDFAVYYC VL3 FR4 49 FGQGTKVEIK - Although the above Table discloses the CDRs according to Kabat (Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)), the antibodies of this disclosure can comprise CDRs of 34D10 according to any CDR definition (e.g., Kabat, Chothia, enhanced Chothia, contact, IMGT, AbM). The CDRs of an antibody according to the different CDR definitions can be determined, e.g., by using the AbYsis database (www.bioinforg.uk/abysis/sequence input/key annotation/key annotation.cgi). According to the classical Kabat numbering, Kabat VH-CDR1 is at positions 31-35, VH-CDR2 is a positions 50-65, and VH-CDR3 is at positions 95-102; and, VL-CDR1, VL-CDR2, and VL-CDR3 are at positions 24-34, 50-56 and 89-97, respectively. According to the Chothia definition, VH-CDR1 is at positions 26-32 (Chothia numbering), VH-CDR2 is at positions 52-56, VH-CDR3 is at positions 95-102, VL-CDR1 is at positions 24-34, VL-CDR2 is at positions 50-56, and VL-CDR3 is at positions 89-97. According to the contact definition, VH-CDR1 is at positions 30-35 (Chothia numbering), VH-CDR2 is at positions 47-58, VH-CDR3 is at positions 93-101, VL-CDR1 is at positions 30-36, VL-CDR2 is at positions 46-55, and VL-CDR3 is at positions 89-96. According to the IMGT numbering schema VH-CDR1 is at positions 26 to 35, VH-CDR2 is at positions 51 to 57, VH-CDR3 is at positions 93 to 102, VL-CDR1 is at positions 27 to 32, VL-CDR2 is at
positions 50 to 52, and VL-CDR3 is at positions 89 to 97. - The humanized antibodies can include the three CDRs of the VH of 34D10 (according to any CDR definition) in the context of any suitable heavy chain human acceptor framework. In one embodiment, a suitable heavy chain human acceptor framework is an amino acid sequence that is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of the germline humIGHV3/OR16-13, with framework region 4 (FR4) from human consensus subgroup Heavy III. In one embodiment the heavy chain human acceptor framework is an amino acid sequence that is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of the germline humIGHV3-15. In another embodiment the heavy chain human acceptor framework is an amino acid sequence that is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of the germline humIGHV3-7. In yet another embodiment the heavy chain human acceptor framework is an amino acid sequence that is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of the germline humIGHV3-53. In a further embodiment the heavy chain human acceptor framework is an amino acid sequence that is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of the germline humIGHV3-66. The humanized antibodies can include the three CDRs of the VL of 34D10 (according to any CDR definition) in the context of any suitable light chain human acceptor framework. In one embodiment, a suitable light chain human acceptor framework is an amino acid sequence that is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of the germline humIGKV3-15, with framework region 4 (FR4) from human consensus subgroup Kappa I. In another embodiment the light chain human acceptor framework is an amino acid sequence that is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of the germline humIGKV1-NL1. In yet another embodiment the heavy chain human acceptor framework is an amino acid sequence that is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequence of the germline humIGKV1D-43. Antibodies or antigen-binding fragments thereof can be selected for use based on higher affinity or avidity for GPIIb or the GPIIb/IIIa complex and/or reduced immunogenicity than previously known anti-GPIIb/IIIa antibodies. Methods of determining potency, affinity or avidity, and immunogenicity of antibodies are within the skill of the ordinary artisan.
- This disclosure also includes antibodies or antigen-binding fragments thereof that specifically bind GPIIb and/or the GPIIb/IIIa complex that have heavy chain variable regions that are: at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequences set forth in any one of SEQ ID NOs.: 3, 5, 7, 9, 11, 12, or 197-218. This disclosure also provides antibodies or antigen-binding fragments thereof that specifically bind GPIIb and/or the GPIIb/IIIa complex that have heavy chain variable regions that are identical to the amino acid sequences set forth in any one of SEQ ID NOs.: 3, 5, 7, 9, 11, 12, or 197-218 except for a total of 1 to 40, 1 to 30, 1 to 20, 1 to 10, 1 to 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, 1 to 2, or 1 amino acid substitutions, deletions, or insertions. In certain embodiments, these antibodies or antigen-binding fragments thereof have at least one, at least two, at least three, at least four, at least five, or all six of the CDRs of 34D10 (wherein the CDRs can be according to any CDR definition). In some embodiments, these antibodies or antigen-binding fragments thereof have light chain variable regions that are: at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequences set forth in any one of SEQ ID NOs.: 4, 6, 8, or 10. This disclosure also provides antibodies or antigen-binding fragments thereof that specifically bind GPIIb and/or the GPIIb/IIIa complex that have light chain variable regions that are identical to the amino acid sequences set forth in any one of SEQ ID NOs.: 4, 6, 8, or 10 except for a total of 1 to 40, 1 to 30, 1 to 20, 1 to 10, 1 to 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, 1 to 2, or 1 amino acid substitutions, deletions, or insertions. In certain embodiments, these antibodies or antigen-binding fragments thereof have at least one, at least two, at least three, at least four, at least five, or all six of the CDRs of 34D10 (wherein the CDRs can be according to any CDR definition). In some embodiments, these antibodies or antigen-binding fragments thereof do not compete with fibrinogen for binding to GPIIb/IIIa. In some embodiments, these antibodies or antigen-binding fragments thereof do not activate platelets.
- Exemplary antibodies or antigen-binding fragments thereof described herein that specifically bind GPIIb and/or the GPIIb/IIIa complex comprise amino acid sequences that are: at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the amino acid sequences set forth in: (i) SEQ ID NOs.: 5 and 4; (ii) SEQ ID NOs.: 7 and 4; (iii) SEQ ID NOs.: 9 and 4; (iv) SEQ ID NOs.: 11 and 4; (v) SEQ ID NOs.: 12 and 4; (vi) SEQ ID NOs.: 12 and 8; (vii) SEQ ID NOs.: 3 and 10; (viii) SEQ ID NOs.: 5 and 10; (ix) SEQ ID NOs.: 7 and 10; (x) SEQ ID NOs.: 9 and 10; (xi) SEQ ID NOs.: 11 and 10; and (xii) SEQ ID NOs.: 12 and 10. In certain embodiments, these antibodies or antigen-binding fragments thereof have at least one, at least two, at least three, at least four, at least five, or all six of the CDRs of 34D10 (wherein the CDRs can be according to any CDR definition). In some embodiments, these antibodies or antigen-binding fragments thereof do not compete with fibrinogen for binding to GPIIb/IIIa. In some embodiments, these antibodies or antigen-binding fragments thereof do not activate platelets.
- The VH and or VL region of the anti-GPIIb/IIIa antibodies or antigen-binding fragments thereof described herein can be linked to a constant region (e.g., a wild-type human Fc region or an Fc region that includes one or more alterations). In some embodiments, the antibody has a light chain constant region derived from a human kappa sequence. In some embodiments, the antibody has a light chain constant region derived from a human lambda sequence. In a specific embodiment, the light chain constant region comprises a
human subgroup kappa 1 sequence. In certain embodiments, the antibody has an isotype selected from the group consisting of IgG1, IgG2, IgG3, and IgG4. The heavy chain constant region can be a wild-type human Fc region, or a human Fc region that includes one or more amino acid substitutions. The antibodies can have mutations that stabilize the disulfide bond between the two heavy chains of an immunoglobulin, such as mutations in the hinge region of IgG4, as disclosed in the art (e.g., Angal et al., Mol. Immunol., 30:105-08 (1993)). See also, e.g., U.S. 2005/0037000. The heavy chain constant region can also have substitutions that modify the properties of the antibody (e.g., decrease one or more of: Fc receptor binding, antibody glycosylation, deamidation, binding to complement, or methionine oxidation). In some instances, the antibodies may have mutations such as those described in U.S. Pat. Nos. 5,624,821 and 5,648,260. In some embodiments, the antibody is modified to reduce or eliminate effector function. In some embodiments, the heavy chain constant region has one or more of the following mutations: S228P; N297Q; and T299A (numbering according to Kabat). The heavy chain constant region can be chimeric, e.g., the Fc region can comprise the CH1 and CH2 domains of an IgG antibody of the IgG4 isotype, and the CH3 domain from an IgG antibody of the IgGlisotype (see, e.g., U.S. Patent Appl. No. 2012/0100140A1 which is incorporated by reference in its entirety herein). In a specific embodiment, the humanized anti-GPIIb/IIIa antibodies described herein have a chimeric constant region comprising the CH1 and CH2 domains of an IgG antibody of the IgG4 isotype, and the CH3 domain from an IgG antibody of the IgGlisotype and further contain the S228P and N297Q mutations (numbering according to Kabat). - Antigen-binding fragments of the anti-GPIIb/IIIa antibodies are also encompassed by this disclosure. In some embodiments, the anti-GPIIb/IIIa antibody or antigen-binding molecule thereof comprises or consists of (i) a single chain Fv (“scFv”); (ii) a diabody; (iii) an sc(Fv)2; (iv) a polypeptide chain of an antibody; (v) F(ab′)2; or (vi) F(ab). In one embodiment, the antigen-binding fragment is an Fab molecule. The fragment antigen-binding (Fab fragment) is a region on an antibody that binds to antigens. It is composed of one constant and one variable domain of each of the heavy and the light chain. These domains shape the paratope, i.e., the antigen-binding site. The enzyme papain can be used to cleave an immunoglobulin monomer into two Fab fragments and an Fc fragment. Recombinant methods can also be used to make an Fab molecule. In another embodiment, the antigen-binding fragment is a single-chain fragment variable (scFv). An scFv is comprised of the variable regions of the heavy and light chains of an antibody. It is only half the size of the Fab fragment and yet retains the original specificity of the parent immunoglobulin. Methods of making an ScFv are well known in the art (see, e.g., Ahmad et al., Clinical and Developmental Immunology, vol. 2012, Article ID 980250, 15 pages, 2012. doi:10.1155/2012/980250).
- In certain embodiments, the anti-GPIIb/IIIa antibody or antigen-binding molecule thereof can be a targeting moiety. These targeting moieties are useful in ferrying an agent of interest (e.g., a therapeutic agent, a coagulation factor, a small molecule drug) to platelets. In some embodiments, an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein can target GPIIb/IIIa located on the surface of platelets.
- The present disclosure also provides “chimeric molecules” comprising, for example, at least one of the GPIIb/IIIa antibodies or antigen-binding fragments thereof disclosed herein that is linked and/or conjugated and/or otherwise associated with at least one heterologous moiety. In certain embodiments, the heterologous moiety is an agent that to be ferried or delivered to a platelet or its local environment. Such an agent can be e.g., a therapeutic agent such as a clotting factor (e.g., rFVIIa).
- A chimeric molecule disclosed herein encompasses any molecule comprising (i) a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein (e.g., an Fab or scFv derived from a humanized 34D10 antibody), and (ii) at least one (e.g., one two, three, four) heterologous moiety (e.g., a therapeutic moiety, a clotting factor, a half-life extending moiety) and optionally including one or more linkers. In some embodiments, a chimeric molecule is a chimeric protein, i.e., a chimeric molecule in which all its components (heterologous moieties and/or linkers) are polypeptides. Other chimeric molecules can comprise non-polypeptide heterologous moieties (e.g., PEG, lipids, carbohydrates, nucleic acids, small molecule therapeutic agents, radionuclides, fluorescent probes, etc.) and/or non-polypeptide linkers.
- In some embodiments, a chimeric molecule comprises a first amino acid sequence derived from a first source, bonded, covalently or non-covalently, to a second amino acid sequence derived from a second source, wherein the first and second source are not the same. A first source and a second source that are not the same can include two different biological entities, or two different proteins from the same biological entity, or a biological entity and a non-biological entity. A chimeric molecule can include for example, a protein derived from at least two different biological sources. A biological source can include any non-synthetically produced nucleic acid or amino acid sequence (e.g., a genomic or cDNA sequence, a plasmid or viral vector, a native virion or a mutant or analog, as further described herein, of any of the above). A synthetic source can include a protein or nucleic acid sequence produced chemically and not by a biological system (e.g., solid phase synthesis of amino acid sequences). A chimeric molecule can also include a protein derived from at least 2 different synthetic sources or a protein derived from at least one biological source and at least one synthetic source. A chimeric molecule can also comprise a first amino acid sequence derived from a first source, covalently or non-covalently linked to a nucleic acid, derived from any source or a small organic or inorganic molecule derived from any source. The chimeric molecule can also comprise a linker molecule between the first and second amino acid sequence or between the first amino acid sequence and the nucleic acid, or between the first amino acid sequence and the small organic or inorganic molecule.
- In some embodiments, the chimeric molecule has, for example, a formula: (i) Ab-(L)-H or (ii) H-(L)-Ab, wherein, H is a heterologous moiety; L is an optional linker; and, Ab is an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein. One or more copies (e.g., one, two, three, four) of the same heterologous moiety may be included in the chimeric molecule.
- In some embodiments, the chimeric molecule further comprises a second heterologous moiety. Accordingly, in some embodiments, the chimeric molecule has a formula selected from:
- (i) H1-(L1)-Ab-(L2)-H2;
- (ii) H2-(L2)-Ab-(L1)-H1;
- (iii) H1-(L1)-H2-(L2)-Ab;
- (iv) H2-(L2)-H1-(L1)-Ab;
- (v) Ab-(L1)-H1-(L2)-H2; or,
- (vi) Ab-(L2)-H2-(L1)-H1;
- wherein, Ab is an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein; H1 is a first heterologous moiety, H2 is a second heterologous moiety, L1 is a first optional linker, and L2 is a second optional linker. One or more copies (e.g., one, two, three, four) of the same heterologous moiety may be included in the chimeric molecule.
- In some embodiments, the first heterologous moiety and the second heterologous moiety are the same. In other embodiments, the first heterologous moiety and the second heterologous moiety are different. In some embodiments, L1 and L2 are the same. In other embodiments, L1 and L2 are different.
- The chimeric molecule formulas disclosed are oriented from N-terminus (left) to C-terminus (right). One skilled in the art would understand that the chimeric molecule formulas disclosed herein are non-limiting examples of chimeric molecules comprising the disclosed anti-GPIIb/IIIa antibodies or antigen-binding fragments thereof. For example, the formulas can comprise further sequences at their N-terminal or C-terminal ends, or inserted between elements of the formula. Accordingly, a chimeric molecule can comprise one, two, three, four, five, or more than five heterologous moieties. In some embodiments, the hyphen (-) in a formula indicates a peptide bond or one or more amino acids. Exemplary chimeric molecules are presented in
FIGS. 7A-F and 8. - In some embodiments, a chimeric protein comprises a first polypeptide chain and a second polypeptide chain, which are associated with each other. In some embodiments, the first polypeptide chain comprises a light chain of a clotting factor (e.g., FVII) and a heterologous moiety (e.g., a half-life extending moiety), and the second polypeptide chain comprises a heavy chain of the clotting factor (e.g., FVII) and a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein. In other embodiments, the first polypeptide chain comprises a light chain of a clotting factor (e.g., FVII) and a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein, and the second polypeptide chain comprises a heavy chain of the clotting factor (e.g., FVII) and a heterologous moiety (e.g., a half-life extending moiety). In yet another embodiment, the first polypeptide chain comprises a light chain of a clotting factor (e.g., FVII) and the second polypeptide chain comprises a heavy chain of the clotting factor (e.g., FVII), a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein, and a heterologous moiety (e.g., a half-life extending moiety). In some embodiments, the first polypeptide chain comprises a light chain of a clotting factor (e.g., FVII) and the second polypeptide chain comprises a heavy chain of the clotting factor (e.g., FVII), a heterologous moiety (e.g., a half-life extending moiety), and a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein. In other embodiments, the first polypeptide chain comprises a light chain of a clotting factor (e.g., FVII), a heterologous moiety (e.g., a half-life extending moiety), and a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein, and the second polypeptide chain comprises a heavy chain of the clotting factor (e.g., FVII). In some embodiments, the first polypeptide chain comprises a light chain of a clotting factor (e.g., FVII), a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein, and a heterologous moiety (e.g., a half-life extending moiety), and the second polypeptide chain comprises a heavy chain of the clotting factor (e.g., FVII).
- In some embodiments, the chimeric molecule comprises a formula wherein:
- (1) the first polypeptide chain comprises CFL-H or H-CFL and the second polypeptide chain comprises CFH-Ab or Ab-CFH;
- (2) the first polypeptide chain comprises CFL-Ab or Ab-CFL and the second polypeptide chain comprises CFH—H or H-CFH;
- (3) the first polypeptide chain comprises CFL and the second polypeptide chain comprises CFH-Ab-H or H-Ab-CFH;
- (4) the first polypeptide chain comprises CFL and the second polypeptide chain comprises CFH-H-Ab or Ab-H-CFH;
- (5) the first polypeptide chain comprises CFL-H-Ab or Ab-H-CFL and the second polypeptide chain comprises CFH; or
- (6) the first polypeptide chain comprises CFL-Ab-H or H-Ab-CFL and the second polypeptide chain comprises CFH;
- wherein, CFL is a light chain of a clotting factor (e.g., FVII); CFH is a heavy chain of the clotting factor (e.g., FVII); Ab is an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof and H is a heterologous moiety (e.g., a half-life extending moiety). In some embodiments, the clotting factor is independently selected from the group consisting of FVII, FIX, FX, and any combinations thereof.
- This disclosure also provides a chimeric molecule comprising a first polypeptide chain and a second polypeptide chain, which are associated with each other, (1) wherein the first polypeptide chain comprises a light chain of a clotting factor (e.g., FVII, FIX, or FX), and a targeting moiety, which binds to a platelet, and the second polypeptide chain comprises a heavy chain of the clotting factor (e.g., FVII, FIX, or FX) and a heterologous moiety (e.g., a half-life extending moiety); (2) wherein the first polypeptide chain comprises a light chain of a clotting factor (e.g., FVII) and a heterologous moiety (e.g., a half-life extending moiety), and the second polypeptide chain comprises a heavy chain of the clotting factor (e.g., FVII, FIX, or FX) and a targeting moiety, which binds to a platelet; (3) wherein the first polypeptide chain comprises a light chain of a clotting factor (e.g., FVII, FIX, or FX), a heterologous moiety (e.g., a half-life extending moiety), and a targeting moiety, which binds to a platelet, and the second polypeptide comprises a heavy chain of the clotting factor (e.g., FVII, FIX, or FX); or (4) wherein the first polypeptide chain comprises a light chain of a clotting factor (e.g., FVII, FIX, or FX), a targeting moiety, which binds to a platelet, and a heterologous moiety (e.g., a half-life extending moiety) and the second polypeptide chain comprises a heavy chain of the clotting factor (e.g., FVII, FIX, or FX). In some embodiments, the clotting factor is FVII, FIX, or FX.
- As used herein, the phrases “which binds to a platelet,” “binding to a platelet,” and variants thereof generally refer to the specific binding of (i) a GPIIb/IIIa antibody or antigen-binding molecule thereof or (ii) a chimeric molecule of the present disclosure to an antigenic site on the surface of the platelet, e.g., an epitope on the extracellular domains of the α and/or β subunits of the GPIIb/IIIa receptor. It is known to a person skilled in the art that GPIIb/IIIa is present in two pools, a plasma membrane pool present in the platelet's resting state and an internal pool of GPIIb/IIIa which is expressed upon platelet activation. See, e.g., Quinn et al., J. Pharmacol. Exp. Ther., 297:496-500 (2001). Accordingly, in some specific embodiments, and particularly for diagnostic uses where the platelet's plasma membrane can be permeabilized, the binding of an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof to platelets, or the binding of a chimeric molecule of the present disclosure to platelets can refer to binding to the plasma membrane pool and/or to the internal pool of GPIIb/IIIa.
- In some embodiments, the chimeric molecule comprises a first polypeptide chain and a second polypeptide chain, which are associated with each other, (1) wherein the first polypeptide chain comprises CFL-H or H-CFL and the second polypeptide chain comprises CFH-Ab or Ab-CFH; (2) wherein the first polypeptide chain comprises CFL-Ab or Ab-CFL and the second polypeptide chain comprises CFH—H or H-CFH; (3) wherein the first polypeptide chain comprises CFL-H-Ab or Ab-H-CFL and the second polypeptide chain comprises CFH; or (4) wherein the first polypeptide chain comprises CFL-Ab-H or H-Ab-CFL and the second polypeptide chain comprises CFH; wherein, H is a heterologous moiety (e.g., a half-life extending moiety), CFH is a heavy chain of a clotting factor (e.g., FVII), CFL is a light chain of the clotting factor (e.g., FVII, FIX, or FX), Ab is an anti-GPIIb/IIIa antibody that binds to a platelet, and L is an optional linker.
- In some embodiments, the association between the first polypeptide chain and the second polypeptide chain in the chimeric molecule is a covalent bond or a non-covalent bond. Thus, in other embodiments, the association between the first polypeptide chain and the second polypeptide chain in the chimeric molecule is a covalent bond between the heavy chain and the light chain of the clotting factor (e.g., FVII, FIX, or FX). In contrast, in some other embodiments, the covalent bond is a disulfide bond.
- The present disclosure also provides a chimeric molecule comprising a single polypeptide chain, which comprises, from N terminus to C terminus, (i) a light chain of a clotting factor (e.g., FVII, FIX, or FX), a heterologous moiety (e.g., a half-life extending moiety), a protease cleavage site, a heavy chain of the clotting factor (e.g., FVII, FIX, or FX), and a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof) which binds to a platelet or (ii) a light chain of a clotting factor (e.g., FVII), a targeting moiety, which binds to a platelet, a protease cleavage site, a heavy chain of the clotting factor (e.g., FVII, FIX, or FX), and a heterologous moiety (e.g., a half-life extending moiety). In some embodiments, the clotting factor is FVII. In other embodiments, the clotting factor is FIX or FX. In yet other embodiments, the clotting factor is FVII, FIX, or FX. In some embodiments, the protease cleavage site is an intracellular processing site. In some embodiments, the intracellular processing site is processed by a proprotein convertase. In some embodiments, the proprotein convertase is selected from the group consisting of PC5, PACE, PC7, and any combinations thereof.
- I. Heterologous Moieties
- The heterologous moiety or moieties of the chimeric molecules disclosed herein can comprise, consist of, or consist essentially of, for example, prophylactic and/or therapeutic agents (e.g., clotting factors), molecules capable of improving a pharmacokinetic (PK) property (e.g., plasma half-life extending moieties), and detectable moieties (e.g., fluorescent molecules or radionuclides). In some embodiments, the heterologous moiety comprises a clotting factor (e.g., a Factor VII). In some embodiments, a heterologous moiety comprises a molecule that can modify a physicochemical property of a chimeric molecule lacking such heterologous moiety. For example, it can increase the hydrodynamic radius of a chimeric molecule. In other embodiments, the incorporation of a heterologous moiety into a chimeric molecule can improve one or more pharmacokinetic properties without significantly affecting its biological activity or function (e.g., procoagulant activity in chimeric molecules comprising a clotting factor). In other embodiments, a heterologous moiety increases stability of the chimeric molecule of the invention or a fragment thereof.
- In some embodiments, the heterologous moiety is a polypeptide comprising, consisting essentially of, or consisting of at least about 10, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2500, 3000, or 4000 amino acids. In other embodiments, the heterologous moiety is a polypeptide comprising, consisting essentially of, or consisting of about 100 to about 200 amino acids, about 200 to about 300 amino acids, about 300 to about 400 amino acids, about 400 to about 500 amino acids, about 500 to about 600 amino acids, about 600 to about 700 amino acids, about 700 to about 800 amino acids, about 800 to about 900 amino acids, or about 900 to about 1000 amino acids.
- Non-limiting examples of the heterologous moieties are discussed below.
- In some embodiments, the chimeric molecules of this disclosure comprise at least one polypeptide heterologous moiety which is (i) a clotting factor, or (ii) a procoagulant peptide (e.g., a synthetic procoagulant peptide). Blood coagulation is a process that involves a complex interaction of various blood factors that eventually result in a fibrin clot. Generally, the blood factor, which participate in what has been referred to as the coagulation “cascade”, are enzymatically inactive proteins (proenzymes or zymogens) that are converted to proteolytic enzymes by the action of an activator (which itself is an activated clotting factor). Coagulation factors that have undergone such a conversion are generally referred to as “active factors”, and are designated by the addition of the letter “a” to the name of the coagulation factor (e.g. Factor VIIa). In some embodiments, the clotting factor is independently selected from the group consisting of factor FVII (“FVII”), factor IX (“FIX”), or factor X (“FX”), and any combinations thereof. As discussed in detail below, the clotting factor can be, for example, FVII zymogen, activatable FVII, activated FVII (FVIIa), FIX zymogen, activatable FIX, activated FIX (FIXa), FX zymogen, activatable FX, or activated FX (FXa). In some embodiments, the clotting factor can comprise a single polypeptide chain or two polypeptide chains (I the heavy chain and the light chain of FVII). In some embodiments, the chimeric molecule comprises a FVII or activated FVII (FVIIa) clotting factor. In some embodiments, the chimeric molecule of the invention comprises a FIX or activated FIX (FIXa) clotting factor. In other embodiments, the chimeric molecule comprises a FX or activated FX (FXa) clotting factor.
- In some embodiments, the chimeric molecule comprises a single clotting factor, which in the chimeric molecule is represented by a formula as H, H1 or H2. In other embodiments, the chimeric molecule comprises two clotting factors. In some embodiments, the two clotting factors are the same, whereas in other embodiments, the two clotting factors are different. In some embodiments, one clotting factor is a fragment of a clotting factor (e.g., a heavy chain of a clotting factor such as FVII) and the second clotting factor is a fragment of the same clotting factor (e.g., a light chain of a clotting factor such as FVIII). In some embodiments, the chimeric molecule comprises more than two clotting factors.
- a. Factor VII
- In some embodiments, the chimeric molecule comprises a clotting factor which is a mature form of Factor VII or a variant thereof. Factor VII (FVII, F7; also referred to as
Factor 7, coagulation factor VII, serum factor VII, serum prothrombin conversion accelerator, SPCA, proconvertin and eptacog alpha) is a serine protease that is part of the coagulation cascade. FVII includes a Gla domain, two EGF domains (EGF-1 and EGF-2), and a serine protease domain (or peptidase Si domain) that is highly conserved among all members of the peptidase Si family of serine proteases, such as for example with chymotrypsin. In some embodiments, the chimeric molecule comprises a Factor VIIa. In certain embodiments, the Factor VIIa is recombinant. - FVII can occur as a single chain zymogen, an activated zymogen-like two-chain polypeptide, or a fully activated two-chain form. The zymogen composed of a single chain polypeptide is converted to a two-chain form connected by disulfide bonds by the action of Factor Xa in the presence of calcium ions and phospholipids, thrombin, or by the action of factor XIIa (without additional cofactors). This hydrolysis of Factor VII is accompanied by an at least 85-fold increase in the Factor VII coagulant activity compared to the single chain form (see, e.g., Radcliffe et al., J. Biol. Chem., 250(2):388-395 (1975) and Handbook of Enzymes, Class 3.4 Hydrolases II: EC3.4.21-3.4.22,
Volume 7, coed. By Antje Chang, 2002, (Springer, 2nd edition)). Following vascular damage, blood clotting is triggered when factor VIIa (FVIIa) forms a complex with tissue factor (TF). In hemophilia A and B, the propagation phase of blood coagulation is disrupted due to the lack of factors VIII (FVIII) and IX (FIX), leading to excessive bleeding. However, high doses of recombinant FVIIa (rFVIIa) can bypass the FVIII/FIX deficiency and ameliorate bleeding problems. - The amino acid sequence of the B isoform of FVII zymogen is provided below (the signal sequence (boldened), propeptide sequence (underlined); the peptide bond between R and I (boldened and underlined) is cleaved to activate FVII):
-
(SEQ ID NO: 79) 1 MVSQALRLLC LLLGLQGCLA AVFVTQEEAH GVLHRRRRAN AFLEELRPGS 51 LERECKEEQC SFEEAREIFK DAERTKLFWI SYSDGDQCAS SPCQNGGSCK 101 DQLQSYICFC LPAFEGRNCE THKDDQLICV NENGGCEQYC SDHTGTKRSC 151 RCHEGYSLLA DGVSCTPTVE YPCGKIPILE KRNASKPQG R I VGGKVCPKG 201 ECPWQVLLLV NGAQLCGGTL INTIWVVSAA HCFDKIKNWR NLIAVLGEHD 251 LSEHDGDEQS RRVAQVIIPS TYVPGTTNHD IALLRLHQPV VLTDHVVPLC 301 LPERTFSERT LAFVRFSLVS GWGQLLDRGA TALELMVLNV PRLMTQDCLQ 351 QSRKVGDSPN ITEYMFCAGY SDGSKDSCKG DSGGPHATHY RGTWYLTGIV 101 SWGQGCATVG HFGVYTRVSQ YIEWLQKLMR SEPRPGVLLR APFP - It is to be understood the chimeric molecules of this disclosure can include any FVII zymogen (e.g., the A or B isoforms) so long as intended results are achieved (e.g., effectiveness in treatment of a coagulation or hemostatic disorder).
- The amino acid sequence of the light chain of FVII is provided below:
-
(SEQ ID NO: 80) ANAFLEELRP GSLERECKEE QCSFEEAREI FKDAERTKLF WISYSDGDQC ASSPCQNGGS CKDQLQSYIC FCLPAFEGRN CETHKDDQLI CVNENGGCEQ YCSDHTGTKR SCRCHEGYSL LADGVSCTPT VEYPCGKIPI LEKRNASKPQ GR - The amino acid sequence of the heavy chain of FVII is provided below:
-
(SEQ ID NO: 81) IVGGKVCP KGECPWQVLL LVNGAQLCGG TLINTIWVVS AAHOFDKIKN WRNLIAVLGE HDLSEHDGDE QSRRVAQVII PSTYVPGTTN HDIALLRLHQ PVVLTDHVVP LCLPERTFSE RTLAFVRFSL VSGWGQLLDR GATALELMVL NVPRLMTQDC LQQSRKVGDS PNITEYMFCA GYSDGSKDSC KGDSGGPHAT HYRGTWYLTG IVSWGQGCAT VGHFGVYTRV SQYIEWLQKL MRSEPRPGVL LRAPFP - This disclosure also encompasses any allelic variants of FVII.
- Other exemplary FVII variants that are encompassed by this disclosure include those with increased specific activity, e.g., mutations that increase the activity of FVII by increasing its enzymatic activity (Kcat or Km). Such variants have been described in the art and include, e.g., mutant forms of the molecule as described for example in Persson, Semin Hematol., 41 (1Suppl 1):89-92 (2004); Persson et al., Proc. Natl. Acad Sci. USA 98:13583 (2001); Petrovan and Ruf, J. Biol. Chem. 276:6616 (2001); Persson et al., J. Biol. Chem. 276:29195 (2001); Soejima et al., J. Biol. Chem. 276:17229 (2001); Soejima et al., J. Biol. Chem. 247:49027 (2002); and WO2002/022776.
- In one embodiment, a variant form of FVII includes mutations, e.g., V158D-E296V-M298Q. In another embodiment, a variant form of FVII includes a replacement of amino acids 608-619 (LQQSRKVGDSPN (SEQ ID NO:82), corresponding to the 170-loop) from the FVII mature sequence with amino acids EASYPGK (SEQ ID NO:83) from the 170-loop of trypsin. High specific activity variants of FVII are also known in the art. For example, Simioni et al. (N. E. Journal of Medicine 361:1671, 2009) describe an R338L mutation. Chang et al. (J. Biol. Chem. 273:12089, 1988) and Pierri et al. (Human Gene Therapy 20:479, 2009) describe an R338A mutation. Other mutations are known in the art and include those described, e.g., in Zogg and Brandstetter, Structure 17:1669 (2009); Sichler et al., J. Biol. Chem. 278:4121 (2003); and Sturzebecher et al., FEBS Lett 412:295 (1997). The contents of all of the references above are incorporated herein by reference.
- Full activation, which occurs upon conformational change from a zymogen-like form, occurs upon binding to its co-factor, i.e., tissue factor. Also, mutations can be introduced that result in the conformation change in the absence of tissue factor. Hence, reference to FVIIa includes both two-chain forms thereof: the zymogen-like form, and the fully activated two-chain form.
- b. Factor IX
- In one embodiment, the chimeric molecule comprises a clotting factor which is a mature form of Factor IX or a variant thereof. Factor IX circulates as a 415 amino acid, single chain plasma zymogen. See, Vysotchin et al., J Biol. Chem. 268:8436 (1993). The amino acid sequence of FIX zymogen is provided below (the signal sequence is underlined (1-28); the propeptide sequence (29-46) is boldened):
-
(SEQ ID NO: 84) MQRVNMIMAESPGLITICLLGYLLSAEC TVFLDHENANKILNRPKRYNSG KLEEFVQGNLERECMEEKCSFEEAREVFENTERTTEFWKQYVDGDQCESN PCLNGGSCKDDINSYECWCPFGFEGKNCELDVTCNIKNGRCEQFCKNSAD NKVVCSCTEGYRLAENQKSCEPAVPFPCGRVSVSQTSKLTRAETVFPDVD YVNSTEAETILDNITQSTQSFNDFTRVVGGEDAKPGQFPWQVVLNGKVDA FCGGSIVNEKWIVTAAHCVETGVKITVVAGEHNIEETEHTEQKRNVIRII PHHNYNAAINKYNHDIALLELDEPLVLNSYVTPICIADKEYTNIFLKFGS GYVSGWGRVFHKGRSALVLQYLRVPLVDRATCLRSTKFTIYNNMFCAGFH EGGRDSCQGDSGGPHVTEVEGTSFLTGIISWGEECAMKGKYGIYTKVSRY VNWIKEKTKLT - The zymogen of FIX is activated by FXIa or by the tissue factor/FVIIa complex. Specific cleavages between arginine-alanine 145-146 and arginine-valine 180-181 result in a light chain and a heavy chain linked by a single disulfide bond between cysteine 132 and cysteine 289 (Bajaj et al., Biochemistry 22:4047 (1983)).
- The structural organization of FIX is similar to that of the vitamin K-dependent blood clotting proteins FVII, FX and protein C. The approximately 45 amino acids of the amino terminus comprise the gamma-carboxyglutamic acid, or Gla, domain. This is followed by two epidermal growth factor homology domains (EGF), an activation peptide and the catalytic “heavy chain” which is a member of the serine protease family (Vysotchin et al., J. Biol. Chem. 268:8436 (1993); Spitzer et al., Biochemical Journal 265:219 (1990); Brandstetter et al., Proc. Natl. Acad Sci. USA 92:9796 (1995)).
- c. Factor X
- In one embodiment, the chimeric molecule comprises a clotting factor which is a mature form of Factor X. Factor X is a vitamin-K dependent glycoprotein with a molecular weight of 58.5 kDa, which is secreted from liver cells into the plasma as a zymogen. Initially factor X is produced as a prepropeptide with a signal peptide consisting in total of 488 amino acids. The amino acid sequence of FX zymogen is provided below (the signal sequence (1-23) is underlined and the propeptide (24-40) is boldened):
-
(SEQ ID NO: 85) MGRPLHLVLLSASLAGLLLLGES LFIRREQANNILARVTRANSFLEEMKK GHLERECMEETCSYEEAREVFEDSDKTNEFWNKYKDGDQCETSPCQNQGK CKDGLGEYTCTCLEGFEGKNCELFTRKLCSLDNGDCDQFCHEEQNSVVCS CARGYTLADNGKACIPTGPYPCGKQTLERRKRSVAQATSSSGEAPDSITW KPYDAADLDPTENPFDLLDFNQTQPERGDNNLTRIVGGQECKDGECPWQA LLINEENEGFCGGTILSEFYILTAAHCLYQAKRFKVRVGDRNTEQEEGGE AVHEVEVVIKHNRFTKETYDFDIAVLRLKTPITFRMNVAPACLPERDWAE STLMTQKTGIVSGFGRTHEKGRQSTRLKMLEVPYVDRNSCKLSSSFIITQ NMFCAGYDTKQEDACQGDSGGPHVTRFKDTYFVTGIVSWGEGCARKGKYG IYTKVTAFLKWIDRSMKTRGLPKAKSHAPEVITSSPLK - The signal peptide is cleaved off by signal peptidase during export into the endoplasmic reticulum. The propeptide sequence is cleaved off after gamma carboxylation took place at the first 11 glutamic acid residues at the N-terminus of the mature N-terminal chain. A further processing step occurs by cleavage between Arg182 and Ser183. This processing step also leads concomitantly to the deletion of the tripeptide Arg180-Lys181-Arg182. The resulting secreted factor X zymogen consists of an N-terminal light chain of 139 amino acids (M, 16,200) and a C-terminal heavy chain of 306 amino acids (M, 42,000) which are covalently linked via a disulfide bridge between Cys172 and Cys342. Further posttranslational processing steps include the β-hydroxylation of Asp103 as well as N- and O-type glycosylation.
- It will be understood that in addition to wild type (WT) versions of these clotting factors or biologically active portions thereof, the heterologous moieties in the chimeric molecules disclosed herein can also comprise precursor truncated forms thereof that have activity, allelic variants and species variants, variants encoded by splice variants, and other variants, including polypeptides that have at least 40%, 45%, 50%, 55%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or more sequence identity to the mature form of the clotting factor and which retain the ability to promote clot formation. For example, modified FVII polypeptides and variants thereof which retain at least one activity of FVII, such as TF binding, factor X binding, phospholipid binding, and/or coagulant activity of FVII can be employed. By retaining activity, the activity can be altered, such as reduced or increased, as compared to a wild-type clotting factor so long as the level of activity retained is sufficient to yield a detectable effect.
- Exemplary modified polypeptides include, but are not limited to, tissue-specific isoforms and allelic variants thereof, synthetic molecules prepared by translation of nucleic acids, proteins generated by chemical synthesis, such as syntheses that include ligation of shorter polypeptides, through recombinant methods, proteins isolated from human and non-human tissue and cells, chimeric polypeptides and modified forms thereof. The clotting factors can also consist of fragments or portions of WT molecules that are of sufficient length or include appropriate regions to retain at least one activity (upon activation if needed) of a full-length mature polypeptide. Exemplary clotting factor variants are known in the art.
- The “Gla domain” refers to the conserved membrane binding motif which is present in vitamin K-dependent proteins, such as prothrombin, coagulation factors VII, IX and X, proteins C, S, and Z. These proteins require vitamin K for the posttranslational synthesis of γ-carboxyglutamic acid, an amino acid clustered in the N-terminal Gla domain of these proteins. All glutamic residues present in the domain are potential carboxylation sites and many of them are therefore modified by carboxylation. In the presence of calcium ions, the Gla domain interacts with phospholipid membranes that include phosphatidylserine. The Gla domain also plays a role in binding to the FVIIa cofactor, tissue factor (TF). Complexed with TF, the Gla domain of FVIIa is loaded with seven Ca2+ ions, projects three hydrophobic side chains in the direction of the cell membrane for interaction with phospholipids on the cell surface, and has significant contact with the C-terminal domain of TF.
- The Gla domain of factor VII comprises the uncommon amino acid γ-carboxyglutamic acid (Gla), which plays a vital role in the binding of clotting factors to negatively charged phospholipid surfaces. The Gla domain is responsible for the high-affinity binding of calcium ions. It starts at the N-terminal extremity of the mature form of proteins and ends with a conserved aromatic residue. A conserved Gla-x(3)-Gla-x-Cys motif is found in the middle of the domain which seems to be important for substrate recognition by the carboxylase. Using stopped-flow fluorescence kinetic measurements in combination with surface plasmon resonance analysis, the Gla domain has been found to be important in the sequence of events whereby the protease domain of FVIIa initiates contact with sTF (Osterlund et al., Biochem. Biophys. Res. Commun. 337:1276 (2005)). In addition, clearance of clotting factors can be significantly mediated through Gla interactions, e.g., on liver cells and clearance receptors, e.g., EPCR.
- In one embodiment, the chimeric molecule comprises a heterologous moiety comprising a clotting factor modified to lack a Gla domain. The Gla domain is responsible for mediating clearance of clotting factors via multiple pathways, such as binding to liver cells, clearance receptors such as EPCR, etc. Thus, eliminating the Gla domain has beneficial effects on half-life of clotting factors. Though Gla domain is also generally required for activity by localizing clotting factors to sites of coagulation, the inclusion of a platelet targeting domain moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof) targets the Gla deleted clotting factor to platelets. Accordingly, in one embodiment, the chimeric molecule comprises a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof) and a heterologous moiety comprising a clotting factor that lacks a Gla domain. For example, in the case of Factor VII, the Gla domain is present at the amino terminus of the light chain and consists of amino acids 1-35. The Gla domains of the exemplary clotting factors disclosed herein are known in the art. The Gla domain can be removed using standard molecular biology techniques, replaced with a targeting domain, and the modified light chain incorporated into a construct of the invention. In one embodiment, a cleavage site can be introduced into constructs lacking a Gla domain to facilitate activation of the molecule. For example, in one embodiment, such a cleavage site can be introduced between the amino acids that are cleaved when the clotting factor is activated (e.g., between amino acids 152 and 153 in the case of Factor VII).
- In one embodiment, a cleavage site can be introduced into chimeric molecules comprising a clotting factor that lacks a Gla domain to facilitate activation of the molecule. For example, in one embodiment, such a cleavage site can be introduced between the amino acids that are cleaved when the clotting factor is activated (e.g., between amino acids 152 and 153 in the case of Factor VII). Exemplary clotting factors lacking a Gla domain are known in the art. Exemplary clotting factors are those of mammalian, e.g., human, origin.
- In some embodiments, the chimeric molecule comprises at last one heterologous moiety that is a “half-life extending moiety.” Half-life extending moieties, as discussed below in detail, can comprise, for example, (i) XTEN polypeptides; (ii) Fc; (iii) albumin, (iv) albumin binding polypeptide or fatty acid, (v) the C-terminal peptide (CTP) of the (3 subunit of human chorionic gonadotropin, (vi) PAS; (vii) HAP; (viii) transferrin; (ix) polyethylene glycol (PEG); (x) hydroxyethyl starch (HES), (xi) polysialic acids (PSAs); (xii) a clearance receptor or fragment thereof which blocks binding of the chimeric molecule to a clearance receptor; (xiii) low complexity peptides; (xiv) vWF; or (xv) any combinations thereof. In some embodiments, the half-life extending moiety comprises an Fc region. In other embodiments, the half-life extending moiety comprises two Fc regions fused by a linker. Exemplary heterologous moieties also include, e.g., FcRn binding moieties (e.g., complete Fc regions or portions thereof which bind to FcRn), single chain Fc regions (scFc regions, e.g., as described in U.S. Publ. No. 2008-0260738, and Intl. Publ. Nos. WO 2008-012543 and WO 2008-1439545), or processable scFc regions. In some embodiments, a heterologous moiety can include an attachment site for a non-polypeptide moiety such as polyethylene glycol (PEG), hydroxyethyl starch (HES), polysialic acid, or any derivatives, variants, or combinations of these moieties.
- In certain embodiments, a chimeric molecule of the disclosure comprises at least one (e.g., one, two, three, or four) half-like extending moiety which increases the in vivo half-life of the chimeric molecule compared with the in vivo half-life of the corresponding chimeric molecule lacking such heterologous moiety. In vivo half-life of a chimeric molecule can be determined by any method known to those of skill in the art, e.g., activity assays (chromogenic assay or one stage clotting aPTT assay), ELISA, etc. In some embodiments, the presence of one or more half-life extending moiety results in the half-life of the chimeric molecule to be increased compared to the half-life of the corresponding chimeric molecule lacking such one or more half-life extending moieties. The half-life of the chimeric molecule comprising a half-life extending moiety is at least about 1.5 times, at least about 2 times, at least about 2.5 times, at least about 3 times, at least about 4 times, at least about 5 times, at least about 6 times, at least about 7 times, at least about 8 times, at least about 9 times, at least about 10 times, at least about 11 times, or at least about 12 times longer than the in vivo half-life of the corresponding chimeric molecule lacking such half-life extending moiety.
- In one embodiment, the half-life of the chimeric molecule comprising a half-life extending moiety is about 1.5-fold to about 20-fold, about 1.5 fold to about 15 fold, or about 1.5 fold to about 10 fold longer than the in vivo half-life of the corresponding chimeric molecule lacking such half-life extending moiety. In another embodiment, the half-life of chimeric molecule comprising a half-life extending moiety is extended about 2-fold to about 10-fold, about 2-fold to about 9-fold, about 2-fold to about 8-fold, about 2-fold to about 7-fold, about 2-fold to about 6-fold, about 2-fold to about 5-fold, about 2-fold to about 4-fold, about 2-fold to about 3-fold, about 2.5-fold to about 10-fold, about 2.5-fold to about 9-fold, about 2.5-fold to about 8-fold, about 2.5-fold to about 7-fold, about 2.5-fold to about 6-fold, about 2.5-fold to about 5-fold, about 2.5-fold to about 4-fold, about 2.5-fold to about 3-fold, about 3-fold to about 10-fold, about 3-fold to about 9-fold, about 3-fold to about 8-fold, about 3-fold to about 7-fold, about 3-fold to about 6-fold, about 3-fold to about 5-fold, about 3-fold to about 4-fold, about 4-fold to about 6 fold, about 5-fold to about 7-fold, or about 6-fold to about 8 fold as compared to the in vivo half-life of the corresponding chimeric molecule lacking such half-life extending moiety.
- (i) XTEN Polypeptides
- “XTEN sequence” refers to extended length polypeptides with non-naturally occurring, substantially non-repetitive sequences that are composed mainly of small hydrophilic amino acids, with the sequence having a low degree or no secondary or tertiary structure under physiologic conditions. As a chimeric molecule partner, XTENs can serve as a carrier, conferring certain desirable pharmacokinetic, physicochemical and pharmaceutical properties when linked to a clotting factor, a heavy chain of a clotting factor, a light chain or a clotting factor, a targeting moiety, or any other sequences or molecules on the chimeric molecule. Such desirable properties include but are not limited to enhanced pharmacokinetic parameters and solubility characteristics. As used herein, “XTEN” specifically excludes antibodies or antibody fragments such as single-chain antibodies or Fc fragments of a light chain or a heavy chain.
- The chimeric molecules of the invention can include a single XTEN polypeptide or two or more (e.g., two, three, four, five) XTEN polypeptides. In one embodiment, a chimeric molecule comprises a FVII, a first XTEN polypeptide, a second XTEN polypeptide, and an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof. The chimeric molecule thus can comprise a formula of FVII-(L1)-X1-(L2)-Ab-(L3)-X2, X2-(L1)-Ab-(L2)-X1-(L3)-FVII, FVII-(L1)-X1-(L2)-X2-(L3)-Ab, or Ab-(L3)-X2-(L2)-X1-(L1)-FVII, wherein FVII comprises FVIIa, X1 is a first XTEN polypeptide, X2 is a second XTEN polypeptide, Ab is an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof as described above, L1 is a first optional linker, L2 is a second optional linker, and L3 is a third optional linker. In another embodiment, a chimeric molecule comprises two polypeptide chains associated with each other, the first polypeptide chain comprising a light chain of FVII and a first XTEN polypeptide the second polypeptide chain comprising a heavy chain of FVII, a second XTEN polypeptide, and a targeting moiety, which binds to a platelet, in any order. In other embodiments, a chimeric molecule comprises two polypeptide chains associated with each other, the first polypeptide chain comprising a light chain of FVII and the first XTEN polypeptide a second polypeptide chain comprising, from N-terminus to C-terminus, a heavy chain of FVII, a second XTEN polypeptide, and a targeting moiety, which binds to a platelet or a heavy chain of FVII, a targeting moiety, which binds to a platelet, and a second XTEN polypeptide.
- Other embodiments within the scope of this disclosure encompass a chimeric molecule represented by the following formula: FVII-(L1)-X1-(L2)-Ab-(L3)-X2 in which FVII comprises FVIIa, L1 is a first optional linker, X1 is a first optional XTEN polypeptide, L2 is a second optional linker, Ab is an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof as described above (e.g., an Fab, scFv, etc.), L3 is a third optional linker, and X2 is a second XTEN polypeptide which may be the same of different from the first optional XTEN polypeptide. In a more specific embodiment, the first XTEN polypeptide is present in the molecule. Illustrative non-limiting examples of these embodiments are shown in
FIGS. 17 and 20 . - In some embodiments, the XTEN sequence of the invention is a peptide or a polypeptide having greater than about 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1200, 1400, 1600, 1800, or 2000 amino acid residues. In certain embodiments, XTEN is a peptide or a polypeptide having greater than about 20 to about 3000 amino acid residues, greater than 30 to about 2500 residues, greater than 40 to about 2000 residues, greater than 50 to about 1500 residues, greater than 60 to about 1000 residues, greater than 70 to about 900 residues, greater than 80 to about 800 residues, greater than 90 to about 700 residues, greater than 100 to about 600 residues, greater than 110 to about 500 residues, or greater than 120 to about 400 residues.
- The XTEN sequence of the invention can comprise one or more sequence motif of 9 to 14 amino acid residues or an amino acid sequence at least 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the sequence motif, wherein the motif comprises, consists essentially of, or consists of 4 to 6 types of amino acids selected from the group consisting of glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P). See US 2010-0239554 A1.
- In some embodiments, the XTEN comprises non-overlapping sequence motifs in which about 80%, or at least about 85%, or at least about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% or about 100% of the sequence consists of multiple units of non-overlapping sequences selected from a single motif family selected from TABLE 2, resulting in a family sequence. As used herein, “family” means that the XTEN has motifs selected only from a single motif category from TABLE 2; i.e., AD, AE, AF, AG, AM, AQ, BC, or BD XTEN, and that any other amino acids in the XTEN not from a family motif are selected to achieve a needed property, such as to permit incorporation of a restriction site by the encoding nucleotides, incorporation of a cleavage sequence, or to achieve a better linkage to FVII. In some embodiments of XTEN families, an XTEN sequence comprises multiple units of non-overlapping sequence motifs of the AD motif family, or of the AE motif family, or of the AF motif family, or of the AG motif family, or of the AM motif family, or of the AQ motif family, or of the BC family, or of the BD family, with the resulting XTEN exhibiting the range of homology described above. In other embodiments, the XTEN comprises multiple units of motif sequences from two or more of the motif families of TABLE 2. These sequences can be selected to achieve desired physical/chemical characteristics, including such properties as net charge, hydrophilicity, lack of secondary structure, or lack of repetitiveness that are conferred by the amino acid composition of the motifs, described more fully below. In the embodiments hereinabove described in this paragraph, the motifs incorporated into the XTEN can be selected and assembled using the methods described herein to achieve an XTEN of about 36 to about 3000 amino acid residues. Additional, non-limiting, examples of XTENs linked to FVII are disclosed in U.S. Patent Publication No. 2012/0263701, which is incorporated herein by reference in its entirety.
-
TABLE 2 XTEN Sequence Motifs of 12 Amino Acids and Motif Families Motif Family* MOTIF SEQUENCE SEQ ID NO: AD GESPGGSSGSES 86 AD GSEGSSGPGESS 87 AD GSSESGSSEGGP 88 AD GSGGEPSESGSS 89 AE, AM GSPAGSPTSTEE 90 AE, AM, AQ GSEPATSGSETP 91 AE, AM, AQ GTSESATPESGP 92 AE, AM, AQ GTSTEPSEGSAP 93 AF, AM GSTSESPSGTAP 94 AF, AM GTSTPESGSASP 95 AF, AM GTSPSGESSTAP 96 AF, AM GSTSSTAESPGP 97 AG, AM GTPGSGTASSSP 98 AG, AM GSSTPSGATGSP 99 AG, AM GSSPSASTGTGP 100 AG, AM GASPGTSSTGSP 101 AQ GEPAGSPTSTSE 102 AQ GTGEPSSTPASE 103 AQ GSGPSTESAPTE 104 AQ GSETPSGPSETA 105 AQ GPSETSTSEPGA 106 AQ GSPSEPTEGTSA 107 BC GSGASEPTSTEP 108 BC GSEPATSGTEPS 109 BC GTSEPSTSEPGA 110 BC GTSTEPSEPGSA 111 BD GSTAGSETSTEA 112 BD GSETATSGSETA 113 BD GTSESATSESGA 114 BD GTSTEASEGSAS 115 •Denotes individual motif sequences that, when used together in various permutations, results in a “family sequence” - XTEN can have varying lengths. In one embodiment, the length of the XTEN polypeptide(s) is chosen based on the property or function to be achieved in the fusion protein. Depending on the intended property or function, XTEN can be short or intermediate length sequence or longer sequence that can serve as carriers. In certain embodiments, the XTEN include short segments of about 6 to about 99 amino acid residues, intermediate lengths of about 100 to about 399 amino acid residues, and longer lengths of about 400 to about 1000 and up to about 3000 amino acid residues. Thus, the XTEN linked to FVII (e.g., heavy chain or light chain) or a targeting moiety can have lengths of about 6, about 12, about 36, about 40, about 42, about 72, about 96, about 144, about 288, about 400, about 500, about 576, about 600, about 700, about 800, about 864, about 900, about 1000, about 1500, about 2000, about 2500, or up to about 3000 amino acid residues in length. In other embodiments, the XTEN sequences is about 6 to about 50, about 50 to about 100, about 100 to 150, about 150 to 250, about 250 to 400, about 400 to about 500, about 500 to about 900, about 900 to 1500, about 1500 to 2000, or about 2000 to about 3000 amino acid residues in length. The precise length of an XTEN polypeptide that can be linked to FVII (e.g., light chain or heavy chain) or a targeting moiety (Ab) can vary without adversely affecting the activity of FVII. In one embodiment, one or more of the XTEN used herein has about 42 amino acids, about 72 amino acids, about 108 amino acids, about 144 amino acids, about 180 amino acids, about 216 amino acids, about 252 amino acids, about 288 amino acids, about 324 amino acids, about 360 amino acids, about 396 amino acids, about 432 amino acids, about 468 amino acids, about 504 amino acids, about 540 amino acids, about 576 amino acids, about 612 amino acids, about 624 amino acids, about 648 amino acids, about 684 amino acids, about 720 amino acids, about 756 amino acids, about 792 amino acids, about 828 amino acids, about 836 amino acids, about 864 amino acids, about 875 amino acids, about 912 amino acids, about 923 amino acids, about 948 amino acids, about 1044 amino acids, about 1140 amino acids, about 1236 amino acids, about 1318 amino acids, about 1332 amino acids, about 1428 amino acids, about 1524 amino acids, about 1620 amino acids, about 1716 amino acids, about 1812 amino acids, about 1908 amino acids, or about 2004 amino acids in length and can be selected from one or more of the XTEN family sequences; i.e., AD, AE, AF, AG, AM, AQ, BC, BD, or any combinations thereof.
- In some embodiments, the XTEN polypeptide used in the invention is at least 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to a sequence selected from the group consisting of AE42, AG42, AE42_2, AE42_3, AE48, AM48, AE72, AE72_2, AE72_3, AG72, AE108, AG108, AE144, AF144, AE144_2, AE144_3, AG144, AE180, AG180, AE216, AG216, AE252, AG252, AE288, AG288, AE295, AE324, AG324, AE360, AG360, AE396, AG396, AE432, AG432, AE468, AG468, AE504, AG504, AF504, AE540, AG540, AF540, AD576, AE576, AF576, AG576, AE612, AG612, AE624, AE648, AG648, AG684, AE720, AG720, AE756, AG756, AE792, AG792, AE828, AG828, AD836, AE864, AF864, AG864, AE872, AE884, AM875, AE912, AM923, AM1318, BC864, BD864, AE948, AE1044, AE1140, AE1236, AE1332, AE1428, AE1524, AE1620, AE1716, AE1812, AE1908, AE2004A, AG948, AG1044, AG1140, AG1236, AG1332, AG1428, AG1524, AG1620, AG1716, AG1812, AG1908, AG2004, and any combinations thereof. See US 2010-0239554 A1.
- In one embodiment, the XTEN sequence is at least 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to an amino acid sequence selected from the group consisting of AE42, AE864, AE576, AE288, AE144, AG864, AG576, AG288, AG144, and any combinations thereof. In another embodiment, the XTEN sequence is selected from the group consisting of AE42, AE864, AE576, AE288, AE144, AG864, AG576, AG288, AG144, and any combinations thereof. In one embodiment, the XTEN sequence is AE144. In a specific embodiment, the XTEN sequence is AE288. The amino acid sequences for certain XTEN sequences of the invention are shown in TABLE 3.
-
TABLE 3 XTEN Sequences XTEN Amino Acid Sequence AE42 GAPGSPAGSPTSTEEGTSESATPESGPGSEPATSGSETPASS SEQ ID NO: 116 AE42_2 TGGGSPAGSPTSTEEGTSESATPESGPGSEPATSGSETPASS SEQ ID NO: 117 AE42_3 GTSESATPESGPGSEPATSGSETPGTSESATPESGPGSEPAT SEQ ID NO: 118 AE72 GAP TSESATPESGPGSEPATSGS ETPGTSESAT PESGPGSEPA SEQ ID NO: 119 TSGSETPGTS ESATPESGPG TSTEPSEGSA PGASS AE72_2 GTSESATPESGPGSEPATSGSETPGTSESATPESGPGSEPATSGSET SEQ ID NO: 120 PGTSESATPESGPGTSTEPSEGSAP AE72_3 SPAGSPTSTEEGTSESATPESGPGSEPATSGSETPGTSESATPESGP SEQ ID NO: 121 GTSTEPSEGSAPGTSTEPSEGSAPG AE144 GSEPATSGSETPGTSESATPESGPGSEPATSGSETPGSPAGSPTSTE SEQ ID NO: 122 EGTSTEPSEG SAPGSEPATSGSETPGSEPATSGSETPGSEPATSGSETPGTSTEPSE GSAPGTSESA PESGPGSEPATSGSETPGTSTEPSEGSAP AE144_2 GTSESATPESGPGSEPATSGSETPGTSESATPESGPGSEPATSGSET SEQ ID NO: 123 PGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSESATPES GPGSEPATSGSETPGTSESATPESGPGSPAGSPTSTEEGSPAGSPTS TEE AE144_3 GSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTE SEQ ID NO: 124 EGTSTEPSEGSAPGTSTEPSEGSAPGTSESATPESGPGSEPATSGSE TPGSEPATSGSETPGSPAGSPTSTEEGTSESATPESGPGTSTEPSEG SAP AG144 GTPGSGTASSSPGSSTPSGATGSPGSSPSASTGTGPGSSPSASTGTG SEQ ID NO: 125 PGASPGTSST GSPGASPGTSSTGSPGSSTPSGATGSPGSSPSASTGTGPGASPGTSS TGSPGSSPSA STGTGPGTPGSGTASSSPGSSTPSGATGSP AE288 GTSESATPESGPGSEPATSGSETPGTSESATPESGPGSEPATSGSET SEQ ID NO: 126 PGTSESATPESG PGTSTEPSEGSAPGSPAGSPTSTEEGTSESATPESGPGSEPATSGSE TPGTSESATPES GPGSPAGSPTSTEEGSPAGSPTSTEEGTSTEPSEGSAPGTSESATPE SGPGTSESATPE SGPGTSESATPESGPGSEPATSGSETPGSEPATSGSETPGSPAGSPT STEEGTSTEPSE GSAPGTSTEPSEGSAPGSEPATSGSETPGTSESATPESGPGTSTEPS EGSAP AG288 PGASPGTSSTGSPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATG SEQ ID NO: 127 SPGTPGSGTASS SPGSSTPSGATGSPGTPGSGTASSSPGSSTPSGATGSPGSSTPSGAT GSPGSSPSASTG TGPGSSPSASTGTGPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGA TGSPGSSPSAST GTGPGSSPSASTGTGPGASPGTSSTGSPGASPGTSSTGSPGSSTPSG ATGSPGSSPSAS TGTGPGASPGTSSTGSPGSSPSASTGTGPGTPGSGTASSSPGSSTPS GATGS AE576 GSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTE SEQ ID NO: 128 EGTSTEPSEGSA PGTSTEPSEGSAPGTSESATPESGPGSEPATSGSETPGSEPATSGSE TPGSPAGSPTST EEGTSESATPESGPGTSTEPSEGSAPGTSTEPSEGSAPGSPAGSPTS TEEGTSTEPSEG SAPGTSTEPSEGSAPGTSESATPESGPGTSTEPSEGSAPGTSESATP ESGPGSEPATSG SETPGTSTEPSEGSAPGTSTEPSEGSAPGTSESATPESGPGTSESAT PESGPGSPAGSP TSTEEGTSESATPESGPGSEPATSGSETPGTSESATPESGPGTSTEP SEGSAPGTSTEP SEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGTSTE PSEGSAPGSPAG SPTSTEEGTSTEPSEGSAPGTSESATPESGPGSEPATSGSETPGTSE SATPESGPGSEP ATSGSETPGTSESATPESGPGTSTEPSEGSAPGTSESATPESGPGSP AGSPTSTEEGSP AGSPTSTEEGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAP AG576 PGTPGSGTASSSPGSSTPSGATGSPGSSPSASTGTGPGSSPSASTGTGPGSS SEQ ID NO: 129 TPSGATG SPGSSTPSGATGSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGT PGSGTAS SSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGSSPSASTGTGPG TPGSGTA SSSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGSSTPSGATGSP GSSTPSG ATGSPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGSSTPSGATGS PGSSTPS GATGSPGSSPSASTGTGPGASPGTSSTGSPGASPGTSSTGSPGTPGSGTASS SPGASPG TSSTGSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGTPGSGTAS SSPGSST PSGATGSPGTPGSGTASSSPGSSTPSGATGSPGTPGSGTASSSPGSSTPSGA TGSPGSS TPSGATGSPGSSPSASTGTGPGSSPSASTGTGPGASPGTSSTGSPGTPGSGT ASSSPGS STPSGATGSPGSSPSASTGTGPGSSPSASTGTGPGASPGTSSTGS AE564 GSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTST SEQ ID NO: 130 EPSEGSA PGTSTEPSEGSAPGTSESATPESGPGSEPATSGSETPGSEPATSGSETPGSP AGSPTST EEGTSESATPESGPGTSTEPSEGSAPGTSTEPSEGSAPGSPAGSPTSTEEGT STEPSEG SAPGTSTEPSEGSAPGTSESATPESGPGTSTEPSEGSAPGTSESATPESGPG SEPATSG SETPGTSTEPSEGSAPGTSTEPSEGSAPGTSESATPESGPGTSESATPESGP GSPAGSP TSTEEGTSESATPESGPGSEPATSGSETPGTSESATPESGPGTSTEPSEGSA PGTSTEP SEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGS APGSPAG SPTSTEEGTSTEPSEGSAPGTSESATPESGPGSEPATSGSETPGTSESATPE SGPGSEP ATSGSETPGTSESATPESGPGTSTEPSEGSAPGTSESATPESGPGSPAGSPT STEEGSP AGSPTSTEEGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGTSESAT PESGPGS EPATSGSETPGTSESATPESGPGSEPATSGSETPGTSESATPESGPGTSTEP SEGSAPG SPAGSPTSTEEGTSESATPESGPGSEPATSGSETPGTSESATPESGPGSPAG SPTSTEE GSPAGSPTSTEEGTSTEPSEGSAPGTSESATPESGPGTSESATPESGPGTSE SATPESG PGSEPATSGSETPGSEPATSGSETPGSPAGSPTSTEEGTSTEPSEGSAPGTS TEPSEGS APGSEPATSGSETPGTSESATPESGPGTSTEPSEGSAP AG864 GASPGTSSTGSPGSSPSASTGTGPGSSPSASTGTGPGTPGSGTASSSPGSST SEQ ID NO: 131 PSGATGS PGSSPSASTGTGPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGTP GSGTASS SPGASPGTSSTGSPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGA SPGTSST GSPGTPGSGTASSSPGSSTPSGATGSPGSSPSASTGTGPGSSPSASTGTGPG SSTPSGA TGSPGSSTPSGATGSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGSP GTPGSGT ASSSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGSSPSASTGTG PGTPGSG TASSSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGSSTPSGATG SPGSSTP SGATGSPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGSSTPSGAT GSPGSST PSGATGSPGSSPSASTGTGPGASPGTSSTGSPGASPGTSSTGSPGTPGSGTA SSSPGAS PGTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGTPGSGT ASSSPGS STPSGATGSPGTPGSGTASSSPGSSTPSGATGSPGTPGSGTASSSPGSSTPS GATGSPG SSTPSGATGSPGSSPSASTGTGPGSSPSASTGTGPGASPGTSSTGSPGTPGS GTASSSP GSSTPSGATGSPGSSPSASTGTGPGSSPSASTGTGPGASPGTSSTGSPGASP GTSSTGS PGSSTPSGATGSPGSSPSASTGTGPGASPGTSSTGSPGSSPSASTGTGPGTP GSGTASS SPGSSTPSGATGSPGSSTPSGATGSPGASPGTSSTGSP - In some embodiments wherein the XTEN has less than 100% of its amino acids consisting of 4, 5, or 6 types of amino acid selected from glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P), or less than 100% of the sequence consisting of the sequence motifs from Table 2 or the XTEN sequences of Table 3, the other amino acid residues of the XTEN are selected from any of the other 14 natural L-amino acids, but are preferentially selected from hydrophilic amino acids such that the XTEN sequence contains at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least about 99% hydrophilic amino acids. An individual amino acid or a short sequence of amino acids other than glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P) may be incorporated into the XTEN to achieve a needed property, such as to permit incorporation of a restriction site by the encoding nucleotides, or to facilitate linking to a payload component, or incorporation of a cleavage sequence. The XTEN amino acids that are not glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P) are either interspersed throughout the XTEN sequence, are located within or between the sequence motifs, or are concentrated in one or more short stretches of the XTEN sequence such as at or near the N- or C-terminus. As hydrophobic amino acids impart structure to a polypeptide, the invention provides that the content of hydrophobic amino acids in the XTEN utilized in the conjugation constructs will typically be less than 5%, or less than 2%, or less than 1% hydrophobic amino acid content. Hydrophobic residues that are less favored in construction of XTEN include tryptophan, phenylalanine, tyrosine, leucine, isoleucine, valine, and methionine. Additionally, one can design the XTEN sequences to contain less than 5% or less than 4% or less than 3% or less than 2% or less than 1% or none of the following amino acids: methionine (to avoid oxidation), asparagine and glutamine (to avoid deamidation). In other embodiments, the amino acid content of methionine and tryptophan in the XTEN component used in the conjugation constructs is typically less than 5%, or less than 2%, and most preferably less than 1%. In other embodiments, the XTEN will have a sequence that has less than 10% amino acid residues with a positive charge, or less than about 7%, or less that about 5%, or less than about 2% amino acid residues with a positive charge, the sum of methionine and tryptophan residues will be less than 2%, and the sum of asparagine and glutamine residues will be less than 5% of the total XTEN sequence.
- In further embodiments, the XTEN polypeptide used in the invention affects the physical or chemical property, e.g., pharmacokinetics, of the chimeric molecule of the present disclosure. The XTEN sequence used in the present disclosure can exhibit one or more of the following advantageous properties: conformational flexibility, enhanced aqueous solubility, high degree of protease resistance, low immunogenicity, low binding to mammalian receptors, or increased hydrodynamic (or Stokes) radii. In a specific embodiment, the XTEN polypeptide linked to FVII or a targeting moiety (e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof) in in this invention increases pharmacokinetic properties such as longer terminal half-life or increased area under the curve (AUC), so that the chimeric molecule described herein stays in vivo for an increased period of time compared to wild type clotting factor. In further embodiments, the XTEN polypeptide used in this invention increases pharmacokinetic properties such as longer terminal half-life or increased area under the curve (AUC), so that the clotting factor stays in vivo for an increased period of time compared to wild type FVIIa.
- A variety of methods and assays can be employed to determine the physical/chemical properties of proteins comprising the XTEN polypeptide. Such methods include, but are not limited to analytical centrifugation, EPR, HPLC-ion exchange, HPLC-size exclusion, HPLC-reverse phase, light scattering, capillary electrophoresis, circular dichroism, differential scanning calorimetry, fluorescence, HPLC-ion exchange, HPLC-size exclusion, IR, NMR, Raman spectroscopy, refractometry, and UV/Visible spectroscopy. Additional methods are disclosed in Amau et al., Prot Expr and Purif 48, 1-13 (2006).
- Additional examples of XTEN polypeptides that can be used according to the present disclosure and are disclosed in U.S. Pat. Nos. 7,855,279 and 7,846,445, US Patent Publication Nos. 2009/0092582 A1, 2010/0239554 A1, 2010/0323956 A1, 2011/0046060 A1, 2011/0046061 A1, 2011/0077199 A1, 2011/0172146 A1, 2013/0017997 A1, or 2012/0263701 A1, International Patent Publication Nos. WO 2010091122 A1, WO 2010144502 A2, WO 2010144508 A1, WO 2011028228 A1, WO 2011028229 A1, or WO 2011028344 A2; or US 2012/0178691.
- (ii) Fc and Single Chain Fc (scFc) Region
- In certain embodiments, the chimeric molecule comprises at least one heterologous moiety comprising a Fc region. “Fc” or “Fc region” as used herein means a functional neonatal Fc receptor (FcRn) binding partner comprising an Fc domain, variant, or fragment thereof, unless otherwise specified. An FcRn binding partner is any molecule that can be specifically bound by the FcRn receptor with consequent active transport by the FcRn receptor of the FcRn binding partner. Thus, the term Fc includes any variants of IgG Fc that are functional. The region of the Fc portion of IgG that binds to the FcRn receptor has been described based on X-ray crystallography (Burmeister et al., Nature, 372:379 (1994), incorporated herein by reference in its entirety). The major contact area of the Fc with the FcRn is near the junction of the CH2 and CH3 domains. Fc-FcRn contacts are all within a single Ig heavy chain. FcRn binding partners include, but are not limited to, whole IgG, the Fc fragment of IgG, and other fragments of IgG that include the complete binding region of FcRn. An Fc can comprise the CH2 and CH3 domains of an immunoglobulin with or without the hinge region of the immunoglobulin. Also included are Fc fragments, variants, or derivatives which maintain the desirable properties of an Fc region in a chimeric molecule, e.g., an increase in half-life, e.g., in vivo half-life. Myriad mutants, fragments, variants, and derivatives are described, e.g., in PCT Publication Nos. WO2011/069164, WO2012/006623, WO2012/006635, or WO 2012/006633, all of which are incorporated herein by reference in their entireties. In some embodiments, the chimeric molecule comprises a dotting factor (e.g., a FVII), a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof), and an Fc region.
- In one embodiment, the chimeric molecule comprises a heterologous moiety comprising one genetically fused Fc region or a portion thereof within a single polypeptide chain (i.e., a single-chain Fc (scFc) region). An exemplary single-chain human IgG1 Fc amino acid sequence is provided below (the Gly/Ser linker is underlined):
-
(SEQ ID NO: 132) DKTHTCPPCPAPELLGGPSVFLEPPKPKDTLMISRTPEVICVVVDVSHED PEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYK CKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVK GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQG NVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSDKT HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKV SNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGK - The unprocessed polypeptides comprise at least two immunoglobulin constant regions or portions thereof (e.g., Fc moieties or domains (e.g., 2, 3, 4, 5, 6, or more Fc moieties or domains)) within the same linear polypeptide chain that are capable of folding (e.g., intramolecularly or intermolecularly folding) to form one functional scFc region which is linked by an Fc peptide linker. For example, in one embodiment, a polypeptide of the invention is capable of binding, via its scFc region, to at least one Fc receptor (e.g., an FcRn, an FcγR receptor (e.g., FcγRIII), or a complement protein (e.g., C1q)) in order to improve half-life or trigger an immune effector function (e.g., antibody-dependent cytotoxicity (ADCC), phagocytosis, or complement-dependent cytotoxicity (CDCC) and/or to improve manufacturability). In some embodiments, the chimeric molecule comprises a dotting factor (e.g., a FVII), a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof), and an scFc region.
- (iii) Albumins
- In certain embodiments, the chimeric molecule comprises a heterologous moiety comprising albumin or a functional fragment thereof. Human serum albumin (HSA, or HA), a protein of 609 amino acids in its full-length form, is responsible for a significant proportion of the osmotic pressure of serum and also functions as a carrier of endogenous and exogenous ligands. The term “albumin” as used herein includes full-length albumin or a functional fragment, variant, derivative, or analog thereof. Examples of albumin or the fragments or variants thereof are disclosed in US Pat. Publ. Nos. US2008/0194481, US2008/0004206, US2008/0161243, US2008/0261877, or US2008/0153751 or PCT Appl. Publ. Nos. WO2008/033413, WO2009/058322, or WO2007/021494, which are incorporated herein by reference in their entireties. An exemplary mature human albumin amino acid sequence is provide below (NCBI Ref. Sequence NP_000468):
-
(SEQ ID NO: 133) RGVERRDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVN EVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQ EPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIAR RHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSA KQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTE CCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVE NDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVV LLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCEL FEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAK RMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVD ETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQL KAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL - In some embodiments, the chimeric molecule comprises a clotting factor (e.g., a FVII), a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof), and an albumin.
- (iv) Albumin Binding Polypeptides and Lipids
- In certain embodiments, a heterologous moiety can comprise an albumin binding moiety, which comprises an albumin binding peptide, a bacterial albumin binding domain, an albumin-binding antibody fragment, or any combinations thereof. For example, the albumin binding protein can be a bacterial albumin binding protein, an antibody or an antibody fragment including domain antibodies (see, e.g., U.S. Pat. No. 6,696,245). An albumin binding protein, for example, can be a bacterial albumin binding domain, such as the one of streptococcal protein G (Konig and Skerra (1998) J. Immunol. Methods 218, 73-83). Other examples of albumin binding peptides that can be used as conjugation partner are, for instance, those having a Cys-Xaa1-Xaa2-Xaa3-Xaa4-Cys consensus sequence (SEQ ID NO: 134), wherein Xaa1 is Asp, Asn, Ser, Thr, or Trp; Xaa2 is Asn, Gln, H is, Ile, Leu, or Lys; Xaa3 is Ala, Asp, Phe, Trp, or Tyr; and Xaa4 is Asp, Gly, Leu, Phe, Ser, or Thr as described in U.S. Pub. No. US2003/0069395 or Dennis et al. (2002) J. Biol. Chem. 277, 35035-35043.
-
Domain 3 from streptococcal protein G, as disclosed by Kraulis et al., FEBS Lett., 378:190-194 (1996) and Linhult et al., Protein Sci., 11:206-213 (2002) is an example of a bacterial albumin-binding domain. Examples of albumin-binding peptides include a series of peptides having the core sequence DICLPRWGCLW (SEQ ID NO:135) such as: -
(SEQ ID NO: 136) RLIEDICLPRWGCLWEDD, (SEQ ID NO: 137) QRLMEDICLPRWGCLWEDDF, (SEQ ID NO: 138) QGLIGDICLPRWGCLWGDSVK, and (SEQ ID NO: 139) GEWWEDICLPRWGCLWEEED
See, e.g., Dennis et al., J. Biol. Chem. 2002, 277: 35035-35043 (2002). Examples of albumin-binding antibody fragments are disclosed in Muller and Kontermann, Curr. Opin. Mol. Ther. 9:319-326 (2007); Roovers et al., Cancer Immunol. Immunother. 56:303-317 (2007), and Holt et al., Prot. Eng. Design Sci., 21:283-288 (2008), which are incorporated herein by reference in their entireties. An example of such albumin binding moiety is 2-(3-maleimidopropanamido)-6-(4-(4-iodophenyl)butanamido) hexanoate (“Albu” tag) as disclosed by Trussel et al., Bioconjugate Chem. 20:2286-2292 (2009). Fatty acids, in particular long chain fatty acids (LCFA) and long chain fatty acid-like albumin-binding compounds can be used to extend the in vivo half-life of chimeric molecules of the invention. An example of a LCFA-like albumin-binding compound is 16-(1-(3-(9-(((2,5-dioxopyrrolidin-1-yloxy)carbonyloxy)-methyi)-7-sulfo-9H-fluoren-2-ylamino)-3-oxopropyl)-2,5-dioxopyrrolidin-3-ylthio) hexadecanoic acid (see, e.g., WO 2010/140148). - In some embodiments, the chimeric molecule comprises a clotting factor (e.g., a FVII), a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof), and an albumin binding polypeptide or lipid.
- (v) CTP
- In certain embodiments, a chimeric molecule disclosed herein comprises at least one heterologous moiety comprising one 13 subunit of the C-terminal peptide (CTP) of human chorionic gonadotropin or fragment, variant, or derivative thereof. The insertion of one or more CTP peptides into a recombinant protein is known to increase the in vivo half-life of that protein. See, e.g., U.S. Pat. No. 5,712,122, incorporated by reference herein in its entirety.
- Exemplary CTP peptides include DPRFQDSSSSKAPPPSLPSPSRLPGPSDTPIL (SEQ ID NO:140) or SSSSKAPPPSLPSPSRLPGPSDTPILPQ (SEQ ID NO:141). See, e.g., U.S. Patent Appl. Publ. No. US 2009/0087411, incorporated by reference. In some embodiments, the chimeric molecule comprises two heterologous moieties that are CTP sequences. In some embodiments, three of the heterologous moieties are CTP sequences. In some embodiments, four of the heterologous moieties are CTP sequences. In some embodiments, five of the heterologous moieties are CTP sequences. In some embodiments, six or more of the heterologous moieties are CTP sequences.
- In some embodiments, the chimeric molecule comprises a clotting factor (e.g., a FVII), a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof), and a CTP.
- (vi) PAS
- In other embodiments, at least one heterologous moiety is a PAS sequence. A PAS sequence, as used herein, means an amino acid sequence comprising mainly alanine and serine residues or comprising mainly alanine, serine, and proline residues, the amino acid sequence forming random coil conformation under physiological conditions. Accordingly, the PAS sequence is a building block, an amino acid polymer, or a sequence cassette comprising, consisting essentially of, or consisting of alanine, serine, and proline which can be used as a part of the heterologous moiety in the chimeric molecule. Yet, the skilled person is aware that an amino acid polymer also can form random coil conformation when residues other than alanine, serine, and proline are added as a minor constituent in the PAS sequence.
- The term “minor constituent” as used herein means that amino acids other than alanine, serine, and proline can be added in the PAS sequence to a certain degree, e.g., up to about 12%, i.e., about 12 of 100 amino acids of the PAS sequence, up to about 10%, i.e., about 10 of 100 amino acids of the PAS sequence, up to about 9%, i.e., about 9 of 100 amino acids, up to about 8%, i.e., about 8 of 100 amino acids, about 6%, i.e., about 6 of 100 amino acids, about 5%, i.e., about 5 of 100 amino acids, about 4%, i.e., about 4 of 100 amino acids, about 3%, i.e., about 3 of 100 amino acids, about 2%, i.e., about 2 of 100 amino acids, about 1%, i.e., about 1 of 100 of the amino acids.
- The amino acids different from alanine, serine and proline can be selected from Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Thr, Trp, Tyr, and Val.
- Under physiological conditions, the PAS sequence stretch forms a random coil conformation and thereby can mediate an increased in vivo and/or in vitro stability to the chimeric molecule. Since the random coil domain does not adopt a stable structure or function by itself, the biological activity mediated by the activatable clotting factor in the chimeric molecule is essentially preserved. In other embodiments, the PAS sequences that form random coil domain are biologically inert, especially with respect to proteolysis in blood plasma, immunogenicity, isoelectric point/electrostatic behavior, binding to cell surface receptors or internalization, but are still biodegradable, which provides clear advantages over synthetic polymers such as PEG.
- Non-limiting examples of the PAS sequences forming random coil conformation comprise an amino acid sequence selected from the group consisting of ASPAAPAPASPAAPAPSAPA (SEQ ID NO:142), AAPASPAPAAPSAPAPAAPS (SEQ ID NO:143), APSSPSPSAPSSPSPASPSS (SEQ ID NO:144), APSSPSPSAPSSPSPASPS (SEQ ID NO:145), SSPSAPSPSSPASPSPSSPA (SEQ ID NO:146), AASPAAPSAPPAAASPAAPSAPPA (SEQ ID NO:147), and ASAAAPAAASAAASAPSAAA (SEQ ID NO:148), or any combinations thereof. Additional examples of PAS sequences are known from, e.g., US Pat. Publ. No. 2010/0292130 and PCT Appl. Publ. No. WO2008/155134 A1.
- In some embodiments, the chimeric molecule comprises a clotting factor (e.g., a FVII), a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof), and a PAS.
- (vii) HAP
- In certain embodiments, at least one heterologous moiety is a glycine-rich homo-amino-acid polymer (HAP). The HAP sequence can comprise a repetitive sequence of glycine, which has at least 50 amino acids, at least 100 amino acids, 120 amino acids, 140 amino acids, 160 amino acids, 180 amino acids, 200 amino acids, 250 amino acids, 300 amino acids, 350 amino acids, 400 amino acids, 450 amino acids, or 500 amino acids in length. In one embodiment, the HAP sequence is capable of extending half-life of a moiety fused to or linked to the HAP sequence. Non-limiting examples of the HAP sequence includes, but are not limited to (Gly)n, (SEQ ID NO:149), (Gly4Ser)n (SEQ ID NO:150), or Ser(Gly4Ser)n (SEQ ID NO:151), wherein n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20. In one embodiment, n is 20, 21, 22, 23, 24, 25, 26, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40. In another embodiment, n is 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, or 200. See, e.g., Schlapschy M et al., Protein Eng. Design Selection, 20: 273-284 (2007).
- In some embodiments, the chimeric molecule comprises a clotting factor (e.g., a FVII), a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof), and a HAP.
- (viii) Transferrin
- In certain embodiments, at least one heterologous moiety is transferrin or a peptide or fragment, variant, or derivative thereof. Any transferrin can be used to make the chimeric molecules of the invention. As an example, wild-type human TF (TF) is a 679 amino acid protein, of approximately 75 KDa (not accounting for glycosylation), with two main domains, N (about 330 amino acids) and C (about 340 amino acids), which appear to originate from a gene duplication. N domain comprises two subdomains, N1 domain and N2 domain, and C domain comprises two subdomains, C1 domain and C2 domain. See GenBank accession numbers NM001063, XM002793, M12530, XM039845, XM 039847 and 595936 (www.ncbi.nlm.nih.gov), all of which are herein incorporated by reference in their entirety. In one embodiment, the transferrin heterologous moiety includes a transferrin splice variant. In one example, a transferrin splice variant can be a splice variant of human transferrin, e.g., Genbank Accession AAA61140. In another embodiment, the transferrin portion of the chimeric molecule includes one or more domains of the transferrin sequence, e.g., N domain, C domain, N1 domain, N2 domain, C1 domain, C2 domain or any combinations thereof.
- Transferrin transports iron through transferrin receptor (TfR)-mediated endocytosis. After the iron is released into an endosomal compartment and Tf-TfR complex is recycled to cell surface, the Tf is released back extracellular space for next cycle of iron transporting. Tf possesses a long half-life that is in excess of 14-17 days (Li et al., Trends Pharmacol. Sci. 23:206-209 (2002)). Transferrin fusion proteins have been studied for half-life extension, targeted deliver for cancer therapies, oral delivery and sustained activation of proinsulin (Brandsma et al., Biotechnol. Adv., 29: 230-238 (2011); Bai et al., Proc. Natl. Acad. Sci. USA 102:7292-7296 (2005); Kim et al., J. Pharmacol. Exp. Ther., 334:682-692 (2010); Wang et al., J. Controlled Release 155:386-392 (2011)).
- In some embodiments, the chimeric molecule comprises a clotting factor (e.g., a FVII), a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof), and a transferrin.
- (ix) PEG
- In some embodiments, at least one heterologous moiety is a soluble polymer known in the art, including, but not limited to, polyethylene glycol, ethylene glycol/propylene glycol copolymers, carboxymethylcellulose, dextran, or polyvinyl alcohol. In some embodiments, the chimeric molecule comprising a PEG heterologous moiety further comprises a heterologous moiety selected from an immunoglobulin constant region or portion thereof (e.g., an Fc region), a PAS sequence, HES, and albumin, fragment, or variant thereof. In still other embodiments, the chimeric molecule comprises an activatable clotting factor or fragment thereof and a PEG heterologous moiety, wherein the chimeric molecule further comprises a heterologous moiety selected from an immunoglobulin constant region or portion thereof (e.g., an Fc moiety), a PAS sequence, HES, and albumin, fragment, or variant thereof. In yet other embodiments, the chimeric molecule comprises a clotting factor or fragment thereof, a second clotting factor or fragment thereof, and a PEG heterologous moiety, wherein the chimeric molecule further comprises a heterologous moiety selected from an immunoglobulin constant region or portion thereof (e.g., an Fc moiety), a PAS sequence, HES, and albumin, fragment, or variant thereof.
- In other embodiments, the chimeric molecule comprises a clotting factor or fragment thereof, a synthetic procoagulant polypeptide, and a PEG heterologous moiety, wherein the chimeric molecule further comprises a heterologous moiety selected from an immunoglobulin constant region or portion thereof (e.g., an Fc region), a PAS sequence, HES, and albumin, fragment, or variant thereof. In other embodiments, the chimeric molecule comprises two synthetic procoagulant peptides and a PEG heterologous moiety, wherein the chimeric molecule further comprises a heterologous moiety selected from the group consisting of an immunoglobulin constant region or portion thereof (e.g., an Fc region), a PAS sequence, HES, and albumin, fragment, or variant thereof. In yet another embodiment, the chimeric molecule comprises a clotting factor or fragment thereof, a clotting factor cofactor (e.g., Tissue Factor if the clotting factor is Factor VII), and a PEG heterologous moiety, wherein the chimeric molecule further comprises a heterologous moiety selected from an immunoglobulin constant region or portion thereof (e.g., an Fc region), a PAS sequence, HES, and albumin, fragment, or variant thereof.
- The polymer can be of any molecular weight, and can be branched or unbranched. For polyethylene glycol, in one embodiment, the molecular weight is between about 1 kDa and about 100 kDa for ease in handling and manufacturing. Other sizes can be used, depending on the desired profile (e.g., the duration of sustained release desired, the effects, if any on biological activity, the ease in handling, the degree or lack of antigenicity and other known effects of the polyethylene glycol to a protein or analog). For example, the polyethylene glycol can have an average molecular weight of about 200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10,000, 10,500, 11,000, 11,500, 12,000, 12,500, 13,000, 13,500, 14,000, 14,500, 15,000, 15,500, 16,000, 16,500, 17,000, 17,500, 18,000, 18,500, 19,000, 19,500, 20,000, 25,000, 30,000, 35,000, 40,000, 45,000, 50,000, 55,000, 60,000, 65,000, 70,000, 75,000, 80,000, 85,000, 90,000, 95,000, or 100,000 kDa.
- In some embodiments, the polyethylene glycol can have a branched structure. Branched polyethylene glycols are described, for example, in U.S. Pat. No. 5,643,575; Morpurgo et al., Appl. Biochem. Biotechnol. 56:59-72 (1996); Vorobjev et al., Nucleosides Nucleotides 18:2745-2750 (1999); and Caliceti et al., Bioconjug. Chem. 10:638-646 (1999), each of which is incorporated herein by reference in its entirety.
- The number of polyethylene glycol moieties attached to each chimeric molecule of the invention (i.e., the degree of substitution) can also vary. For example, the PEGylated chimeric molecule can be linked, on average, to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 17, 20, or more polyethylene glycol molecules. Similarly, the average degree of substitution within ranges such as 1-3, 2-4, 3-5, 4-6, 5-7, 6-8, 7-9, 8-10, 9-11, 10-12, 11-13, 12-14, 13-15, 14-16, 15-17, 16-18, 17-19, or 18-20 polyethylene glycol moieties per protein molecule. Methods for determining the degree of substitution are discussed, for example, in Delgado et al., Crit. Rev. Thera. Drug Carrier Sys. 9:249-304 (1992).
- In some embodiments, the chimeric molecule can be PEGylated.
- A PEGylated chimeric molecule comprises at least one polyethylene glycol (PEG) molecule. In other embodiments, the polymer can be water-soluble. Non-limiting examples of the polymer can be poly(alkylene oxide), poly(vinyl pyrrolidone), poly(vinyl alcohol), polyoxazoline, or poly(acryloylmorpholine). Additional types of polymer-conjugation to clotting factors are disclosed in U.S. Pat. No. 7,199,223. See also, Singh et al. Curr. Med. Chem. 15:1802-1826 (2008).
- There are a number of PEG attachment methods available to those skilled in the art, for example Malik F et al., Exp. Hematol. 20:1028-35 (1992); Francis, Focus on Growth Factors 3(2):4-10 (1992); European Pat. Pub. Nos. EP0401384, EP0154316, and EP0401384; and International Pat. Appl. Pub. Nos. WO92/16221 and WO95/34326..
- In some embodiments, the chimeric molecule comprises a clotting factor (e.g., a FVII), a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof), and a PEG.
- (x) HES
- In certain embodiments, at least one heterologous moiety is a polymer, e.g., hydroxyethyl starch (HES) or a derivative thereof. Hydroxyethyl starch (HES) is a derivative of naturally occurring amylopectin and is degraded by alpha-amylase in the body. HES is a substituted derivative of the carbohydrate polymer amylopectin, which is present in corn starch at a concentration of up to 95% by weight. HES exhibits advantageous biological properties and is used as a blood volume replacement agent and in hemodilution therapy in the clinics (Sommermeyer et al., Krankenhauspharmazie, 8(8), 271-278 (1987); and Weidler et al., Arzneim.-Forschung/Drug Res., 41, 494-498 (1991)).
- Amylopectin contains glucose moieties, wherein in the main chain alpha-1,4-glycosidic bonds are present and at the branching sites alpha-1,6-glycosidic bonds are found. The physical-chemical properties of this molecule are mainly determined by the type of glycosidic bonds. Due to the nicked alpha-1,4-glycosidic bond, helical structures with about six glucose-monomers per turn are produced. The physico-chemical as well as the biochemical properties of the polymer can be modified via substitution. The introduction of a hydroxyethyl group can be achieved via alkaline hydroxyethylation. By adapting the reaction conditions it is possible to exploit the different reactivity of the respective hydroxy group in the unsubstituted glucose monomer with respect to a hydroxyethylation. Owing to this fact, the skilled person is able to influence the substitution pattern to a limited extent.
- HES is mainly characterized by the molecular weight distribution and the degree of substitution. The degree of substitution, denoted as DS, relates to the molar substitution, is known to the skilled people. See Sommermeyer et al., Krankenhauspharmazie, 8(8), 271-278 (1987), as cited above, in particular p. 273.
- In one embodiment, hydroxyethyl starch has a mean molecular weight (weight mean) of from 1 to 300 kD, from 2 to 200 kD, from 3 to 100 kD, or from 4 to 70 kD. Hydroxyethyl starch can further exhibit a molar degree of substitution of from 0.1 to 3, preferably 0.1 to 2, more preferred, 0.1 to 0.9, preferably 0.1 to 0.8, and a ratio between C2:C6 substitution in the range of from 2 to 20 with respect to the hydroxyethyl groups. A non-limiting example of HES having a mean molecular weight of about 130 kD is a HES with a degree of substitution of 0.2 to 0.8 such as 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, or 0.8, preferably of 0.4 to 0.7 such as 0.4, 0.5, 0.6, or 0.7. In a specific embodiment, HES with a mean molecular weight of about 130 kD is VOLUVEN® from Fresenius. VOLUVEN® is an artificial colloid, employed, e.g., for volume replacement used in the therapeutic indication for therapy and prophylaxis of hypovolemia. The characteristics of VOLUVEN® are a mean molecular weight of 130,000+/−20,000 D, a molar substitution of 0.4 and a C2:C6 ratio of about 9:1. In other embodiments, ranges of the mean molecular weight of hydroxyethyl starch are, e.g., 4 to 70 kD or 10 to 70 kD or 12 to 70 kD or 18 to 70 kD or 50 to 70 kD or 4 to 50 kD or 10 to 50 kD or 12 to 50 kD or 18 to 50 kD or 4 to 18 kD or 10 to 18 kD or 12 to 18 kD or 4 to 12 kD or 10 to 12 kD or 4 to 10 kD. In still other embodiments, the mean molecular weight of hydroxyethyl starch employed is in the range of from more than 4 kD and below 70 kD, such as about 10 kD, or in the range of from 9 to 10 kD or from 10 to 11 kD or from 9 to 11 kD, or about 12 kD, or in the range of from 11 to 12 kD) or from 12 to 13 kD or from 11 to 13 kD, or about 18 kD, or in the range of from 17 to 18 kD or from 18 to 19 kD or from 17 to 19 kD, or about 30 kD, or in the range of from 29 to 30, or from 30 to 31 kD, or about 50 kD, or in the range of from 49 to 50 kD or from 50 to 51 kD or from 49 to 51 kD.
- In certain embodiments, the heterologous moiety can be a mixture of hydroxyethyl starches having different mean molecular weights and/or different degrees of substitution and/or different ratios of C2: C6 substitution. Therefore, mixtures of hydroxyethyl starches can be employed having different mean molecular weights and different degrees of substitution and different ratios of C2: C6 substitution, or having different mean molecular weights and different degrees of substitution and the same or about the same ratio of C2:C6 substitution, or having different mean molecular weights and the same or about the same degree of substitution and different ratios of C2:C6 substitution, or having the same or about the same mean molecular weight and different degrees of substitution and different ratios of C2:C6 substitution, or having different mean molecular weights and the same or about the same degree of substitution and the same or about the same ratio of C2:C6 substitution, or having the same or about the same mean molecular weights and different degrees of substitution and the same or about the same ratio of C2: C6 substitution, or having the same or about the same mean molecular weight and the same or about the same degree of substitution and different ratios of C2: C6 substitution, or having about the same mean molecular weight and about the same degree of substitution and about the same ratio of C2:C6 substitution.
- In some embodiments, the chimeric molecule comprises a clotting factor (e.g., a FVII), a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof), and a HES.
- (xi) PSA
- In certain embodiments, at least one heterologous moiety is a polymer, e.g., polysialic acids (PSAs) or a derivative thereof. Polysialic acids (PSAs) are naturally occurring unbranched polymers of sialic acid produced by certain bacterial strains and in mammals in certain cells Roth J., et al. (1993) in Polysialic Acid: From Microbes to Man, eds. Roth J., Rutishauser U., Troy F. A. (Birkhauser Verlag, Basel, Switzerland), pp 335-348. They can be produced in various degrees of polymerization from n=about 80 or more sialic acid residues down to n=2 by limited acid hydrolysis or by digestion with neuraminidases, or by fractionation of the natural, bacterially derived forms of the polymer. The composition of different polysialic acids also varies such that there are homopolymeric forms i.e. the alpha-2,8-linked polysialic acid comprising the capsular polysaccharide of E. coli strain Kl and the group-B meningococci, which is also found on the embryonic form of the neuronal cell adhesion molecule (N-CAM). Heteropolymeric forms also exist—such as the alternating alpha-2,8 alpha-2,9 polysialic acid of E. coli strain K92 and group C polysaccharides of N. meningitidis. Sialic acid can also be found in alternating copolymers with monomers other than sialic acid such as group W135 or group Y of N. meningitidis. Polysialic acids have important biological functions including the evasion of the immune and complement systems by pathogenic bacteria and the regulation of glial adhesiveness of immature neurons during fetal development (wherein the polymer has an anti-adhesive function) Cho and Troy, P.N.A.S, USA, 91 (1994) 11427-11431, although there are no known receptors for polysialic acids in mammals. The alpha-2,8-linked polysialic acid of E. coli strain Kl is also known as ‘colominic acid’ and is used (in various lengths) to exemplify the present disclosure. Various methods of attaching or conjugating polysialic acids to a polypeptide have been described (for example, see U.S. Pat. No. 5,846,951; WO-A-0187922, and US 2007/0191597 A1, which are incorporated herein by reference in their entireties.
- In some embodiments, the chimeric molecule comprises a clotting factor (e.g., FVII), a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof), and a PSA.
- (xii) Clearance Receptors
- In certain embodiments, the in vivo half-life of a chimeric molecule of the invention can be extended where the chimeric molecule comprises at least one heterologous molecule comprising a clearance receptor, fragment, variant, or derivative thereof. In specific embodiments wherein the chimeric molecule comprises Factor X, soluble forms of clearance receptors, such as the low density lipoprotein-related protein receptor LRP1, or fragments thereof, can block binding of Factor X to clearance receptors and thereby extend its in vivo half-life.
- LRP1 is a 600 kDa integral membrane protein that is implicated in the receptor-mediate clearance of a variety of proteins, such as FVIII or X. See, e.g., Narita et al., Blood 91:555-560 (1998); Lenting et al., Haemophilia 16:6-16 (2010). The amino acid sequence of an exemplary human LRP1 protein is provided below (signal peptide underlined and transmembrane segment boldened; NCBI Reference Sequence: CAA32112):
-
(SEQ ID NO: 152) MLTPPLLLLLPLLSALVAAAIDAPKTCSPKQFACRDQITCISKGWRCDGERDCPDGSDEAPEICPQSK AQRCQPNEHNCLGTELCVPMSRLCNGVQDCMDGSDEGPHCRELQGNCSRLGCQHHCVPTLDGPTCYCN SSFQLQADGKTCKDFDECSVYGTCSQLCTNTDGSFICGCVEGYLLQPDNRSCKAKNEPVDRPPVLLIA NSQNILATYLSGAQVSTITPTSTRQTTAMDFSYANETVCWVHVGDSAAQTQLKCARMPGLKGFVDEHT INISLSLHHVEQMAIDWLTGNEYFVDDIDDRIFVCNRNGDTCVTLLDLELYNPKGIALDPAMGKVFFT DYGQIPKVERCDMDGQNRTKLVDSKIVFPHGITLDLVSRLVYWADAYLDYIEVVDYEGKGRQTIIQGI LIEHLYGLTVFENYLYATNSDNANAQQKTSVIRVNRFNSTEYQVVTRVDKGGALHIYHQRRQPRVRSH ACENDQYGKPGGCSDICLLANSHKARTCRCRSGFSLGSDGKSCKKPEHELFLVYGKGRPGIIRGMDMG AKVPDEHMIPIENLMNPRALDFHAETGFIYFADTTSYLIGRQKIDGTERETILKDGIHNVEGVAVDWM GDNLYWTDDGPKKTISVARLEKAAQTRKTLIEGKMTHPRAIVVDPLNGWMYWTDWEEDPKDSRRGRLE RAWMDGSHRDIFVTSKTVLWPNGLSLDIPAGRLYWVDAFYDRIETILLNGTDRKIVYEGPELNHAFGL CHHGNYLFWTEYRSGSVYRLERGVGGAPPTVTLLRSERPPIFEIRMYDAQQQQVGTNKCRVNNGGCSS LCLATPGSRQCACAEDQVLDADGVTCLANPSYVPPPQCQPGEFACANSRCIQERWKCDGDNDCLDNSD EAPALCHQHTCPSDRFKCENNRCIPNRWLCDGDNDCGNSEDESNATCSARTCPPNQFSCASGRCIPIS WTCDLDDDCGDRSDESASCAYPTCFPLTQFTCNNGRCININWRCDNDNDCGDNSDEAGCSHSCSSTQF KCNSGRCIPEHWTCDGDNDCGDYSDETHANCTNQATRPPGGCHTDEFQCRLDGLCIPLRWRCDGDTDC MDSSDEKSCEGVTHVCDPSVKFGCKDSARCISKAWVCDGDNDCEDNSDEENCESLACRPPSHPCANNT SVCLPPDKLCDGNDDCGDGSDEGELCDQCSLNNGGCSHNCSVAPGEGIVCSCPLGMELGPDNHTCQIQ SYCAKHLKCSQKCDQNKFSVKCSCYEGWVLEPDGESCRSLDPFKPFIIFSNRHEIRRIDLHKGDYSVL VPGLRNTIALDFHLSQSALYWTDVVEDKIYRGKLLDNGALTSFEVVIQYGLATPEGLAVDWIAGNIYW VESNLDQIEVAKLDGTLRTTLLAGDIEHPRAIALDPRDGILFWTDWDASLPRIEAASMSGAGRRTVHR ETGSGGWPNGLTVDYLEKRILWIDARSDAIYSARYDGSGHMEVLRGHEFLSHPFAVTLYGGEVYWTDW RTNTLAKANKWTGHNVTVVQRTNTQPFDLQVYHPSRQPMAPNPCEANGGQGPCSHLCLINYNRTVSCA CPHLMKLHKDNTTCYEFKKFLLYARQMEIRGVDLDAPYYNYIISFTVPDIDNVTVLDYDAREQRVYWS DVRTQAIKRAFINGTGVETVVSADLPNAHGLAVDWVSRNLFWTSYDINKKQINVARLDGSFKNAVVQG LEQPHGLVVHPLRGKLYWTDGDNISMANMDGSNRTLLFSGQKGPVGLAIDFPESKLYWISSGNHTINR CNLDGSGLEVIDAMRSQLGKATALAIMGDKLWWADQVSEKMGTCSKADGSGSVVLRNSTTLVMHMKVY DESIQLDHKGTNPCSVNNGDCSQLCLPTSETTRSCMCTAGYSLRSGQQACEGVGSFLLYSVHEGIRGI PLDPNDKSDALVPVSGTSLAVGIDFHAENDTIYWVDMGLSTISRAKRDQTWREDVVTNGIGRVEGIAV DWIAGNIYWTDQGFDVIEVARLNGSFRYVVISQGLDKPRAITVHPEKGYLFWTEWGQYPRIERSRLDG TERVVLVNVSISWPNGISVDYQDGKLYWCDARTDKIERIDLETGENREVVLSSNNMDMFSVSVFEDFI YWSDRTHANGSIKRGSKDNATDSVPLRTGIGVQLKDIKVFNRDRQKGTNVCAVANGGCQQLCLYRGRG QRACACAHGMLAEDGASCREYAGYLLYSERTILKSIHLSDERNLNAPVQPEEDPEHMKNVIALAFDYR AGTSPGTPNRIFFSDIHFGNIQQINDDGSRRITIVENVGSVEGLAYHRGWDTLYWTSYTTSTITRHTV DQTRPGAFERETVITMSGDDHPRAFVLDECQNLMFWTNWNEQHPSIMRAALSGANVLTLIEKDIRTPN GLAIDHRAEKLYFSDATLDKIERCEYDGSHRYVILKSEPVHPFGLAVYGEHIFWTDWVRRAVQRANKH VGSNMKLLRVDIPQQPMGIIAVANDTNSCELSPCRINNGGCQDLCLLTHQGHVNCSCRGGRILQDDLT CRAVNSSCRAQDEFECANGECINFSLTCDGVPHCKDKSDEKPSYCNSRRCKKTFRQCSNGRCVSNMLW CNGADDCGDGSDEIPCNKTACGVGEFRCRDGTCIGNSSRCNQFVDCEDASDEMNCSATDCSSYFRLGV KGVLFQPCERTSLCYAPSWVCDGANDCGDYSDERDCPGVKRPRCPLNYFACPSGRCIPMSWTCDKEDD CEHGEDETHCNKFCSEAQFECQNHRCISKQWLCDGSDDCGDGSDEAAHCEGKTCGPSSFSCPGTHVCV PERWLCDGDKDCADGADESIAAGCLYNSTCDDREFMCQNRQCIPKHFVCDHDRDCADGSDESPECEYP TCGPSEFRCANGRCLSSRQWECDGENDCHDQSDEAPKNPHCTSPEHKCNASSQFLCSSGRCVAEALLC NGQDDCGDSSDERGCHINECLSRKLSGCSQDCEDLKIGFKCRCRPGFRLKDDGRTCADVDECSTTFPC SQRCINTHGSYKCLCVEGYAPRGGDPHSCKAVTDEEPFLIFANRYYLRKLNLDGSNYTLLKQGLNNAV ALDFDYREQMIYWTDVTTQGSMIRRMHLNGSNVQVLHRTGLSNPDGLAVDWVGGNLYWCDKGRDTIEV SKLNGAYRTVLVSSGLREPRALVVDVQNGYLYWIDWGDHSLIGRIGMDGSSRSVIVDTKITWPNGLTL DYVTERIYWADAREDYIEFASLDGSNRHVVLSQDIPHIFALTLFEDYVYWTDWETKSINRAHKTTGTN KILLISTLHRPMDLHVFHALRQPDVPNHPCKVNNGGCSNLCLLSPGGGHKCACPTNFYLGSDGRTCVS NCTASQFVCKNDKCIPFWWKCDTEDDCGDHSDEPPDCPEFKCRPGQFQCSTGICTNPAFICDGDNDCQ DNSDEANCDIHVCLPSQFKCTNTNRCIPGIFRCNGQDNCGDGEDERDCPEVTCAPNQFQCSITKRCIP RVWVCDRDNDCVDGSDEPANCTQMTCGVDEFRCKDSGRCIPARWKCDGEDDCGDGSDEPKEECDERTC EPYQFRCKNNRCVPGRWQCDYDNDCGDNSDEESCTPRPCSESEFSCANGRCIAGRWKCDGDHDCADGS DEKDCTPRCDMDQFQCKSGHCIPLRWRCDADADCMDGSDEEACGTGVRTCPLDEFQCNNTLCKPLAWK CDGEDDCGDNSDENPEECARFVCPPNRPFRCKNDRVCLWIGRQCDGTDNCGDGTDEEDCEPPTAHTTH CKDKKEFLCRNQRCLSSSLRCNMFDDCGDGSDEEDCSIDPKLTSCATNASICGDEARCVRTEKAAYCA CRSGFHTVPGQPGCQDINECLRFGTCSQLCNNTKGGHLCSCARNFMKTHNTCKAEGSEYQVLYIADDN EIRSLFPGHPHSAYEQAFQGDESVRIDAMDVHVKAGRVYWINWHIGTISYRSLPPAAPPTTSNRHRRQ IDRGVTHLNISGLKMPRGIAIDWVAGNVYWIDSGRDVIEVAQMKGENRKTLISGMIDEPHAIVVDPLR GTMYWSDWGNHPKIETAAMDGTLRETLVQDNIQWPTGLAVDYHNERLYWADAKLSVIGSIRLNGTDPI VAADSKRGLSHPFSIDVFEDYIYGVTYINNRVFKIHKFGHSPLVNLIGGLSHASDVVLYHQHKQPEVT NPCDRKKCEWLCLLSPSGPVCTCPNGKRLDNGTCVPVPSPTPPPDAPRPGTCNLQCFNGGSCFLNARR QPKCRCQPRYTGDKCELDQCWEHCRNGGICAASPSGMPTCRCPTGFTGPKCTQQVCAGYCANNSTCTV NQGNQPQCRCLPGFLGDRCQYRQCSGYCENFGTCQMAADGSRQCRCTAYFEGSRCEVNKCSRCLEGAC VVNKQSGDVTCNCTDGRVAPSCLTCVGHCSNGGSCTMNSKMMPECQCPPHMTGPRCEEHVFSQQQPGH IASILIPLLLLLLLVLVAGVVFWYKRRVQGAKGFQHQRMTNGAMNVEIGNPTYKMYEGGEPDDVGGLL DADFALDPDKPTNFTNPVYATLYMGGHGSRHSLASTDEKRELLGRGPEDEIGDPLA - Other suitable clearance receptors are, e.g., LDLR (low-density lipoprotein receptor), VLDLR (very low-density lipoprotein receptor), and megalin (LRP-2), or fragments thereof. See, e.g., Bovenschen et al., Blood 106:906-912 (2005); Bovenschen, Blood 116:5439-5440 (2010); Martinelli et al., Blood 116:5688-5697 (2010).
- In some embodiments, the chimeric molecule comprises a clotting factor (e.g., a FVII), a targeting moiety (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof), and a clearance receptor, fragment, variant, or derivative thereof.
- II. Linkers
- The term “linker” or “linker moiety” (represented as L, L1, or L2 in the formulas disclosed herein) refers to a peptide or polypeptide sequence (e.g., a synthetic peptide or polypeptide sequence), or a non-peptide linker for which its main function is to connect two domains in a linear amino acid sequence of a polypeptide chain, for example, two heterologous moieties in a chimeric molecule of the invention. Accordingly, in some embodiments, linkers are interposed between two heterologous moieties, between a heterologous moiety and a targeting moiety, which binds to a platelet (e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein), between a clotting factor (either the heavy chain or the light chain) and a targeting moiety, which binds to a platelet (e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein), or between a clotting factor (either the heavy chain or the light chain) and a heterologous moiety.
- When multiple linkers are present in a chimeric molecule of the invention, each of the linkers can be the same or different. Generally, linkers provide flexibility to the chimeric molecule. Linkers are not typically cleaved; however in certain embodiments, such cleavage can be desirable. Accordingly, in some embodiments a linker can comprise one or more protease-cleavable sites, which can be located within the sequence of the linker or flanking the linker at either end of the sequence of the linker.
- In some embodiments, the chimeric molecule comprises one or more linkers, wherein one or more of the linkers comprise a peptide linker. In other embodiments, one or more of the linkers comprise a non-peptide linker. In some embodiments, the peptide linker can comprise at least two amino, at least three, at least four, at least five, at least 10, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, or at least 100 amino acids. In other embodiments, the peptide linker can comprise at least 200, at least 300, at least 400, at least 500, at least 600, at least 700, at least 800, at least 900, or at least 1,000 amino acids. In some embodiments, the peptide linker can comprise at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 amino acids. In certain embodiments, the peptide linker can comprise 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 amino acids.
- The peptide linker can comprise 1-5 amino acids, 1-10 amino acids, 1-20 amino acids, 1-30 amino acids, 5-25 amino acids, 5-30 amino acids, 10-30 amino acids, 10-50 amino acids, 50-100 amino acids, 100-200 amino acids, 200-300 amino acids, 300-400 amino acids, 400-500 amino acids, 500-600 amino acids, 600-700 amino acids, 700-800 amino acids, 800-900 amino acids, 900-1000, 1000-1100, 1100-1200, 1200-1300, 1300-1400, 1400-1500, 1500-1600, 1600-1700, 1700-1800, 1800-1900, or 1900-2000 amino acids.
- Examples of peptide linkers are well known in the art, for example peptide linkers according to the formula [(Gly)x-Sery]z where x is from 1 to 4, y is 0 or 1, and z is from 1 to 50 (SEQ ID NO:153). In certain embodiments z is from 1 to 6. In one embodiment, the peptide linker comprises the sequence Gn, where n can be an integer from 1 to 100 (SEQ ID NO:249). In a specific embodiment, the specific embodiment, the sequence of the peptide linker is GGGG (SEQ ID NO:154). The peptide linker can comprise the sequence (GA)n (SEQ ID NO:163). The peptide linker can comprise the sequence (GGS)n(SEQ ID NO:155). In other embodiments, the peptide linker comprises the sequence (GGGS)n (SEQ ID NO:156). In still other embodiments, the peptide linker comprises the sequence (GGS)n(GGGGS)n (SEQ ID NO:157). In these instances, n can be an integer from 1-100. In other instances, n can be an integer from 1-20, i.e., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20. Examples of linkers include, but are not limited to, GGG, SGGSGGS (SEQ ID NO:158), GGSGGSGGSGGSGGG (SEQ ID NO:159), GGSGGSGGGGSGGGGS (SEQ ID NO:160), GGSGGSGGSGGSGGSGGS (SEQ ID NO:161), or GGGGSGGGGSGGGGS (SEQ ID NO:162). In other embodiments, the linker is a poly-G sequence (GGGG)n, where n can be an integer from 1-100 (SEQ ID NO:164).
- An exemplary Gly/Ser peptide linker comprises the amino acid sequence (Gly4Ser)n (SEQ ID NO:250), wherein n is an integer that is the same or higher than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 46, 50, 55, 60, 70, 80, 90, or 100. In one embodiment, n=1, i.e., the linker is (Gly4Ser) (SEQ ID NO:165). In one embodiment, n=2, i.e., the linker is (Gly4Ser)2 (SEQ ID NO:166). In another embodiment, n=3, i.e., the linker is (Gly4Ser)3 (SEQ ID NO:167). In another embodiment, n=4, i.e., the linker is (Gly4Ser)4 (SEQ ID NO:168). In another embodiment, n=5, i.e., the linker is (Gly4Ser)5 (SEQ ID NO:169). In yet another embodiment, n=6, i.e., the linker is (Gly4Ser)6 (SEQ ID NO:170). In another embodiment, n=7, i.e., the linker is (Gly4Ser)7 (SEQ ID NO:171). In yet another embodiment, n=8, i.e., the linker is (Gly4Ser)8 (SEQ ID NO:172). In another embodiment, n=9, i.e., the linker is (Gly4Ser)9 (SEQ ID NO:173). In yet another embodiment, n=10, i.e., the linker is (Gly4Ser)10 (SEQ ID NO:174).
- Another exemplary Gly/Ser peptide linker comprises the amino acid sequence Ser(Gly4Ser)n (SEQ ID NO:251), wherein n is an integer that is the same or higher than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 46, 50, 55, 60, 70, 80, 90, or 100. In one embodiment, n=1, i.e., the linker is Ser(Gly4Ser) (SEQ ID NO:175). In one embodiment, n=2, i.e., the linker is Ser(Gly4Ser)2 (SEQ ID NO: 176). In another embodiment, n=3, i.e., the linker is Ser(Gly4Ser)3 (SEQ ID NO:177). In another embodiment, n=4, i.e., the linker is Ser(Gly4Ser)4 (SEQ ID NO:178). In another embodiment, n=5, i.e., the linker is Ser(Gly4Ser)5 (SEQ ID NO:179). In yet another embodiment, n=6, i.e., the linker is Ser(Gly4Ser)6 (SEQ ID NO:180). In yet another embodiment, n=7, i.e., the linker is Ser(Gly4Ser)7 (SEQ ID NO:181). In yet another embodiment, n=8, i.e., the linker is Ser(Gly4Ser)8 (SEQ ID NO:182). In yet another embodiment, n=9, i.e., the linker is Ser(Gly4Ser)9 (SEQ ID NO:183). In yet another embodiment, n=10, i.e., the linker is Ser(Gly4Ser)10 (SEQ ID NO:184).
- In certain embodiments, said Gly/Ser peptide linker can be inserted between two other sequences of the peptide linker (e.g., any of the peptide linker sequences described herein). In other embodiments, a Gly/Ser peptide linker is attached at one or both ends of another sequence of the peptide linker (e.g., any of the peptide linker sequences described herein). In yet other embodiments, two or more Gly/Ser linkers are incorporated in series in a peptide linker. In one embodiment, a peptide linker of the invention comprises at least a portion of an upper hinge region (e.g., derived from an IgG1, IgG2, IgG3, or IgG4 molecule), at least a portion of a middle hinge region (e.g., derived from an IgG1, IgG2, IgG3, or IgG4 molecule) and a series of Gly/Ser amino acid residues (e.g., a Gly/Ser linker such as (Gly4Ser)n) (SEQ ID NO:165)).
- A particular type of linker which can be present in an heterologous moiety, for example an activatable clotting factor, is herein referred to as a “cleavable linker” which comprises a heterologous protease-cleavage site (e.g., a factor XIa or thrombin cleavage site) that is not naturally occurring in the clotting factor and which can include additional linkers on either the N terminal of C terminal or both sides of the cleavage site. Exemplary locations for such sites include, e.g., placement between a heavy chain of a clotting factor zymogen and a light chain of a clotting factor zymogen.
- Peptide linkers can be introduced into polypeptide sequences using techniques known in the art. Modifications can be confirmed by DNA sequence analysis. Plasmid DNA can be used to transform host cells for stable production of the polypeptides produced.
- III. Protease Cleavage Site
- In some embodiments, a chimeric molecule can comprise a protease cleavage site linking, for example, a light chain of a clotting factor zymogen and a heavy chain of the clotting factor zymogen (e.g., FVII). A protease-cleavage site linking a light chain of a clotting factor zymogen and a heavy chain of the clotting factor zymogen can be selected from any protease-cleavage site known in the art. In one embodiment, the protease-cleavage site is cleaved by a protease selected from the group consisting of factor XIa, factor XIIa, kallikrein, factor VIIa, factor IXa, factor Xa, factor IIa (thrombin), and any combinations thereof. The protease-cleavage sites allow the light chain and the heavy chain of the clotting factor to be cleaved and dissociated from each other at the site of injury. Exemplary FXIa cleavage sites include, e.g., KLTR (SEQ ID NO:185), DFTR (SEQ ID NO:186), TQSFNDFTR (SEQ ID NO:187) and SVSQTSKLTR (SEQ ID NO:188). Exemplary thrombin cleavage sites include, e.g., DFLAEGGGVR (SEQ ID NO:189), TTKIKPR (SEQ ID NO:190), LVPRG (SEQ ID NO:191) and ALRPR (SEQ ID NO:192).
- In some embodiments, the protease-cleavage site can be combined with an intracellular processing site for efficient cleavage and activation. For example, an activatable clotting factor in the chimeric molecule can comprise a heterodimer, which comprises a light chain of a clotting factor associated with a heavy chain of the clotting factor by a covalent bond, wherein the N-terminus of the heavy chain of the clotting factor is linked to a protease-cleavage site. The protease-cleavage site can be cleaved off at the site of coagulation, thus activating the clotting factor. Such constructs can be designed by inserting an intracellular processing site between the light chain of the clotting factor zymogen and the protease-cleavage site, which is linked to the heavy chain of the clotting factor zymogen. The intracellular processing site inserted therein can be processed (cleaved) by an intracellular processing enzyme upon expression in a host cell, thereby allowing formation of a zymogen-like heterodimer.
- Examples of the intracellular processing enzymes include furin, a yeast Kex2, PCSK1 (also known as PC1/Pc3), PCSK2 (also known as PC2), PCSK3 (also known as furin or PACE), PCSK4 (also known as PC4), PCSK5 (also known as PC5 or PC6), PCSK6 (also known as PACE4), or PCSK7 (also known as PC7/LPC, PC8, or SPC7). Other processing sites are known in the art. In constructs that include more than one processing or cleavage site, it will be understood that such sites can be the same or different.
- In one embodiment, the chimeric molecule comprises, consists essentially of, or consists of, a polypeptide that has an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to the amino acid sequence set forth in SEQ ID NO:74.
-
(SEQ ID NO: 74) 1 ANAFLEELRP GSLERECKEE QCSFEEAREI FKDAERTKLF WISYSDGDQC 51 ASSPCQNGGS CKDQLQSYIC FCLPAFEGRN CETHKDDQLI CVNENGGCEQ 101 YCSDHTGTKR SCRCHEGYSL LADGVSCTPT VEYPCGKIPI LEKRNASKPQ 151 GRIVGGKVCP KGECPWQVLL LVNGAQLCGG TLINTIWVVS AAHCFDKIKN 201 WRNLIAVLGE HDLSEHDGDE QSRRVAQVII PSTYVPGTTN HDIALLRLHQ 251 PVVLTDHVVP LCLPERTFSE RTLAFVRFSL VSGWGQLLDR GATALELMVL 301 NVPRLMTQDC LQQSRKVGDS PNITEYMFCA GYSDGSKDSC KGDSGGPHAT 351 HYRGTWYLTG IVSWGQGCAT VGHFGVYTRV SQYIEWLQKL MRSEPRPGVL 401 LRAPFPGGGG SGGGGSGGGG SGGGGSGGGG SGGGGS EIVM TQSPATLSVS 451 PGERATLSCR ASSSVNYMYW YQQKPGQAPR LLIYYTSNLA PGIPARFSGS 501 GSGTEFTLTI SSLQSEDFAV YYCQQFSSSP WTFGQGTKVE IKRTVAAPSV 551 FIFPPSDEQL KSGTASVVCL LNNFYPREAK VQWKVDNALQ SGNSQESVTE 601 QDSKDSTYSL SSTLTLSKAD YEKHKVYACE VTHQGLSSPV TKSFNRGEC* - In certain embodiments, one or more (e.g., 1, 2, 3, 4) linkers can be introduced between the light and heavy chain of Factor VII. The linker(s) can be a peptide linker.
- The Fab light chain of this chimeric molecule can associate, e.g., with the Fab heavy chain comprising a polypeptide sequence that has an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to the amino acid sequence set forth in SEQ ID Nos. 75 or 76.
- In one embodiment, the chimeric molecule comprises, consists essentially of, or consists of, a polypeptide that has an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to the amino acid sequence set forth in SEQ ID NO: 77.
-
(SEQ ID NO: 77) 1 ANAFLEELRP GSLERECKEE QCSFEEAREI FKDAERTKLF WISYSDGDQC 51 ASSPCQNGGS CKDQLQSYIC FCLPAFEGRN CETHKDDQLI CVNENGGCEQ 101 YCSDHTGTKR SCRCHEGYSL LADGVSCTPT VEYPCGKIPI LEKRNASKPQ 151 GRIVGGKVCP KGECPWQVLL LVNGAQLCGG TLINTIWVVS AAHCFDKIKN 201 WRNLIAVLGE HDLSEHDGDE QSRRVAQVII PSTYVPGTTN HDIALLRLHQ 251 PVVLTDHVVP LCLPERTFSE RTLAFVRFSL VSGWGQLLDR GATALELMVL 301 NVPRLMTQDC LQQSRKVGDS PNITEYMFCA GYSDGSKDSC KGDSGGPHAT 351 HYRGTWYLTG IVSWGQGCAT VGHFGVYTRV SQYIEWLQKL MRSEPRPGVL 401 LRAPFPGSPG TSESATPESG PGSEPATSGS ETP GTSESAT PESGPGSEPA 451 TSGSETPGTS ESATPESGPG TSTEPSEGSA PGSPAGSPTS TEEGTSESAT 501 PESGPGSEPA TSGSETPGTS ESATPESGPG SPAGSPTSTE EGSPAGSPTS 551 TEEGTSTEPS EGSAPGTSES ATPESGPGTS ESATPESGPG TSESATPESG 601 PGSEPATSGS ETPGSEPATS GSETPGSPAG SPTSTEEGTS TEPSEGSAPG 651 TSTEPSEGSA PGSEPATSGS ETPGTSESAT PESGPGTSTE PSEGSAPGSS 701 SGGGGSGGGG SGGGGSGGGG SGGGGSGGGG S EIVMTQSPA TLSVSPGERA 751 TLSCRASSSV NYMYWYQQKP GQAPRLLIYY TSNLAPGIPA RFSGSGSGTE 801 FTLTISSLQS EDFAVYYCQQ FSSSPWTFGQ GTKVEIKRTV AAPSVFIFPP 851 SDEQLKSGTA SVVCLLNNFY PREAKVQWKV DNALQSGNSQ ESVTEQDSKD 901 STYSLSSTLT LSKADYEKHK VYACEVTHQG LSSPVTKSFN RGEC* - This chimeric molecule includes the light and heavy chains of Factor VII, a linker having the amino acid sequence: GSPGTSESATPESGPGSEPATSGSETP (SEQ ID NO: 195), an XTEN termed AE288 (a half-life extending moiety), a GSSS (SEQ ID NO: 196) linker, a (G4S)6 (SEQ ID NO:170) linker, and the Fab light chain of a humanized GPIIb/IIIa antibody described herein. In certain embodiments, one or more of the linkers noted above can be eliminated (e.g., SEQ ID NOs: 195 and/or 196) from the chimeric molecule. In certain embodiments, one or more (e.g., 1, 2, 3, 4) linkers can be introduced between the light and heavy chain of Factor VII. The linker(s) can be a peptide linker. In certain embodiments, the heavy chain of Factor VII can precede the light chain of Factor VII in the chimeric molecule. The Fab light chain of this chimeric molecule can associate, e.g., with a polypeptide comprising an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75% identical, at least 80% identical, at least 81% identical, at least 82% identical, at least 83% identical, at least 84% identical, at least 85% identical, at least 86% identical, at least 87% identical, at least 88% identical, at least 89% identical, at least 90% identical, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, or 100% identical to an amino acid sequence set forth in SEQ ID Nos. 75 or 76.
- The above-described chimeric molecules can be modified, e.g., to include additional linkers (e.g., between the Factor VII and the half-life extending moiety and between the half-life extending moiety and the anti-GPIIb/IIIa antibody or antigen-binding fragment thereof). In certain instances there can be one or more (e.g., 1, 2, 3, 4) linkers between these components of the chimeric molecule. These chimeric molecules can also be modified to include one or more half-life extending moieties (e.g., AE144, AE288). In addition, instead of an Fab fragment, the chimeric molecules can comprise an scFv of the anti-GPIIb/IIIa antibody, a diabody, sc(Fv)2, or a whole anti-GPIIb/IIIa antibody. In instances where the targeting moiety is an scFv, the chimeric molecule is a two polypeptide chain comprising either (i) the light chain of Factor VII and the heavy chain of Factor VII-scFv or heavy chain of Factor VII-half-life extending moiety-scFv chimeric molecule; or (ii) the heavy chain of Factor VII and the light chain of Factor VII-scFv or light chain of Factor VII-half-life extending moiety-scFv chimeric molecule.
- In certain embodiments, the Factor VII of the chimeric molecule is activated. Activation of Factor VII can occur by the cleavage of the Arg152-Ile153 peptide bond of Factor VII to create a two chain FVII polypeptide. In one embodiment, the Factor VII of the chimeric molecule is activated by concentrating the chimeric polypeptide to about 4 mg/ml at a pH of 8.0 and incubating the polypeptide at 4° C. for several minutes to an hour (e.g., 1, 2, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 or 60 minutes).
- The present disclosure also provides a nucleic acid molecule or a set of nucleic acid molecules encoding (i) a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein, or (ii) any of the chimeric molecules disclosed herein, or (iii) a complement thereof.
- In one embodiment, the invention includes a nucleic acid molecule encoding a polypeptide chain, which comprises a light chain of a clotting factor (e.g., FVII, FIX, or FX), a heterologous moiety (e.g., a half-life extending moiety), an intracellular processing site, a heavy chain of the clotting factor (e.g., FVII, FIX, or FX), and a targeting moiety which binds to a platelet (e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof). In another embodiment, the nucleic acid molecule of the invention encodes a polypeptide chain comprising a light chain of a clotting factor (e.g., FVII, FIX, or FX), a targeting moiety which binds to a platelet (e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof), an intracellular processing site, a heavy chain of the clotting factor (e.g., FVII, FIX, or FX), and a heterologous moiety (e.g., a half-life extending moiety). In other embodiments, the nucleic acid molecule encodes a polypeptide chain comprising a light chain of a clotting factor (e.g., FVII, FIX, or FX), an intracellular processing site, a heavy chain of the clotting factor (e.g., FVII, FIX, or FX), a heterologous moiety (e.g., a half-life extending moiety), and a targeting moiety which binds to a platelet (e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof). In some embodiments, the nucleic acid molecule encodes a polypeptide chain comprising a light chain of a clotting factor (e.g., FVII, FIX, or FX), an intracellular processing site, a heavy chain of the clotting factor (e.g., FVII, FIX, or FX), a targeting moiety which binds to a platelet (e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof), and a heterologous moiety (e.g., a half-life extending moiety). In certain embodiments, the nucleic acid molecule encodes a polypeptide chain comprising a light chain of a clotting factor (e.g., FVII, FIX, or FX), a heavy chain of the clotting factor (e.g., FVII, FIX, or FX), at least one (e.g., one two, three, four) heterologous moiety (e.g., a half-life extending moiety such as the XTEN, AE144 or AE288), and a targeting moiety which binds to a platelet (e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof such as an scFv, or the light and/or heavy chain of an Fab).
- In some embodiments, the nucleic acid molecule comprises a set of nucleotide sequences, a first nucleotide sequence encoding a first polypeptide chain comprising a light chain of a clotting factor (e.g., FVII, FIX, or FX) and a heterologous moiety (e.g., a half-life extending moiety) and a second nucleotide sequence encoding a second polypeptide chain comprising a heavy chain of the clotting factor (e.g., FVII, FIX, or FX) and a targeting moiety which binds to a platelet (e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof). In other embodiments, the nucleic acid molecule comprises a set of nucleotide sequences, a first nucleotide sequence encoding a first polypeptide chain comprising a light chain of a clotting factor (e.g., FVII, FIX, or FX) and a targeting moiety which binds to a platelet (e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof) and a second nucleotide sequence encoding a second polypeptide chain comprising a heavy chain of the clotting factor (e.g., FVII, FIX, or FX) and a heterologous moiety (e.g., a half-life extending moiety). In other embodiments, the nucleic acid molecule comprises a set of nucleotide sequences, a first nucleotide sequence encoding a light chain of a clotting factor (e.g., FVII, FIX, or FX) and a second nucleotide sequence encoding a heavy chain of the clotting factor (e.g., FVII, FIX, or FX), a heterologous moiety (e.g., a half-life extending moiety), and a targeting moiety which binds to a platelet (e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof). In some embodiments, the nucleic acid molecule comprises a set of nucleotide sequences, a first nucleotide sequence encoding a light chain of a clotting factor (e.g., FVII, FIX, or FX) and a second nucleotide sequence encoding a heavy chain of the clotting factor (e.g., FVII, FIX, or FX), a targeting moiety which binds to a platelet (e.g., an anti-GPIIb/IIIa antibody or antigen-binding molecule thereof), and a heterologous moiety (e.g., a half-life extending moiety). In other embodiments, the nucleic acid molecule comprises a set of nucleotide sequences, a first nucleotide sequence encoding a first polypeptide chain comprising a light chain of a clotting factor (e.g., FVII, FIX, or FX), a heavy chain of the clotting factor (e.g., FVII, FIX, or FX), at least one (e.g., one two, three, four) heterologous moiety (e.g., a half-life extending moiety such as the XTEN, AE144 or AE288), and either the light chain or the heavy chain of an Fab of an anti-GPIIb/IIIa antibody described herein; and a second nucleotide sequence encoding the corresponding heavy or light chain of the Fab of the anti-GPIIb/IIIa antibody. It is to be understood that by “heavy chain of the Fab” is meant the VH region attached to CH1 of the heavy chain of the antibody.
- Also provided are a vector or a set of vectors comprising such nucleic acid molecule or the set of the nucleic acid molecules or a complement thereof, as well as a host cell comprising the vector.
- The instant disclosure also provides a method for producing a GPIIb/IIIa antibody or antigen-binding molecule thereof or chimeric molecule disclosed herein, such method comprising culturing the host cell disclosed herein and recovering the antibody, antigen-binding molecule thereof, or the chimeric molecule from the culture medium.
- A variety of methods are available for recombinantly producing a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein, or a chimeric molecule disclosed herein. It will be understood that because of the degeneracy of the code, a variety of nucleic acid sequences will encode the amino acid sequence of the polypeptide. The desired polynucleotide can be produced by de novo solid-phase DNA synthesis or by PCR mutagenesis of an earlier prepared polynucleotide.
- In one embodiment a first expression vector comprising a DNA comprising a nucleic acid encoding the amino acid sequence of the chimeric polypeptide set forth in SEQ ID NO:77 is transfected into a host cell (e.g., 293, CHO, COS) and the host cell is cultured under conditions that allow for the expression of the chimeric polypeptide. The chimeric polypeptide is recovered from the cell or culture medium. A second expression vector comprising a DNA comprising a nucleic acid encoding the amino acid sequence of the heavy chain of the Fab set forth in SEQ ID NOs. 75 or 76 is transfected into a host cell (e.g., 293, CHO, COS) and the host cell is cultured under conditions that allow for the expression of the heavy chain of the Fab. The heavy chain of the Fab is recovered from the cell or culture medium. The chimeric polypeptide and the heavy chain of the Fab are contacted together to permit the heavy chain of the Fab to associate with the light chain of the Fab in the chimeric polypeptide. In another embodiment, a host cell (e.g., 293, CHO, COS) is co-transfected with the first and second expression vectors described above and the host cell is cultured under conditions that allow for the expression of the chimeric polypeptide and the heavy chain of the Fab. The chimeric polypeptide and the heavy chain are isolated from the cell or culture medium. In certain instances, the heavy chain of the Fab is already associated with the light chain of the Fab in the chimeric polypeptide when the polypeptides are isolated from the cell or culture medium. In other instances, the heavy chain of the Fab is not already associated with the light chain of the Fab in the chimeric polypeptide when the polypeptides are isolated from the cell or culture medium and an additional step is required to facilitate their association. In certain embodiments, the Factor VII of the chimeric molecule is activated. Activation of Factor VII can occur by the cleavage of the Arg152-Ile153 peptide bond of Factor VII to create a two chain FVII polypeptide. In one embodiment, the Factor VII of the chimeric molecule is activated by concentrating the chimeric polypeptide (with or without the heavy chain Fab that associates with the light chain Fab of the chimeric polypeptide) to about 4 mg/ml at a pH of 8.0 and incubating the polypeptide at 4° C. for several minutes to an hour (e.g., 1, 2, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 or 60 minutes).
- Oligonucleotide-mediated mutagenesis is one method for preparing a substitution, in-frame insertion, or alteration (e.g., altered codon) to introduce a codon encoding an amino acid substitution (e.g., into a GPIIb/IIIa antibody variant). For example, the starting polypeptide DNA is altered by hybridizing an oligonucleotide encoding the desired mutation to a single-stranded DNA template. After hybridization, a DNA polymerase is used to synthesize an entire second complementary strand of the template that incorporates the oligonucleotide primer. In one embodiment, genetic engineering, e.g., primer-based PCR mutagenesis, is sufficient to incorporate an alteration, as defined herein, for producing a polynucleotide encoding a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein, or any of the chimeric molecules disclosed herein.
- For recombinant production, a polynucleotide sequence encoding a polypeptide (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein, or any of the chimeric molecules disclosed herein) is inserted into an appropriate expression vehicle, i.e., a vector which contains the necessary elements for the transcription and translation of the inserted coding sequence, or in the case of an RNA viral vector, the necessary elements for replication and translation.
- The nucleic acid encoding the polypeptide (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein, or any of the chimeric molecules disclosed herein) is inserted into the vector in proper reading frame. The expression vector is then transfected into a suitable target cell which will express the polypeptide. Transfection techniques known in the art include, but are not limited to, calcium phosphate precipitation (Wigler et al. 1978, Cell 14:725) and electroporation (Neumann et al. 1982, EMBO J. 1:841). A variety of host-expression vector systems can be utilized to express the polypeptides described herein (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein, or any of the chimeric molecules disclosed herein) in eukaryotic cells. In one embodiment, the eukaryotic cell is an animal cell, including mammalian cells (e.g., 293 cells, PerC6, CHO, BHK, Cos, HeLa cells). When the polypeptide is expressed in a eukaryotic cell, the DNA encoding the polypeptide (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein, or any of the chimeric molecules disclosed herein) can also code for a signal sequence that will permit the polypeptide to be secreted. One skilled in the art will understand that while the polypeptide is translated, the signal sequence is cleaved by the cell to form the mature chimeric molecule. Various signal sequences are known in the art, e.g., native FVII signal sequence, native FIX signal sequence, native FX signal sequence, native GPIIb signal sequence, native GPIIIa signal sequence, and the mouse IgK light chain signal sequence. Alternatively, where a signal sequence is not included, the polypeptide (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein, or any of the chimeric molecules disclosed herein) can be recovered by lysing the cells.
- The GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein, or any of the chimeric molecules disclosed herein can be synthesized in a transgenic animal, such as a rodent, goat, sheep, pig, or cow. The term “transgenic animals” refers to non-human animals that have incorporated a foreign gene into their genome. Because this gene is present in germline tissues, it is passed from parent to offspring. Exogenous genes are introduced into single-celled embryos (Brinster et al. 1985, Proc. Natl. Acad. Sci. USA 82:4438). Methods of producing transgenic animals are known in the art including transgenics that produce immunoglobulin molecules (Wagner et al. 1981, Proc. Natl. Acad. Sci. USA 78:6376; McKnight et al. 1983, Cell 34:335; Brinster et al. 1983, Nature 306:332; Ritchie et al. 1984, Nature 312:517; Baldassarre et al. 2003, Theriogenology 59:831; Robl et al. 2003, Theriogenology 59:107; Malassagne et al. 2003, Xenotransplantation 10: 267).
- The expression vectors can encode for tags that permit for easy purification or identification of the recombinantly produced polypeptide. Examples include, but are not limited to, vector pUR278 (Ruther et al. 1983, EMBO J. 2:1791) in which the polypeptide (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein, or any of the chimeric molecules disclosed herein) coding sequence can be ligated into the vector in frame with the lac z coding region so that a hybrid polypeptide is produced; pGEX vectors can be used to express proteins with a glutathione S-transferase (GST) tag. These proteins are usually soluble and can easily be purified from cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. The vectors include cleavage sites, e.g., for PreCission Protease (Pharmacia, Peapack, N. J.) for easy removal of the tag after purification.
- Numerous expression vector systems can be employed. These expression vectors are typically replicable in the host organisms either as episomes or as an integral part of the host chromosomal DNA. Expression vectors can include expression control sequences including, but not limited to, promoters (e.g., naturally-associated or heterologous promoters), enhancers, signal sequences, splice signals, enhancer elements, and transcription termination sequences. Preferably, the expression control sequences are eukaryotic promoter systems in vectors capable of transforming or transfecting eukaryotic host cells. Expression vectors can also utilize DNA elements which are derived from animal viruses such as bovine papilloma virus, polyoma virus, adenovirus, vaccinia virus, baculovirus, retroviruses (RSV, MMTV or MOMLV), cytomegalovirus (CMV), or SV40 virus. Others involve the use of polycistronic systems with internal ribosome binding sites.
- Commonly used expression vectors contain selection markers (e.g., ampicillin-resistance, hygromycin-resistance, tetracycline resistance or neomycin resistance) to permit detection of those cells transformed with the desired DNA sequences (see, e.g., Itakura et al., U.S. Pat. No. 4,704,362). Cells which have integrated the DNA into their chromosomes can be selected by introducing one or more markers which allow selection of transfected host cells. The marker can provide for prototrophy to an auxotrophic host, biocide resistance (e.g., antibiotics) or resistance to heavy metals such as copper. The selectable marker gene can either be directly linked to the DNA sequences to be expressed, or introduced into the same cell by cotransformation.
- An exemplary expression vector is NEOSPLA (U.S. Pat. No. 6,159,730). This vector contains the cytomegalovirus promoter/enhancer, the mouse beta globin major promoter, the SV40 origin of replication, the bovine growth hormone polyadenylation sequence,
neomycin phosphotransferase exon 1 andexon 2, the dihydrofolate reductase gene and leader sequence. This vector has been found to result in very high level expression of antibodies upon incorporation of variable and constant region genes, transfection in cells, followed by selection in G418 containing medium and methotrexate amplification. Vector systems are also taught in U.S. Pat. Nos. 5,736,137 and 5,658,570, each of which is incorporated by reference in its entirety herein. This system provides for high expression levels, e.g., >30 pg/cell/day. Other exemplary vector systems are disclosed e.g., in U.S. Pat. No. 6,413,777. - In other embodiments, polypeptides of the invention (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein, or any of the chimeric molecules disclosed herein) can be expressed using polycistronic constructs. In these expression systems, multiple gene products of interest such as multiple polypeptides of multimer binding protein can be produced from a single polycistronic construct. These systems advantageously use an internal ribosome entry site (IRES) to provide relatively high levels of polypeptides of the invention in eukaryotic host cells. Compatible IRES sequences are disclosed in U.S. Pat. No. 6,193,980 which is also incorporated herein. Those skilled in the art will appreciate that such expression systems can be used to effectively produce the full range of polypeptides disclosed in the instant application.
- More generally, once the vector or DNA sequence encoding a polypeptide has been prepared, the expression vector can be introduced into an appropriate host cell. That is, the host cells can be transformed. Introduction of the plasmid into the host cell can be accomplished by various techniques well known to those of skill in the art. These include, but are not limited to, transfection (including electrophoresis and electroporation), protoplast fusion, calcium phosphate precipitation, cell fusion with enveloped DNA, microinjection, and infection with intact virus. See, Ridgway, A. A. G. “Mammalian Expression Vectors” Chapter 24.2, pp. 470-472 Vectors, Rodriguez and Denhardt, Eds. (Butterworths, Boston, Mass. 1988). Most preferably, plasmid introduction into the host is via electroporation. The transformed cells are grown under conditions appropriate to the production of the light chains and heavy chains, and assayed for heavy and/or light chain protein synthesis. Exemplary assay techniques include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), flow cytometry, immunohistochemistry, and the like.
- As used herein, the term “transformation” refers in a broad sense to the introduction of DNA into a recipient host cell that changes the genotype and consequently results in a change in the recipient cell. Along those same lines, “host cells” refers to cells that have been transformed with vectors constructed using recombinant DNA techniques and encoding at least one heterologous gene. In descriptions of processes for isolation of polypeptides from recombinant hosts, the terms “cell” and “cell culture” are used interchangeably to denote the source of polypeptide unless it is clearly specified otherwise. In other words, recovery of polypeptide from the “cells” can mean either from spun down whole cells, or from the cell culture containing both the medium and the suspended cells.
- In one embodiment, a host cell endogenously expresses an enzyme (or the enzymes) necessary to cleave a scFc linker (e.g., if such a linker is present and contains intracellular processing site(s)) during processing to form the mature polypeptide. During this processing, the scFc linker can be substantially removed to reduce the presence of extraneous amino acids. In another embodiment of the invention, a host cell is transformed to express one or more enzymes which are exogenous to the cell such that processing of a scFc linker occurs or is improved.
- In one embodiment an enzyme which can be endogenously or exogenously expressed by a cell is a member of the furin family of enzymes. Complete cDNA and amino acid sequences of human furin (i.e., PACE) were published in 1990. Van den Ouweland A M et al. (1990) Nucleic Acids Res. 18:664; Erratum in: Nucleic Acids Res. 18:1332 (1990). U.S. Pat. No. 5,460,950, issued to Barr et al., describes recombinant PACE and the coexpression of PACE with a substrate precursor polypeptide of a heterologous protein to improve expression of active, mature heterologous protein. U.S. Pat. No. 5,935,815, likewise describes recombinant human furin (i.e., PACE) and the coexpression of furin with a substrate precursor polypeptide of a heterologous protein to improve expression of active, mature heterologous protein. Possible substrate precursors disclosed in this patent include a precursor of Factor IX. Other family members in the mammalian furin/subtilisin/Kex2p-like proprotein convertase (PC) family in addition to PACE are reported to include PCSK1 (also known as PC1/Pc3), PCSK2 (also known as PC2), PCSK3 (also known as furin or PACE), PCSK4 (also known as PC4), PCSK5 (also known as PC5 or PC6), PCSK6 (also known as PACE4), or PCSK7 (also known as PC7/LPC, PC8, or SPC7). While these various members share certain conserved overall structural features, they differ in their tissue distribution, subcellular localization, cleavage specificities, and preferred substrates. For a review, see Nakayama K (1997) Biochem J. 327:625-35. Similar to PACE, these proprotein convertases generally include, beginning from the amino terminus, a signal peptide, a propeptide (that can be autocatalytically cleaved), a subtilisin-like catalytic domain characterized by Asp, His, Ser, and Asn/Asp residues, and a Homo B domain that is also essential for catalytic activity and characterized by an Arg-Gly-Asp (RGD) sequence. PACE, PACE4, and PC5 also include a Cys-rich domain, the function of which is unknown. In addition, PC5 has isoforms with and without a transmembrane domain; these different isoforms are known as PCSB and PCSA, respectively. Comparison between the amino acid sequence of the catalytic domain of PACE and the amino acid sequences of the catalytic domains of other members of this family of proprotein convertases reveals the following degrees of identity: 70 percent for PC4; 65 percent for PACE4 and PC5; 61 percent for PC1/PC3; 54 percent for PC2; and 51 percent for LPC/PC7/PC8/SPC7. Nakayama K (1997)
Biochem 1, 327:625-35. - PACE and PACE4 have been reported to have partially overlapping but distinct substrates. In particular, PACE4, in striking contrast to PACE, has been reported to be incapable of processing the precursor polypeptide of FIX. Wasley et al. (1993) J. Biol. Chem. 268:8458-65; Rehemtulla et al. (1993) Biochemistry. 32:11586-90. U.S. Pat. No. 5,840,529, discloses nucleotide and amino acid sequences for human PC7 and the notable ability of PC7, as compared to other PC family members, to cleave HIV gp160 to gp120 and gp41.
- Nucleotide and amino acid sequences of rodent PC5 were first described as PC5 by Lusson et al. (1993) Proc Natl Acad Sci USA 90:6691-5 and as PC6 by Nakagawa et al. (1993) J Biochem (Tokyo) 113:132-5. U.S. Pat. No. 6,380,171 discloses nucleotide and amino acid sequences for human PCSA, the isoform without the transmembrane domain. The sequences of these enzymes and method of cloning them are known in the art.
- Genes encoding the polypeptides of the invention (e.g., a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein, or any of the chimeric molecules disclosed herein) can also be expressed in non-mammalian cells such as bacteria or yeast or plant cells. In this regard it will be appreciated that various unicellular non-mammalian microorganisms such as bacteria can also be transformed; i.e., those capable of being grown in cultures or fermentation. Bacteria, which are susceptible to transformation, include members of the enterobacteriaceae, such as strains of Escherichia coli or Salmonella; Bacillaceae, such as Bacillus subtilis; Pneumococcus; Streptococcus, and Haemophilus influenzae. It will further be appreciated that, when expressed in bacteria, the polypeptides typically become part of inclusion bodies. The polypeptides must be isolated, purified and then assembled into functional molecules.
- In addition to prokaryotes, eukaryotic microbes can also be used. Saccharomyces cerevisiae, or common baker's yeast, is the most commonly used among eukaryotic microorganisms although a number of other strains are commonly available.
- For expression in Saccharomyces, the plasmid YRp7, for example, (Stinchcomb et al., Nature, 282:39 (1979); Kingsman et al., Gene, 7:141 (1979); Tschemper et al., Gene, 10:157 (1980)) is commonly used. This plasmid already contains the TRP1 gene which provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example ATCC No. 44076 or PEP4-1 (Jones, Genetics, 85:12 (1977)). The presence of the trpl lesion as a characteristic of the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan.
- Other yeast hosts such Pichia can also be employed. Yeast expression vectors having expression control sequences (e.g., promoters), an origin of replication, termination sequences and the like as desired. Typical promoters include 3-phosphoglycerate kinase and other glycolytic enzymes. Inducible yeast promoters include, among others, promoters from alcohol dehydrogenase, isocytochrome C, and enzymes responsible for methanol, maltose, and galactose utilization.
- Alternatively, polypeptide-coding nucleotide sequences can be incorporated in transgenes for introduction into the genome of a transgenic animal and subsequent expression in the milk of the transgenic animal (see, e.g., U.S. Pat. Nos. 5,741,957; 5,304,489; and 5,849,992). Suitable transgenes include coding sequences for polypeptides in operable linkage with a promoter and enhancer from a mammary gland specific gene, such as casein or beta lactoglobulin.
- In vitro production allows scale-up to give large amounts of the desired polypeptides. Techniques for mammalian cell cultivation under tissue culture conditions are known in the art and include homogeneous suspension culture, e.g. in an airlift reactor or in a continuous stirrer reactor, or immobilized or entrapped cell culture, e.g. in hollow fibers, microcapsules, on agarose microbeads or ceramic cartridges. If necessary and/or desired, the solutions of polypeptides can be purified by the customary chromatography methods, for example gel filtration, ion-exchange chromatography, chromatography over DEAE-cellulose or (immuno-) affinity chromatography, e.g., after preferential biosynthesis of a synthetic hinge region polypeptide or prior to or subsequent to the HIC chromatography step described herein. An affinity tag sequence (e.g. a His(6) tag (SEQ ID NO: 246)) can optionally be attached or included within the polypeptide sequence to facilitate downstream purification.
- Once expressed, the chimeric molecules can be purified according to standard procedures of the art, including ammonium sulfate precipitation, affinity column chromatography, HPLC purification, gel electrophoresis and the like (see generally Scopes, Protein Purification (Springer-Verlag, N.Y., (1982)) and see specifically the methods used in the instant Examples. Substantially pure proteins of at least about 90 to 95% homogeneity are preferred, and 98 to 99% or more homogeneity most preferred, for pharmaceutical uses.
- The present disclosure also provides pharmaceutical compositions comprising one or more of:
-
- (i) a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein;
- (ii) a chimeric molecule disclosed herein;
- (iii) a nucleic acid molecule or the set of nucleic acid molecules disclosed herein; or
- (iv) a vector or set of vectors disclosed herein, and a pharmaceutically acceptable carrier.
- In some embodiments, administering (i) a chimeric molecule disclosed herein, (ii) a nucleic acid molecule or a set of nucleic acid molecules disclosed herein, (iii) a vector or a set of vectors disclosed herein, or (iii) a pharmaceutical composition disclosed herein, can be used, for example, to reduce the frequency or degree of a bleeding episode in a subject in need, and/or reducing or preventing an occurrence of a bleeding episode in a subject in need thereof. In some embodiments, the subject has developed or has a tendency to develop an inhibitor against treatment with FVIII, FIX, or both. In some embodiments, the inhibitor against FVIII or FIX is a neutralizing antibody against FVIII, FIX, or both. In some embodiments, the bleeding episode can be caused by a blood coagulation disorder, for example, hemophilia A or hemophilia B. In other embodiments, the bleeding episode can be the result of hemarthrosis, muscle bleed, oral bleed, hemorrhage, hemorrhage into muscles, oral hemorrhage, trauma, trauma capitis, gastrointestinal bleeding, intracranial hemorrhage, intra-abdominal hemorrhage, intrathoracic hemorrhage, bone fracture, central nervous system bleeding, bleeding in the retropharyngeal space, bleeding in the retroperitoneal space, bleeding in the illiopsoas sheath, or any combinations thereof. In certain embodiments, the subject is a human subject.
- A pharmaceutical composition may include a “therapeutically effective amount” of an agent described herein. Such effective amounts can be determined based on the effect of the administered agent, or the combinatorial effect of agents if more than one agent is used. A therapeutically effective amount of an agent may also vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the compound to elicit a desired response in the individual, e.g., amelioration of at least one disorder parameter or amelioration of at least one symptom of the disorder. A therapeutically effective amount is also one in which any toxic or detrimental effects of the composition are outweighed by the therapeutically beneficial effects.
- In one embodiment, the pharmaceutical composition (e.g., a composition comprising the polypeptide(s) or nucleic acid molecule(s) encoding the polypeptide(s)) is one in which the clotting factor is present in activatable form when administered to a subject. Such an activatable molecule can be activated in vivo at the site of clotting after administration to a subject.
- The antibodies, antigen-binding fragments thereof and chimeric molecules of the disclosure can be useful in methods of treating a subject with a disease or condition. The disease or condition can include, but is not limited to, hemostatic or coagulation disorders.
- For example, this disclosure provides a method of treating, ameliorating, or preventing a hemostatic disorder to a subject comprising administering a therapeutically effective amount of a chimeric molecule of the disclosure which comprises a clotting factor. The treatment, amelioration, and prevention by the chimeric molecule can be a bypass therapy. The subject in the bypass therapy can have already developed an inhibitor to a clotting factor, e.g., FVIII or FIX, or is subject to developing a clotting factor inhibitor. In one embodiment, a chimeric molecule composition of the invention is administered in combination with at least one other agent that promotes hemostasis. As an example, but not as a limitation, hemostatic agent can include a FV, FVII, FVIII, FIX, FX, FXI, FXII, FXIII, prothrombin, or fibrinogen or activated forms of any of the preceding. The clotting factor or hemostatic agent can also include anti-fibrinolytic drugs, e.g., epsilon-amino-caproic acid, tranexamic acid.
- The chimeric molecules of the invention treat or prevent a hemostatic disorder by promoting the formation of a fibrin clot. The chimeric molecule of the invention can activate any member of a coagulation cascade. The clotting factor can be a participant in the extrinsic pathway, the intrinsic pathway or both. A chimeric molecule of the invention can be used to treat hemostatic disorders, e.g., those known to be treatable with the particular clotting factor present in the chimeric molecule. The hemostatic disorders that can be treated by administration of the chimeric molecule of the invention include, but are not limited to, hemophilia A, hemophilia B, von Willebrand's disease, Factor XI deficiency (PTA deficiency), Factor XII deficiency, as well as deficiencies or structural abnormalities in fibrinogen, prothrombin, Factor V, Factor VII, Factor X, or Factor XIII.
- In one embodiment, the hemostatic disorder is an inherited disorder. In one embodiment, the subject has hemophilia A, and the chimeric molecule comprises activated or protease-activatable FVII linked to or associated with a GPIIb/IIIa antibody or antigen-binding molecule thereof and a half-life extending heterologous moiety. In another embodiment, the subject has hemophilia A and the chimeric molecule comprises activated or protease-activatable FVII linked to or associated with an Fab or scFv of an GPIIb/IIIa antibody and a half-life extending heterologous moiety. In other embodiments, the subject has hemophilia B and the chimeric molecule comprises activated or protease-activatable FVII or FX linked to or associated with a GPIIb/IIIa antibody or antigen-binding molecule thereof and a half-life extending heterologous moiety. In some embodiments, the subject has inhibitory antibodies to FVIII or FVIIIa and the chimeric molecule comprises activated or protease-activatable FVII linked to or associated with a GPIIb/IIIa antibody or antigen-binding molecule thereof and a half-life extending heterologous moiety. In yet other embodiments, the subject has inhibitory antibodies against FIX or FIXa and the chimeric molecule comprises activated or protease-activatable FVII linked to or associated with a GPIIb/IIIa antibody or antigen-binding molecule thereof and a half-life extending heterologous moiety. In still other embodiments, the subject has inhibitory antibodies to FVIII or FVIIIa and the chimeric molecule comprises activated or protease-activatable FX linked to or associated with a GPIIb/IIIa antibody or antigen-binding molecule thereof and a half-life extending heterologous moiety. In certain embodiments, the subject has inhibitory antibodies against FIX or FIXa and the chimeric molecule comprises activated or protease-activatable FX linked to or associated with a GPIIb/IIIa antibody or antigen-binding molecule thereof and a half-life extending heterologous moiety.
- Chimeric molecules of the invention comprising a clotting factor (e.g., FVII) can be used to prophylactically treat a subject with a hemostatic or coagulation disorder. Chimeric molecules of the invention comprising a clotting factor (e.g., FVII) can be used to treat an acute bleeding episode in a subject with a hemostatic disorder.
- In one embodiment, the hemostatic disorder is the result of a deficiency in a clotting factor, e.g., FVII, FIX, or FVIII. In another embodiment, the hemostatic disorder can be the result of a defective clotting factor. In another embodiment, the hemostatic disorder can be an acquired disorder. The acquired disorder can result from an underlying secondary disease or condition. The unrelated condition can be, as an example, but not as a limitation, cancer, an autoimmune disease, or pregnancy. The acquired disorder can result from old age or from medication to treat an underlying secondary disorder (e.g. cancer chemotherapy).
- The invention thus relates to a method of treating a subject in need of a general hemostatic agent comprising administering a therapeutically effective amount of at least one chimeric molecule of the invention. For example, in one embodiment, the subject in need of a general hemostatic agent is undergoing, or is about to undergo, surgery. The chimeric molecule of the invention can be administered prior to or after surgery as a prophylactic. The chimeric molecule of the invention can be administered during or after surgery to control an acute bleeding episode. The surgery can include, but is not limited to, liver transplantation, liver resection, or stem cell transplantation. In another embodiment, the chimeric molecule of the invention can be used to treat a subject having an acute bleeding episode who does not have a hemostatic disorder. The acute bleeding episode can result from severe trauma, e.g., surgery, an automobile accident, wound, laceration gun shot, or any other traumatic event resulting in uncontrolled bleeding.
- The antibodies, antigen-binding fragments thereof, chimeric molecules, or nucleic acids encoding same of the disclosure can be administered intravenously, subcutaneously, intramuscularly, or via any mucosal surface, e.g., orally, sublingually, buccally, sublingually, nasally, rectally, vaginally or via pulmonary route. The chimeric molecule can be implanted within or linked to a biopolymer solid support that allows for the slow release of the chimeric molecule to the desired site. The route and/or mode of administration of the antibody or antigen-binding fragment thereof can also be tailored for the individual case, e.g., by monitoring the subject,
- For oral administration, the pharmaceutical composition can take the form of tablets or capsules prepared by conventional means. The composition can also be prepared as a liquid for example a syrup or a suspension. The liquid can include suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats), emulsifying agents (lecithin or acacia), non-aqueous vehicles (e.g., almond oil, oily esters, ethyl alcohol, or fractionated vegetable oils), and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid). The preparations can also include flavoring, coloring and sweetening agents. Alternatively, the composition can be presented as a dry product for constitution with water or another suitable vehicle. For buccal and sublingual administration the composition can take the form of tablets, lozenges or fast dissolving films according to conventional protocols. For administration by inhalation, the chimeric molecules for use according to the present disclosure are conveniently delivered in the form of an aerosol spray from a pressurized pack or nebulizer (e.g., in PBS), with a suitable propellant.
- In one embodiment, the route of administration of the polypeptides of the invention is parenteral. The term parenteral as used herein includes intravenous, intraarterial, intraperitoneal, intramuscular, subcutaneous, rectal or vaginal administration. The intravenous form of parenteral administration is preferred. While all these forms of administration are clearly contemplated as being within the scope of the invention, a form for administration would be a solution for injection, in particular for intravenous or intraarterial injection or drip. Usually, a suitable pharmaceutical composition for injection can comprise a buffer (e.g., acetate, phosphate or citrate buffer), a surfactant (e.g. polysorbate), optionally a stabilizer agent (e.g., human albumin), etc. However, in other methods compatible with the teachings herein, the polypeptides can be delivered directly to the site of the adverse cellular population thereby increasing the exposure of the diseased tissue to the therapeutic agent.
- Preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. In the subject invention, pharmaceutically acceptable carriers include, but are not limited to, 0.01-0.1M and preferably 0.05M phosphate buffer or 0.8% saline. Other common parenteral vehicles include sodium phosphate solutions, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's, or fixed oils. Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers, such as those based on Ringer's dextrose, and the like. Preservatives and other additives can also be present such as for example, antimicrobials, antioxidants, chelating agents, and inert gases and the like.
- More particularly, pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In such cases, the composition must be sterile and should be fluid to the extent that easy syringability exists. It should be stable under the conditions of manufacture and storage and will preferably be preserved against the contaminating action of microorganisms, such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols, such as mannitol, sorbitol, or sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.
- In any case, sterile injectable solutions can be prepared by incorporating an active compound (e.g., a polypeptide by itself or in combination with other active agents) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated herein, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle, which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying, which yields a powder of an active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof. The preparations for injections are processed, filled into containers such as ampoules, bags, bottles, syringes or vials, and sealed under aseptic conditions according to methods known in the art. Further, the preparations can be packaged and sold in the form of a kit. Such articles of manufacture will preferably have labels or package inserts indicating that the associated compositions are useful for treating a subject suffering from, or predisposed to clotting disorders.
- The pharmaceutical composition can also be formulated for rectal administration as a suppository or retention enema, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
- Effective doses of the compositions of the present disclosure, for the treatment of conditions vary depending upon many different factors, including means of administration, target site, physiological state of the patient, whether the patient is human or an animal, other medications administered, and whether treatment is prophylactic or therapeutic. Usually, the patient is a human but non-human mammals including transgenic mammals can also be treated. Treatment dosages can be titrated using routine methods known to those of skill in the art to optimize safety and efficacy.
- In one embodiment, the dose of a biologically active moiety (e.g., comprising FVII), can range from about 90 to 270 μg/kg or 0.090 to 0.270 mg/kg. In another embodiment, the dose of a biologically active moiety (e.g., comprising FX), can range from about 1 μg/kg to 400 mg/kg.
- Dosages can range from 1000 μg/kg to 0.1 ng/kg body weight. In one embodiment, the dosing range is 1 ug/kg to 100 μg/kg. The protein can be administered continuously or at specific timed intervals. In vitro assays can be employed to determine optimal dose ranges and/or schedules for administration. In vitro assays that measure clotting factor activity are known in the art, e.g., STA-CLOT VIIa-rTF clotting assay. Additionally, effective doses can be extrapolated from dose-response curves obtained from animal models, e g., a hemophiliac dog (Mount et al. 2002, Blood 99: 2670).
- Doses intermediate in the above ranges are also intended to be within the scope of the invention. Subjects can be administered such doses daily, on alternative days, weekly or according to any other schedule determined by empirical analysis. An exemplary treatment entails administration in multiple dosages over a prolonged period, for example, of at least six months. In some methods, two or more polypeptides can be administered simultaneously, in which case the dosage of each polypeptide administered falls within the ranges indicated.
- Polypeptides of the invention can be administered on multiple occasions. Intervals between single dosages can be daily, weekly, monthly or yearly. Intervals can also be irregular as indicated by measuring blood levels of modified polypeptide or antigen in the patient. Alternatively, polypeptides can be administered as a sustained release formulation, in which case less frequent administration is required. Dosage and frequency vary depending on the half-life of the polypeptide in the patient.
- The dosage and frequency of administration can vary depending on whether the treatment is prophylactic or therapeutic. In prophylactic applications, compositions containing the polypeptides of the invention or a cocktail thereof are administered to a patient not already in the disease state to enhance the patient's resistance or minimize effects of disease. Such an amount is defined to be a “prophylactic effective dose.” A relatively low dosage is administered at relatively infrequent intervals over a long period of time. Some patients continue to receive treatment for the rest of their lives.
- Polypeptides of the invention can optionally be administered in combination with other agents that are effective in treating the disorder or condition in need of treatment (e.g., prophylactic or therapeutic).
- As used herein, the administration of polypeptides of the invention in conjunction or combination with an adjunct therapy means the sequential, simultaneous, coextensive, concurrent, concomitant or contemporaneous administration or application of the therapy and the disclosed polypeptides. Those skilled in the art will appreciate that the administration or application of the various components of the combined therapeutic regimen can be timed to enhance the overall effectiveness of the treatment. A skilled artisan (e.g., a physician) would be readily be able to discern effective combined therapeutic regimens without undue experimentation based on the selected adjunct therapy and the teachings of the instant specification.
- It will further be appreciated that the polypeptides of the instant invention can be used in conjunction or combination with an agent or agents (e.g., to provide a combined therapeutic regimen). Exemplary agents with which a polypeptide of the invention can be combined include agents that represent the current standard of care for a particular disorder being treated. Such agents can be chemical or biologic in nature. The term “biologic” or “biologic agent” refers to any pharmaceutically active agent made from living organisms and/or their products which is intended for use as a therapeutic.
- The amount of agent to be used in combination with the polypeptides of the instant invention can vary by subject or can be administered according to what is known in the art. See for example, Bruce A Chabner et al., Antineoplastic Agents, in Goodman & Gilman's The Pharmacological Basis of Therapeutics 1233-1287 ((Hardman et al., eds., 9th ed. 1996). In another embodiment, an amount of such an agent consistent with the standard of care is administered.
- As previously discussed, the polypeptides of the present disclosure, can be administered in a pharmaceutically effective amount for the in vivo treatment of clotting disorders. In this regard, it will be appreciated that the polypeptides of the invention can be formulated to facilitate administration and promote stability of the active agent. Preferably, pharmaceutical compositions in accordance with the present disclosure comprise a pharmaceutically acceptable, non-toxic, sterile carrier such as physiological saline, non-toxic buffers, preservatives and the like. Of course, the pharmaceutical compositions of the present disclosure can be administered in single or multiple doses to provide for a pharmaceutically effective amount of the polypeptide.
- In one embodiment, a chimeric molecule of the invention is administered as a nucleic acid molecule. Nucleic acid molecules can be administered using techniques known in the art, including via vector, plasmid, liposome, DNA injection, electroporation, gene gun, intravenously injection or hepatic artery infusion. Vectors for use in gene therapy embodiments are known in the art.
- In keeping with the scope of the present disclosure, the chimeric molecule of the invention can be administered to a human or other animal in accordance with the aforementioned methods of treatment in an amount sufficient to produce a therapeutic or prophylactic effect.
- The instant disclosure also provides a method to target or deliver a therapeutic or prophylactic agent (e.g., a clotting factor such as FVII) to the surface of platelets, wherein the method comprises fusing the agent to one of the GPIIb/IIIa antibodies or antigen-binding fragments thereof disclosed herein.
- In addition, the disclosure provides a method to increase the activity of a therapeutic or prophylactic agent (e.g., a clotting factor such as FVII) comprising fusing the agent to a GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein.
- Further, the disclosure provides a method to improve the pharmacokinetic properties of a clotting factor comprising fusing the clotting factor to the GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein.
- In some embodiments, these methods further comprise fusing or conjugating a clotting factor and/or the GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein to a half-life extending moiety. In some embodiments, the therapeutic or prophylactic agent is a FVII, a FIX, or a FX.
- The present disclosure also provides a method of measuring the level of platelets in plasma of a subject in need thereof comprising contacting the GPIIb/IIIa antibody or antigen binding molecule thereof disclosed herein with the plasma from the subject and measuring the level of platelets in plasma. This method can further comprise fusing or conjugating the clotting factor and/or the GPIIb/IIIa antibody or antigen-binding molecule thereof disclosed herein to a detectable heterologous moiety, for example, a fluorescent molecule or a radionuclide.
- This disclosure also provides a method of isolating or separating platelets from other cells in a sample (e.g., a blood sample). The method comprises contacting the sample with an GPIIb/IIIa antibody or antigen binding molecule thereof disclosed herein and separating the cells that have bound to the GPIIb/IIIa antibody or antigen binding molecule thereof from the unbound fraction.
- In addition, the disclosure also provides a method of detecting platelets in a sample (e.g., blood sample) of a subject comprising contacting the sample with a detectably labeled GPIIb/IIIa antibody or antigen binding molecule. The detectable label can be, for example, a fluorescent molecule or a radionuclide.
- The following examples are included for purposes of illustration only and are not intended to be limiting of the invention. All patents and publications referred to herein are expressly incorporated by reference in their entireties.
- The CDRs (CDR-H1, CDR-H2, and CDR-H3 for the heavy chain region and CDR-L1, CDR-L2, and CDR-L3 for the light chain region) of the murine anti-integrin GPIIb/IIIa antibody, 34D10, were grafted onto human acceptor frameworks to create CDR-grafted variable heavy chain, VH0, and variable light chain, VL0, respectively. Five additional heavy chain regions (VH1 to 5) and three additional light chain regions (VL1 to 3) were created by combining several mutations in the human acceptor frameworks of the CDR grafts compared to the CDR-grafted chains (i.e., VH0 and VL0). The majority of the mutations that were made in the human acceptor frameworks were backmutations to the amino acid of the mature murine framework to help maintain the structure of the 34D10 CDRs.
- The germline humIGKV3-15 with framework region FR4 from human consensus subgroup Kappa I was chosen as the light chain acceptor framework. As the humIGKV3-15 germline sequence lacks the final framework region, FR4, the VL0 CDR graft employed the FR4 region from the corresponding human consensus subgroup, Kappa III, which is the same as the FR4 sequence of the human consensus subgroup most similar to the mature murine, Kappa I, namely FGQGTKVEIK (SEQ ID NO:49). This FR4 sequence differs at two positions from 34D10's FR4,
- The germline humIGHV3/OR16-13 with framework region FR4 from human consensus subgroup Heavy III was chosen as the heavy chain acceptor framework. As the humIGHV3/OR16-13 germline sequence lacks the final framework region FR4, the VH0 CDR graft used the FR4 region from the human consensus that best matched 34D10 VH, human consensus subgroup Heavy III. This
framework region 4 sequence is WGQGTLVTVSS (SEQ ID NO: 34), differing from murine only by having that L108, which is S in the 34D10 VH and the murine consensus Heavy III(D). - The sequences of the 34D10 VH and VL regions, as well as the six humanized 34D10 variable heavy chain regions and four humanized 34D10 variable light chain regions are shown below.
CDRs -
-
34D10 VH Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 1) EVKLVESGGGLVKPGGSLKLSCAASGFTFSAYAMSWVRQTPEKRLEWV ASISSGGTTYYPDSVKRRFTISRDNARNILYLQMSSLRSEDTAMYYCT RGGDYGYALDYWGQGTSVTVSS h34D10 VH0 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 3) EVQLVESGGGLVQPGGSLRLSCAASGFTFSAYAMSWVRQAPGKGLVWV SSISSGGTTYYPDSVKRQFTISRDNAKNTLYLQMNSLRAEDMAVYYCT RGGDYGYALDYWGQGTLVTVSS h34D10 VH0 Variable Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 13) 1 GAGGTGCAGC TGGTGGAGTC TGGAGGAGGC TTGGTACAGC CTGGAGGGTC CCTGAGACTC 61 TCCTGTGCAG CCTCTGGATT CACCTTTAGC GCCTATGCCA TGAGCTGGGT CCGCCAGGCT 121 CCAGGGAAGG GGCTGGTGTG GGTCTCAAGC ATTAGTAGTG GTGGTACCAC ATACTACCCA 181 GACTCCGTGA AGAGGCAGTT CACCATCTCC AGAGACAATG CCAAGAACAC GCTGTATCTG 241 CAAATGAACA GCCTGAGAGC CGAGGACATG GCCGTATATT ACTGTACCAG AGGAGGGGAT 301 TATGGCTACG CTCTCGACTA CTGGGGCCAG GGAACCCTGG TCACCGTCTC CTCA h34D10 VH0 Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 59) 1 GAGGTGCAGC TGGTGGAGTC TGGAGGAGGC TTGGTACAGC CTGGAGGGTC CCTGAGACTC 61 TCCTGTGCAG CCTCTGGATT CACCTTTAGC GCCTATGCCA TGAGCTGGGT CCGCCAGGCT 121 CCAGGGAAGG GGCTGGTGTG GGTCTCAAGC ATTAGTAGTG GTGGTACCAC ATACTACCCA 181 GACTCCGTGA AGAGGCAGTT CACCATCTCC AGAGACAATG CCAAGAACAC GCTGTATCTG 241 CAAATGAACA GCCTGAGAGC CGAGGACATG GCCGTATATT ACTGTACCAG AGGAGGGGAT 301 TATGGCTACG CTCTCGACTA CTGGGGCCAG GGAACCCTGG TCACCGTCTC CTCAGCCTCC 361 ACCAAGGGCC CATCGGTCTT CCCGCTAGCA CCCTCCTCCA AGAGCACCTC TGGGGGCACA 421 GCGGCCCTGG GCTGCCTGGT CAAGGACTAC TTCCCCGAAC CGGTGACGGT GTCGTGGAAC 481 TCAGGCGCCC TGACCAGCGG CGTCCACACC TTCCCGGCTG TCCTACAGTC TAGCGGACTC 541 TACTCCCTCA GCAGCGTAGT GACCGTGCCC TCTTCTAGCT TGGGCACCCA GACCTACATC 601 TGCAACGTGA ATCACAAGCC CAGCAACACC AAGGTGGACA AGAAAGTTGA GCCCAAATCT 661 TGTTAG h34D10 VH1 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 5) EVQLVQSGGGLVQPGESLRLSCAASGFTFSAYAMSWVRQAPGKGLEWV SSISSGGTTYYPDSVKRRFTISRDNAKNTLYLQMNSLRAEDMAVYYCT RGGDYGYALDYWGQGTLVTVSS h34D10 VH1 Variable Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 14) 1 GAGGTGCAGC TGGTGCAGTC TGGAGGAGGC TTGGTACAGC CTGGAGAGTC CCTGAGACTC 61 TCCTGTGCAG CCTCTGGATT CACCTTTAGC GCCTATGCCA TGAGCTGGGT CCGCCAGGCT 121 CCAGGGAAGG GGCTGGAGTG GGTCTCAAGC ATTAGTAGTG GTGGTACCAC ATACTACCCA 181 GACTCCGTGA AGAGGAGATT CACCATCTCC AGAGACAATG CCAAGAACAC GCTGTATCTG 241 CAAATGAACA GCCTGAGAGC CGAGGACATG GCCGTATATT ACTGTACCAG AGGAGGGGAT 301 TATGGCTACG CTCTCGACTA CTGGGGCCAG GGAACCCTGG TCACCGTCTC CTCA h34D10 VH1 Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 60) 1 GAGGTGCAGC TGGTGCAGTC TGGAGGAGGC TTGGTACAGC CTGGAGAGTC CCTGAGACTC 61 TCCTGTGCAG CCTCTGGATT CACCTTTAGC GCCTATGCCA TGAGCTGGGT CCGCCAGGCT 121 CCAGGGAAGG GGCTGGAGTG GGTCTCAAGC ATTAGTAGTG GTGGTACCAC ATACTACCCA 181 GACTCCGTGA AGAGGAGATT CACCATCTCC AGAGACAATG CCAAGAACAC GCTGTATCTG 241 CAAATGAACA GCCTGAGAGC CGAGGACATG GCCGTATATT ACTGTACCAG AGGAGGGGAT 301 TATGGCTACG CTCTCGACTA CTGGGGCCAG GGAACCCTGG TCACCGTCTC CTCAGCCTCC 361 ACCAAGGGCC CATCGGTCTT CCCGCTAGCA CCCTCCTCCA AGAGCACCTC TGGGGGCACA 421 GCGGCCCTGG GCTGCCTGGT CAAGGACTAC TTCCCCGAAC CGGTGACGGT GTCGTGGAAC 481 TCAGGCGCCC TGACCAGCGG CGTCCACACC TTCCCGGCTG TCCTACAGTC TAGCGGACTC 541 TACTCCCTCA GCAGCGTAGT GACCGTGCCC TCTTCTAGCT TGGGCACCCA GACCTACATC 601 TGCAACGTGA ATCACAAGCC CAGCAACACC AAGGTGGACA AGAAAGTTGA GCCCAAATCT 661 TGTTAG h34D10 VH2 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 7) EVQLVESGGGLVKPGGSLRLSCAASGFTFSAYAMSWVRQAPGKGLVWV ASISSGGTTYYPDSVKRQFTISRDNAKNTLYLQMNSLRAEDTAVYYCT RGGDYGYALDYWGQGTLVTVSS h34D10 VH2 Variable Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 15) 1 GAGGTGCAGC TGGTGGAGTC TGGAGGAGGC TTGGTAAAGC CTGGAGGATC CCTGAGACTC 61 TCCTGTGCAG CCTCTGGATT CACCTTTAGC GCCTATGCCA TGAGCTGGGT CCGCCAGGCT 121 CCAGGGAAGG GGCTGGTCTG GGTCGCTAGC ATTAGTAGTG GTGGTACCAC ATACTACCCA 181 GACTCCGTGA AGAGGCAGTT CACCATCTCC AGAGACAATG CCAAGAACAC GCTGTATCTG 241 CAAATGAACA GCCTGAGAGC CGAGGACACA GCCGTATATT ACTGTACCAG AGGAGGGGAT 301 TATGGCTACG CTCTCGACTA CTGGGGCCAG GGAACCCTGG TCACCGTCTC CTCA h34D10 VH2 Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 61) 1 GAGGTGCAGC TGGTGGAGTC TGGAGGAGGC TTGGTAAAGC CTGGAGGATC CCTGAGACTC 61 TCCTGTGCAG CCTCTGGATT CACCTTTAGC GCCTATGCCA TGAGCTGGGT CCGCCAGGCT 121 CCAGGGAAGG GGCTGGTCTG GGTCGCTAGC ATTAGTAGTG GTGGTACCAC ATACTACCCA 181 GACTCCGTGA AGAGGCAGTT CACCATCTCC AGAGACAATG CCAAGAACAC GCTGTATCTG 241 CAAATGAACA GCCTGAGAGC CGAGGACACA GCCGTATATT ACTGTACCAG AGGAGGGGAT 301 TATGGCTACG CTCTCGACTA CTGGGGCCAG GGAACCCTGG TCACCGTCTC CTCAGCCTCC 361 ACCAAGGGCC CATCGGTCTT CCCGCTAGCA CCCTCCTCCA AGAGCACCTC TGGGGGCACA 421 GCGGCCCTGG GCTGCCTGGT CAAGGACTAC TTCCCCGAAC CGGTGACGGT GTCGTGGAAC 481 TCAGGCGCCC TGACCAGCGG CGTCCACACC TTCCCGGCTG TCCTACAGTC TAGCGGACTC 541 TACTCCCTCA GCAGCGTAGT GACCGTGCCC TCTTCTAGCT TGGGCACCCA GACCTACATC 601 TGCAACGTGA ATCACAAGCC CAGCAACACC AAGGTGGACA AGAAAGTTGA GCCCAAATCT 661 TGTTAG h34D10 VH3 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 9) EVQLVQSGGGLVKPGESLRLSCAASGFTFSAYAMSWVRQAPGKGLEWV ASISSGGTTYYPDSVKRRFTISRDNAKNTLYLQMNSLRAEDTAVYYCT RGGDYGYALDYWGQGTLVTVSS h34D10 VH3 Variable Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 16) 1 GAGGTGCAGC TGGTGCAGTC TGGAGGAGGC TTGGTAAAGC CTGGAGAGTC CCTGAGACTC 61 TCCTGTGCAG CCTCTGGATT CACCTTTAGC GCCTATGCCA TGAGCTGGGT CCGCCAGGCT 121 CCAGGGAAGG GGCTGGAGTG GGTCGCTAGC ATTAGTAGTG GTGGTACCAC ATACTACCCA 181 GACTCCGTGA AGAGGAGATT CACCATCTCC AGAGACAATG CCAAGAACAC GCTGTATCTG 241 CAAATGAACA GCCTGAGAGC CGAGGACACA GCCGTATATT ACTGTACCAG AGGAGGGGAT 301 TATGGCTACG CTCTCGACTA CTGGGGCCAG GGAACCCTGG TCACCGTCTC CTCA h34D10 VH3 Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 62) 1 GAGGTGCAGC TGGTGCAGTC TGGAGGAGGC TTGGTAAAGC CTGGAGAGTC CCTGAGACTC 61 TCCTGTGCAG CCTCTGGATT CACCTTTAGC GCCTATGCCA TGAGCTGGGT CCGCCAGGCT 121 CCAGGGAAGG GGCTGGAGTG GGTCGCTAGC ATTAGTAGTG GTGGTACCAC ATACTACCCA 181 GACTCCGTGA AGAGGAGATT CACCATCTCC AGAGACAATG CCAAGAACAC GCTGTATCTG 241 CAAATGAACA GCCTGAGAGC CGAGGACACA GCCGTATATT ACTGTACCAG AGGAGGGGAT 301 TATGGCTACG CTCTCGACTA CTGGGGCCAG GGAACCCTGG TCACCGTCTC CTCAGCCTCC 361 ACCAAGGGCC CATCGGTCTT CCCGCTAGCA CCCTCCTCCA AGAGCACCTC TGGGGGCACA 421 GCGGCCCTGG GCTGCCTGGT CAAGGACTAC TTCCCCGAAC CGGTGACGGT GTCGTGGAAC 481 TCAGGCGCCC TGACCAGCGG CGTCCACACC TTCCCGGCTG TCCTACAGTC TAGCGGACTC 541 TACTCCCTCA GCAGCGTAGT GACCGTGCCC TCTTCTAGCT TGGGCACCCA GACCTACATC 601 TGCAACGTGA ATCACAAGCC CAGCAACACC AAGGTGGACA AGAAAGTTGA GCCCAAATCT 661 TGTTAG h34D10 VH4 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 11) EVQLVQSGGGLVKPGESLRLSCAASGFTFSAYAMSWVRQAPGKGLEWV ASISSGGTTYYPDSVKRRFTISRDNSRNTLYLQMNSLRAEDTAVYYCT RGGDYGYALDYWGQGTLVTVSS h34D10 VH4 Variable Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 17) 1 GAGGTGCAGC TGGTGCAGTC TGGAGGAGGC TTGGTAAAGC CTGGAGAGTC CCTGAGACTC 61 TCCTGTGCAG CCTCTGGATT CACCTTTAGC GCCTATGCCA TGAGCTGGGT CCGCCAGGCT 121 CCAGGGAAGG GGCTGGAGTG GGTCGCTAGC ATTAGTAGTG GTGGTACCAC ATACTACCCA 181 GACTCCGTGA AGAGGAGATT CACCATCTCC AGAGACAATA GTCGCAACAC GCTGTATCTG 241 CAAATGAACA GCCTGAGAGC CGAGGACACA GCCGTATATT ACTGTACCAG AGGAGGGGAT 301 TATGGCTACG CTCTCGACTA CTGGGGCCAG GGAACCCTGG TCACCGTCTC CTCA h34D10 VH4 Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 63) 1 GAGGTGCAGC TGGTGCAGTC TGGAGGAGGC TTGGTAAAGC CTGGAGAGTC CCTGAGACTC 61 TCCTGTGCAG CCTCTGGATT CACCTTTAGC GCCTATGCCA TGAGCTGGGT CCGCCAGGCT 121 CCAGGGAAGG GGCTGGAGTG GGTCGCTAGC ATTAGTAGTG GTGGTACCAC ATACTACCCA 181 GACTCCGTGA AGAGGAGATT CACCATCTCC AGAGACAATA GTCGCAACAC GCTGTATCTG 241 CAAATGAACA GCCTGAGAGC CGAGGACACA GCCGTATATT ACTGTACCAG AGGAGGGGAT 301 TATGGCTACG CTCTCGACTA CTGGGGCCAG GGAACCCTGG TCACCGTCTC CTCAGCCTCC 361 ACCAAGGGCC CATCGGTCTT CCCGCTAGCA CCCTCCTCCA AGAGCACCTC TGGGGGCACA 421 GCGGCCCTGG GCTGCCTGGT CAAGGACTAC TTCCCCGAAC CGGTGACGGT GTCGTGGAAC 481 TCAGGCGCCC TGACCAGCGG CGTCCACACC TTCCCGGCTG TCCTACAGTC TAGCGGACTC 541 TACTCCCTCA GCAGCGTAGT GACCGTGCCC TCTTCTAGCT TGGGCACCCA GACCTACATC 601 TGCAACGTGA ATCACAAGCC CAGCAACACC AAGGTGGACA AGAAAGTTGA GCCCAAATCT 661 TGTTAG h34D10 VH5 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 12) EVKLVESGGGLVKPGGSLRLSCAASGFTFSAYAMSWVRQAPGKGLEWV ASISSGGTTYYPDSVKRRFTISRDNARNTLYLQMNSLRAEDTAVYYCT RGGDYGYALDYWGQGTLVTVSS h34D10 VH5 Variable Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 18) 1 GAGGTGAAGC TGGTGGAGTC TGGAGGAGGC TTGGTAAAGC CTGGAGGCTC CCTGAGACTC 61 TCCTGTGCAG CCTCTGGATT CACCTTTAGC GCCTATGCCA TGAGCTGGGT CCGCCAGGCT 121 CCAGGGAAGG GGCTGGAGTG GGTCGCTAGC ATTAGTAGTG GTGGTACCAC ATACTACCCA 181 GACTCCGTGA AGAGGAGATT CACCATCTCC AGAGACAATG CTCGCAACAC GCTGTATCTG 241 CAAATGAACA GCCTGAGAGC CGAGGACACA GCCGTATATT ACTGTACCAG AGGAGGGGAT 301 TATGGCTACG CTCTCGACTA CTGGGGCCAG GGAACCCTGG TCACCGTCTC CTCA h34D10 VH5 Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 64) 1 GAGGTGAAGC TGGTGGAGTC TGGAGGAGGC TTGGTAAAGC CTGGAGGCTC CCTGAGACTC 61 TCCTGTGCAG CCTCTGGATT CACCTTTAGC GCCTATGCCA TGAGCTGGGT CCGCCAGGCT 121 CCAGGGAAGG GGCTGGAGTG GGTCGCTAGC ATTAGTAGTG GTGGTACCAC ATACTACCCA 181 GACTCCGTGA AGAGGAGATT CACCATCTCC AGAGACAATG CTCGCAACAC GCTGTATCTG 241 CAAATGAACA GCCTGAGAGC CGAGGACACA GCCGTATATT ACTGTACCAG AGGAGGGGAT 301 TATGGCTACG CTCTCGACTA CTGGGGCCAG GGAACCCTGG TCACCGTCTC CTCAGCCTCC 361 ACCAAGGGCC CATCGGTCTT CCCGCTAGCA CCCTCCTCCA AGAGCACCTC TGGGGGCACA 421 GCGGCCCTGG GCTGCCTGGT CAAGGACTAC TTCCCCGAAC CGGTGACGGT GTCGTGGAAC 481 TCAGGCGCCC TGACCAGCGG CGTCCACACC TTCCCGGCTG TCCTACAGTC TAGCGGACTC 541 TACTCCCTCA GCAGCGTAGT GACCGTGCCC TCTTCTAGCT TGGGCACCCA GACCTACATC 601 TGCAACGTGA ATCACAAGCC CAGCAACACC AAGGTGGACA AGAAAGTTGA GCCCAAATCT 661 TGTTAG Variable Light Chain Sequences: 34D10 VL Variable Light Chain Amino Acid Sequence (SEQ ID NO: 2) ENVLTQSPAIMSASLGEKVTMSCRASSSVNYMYWYQQKSDASPKLW IYYTSNLAPGVPARFSGSGSGNSYSLTISSMEGEDAATYYCQQFSS SPWTFGGGTKLEIK h34D10 VL0 Variable Light Chain Amino Acid Sequence (SEQ ID NO: 4) EIVMTQSPATLSVSPGERATLSCRASSSVNYMYWYQQKPGQAPRLLI YYTSNLAPGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQFSSSP WTFGQGTKVEIK h34D10 VL0 Variable Light Chain Nucleic Acid Sequence (SEQ ID NO: 19) 1 GAAATTGTAA TGACACAGTC TCCAGCCACC CTGTCTGTGT CTCCTGGCGA AAGAGCCACC 61 CTCTCCTGCC GCGCCAGTAG CAGTGTTAAC TACATGTACT GGTATCAACA GAAACCTGGC 121 CAGGCTCCCA GGCTCCTCAT CTATTACACA TCCAACTTGG CCCCTGGCAT CCCAGCCAGG 181 TTCAGTGGCA GTGGGTCTGG GACAGAGTTC ACTCTCACCA TCAGCAGCCT ACAGAGCGAA 241 GATTTTGCAG TTTATTACTG TCAGCAGTTC AGCAGTTCAC CTTGGACGTT CGGCCAAGGG 301 ACCAAGGTGG AAATCAAA h34D10 VL0 Light Chain Nucleic Acid Sequence (with signal sequence: MDMRVPAQLL GLLLLWLPGARC SEQ ID NO: 194); the nucleic acid sequence encoding the mature light chain sequence is underlined) (SEQ ID NO: 65) 1 ATGGACATGA GGGTCCCCGC TCAGCTCCTG GGGCTCCTTC TGCTCTGGCT CCCTGGAGCA 61 CGATGTGAAA TTGTAATGAC ACAGTCTCCA GCCACCCTGT CTGTGTCTCC TGGCGAAAGA 121 GCCACCCTCT CCTGCCGCGC CAGTAGCAGT GTTAACTACA TGTACTGGTA TCAACAGAAA 181 CCTGGCCAGG CTCCCAGGCT CCTCATCTAT TACACATCCA ACTTGGCCCC TGGCATCCCA 241 GCCAGGTTCA GTGGCAGTGG GTCTGGGACA GAGTTCACTC TCACCATCAG CAGCCTACAG 301 AGCGAAGATT TTGCAGTTTA TTACTGTCAG CAGTTCAGCA GTTCACCTTG GACGTTCGGC 361 CAAGGGACCA AGGTGGAAAT CAAACGTACG GTGGCTGCAC CATCTGTCTT CATCTTCCCG 421 CCATCTGATG AGCAGTTGAA ATCTGGAACT GCCTCTGTTG TGTGCCTGCT GAATAACTTC 481 TATCCCAGAG AGGCCAAAGT ACAGTGGAAG GTGGATAACG CCCTCCAATC GGGTAACTCC 541 CAGGAGAGTG TCACAGAGCA GGACAGCAAG GACAGCACCT ACAGCCTCAG CAGCACCCTG 601 ACGCTGAGCA AAGCAGACTA CGAGAAACAC AAAGTCTACG CCTGCGAAGT CACCCATCAG 661 GGCCTGAGCT CGCCCGTCAC AAAGAGCTT AACAGGGGAG AGTGTTAG h34D10 VL1 Variable Light Chain Amino Acid Sequence (SEQ ID NO: 6) EIVLTQSPATLSVSPGERATLSCRASSSVNYMYWYQQKPGQAPRLL IYYTSNLAPGVPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQFSS SPWTFGQGTKVEIK h34D10 VL1 Variable Light Chain Nucleic Acid Sequence (SEQ ID NO: 20) 1 GAAATTGTAC TCACACAGTC TCCAGCCACC CTGTCTGTGT CTCCTGGCGA AAGAGCCACC 61 CTCTCCTGCC GCGCCAGTAG CAGTGTTAAC TACATGTACT GGTATCAACA GAAACCTGGC 121 CAGGCTCCCA GGCTCCTCAT CTATTACACA TCCAACTTGG CCCCTGGCGT TCCAGCCAGG 181 TTCAGTGGCA GTGGGTCTGG GACAGAGTTC ACTCTCACCA TCAGCAGCCT ACAGAGCGAA 241 GATTTTGCAG TTTATTACTG TCAGCAGTTC AGCAGTTCAC CTTGGACGTT CGGCCAAGGG 301 ACCAAGGTGG AAATCAAA h34D10 VL1 Light Chain Nucleic Acid Sequence (SEQ ID NO: 66) 1 GAAATTGTAC TCACACAGTC TCCAGCCACC CTGTCTGTGT CTCCTGGCGA AAGAGCCACC 61 CTCTCCTGCC GCGCCAGTAG CAGTGTTAAC TACATGTACT GGTATCAACA GAAACCTGGC 121 CAGGCTCCCA GGCTCCTCAT CTATTACACA TCCAACTTGG CCCCTGGCGT TCCAGCCAGG 181 TTCAGTGGCA GTGGGTCTGG GACAGAGTTC ACTCTCACCA TCAGCAGCCT ACAGAGCGAA 241 GATTTTGCAG TTTATTACTG TCAGCAGTTC AGCAGTTCAC CTTGGACGTT CGGCCAAGGG 301 ACCAAGGTGG AAATCAAACG TACGGTGGCT GCACCATCTG TCTTCATCTT CCCGCCATCT 361 GATGAGCAGT TGAAATCTGG AACTGCCTCT GTTGTGTGCC TGCTGAATAA CTTCTATCCC 421 AGAGAGGCCA AAGTACAGTG GAAGGTGGAT AACGCCCTCC AATCGGGTAA CTCCCAGGAG 481 AGTGTCACAG AGCAGGACAG CAAGGACAGC ACCTACAGCC TCAGCAGCAC CCTGACGCTG 541 AGCAAAGCAG ACTACGAGAA ACACAAAGTC TACGCCTGCG AAGTCACCCA TCAGGGCCTG 601 AGCTCGCCCG TCACAAAGAG CTTCAACAGG GGAGAGTGTT AG h34D10 VL2 Variable Light Chain Amino Acid Sequence (SEQ ID NO: 8) EIVLTQSPATLSASPGERVTMSCRASSSVNYMYWYQQKPGQSPR LLIYYTSNLAPGVPARFSGSGSGTEYTLTISSLQSEDFAVYYCQ QFSSSPWTFGQGTKVEIK h34D10 VL2 Variable Light Chain Nucleic Acid Sequence (SEQ ID NO: 21) 1 GAAATTGTAC TCACACAGTC TCCAGCCACC CTGTCTGCCT CTCCTGGCGA AAGAGTGACC 61 ATGTCCTGCC GCGCCAGTAG CAGTGTTAAC TACATGTACT GGTATCAACA GAAACCTGGC 121 CAGTCACCCA GGCTCCTCAT CTATTACACA TCCAACTTGG CCCCTGGCGT TCCAGCCAGG 181 TTCAGTGGCA GTGGGTCTGG GACAGAGTAC ACTCTCACCA TCAGCAGCCT ACAGAGCGAA 241 GATTTTGCAG TTTATTACTG TCAGCAGTTC AGCAGTTCAC CTTGGACGTT CGGCCAAGGG 301 ACCAAGGTGG AAATCAAA h34D10 VL2 Light Chain Nucleic Acid Sequence (SEQ ID NO: 67) 1 GAAATTGTAC TCACACAGTC TCCAGCCACC CTGTCTGCCT CTCCTGGCGA AAGAGTGACC 61 ATGTCCTGCC GCGCCAGTAG CAGTGTTAAC TACATGTACT GGTATCAACA GAAACCTGGC 121 CAGTCACCCA GGCTCCTCAT CTATTACACA TCCAACTTGG CCCCTGGCGT TCCAGCCAGG 181 TTCAGTGGCA GTGGGTCTGG GACAGAGTAC ACTCTCACCA TCAGCAGCCT ACAGAGCGAA 241 GATTTTGCAG TTTATTACTG TCAGCAGTTC AGCAGTTCAC CTTGGACGTT CGGCCAAGGG 301 ACCAAGGTGG AAATCAAACG TACGGTGGCT GCACCATCTG TCTTCATCTT CCCGCCATCT 361 GATGAGCAGT TGAAATCTGG AACTGCCTCT GTTGTGTGCC TGCTGAATAA CTTCTATCCC 421 AGAGAGGCCA AAGTACAGTG GAAGGTGGAT AACGCCCTCC AATCGGGTAA CTCCCAGGAG 481 AGTGTCACAG AGCAGGACAG CAAGGACAGC ACCTACAGCC TCAGCAGCAC CCTGACGCTG 541 AGCAAAGCAG ACTACGAGAA ACACAAAGTC TACGCCTGCG AAGTCACCCA TCAGGGCCTG 601 AGCTCGCCCG TCACAAAGAG CTTCAACAGG GGAGAGTGTT AG h34D10 VL3 Variable Light Chain Amino Acid Sequence (SEQ ID NO: 10) ENVMTQSPATLSASPGERVTMSCRASSSVNYMYWYQQKPGQSPRLL IYYTSNLAPGVPARFSGSGSGTEYTLTISSLQSEDFAVYYCQQFSS SPWTFGQGTKVEIK h34D10 VL3 Variable Light Chain Nucleic Acid Sequence (SEQ ID NO: 22) 1 GAAAACGTAA TGACACAGTC TCCAGCCACC CTGTCTGCCT CTCCTGGCGA AAGAGTGACC 61 ATGTCCTGCC GCGCCAGTAG CAGTGTTAAC TACATGTACT GGTATCAACA GAAACCTGGC 121 CAGTCACCCA GGCTCCTCAT CTATTACACA TCCAACTTGG CCCCTGGCGT TCCAGCCAGG 181 TTCAGTGGCA GTGGGTCTGG GACAGAGTAC ACTCTCACCA TCAGCAGCCT ACAGAGCGAA 241 GATTTTGCAG TTTATTACTG TCAGCAGTTC AGCAGTTCAC CTTGGACGTT CGGCCAAGGG 301 ACCAAGGTGG AAATCAAA h34D10 VL3 Light Chain Nucleic Acid Sequence (SEQ ID NO: 68) 1 GAAAACGTAA TGACACAGTC TCCAGCCACC CTGTCTGCCT CTCCTGGCGA AAGAGTGACC 61 ATGTCCTGCC GCGCCAGTAG CAGTGTTAAC TACATGTACT GGTATCAACA GAAACCTGGC 121 CAGTCACCCA GGCTCCTCAT CTATTACACA TCCAACTTGG CCCCTGGCGT TCCAGCCAGG 181 TTCAGTGGCA GTGGGTCTGG GACAGAGTAC ACTCTCACCA TCAGCAGCCT ACAGAGCGAA 241 GATTTTGCAG TTTATTACTG TCAGCAGTTC AGCAGTTCAC CTTGGACGTT CGGCCAAGGG 301 ACCAAGGTGG AAATCAAACG TACGGTGGCT GCACCATCTG TCTTCATCTT CCCGCCATCT 361 GATGAGCAGT TGAAATCTGG AACTGCCTCT GTTGTGTGCC TGCTGAATAA CTTCTATCCC 421 AGAGAGGCCA AAGTACAGTG GAAGGTGGAT AACGCCCTCC AATCGGGTAA CTCCCAGGAG 481 AGTGTCACAG AGCAGGACAG CAAGGACAGC ACCTACAGCC TCAGCAGCAC CCTGACGCTG 541 AGCAAAGCAG ACTACGAGAA ACACAAAGTC TACGCCTGCG AAGTCACCCA TCAGGGCCTG 601 AGCTCGCCCG TCACAAAGAG CTTCAACAGG GGAGAGTGTT AG - Alignments of the amino acid sequences of 34D10 VH and VL with the six humanized 34D10 variable heavy chain regions and four humanized 34D10 variable light chain regions are shown in
FIGS. 1 and 2 , respectively. - Human platelets were purified from platelet-rich plasma (PRP) using a Sepharose CL-2B column (GE Healthcare) in platelet buffer (15 mM HEPES, 138 mM NaCl, 5 mM CaCl2, 2.7 mM KCl, 1 mM MgCl2, 5.5 mM dextrose, 1 mg/ml BSA, pH 7.4) following methods known in the art. Humanized Fab at different increasing concentrations was incubated with the gel-purified platelets for 20 minutes at room temperature. Next platelets were washed with citrate buffer (5.4 mM trisodium citrate, 146 mM NaCl, 5.5 mM dextrose, pH 6.8) and resuspended in platelet buffer. R-phycoerythrin-labeled anti-human Fab polyclonal antibody (Southern Biotech) was added to the samples and incubated for 20 minutes at room temperature in the dark. Finally the cells were fixed with paraformaldehyde (
final concentration 1%) and binding of the Fab to platelets was measured by standard flow cytometry techniques. EC50 was calculated as the Fab concentration that shows a mean fluorescence signal (MFI) equal to one half of the maximal mean fluorescence signal (maximal signal observed at saturation of Fab binding). As a control, binding of the mouse Fab (34D10) was also measured. With the exception of Fab L0/H0, all Fabs with L0 light chain showed binding comparable to the mouse Fab (FIG. 3 ). L0/H2 and L0/H5 showed the best binding. All the Fabs with the L3 light chain also showed binding comparable to the mouse Fab. In general, Fabs with the L1 or L2 light chains showed weaker binding. - To confirm the binding profiles observed in the flow cytometry experiments, binding assays were performed using surface plasmon resonance (SPR) technology. For this purpose biotinylated human GPIIb/IIIa ectodomain protein was generated as described in Zhu et al. Molecular Cell, 32(6): 849-861 (2008). The GPIIb/IIIa ectodomain protein was immobilized on an SPR chip coated with streptavidin (GE Healthcare). Next, the association and dissociation rates of Fab binding to GPIIb/IIIa at sequentially increasing concentrations of the Fab were measured following methods known in the art. The kinetic parameters were derived from a 1:1 binding model. Fab L0/H2 (KD=2.8 nM) and L0/H5 (KD=5.3 nM) displayed affinities comparable to the mouse 34D10 Fab (KD=2.8 nM), while Fab L1/H3 displays significantly lower affinity (110 nM) (data not shown). These results are consistent with the flow cytometry binding data and show that the humanized Fabs L0/H2 and L0/H5 and the mouse Fab 34D10 bind to GPIIb/IIIa with similar affinity.
- As shown above, the binding of humanized Fabs L0/H2 and L0/H5 and mouse Fab (34D10) to platelets and purified GPIIb/IIIa was similar. To determine if the properties of the humanized Fabs and the mouse Fab were similar when fused to FVIIa, a number of FVIIa fusion proteins were generated. Specifically, the following chimeric proteins were generated: (i) mouse Fab fused to FVIIa (FVII-245/Fab-033,
FIG. 4A ), (ii) humanized Fab L0/H2 fused to FVIIa to generate FVII-250/Fab-037 or (iii) humanized Fab L0/H5 fused to FVIIa to generate FVII-250/Fab-036. In all of these fusions, the N-terminus of the light chain variable domain of the Fab was recombinantly fused to the C-terminus of heavy chain FVIIa via a linker(Gly4Ser)6 (SEQ ID NO:170), and the light chain of rFVIIa associates with the heavy chain FVIIa while the heavy chain component of the Fab associates with the light chain component of the Fab. - The amino acid sequence of the light chain (underlined) followed by the heavy chain (boldened) of FVII are provided below:
-
(SEQ ID NO: 69) 1 ANAFLEELRP GSLERECKEE QCSFEEAREI FKDAERTKLF WISYSDGDQC 51 ASSPCQNGGS CKDQLQSYIC FCLPAFEGRN CETHKDDQLI CVNENGGCEQ 101 YCSDHTGTKR SCRCHEGYSL LADGVSCTPT VEYPCGKIPI LEKRNASKPQ 151 GR IVGGKVCP KGECPWQVLL LVNGAQLCGG TLINTIWVVS AAHCFDKIKN 201 WRNLIAVLGE HDLSEHDGDE QSRRVAQVII PSTYVPGTTN HDIALLRLHQ 251 PVVLTDHVVP LCLPERTFSE RTLAFVRFSL VSGWGQLLDR GATALELMVL 301 NVPRLMTQDC LQQSRKVGDS PNITEYMFCA GYSDGSKDSC KGDSGGPHAT 351 HYRGTWYLTG IVSWGQGCAT VGHFGVYTRV SQYIEWLQKL MRSEPRPGVL 401 LRAPFP - The amino acid sequence of the Fab light chain in FVII-245 that associates with the Fab heavy chain of Fab-033 (the VL domain is underlined and the constant region boldened) is provided below:
-
(SEQ ID NO: 70) ENVLTQSPAIMSASLGEKVTMSCRASSSVNYMYW YQQKSDASPKLWIYYTSNLAPGVPARFSGSGSGN SYSLTISSMEGEDAATYYCQQFSSSPWTFGGGTK LEIK RADAAPTVSIFPPSSEQLTSGGASVVCFLN NFYPKDINVKWKIDGSERQNGVLNSWTDQDSKDS TYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPI VKSFNRNEC - The amino acid sequence of FVII-245 (i.e., the fusion of the light and heavy chain of FVII via a linker (underlined) to the light chain domain of 34D10 (variable domain boldened; constant region italicized) is provided below:
-
(SEQ ID NO: 71) 1 ANAFLEELRP GSLERECKEE QCSFEEAREI FKDAERTKLF WISYSDGDQC 51 ASSPCQNGGS CKDQLQSYIC FCLPAFEGRN CETHKDDQLI CVNENGGCEQ 101 YCSDHTGTKR SCRCHEGYSL LADGVSCTPT VEYPCGKIPI LEKRNASKPQ 151 GRIVGGKVCP KGECPWQVLL LVNGAQLCGG TLINTIWVVS AAHCFDKIKN 201 WRNLIAVLGE HDLSEHDGDE QSRRVAQVII PSTYVPGTTN HDIALLRLHQ 251 PVVLTDHVVP LCLPERTFSE RTLAFVRFSL VSGWGQLLDR GATALELMVL 301 NVPRLMTQDC LQQSRKVGDS PNITEYMFCA GYSDGSKDSC KGDSGGPHAT 351 HYRGTWYLTG IVSWGQGCAT VGHFGVYTRV SQYIEWLQKL MRSEPRPGVL 401 LRAPFPGGGG SGGGGSGGGG SGGGGSGGGG SGGGGS ENVL TQSPAIMSAS 451 LGEKVTMSCR ASSSVNYMYW YQQKSDASPK LWIYYTSNLA PGVPARFSGS 501 GSGNSYSLTI SSMEGEDAAT YYCQQFSSSP WTFGGGTKLE IK RADAAPTV 551 SIFPPSSEQL TSGGASVVCF LNNFYPKDIN VKWKIDGSER QNGVLNSWTD 601 QDSKDSTYSM SSTLTLTKDE YERHNSYTCE ATHKTSTSPI VKSFNRNEC* - The amino acid sequence of the Fab heavy chain of Fab-033 (the VH domain is underlined; the constant region is boldened) is provided below:
-
(SEQ ID NO: 72) 1 EVKLVESGGG LVKPGGSLKL SCAASGFTFS AYAMSWVRQT PEKRLEWVAS 51 ISSGGTTYYP DSVKRRFTIS RDNARNILYL QMSSLRSEDT AMYYCTRGGD 101 YGYALDYWGQ GTSVTVSS AK TTAPSVYPLA PVCGDTTGSS VTLGCLVKGY 151 FPEPVTLTWN SGSLSSGVHT FPAVLQSDLY TLSSSVTVTS STWPSQSITC 201 NVAHPASSTK VDKKIEPR - This Fab heavy chain associates with the Fab light chain in FVII-245.
- The amino acid sequence of the L0 Fab light chain in FVII-250 that associates with the Fab heavy chains of Fab-036 and Fab-037 (the VL0 domain is underlined, the constant region of the Fab is boldened) is provided below:
-
(SEQ ID NO: 73) 1 EIVMTQSPAT LSVSPGERAT LSCRASSSVN YMYWYQQKPG QAPRLLIYYT 51 SNLAPGIPAR FSGSGSGTEF TLTISSLQSE DFAVYYCQQF SSSPWTFGQG 101 TKVEIK RTVA APSVFIFPPS DEQLKSGTAS VVCLLNNFYP REAKVQWKVD 151 NALQSGNSQE SVTEQDSKDS TYSLSSTLTL SKADYEKHKV YACEVTHQGL 201 SSPVTKSFNR GEC* - The amino acid sequence of FVII-250 (i.e., the fusion of the light and heavy chain of FVII via a linker (underlined) to the L0 Fab light chain (boldened)) is provided below:
-
(SEQ ID NO: 74) 1 ANAFLEELRP GSLERECKEE QCSFEEAREI FKDAERTKLF WISYSDGDQC 51 ASSPCQNGGS CKDQLQSYIC FCLPAFEGRN CETHKDDQLI CVNENGGCEQ 101 YCSDHTGTKR SCRCHEGYSL LADGVSCTPT VEYPCGKIPI LEKRNASKPQ 151 GRIVGGKVCP KGECPWQVLL LVNGAQLCGG TLINTIWVVS AAHCFDKIKN 201 WRNLIAVLGE HDLSEHDGDE QSRRVAQVII PSTYVPGTTN HDIALLRLHQ 251 PVVLTDHVVP LCLPERTFSE RTLAFVRFSL VSGWGQLLDR GATALELMVL 301 NVPRLMTQDC LQQSRKVGDS PNITEYMFCA GYSDGSKDSC KGDSGGPHAT 351 HYRGTWYLTG IVSWGQGCAT VGHFGVYTRV SQYIEWLQKL MRSEPRPGVL 401 LRAPFPGGGG SGGGGSGGGG SGGGGSGGGG SGGGGS EIVM TQSPATLSVS 451 PGERATLSCR ASSSVNYMYW YQQKPGQAPR LLIYYTSNLA PGIPARFSGS 501 GSGTEFTLTI SSLQSEDFAV YYCQQFSSSP WTFGQGTKVE IKRTVAAPSV 551 FIFPPSDEQL KSGTASVVCL LNNFYPREAK VQWKVDNALQ SGNSQESVTE 601 QDSKDSTYSL SSTLTLSKAD YEKHKVYACE VTHQGLSSPV TKSFNRGEC* - The amino acid sequence of the H2 chain of Fab-037 (the VH2 domain is underlined) is provided below:
-
(SEQ ID NO: 75) 1 EVQLVESGGG LVKPGGSLRL SCAASGFTFS AYAMSWVRQA PGKGLVWVAS 51 ISSGGTTYYP DSVKRQFTIS RDNAKNTLYL QMNSLRAEDT AVYYCTRGGD 101 YGYALDYWGQ GTLVTVSSAS TKGPSVFPLA PSSKSTSGGT AALGCLVKDY 151 FPEPVTVSWN SGALTSGVHT FPAVLQSSGL YSLSSVVTVP SSSLGTQTYI 201 CNVNHKPSNT KVDKKVEPKS C* - The amino acid sequence of the H5 chain of Fab-036 (the VH5 domain is underlined) is provided below:
-
(SEQ ID NO: 76) 1 EVKLVESGGG LVKPGGSLRL SCAASGFTFS AYAMSWVRQA PGKGLEWVAS 51 ISSGGTTYYP DSVKRRFTIS RDNARNTLYL QMNSLRAEDT AVYYCTRGGD 101 YGYALDYWGQ GTLVTVSSAS TKGPSVFPLA PSSKSTSGGT AALGCLVKDY 151 FPEPVTVSWN SGALTSGVHT FPAVLQSSGL YSLSSVVTVP SSSLGTQTYI 201 CNVNHKPSNT KVDKKVEPKS C* - The above two Fab heavy chains associate with the Fab light chain in FVII-250.
- A schematic diagram of these chimeric constructs is depicted in
FIG. 4A . - In addition the same Fabs were fused to FVIIa-XTEN (AE288) as shown in
FIG. 5A to generate FVII-251/Fab-037 and FVII-251/Fab-036. FVII-200, was also generated with the same structural organization as FVII-251, but where the targeting moiety was an scFv version of mouse 34D10 (instead of an Fab). - The amino acid sequence of FVII-251 (i.e., the fusion of the light and heavy chain of FVII via a linker (SEQ ID NO:195) to an XTEN (AE288) (italicized and underlined) and linkers (SEQ ID NO:196 and 170) (bold italics (SEQ ID NO:196) and underlined (SEQ ID NO:170)) to the Fab light chain L0 (boldened)) is provided below:
-
(SEQ ID NO: 77) 1 ANAFLEELRP GSLERECKEE QCSFEEAREI FKDAERTKLF WISYSDGDQC 51 ASSPCQNGGS CKDQLQSYIC FCLPAFEGRN CETHKDDQLI CVNENGGCEQ 101 YCSDHTGTKR SCRCHEGYSL LADGVSCTPT VEYPCGKIPI LEKRNASKPQ 151 GRIVGGKVCP KGECPWQVLL LVNGAQLCGG TLINTIWVVS AAHCFDKIKN 201 WRNLIAVLGE HDLSEHDGDE QSRRVAQVII PSTYVPGTTN HDIALLRLHQ 251 PVVLTDHVVP LCLPERTFSE RTLAFVRFSL VSGWGQLLDR GATALELMVL 301 NVPRLMTQDC LQQSRKVGDS PNITEYMFCA GYSDGSKDSC KGDSGGPHAT 351 HYRGTWYLTG IVSWGQGCAT VGHFGVYTRV SQYIEWLQKL MRSEPRPGVL 401 LRAPFPGSPG TSESATPESG PGSEPATSGS ETP GTSESAT PESGPGSEPA 451 TSGSETPGTS ESATPESGPG TSTEPSEGSA PGSPAGSPTS TEEGTSESAT 501 PESGPGSEPA TSGSETPGTS ESATPESGPG SPAGSPTSTE EGSPAGSPTS 551 TEEGTSTEPS EGSAPGTSES ATPESGPGTS ESATPESGPG TSESATPESG 601 P GSEPATSGS ETPGSEPATS GSETPGSPAG SPTSTEEGTS TEPSEGSAPG 651 TSTEPSEGSA PGSEPATSGS ETPGTSESAT PESGPGTSTE PSEGSAP 701 GGGGSGGGG SGGGGSGGGG SGGGGSGGGG S EIVMTQSPA TLSVSPGERA 751 TLSCRASSSV NYMYWYQQKP GQAPRLLIYY TSNLAPGIPA RFSGSGSGTE 801 FTLTISSLQS EDFAVYYCQQ FSSSPWTFGQ GTKVEIKRTV AAPSVFIFPP 851 SDEQLKSGTA SVVCLLNNFY PREAKVQWKV DNALQSGNSQ ESVTEQDSKD 901 STYSLSSTLT LSKADYEKHK VYACEVTHQG LSSPVTKSFN RGEC* - The two Fab heavy chains discussed above (Fab-037 and Fab-036) associate with the Fab light chain in FVII-251.
- The amino acid sequence of FVII-200 is provided below. The structure of this construct is as follows: light chain of FVII followed by heavy chain of FVII fused to a linker (SEQ ID NO: 195) followed by XTEN followed by a GSSS linker (SEQ ID NO:196) and a (G4S)6 (SEQ ID NO: 170) linker fused to the VL domain of 34D10 fused to (G4S)4 (SEQ ID NO:168) linker fused to the VH domain of 34D10 (the XTEN, AE288 is italicized and underlined; the G45 (SEQ ID NO:165) linkers are underlined; the VL of the 34D10 scFv is boldened and the VH of the 34D10 scFv is italicized):
-
(SEQ ID NO: 78) 1 ANAFLEELRP GSLERECKEE QCSFEEAREI FKDAERTKLF WISYSDGDQC 51 ASSPCQNGGS CKDQLQSYIC FCLPAFEGRN CETHKDDQLI CVNENGGCEQ 101 YCSDHTGTKR SCRCHEGYSL LADGVSCTPT VEYPCGKIPI LEKRNASKPQ 151 GRIVGGKVCP KGECPWQVLL LVNGAQLCGG TLINTIWVVS AAHCFDKIKN 201 WRNLIAVLGE HDLSEHDGDE QSRRVAQVII PSTYVPGTTN HDIALLRLHQ 251 PVVLTDHVVP LCLPERTFSE RTLAFVRFSL VSGWGQLLDR GATALELMVL 301 NVPRLMTQDC LQQSRKVGDS PNITEYMFCA GYSDGSKDSC KGDSGGPHAT 351 HYRGTWYLTG IVSWGQGCAT VGHFGVYTRV SQYIEWLQKL MRSEPRPGVL 401 LRAPFPGSPG TSESATPESG PGSEPATSGS ETP GTSESAT PESGPGSEPA 451 TSGSETPGTS ESATPESGPG TSTEPSEGSA PGSPAGSPTS TEEGTSESAT 501 PESGPGSEPA TSGSETPGTS ESATPESGPG SPAGSPTSTE EGSPAGSPTS 551 TEEGTSTEPS EGSAPGTSES ATPESGPGTS ESATPESGPG TSESATPESG 601 PGSEPATSGS ETPGSEPATS GSETPGSPAG SPTSTEEGTS TEPSEGSAPG 651 TSTEPSEGSA PGSEPATSGS ETPGTSESAT PESGPGTSTE PSEGSAP 701 GGGGSGGGG SGGGGSGGGG SGGGGSGGGG S ENVLTQSPA IMSASLGEKV 751 TMSCRASSSV NYMYWYQQKS DASPKLWIYY TSNLAPGVPA RFSGSGSGNS 801 YSLTISSMEG EDAATYYCQQ FSSSPWTFGG GTKLEIKRGG GGSGGGGSGG 851 GGSGGGGS EV KLVESGGGLV KPGGSLKLSC AASGFTFSAY AMSWVRQTPE 901 KRLEWVASIS SGGTTYYPDS VKRRFTISRD NARNILYLQM SSLRSEDTAM 951 YYCTRGGDYG YALDYWGQGT SVTVSS - To generate all these fusion proteins, DNA encoding the protein sequences were synthesized, cloned into an expression vector, and expressed in HEK 293 cells by transient transfection following methods known in the art. Protein was purified from the conditioned media following methods known in the art.
- These experiments were directed at determining whether the activity associated with platelet-targeted FVIIa was similar for variants fused to the mouse 34D10 Fab and the humanized Fabs. The activity of FVII-245/Fab-033, FVII-250/Fab-037 and FVII-250/Fab-036 was determined by rotational thromboelastometry (ROTEM) assays using whole blood from hemophilia donors. The activity in whole blood is platelet-dependent, and coagulation was initiated by recalcification of the blood. In these assays all three proteins showed similar clotting times at all the concentrations tested (
FIG. 4B ), indicating that the humanized Fabs maintain their properties after humanization. - FVII-245//Fab-033 and FVII-189 (mouse 34D10 in scFv format recombinantly fused to rFVIIa) also showed comparable activity by ROTEM (
FIG. 4C ), demonstrating that the targeting moiety works equally well as an scFv or Fab format. - In addition, FVII-189 displays much higher activity than rFVIIa by ROTEM (
FIG. 4D ) and from this it can be inferred that FVII-250 with the humanized Fab also displays activity by ROTEM much greater than rFVIIa. - The same experiments were performed with the FVIIa-XTEN fusion proteins (
FIG. 5A ). First, FVII-251/Fab-037 and FVII-251/Fab-036 were compared to FVII-200 carrying the mouse version of the targeting moiety.FIG. 5B shows that the activity of all three proteins is similar, indicating that the humanized and mouse targeting moieties have similar properties. Next FVII-251/Fab-037 was compared to recombinant FVIIa (rFVIIa) (FIG. 5C ). FVII-251/Fab-037 displays greater activity than rFVIIa, demonstrating that the humanized targeting moiety (L0/H2) can target FVIIa to platelets and increase its activity. - Transgenic hemophilia A mice with a fully humanized αIIb subunit in the αIIb/β3 integrin were dosed with 10 nmol/kg of rFVIIa or FVII-251/Fab-037 (i.e., Factor VIIa linked to XTEN linked to the VL0/VH2 h34D10 Fab). For each molecule and
time point 3 mice were dosed. At different times post-dosing (FIG. 6 ), mice were euthanized and blood was collected. Three hundred microliters of blood were analyzed by rotational thromboelastometry (ROTEM) assay, and coagulation was initiated by recalcification of the blood. FVII-251/Fab-037, showed shorter clotting times at 5 minutes post-dosing, indicating increased acute ex vivo activity. FVII-251/Fab-037 displayed shorter clotting times than rFVIIa at all the timepoints, and the clotting time for FVII-251/Fab-037 at 6 hours post-dosing was comparable to the clotting time of rFVIIa at 1 hour post-dosing, suggesting a 6-fold improvement in the prolonged ex vivo efficacy for FVII-251/Fab-037 compared with rFVIIa. - Plasma samples from Example 5, in which transgenic hemophilia A mice with a fully humanized αIIb subunit in the αIIb/β3 integrin were dosed with 10 nmol/kg of rFVIIa (n=3) or FVII-251/Fab-037 (n=4) were taken. For each molecule and time point 3-4 mice were dosed. At different times post-dosing (
FIG. 9 ), mice were euthanized and blood was collected. One fraction of the citrated whole blood was used for ex-vivo rotational thromboelastometry (ROTEM) assay as described in Example 5. From the remaining blood, plasma was isolated by centrifugation and the FVIIa plasma activity levels of rFVIIa or FVII-251/Fab037 were determined using the Staclot VIIa-rTF assay (Diagnostica Stago) on a Sysmex CA-1500, using the respective dosing material as self-standard. - In these experiments, rFVIIa and FVII-251/Fab-037 showed comparable plasma recovery at 5 minutes post-dosing and FVII-251/Fab-037 showed decreased clearance and higher plasma activity levels compared to equal molar dosed rFVIIa over all time points measured, consistent with improved pharmacokinetic properties.
- Factor VIII deficient mice expressing only human alphaIIb in place of murine alphaIIb on platelets (HemA-Tg-hu-alphaIIb mice), were created by crossing hemophilia A (HemA) knock-out mice (
exon 16, Bi et al., Nat. Genet., 10(1):119-121,1995) with mouse alphaIIb knock-out mice (Emambokus et al., Immunity, 19(1):33-45, 2003), which were transgenic for human alphaIIb integrin expression (Thornton et al., Blood, 100(10):3588-3596, 2002). For experiments the mice were crossed to homogenicity, resulting in HemA mice, expressing human all), murine beta3 integrin heterodimers on all platelets. - Acute efficacy was studied in a blinded murine tail-clip bleeding model, in which total blood loss in dosed mice is measured after tail tip amputation, as described previously (Dumont et al., Blood, 119(13):3024-3030, 2012). Briefly, male HemA-Tg hu-αIIb mice (8-13 wks) were anesthetized with a cocktail of 50 mg/kg ketamine and 0.5 mg/kg dexmedetomidine. The tails were immersed in 37° C. saline for 10 minutes, to dilate the lateral vein followed by intravenous tail vein injection of either vehicle (20 mM 2-amino-2-hydroxymethyl-propane-1, 3-diol (TRIS), pH 8.0; 150 mM NaCl; 3% human serum albumin (n=13)), rFVIIa at 100 nmol/kg (n=10) or FVII-251/Fab-037 at 3 nmol/kg (n=8) or 10 nmole/kg, (n=8). Five minutes post-dosing, the 4 mm distal tip of the tail was clipped and submerged into a pre-weighted tube containing 11 mL saline for the period of 30 minutes. Blood loss was quantified by weight. Statistical significance was calculated using unpaired two-tailed t-test in
GraphPad Prism 6. Such two tailed t-tests showed that the 3 and 10 nmol/kg doses of FVII-251/Fab-037 and rFVIIa were significantly different from vehicle (p-value <0.001), but not significantly different from each other (p-value >0.9) (see,FIG. 10 ). - These results demonstrate equal or improved acute efficacy for FVII-251/Fab-037 compared to rFVIIa in this bleeding model.
- The nucleic acid sequence encoding humanized 34D10 VH2 (the amino acid sequence is set forth in SEQ ID NO: 7) was subjected to multiple cycles of error-prone polymerase chain reaction (PCR) according to published methods (Zaccolo et al., J. Mol. Biol., 255(4):589-603, 1996; Van Deventer and Wittrup, Methods Mol. Biol., 1131:151-81, 2014). The pool of mutated 34D10 VH2 nucleic acid sequences and a nucleic acid sequence encoding 34D10 VL0 (SEQ ID NO: 19) were then introduced into the Adimab platform, resulting in an Adimab expression library size of approximately 106 antibodies (see, US Patent Publications 20100056386 and 20090181855 to Adimab, Inc. as well as references cited therein). For comparison purposes, a nucleic acid sequence encoding 34D10 VH2 (SEQ ID NO: 15) and a nucleic acid sequence encoding 34D10 VL0 (SEQ ID NO: 19) were introduced into the Adimab yeast platform. To identify anti-GPIIb/IIIa antibodies with improvements in affinity (over the parental VH—i.e., h34D10 VH2), expression libraries were screened in accordance with the methodologies disclosed in the US Patent Publications 20100056386 and 20090181855. After iterative rounds of selective pressure towards the target antigen, GPIIb/IIIa (SEQ ID NOs: 23 and 24), and efforts to improve antibody off-rate, colonies were sequenced to identify unique antibodies, according to methods known in the art. 45 unique VH sequences were discovered and subsequently expressed and purified from yeast by protein A purification followed by standard Fab generation, according to methods known in the art.
- To identify antibodies discovered from our selections that displayed improvements in affinity and/or off-rate when compared to the parental VH (amino acid sequence: SEQ ID NO:7; nucleic acid sequence: SEQ ID NO:15), the antibodies purified from yeast were screened for binding to target antigen (hGPIIb-SEQ ID NO:23 and hGPIIIa-SEQ ID NO:24) using Bio-Layer Interferometry (BLI) in a monovalent assay format. BLI was performed on the OctetRed94 instrument, manufactured by ForteBio, according to standard procedures. The present disclosure identifies 22 unique VH sequences with improvements in affinity and/or off-rate when compared to the parental VH (amino acid sequence: SEQ ID NO:7; nucleic acid sequence: SEQ ID NO: 15) (
FIG. 11 ). The BLI binding profiles of all VH (FIG. 12A ) as well as examples of individual affinity matured VH sequences (SEQ ID NOs: 197, 202, 205) in comparison to the parental clone (amino acid sequences: SEQ ID NOs: 7 and 4; nucleic acid sequences: SEQ ID NOs: 15 and 19) are disclosed herein (FIGS. 12B-E ). A table listing the apparent monovalent affinity and dissociation rates of the 22 disclosed VH sequences paired with the parental 34D10 VL0 (amino acid sequence: SEQ ID NO:4; nucleic acid sequence: SEQ ID NO: 19) purified from yeast, as determined by BLI in the monovalent format, is depicted inFIG. 12F . - To determine if mutations introduced into the humanized 34D10 VH2 sequence (amino acid sequence: SEQ ID NO:7; nucleic acid sequence: SEQ ID NO: 15) during error-prone PCR had adverse effects on protein stability, yeast purified Fab of the 22 unique VH (
FIG. 11 ) with parental VL0 were subjected to thermal denaturation by differential scanning fluorimetry (DSF). Measurements were conducted on an Mx3005p real-time PCR system (Agilent Technologies) in a 96-well format using 10 μg of Fab in 50 μl PBS (at pH 7.0) supplemented with SYPRO orange fluorophor. Derivation of the melting temperature (Tm) was performed as described in Pepinsky et al., Protein Sci., 19(5):954-662010. A table listing the calculated Tm is provided inFIG. 13 . - The amino acid and nucleic acid sequences of the 22 VH sequences obtained by the affinity maturation of h34D10 VH2 by the methods described above are provided below:
-
(SEQ ID NO: 197) VH100 Variable Heavy Chain Amino Acid Sequence EVQLVESGGGLVKPGGSLRLSCAASGFTFGAYAMSWVRQAPGKGLV WVASISSGGTTYYPDSVKRQFTISRDNAKNTLYLQMNSLRAEDTAV YYCTRGGDYSYALDYWGQGTLVTVSS VH100 Variable Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 219) GAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGGTAAAGCCTGGAG GATCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTGGCGC CTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGTC TGGGTCGCTAGCATTAGTAGTGGTGGTACCACATACTACCCAGACT CCGTGAAGAGGCAGTTCACCATCTCCAGAGACAATGCCAAGAACAC GCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACAGCCGTA TATTACTGTACCAGAGGAGGGGATTATAGCTACGCTCTCGACTACT GGGGCCAGGGAACCCTGGTCACCGTCTCCTCA VH101 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 198) EVQLVESGGGLVKPGGSLRLSCAASGFTFSAYAMSWVRQAPGKGLV WVASISSGGTTYYPDSVERQFTISRDNAKNTLYLQMNSLRAEDTAV YYCTRGGDYSYALDYWGQGTLVTVSS VH101 Variable Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 220) GAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGGTAAAGCCTGGAG GATCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCGC CTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGTC TGGGTCGCTAGCATTAGTAGTGGTGGTACCACATACTACCCAGACT CCGTGGAGAGGCAGTTCACCATCTCCAGAGACAATGCCAAGAACAC GCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACAGCCGTA TATTACTGTACCAGAGGAGGGGATTATAGCTACGCTCTCGACTACT GGGGCCAGGGAACCCTGGTCACCGTCTCCTCA VH102 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 199) EVQLVESGGGLVKPGGSLRLSCAASGFTFSAYAMSWVRQAPGKGLV WVASISSGGTTYYPDSVKRQFTISRDNAKNTLYLQMNSLRAEDTAV YYCTRGGDYSYALDYWGQGTLVTVSF VH102 Variable Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 221) GAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGGTAAAGCCTGGAG GATCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCGC CTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGTC TGGGTCGCTAGCATTAGTAGTGGTGGTACCACATACTACCCAGACT CCGTGAAGAGGCAGTTCACCATCTCCAGAGACAATGCCAAGAACAC GCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACAGCCGTA TATTACTGTACCAGAGGAGGGGATTATAGCTACGCTCTCGACTACT GGGGCCAGGGAACCCTGGTCACCGTCTCCTTCAGC VH103 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 200) EVQLVESGGGLVKPGGSLRLSCAASGFTFSAYAMSWVRQAPGKGLV WVASISSGGTTYYPDSVKRQFTISRDNAKNTLYLQVNSLRAEDTAV YYCTRGGDYSYALDYWGQGTLVTVSS VH103 Variable HeavyChain Nucleic Acid Sequence (SEQ ID NO: 222) GAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGGTAAAGCCTGGAG GATCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCGC CTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGTC TGGGTCGCTAGCATTAGTAGTGGTGGTACCACATACTACCCAGACT CCGTGAAGAGGCAGTTCACCATCTCCAGAGACAATGCCAAGAACAC GCTGTATCTGCAAGTGAACAGCCTGAGAGCCGAGGACACAGCCGTA TATTACTGTACCAGAGGAGGGGATTATAGCTACGCTCTCGACTACT GGGGCCAGGGAACCCTGGTCACCGTCTCCTCA VH104 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 201) EVQLVESGGGLVKPGGSLRLSCAASGFTFSAYAMSWVRQAPGKGLV WVASISSGGTTYYPDSVKRQFTISRDNAKNTLYLQMNSLRAEDTAV YYCTRGGDYSYALDYWGRGTLVTVSS VH104 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 223) GAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGGTAAAGCCTGGAG GATCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCGC CTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGTC TGGGTCGCTAGCATTAGTAGTGGTGGTACCACATACTACCCAGACT CCGTGAAGAGGCAGTTCACCATCTCCAGAGACAATGCCAAGAACAC GCTGTATTTGCAAATGAACAGCCTGAGAGCCGAGGACACAGCCGTA TATTACTGTACCAGAGGAGGGGATTATAGCTACGCTCTCGACTACT GGGGCCGGGGAACCCTGGTCACCGTCTCCTCA VH105 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 202) EVQLVESGGGLVKPGGSLRLSCAASGFTFSAYAMSWVRQAPGKGLV WVASISSGGTTYYPDSVKRQFTISRDNAKNTLYLQMNSLRAEDTAV YYCTRGGDYSYALDYWGQGTLVTVSS VH105 Variable Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 224) GAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGGTAAAGCCTGGAGG ATCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCGCCT ATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGTCTGG GTCGCTAGCATTAGTAGTGGTGGTACCACATACTACCCAGACTCCGT GAAGAGGCAGTTCACCATCTCCAGAGACAATGCCAAGAACACGCTGT ATCTGCAAATGAACAGCCTGAGAGCCGAGGACACAGCCGTATATTAC TGTACCAGAGGAGGGGATTATAGCTACGCTCTCGACTACTGGGGCCA GGGAACCCTGGTCACCGTCTCCTCA VH106 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 203) EVQLVECGGGLVKPGGSLRLSCAASGFTFSAYAMSWVRQAPGKGLVW VASISSGGTTYYPDSVKRQFTISRDNAKNTLYLQMNSLRAEDTAVYY CTRGGDYSYALDYWGQGTLVTVSS VH106 Variable Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 225) GAGGTGCAGCTGGTGGAGTGTGGAGGAGGCTTGGTAAAGCCTGGAGG ATCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCGCCT ATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGTCTGG GTCGCTAGCATTAGTAGTGGTGGTACCACATACTACCCAGACTCCGT GAAGAGGCAGTTCACCATCTCCAGAGACAATGCCAAGAACACGCTGT ATCTGCAAATGAACAGCCTGAGAGCCGAGGACACAGCCGTATATTAC TGTACCAGAGGAGGGGATTATAGCTACGCTCTCGACTACTGGGGCCA GGGAACCCTGGTCACCGTCTCCTCA VH107 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 204) EVQLVESGGGLVKPGESLRLSCAASGFTFSAYAMSWVRQAPGEGLVW VASISSGGTTYYPDSVKRQFTISRDNAKNTLYLQMNSLRAEDTAVYY CTRGGDYSYALDYWGQGTLVTVSS VH107 Variable Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 226) GAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGGTAAAGCCTGGAGA ATCCCTGAGACTCTCCTGTGCAGCCTCGGGATTCACCTTTAGCGCCT ATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGGAGGGGCTGGTCTGG GTCGCTAGCATTAGTAGTGGTGGTACCACATACTACCCAGACTCCGT GAAGAGGCAGTTCACCATCTCCAGAGACAATGCCAAGAACACGCTGT ATCTGCAAATGAACAGCCTGAGAGCCGAGGACACAGCCGTATATTAC TGTACCAGAGGAGGGGATTATAGCTACGCTCTCGACTACTGGGGCCA GGGAACCCTGGTCACCGTCTCCTCA VH108 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 205) EVQLVESGGGLVKPGGSLRLSCAASGFTFSAYAMSWVRQAPGKGLVW VASISSDGTTYYPDSVKRQFTISRDNARNTLYLQMNSLRAEDTAVYY CTRGGDYSYALDYWGQGTLVTVSS VH108 Variable Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 227) GAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGGTAAAGCCTGGAGG ATCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCGCCT ATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGTCTGG GTCGCTAGCATTAGTAGTGATGGTACCACATACTACCCAGACTCCGT GAAGAGGCAGTTCACCATCTCCAGAGACAATGCCAGGAACACGCTGT ATCTGCAAATGAACAGCCTGAGAGCCGAGGACACAGCCGTATATTAC TGTACCAGAGGAGGGGACTATAGCTACGCTCTCGACTACTGGGGCCA GGGGACCCTGGTCACCGTCTCCTCA VH109 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 206) EVQLVESGGGLVKPGGSLRLSCAASGFTFSAYAMSWVRQAPGKGLVW VASISSGGTTDYPDSVKRQFTISRDNAKNTLYLQMNSLRAEDTAVYY CTRGGDYGYALDYWGQGTLVTVSS VH109 Variable Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 228) GAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGGTAAAGCCTGGAGG ATCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCGCCT ATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGTCTGG GTCGCTAGCATTAGTAGTGGTGGTACCACAGACTACCCAGACTCCGT GAAGAGGCAGTTCACCATCTCCAGAGACAATGCCAAGAACACGCTGT ATCTGCAAATGAACAGCCTGAGAGCCGAGGACACAGCCGTATATTAC TGTACCAGAGGAGGGGATTATGGCTACGCTCTCGACTACTGGGGCCA GGGAACCCTGGTCACCGTCTCCTCA VH110 Variable Heavy Chain Amino Acid Sequence E(SEQ ID NO: 207) VQLVESGGGLVKPGGSLRLSCAASGFTFNAYAMSWVRQAPGKGLVWV ASISSGGTTYYPDSVKRQFTISRDNAKNTLYLQMNSLRAEDTAVYYC TRGGDYGYALDYWGQGTLVTVSS VH110 Variable Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 229) GAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGGTAAAGCCTGGAG GATCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAACGC CTATGCAATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGTC TGGGTCGCTAGCATTAGTAGTGGTGGTACCACATACTACCCAGACT CCGTGAAGAGGCAGTTCACCATCTCCAGAGACAATGCCAAGAACAC GCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACAGCCGTA TATTACTGTACCAGAGGAGGGGATTATGGCTACGCTCTCGACTACT GGGGCCAGGGAACCCTGGTCACCGTCTCCTCA VH111 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 208) EVQLVESGGGLVKPGGSLRLSCAASGFTFNAYAMSWVRQAPGEGLV WVASISSGGTTYYPDSVKRQFTISRDNAKNTLYLQMNSLRAEDTAV YYCTRGGDYGYALDYWGQGTLVTVSS VH111 Variable Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 230) GAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGGTAAAGCCTGGAG GATCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAACGC CTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGGAGGGGCTGGTC TGGGTCGCTAGCATTAGTAGTGGTGGTACCACATACTACCCAGACT CCGTGAAGAGGCAGTTCACCATCTCCAGAGACAATGCCAAGAACAC GCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACAGCCGTA TATTACTGCACCAGAGGAGGGGATTATGGCTACGCTCTCGACTACT GGGGCCAGGGAACCCTGGTCACCGTCTCCTCA VH112 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 209) EVQLVESGGGLVKPGGSLRLSCAASGFTFSAYAMSWVRQAPGEGLV WVAGISSGGTTYYPDSVKRQFTISRDNAKNTLYLQMNSLRAEDTAV YYCTRGGDYGYALDYWGQGTLVTVSS VH112 Variable Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 231) GAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGGTAAAGCCTGGAG GATCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCGC CTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGGAGGGGCTGGTC TGGGTCGCTGGCATTAGTAGTGGTGGTACCACATACTACCCAGACT CCGTGAAGAGGCAGTTCACCATCTCCAGAGACAATGCCAAGAACAC GCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACAGCCGTA TATTACTGTACCAGAGGAGGGGATTATGGCTACGCTCTCGACTACT GGGGCCAGGGAACCCTGGTCACCGTCTCCTCA VH113 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 210) EVQLVESGGGLVKPGGSLRLSCAASGFTFSAYAMSWVRQAPGKGLV WVAGISSGGTTYYPDSVKRQFTISRDNAKNTLYLQMNSLRAEDTAV YYCTRGGDYGYALDYWGQGTLVTVSS VH113 Variable Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 232) GAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGGTAAAGCCTGGAG GATCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCGC CTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGTC TGGGTCGCTGGCATTAGTAGTGGTGGTACCACATACTACCCAGACT CCGTGAAGAGGCAGTTCACCATCTCCAGAGACAATGCCAAGAACAC GCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACAGCCGTA TATTACTGTACCAGAGGAGGGGATTATGGCTACGCTCTCGACTACT GGGGCCAGGGAACCCTGGTCACCGTCTCCTCA VH114 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 211) EMQLVESGGGLVKPGGSLRLSCAASGFTFSAYAMSWVRQAPGKGLV WVASISSGGTTYYPDSVKRQFTISRDNAKNTLYLQMNSLRAEDTAV YYCTRGGDYGYALDYWGQGTLVTVSS VH114 Variable Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 233) GAGATGCAGCTGGTGGAGTCTGGAGGAGGCTTGGTAAAGCCTGGAG GATCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCGC CTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGTC TGGGTCGCTAGCATTAGTAGTGGTGGTACCACATACTACCCAGACT CCGTGAAGAGGCAGTTCACCATCTCCAGAGACAATGCCAAGAACAC GCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACAGCCGTA TATTACTGTACCAGAGGAGGGGATTATGGCTACGCTCTCGACTACT GGGGCCAGGGAACCCTGGTCACCGTCTCCTCA VH115 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 212) GVQLVESGGGLVKPGGSLRLSCAASGFTFSAYAMSWVRQAPGKGLV WVASISSGGTTYYPDSVKRQFTISRDDAKNTLYLQMNSLRAEDTAV YYCTRGGDYGYALDYWGQGTLVTVSS VH115 Variable Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 234) GGGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGGTAAAGCCTGGAG GATCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCGC CTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGTC TGGGTCGCTAGCATTAGTAGTGGTGGTACCACATACTACCCAGACT CCGTGAAGAGGCAGTTCACCATCTCCAGAGACGATGCCAAGAACAC GCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACAGCCGTA TATTACTGTACTAGAGGGGGGGATTATGGCTACGCTCTCGACTACT GGGGCCAGGGAACCCTGGTCACCGTCTCCTCA VH116 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 213) EVQLVESGGGLVKPGGSLRLSCAASGFTFSAYAMSWVRQAPGKGLV WVASISSGGTTYYPDSVKRQFTISRDDAKNTLYLQMNSLRAEDTAV YYCTRGGDYGYALDYWGQGTLVTVSS VH116 Variable Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 235) GAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGGTAAAGCCTGGAGG ATCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCGCCT ATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGTCTGG GTCGCTAGCATTAGTAGTGGTGGTACCACATACTACCCAGACTCCGT GAAGAGGCAGTTCACCATCTCCAGAGACGATGCCAAGAACACGCTGT ATCTGCAAATGAACAGCCTGAGAGCCGAGGACACAGCCGTATATTAC TGTACCAGAGGAGGGGATTATGGCTACGCTCTCGACTACTGGGGCCA GGGAACCCTGGTCACCGTCTCCTCA VH117 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 214) EAQLVESGGGLVKPGGSLRLSCAASGFTFSAYAMSWVRQAPGKGLVW VASISSGGTTYYPDSVKRQFTISRDNAKNTLYLQMNSLRAEDTAVYY CTRGGDYGYALDYWGQGTLVTVSS VH117 Variable Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 236) GAGGCGCAGCTGGTGGAGTCTGGAGGAGGCTTGGTGAAGCCTGGAGG ATCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCGCCT ATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGTCTGG GTCGCTAGCATTAGTAGTGGTGGTACCACATACTACCCAGACTCCGT GAAGAGGCAGTTCACCATCTCCAGAGACAATGCCAAGAACACGCTGT ATCTGCAAATGAACAGCCTGAGAGCCGAGGACACAGCCGTATATTAC TGTACCAGAGGAGGGGATTATGGCTACGCTCTCGACTACTGGGGCCA GGGAACCCTGGTCACCGTCTCCTCA VH118 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 215) GVQLVESGGGLVKPGGSLRLSCAASGFTFSAYAMSWVRQAPGKGLVW VASISSGGTTYYPDSVKRQFTISRDNAKNTLYLQMNSLRAEDTAVYY CTRGGDYGYALDYWGQGALVTVSS VH118 Variable Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 237) GGGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGGTAAAGCCTGGAGG ATCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCGCCT ATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGTCTGG GTCGCTAGCATTAGTAGTGGTGGTACCACATACTACCCAGACTCCGT GAAGAGGCAGTTCACCATCTCCAGAGACAATGCCAAGAACACGCTGT ATCTGCAAATGAACAGCCTGAGAGCCGAGGACACAGCCGTATATTAC TGTACCAGAGGAGGGGATTATGGCTACGCTCTCGACTACTGGGGCCA GGGAGCCCTGGTCACCGTCTCCTCA VH119 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 216) GVQLVESGGGLVKPGGSLRLSCAASGFTFSAYAMSWVRQAPGKGLVW VASISSGGTTYYPDSVKRQFTISRDNAKNTLYLQMNSLRAEDTAVYY CTRGGDYGYALDYWGQGTLVTVSS VH119 Variable Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 238) GGGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGGTAAAGCCTGGAG GATCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCGC CTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGTC TGGGTCGCTAGCATTAGTAGTGGTGGTACCACATACTACCCAGACT CCGTGAAGAGGCAGTTCACCATCTCCAGAGACAATGCCAAGAACAC GCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACAGCCGTA TATTACTGTACCAGAGGAGGGGATTATGGCTACGCTCTCGACTACT GGGGCCAGGGAACCCTGGTCACCGTCTCCTCA VH120 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 217) EVQLVESGGGLVEPGGSLRLSCAASGFTFSAYAMSWVRQAPGKGL VWVASISSGGTTYYPDSVKRQFTISRDNAKNTLYLQMNSLRAEDT AVYYCTRGGDYGYALDYWGQGTLVTVSS VH120 Variable Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 239) GAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGGTAGAGCCTGGA GGATCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGC GCCTACGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTG GTCTGGGTCGCTAGCATTAGTAGTGGCGGTACCACATACTACCCA GACTCCGTGAAGAGGCAGTTCACCATCTCCAGAGACAATGCCAAG AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACA GCCGTATATTACTGTACCAGAGGAGGGGATTATGGCTACGCTCTC GACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA VH121 Variable Heavy Chain Amino Acid Sequence (SEQ ID NO: 218) EVQLVESGGGLVKPGGSLRLSCAASGFTFSAYAMSWVRQAPGEGLV WVASISSGGTTYYPDSVKRQFTISRDNAKNTLYLQMNSLRAEDTAV YYCTRGGDYGYALDYWGQGTLVTVSS VH121 Variable Heavy Chain Nucleic Acid Sequence (SEQ ID NO: 240) GAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGGTAAAGCCTGGAG GATCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCGC CTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGGAGGGGCTGGTC TGGGTCGCTAGCATTAGTAGTGGTGGTACCACATACTACCCAGACT CCGTGAAGAGGCAGTTCACCATCTCCAGAGACAATGCCAAGAACAC GCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACAGCCGTA TATTACTGTACCAGAGGAGGGGATTATGGCTACGCTCTCGACTAC TGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA - FVII-265 was generated to remove a GSSS (SEQ ID NO: 196) linker sequence in FVII-251 (see, Example 3) located between the XTEN sequence and the (Gly4Ser)6 (SEQ ID NO:170) linker. The amino acid sequence of FVII-265 is provided below (from N terminus to C-terminus: the amino acid sequence of the light chain of FVII is underlined; this is followed by the amino acid sequence of the heavy chain of FVII, which is boldened and italicized; this is followed by a linker having the amino acid sequence set forth in SEQ ID NO:195; which is followed by the XTEN (AE288) sequence which is both italicized and underlined; followed by a (Gly4Ser)6 (SEQ ID NO:170) linker that is double underlined; and which is followed by the Fab light chain L0 (boldened)):
-
(SEQ ID NO: 247) 1 ANAFLEELRP GSLERECKEE QCSFEEAREI FKDAERTKLF WISYSDGDQC 51 ASSPCQNGGS CKDQLQSYIC FCLPAFEGRN CETHKDDQLI CVNENGGCEQ 101 YCSDHTGTKR SCRCHEGYSL LADGVSCTPT VEYPCGKIPI LEKRNASKPQ 151 GR 201 251 301 351 401 GSPG TSESATPESG PGSEPATSGS ETP GTSESAT PESGPGSEPA 451 TSGSETPGTS ESATPESGPG TSTEPSEGSA PGSPAGSPTS TEEGTSESAT 501 PESGPGSEPA TSGSETPGTS ESATPESGPG SPAGSPTSTE EGSPAGSPTS 551 TEEGTSTEPS EGSAPGTSES ATPESGPGTS ESATPESGPG TSESATPESG 601 PGSEPATSGS ETPGSEPATS GSETPGSPAG SPTSTEEGTS TEPSEGSAPG 651 TSTEPSEGSA PGSEPATSGS ETPGTSESAT PESGPGTSTE PSEGSAP GGG 701 GSGGGGSGGG GSGGGGSGGG GSGGGGS EIV MTQSPATLSV SPGERATLSC 751 RASSSVNYMY WYQQKPGQAP RLLIYYTSNL APGIPARFSG SGSGTEFTLT 801 ISSLQSEDFA VYYCQQFSSS PWTFGQGTKV EIKRTVAAPS VFIFPPSDEQ 851 LKSGTASVVC LLNNFYPREA KVQWKVDNAL QSGNSQESVT EQDSKDSTYS 901 LSSTLTLSKA DYEKHKVYAC EVTHQGLSSP VTKSFNRGEC * - The Fab heavy chain discussed above in Example 3, Fab-037 (SEQ ID NO:75) associates with the Fab light chain in FVII-265.
- Human αIIb transgenic HemA mice were dosed with the indicated doses of 0.3, 1, 3, 10, 30, and 100 nmol/kg of FVII-265/Fab-037 (solid dots in
FIGS. 14A and B) or 3, 10, 30,100 nmol/kg of rFVIIa (open circles inFIGS. 14A and B) or vehicle (open triangle inFIGS. 14A and 14B ). Five minutes post-dosing mice were euthanized and blood was collected from the vena cava. Whole blood clotting times were analyzed by ROTEM as described in Example 5 above. FVII-265/Fab-037 showed increased clotting activity in a platelet targeting-dependent manner compared to FVIIa (FIG. 14A ), whereas, in HemA mice in which the murine αIIb/β3 integrin is not targeted by FVII-251/Fab-037, similar clotting times of FVII-251/Fab-037 and FVIIa were measured. The data for each time point is the average+/−standard deviation of 3 to 4 mice (FIG. 14B ). - Human αIIb-transgenic HemA mice were dosed with either 10 nmol/kg rFVIIa, FVII-251/Fab-037 or vehicle. Blood was collected from the vena cava at t=5 min, 1, 3, 6, 9, 17, or 24 hours post dosing with FVII-251/Fab37, or at t=5 min, 1, or 3 hours for FVIIa. Plasma levels of FVII-251/Fab-037 or FVIIa were determined by soluble tissue factor (sTF)-prothrombin time (PT) activity using dosing material as activity standards. In
FIG. 15A , plasma activity is plotted as % of injected dose. Mean Residence Time (MRT) and other pharmacokinetic (PK) parameters were calculated using Phoenix WinNonLin 6.2.1 (Pharsight, Certara) by NCA analysis. Clotting times in the freshly isolated whole blood samples were determined in a ROTEM machine (FIG. 15B ). As indicated inFIG. 15B , FVII-251/Fab-037 shows, when dosed at equal molar doses, improved clotting times compared to FVIIa over a longer time interval, which correlates with the improved plasma PK profile of FVII-251/Fab-037. - Prolonged bleeding efficacy was studied in a blinded murine tail-clip bleeding model in human αIIb-transgenic HemA mice (
FIG. 16 ). Prolonged protection was determined in a modified version of the acute tail-clip amputation efficacy model as described in Example 7. In Example 7, blood loss over a 30 minute time frame was measured after a tail-tip amputation applied 5 minutes post-dosing. In the novel prolonged modified model, the tail-tip amputations are performed at a later time points post-dosing, blood loss is again measured over a 30 minute period. After the dosing of 10 nmol/kg FVII-265/Fab-037, tail-tip amputations were performed at 2, 4 and 6 hours post-dosing. Similarly, blood loss was measured at 5 min and 2 hours-post dosing of 100 nmol/kg intravenous dosed FVIIa. Blood loss is indicated as % blood loss, compared to blood loss as measured in vehicle dosed mice at similar time points post-dosing. Indicated are the median blood loss and the statistical significance. The latter was calculated using unpaired two-tailed t-test inGraphPad Prism 6. Such two tailed t-tests showed that the 100 nmol/kg dose of FVIIa significant reduces blood loss at 5 minutes post-dosing and is not advantageous at 2 hours post-dosing. In contrast, a ten-fold lower dose of 10 nmol/kg of FVII-265/Fab-037 shows a similar and efficacious reduction inblood loss 2 hours post-dosing as 100 nmol/kg FVIIa at five minutes post-dosing. In addition, significant reduction in blood loss compared to vehicle treated mice was observed at 4 and 6 hours post-dosing. - In this configuration the Fab light chain within FVII-250 (described in Example 3; SEQ ID NO:74) was dimerized to the Fab heavy chain Fab-062, which comprises an XTEN AE288) moiety fused to the N-terminus of the Fab heavy chain as illustrated in
FIG. 17 . - The amino acid sequence of the Fab-062 is provided below. The XTEN sequence is in bold (note that a glutamic acid (E) is added at the N-terminus of AE288) and the VH2 domain of the Fab is underlined.
-
(SEQ ID NO: 252) 1 EGTSESATPE SGPGSEPATS GSETPGTSES ATPESGPGSE PATSGSETPG 51 TSESATPESG PGTSTEPSEG SAPGSPAGSP TSTEEGTSES ATPESGPGSE 101 PATSGSETPG TSESATPESG PGSPAGSPTS TEEGSPAGSP TSTEEGTSTE 151 PSEGSAPGTS ESATPESGPG TSESATPESG PGTSESATPE SGPGSEPATS 201 GSETPGSEPA TSGSETPGSP AGSPTSTEEG TSTEPSEGSA PGTSTEPSEG 251 SAPGSEPATS GSETPGTSES ATPESGPGTS TEPSEGSAP E VQLVESGGGL 301 VKPGGSLRLS CAASGFTFSA YAMSWVRQAP GKGLVWVASI SSGGTTYYPD 351 SVKRQFTISR DNAKNTLYLQ MNSLRAEDTA VYYCTRGGDY GYALDYWGQG 401 TLVTVSSAST KGPSVFPLAP SSKSTSGGTA ALGCLVKDYF PEPVTVSWNS 451 GALTSGVHTF PAVLQSSGLY SLSSVVTVPS SSLGTQTYIC NVNHKPSNTK 501 VDKKVEPKSC * - To generate this fusion protein, DNA encoding the above protein sequence was synthesized, cloned into an expression vector, and expressed in HEK 293 cells by transient transfection. The fusion protein was then purified from the conditioned media.
- To measure the affinity of FVII-250/Fab-062 for GPIIb/IIIa, binding assays were performed using surface plasmon resonance (SPR) technology. For this purpose, biotinylated human GPIIb/IIIa ectodomain protein was generated as described in Zhu et al. Molecular Cell, 32(6): 849-861 (2008). The GPIIb/IIIa ectodomain protein was immobilized on an SPR chip coated with streptavidin (GE Healthcare). Next, the association and dissociation rates of FVII-250/Fab-062 binding to GPIIb/IIIa at sequentially increasing concentrations of FVII-250/Fab-062 were measured. The kinetic parameters were derived from a 1:1 binding model, and FVII-250/Fab-062 displayed a KD=7.3×10−7M for its association with GPIIb/IIIa (
FIG. 18 ). These results indicate that Fab-250/Fab-062 can associate with GPIIb/IIIa. - The activity of FVII-250/Fab-062 was determined by rotational thromboelastometry (ROTEM) assays using whole blood from hemophilia donors. The activity in whole blood is platelet-dependent, and coagulation was initiated by recalcification of the blood. FVII-250/Fab-062 displays enhanced activity compared to FVIIa, indicated by faster clotting times for FVII-250/Fab-062 than FVIIa at equivalent concentrations (
FIG. 19 ). These data demonstrate that this Fab targeting moiety, with an XTEN moiety at the N-terminus of the Fab heavy chain, can target FVIIa to platelets and increase its potency. - While the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.
Claims (64)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/096,458 US20210246212A1 (en) | 2014-10-23 | 2020-11-12 | Anti-gpiib/iiia antibodies and uses thereof |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462067783P | 2014-10-23 | 2014-10-23 | |
US201562110883P | 2015-02-02 | 2015-02-02 | |
US201562184044P | 2015-06-24 | 2015-06-24 | |
PCT/US2015/057187 WO2016065301A1 (en) | 2014-10-23 | 2015-10-23 | Anti-gpiib/iiia antibodies and uses thereof |
US201715521102A | 2017-04-21 | 2017-04-21 | |
US17/096,458 US20210246212A1 (en) | 2014-10-23 | 2020-11-12 | Anti-gpiib/iiia antibodies and uses thereof |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2015/057187 Continuation WO2016065301A1 (en) | 2014-10-23 | 2015-10-23 | Anti-gpiib/iiia antibodies and uses thereof |
US15/521,102 Continuation US10875924B2 (en) | 2014-10-23 | 2015-10-23 | Anti-GPIIB/IIIA antibodies and uses thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210246212A1 true US20210246212A1 (en) | 2021-08-12 |
Family
ID=54477319
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/521,102 Active 2036-10-14 US10875924B2 (en) | 2014-10-23 | 2015-10-23 | Anti-GPIIB/IIIA antibodies and uses thereof |
US17/096,458 Abandoned US20210246212A1 (en) | 2014-10-23 | 2020-11-12 | Anti-gpiib/iiia antibodies and uses thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/521,102 Active 2036-10-14 US10875924B2 (en) | 2014-10-23 | 2015-10-23 | Anti-GPIIB/IIIA antibodies and uses thereof |
Country Status (4)
Country | Link |
---|---|
US (2) | US10875924B2 (en) |
EP (1) | EP3209689A1 (en) |
MA (1) | MA40835A (en) |
WO (1) | WO2016065301A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102348715B (en) * | 2009-02-03 | 2017-12-08 | 阿穆尼克斯运营公司 | Extension recombinant polypeptide and the composition for including the extension recombinant polypeptide |
EP3003368A4 (en) | 2013-05-24 | 2017-05-03 | Biogen MA Inc. | Anti-gpiib/iiia antibodies or uses thereof |
MA40835A (en) * | 2014-10-23 | 2017-08-29 | Biogen Ma Inc | ANTI-GPIIB / IIIA ANTIBODIES AND THEIR USES |
US20200031895A1 (en) | 2016-12-16 | 2020-01-30 | Biogen Ma Inc. | Stabilized proteolytically activated growth differentiation factor 11 |
US20230056992A1 (en) * | 2019-12-13 | 2023-02-23 | Aggamin, LLC | Methods and systems for treating or preventing pregnancy-related hypertensive disorders |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014190305A2 (en) * | 2013-05-24 | 2014-11-27 | Biogen Idec Ma Inc. | Anti-gpiib/iiia antibodies or uses thereof |
US10875924B2 (en) * | 2014-10-23 | 2020-12-29 | Biogen Ma Inc. | Anti-GPIIB/IIIA antibodies and uses thereof |
Family Cites Families (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4704362A (en) | 1977-11-08 | 1987-11-03 | Genentech, Inc. | Recombinant cloning vehicle microbial polypeptide expression |
DE3572982D1 (en) | 1984-03-06 | 1989-10-19 | Takeda Chemical Industries Ltd | Chemically modified lymphokine and production thereof |
EP0832981A1 (en) | 1987-02-17 | 1998-04-01 | Pharming B.V. | DNA sequences to target proteins to the mammary gland for efficient secretion |
JP3101690B2 (en) | 1987-03-18 | 2000-10-23 | エス・ビィ・2・インコーポレイテッド | Modifications of or for denatured antibodies |
US5892019A (en) | 1987-07-15 | 1999-04-06 | The United States Of America, As Represented By The Department Of Health And Human Services | Production of a single-gene-encoded immunoglobulin |
US5770198A (en) * | 1988-05-18 | 1998-06-23 | The Research Foundation Of The State Of New York | Platelet-specific chimeric 7E3 immunoglobulin |
CA2006596C (en) | 1988-12-22 | 2000-09-05 | Rika Ishikawa | Chemically-modified g-csf |
US5530101A (en) * | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
ATE148171T1 (en) | 1989-02-21 | 1997-02-15 | Univ Washington | MODIFIED FORMS OF REPRODUCTIVE HORMONES |
US5935815A (en) | 1989-10-25 | 1999-08-10 | Katholieke Universiteit Leuven | Process for micro biological production of proteins |
US5633076A (en) | 1989-12-01 | 1997-05-27 | Pharming Bv | Method of producing a transgenic bovine or transgenic bovine embryo |
US6552170B1 (en) | 1990-04-06 | 2003-04-22 | Amgen Inc. | PEGylation reagents and compounds formed therewith |
WO1992009698A1 (en) | 1990-11-26 | 1992-06-11 | Genetics Institute, Inc. | Expression of pace in host cells and methods of use thereof |
SG47099A1 (en) | 1991-03-15 | 1998-03-20 | Amgen Boulder Inc | Pegylation of polypeptides |
US5846951A (en) | 1991-06-06 | 1998-12-08 | The School Of Pharmacy, University Of London | Pharmaceutical compositions |
IE922437A1 (en) | 1991-07-25 | 1993-01-27 | Idec Pharma Corp | Recombinant antibodies for human therapy |
US5777085A (en) * | 1991-12-20 | 1998-07-07 | Protein Design Labs, Inc. | Humanized antibodies reactive with GPIIB/IIIA |
US5714350A (en) * | 1992-03-09 | 1998-02-03 | Protein Design Labs, Inc. | Increasing antibody affinity by altering glycosylation in the immunoglobulin variable region |
US5736137A (en) | 1992-11-13 | 1998-04-07 | Idec Pharmaceuticals Corporation | Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma |
CA2149326C (en) | 1992-11-13 | 2007-04-17 | Mitchell E. Reff | Fully impaired consensus kozak sequences for mammalian expression |
US5643575A (en) | 1993-10-27 | 1997-07-01 | Enzon, Inc. | Non-antigenic branched polymer conjugates |
US5827690A (en) | 1993-12-20 | 1998-10-27 | Genzyme Transgenics Corporatiion | Transgenic production of antibodies in milk |
US5840529A (en) | 1995-08-02 | 1998-11-24 | Clinical Research Institute Of Montreal | Mammalian pro-hormone convertase |
GB9524973D0 (en) | 1995-12-06 | 1996-02-07 | Lynxvale Ltd | Viral vectors |
CA2203745A1 (en) | 1996-07-26 | 1998-01-26 | Robert Day | Pro-protein converting enzyme |
WO1998041645A1 (en) | 1997-03-14 | 1998-09-24 | Idec Pharmaceuticals Corporation | Method for integrating genes at specific sites in mammalian cells via homologous recombination and vectors for accomplishing the same |
EP1034256A1 (en) | 1997-10-14 | 2000-09-13 | Merck & Co., Inc. | Anticoagulant test |
US6210904B1 (en) | 1997-10-14 | 2001-04-03 | Merck & Co., Inc. | Anticoagulant test |
GB9722131D0 (en) | 1997-10-20 | 1997-12-17 | Medical Res Council | Method |
CA2405557C (en) | 2000-04-12 | 2013-09-24 | Human Genome Sciences, Inc. | Albumin fusion proteins |
ES2256234T3 (en) | 2000-05-16 | 2006-07-16 | Lipoxen Technologies Limited | DERIVATIZATION OF PROTEINS IN WATER SOLUTION. |
AU2001287550B2 (en) | 2000-09-13 | 2007-03-22 | Novo Nordisk Health Care Ag | Human coagulation factor VII variants |
US7211395B2 (en) | 2001-03-09 | 2007-05-01 | Dyax Corp. | Serum albumin binding moieties |
US8455627B2 (en) | 2001-10-05 | 2013-06-04 | Affimed Therapeutics, Ag | Human antibody specific for activated state of platelet integrin receptor GPIIb/IIIa |
EP2261250B1 (en) | 2001-12-21 | 2015-07-01 | Human Genome Sciences, Inc. | GCSF-Albumin fusion proteins |
US20080194481A1 (en) | 2001-12-21 | 2008-08-14 | Human Genome Sciences, Inc. | Albumin Fusion Proteins |
KR101271635B1 (en) | 2001-12-21 | 2013-06-12 | 휴먼 게놈 사이언시즈, 인코포레이티드 | Albumin fusion proteins |
CA2491471A1 (en) | 2002-07-03 | 2004-01-15 | The Trustees Of The University Of Pennsylvania | Compositions, methods and kits relating to anti-platelet autoantibodies and inhibitors thereof |
ES2897506T3 (en) | 2003-01-09 | 2022-03-01 | Macrogenics Inc | Identification and modification of antibodies with variant Fc regions and methods of using them |
CN102139114A (en) | 2003-02-26 | 2011-08-03 | 尼克塔治疗公司 | Polymer factor VIII moiety conjugates |
EP1654290B1 (en) | 2003-08-12 | 2019-03-13 | Lipoxen Technologies Limited | Sialic acid derivatives for protein derivatisation and conjugation |
WO2005079479A2 (en) * | 2004-02-17 | 2005-09-01 | Absalus, Inc. | Super-humanized antibodies against respiratory syncytial virus |
KR20080031383A (en) | 2005-07-05 | 2008-04-08 | 베이커 메디컬 리서치 인스티튜트 | Anticoagulation agent and uses thereof |
EP1924596A4 (en) | 2005-08-12 | 2009-07-29 | Human Genome Sciences Inc | Albumin fusion proteins |
US7855279B2 (en) | 2005-09-27 | 2010-12-21 | Amunix Operating, Inc. | Unstructured recombinant polymers and uses thereof |
US7846445B2 (en) | 2005-09-27 | 2010-12-07 | Amunix Operating, Inc. | Methods for production of unstructured recombinant polymers and uses thereof |
US8048848B2 (en) | 2006-02-03 | 2011-11-01 | Prolor Biotech Ltd. | Long-acting interferons and derivatives thereof and methods thereof |
GB0614780D0 (en) | 2006-07-25 | 2006-09-06 | Ucb Sa | Biological products |
EP2068905A4 (en) | 2006-09-14 | 2009-12-30 | Human Genome Sciences Inc | Albumin fusion proteins |
EP2144930A1 (en) | 2007-04-18 | 2010-01-20 | ZymoGenetics, Inc. | Single chain fc, methods of making and methods of treatment |
BRPI0811857A2 (en) | 2007-05-14 | 2014-10-21 | Biogen Idec Inc | SIMPLE CHAIN FC (SCFC) REGIONS, AGLUTINATION POLYPEPTIDES UNDERSTANDING THEM AND RELATED METHODS. |
WO2008144757A1 (en) * | 2007-05-21 | 2008-11-27 | Alder Biopharmaceuticals, Inc. | Novel rabbit antibody humanization methods and humanized rabbit antibodies |
DK2369005T3 (en) | 2007-06-21 | 2013-06-24 | Univ Muenchen Tech | Biologically active proteins with increased stability in vivo and / or in vitro |
DK2025685T3 (en) | 2007-08-15 | 2013-09-02 | Canadian Blood Services | Monoclonal antibodies against BETA3 integrins. |
AU2008287340A1 (en) | 2007-08-15 | 2009-02-19 | Amunix, Inc. | Compositions and methods for modifying properties of biologically active polypeptides |
US8877688B2 (en) | 2007-09-14 | 2014-11-04 | Adimab, Llc | Rationally designed, synthetic antibody libraries and uses therefor |
US8691730B2 (en) | 2007-09-14 | 2014-04-08 | Adimab, Llc | Rationally designed, synthetic antibody libraries and uses therefor |
US8096354B2 (en) | 2008-05-15 | 2012-01-17 | Schlumberger Technology Corporation | Sensing and monitoring of elongated structures |
US20110077202A1 (en) | 2008-05-16 | 2011-03-31 | Bayer Healthcare Llc | Targeted Coagulation Factors and Method of Using the Same |
TW201023893A (en) | 2008-11-17 | 2010-07-01 | Bioalliance Cv | Antibodies recognizing oxygen-regulated protein 150 expressed on cancer cells and methods of using same |
JP2012515556A (en) | 2009-01-23 | 2012-07-12 | バイオジェン・アイデック・エムエイ・インコーポレイテッド | Stabilized Fc polypeptides with reduced effector function and methods of use |
US8703717B2 (en) | 2009-02-03 | 2014-04-22 | Amunix Operating Inc. | Growth hormone polypeptides and methods of making and using same |
US8680050B2 (en) | 2009-02-03 | 2014-03-25 | Amunix Operating Inc. | Growth hormone polypeptides fused to extended recombinant polypeptides and methods of making and using same |
CN102348715B (en) | 2009-02-03 | 2017-12-08 | 阿穆尼克斯运营公司 | Extension recombinant polypeptide and the composition for including the extension recombinant polypeptide |
CN102482340B (en) | 2009-04-06 | 2015-05-13 | 诺沃—诺迪斯克有限公司 | Targeted delivery of factor viii proteins to platelets |
US8753631B2 (en) | 2009-05-01 | 2014-06-17 | New York University | Therapeutic agents for inducing platelet fragmentation and treating thromboembolic disorders |
EP2437786B1 (en) | 2009-06-01 | 2016-05-18 | Yeda Research and Development Co. Ltd. | Prodrugs containing albumin binding probe |
CN106916229A (en) | 2009-06-08 | 2017-07-04 | 阿穆尼克斯运营公司 | Growth hormone polypeptides and its preparation and application |
NZ596778A (en) | 2009-06-08 | 2013-11-29 | Amunix Operating Inc | Glucose-regulating polypeptides and methods of making and using same |
AU2010290077C1 (en) | 2009-08-24 | 2015-12-03 | Bioverativ Therapeutics Inc. | Coagulation factor IX compositions and methods of making and using same |
WO2011028344A2 (en) | 2009-08-25 | 2011-03-10 | Amunix Operating Inc. | Interleukin-1 receptor antagonist compositions and methods of making and using same |
AU2010325787B2 (en) | 2009-12-06 | 2016-05-12 | Bioverativ Therapeutics Inc. | Factor VIII-Fc chimeric and hybrid polypeptides, and methods of use thereof |
WO2011112549A2 (en) | 2010-03-10 | 2011-09-15 | Emory University | Temperature sensitive conjugate compositions, and uses related thereto |
EP3508573A1 (en) | 2010-07-09 | 2019-07-10 | Bioverativ Therapeutics Inc. | Systems for factor viii processing and methods thereof |
NZ605400A (en) | 2010-07-09 | 2015-05-29 | Biogen Idec Hemophilia Inc | Chimeric clotting factors |
US20130017997A1 (en) | 2010-08-19 | 2013-01-17 | Amunix Operating Inc. | Factor VIII Compositions and Methods of Making and Using Same |
EP2648749A2 (en) | 2010-12-08 | 2013-10-16 | Stem Centrx, Inc. | Novel modulators and methods of use |
SI2717898T1 (en) | 2011-06-10 | 2019-07-31 | Bioverativ Therapeutics Inc. | Pro-coagulant compounds and methods of use thereof |
US10656167B2 (en) | 2011-07-25 | 2020-05-19 | Bioverativ Therapeutics Inc. | Assays to monitor bleeding disorders |
ES2398328B1 (en) | 2011-08-09 | 2014-02-05 | Oncomatrix, S.L. | METHODS AND PRODUCTS FOR IN VITRO DIAGNOSIS, IN VITRO PROGNOSIS AND DRUG DEVELOPMENT AGAINST INVASIVE CARCINOMAS. |
WO2014066530A2 (en) | 2012-10-25 | 2014-05-01 | Sorrento Therapeutics, Inc. | ANTIGEN BINDING PROTEINS THAT BIND ErbB3 |
US9567402B2 (en) | 2013-03-14 | 2017-02-14 | The Regents Of The University Of California | Internalizing human monoclonal antibodies targeting prostate and other cancer cells |
WO2014193305A1 (en) | 2013-05-30 | 2014-12-04 | Weike (S) Pte Ltd | A network system for an external communal game |
TW201536811A (en) | 2013-05-31 | 2015-10-01 | Biogen Idec Inc | Chimeric FVII-XTEN molecules and uses thereof |
MA40861A (en) | 2014-10-31 | 2017-09-05 | Biogen Ma Inc | ANTI-GLYCOPROTEIN IIB / IIIA ANTIBODIES |
WO2017152102A2 (en) | 2016-03-04 | 2017-09-08 | Alector Llc | Anti-trem1 antibodies and methods of use thereof |
CA3044574A1 (en) | 2016-11-23 | 2018-05-31 | Bioverativ Therapeutics Inc. | Bispecific antibodies binding to coagulation factor ix and coagulation factor x |
CN111050788A (en) | 2017-02-28 | 2020-04-21 | 西雅图基因公司 | anti-TIGIT antibody |
EP3621642B1 (en) | 2017-05-10 | 2024-09-18 | Zhejiang Shimai Pharmaceutical Co., Ltd. | Human monoclonal antibodies against lag3 and uses thereof |
-
2015
- 2015-10-22 MA MA040835A patent/MA40835A/en unknown
- 2015-10-23 EP EP15791155.3A patent/EP3209689A1/en not_active Withdrawn
- 2015-10-23 WO PCT/US2015/057187 patent/WO2016065301A1/en active Application Filing
- 2015-10-23 US US15/521,102 patent/US10875924B2/en active Active
-
2020
- 2020-11-12 US US17/096,458 patent/US20210246212A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014190305A2 (en) * | 2013-05-24 | 2014-11-27 | Biogen Idec Ma Inc. | Anti-gpiib/iiia antibodies or uses thereof |
US10364288B2 (en) * | 2013-05-24 | 2019-07-30 | Biogen Ma Inc. | Anti-GPIIB/IIIA antibodies or uses thereof |
US10875924B2 (en) * | 2014-10-23 | 2020-12-29 | Biogen Ma Inc. | Anti-GPIIB/IIIA antibodies and uses thereof |
Non-Patent Citations (5)
Title |
---|
Edwards et al., J Mol Biol. 2003 Nov 14;334(1): 103-18. * |
Goel et al., J Immunol. 2004 Dec 15; 173(12):7358-67. * |
Janeway et al., Immunobiology, 3rd edition, Garland Publishing Inc., 1997, pages 3:1 -3:11. * |
Llyod et al., Protein Eng Des Sel. 2009 Mar;22(3):159-68. doi: 10.1093/protein/gzn058. Epub 2008 Oct29. * |
Rudikoff et al., Proc Natl Acad Sci USA. 1982 Mar;79(6):1979-83. * |
Also Published As
Publication number | Publication date |
---|---|
US10875924B2 (en) | 2020-12-29 |
MA40835A (en) | 2017-08-29 |
US20170355771A1 (en) | 2017-12-14 |
EP3209689A1 (en) | 2017-08-30 |
WO2016065301A1 (en) | 2016-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220089745A1 (en) | ANTI-GLYCOPROTEIN IIb/IIIa ANTIBODIES | |
US11613589B2 (en) | Compositions for inhibiting MASP-2 dependent complement activation | |
US20210246212A1 (en) | Anti-gpiib/iiia antibodies and uses thereof | |
US20220213200A1 (en) | Anti-gpiib/iiia antibodies or uses thereof | |
EP3002298B1 (en) | Anti-factor xi monoclonal antibodies and methods of use thereof | |
TW201536811A (en) | Chimeric FVII-XTEN molecules and uses thereof | |
KR102607829B1 (en) | Plasma kallikrein inhibitors and their use to prevent hereditary angioedema attacks | |
CA2875247A1 (en) | Chimeric clotting factors | |
CN103429256B (en) | Targeting of coagulation factors to TLT-1 on activated platelets | |
AU2015270480A1 (en) | Compositions for inhibiting MASP-2 dependent complement activation | |
AU2013202752B2 (en) | Monoclonal antibodies against tissue factor pathway inhibitor (TFPI) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BIOGEN MA INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SALAS, JOE;HANF, KARL;VAN DER FLIER, ARJAN;AND OTHERS;SIGNING DATES FROM 20170509 TO 20170519;REEL/FRAME:055617/0447 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |