US20210245865A1 - Compact and Redundant Method for Powering Flight Control Surface from Within Fuselage - Google Patents

Compact and Redundant Method for Powering Flight Control Surface from Within Fuselage Download PDF

Info

Publication number
US20210245865A1
US20210245865A1 US16/784,545 US202016784545A US2021245865A1 US 20210245865 A1 US20210245865 A1 US 20210245865A1 US 202016784545 A US202016784545 A US 202016784545A US 2021245865 A1 US2021245865 A1 US 2021245865A1
Authority
US
United States
Prior art keywords
torque shaft
coupled
control surface
link
reaction link
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/784,545
Other versions
US11104422B1 (en
Inventor
Wilfredo Alvizures
Randall E. Anderson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Priority to US16/784,545 priority Critical patent/US11104422B1/en
Assigned to THE BOEING COMPANY reassignment THE BOEING COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALVIZURES, WILFREDO, ANDERSON, RANDALL E.
Publication of US20210245865A1 publication Critical patent/US20210245865A1/en
Application granted granted Critical
Publication of US11104422B1 publication Critical patent/US11104422B1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/38Transmitting means with power amplification
    • B64C13/40Transmitting means with power amplification using fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/26Transmitting means without power amplification or where power amplification is irrelevant
    • B64C13/28Transmitting means without power amplification or where power amplification is irrelevant mechanical
    • B64C13/30Transmitting means without power amplification or where power amplification is irrelevant mechanical using cable, chain, or rod mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C9/02Mounting or supporting thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C9/14Adjustable control surfaces or members, e.g. rudders forming slots
    • B64C9/16Adjustable control surfaces or members, e.g. rudders forming slots at the rear of the wing

Definitions

  • the present disclosure relates in general to systems and methods for actuating control surfaces of a vehicle. More particularly, the disclosure relates to control surface actuation systems which are disposed inside the fuselage of an aircraft.
  • Aerodynamic flight control surfaces such as flaps, elevators, and rudders
  • Aerodynamic flight control surfaces have an aerodynamic cross-sectional profile that is typically formed by connecting an upper skin to a lower skin proximate both the leading edge and the trailing edge of the flight control surface.
  • the wings and stabilizers in high-performance aircraft are thin, that is, the distance between the top and bottom of the outer mold line at the control surface hinge line is small. Thin-wing aircraft create a challenge for spatial integration of actuation control systems with conventional piston-type linear actuators.
  • a method for powering a flight control surface which reduces the footprint of and increases the reliability of such piston-type linear actuators would be a beneficial improvement in the state of the art.
  • the subject matter disclosed in some detail below is directed to methods for actuating flight control surfaces by means of a torque shaft drive system which is disposed inside the fuselage of a vehicle (e.g., an aircraft).
  • the torque shaft is partly disposed inside the fuselage and partly disposed outside the fuselage, including a portion disposed inside the control surface.
  • the combination of a torque shaft drive system and a torque shaft will be collectively referred to herein as a “control surface actuation system”.
  • the control surface actuation system disclosed herein is configured to provide a compact footprint and high capability. Rotation of the torque shaft is actuated by a pair of redundant mutually-opposing actuation mechanisms which are situated inside the fuselage in a partly overlapping spatial relationship.
  • each of the two actuation mechanisms is a piston-type linear actuator which is operatively coupled to the torque shaft by means of a respective crank arm that may be splined to or fastened to the torque shaft.
  • Each crank arm converts displacement of the associated piston-type linear actuator into rotation of the torque shaft.
  • Each crank arm is capable of driving the control surface independently to provide drive system redundancy.
  • the control surface actuation system proposed herein further includes a pair of reaction links which are coupled to a bulkhead by means of respective kick links to maintain a load loop.
  • the pair of reaction links partly overlap each other to maintain a very compact package that allows for use of this concept in several instances where space is limited and a fairing is not wanted.
  • each reaction link is pivotably coupled to the torque shaft at two locations to stabilize the associated actuation mechanism.
  • a system for driving rotation of a torque shaft comprising: a first linear actuator comprising a first cylinder and a first piston rod end which is displaceable relative to the first cylinder; a first crank arm which is pivotably coupled (for example, by means of a pivot joint) to the first piston rod end and coupled to drive rotation of the torque shaft; a first reaction link which is pivotably coupled (for example, by means of a rotary bearing) to the torque shaft and to the first cylinder; a second linear actuator comprising a second cylinder and a second piston rod end which is displaceable relative to the second cylinder; a second crank arm which is pivotably coupled to the second piston rod end and coupled to drive rotation of the torque shaft; and a second reaction link which is pivotably coupled to the torque shaft and to the second cylinder.
  • the first reaction link partly overlaps the second reaction link, thereby reducing the footprint of the actuation system.
  • the linear actuators, crank arms, and reactions links are disposed within a fuselage of
  • a method for driving rotation of a torque shaft comprising: (a) rotatably coupling a first reaction link to the torque shaft at first and second axial locations; (b) coupling the first reaction link to a bulkhead by way of a first kick link; (c) rotatably coupling a second reaction link to the torque shaft at third and fourth axial locations, wherein the third axial location is between the first and second axial locations, and the second axial location is between the third and fourth axial locations; (d) coupling the second reaction link to the bulkhead by way of a second kick link; (e) pivotably coupling a first cylinder of a first linear actuator to the first reaction link; (f) coupling one end of a first crank arm to the torque shaft at a fifth axial location between the second and third axial locations; (g) pivotably coupling another end of the first crank arm to a first piston rod end of the first linear actuator; (h) pivotably coupling a second cylinder of
  • a further aspect of the subject matter disclosed in detail below is an aircraft comprising a fuselage comprising a bulkhead, an airfoil-shaped member attached to the fuselage, a control surface pivotably coupled to the airfoil-shaped member, and a control surface actuation system operatively coupled to the control surface, wherein the control surface actuation system comprises a torque shaft which is coupled to drive rotation of the control surface, and a torque shaft drive system which is coupled to drive rotation of the torque shaft.
  • the torque shaft drive system comprises: (a) a torque shaft which is coupled to drive rotation of the control surface; (b) a first linear actuator comprising a first cylinder and a first piston rod end which is displaceable relative to the first cylinder; (c) a first crank arm which is pivotably coupled to the first piston rod end and coupled to drive rotation of the torque shaft; (d) a first reaction link which is pivotably coupled to the torque shaft and to the first cylinder; (e) a second linear actuator comprising a second cylinder and a second piston rod end which is displaceable relative to the second cylinder; (f) a second crank arm which is pivotably coupled to the second piston rod end and coupled to drive rotation of the torque shaft; (g) a second reaction link which is pivotably coupled to the torque shaft and to the second cylinder; (h) a first kick link which is pivotably coupled to the first reaction link and to the bulkhead; and (i) a second kick link which is pivotably coupled to the second reaction link and to the bulkhead.
  • the first and second linear actuators, first and second crank arms, first and second reactions links, and first second kick links are disposed inside the fuselage.
  • the aircraft may further comprise a flight control system configured to send commands for controlling the first and second linear actuators so that the first linear actuator extends while the second linear actuator retracts, thereby causing the first and second crank arms to rotate in a same direction
  • FIG. 1 is a diagram representing a three-dimensional view of portions of an aircraft having a control surface pivotably coupled to a trailing edge of a wing and having a control surface actuation system disposed inside the fuselage of the aircraft.
  • FIG. 2 is a diagram representing a three-dimensional view of an assembly including a control surface actuation system (having two manifolds not shown), a portion of a control surface controlled by the control surface actuation system, and various aircraft components which support the control surface and the control surface actuation system in accordance with one embodiment.
  • a control surface actuation system having two manifolds not shown
  • various aircraft components which support the control surface and the control surface actuation system in accordance with one embodiment.
  • FIG. 3 is a diagram representing a side view of the assembly depicted in FIG. 2 with a pair of manifolds added.
  • FIG. 4 is a diagram representing a sectional view of the assembly depicted in FIG. 3 , the location of the section plane being indicated by line 4 - 4 seen in FIG. 3 .
  • the section plane is parallel to and intersects the axis of rotation of the torque shaft.
  • FIG. 4A is a diagram showing an end view of a splined torque shaft meshed with a splined opening formed in the front spar of a control surface in accordance with one embodiment.
  • FIG. 5 is a diagram representing a three-dimensional view of the assembly depicted in section in FIG. 4 .
  • FIG. 6 is a diagram representing a three-dimensional sectional view of the assembly depicted in FIG. 2 .
  • the section plane is parallel to and intersects the axis of rotation of the torque shaft, but is perpendicular to the section plane of FIG. 4 .
  • FIG. 6A is a diagram representing a three-dimensional view of a crank arm in isolation.
  • FIG. 6B is a diagram representing a three-dimensional view of a reaction link in isolation.
  • FIG. 7 is a diagram representing a sectional view of a torque shaft coupled to a flight control surface in accordance with one proposed implementation.
  • FIG. 8A is a diagram representing a sectional view of a portion of a torque shaft in which gaps between inner and outer tubes are maintained by locally machined boss features along the tube.
  • FIG. 8B is a diagram representing a sectional view of a portion of a torque shaft in which gaps between inner and outer tubes are maintained by tapering the tubes.
  • FIG. 9A is a diagram representing a three-dimensional view of a subassembly that includes a torque shaft supported by a pair of torque shaft support fittings in accordance with one proposed implementation.
  • FIG. 9B is a diagram representing an exploded view of the subassembly depicted in FIG. 9A .
  • FIG. 10 is a block diagram identifying some components of a primary flight control system in accordance with one embodiment.
  • FIG. 11 is a flowchart identifying steps of a method for driving rotation of a torque shaft in accordance with one embodiment.
  • control surface actuation system suitable for actuating deflection of a flap pivotably coupled to the trailing edge of a wing.
  • similarly designed control surface actuation systems may be used to actuate deflection of other types of control surfaces, such as an elevator pivotably coupled to the trailing edge of a horizontal stabilizer, a rudder pivotably coupled to the trailing edge of a vertical stabilizer, or any other control disposed situated in proximity to the fuselage of the aircraft.
  • a control surface is a candidate for actuation by a system disposed inside the fuselage provided that the aircraft design allows the control surface to be coupled to the intra-fuselage actuation system by means of a torque shaft.
  • FIG. 1 shows a three-dimensional view of portions of an aircraft 10 that includes a fuselage 2 and a wing 4 .
  • the aircraft 10 includes a control surface 6 which is pivotably coupled (by means of hinges) to a trailing edge of wing 4 .
  • FIG. 1 shows two hinge fittings 42 a and 42 b .
  • the aircraft 10 further includes a control surface actuation system that controls the angular position of the control surface 6 relative to the wing 4 .
  • the control surface actuation system includes a torque shaft 12 , which is disposed partly inside the fuselage 2 and partly inside the control surface 6 .
  • the torque shaft 12 is rotatably coupled to and supported by a torque shaft support fitting 36 b (and other torque shaft support fittings not shown in FIG. 1 ).
  • the control surface actuation system further includes a torque shaft drive system (not visible in FIG. 1 , but see torque shaft drive system 8 in FIGS. 2 and 3 ), which is disposed inside the fuselage 2 .
  • the torque shaft 12 drives rotation (angular deflection) of the control surface 6 ; the torque shaft drive system 8 drives rotation of the torque shaft 12 .
  • FIG. 2 shows a three-dimensional view of an assembly that includes a torque shaft 12 , a torque shaft drive system 8 , a control surface 6 , and various aircraft components which provide structural support in accordance with one embodiment of the aircraft 10 depicted in FIG. 1 .
  • the aircraft 10 further includes a bulkhead 32 which is installed inside the fuselage 2 .
  • the torque shaft drive system 8 is coupled to the bulkhead 32 by kick links 28 a and 28 b (only kick link 28 b is visible in FIG. 2 ).
  • the control surface 6 is pivotably coupled to a rear spar 30 of the wing 4 by means of hinge fittings 42 a and 42 b .
  • the torque shaft 12 drives the control surface 6 to pivot about a pair of hinges formed in part by the hinge fittings 42 a and 42 b .
  • the axes of the hinges and the axis of rotation of the torque shaft 12 are coaxial so that control surface 6 pivots and torque shaft 12 rotates about the same axis.
  • the aircraft components which support the torque shaft 12 include three torque shaft support fittings 36 a - 36 c , two of which are shown in FIG. 2 (torque shaft support fitting 36 a is shown in FIG. 5 ). Each of the torque shaft support fittings 36 a - 36 c is attached to the rear spar 30 of the wing 4 .
  • the torque shaft support fittings 36 a - 36 c have respective openings in which respective bearings (not shown in the drawings) are seated.
  • the centers of the openings in the torque shaft support fittings 36 a - 36 c are arranged along a line that is also the axis of rotation of the torque shaft 12 .
  • the front spar 46 of the control surface 6 is configured with splined openings that receive respective splined portions of the torque shaft 12 .
  • splined openings that receive respective splined portions of the torque shaft 12 .
  • the splines (not shown in FIG. 2 ) on the surface of the torque shaft 12 match the splines of the splined openings (not shown in FIG. 2 ), so that every incremental rotation of torque shaft 12 produces an equal incremental change in the angular position (hereinafter “deflection position”) of the control surface 6 .
  • the torque shaft 12 is driven to rotate by the torque shaft drive system 8 .
  • the torque shaft drive system 8 includes two redundant mutually-opposed torque shaft drive mechanisms which are coupled to the torque shaft 12 and to the bulkhead 32 .
  • Each redundant torque shaft drive mechanism includes a respective crank arm 14 a or 14 b , a respective piston-type linear actuator 16 a or 16 b , a respective reaction link 26 a or 26 b , and a respective kick link 28 a or 28 b (kick link 28 a is not visible in FIG. 2 , but see FIG. 3 ).
  • the two torque shaft drive mechanisms partly overlap, which technical feature ensures that the control surface actuation system has a small footprint.
  • the first torque shaft drive mechanism includes a piston-type linear actuator 16 a (for example, a hydraulic actuator or a pneumatic actuator) comprising a cylinder 18 , a piston (not visible in FIG. 2 ) inside the cylinder 18 , and a piston rod 20 extending from the piston and having a piston rod end 21 .
  • the piston rod end 21 is displaceable relative to the cylinder 18 between retracted and extended positions.
  • the first torque shaft drive mechanism further includes a crank arm 14 a which is pivotably coupled to piston rod end 21 of piston-type linear actuator 16 a by a pivot joint which is formed in part by a pivot pin 24 .
  • the crank arm 14 a is also coupled (for example, by means of meshed splines or a cross bolt) to drive rotation of the torque shaft 12 .
  • the first torque shaft drive mechanism further includes a reaction link 26 a which is pivotably coupled (for example, by means of a rotary bearing) to the torque shaft 12 and which is pivotably coupled (for example, by means of a pivot joint 25 a ) to cylinder 18 of piston-type linear actuator 16 a.
  • the first torque shaft drive mechanism further includes a kick link 28 a (not visible in FIG. 2 , but see FIG.
  • the second torque shaft drive mechanism includes a piston-type linear actuator 16 b (for example, a hydraulic actuator or a pneumatic actuator) comprising a cylinder 18 , a piston (not visible in FIG. 2 ) inside the cylinder 18 , and a piston rod 20 having a piston rod end 21 .
  • piston rod end 21 is displaceable relative to cylinder 18 of piston-type linear actuator 16 b between retracted and extended positions.
  • the second torque shaft drive mechanism further includes a crank arm 14 b which is pivotably coupled to piston rod end 21 by a pivot joint formed in part by a pivot pin 24 .
  • the crank arm 14 b is also coupled (for example, by means of meshed splines or a cross bolt) to drive rotation of the torque shaft 12 .
  • the second torque shaft drive mechanism further includes a reaction link 26 b which is pivotably coupled (for example, by means of a rotary bearing) to the torque shaft 12 and which is pivotably coupled (for example, by means of a pivot joint 25 b ) to cylinder 18 of piston-type linear actuator 16 b.
  • the second torque shaft drive mechanism further includes a kick link 28 b which is pivotably coupled (for example, by means of a pivot joint) to reaction link 26 b and which is pivotably coupled (for example, by means of a pivot joint) to a kick link attachment lug 34 which is integrally formed with the bulkhead 32 .
  • FIG. 3 is a diagram representing a side view of the assembly depicted in FIG. 2 with a pair of manifolds 22 a and 22 b added. Both piston-type linear actuators 16 a and 16 b are balanced to provide equal retraction and extension capabilities. FIG. 3 shows a situation in which piston-type linear actuator 16 a is extended and piston-type linear actuator 16 b is retracted. Conversely, piston-type linear actuator 16 a may be retracted while piston-type linear actuator 16 b is extended.
  • the deflection angle of the control surface 6 is a function of the angular positions of the crank arms 14 a and 14 b. The change in deflection angle of the control surface 6 will be equal to the change in angular position of the crank arms 14 a and 14 b.
  • the first torque shaft drive mechanism further includes a manifold 22 a which determines the state of piston-type linear actuator 16 a by controlling the supply of fluid into chambers inside the cylinder 18 of piston-type linear actuator 16 a in response to commands from a flight control system (not shown in FIG. 2 , but see flight controller 40 in FIG. 11 ).
  • the manifold 22 a is mounted to the cylinder 18 of piston-type linear actuator 16 a.
  • the internal components of manifold 22 a allow pressures in the chambers of the cylinder 18 to be changed such that piston-type linear actuator 16 a may be extended or retracted.
  • the second torque shaft drive mechanism further includes a manifold 22 b which determines the state of piston-type linear actuator 16 b by controlling the supply of fluid into the chambers of cylinder 18 of piston-type linear actuator 16 b in response to commands from the flight controller 40 (see FIG. 11 ).
  • the manifold 22 b is mounted to the cylinder 18 of piston-type linear actuator 16 b .
  • the internal components of manifold 22 b allow the pressures in the chambers of the cylinder 18 to be changed such that of the second piston-type linear actuator 16 b may be extended or retracted.
  • each of piston-type linear actuators 16 a and 16 b is a hydraulic actuator.
  • the manifold 22 a is configured with solenoid valves which may be selectively opened or closed such that a fluid moving in manifold 22 a may control the position of the piston inside the cylinder 18 of piston-type linear actuator 16 a .
  • manifold 22 b controls the position of the piston inside the cylinder 18 of piston-type linear actuator 16 b .
  • the piston rods 20 of piston-type linear actuators 16 a and 16 b are operatively coupled to the torque shaft 12 by means of crank arms 14 a and 14 b respectively.
  • the crank arms 14 a and 14 b may be splined to or fastened to the torque shaft 12 .
  • crank arms 14 a and 14 b convert displacement of the piston-type linear actuators 16 a and 16 b into rotation of the torque shaft 12 .
  • the crank arms 14 a and 14 b rotate in the same direction.
  • Both actuation mechanisms are balanced to provide equal retraction and extension capabilities.
  • each crank arm 14 a and 14 b is capable of driving the control surface 6 independently to provide drive system redundancy.
  • both actuation mechanisms are fully functional, one actuation mechanism pushes one crank arm while the other actuator mechanism pulls the other crank arm, thereby causing the torque shaft 12 to rotate and the control surface 6 to deflect.
  • the reaction links 26 a and 26 b and the kick links 28 a and 28 b transfer reaction loads from the torque shaft 12 to the bulkhead 32 during control surface deflection.
  • FIG. 4 is a diagram representing a sectional view of the assembly depicted in FIG. 3 , the location of the section plane being indicated by section line 4 - 4 in FIG. 3 .
  • the section plane is parallel to and intersects the axis of rotation of the torque shaft 12 . Because each crank arm is axially centered with respect to the associated reaction link, the axial offset of crank arms 14 a and 14 b means that the reaction links 26 a and 26 b overlap only partially.
  • the theoretical outer mold line 50 of the fuselage 2 is indicated by an arc in FIG. 4 .
  • the entire assembly of the torque shaft drive system 8 is disposed inside the fuselage 2
  • the torque shaft 12 is partly disposed inside the fuselage 2 and partly disposed inside the control surface 6 .
  • the torque shaft 12 includes an inboard torque shaft segment 12 a and an outboard torque shaft segment 12 b .
  • Each of torque shaft segments 12 a and 12 b has a tube-within-tube configuration.
  • the inboard torque shaft segment 12 a is rotatably coupled to and supported by torque shaft support fitting 36 b (e.g., by means of a bearing not shown in FIG. 4 ).
  • the outboard torque shaft segment 12 b is coupled to the front spar 46 of control surface 6 (e.g., by splines as seen in FIG. 4A ) and is rotatably coupled to torque shaft support fitting 36 c (e.g., by means of a bearing not shown in FIG. 4 ).
  • the bearings disposed in torque shaft support fittings 36 a - 36 c are configured to support the torque shaft 12 while allowing the torque shaft 12 to rotate.
  • the torque shaft support fitting 36 b (and also the torque shaft support fitting 36 a not shown in FIG. 4 ) is disposed inside the fuselage 2 (as represented by outer mold line 50 ), whereas torque shaft support fitting 36 c is disposed outside the fuselage 2 .
  • a major portion of inboard torque shaft segment 12 a is disposed inside fuselage 2
  • one end of inboard torque shaft segment 12 a projects out of fuselage 2 and into one end of second outboard torque shaft segment 12 b .
  • the overlapping end portions of the torque shaft segments 12 a and 12 b are fastened together by a cross bolt (not shown in FIG. 4 , but see cross bolt 96 b in FIG. 11 ).
  • FIG. 9A is a diagram representing a three-dimensional view of a subassembly that includes a torque shaft 12 supported by a pair of torque shaft support fittings 36 b and 36 c (and other torque shaft support fittings not shown) in accordance with one proposed implementation.
  • FIG. 9B is a diagram representing an exploded view of the subassembly depicted in FIG. 9A .
  • the inboard torque shaft segment 12 a is passed through an opening 70 formed in torque shaft support fitting 36 b
  • outboard torque shaft segment 12 b is passed through an opening 72 formed in torque shaft support fitting 36 c.
  • the front spar 46 of control surface 6 includes an external torque shaft support wall 52 and an internal torque shaft support wall 54 having respective splined openings which receive and mate with respective pluralities of splines formed on the outer surface of the outboard torque shaft segment 12 b .
  • FIG. 4A is a diagram showing an end view of a splined torque shaft meshed with a splined opening 56 formed in the internal torque shaft support wall 54 in accordance with one embodiment.
  • the splined opening 56 has a plurality of inwardly projecting and axially extending splines 58
  • an end section of the outer tube 66 of outboard torque shaft segment 12 b has a plurality of outwardly projecting and axially extending splines 60 which are meshed (interengaged) with splines 58
  • the external torque shaft support wall 52 (not shown in FIG. 4A ) has a splined opening which is meshed with a second plurality of outwardly projecting splines (not shown in the drawings) formed on the outer surface of the second outboard torque shaft segment 12 b .
  • outer tube 66 is coupled (e.g., by cross bolts) to an inner tube 68 of outboard torque shaft segment 12 b , which in turn is coupled (e.g., by a cross bolt) to the inboard torque shaft segment 12 a , thereby effectively coupling control surface 6 to crank arms 14 a and 14 b. Accordingly, every incremental rotation of crank arms 14 a and 14 b produces an equal incremental change in the deflection position of control surface 6 .
  • FIG. 5 is a diagram representing a three-dimensional view of the assembly depicted in section in FIG. 4 .
  • the torque shaft support fittings 36 a - 36 c are supported by a rear spar 30 . More specifically, torque shaft support fittings 36 a - 36 c are attached to (joined or fastened) or integrally formed with rear spar 30 .
  • the torque shaft 12 is rotatably coupled to torque shaft support fittings 36 a - 36 c by bearings (not shown).
  • the control surface 6 is pivotably coupled to the wing 4 by means of hinges.
  • hinge fittings 42 a and 42 b are pivotably coupled to respective hinge fitting attachment lugs (not visible in FIG. 5 ) by means of respective pivot joints.
  • the proximal ends of the hinge fittings 42 a and 42 b are attached to (joined or fastened) or integrally formed to rear spar 30 of wing 4 .
  • the hinge fitting attachment lugs are integrally formed with the front spar 46 of control surface 6 .
  • the dashed line in FIG. 5 represents the axis of rotation A of the torque shaft 12 , which is coaxial with the pivot axis of the control surface 6 (which pivot axis is defined by the aforementioned hinges).
  • FIG. 6 is a diagram representing a three-dimensional sectional view of the assembly depicted in FIG. 4 .
  • the section plane is parallel to and intersects the axis of rotation of the torque shaft 12 , but is perpendicular to the section plane of FIG. 4 .
  • each of the torque shaft segments 12 a and 12 b has a tube-within-tube configuration.
  • the inboard torque shaft segment 12 a includes an outer tube 62 which surrounds an inner tube 64 .
  • the outboard torque shaft segment 12 b includes an outer tube 66 which surrounds an inner tube 68 .
  • the end section of inboard torque shaft segment 12 a is inserted in an end section of outboard torque shaft segment 12 b .
  • These end sections are fastened together by a cross bolt (not shown in FIG. 6 , but see cross bolt 96 b in FIG. 7 ).
  • the reaction link 26 a is rotatably coupled to the torque shaft 12 at first and second axial locations by means of bearings 48 a and 48 b; the reaction link 26 b is rotatably coupled to the torque shaft 12 at third and fourth axial locations by means of bearings 48 c and 48 d .
  • the third axial location is between the first and second axial locations; the second axial location is between the third and fourth axial locations.
  • crank arm 14 a is coupled to torque shaft 12 at a fifth axial location between the second and third axial locations (in other words, crank arm 14 a is between bearings 48 b and 48 c ), while crank arm 14 b is coupled to torque shaft 12 at a sixth axial location between the second and fifth axial locations (in other words, crank arm 14 b is between bearing 48 b and crank arm 14 a ).
  • the axial offset of crank arms 14 a and 14 b means that the reaction links 26 a and 26 b overlap only partially (as best seen in FIG. 4 ).
  • FIG. 6A is a diagram representing a three-dimensional view of a crank arm 14 in accordance with one proposed implementation.
  • the crank arm 14 includes a stem 74 having an opening 78 with axial splines 79 .
  • the inboard torque shaft segment 12 a passes through the opening 78 and has matching axial splines which mesh with axial splines 79 , thereby coupling the inboard torque shaft segment 12 a to the crank arm 14 . Accordingly, every incremental rotation of crank arm 14 produces an equal incremental change in the angular position of the inboard torque shaft segment 12 a.
  • the crank arm 14 further includes a pair of prongs 76 a and 76 b which form a clevis.
  • the prongs 76 a and 76 b have respective openings 80 a and 80 b which receive a pivot pin for forming a pivot joint that pivotably couples the crank arm 14 to the piston rod end of an associated piston-type linear actuator.
  • the crank arm 14 may be made of a suitable metallic alloy.
  • FIG. 6B is a diagram representing a three-dimensional view of a reaction link 26 in accordance with one proposed implementation.
  • Each reaction link 26 has a left arm 82 and a right arm 84 which are rigidly connected by a cross beam 86 .
  • One end of left arm 82 has an opening 88 a; one end of the right arm 84 has an opening 88 b.
  • the openings 88 a and 88 b receive bearings which pivotably couple the reaction link to a torque shaft.
  • the other ends of the arms have respective openings 90 a and 90 b which receive a pivot pin for pivotably coupling the reaction link 26 to a cylinder of an associated piston-type linear actuator.
  • Each reaction link 26 further includes a pair of kick link support prongs 94 which are integrally formed with the other ends of the left and right arms 82 and 84 of the reaction link 26 .
  • the associated kick links are pivotably coupled to the kick link support prongs 94 .
  • the reaction link 26 may be made of a suitable metallic alloy.
  • FIG. 7 is a diagram representing a sectional view of a torque shaft 12 coupled to a flight control surface 6 in accordance with one proposed implementation.
  • the torque shaft 12 includes two torque shaft segments 12 a and 12 b .
  • One end of inboard torque shaft segment 12 a is inserted inside one end of outboard torque shaft segment 12 b .
  • Each of the torque shaft segments 12 a and 12 b has a tube-within-tube configuration which provides fail safety for the actuation system. If either tube fails, the other tube will take over and transfer the load from the torque shaft drive system 8 to the control surface 6 .
  • the inboard torque shaft segment 12 a includes an outer tube 62 and an inner tube 64 .
  • the outer tube 62 and inner tube 64 of inboard torque shaft segment 12 a are coupled by means of a cross bolt 96 a that passes through aligned holes in the tubes and is held in place by a nut 97 a .
  • the outboard torque shaft segment 12 b includes an outer tube 66 and an inner tube 68 .
  • the outer tube 66 and inner tube 68 of outboard torque shaft segment 12 b are coupled by means of a cross bolt 96 c that passes through aligned holes in the tubes and is held in place by a nut 97 c and by means of a cross bolt 96 d that passes through aligned holes in the tubes and is held in place by a nut 97 d.
  • Each cross bolt has the ability to transfer load from a failed outer tube to the inner tube or from a failed inner tube to the outer tube.
  • the axial position of outboard torque shaft segment 12 b relative to the front spar 46 of the control surface 6 is maintained by retention spacers 98 a and 98 b.
  • Retention spacer 98 a spaces cross bolt 96 c from external torque shaft support wall 52
  • retention spacer 98 b spaces cross bolt 96 d from internal torque shaft support wall 54 .
  • inboard torque shaft segment 12 a is inserted in an end section of outboard torque shaft segment 12 b .
  • end sections are fastened together by means of a cross bolt 96 b that passes through aligned holes in the four tubes (outer tube 62 , inner tube 64 , outer tube 66 , and inner tube 68 ) and is held in place by a nut 97 b.
  • the cross bolt 96 b ensures load transfer from inboard torque shaft segment 12 a to outboard torque shaft segment 12 b.
  • drive system redundancy is provided by two separate actuators and mechanisms attached to the torque shaft via two separate cranks, each crank being capable of driving the control surface. Redundancy is also provided by constructing a torque shaft that is a tube within a tube, each tube being capable of driving the control surface to deflect up or down. Both actuators are balanced to have equal retraction and extension capabilities.
  • a torque shaft that is a tube within a tube, each tube being capable of driving the control surface to deflect up or down. Both actuators are balanced to have equal retraction and extension capabilities.
  • inner tube 64 will transfer load to the outboard torque shaft segment 12 b .
  • the inner tube 68 will transfer load to the control surface.
  • each segment has its own individual failsafe inner tube. In order for this load to be transferred during failure, at least one of the tubes in each segment must be in good condition to drive the control surface 6 .
  • gaps are provided between the inner and outer tubes of the respective segments.
  • Each gap is a designed-in gap that is used to allow for simple assembly.
  • the gaps may be maintained through several methods.
  • FIG. 8A is a diagram representing a sectional view of a portion of a torque shaft in which gaps between inner tube 68 and outer tube 66 are maintained by locally machined boss features along the tubes.
  • FIG. 8B is a diagram representing a sectional view of a portion of a torque shaft in which gaps between inner tube 68 and outer tube 66 are maintained by tapering the tubes.
  • all tubes are made of steel in order to meet corrosion resistance and strength specifications. All four tubes could be made of the same material but would need to be different thicknesses to accommodate for the drop in diameter from outer to inner tube in the event of a failure. If the tubes were different materials, the thicknesses across the four tubes could be around the same thickness.
  • FIG. 10 is a block diagram identifying some components of a primary flight control system 1 in accordance with one embodiment.
  • the primary flight control system 1 includes a control surface 6 , a torque shaft 12 having a segment coupled to drive rotation of the control surface 6 , and a pair of piston-type linear actuators 16 which are independently and redundantly capable of driving rotation of the torque shaft 12 .
  • the primary flight control system 1 further includes respective pluralities of solenoid valves 38 which are configurable to control the flow of fluid from a fluid-filled reservoir to the cylinders of the linear actuators 16 .
  • the primary flight control system 1 includes a flight controller 40 which is configured to send commands for controlling the states of the piston-type linear actuators 16 so that as one actuator extends, the other actuator retracts, thereby causing the torque shaft 12 to rotate.
  • the flight controller 40 may comprise one or more signal or data processing devices.
  • Such devices typically include a processor or a computing device, such as a general-purpose central processing unit, a microcontroller, a reduced instruction set computer processor, an application-specific integrated circuit, a programmable logic circuit, a field-programmable gate array, a digital signal processor, and/or any other circuit or processing device capable of executing the functions described herein.
  • the methods described herein may be encoded as executable instructions embodied in a non-transitory tangible computer-readable storage medium, including, without limitation, a storage device and/or a memory device. Such instructions, when executed by a processing device, cause the processing device to issue electrical signals controlling the states of the solenoid valves.
  • the above examples are exemplary only, and thus are not intended to limit in any way the ordinary definitions and/or meanings of the terms “processor” and “computing device”.
  • FIG. 11 is a flowchart identifying steps of a method 100 for driving rotation of a torque shaft in accordance with one embodiment.
  • the method 100 includes multiple steps for assembling the torque shaft drive system which drives the torque shaft.
  • One end of the first reaction link 26 a is rotatably coupled to the torque shaft 12 at first and second axial locations by means of bearings 48 a and 48 b (step 102 ).
  • the other end of the first reaction link 26 a is coupled to the bulkhead 32 by way of a first kick link 28 a (step 104 ).
  • one end of the second reaction link 26 b is rotatably coupled to the torque shaft 12 at third and fourth axial locations by means of bearings 48 c and 48 d (step 106 ).
  • the other end of the second reaction link 26 b is coupled to the bulkhead 32 by way of a second kick link 28 b (step 108 ).
  • the cylinder 18 of the first piston-type linear actuator 16 a is pivotably coupled to the first reaction link 26 a (step 110 ).
  • one end of the first crank arm 14 a is coupled to the torque shaft 12 at a fifth axial location between the second and third axial locations (step 112 ) and another end of the first crank arm 14 a is pivotably coupled to the first piston rod end 21 of the first piston-type linear actuator 16 a (step 114 ).
  • the cylinder 18 of the second piston-type linear actuator 16 b is pivotably coupled to the second reaction link 26 b (step 116 ).
  • first and second piston-type linear actuators 16 a and 16 b are controlled so that the first piston-type linear actuator 16 a extends while the second piston-type linear actuator 16 b retracts (step 122 ), thereby causing the first and second crank arms 14 a and 14 b (and torque shaft 12 ) to rotate in the same direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Transmission Devices (AREA)

Abstract

Systems and methods for actuating a control surface which is pivotably coupled to a trailing edge of an aircraft wing. The control surface actuation system has a compact footprint and high capability. The control surface actuation system includes a rotatable torque shaft that is coupled (by means of meshed surfaces) to the control surface so that rotation of the torque shaft by a deflection angle causes the control surface to pivot by an equal deflection angle. Rotation of the torque shaft is actuated by a pair of redundant mutually opposing actuation mechanisms. The redundant actuation mechanisms are situated inside of the fuselage, while the torque shaft is disposed partly inside the fuselage and partly inside the control surface.

Description

    BACKGROUND
  • The present disclosure relates in general to systems and methods for actuating control surfaces of a vehicle. More particularly, the disclosure relates to control surface actuation systems which are disposed inside the fuselage of an aircraft.
  • Aerodynamic flight control surfaces, such as flaps, elevators, and rudders, have an aerodynamic cross-sectional profile that is typically formed by connecting an upper skin to a lower skin proximate both the leading edge and the trailing edge of the flight control surface. The wings and stabilizers in high-performance aircraft are thin, that is, the distance between the top and bottom of the outer mold line at the control surface hinge line is small. Thin-wing aircraft create a challenge for spatial integration of actuation control systems with conventional piston-type linear actuators. A method for powering a flight control surface which reduces the footprint of and increases the reliability of such piston-type linear actuators would be a beneficial improvement in the state of the art.
  • SUMMARY
  • The subject matter disclosed in some detail below is directed to methods for actuating flight control surfaces by means of a torque shaft drive system which is disposed inside the fuselage of a vehicle (e.g., an aircraft). The torque shaft is partly disposed inside the fuselage and partly disposed outside the fuselage, including a portion disposed inside the control surface. The combination of a torque shaft drive system and a torque shaft will be collectively referred to herein as a “control surface actuation system”. The control surface actuation system disclosed herein is configured to provide a compact footprint and high capability. Rotation of the torque shaft is actuated by a pair of redundant mutually-opposing actuation mechanisms which are situated inside the fuselage in a partly overlapping spatial relationship.
  • In accordance with some embodiments, each of the two actuation mechanisms is a piston-type linear actuator which is operatively coupled to the torque shaft by means of a respective crank arm that may be splined to or fastened to the torque shaft. Each crank arm converts displacement of the associated piston-type linear actuator into rotation of the torque shaft. Each crank arm is capable of driving the control surface independently to provide drive system redundancy. When the actuation mechanisms are moved in opposite directions concurrently (one extends and the other retracts), the crank arms rotate in the same direction. Both actuation mechanisms are balanced to provide equal retraction and extension capabilities. When both actuation mechanisms are fully functional, one actuation mechanism pushes one crank arm while the other actuator mechanism pulls the other crank arm, thereby causing the torque shaft to rotate and the control surface to deflect to a commanded angle. The control surface actuation system proposed herein further includes a pair of reaction links which are coupled to a bulkhead by means of respective kick links to maintain a load loop. The pair of reaction links partly overlap each other to maintain a very compact package that allows for use of this concept in several instances where space is limited and a fairing is not wanted. In addition, each reaction link is pivotably coupled to the torque shaft at two locations to stabilize the associated actuation mechanism.
  • Although various embodiments of systems and methods for actuating a flight control surface will be described in some detail below, one or more of those embodiments may be characterized by one or more of the following aspects.
  • One aspect of the subject matter disclosed in detail below is a system for driving rotation of a torque shaft, the system comprising: a first linear actuator comprising a first cylinder and a first piston rod end which is displaceable relative to the first cylinder; a first crank arm which is pivotably coupled (for example, by means of a pivot joint) to the first piston rod end and coupled to drive rotation of the torque shaft; a first reaction link which is pivotably coupled (for example, by means of a rotary bearing) to the torque shaft and to the first cylinder; a second linear actuator comprising a second cylinder and a second piston rod end which is displaceable relative to the second cylinder; a second crank arm which is pivotably coupled to the second piston rod end and coupled to drive rotation of the torque shaft; and a second reaction link which is pivotably coupled to the torque shaft and to the second cylinder. The first reaction link partly overlaps the second reaction link, thereby reducing the footprint of the actuation system. The linear actuators, crank arms, and reactions links are disposed within a fuselage of the aircraft.
  • Another aspect of the subject matter disclosed in detail below is a method for driving rotation of a torque shaft, the method comprising: (a) rotatably coupling a first reaction link to the torque shaft at first and second axial locations; (b) coupling the first reaction link to a bulkhead by way of a first kick link; (c) rotatably coupling a second reaction link to the torque shaft at third and fourth axial locations, wherein the third axial location is between the first and second axial locations, and the second axial location is between the third and fourth axial locations; (d) coupling the second reaction link to the bulkhead by way of a second kick link; (e) pivotably coupling a first cylinder of a first linear actuator to the first reaction link; (f) coupling one end of a first crank arm to the torque shaft at a fifth axial location between the second and third axial locations; (g) pivotably coupling another end of the first crank arm to a first piston rod end of the first linear actuator; (h) pivotably coupling a second cylinder of a second linear actuator to the second reaction link; (i) coupling one end of a second crank arm to the torque shaft at a sixth axial location between the second and fifth axial locations; (j) pivotably coupling another end of the second crank arm to a second piston rod end of the second linear actuator; and (k) controlling the first and second linear actuators so that the first linear actuator extends while the second linear actuator retracts, thereby causing the first and second crank arms to rotate in a same direction and the torque shaft to rotate
  • A further aspect of the subject matter disclosed in detail below is an aircraft comprising a fuselage comprising a bulkhead, an airfoil-shaped member attached to the fuselage, a control surface pivotably coupled to the airfoil-shaped member, and a control surface actuation system operatively coupled to the control surface, wherein the control surface actuation system comprises a torque shaft which is coupled to drive rotation of the control surface, and a torque shaft drive system which is coupled to drive rotation of the torque shaft. The torque shaft drive system comprises: (a) a torque shaft which is coupled to drive rotation of the control surface; (b) a first linear actuator comprising a first cylinder and a first piston rod end which is displaceable relative to the first cylinder; (c) a first crank arm which is pivotably coupled to the first piston rod end and coupled to drive rotation of the torque shaft; (d) a first reaction link which is pivotably coupled to the torque shaft and to the first cylinder; (e) a second linear actuator comprising a second cylinder and a second piston rod end which is displaceable relative to the second cylinder; (f) a second crank arm which is pivotably coupled to the second piston rod end and coupled to drive rotation of the torque shaft; (g) a second reaction link which is pivotably coupled to the torque shaft and to the second cylinder; (h) a first kick link which is pivotably coupled to the first reaction link and to the bulkhead; and (i) a second kick link which is pivotably coupled to the second reaction link and to the bulkhead. The first and second linear actuators, first and second crank arms, first and second reactions links, and first second kick links are disposed inside the fuselage. The aircraft may further comprise a flight control system configured to send commands for controlling the first and second linear actuators so that the first linear actuator extends while the second linear actuator retracts, thereby causing the first and second crank arms to rotate in a same direction
  • Other aspects of systems and methods for actuating a flight control surface are disclosed below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The features, functions and advantages discussed in the preceding section may be achieved independently in various embodiments or may be combined in yet other embodiments. Various embodiments will be hereinafter described with reference to drawings for the purpose of illustrating the above-described and other aspects. None of the diagrams briefly described in this section are drawn to scale.
  • FIG. 1 is a diagram representing a three-dimensional view of portions of an aircraft having a control surface pivotably coupled to a trailing edge of a wing and having a control surface actuation system disposed inside the fuselage of the aircraft.
  • FIG. 2 is a diagram representing a three-dimensional view of an assembly including a control surface actuation system (having two manifolds not shown), a portion of a control surface controlled by the control surface actuation system, and various aircraft components which support the control surface and the control surface actuation system in accordance with one embodiment.
  • FIG. 3 is a diagram representing a side view of the assembly depicted in FIG. 2 with a pair of manifolds added.
  • FIG. 4 is a diagram representing a sectional view of the assembly depicted in FIG. 3, the location of the section plane being indicated by line 4-4 seen in FIG. 3. The section plane is parallel to and intersects the axis of rotation of the torque shaft.
  • FIG. 4A is a diagram showing an end view of a splined torque shaft meshed with a splined opening formed in the front spar of a control surface in accordance with one embodiment.
  • FIG. 5 is a diagram representing a three-dimensional view of the assembly depicted in section in FIG. 4.
  • FIG. 6 is a diagram representing a three-dimensional sectional view of the assembly depicted in FIG. 2. In this depiction, the section plane is parallel to and intersects the axis of rotation of the torque shaft, but is perpendicular to the section plane of FIG. 4.
  • FIG. 6A is a diagram representing a three-dimensional view of a crank arm in isolation.
  • FIG. 6B is a diagram representing a three-dimensional view of a reaction link in isolation.
  • FIG. 7 is a diagram representing a sectional view of a torque shaft coupled to a flight control surface in accordance with one proposed implementation.
  • FIG. 8A is a diagram representing a sectional view of a portion of a torque shaft in which gaps between inner and outer tubes are maintained by locally machined boss features along the tube.
  • FIG. 8B is a diagram representing a sectional view of a portion of a torque shaft in which gaps between inner and outer tubes are maintained by tapering the tubes.
  • FIG. 9A is a diagram representing a three-dimensional view of a subassembly that includes a torque shaft supported by a pair of torque shaft support fittings in accordance with one proposed implementation.
  • FIG. 9B is a diagram representing an exploded view of the subassembly depicted in FIG. 9A.
  • FIG. 10 is a block diagram identifying some components of a primary flight control system in accordance with one embodiment.
  • FIG. 11 is a flowchart identifying steps of a method for driving rotation of a torque shaft in accordance with one embodiment.
  • Reference will hereinafter be made to the drawings in which similar elements in different drawings bear the same reference numerals.
  • DETAILED DESCRIPTION
  • Illustrative embodiments of systems and methods for actuating a flight control surface are described in some detail below. However, not all features of an actual implementation are described in this specification. A person skilled in the art will appreciate that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developer's specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
  • The following detailed description discloses an embodiment of a compact and redundant control surface actuation system suitable for actuating deflection of a flap pivotably coupled to the trailing edge of a wing. However, similarly designed control surface actuation systems may be used to actuate deflection of other types of control surfaces, such as an elevator pivotably coupled to the trailing edge of a horizontal stabilizer, a rudder pivotably coupled to the trailing edge of a vertical stabilizer, or any other control disposed situated in proximity to the fuselage of the aircraft. A control surface is a candidate for actuation by a system disposed inside the fuselage provided that the aircraft design allows the control surface to be coupled to the intra-fuselage actuation system by means of a torque shaft.
  • FIG. 1 shows a three-dimensional view of portions of an aircraft 10 that includes a fuselage 2 and a wing 4. In addition, the aircraft 10 includes a control surface 6 which is pivotably coupled (by means of hinges) to a trailing edge of wing 4. FIG. 1 shows two hinge fittings 42 a and 42 b. The aircraft 10 further includes a control surface actuation system that controls the angular position of the control surface 6 relative to the wing 4. The control surface actuation system includes a torque shaft 12, which is disposed partly inside the fuselage 2 and partly inside the control surface 6. The torque shaft 12 is rotatably coupled to and supported by a torque shaft support fitting 36 b (and other torque shaft support fittings not shown in FIG. 1). The control surface actuation system further includes a torque shaft drive system (not visible in FIG. 1, but see torque shaft drive system 8 in FIGS. 2 and 3), which is disposed inside the fuselage 2. The torque shaft 12 drives rotation (angular deflection) of the control surface 6; the torque shaft drive system 8 drives rotation of the torque shaft 12.
  • FIG. 2 shows a three-dimensional view of an assembly that includes a torque shaft 12, a torque shaft drive system 8, a control surface 6, and various aircraft components which provide structural support in accordance with one embodiment of the aircraft 10 depicted in FIG. 1. The aircraft 10 further includes a bulkhead 32 which is installed inside the fuselage 2. The torque shaft drive system 8 is coupled to the bulkhead 32 by kick links 28 a and 28 b (only kick link 28 b is visible in FIG. 2). The control surface 6 is pivotably coupled to a rear spar 30 of the wing 4 by means of hinge fittings 42 a and 42 b. The torque shaft 12 drives the control surface 6 to pivot about a pair of hinges formed in part by the hinge fittings 42 a and 42 b. Ideally, the axes of the hinges and the axis of rotation of the torque shaft 12 are coaxial so that control surface 6 pivots and torque shaft 12 rotates about the same axis.
  • The aircraft components which support the torque shaft 12 include three torque shaft support fittings 36 a-36 c, two of which are shown in FIG. 2 (torque shaft support fitting 36 a is shown in FIG. 5). Each of the torque shaft support fittings 36 a-36 c is attached to the rear spar 30 of the wing 4. The torque shaft support fittings 36 a-36 c have respective openings in which respective bearings (not shown in the drawings) are seated. The centers of the openings in the torque shaft support fittings 36 a-36 c are arranged along a line that is also the axis of rotation of the torque shaft 12.
  • In addition, the front spar 46 of the control surface 6 is configured with splined openings that receive respective splined portions of the torque shaft 12. (One example of such splining will be described in some detail later with reference to FIG. 4A.) The splines (not shown in FIG. 2) on the surface of the torque shaft 12 match the splines of the splined openings (not shown in FIG. 2), so that every incremental rotation of torque shaft 12 produces an equal incremental change in the angular position (hereinafter “deflection position”) of the control surface 6.
  • The torque shaft 12 is driven to rotate by the torque shaft drive system 8. The torque shaft drive system 8 includes two redundant mutually-opposed torque shaft drive mechanisms which are coupled to the torque shaft 12 and to the bulkhead 32. Each redundant torque shaft drive mechanism includes a respective crank arm 14 a or 14 b, a respective piston-type linear actuator 16 a or 16 b, a respective reaction link 26 a or 26 b, and a respective kick link 28 a or 28 b (kick link 28 a is not visible in FIG. 2, but see FIG. 3). The two torque shaft drive mechanisms partly overlap, which technical feature ensures that the control surface actuation system has a small footprint.
  • More specifically, the first torque shaft drive mechanism includes a piston-type linear actuator 16 a (for example, a hydraulic actuator or a pneumatic actuator) comprising a cylinder 18, a piston (not visible in FIG. 2) inside the cylinder 18, and a piston rod 20 extending from the piston and having a piston rod end 21. The piston rod end 21 is displaceable relative to the cylinder 18 between retracted and extended positions. The first torque shaft drive mechanism further includes a crank arm 14 a which is pivotably coupled to piston rod end 21 of piston-type linear actuator 16 a by a pivot joint which is formed in part by a pivot pin 24. The crank arm 14 a is also coupled (for example, by means of meshed splines or a cross bolt) to drive rotation of the torque shaft 12. The first torque shaft drive mechanism further includes a reaction link 26 a which is pivotably coupled (for example, by means of a rotary bearing) to the torque shaft 12 and which is pivotably coupled (for example, by means of a pivot joint 25 a) to cylinder 18 of piston-type linear actuator 16 a. The first torque shaft drive mechanism further includes a kick link 28 a (not visible in FIG. 2, but see FIG. 3) which is pivotably coupled (for example, by means of a pivot joint) to reaction link 26 a and which is pivotably coupled (for example, by means of a pivot joint) to a kick link attachment lug 34 which is integrally formed with the bulkhead 32.
  • Similarly, the second torque shaft drive mechanism includes a piston-type linear actuator 16 b (for example, a hydraulic actuator or a pneumatic actuator) comprising a cylinder 18, a piston (not visible in FIG. 2) inside the cylinder 18, and a piston rod 20 having a piston rod end 21. Again piston rod end 21 is displaceable relative to cylinder 18 of piston-type linear actuator 16 b between retracted and extended positions. The second torque shaft drive mechanism further includes a crank arm 14 b which is pivotably coupled to piston rod end 21 by a pivot joint formed in part by a pivot pin 24. The crank arm 14 b is also coupled (for example, by means of meshed splines or a cross bolt) to drive rotation of the torque shaft 12. The second torque shaft drive mechanism further includes a reaction link 26 b which is pivotably coupled (for example, by means of a rotary bearing) to the torque shaft 12 and which is pivotably coupled (for example, by means of a pivot joint 25 b) to cylinder 18 of piston-type linear actuator 16 b. The second torque shaft drive mechanism further includes a kick link 28 b which is pivotably coupled (for example, by means of a pivot joint) to reaction link 26 b and which is pivotably coupled (for example, by means of a pivot joint) to a kick link attachment lug 34 which is integrally formed with the bulkhead 32.
  • FIG. 3 is a diagram representing a side view of the assembly depicted in FIG. 2 with a pair of manifolds 22 a and 22 b added. Both piston-type linear actuators 16 a and 16 b are balanced to provide equal retraction and extension capabilities. FIG. 3 shows a situation in which piston-type linear actuator 16 a is extended and piston-type linear actuator 16 b is retracted. Conversely, piston-type linear actuator 16 a may be retracted while piston-type linear actuator 16 b is extended. The deflection angle of the control surface 6 is a function of the angular positions of the crank arms 14 a and 14 b. The change in deflection angle of the control surface 6 will be equal to the change in angular position of the crank arms 14 a and 14 b.
  • As depicted in FIG. 3, the first torque shaft drive mechanism further includes a manifold 22 a which determines the state of piston-type linear actuator 16 a by controlling the supply of fluid into chambers inside the cylinder 18 of piston-type linear actuator 16 a in response to commands from a flight control system (not shown in FIG. 2, but see flight controller 40 in FIG. 11). The manifold 22 a is mounted to the cylinder 18 of piston-type linear actuator 16 a. The internal components of manifold 22 a allow pressures in the chambers of the cylinder 18 to be changed such that piston-type linear actuator 16 a may be extended or retracted. Similarly, the second torque shaft drive mechanism further includes a manifold 22 b which determines the state of piston-type linear actuator 16 b by controlling the supply of fluid into the chambers of cylinder 18 of piston-type linear actuator 16 b in response to commands from the flight controller 40 (see FIG. 11). The manifold 22 b is mounted to the cylinder 18 of piston-type linear actuator 16 b. The internal components of manifold 22 b allow the pressures in the chambers of the cylinder 18 to be changed such that of the second piston-type linear actuator 16 b may be extended or retracted.
  • In accordance with one embodiment, each of piston-type linear actuators 16 a and 16 b is a hydraulic actuator. The manifold 22 a is configured with solenoid valves which may be selectively opened or closed such that a fluid moving in manifold 22 a may control the position of the piston inside the cylinder 18 of piston-type linear actuator 16 a. At the same time, manifold 22 b controls the position of the piston inside the cylinder 18 of piston-type linear actuator 16 b. The piston rods 20 of piston-type linear actuators 16 a and 16 b are operatively coupled to the torque shaft 12 by means of crank arms 14 a and 14 b respectively. The crank arms 14 a and 14 b may be splined to or fastened to the torque shaft 12.
  • The crank arms 14 a and 14 b convert displacement of the piston-type linear actuators 16 a and 16 b into rotation of the torque shaft 12. When one linear actuator is extended and the other linear actuator is retracted, the crank arms 14 a and 14 b rotate in the same direction. Both actuation mechanisms are balanced to provide equal retraction and extension capabilities. Thus, each crank arm 14 a and 14 b is capable of driving the control surface 6 independently to provide drive system redundancy. When both actuation mechanisms are fully functional, one actuation mechanism pushes one crank arm while the other actuator mechanism pulls the other crank arm, thereby causing the torque shaft 12 to rotate and the control surface 6 to deflect. The reaction links 26 a and 26 b and the kick links 28 a and 28 b transfer reaction loads from the torque shaft 12 to the bulkhead 32 during control surface deflection.
  • FIG. 4 is a diagram representing a sectional view of the assembly depicted in FIG. 3, the location of the section plane being indicated by section line 4-4 in FIG. 3. The section plane is parallel to and intersects the axis of rotation of the torque shaft 12. Because each crank arm is axially centered with respect to the associated reaction link, the axial offset of crank arms 14 a and 14 b means that the reaction links 26 a and 26 b overlap only partially. The theoretical outer mold line 50 of the fuselage 2 is indicated by an arc in FIG. 4. As seen in FIG. 4, the entire assembly of the torque shaft drive system 8 is disposed inside the fuselage 2, whereas the torque shaft 12 is partly disposed inside the fuselage 2 and partly disposed inside the control surface 6.
  • As seen in FIG. 4, the torque shaft 12 includes an inboard torque shaft segment 12 a and an outboard torque shaft segment 12 b. Each of torque shaft segments 12 a and 12 b has a tube-within-tube configuration. The inboard torque shaft segment 12 a is rotatably coupled to and supported by torque shaft support fitting 36 b (e.g., by means of a bearing not shown in FIG. 4). The outboard torque shaft segment 12 b is coupled to the front spar 46 of control surface 6 (e.g., by splines as seen in FIG. 4A) and is rotatably coupled to torque shaft support fitting 36 c (e.g., by means of a bearing not shown in FIG. 4). The bearings disposed in torque shaft support fittings 36 a-36 c are configured to support the torque shaft 12 while allowing the torque shaft 12 to rotate.
  • As seen in FIG. 4, the torque shaft support fitting 36 b (and also the torque shaft support fitting 36 a not shown in FIG. 4) is disposed inside the fuselage 2 (as represented by outer mold line 50), whereas torque shaft support fitting 36 c is disposed outside the fuselage 2. A major portion of inboard torque shaft segment 12 a is disposed inside fuselage 2, while one end of inboard torque shaft segment 12 a projects out of fuselage 2 and into one end of second outboard torque shaft segment 12 b. The overlapping end portions of the torque shaft segments 12 a and 12 b are fastened together by a cross bolt (not shown in FIG. 4, but see cross bolt 96 b in FIG. 11).
  • FIG. 9A is a diagram representing a three-dimensional view of a subassembly that includes a torque shaft 12 supported by a pair of torque shaft support fittings 36 b and 36 c (and other torque shaft support fittings not shown) in accordance with one proposed implementation. FIG. 9B is a diagram representing an exploded view of the subassembly depicted in FIG. 9A. The inboard torque shaft segment 12 a is passed through an opening 70 formed in torque shaft support fitting 36 b, whereas outboard torque shaft segment 12 b is passed through an opening 72 formed in torque shaft support fitting 36 c.
  • As shown in FIG. 4, the front spar 46 of control surface 6 includes an external torque shaft support wall 52 and an internal torque shaft support wall 54 having respective splined openings which receive and mate with respective pluralities of splines formed on the outer surface of the outboard torque shaft segment 12 b. FIG. 4A is a diagram showing an end view of a splined torque shaft meshed with a splined opening 56 formed in the internal torque shaft support wall 54 in accordance with one embodiment. The splined opening 56 has a plurality of inwardly projecting and axially extending splines 58, whereas an end section of the outer tube 66 of outboard torque shaft segment 12 b has a plurality of outwardly projecting and axially extending splines 60 which are meshed (interengaged) with splines 58. In addition, the external torque shaft support wall 52 (not shown in FIG. 4A) has a splined opening which is meshed with a second plurality of outwardly projecting splines (not shown in the drawings) formed on the outer surface of the second outboard torque shaft segment 12 b. Due to meshing of the splines on torque shaft 12 with the splines inside control surface 6, rotation of torque shaft 12 drives control surface 6 to pivot (deflect). More specifically, outer tube 66 is coupled (e.g., by cross bolts) to an inner tube 68 of outboard torque shaft segment 12 b, which in turn is coupled (e.g., by a cross bolt) to the inboard torque shaft segment 12 a, thereby effectively coupling control surface 6 to crank arms 14 a and 14 b. Accordingly, every incremental rotation of crank arms 14 a and 14 b produces an equal incremental change in the deflection position of control surface 6.
  • FIG. 5 is a diagram representing a three-dimensional view of the assembly depicted in section in FIG. 4. To avoid cluttered reference numerals, only one piston-type linear actuator 16, one reaction link 26, and one crank arm 14 are indicated. As seen in FIG. 5, the torque shaft support fittings 36 a-36 c are supported by a rear spar 30. More specifically, torque shaft support fittings 36 a-36 c are attached to (joined or fastened) or integrally formed with rear spar 30. The torque shaft 12 is rotatably coupled to torque shaft support fittings 36 a-36 c by bearings (not shown). In addition, the control surface 6 is pivotably coupled to the wing 4 by means of hinges. More specifically, hinge fittings 42 a and 42 b are pivotably coupled to respective hinge fitting attachment lugs (not visible in FIG. 5) by means of respective pivot joints. The proximal ends of the hinge fittings 42 a and 42 b are attached to (joined or fastened) or integrally formed to rear spar 30 of wing 4. The hinge fitting attachment lugs are integrally formed with the front spar 46 of control surface 6. The dashed line in FIG. 5 represents the axis of rotation A of the torque shaft 12, which is coaxial with the pivot axis of the control surface 6 (which pivot axis is defined by the aforementioned hinges).
  • FIG. 6 is a diagram representing a three-dimensional sectional view of the assembly depicted in FIG. 4. In this depiction, the section plane is parallel to and intersects the axis of rotation of the torque shaft 12, but is perpendicular to the section plane of FIG. 4. As seen in FIG. 6, each of the torque shaft segments 12 a and 12 b has a tube-within-tube configuration. The inboard torque shaft segment 12 a includes an outer tube 62 which surrounds an inner tube 64. Similarly, the outboard torque shaft segment 12 b includes an outer tube 66 which surrounds an inner tube 68. The end section of inboard torque shaft segment 12 a is inserted in an end section of outboard torque shaft segment 12 b. These end sections are fastened together by a cross bolt (not shown in FIG. 6, but see cross bolt 96 b in FIG. 7).
  • As seen in FIG. 6, the reaction link 26 a is rotatably coupled to the torque shaft 12 at first and second axial locations by means of bearings 48 a and 48 b; the reaction link 26 b is rotatably coupled to the torque shaft 12 at third and fourth axial locations by means of bearings 48 c and 48 d. The third axial location is between the first and second axial locations; the second axial location is between the third and fourth axial locations. The coupling of the reaction links to the torque shaft at four axial locations provides stabilization of the mechanism.
  • In addition, the crank arm 14 a is coupled to torque shaft 12 at a fifth axial location between the second and third axial locations (in other words, crank arm 14 a is between bearings 48 b and 48 c), while crank arm 14 b is coupled to torque shaft 12 at a sixth axial location between the second and fifth axial locations (in other words, crank arm 14 b is between bearing 48 b and crank arm 14 a). Because each crank arm is axially centered with respect to the associated reaction link, the axial offset of crank arms 14 a and 14 b means that the reaction links 26 a and 26 b overlap only partially (as best seen in FIG. 4). By having both actuation systems/mechanisms partially overlap each other and connect to the torque shaft through separate cranks, the footprint of the mechanized may be reduced as compared to a redundant system having no overlap.
  • FIG. 6A is a diagram representing a three-dimensional view of a crank arm 14 in accordance with one proposed implementation. The crank arm 14 includes a stem 74 having an opening 78 with axial splines 79. The inboard torque shaft segment 12 a passes through the opening 78 and has matching axial splines which mesh with axial splines 79, thereby coupling the inboard torque shaft segment 12 a to the crank arm 14. Accordingly, every incremental rotation of crank arm 14 produces an equal incremental change in the angular position of the inboard torque shaft segment 12 a. The crank arm 14 further includes a pair of prongs 76 a and 76 b which form a clevis. The prongs 76 a and 76 b have respective openings 80 a and 80 b which receive a pivot pin for forming a pivot joint that pivotably couples the crank arm 14 to the piston rod end of an associated piston-type linear actuator. The crank arm 14 may be made of a suitable metallic alloy.
  • FIG. 6B is a diagram representing a three-dimensional view of a reaction link 26 in accordance with one proposed implementation. Each reaction link 26 has a left arm 82 and a right arm 84 which are rigidly connected by a cross beam 86. One end of left arm 82 has an opening 88 a; one end of the right arm 84 has an opening 88 b. The openings 88 a and 88 b receive bearings which pivotably couple the reaction link to a torque shaft. The other ends of the arms have respective openings 90 a and 90 b which receive a pivot pin for pivotably coupling the reaction link 26 to a cylinder of an associated piston-type linear actuator. Each reaction link 26 further includes a pair of kick link support prongs 94 which are integrally formed with the other ends of the left and right arms 82 and 84 of the reaction link 26. The associated kick links are pivotably coupled to the kick link support prongs 94. The reaction link 26 may be made of a suitable metallic alloy.
  • FIG. 7 is a diagram representing a sectional view of a torque shaft 12 coupled to a flight control surface 6 in accordance with one proposed implementation. As previously described, the torque shaft 12 includes two torque shaft segments 12 a and 12 b. One end of inboard torque shaft segment 12 a is inserted inside one end of outboard torque shaft segment 12 b. Each of the torque shaft segments 12 a and 12 b has a tube-within-tube configuration which provides fail safety for the actuation system. If either tube fails, the other tube will take over and transfer the load from the torque shaft drive system 8 to the control surface 6.
  • As seen in FIG. 7, the inboard torque shaft segment 12 a includes an outer tube 62 and an inner tube 64. The outer tube 62 and inner tube 64 of inboard torque shaft segment 12 a are coupled by means of a cross bolt 96 a that passes through aligned holes in the tubes and is held in place by a nut 97 a. Similarly, the outboard torque shaft segment 12 b includes an outer tube 66 and an inner tube 68. The outer tube 66 and inner tube 68 of outboard torque shaft segment 12 b are coupled by means of a cross bolt 96 c that passes through aligned holes in the tubes and is held in place by a nut 97 c and by means of a cross bolt 96 d that passes through aligned holes in the tubes and is held in place by a nut 97 d. Each cross bolt has the ability to transfer load from a failed outer tube to the inner tube or from a failed inner tube to the outer tube. The axial position of outboard torque shaft segment 12 b relative to the front spar 46 of the control surface 6 is maintained by retention spacers 98 a and 98 b. Retention spacer 98 a spaces cross bolt 96 c from external torque shaft support wall 52, while retention spacer 98 b spaces cross bolt 96 d from internal torque shaft support wall 54.
  • As further seen in FIG. 7, the end section of inboard torque shaft segment 12 a is inserted in an end section of outboard torque shaft segment 12 b. These end sections are fastened together by means of a cross bolt 96 b that passes through aligned holes in the four tubes (outer tube 62, inner tube 64, outer tube 66, and inner tube 68) and is held in place by a nut 97 b. The cross bolt 96 b ensures load transfer from inboard torque shaft segment 12 a to outboard torque shaft segment 12 b.
  • In the drive system described in detail above, drive system redundancy is provided by two separate actuators and mechanisms attached to the torque shaft via two separate cranks, each crank being capable of driving the control surface. Redundancy is also provided by constructing a torque shaft that is a tube within a tube, each tube being capable of driving the control surface to deflect up or down. Both actuators are balanced to have equal retraction and extension capabilities. In the example depicted in FIG. 7, if outer tube 62 fails, inner tube 64 will transfer load to the outboard torque shaft segment 12 b. If the outer tube 66 fails, the inner tube 68 will transfer load to the control surface. Essentially, each segment has its own individual failsafe inner tube. In order for this load to be transferred during failure, at least one of the tubes in each segment must be in good condition to drive the control surface 6.
  • In accordance with various embodiments, gaps are provided between the inner and outer tubes of the respective segments. Each gap is a designed-in gap that is used to allow for simple assembly. The gaps may be maintained through several methods. FIG. 8A is a diagram representing a sectional view of a portion of a torque shaft in which gaps between inner tube 68 and outer tube 66 are maintained by locally machined boss features along the tubes. FIG. 8B is a diagram representing a sectional view of a portion of a torque shaft in which gaps between inner tube 68 and outer tube 66 are maintained by tapering the tubes.
  • For one specific application, all tubes are made of steel in order to meet corrosion resistance and strength specifications. All four tubes could be made of the same material but would need to be different thicknesses to accommodate for the drop in diameter from outer to inner tube in the event of a failure. If the tubes were different materials, the thicknesses across the four tubes could be around the same thickness.
  • FIG. 10 is a block diagram identifying some components of a primary flight control system 1 in accordance with one embodiment. The primary flight control system 1 includes a control surface 6, a torque shaft 12 having a segment coupled to drive rotation of the control surface 6, and a pair of piston-type linear actuators 16 which are independently and redundantly capable of driving rotation of the torque shaft 12. The primary flight control system 1 further includes respective pluralities of solenoid valves 38 which are configurable to control the flow of fluid from a fluid-filled reservoir to the cylinders of the linear actuators 16. In addition, the primary flight control system 1 includes a flight controller 40 which is configured to send commands for controlling the states of the piston-type linear actuators 16 so that as one actuator extends, the other actuator retracts, thereby causing the torque shaft 12 to rotate.
  • The flight controller 40 may comprise one or more signal or data processing devices. Such devices typically include a processor or a computing device, such as a general-purpose central processing unit, a microcontroller, a reduced instruction set computer processor, an application-specific integrated circuit, a programmable logic circuit, a field-programmable gate array, a digital signal processor, and/or any other circuit or processing device capable of executing the functions described herein. The methods described herein may be encoded as executable instructions embodied in a non-transitory tangible computer-readable storage medium, including, without limitation, a storage device and/or a memory device. Such instructions, when executed by a processing device, cause the processing device to issue electrical signals controlling the states of the solenoid valves. The above examples are exemplary only, and thus are not intended to limit in any way the ordinary definitions and/or meanings of the terms “processor” and “computing device”.
  • FIG. 11 is a flowchart identifying steps of a method 100 for driving rotation of a torque shaft in accordance with one embodiment. The method 100 includes multiple steps for assembling the torque shaft drive system which drives the torque shaft. One end of the first reaction link 26 a is rotatably coupled to the torque shaft 12 at first and second axial locations by means of bearings 48 a and 48 b (step 102). The other end of the first reaction link 26 a is coupled to the bulkhead 32 by way of a first kick link 28 a (step 104). In addition, one end of the second reaction link 26 b is rotatably coupled to the torque shaft 12 at third and fourth axial locations by means of bearings 48 c and 48 d (step 106). The other end of the second reaction link 26 b is coupled to the bulkhead 32 by way of a second kick link 28 b (step 108). In addition, the cylinder 18 of the first piston-type linear actuator 16 a is pivotably coupled to the first reaction link 26 a (step 110). Then one end of the first crank arm 14 a is coupled to the torque shaft 12 at a fifth axial location between the second and third axial locations (step 112) and another end of the first crank arm 14 a is pivotably coupled to the first piston rod end 21 of the first piston-type linear actuator 16 a (step 114). Likewise, the cylinder 18 of the second piston-type linear actuator 16 b is pivotably coupled to the second reaction link 26 b (step 116). Then one end of the second crank arm 14 b is coupled to the torque shaft 12 at a sixth axial location between the second and fifth axial locations (step 118) and another end of the second crank arm 14 b is pivotably coupled to the second piston rod end 21 of the second piston-type linear actuator 16 b (step 120). During operation, the first and second piston-type linear actuators 16 a and 16 b are controlled so that the first piston-type linear actuator 16 a extends while the second piston-type linear actuator 16 b retracts (step 122), thereby causing the first and second crank arms 14 a and 14 b (and torque shaft 12) to rotate in the same direction.
  • While systems and methods for actuating a control surface have been described with reference to various embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the teachings herein. In addition, many modifications may be made to adapt the concepts and reductions to practice disclosed herein to a particular situation. Accordingly, it is intended that the subject matter covered by the claims not be limited to the disclosed embodiments.

Claims (20)

1. A system for driving rotation of a torque shaft, the system comprising:
a first linear actuator comprising a first cylinder and a first piston rod end which is displaceable relative to the first cylinder;
a first crank arm which is pivotably coupled to the first piston rod end and coupled to drive rotation of the torque shaft;
a first reaction link which is pivotably coupled to the torque shaft and to the first cylinder;
a second linear actuator comprising a second cylinder and a second piston rod end which is displaceable relative to the second cylinder;
a second crank arm which is pivotably coupled to the second piston rod end and coupled to drive rotation of the torque shaft; and
a second reaction link which is pivotably coupled to the torque shaft and to the second cylinder.
2. The system as recited in claim 1, wherein the first reaction link partly overlaps the second reaction link.
3. The system as recited in claim 1, further comprising:
a first kick link which is pivotably coupled to the first reaction link and to a bulkhead of a vehicle; and
a second kick link which is pivotably coupled to the second reaction link and to the bulkhead.
4. The system as recited in claim 1, wherein the first crank arm is coupled to the torque shaft at a first axial location and the second crank arm is coupled to the torque shaft at a second axial location.
5. The system as recited in claim 4, wherein the first reaction link is pivotably coupled to the torque shaft at third and fourth axial locations, the second reaction link is pivotably coupled to the torque shaft at fifth and sixth axial locations, the fourth axial location is between the second and sixth axial locations, and the fifth axial location is between the first and third axial locations.
6. The system as recited in claim 1, wherein the torque shaft is coupled to a control surface of a vehicle for driving rotation thereof.
7. The system as recited in claim 6, wherein the first and second linear actuators, first and second crank arms, and first and second reactions links are disposed inside a fuselage of the vehicle.
8. A method for driving rotation of a torque shaft, the method comprising:
(a) rotatably coupling a first reaction link to the torque shaft at first and second axial locations;
(b) coupling the first reaction link to a bulkhead by way of a first kick link;
(c) rotatably coupling a second reaction link to the torque shaft at third and fourth axial locations, wherein the third axial location is between the first and second axial locations, and the second axial location is between the third and fourth axial locations;
(d) coupling the second reaction link to the bulkhead by way of a second kick link;
(e) pivotably coupling a first cylinder of a first linear actuator to the first reaction link;
(f) coupling one end of a first crank arm to the torque shaft at a fifth axial location between the second and third axial locations;
(g) pivotably coupling another end of the first crank arm to a first piston rod end of the first linear actuator;
(h) pivotably coupling a second cylinder of a second linear actuator to the second reaction link;
(i) coupling one end of a second crank arm to the torque shaft at a sixth axial location between the second and fifth axial locations;
(j) pivotably coupling another end of the second crank arm to a second piston rod end of the second linear actuator; and
(k) controlling the first and second linear actuators so that the first linear actuator extends while the second linear actuator retracts, thereby causing the first and second crank arms to rotate in a same direction and the torque shaft to rotate.
9. The method as recited in claim 8, further comprising coupling the torque shaft to a control surface of a vehicle for driving rotation thereof.
10. The method as recited in claim 9, wherein coupling the torque shaft to the control surface comprises meshing splines on the torque shaft with mating splines formed in a spar of the control surface.
11. The method as recited in claim 9, wherein the first and second linear actuators, first and second crank arms, and first and second reactions links are disposed inside a fuselage of the vehicle.
12. The method as recited in claim 8, wherein:
step (i) comprises pivotably coupling the first kick link to the bulkhead and to the first reaction link; and
step (j) comprises pivotably coupling the second kick link to the bulkhead and to the second reaction link.
13. An aircraft comprising a fuselage comprising a bulkhead, an airfoil-shaped member attached to the fuselage, a control surface pivotably coupled to the airfoil-shaped member, and a control surface actuation system operatively coupled to the control surface, wherein the control surface actuation system comprises a torque shaft which is coupled to the control surface for driving rotation thereof, and a torque shaft drive system which is coupled to the torque shaft for driving rotation thereof, wherein the torque shaft drive system comprises:
a first linear actuator comprising a first cylinder and a first piston rod end which is displaceable relative to the first cylinder;
a first crank arm which is pivotably coupled to the first piston rod end and coupled to the torque shaft for driving rotation thereof;
a first reaction link which is pivotably coupled to the torque shaft and to the first cylinder;
a second linear actuator comprising a second cylinder and a second piston rod end which is displaceable relative to the second cylinder;
a second crank arm which is pivotably coupled to the second piston rod end and coupled to drive rotation of the torque shaft;
a second reaction link which is pivotably coupled to the torque shaft and to the second cylinder;
a first kick link which is pivotably coupled to the first reaction link and to the bulkhead; and
a second kick link which is pivotably coupled to the second reaction link and to the bulkhead,
wherein the first and second linear actuators, first and second crank arms, first and second reactions links, and first second kick links are disposed inside the fuselage.
14. The aircraft as recited in claim 13, wherein the first reaction link partly overlaps the second reaction link.
15. The aircraft as recited in claim 13, wherein the first crank arm is coupled to the torque shaft at a first axial location and the second crank arm is coupled to the torque shaft at a second axial location.
16. The aircraft as recited in claim 15, wherein the first reaction link is pivotably coupled to the torque shaft at third and fourth axial locations, the second reaction link is pivotably coupled to the torque shaft at fifth and sixth axial locations, the fourth axial location is between the second and sixth axial locations, and the fifth axial location is between the first and third axial locations.
17. The aircraft as recited in claim 13, wherein a front spar of the control surface comprises first and second pluralities of splines and the torque shaft comprises third and fourth pluralities of splines which are respectively meshed with the first and second pluralities of splines.
18. The aircraft as recited in claim 13, further comprising:
a torque shaft support fitting that is attached to a rear spar of the airfoil-shaped member outside the fuselage, wherein the torque shaft support fitting comprises an opening through which the torque shaft passes; and
a bearing disposed in the opening in the torque shaft support fitting and configured to support the torque shaft while allowing the torque shaft to rotate.
19. The aircraft as recited in claim 17, wherein:
the torque shaft comprises first and second torque shaft segments;
one end of the first torque shaft segment is inside one end of the second torque shaft segment; and
the third and fourth pluralities of splines are on an outer surface of the second torque shaft segment.
20. The aircraft as recited in claim 13, further comprising a flight control system configured to send commands to control the first and second linear actuators so that the first linear actuator extends while the second linear actuator retracts, thereby causing the first and second crank arms to rotate in a same direction.
US16/784,545 2020-02-07 2020-02-07 Compact and redundant method for powering flight control surface from within fuselage Active 2040-05-23 US11104422B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/784,545 US11104422B1 (en) 2020-02-07 2020-02-07 Compact and redundant method for powering flight control surface from within fuselage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16/784,545 US11104422B1 (en) 2020-02-07 2020-02-07 Compact and redundant method for powering flight control surface from within fuselage

Publications (2)

Publication Number Publication Date
US20210245865A1 true US20210245865A1 (en) 2021-08-12
US11104422B1 US11104422B1 (en) 2021-08-31

Family

ID=77177373

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/784,545 Active 2040-05-23 US11104422B1 (en) 2020-02-07 2020-02-07 Compact and redundant method for powering flight control surface from within fuselage

Country Status (1)

Country Link
US (1) US11104422B1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082208A (en) 1989-09-29 1992-01-21 The Boeing Company System and method for controlling an aircraft flight control member
US5538202A (en) * 1993-11-02 1996-07-23 Northrop Grumman Corporation Hydraulic actuation system for aircraft control surfaces
US5388788A (en) 1993-12-16 1995-02-14 The Boeing Company Hinge fairings for control surfaces
US7445180B2 (en) 2006-10-02 2008-11-04 The Boeing Company Actuation system for tail section of aircraft
WO2009020452A1 (en) * 2007-08-08 2009-02-12 Moog Inc. Fault-tolerant actuator assembly, and method of moving a member relative to a support
US9481452B2 (en) 2010-11-22 2016-11-01 The Boeing Company Hydraulic actuator for semi levered landing gear
US9604717B2 (en) 2014-06-16 2017-03-28 The Boeing Company Systems and methods for operating flight control surfaces
US9739316B2 (en) 2015-08-04 2017-08-22 The Boeing Company Torque tube assemblies for use with aircraft high lift devices
US10494083B2 (en) 2016-11-21 2019-12-03 The Boeing Company Aircraft flap hinge

Also Published As

Publication number Publication date
US11104422B1 (en) 2021-08-31

Similar Documents

Publication Publication Date Title
CA2657474C (en) Flap actuator
US9663221B2 (en) Actuator device for flight control surface, flight control surface of aircraft, and aircraft
US8408499B2 (en) Aircraft
US10527142B2 (en) Hydraulic rotary ball screw actuator
EP1986911B1 (en) Control surface failsafe drop link
US11505304B2 (en) Aircraft spoiler actuation systems and related methods
JP6784523B2 (en) Pinned fuselage and wing connection
BRPI0821753B1 (en) control surface for an aircraft aerodynamic lift surface
US11932400B2 (en) Three-dimensional extension linkage for aircraft
US10589839B2 (en) Wing for an aircraft
US2972898A (en) Actuation mechanism
US11104422B1 (en) Compact and redundant method for powering flight control surface from within fuselage
US5701801A (en) Mechanically redundant actuator assembly
US11492097B2 (en) Wing and aircraft
US8858171B2 (en) Bearing assembly
US9051048B2 (en) Main landing gear bias axle steering
US20080001037A1 (en) Actuator link assembly, flight control system and method of making same
US11697490B2 (en) Actuation systems for control surfaces for aircraft
US20220227473A1 (en) Pin joint assembly
US20230211872A1 (en) Aircraft control surface with integrated hydraulic actuator
CN110901894A (en) Actuator for an aircraft component, wing, aircraft and wing design method

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE BOEING COMPANY, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALVIZURES, WILFREDO;ANDERSON, RANDALL E.;REEL/FRAME:051750/0012

Effective date: 20200206

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE