US20210243611A1 - Dynamic spectrum partitioning between a first radio access technology and a second radio access technology - Google Patents

Dynamic spectrum partitioning between a first radio access technology and a second radio access technology Download PDF

Info

Publication number
US20210243611A1
US20210243611A1 US17/235,662 US202117235662A US2021243611A1 US 20210243611 A1 US20210243611 A1 US 20210243611A1 US 202117235662 A US202117235662 A US 202117235662A US 2021243611 A1 US2021243611 A1 US 2021243611A1
Authority
US
United States
Prior art keywords
base station
frequency spectrum
user equipment
time period
pilot tones
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/235,662
Inventor
Arunabha Ghosh
David R. Wolter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Intellectual Property I LP
Original Assignee
AT&T Intellectual Property I LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AT&T Intellectual Property I LP filed Critical AT&T Intellectual Property I LP
Priority to US17/235,662 priority Critical patent/US20210243611A1/en
Assigned to AT&T INTELLECTUAL PROPERTY I, L.P. reassignment AT&T INTELLECTUAL PROPERTY I, L.P. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GHOSH, ARUNABHA, WOLTER, DAVID R.
Publication of US20210243611A1 publication Critical patent/US20210243611A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • H04W72/0413
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • This disclosure relates to deployment of next generation (5G) cellular technology.
  • 5G next generation
  • the next generation telecommunications network referred to herein as 5G, is expected to comprise of two distinct radio access technologies (RATs).
  • a first RAT is sub 6 GHz and a second RAT utilizes mm waves with frequencies ranging from 30-300 GHz.
  • the sub 6 GHz is expected to be deployed first.
  • LTE Long Term Evolution
  • the physical layer (L1) of LTE is defined in various specifications including 3GPP TS 36.211 v9.1.0 (2010-03) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 9) (and later releases) and 3GPP TS 36.212 V9.4.0 (2011-09) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 9) (and later releases), and other 3GPP specifications.
  • 3GPP Third Generation Partnership Project
  • E-UTRA Technical Specification Group Radio Access Network
  • E-UTRA Physical Channels and Modulation
  • 3GPP TS 36.212 V9.4.0 2011-09
  • LTE also referred to as 4G
  • both 5G and LTE RATs will be operating concurrently. Effective deployment of 5G while maintaining LTE operations is desirable.
  • Embodiments described herein allow LTE and 5G channels to reside in the same part of the spectrum and dynamically share spectrum.
  • a method for a first radio access technology to share spectrum with a second radio access technology.
  • the method includes a first base station utilizing a first portion of the spectrum as a primary carrier during a first time period to communicate with first user equipment in a first area, the first base station using the first radio access technology.
  • the first base station utilizes a second portion of the spectrum as a secondary carrier during the first time period, the secondary carrier being aggregated with the first carrier to communicate in the first area.
  • a second base station utilizes at least some of the second portion of the spectrum during a second time period to communicate with second user equipment in the first area, the second base station using the second radio access technology.
  • the first base station utilizes the first portion of the spectrum as the primary carrier during the second time period but does not use the second portion.
  • a first base station utilizes a first radio access technology to communicate in a first area and uses a first portion of a frequency spectrum as a primary carrier and a second portion of the frequency spectrum as a secondary carrier aggregated with the primary carrier during a first time period.
  • a second base station utilizes second radio access technology to communicate in the first area, the second base station utilizing the second portion of the frequency spectrum during a second time period.
  • the first base station is communicatively coupled to the second base station to synchronize dynamic sharing of the second portion of the frequency spectrum during the first and second time periods.
  • FIG. 1 illustrates the utilization of the sub 6 GHz spectrum for LTE and 5G.
  • FIG. 2A illustrates an area in which a 5G base station and an eNodeB serve user equipment (UE), some of which have 5G capability and some of which have only LTE capability.
  • UE user equipment
  • FIG. 2B illustrates an overlap area between a 5G cell and an LTE cell.
  • FIG. 3 illustrates dynamic partitioning of the spectrum between 5G and LTE.
  • FIG. 4 illustrates how a portion of the 5G primary cell spectrum may be shared with the LTE secondary cell.
  • FIG. 5A illustrates a flow diagram of the signaling between a 5G base station and an eNodeB as part of the dynamic partitioning process from the perspective of the 5G base station.
  • FIG. 5B illustrates a flow diagram of the signaling between a 5G base station and an eNodeB as part of the dynamic partitioning process from the perspective of the eNodeB.
  • FIG. 6A illustrates a block diagram of 5G and LTE transmitters illustrating how spectrum is shared.
  • FIG. 6B illustrates a high level block diagram of an LTE receiver.
  • FIG. 6C illustrates a high level block diagram of a 5G receiver.
  • FIG. 7 illustrates the 5G transceiver when the partitioning gives the LTE SCell spectrum to 5G.
  • FIG. 8 illustrates an example base station that may be used for 5G and/or LTE communications.
  • FIG. 9 illustrates sharing spectrum using duty cycles.
  • Spectrum that is not used by LTE can be dynamically used by 5G and spectrum not used by 5G can be dynamically used by LTE.
  • the dynamic allocation can be achieved over very small time scales such as tens of milliseconds.
  • TTI transition time interval
  • techniques described herein allow dynamic allocation over fairly short time scales (e.g., tens of milliseconds) using the secondary cell (SCell) activation/de-activation on the LTE carrier.
  • the short time scales of the dynamic partitioning makes it easier and more cost effective to deploy 5G and also allows efficient use of the spectrum resources when 5G technology is deployed and underutilized in the initial deployment phase.
  • the spectrum may be shared on a more static basis.
  • Secondary cell activation/deactivation is a mechanism provided in LTE to achieve carrier aggregation where contiguous or noncontiguous carrier spectrum is added to the primary cell carrier spectrum to achieve higher throughput.
  • the LTE primary cell spectrum may provide 5, 10, 15, or 20 MHz of bandwidth and the secondary cell primary cell spectrum may provide another 5, 10, 15, or 20 MHz.
  • FIG. 2A shows an example area 200 being utilized by both 5G and LTE RATs. Note that the area is shown as completely overlapping for the two radio access technologies.
  • the area 200 includes an LTE base station (eNodeB) 201 and a 5G base station 202 .
  • the user equipment 203 1 and 203 4 are 5G UEs, while the UEs 203 2 and 203 3 are LTE devices.
  • the spectrum in area 200 can be shared by 5G and LTE.
  • a communication interface 205 between enodeB 201 and the 5G base station 202 allows synchronization between the eNodeB and the 5G base station to achieve dynamic partitioning of the spectrum as described further herein.
  • FIG. 2B shows an embodiment having a partial overlap 250 between the LTE cell 251 and the 5G cell 253 .
  • Co-existence and dynamic partitioning of LTE and 5G in a frequency division duplex (FDD) and time division duplex (TDD) spectrum can be achieved, e.g., for the case when the LTE carrier (or carriers) to be shared has a bandwidth of W and the 5G carrier (or carriers) has a bandwidth of W+ ⁇ W (see FIG. 1 ).
  • W can be, but is not limited to 5 MHz, 10 MHz, 15 MHz and 20 MHz.
  • ⁇ W is the additional bandwidth spanned by the 5G carrier.
  • the 5G and LTE RAT technologies differ.
  • LTE utilizes orthogonal frequency division multiple access/single carrier frequency division multiple access (OFDMA/SCFDMA) for the downlink/uplink.
  • OFDM orthogonal frequency division multiple access/single carrier frequency division multiple access
  • SCFDMA single carrier frequency division multiple access
  • the physical layer (L1) of the 5G RAT is expected to use a filtered multicarrier approach, e.g., filtered OFDM, Unified Filtered Multi-Carrier (UFMC), or Filter Bank Multicarrier (FBMC).
  • UFMC Unified Filtered Multi-Carrier
  • FBMC Filter Bank Multicarrier
  • FIG. 3 illustrates an embodiment of the dynamic partitioning between LTE and 5G.
  • LTE provides for a technique known as carrier aggregation in which a primary cell (e.g., primary spectrum 302 ) may be combined with the SCell (e.g., secondary spectrum 304 ) to provide greater LTE bandwidth.
  • the primary cell provides the control plane while the secondary cell is utilized as a data plane.
  • the additional spectrum may be contiguous or noncontiguous with the primary cell spectrum.
  • FIG. 3 shows an example where the SCell is non contiguous.
  • the LTE carrier to be dynamically shared is configured as a secondary cell (SCell) for all the user equipment (UE) for LTE.
  • SCell secondary cell
  • two components help enable dynamic sharing.
  • One component is secondary cell activation/deactivation to turn on and off the LTE secondary carrier.
  • an interface (see 205 in FIG. 2B ) is provided between the eNodeB and 5G base stations to coordinate the dynamic allocation of the secondary cell spectrum.
  • the spectrum allocated to the LTE SCell may be turned on and off as rapidly as 10-20 msec. Turning of the SCell dynamically can be done with current LTE capability.
  • the 5G RAT can dynamically turn off subcarriers even on the 5G primary cell (PCell). That feature can be useful since even though the LTE carrier is an SCell, some of the spectrum allocated to the LTE SCell may be spectrum allocated to a 5G primary cell.
  • the 5G control plane resides in the spectrum portion 401 .
  • the 5G UE measures the entire spectrum 403 for, e.g., channel state information (CSI) measurement, Radio Resource Management (RRM) or Radio link Monitoring (RLM) measurements.
  • CSI channel state information
  • RRM Radio Resource Management
  • RLM Radio link Monitoring
  • a portion 404 of the PCell (but not the control plane) may be turned off and allocated to the LTE SCell.
  • the 5G UE are able to handle the dynamic turning on/off the subcarriers (those that overlap with the LTE carrier) without the dynamic turning on/off affecting any measurement procedure for, e.g. channel state information (CSI) measurement, Radio Resource Management (RRM) or Radio link Monitoring (RLM) measurements.
  • CSI channel state information
  • RRM Radio Resource Management
  • RLM Radio link Monitoring
  • the sub-carriers being turned on and off can be handled blindly by the UE or can be explicitly signaled by the 5G network to the UE. That is, the UE can handle the turn/on and off by assuming that absence of the pilot signal on a portion of the spectrum indicates no measurement procedures should be performed on that portion of the spectrum.
  • the UE can conclude based on the later absence of such pilot signals detected by the UE, that the UE should not perform measurement procedures in the portion of the spectrum but only in the region 405 where pilot tones are detected by the UE.
  • the UE may continue to look for pilot tones on a periodic basis to know when to resume measurement procedures on that portion of the spectrum that was turned off.
  • the 5G network explicitly signals the UEs regarding the turning on/off of the spectrum region 404 . Note that only connected devices care about measurements. If the 5G UEs are in idle mode, such measurements typically are not needed.
  • FIGS. 3, 5A, and 5B illustrate dynamic sharing of the LTE SCell spectrum with 5G. Such dynamic sharing requires synchronization between the LTE eNodeB and the 5G base station.
  • the LTE RAT utilizes the LTE PCell 302 and SCell 304 .
  • the 5G spectrum 306 and 308 which can include PCells and SCells, are operating at the same time in different portions of the spectrum.
  • the 5G base station When the 5G base station needs additional spectrum, e.g., for a burst transmission to one or more 5G UE, the 5G base station utilizes the entire spectrum 310 shown at 303 once the LTE eNodeB deactivates the SCell by ensuring that no transmissions occur by the eNodeB or any LTE UE in that portion of the spectrum.
  • the spectrum 310 is shown as a single carrier but in embodiments may include one or more carriers.
  • any of the carriers 302 , 304 , 306 , and 308 may be one or more carriers.
  • FIG. 5A illustrates aspects of the synchronization between the 5G base station and the eNodeB from the perspective of the 5G base station.
  • the 5G base station notifies the eNodeB in 501 of the need for spectrum over an interface between LTE eNodeB and 5G base station such as interface 205 shown in FIG. 2A .
  • the interface can be similar to the X2 interface defined for communication between eNodeBs in LTE or can be another interface.
  • the 5G base station waits for an indication in 503 from the eNodeB that the LTE SCell has been (or will be deactivated) and the LTE SCell spectrum will be available after a delay, e.g., a predetermined number of milliseconds after the message is received.
  • the 5G base station can start using sub-carriers in the SCell spectrum.
  • the 5G base station transmits at 505 5G data shown, e.g., at 303 in FIG. 3 utilizing the spectrum previously occupied by the LTE SCell.
  • the 5G base station notifies the eNodeB in 507 that the 5G transmission is complete (or will be complete after a predetermined time period) and turns off the 5G subcarriers in the portion of the spectrum utilized by the LTE SCell.
  • the eNodeB can then resume utilization of the SCell spectrum as shown in 305 ( FIG. 3 ).
  • the transitions between 301, 303, and 305 can be as fast as tens of milliseconds.
  • the LTE RAT may request use of the LTE SCell when demand is sufficiently high and otherwise allow the 5G RAT to utilize the LTE SCell spectrum.
  • the 5G carrier needs to stop using that spectrum prior to activation.
  • the spectrum 302 , 304 , 306 , 308 , and 310 may be used for downlink and/or uplink communications.
  • FIG. 5B illustrates the synchronization from the perspective of the eNodeB.
  • the LTE is transmitting using the SCell spectrum.
  • the eNodeB receives a request from the 5G base station to deactivate the SCell.
  • the eNodeB deactivates the SCell and notifies the 5G base station in 525 .
  • the eNodeB then continues utilization of the LTE primary cell (PCell) for LTE communications while waiting in 527 for an indication from the 5G base station that the SCell spectrum is again available for LTE use.
  • the LTE resumes use of the SCell in 529 .
  • the UEs are notified by the eNodeB of the activation and deactivation of the SCell.
  • the 5G devices are notified about the use of the SCell spectrum for 5G communications, or the turn on/off may be handled blindly by the UE as described earlier.
  • FIG. 6A shows high level block diagrams of the LTE transmitter 601 and the 5G transmitter 603 illustrating how the transmitters can co-exist. Even though logically the LTE eNodeB and the 5G base station are separate logical entities, in some embodiments the LTE eNodeB and 5G base stations may be implemented using a substantial portion of the same hardware. For simplicity, only a portion of the LTE transmitter for the SCell 304 (see FIG. 3 ) is illustrated. The subcarriers 607 are associated with the LTE SCell 304 (see FIG. 3 ). The 5G subcarriers 609 and 611 correspond to the portion of the spectrum 306 and 308 allocated to 5G. As shown in FIG.
  • the LTE transmitter includes an inverse Fast Fourier Transform and parallel to serial conversion block 621 , a cyclic prefix insert block 623 , and a block 625 to convert the signal to RF for transmission in the LTE spectrum 304 .
  • the 5G transmitter includes the iFFT blocks 631 , filter 633 , which are combined in 637 and converted to 5G RF in block 639 for transmission over the 5G spectrum 306 and 308 .
  • FIGS. 6B and 6C illustrate embodiments of receivers for LTE and 5G UE receivers.
  • FIG. 6B illustrates a conventional LTE receiver 651 that removes the cyclic prefix in 653 , performs an FFT and serial to parallel (S/P) conversion in 655 , performs de-mapping in 656 , forward error correction (FEC) decoding in 656 , and parallel to serial (P/S) conversion in 658 , and detection in 659 .
  • the 5G receiver 661 is similar but includes the filter 663 corresponding to the filter 633 in the transmitter.
  • the 5G transmitter utilizes the transmitter portion 701 , which is combined with the transmitter portions 603 to utilize the entire spectrum 310 for 5G transmission.
  • FIG. 8 provides a high level block diagram of an example embodiment 800 of a LTE eNodeB or 5G base station that may be used to implement the dynamic partitioning described herein.
  • a substantial amount of hardware shown in FIG. 8 may be utilized for both the LTE eNodeB and the 5G base station.
  • FIG. 8 will be described simply as a base station with the understanding that the high level blocks implemented may be utilized by either the 5G base station of an LTE eNodeB in various embodiments described herein.
  • the base station 800 can receive and transmit signal(s) (e.g., data traffic and control signals) to and from user equipment, through a set of antennas 809 1 - 809 N , for example, utilizing the spectrum shown in FIG. 3 .
  • Antennas 809 1 - 809 N form part of communication platform 825 , which includes electronic components and associated circuitry for processing received signal(s) (data and control) and for processing signals (data and control) to be transmitted.
  • Communication platform 825 can include a transmitter/receiver (e.g., a transceiver) 866 that can convert signal(s) from analog format to digital format upon reception, and from digital format to analog format for transmission.
  • transceiver 866 can divide a single data stream into multiple, parallel data streams, or perform the reciprocal operation. Coupled to transceiver 866 is a multiplexer/demultiplexer 867 that facilitates manipulation of signals in the time and/or frequency domain. Multiplexer/demultiplexer 867 can multiplex information (data/traffic and control/signaling) according to various multiplexing schemes such as time division multiplexing (TDM), frequency division multiplexing (FDM), orthogonal frequency division multiplexing (OFDM), filtered OFDM, etc. In addition, multiplexer/demultiplexer component 867 can scramble and spread information (e.g., codes) according to substantially any code known in the art.
  • TDM time division multiplexing
  • FDM frequency division multiplexing
  • OFDM orthogonal frequency division multiplexing
  • filtered OFDM filtered OFDM
  • a modulator/demodulator 868 is also a part of communication platform 825 , and can modulate information according to multiple modulation techniques, e.g., M-ary quadrature amplitude modulation (QAM), with M a positive integer), phase-shift keying (PSK), and the like.
  • the communication platform 825 may include the LTE transmitter 601 and/or the 5G transmitter including portions 603 and 701 (see FIGS. 6A and 7 )
  • Base station 800 also includes one or more processors 845 configured to confer functionality, at least partially, to substantially any electronic component in the base station 800 , in accordance with aspects of the subject disclosure.
  • processor 845 can facilitate implementing configuration instructions, which can include storing data in memory 855 .
  • processor 845 can facilitate processing data (e.g., symbols, bits, or chips, etc.) for multiplexing/demultiplexing, such as effecting direct and inverse fast Fourier transforms, selection of modulation rates, selection of data packet formats, inter-packet times, etc.
  • processor 845 can manipulate antennas 809 1 - 809 N to facilitate beamforming or selective radiation pattern formation, which can benefit specific locations covered by the base station 800 ; and exploit substantially any other advantages associated with smart-antenna technology.
  • the one or more processors 845 may include digital signal processing capability to effectuate necessary functions associated with reception and transmission of information via antennas 809 1 to 809 N .
  • the one or more processors 845 may implement a significant portion of the processing in communication platform 825 .
  • Memory 855 can store data structures, code instructions, and specify capabilities; code sequences for scrambling; spreading and pilot transmission, floor plan configuration, access point deployment and frequency plans; and so on.
  • computer instructions to implement to synchronization flows shown in FIGS. 5A and/or 5B can be implemented in memory 855 .
  • Processor 845 can be coupled to the memory 855 in order to store and retrieve information necessary to operate and/or confer functionality to communication platform 825 , network interface 835 (e.g., that coupled the access point to core network devices such as but not limited to a network controller), and other operational components (e.g., multimode chipset(s), power supply source; not shown) that support the access point 800 .
  • the access point 800 can further include an interface 865 for communication between the 5G and eNodeB. That interface may instead utilize network interface 835 .
  • the access point may also include component 875 to activate/deactivate SCell spectrum working in conjunction with 5G/eNodeB synchronization component 885 to activate/deactivate SCell spectrum for use by the 5G RAT or the LTE RAT.
  • Nonvolatile memory can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable ROM (EEPROM), or flash memory.
  • ROM read only memory
  • PROM programmable ROM
  • EPROM electrically programmable ROM
  • EEPROM electrically erasable ROM
  • flash memory any form of memory that can store information and be read by computers or processors.
  • Nonvolatile memory can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable ROM (EEPROM), or flash memory.
  • EEPROM electrically erasable ROM
  • flash memory volatile memory
  • non-volatile memory can include magnetic and optical memory.
  • Volatile memory can include random access memory (RAM), available in many forms such as synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), and direct Rambus RAM (DRRAM). Additionally, the disclosed memory components of systems or methods herein are intended to comprise, without being limited to comprising, these and any other suitable types of memory.
  • RAM random access memory
  • SRAM synchronous RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM Synchlink DRAM
  • DRRAM direct Rambus RAM
  • the different RATs share the spectrum on a more static or semi-static basis by using duty cycles.
  • the LTE usage in the cell is high
  • 55% of the time the spectrum is allocated for LTE
  • 45% of the time the spectrum is allocated for 5G.
  • 55% of X frames are reserved for LTE and the remaining 45% of X frames are reserved for 5G.
  • the traffic statistics may be monitored and the duty cycle may be adjusted on any suitable time scale, e.g., every day, every hour, every 10 minutes, every 10 seconds, or other appropriate time scale.
  • Such an approach has the advantage of reducing signaling between the eNodeB and the 5G base station regarding dynamic spectrum sharing.
  • the UEs still have adjust to the switching between the 5G and LTE and this can be done either by blind detection at the UE or via explicit signaling from the network.

Abstract

An eNodeB uses a first portion of a frequency spectrum as a primary cell and uses a second portion of the frequency spectrum as a secondary cell that is dynamically shared with a 5G base station. The eNodeB and the 5G base station communicate to dynamically share the second portion of the frequency spectrum.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 16/661,079, filed Oct. 23, 2019, which is a continuation of U.S. application Ser. No. 15/062,162, filed Mar. 6, 2016 (now U.S. Pat. No. 10,462,675), which are incorporated herein by reference in their entirety.
  • FIELD OF THE DISCLOSURE
  • This disclosure relates to deployment of next generation (5G) cellular technology.
  • BACKGROUND
  • The next generation telecommunications network, referred to herein as 5G, is expected to comprise of two distinct radio access technologies (RATs). A first RAT is sub 6 GHz and a second RAT utilizes mm waves with frequencies ranging from 30-300 GHz. Of these two RAT components, the sub 6 GHz is expected to be deployed first.
  • The current generation of radio access technology is defined by various Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) Specifications. For example, the physical layer (L1) of LTE is defined in various specifications including 3GPP TS 36.211 v9.1.0 (2010-03) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 9) (and later releases) and 3GPP TS 36.212 V9.4.0 (2011-09) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 9) (and later releases), and other 3GPP specifications.
  • During deployment of 5G, LTE (also referred to as 4G) technology will still be in use. Thus, both 5G and LTE RATs will be operating concurrently. Effective deployment of 5G while maintaining LTE operations is desirable.
  • SUMMARY
  • Embodiments described herein allow LTE and 5G channels to reside in the same part of the spectrum and dynamically share spectrum.
  • Accordingly, in one embodiment a method is provided for a first radio access technology to share spectrum with a second radio access technology. The method includes a first base station utilizing a first portion of the spectrum as a primary carrier during a first time period to communicate with first user equipment in a first area, the first base station using the first radio access technology. The first base station utilizes a second portion of the spectrum as a secondary carrier during the first time period, the secondary carrier being aggregated with the first carrier to communicate in the first area. A second base station utilizes at least some of the second portion of the spectrum during a second time period to communicate with second user equipment in the first area, the second base station using the second radio access technology. The first base station utilizes the first portion of the spectrum as the primary carrier during the second time period but does not use the second portion.
  • In another embodiment, a first base station utilizes a first radio access technology to communicate in a first area and uses a first portion of a frequency spectrum as a primary carrier and a second portion of the frequency spectrum as a secondary carrier aggregated with the primary carrier during a first time period. A second base station utilizes second radio access technology to communicate in the first area, the second base station utilizing the second portion of the frequency spectrum during a second time period. The first base station is communicatively coupled to the second base station to synchronize dynamic sharing of the second portion of the frequency spectrum during the first and second time periods.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention may be better understood, and its numerous objects, features, and advantages made apparent to those skilled in the art by referencing the accompanying drawings.
  • FIG. 1 illustrates the utilization of the sub 6 GHz spectrum for LTE and 5G.
  • FIG. 2A illustrates an area in which a 5G base station and an eNodeB serve user equipment (UE), some of which have 5G capability and some of which have only LTE capability.
  • FIG. 2B illustrates an overlap area between a 5G cell and an LTE cell.
  • FIG. 3 illustrates dynamic partitioning of the spectrum between 5G and LTE.
  • FIG. 4 illustrates how a portion of the 5G primary cell spectrum may be shared with the LTE secondary cell.
  • FIG. 5A illustrates a flow diagram of the signaling between a 5G base station and an eNodeB as part of the dynamic partitioning process from the perspective of the 5G base station.
  • FIG. 5B illustrates a flow diagram of the signaling between a 5G base station and an eNodeB as part of the dynamic partitioning process from the perspective of the eNodeB.
  • FIG. 6A illustrates a block diagram of 5G and LTE transmitters illustrating how spectrum is shared.
  • FIG. 6B illustrates a high level block diagram of an LTE receiver.
  • FIG. 6C illustrates a high level block diagram of a 5G receiver.
  • FIG. 7 illustrates the 5G transceiver when the partitioning gives the LTE SCell spectrum to 5G.
  • FIG. 8 illustrates an example base station that may be used for 5G and/or LTE communications.
  • FIG. 9 illustrates sharing spectrum using duty cycles.
  • The use of the same reference symbols in different drawings indicates similar or identical items.
  • DETAILED DESCRIPTION
  • It is currently believed that substantial spectrum will not be allocated in the United States for deployment of the sub 6 GHz component of 5G. Therefore it is very likely that in the early 5G deployment, both 5G and LTE will be deployed in the same band.
  • From past experience, clearing spectrum for deploying a new generation of technology requires the network be made more dense. The need to clear spectrum is unnecessary if new spectrum is available for the new RAT generation, but as stated previously this is unlikely to be the case for the sub 6 GHz 5G deployment.
  • In order to deploy 5G technology, wireless carriers need to carve out 20 MHz or more of spectrum. Not only is that expensive but when the 5G carrier is deployed, the 5G spectrum remains underutilized for a period of time as 5G utilization ramps up. Accordingly, it is desirable to ensure a smooth upgrade path from LTE to 5G, which requires both the LTE RAT and the 5G RAT to be able to operate in the same spectrum as shown in FIG. 1. The sharing in FIG. 1 shows that prior to 5G deployment at 101, the entire spectrum is allocated to LTE. At 103, the spectrum is shared by 5G and LTE. Eventually, when LTE support ends, the entire spectrum is allocated to 5G as shown at 105.
  • Partitioning the spectrum as shown in FIG. 1 statically, usually leads to loss in efficiency. Because utilization of 5G is small at initial deployment, spectrum allocated to 5G will not be heavily utilized. Similarly, when 5G has significantly penetrated the market and LTE usage has declined, spectrum allocated to LTE becomes underutilized. While periodic reallocation of static spectrum may help alleviate the inefficiency, greater efficiencies can be achieved by requiring that the partitioning between 5G and LTE be dynamic and allowing 5G and LTE channels to reside in the same part of the spectrum. By allowing the spectrum partitioning between 5G and LTE to be completely dynamic, depending on the volume of traffic on LTE and 5G channels, the LTE and 5G channels can be adjusted in frequency and time. Spectrum that is not used by LTE can be dynamically used by 5G and spectrum not used by 5G can be dynamically used by LTE. The dynamic allocation can be achieved over very small time scales such as tens of milliseconds. Thus, although the allocation between 5G and LTE may not change on a per transition time interval (TTI) basis, techniques described herein allow dynamic allocation over fairly short time scales (e.g., tens of milliseconds) using the secondary cell (SCell) activation/de-activation on the LTE carrier. The short time scales of the dynamic partitioning makes it easier and more cost effective to deploy 5G and also allows efficient use of the spectrum resources when 5G technology is deployed and underutilized in the initial deployment phase. In other embodiments, as described further herein rather than being completely dynamic, the spectrum may be shared on a more static basis.
  • Secondary cell activation/deactivation is a mechanism provided in LTE to achieve carrier aggregation where contiguous or noncontiguous carrier spectrum is added to the primary cell carrier spectrum to achieve higher throughput. For example, the LTE primary cell spectrum may provide 5, 10, 15, or 20 MHz of bandwidth and the secondary cell primary cell spectrum may provide another 5, 10, 15, or 20 MHz.
  • FIG. 2A shows an example area 200 being utilized by both 5G and LTE RATs. Note that the area is shown as completely overlapping for the two radio access technologies. The area 200 includes an LTE base station (eNodeB) 201 and a 5G base station 202. The user equipment 203 1 and 203 4 are 5G UEs, while the UEs 203 2 and 203 3 are LTE devices. Thus, for a sub 6 GHz deployment of 5G, the spectrum in area 200 can be shared by 5G and LTE. A communication interface 205 between enodeB 201 and the 5G base station 202 allows synchronization between the eNodeB and the 5G base station to achieve dynamic partitioning of the spectrum as described further herein. Note that although the 5G base station and eNodeB are shown separately, in embodiments they may be collocated and there may be substantial overlap between the 5G base station and the eNodeB. FIG. 2B shows an embodiment having a partial overlap 250 between the LTE cell 251 and the 5G cell 253.
  • Co-existence and dynamic partitioning of LTE and 5G in a frequency division duplex (FDD) and time division duplex (TDD) spectrum can be achieved, e.g., for the case when the LTE carrier (or carriers) to be shared has a bandwidth of W and the 5G carrier (or carriers) has a bandwidth of W+□W (see FIG. 1). W can be, but is not limited to 5 MHz, 10 MHz, 15 MHz and 20 MHz. □W is the additional bandwidth spanned by the 5G carrier. There may be a lower limit to □W, which is the minimum 5G channel size. Note that FIG. 1 is not to scale. The 5G and LTE RAT technologies differ. For example, LTE utilizes orthogonal frequency division multiple access/single carrier frequency division multiple access (OFDMA/SCFDMA) for the downlink/uplink. In contrast, the physical layer (L1) of the 5G RAT is expected to use a filtered multicarrier approach, e.g., filtered OFDM, Unified Filtered Multi-Carrier (UFMC), or Filter Bank Multicarrier (FBMC).
  • FIG. 3 illustrates an embodiment of the dynamic partitioning between LTE and 5G. LTE provides for a technique known as carrier aggregation in which a primary cell (e.g., primary spectrum 302) may be combined with the SCell (e.g., secondary spectrum 304) to provide greater LTE bandwidth. The primary cell provides the control plane while the secondary cell is utilized as a data plane. The additional spectrum may be contiguous or noncontiguous with the primary cell spectrum. FIG. 3 shows an example where the SCell is non contiguous. The LTE carrier to be dynamically shared is configured as a secondary cell (SCell) for all the user equipment (UE) for LTE.
  • In order to provide dynamic sharing of spectrum between 4G and 5G RATs, two components help enable dynamic sharing. One component is secondary cell activation/deactivation to turn on and off the LTE secondary carrier. In addition, as described further herein, an interface (see 205 in FIG. 2B) is provided between the eNodeB and 5G base stations to coordinate the dynamic allocation of the secondary cell spectrum. The spectrum allocated to the LTE SCell may be turned on and off as rapidly as 10-20 msec. Turning of the SCell dynamically can be done with current LTE capability.
  • In one or more embodiments the 5G RAT can dynamically turn off subcarriers even on the 5G primary cell (PCell). That feature can be useful since even though the LTE carrier is an SCell, some of the spectrum allocated to the LTE SCell may be spectrum allocated to a 5G primary cell. Referring to FIG. 4, assume when the entire spectrum 400 shown is allocated to a 5G PCell, the 5G control plane resides in the spectrum portion 401. The 5G UE measures the entire spectrum 403 for, e.g., channel state information (CSI) measurement, Radio Resource Management (RRM) or Radio link Monitoring (RLM) measurements. However, a portion 404 of the PCell (but not the control plane) may be turned off and allocated to the LTE SCell. The 5G UE are able to handle the dynamic turning on/off the subcarriers (those that overlap with the LTE carrier) without the dynamic turning on/off affecting any measurement procedure for, e.g. channel state information (CSI) measurement, Radio Resource Management (RRM) or Radio link Monitoring (RLM) measurements. The sub-carriers being turned on and off can be handled blindly by the UE or can be explicitly signaled by the 5G network to the UE. That is, the UE can handle the turn/on and off by assuming that absence of the pilot signal on a portion of the spectrum indicates no measurement procedures should be performed on that portion of the spectrum. Thus, if the UE was detecting pilot signals in the spectrum region 404, the UE can conclude based on the later absence of such pilot signals detected by the UE, that the UE should not perform measurement procedures in the portion of the spectrum but only in the region 405 where pilot tones are detected by the UE. The UE may continue to look for pilot tones on a periodic basis to know when to resume measurement procedures on that portion of the spectrum that was turned off. In other embodiments, the 5G network explicitly signals the UEs regarding the turning on/off of the spectrum region 404. Note that only connected devices care about measurements. If the 5G UEs are in idle mode, such measurements typically are not needed.
  • FIGS. 3, 5A, and 5B illustrate dynamic sharing of the LTE SCell spectrum with 5G. Such dynamic sharing requires synchronization between the LTE eNodeB and the 5G base station. Referring to FIG. 3, at time 301, the LTE RAT utilizes the LTE PCell 302 and SCell 304. In addition, the 5G spectrum 306 and 308, which can include PCells and SCells, are operating at the same time in different portions of the spectrum. When the 5G base station needs additional spectrum, e.g., for a burst transmission to one or more 5G UE, the 5G base station utilizes the entire spectrum 310 shown at 303 once the LTE eNodeB deactivates the SCell by ensuring that no transmissions occur by the eNodeB or any LTE UE in that portion of the spectrum. Note that the spectrum 310 is shown as a single carrier but in embodiments may include one or more carriers. Similarly, any of the carriers 302, 304, 306, and 308 may be one or more carriers. Once the burst is complete, the portion of the spectrum 304 can revert back to LTE use as shown at 305.
  • FIG. 5A illustrates aspects of the synchronization between the 5G base station and the eNodeB from the perspective of the 5G base station. The 5G base station notifies the eNodeB in 501 of the need for spectrum over an interface between LTE eNodeB and 5G base station such as interface 205 shown in FIG. 2A. The interface can be similar to the X2 interface defined for communication between eNodeBs in LTE or can be another interface. The 5G base station waits for an indication in 503 from the eNodeB that the LTE SCell has been (or will be deactivated) and the LTE SCell spectrum will be available after a delay, e.g., a predetermined number of milliseconds after the message is received. When the LTE SCell is de-activated then the 5G base station can start using sub-carriers in the SCell spectrum. After the message from the eNodeB is received, the 5G base station transmits at 505 5G data shown, e.g., at 303 in FIG. 3 utilizing the spectrum previously occupied by the LTE SCell. After the 5G transmission is complete, the 5G base station notifies the eNodeB in 507 that the 5G transmission is complete (or will be complete after a predetermined time period) and turns off the 5G subcarriers in the portion of the spectrum utilized by the LTE SCell. The eNodeB can then resume utilization of the SCell spectrum as shown in 305 (FIG. 3).
  • The transitions between 301, 303, and 305 can be as fast as tens of milliseconds. In other embodiments, for example, as LTE utilization declines, the LTE RAT may request use of the LTE SCell when demand is sufficiently high and otherwise allow the 5G RAT to utilize the LTE SCell spectrum. When the LTE SCell is activated the 5G carrier needs to stop using that spectrum prior to activation. Note that the spectrum 302, 304, 306, 308, and 310 may be used for downlink and/or uplink communications.
  • FIG. 5B illustrates the synchronization from the perspective of the eNodeB. At 521 the LTE is transmitting using the SCell spectrum. In 523, the eNodeB receives a request from the 5G base station to deactivate the SCell. The eNodeB deactivates the SCell and notifies the 5G base station in 525. The eNodeB then continues utilization of the LTE primary cell (PCell) for LTE communications while waiting in 527 for an indication from the 5G base station that the SCell spectrum is again available for LTE use. When the indication is received, the LTE resumes use of the SCell in 529. Note that the UEs are notified by the eNodeB of the activation and deactivation of the SCell. Similarly, the 5G devices are notified about the use of the SCell spectrum for 5G communications, or the turn on/off may be handled blindly by the UE as described earlier.
  • FIG. 6A shows high level block diagrams of the LTE transmitter 601 and the 5G transmitter 603 illustrating how the transmitters can co-exist. Even though logically the LTE eNodeB and the 5G base station are separate logical entities, in some embodiments the LTE eNodeB and 5G base stations may be implemented using a substantial portion of the same hardware. For simplicity, only a portion of the LTE transmitter for the SCell 304 (see FIG. 3) is illustrated. The subcarriers 607 are associated with the LTE SCell 304 (see FIG. 3). The 5G subcarriers 609 and 611 correspond to the portion of the spectrum 306 and 308 allocated to 5G. As shown in FIG. 6A, the LTE transmitter includes an inverse Fast Fourier Transform and parallel to serial conversion block 621, a cyclic prefix insert block 623, and a block 625 to convert the signal to RF for transmission in the LTE spectrum 304. The 5G transmitter includes the iFFT blocks 631, filter 633, which are combined in 637 and converted to 5G RF in block 639 for transmission over the 5G spectrum 306 and 308.
  • FIGS. 6B and 6C illustrate embodiments of receivers for LTE and 5G UE receivers. FIG. 6B illustrates a conventional LTE receiver 651 that removes the cyclic prefix in 653, performs an FFT and serial to parallel (S/P) conversion in 655, performs de-mapping in 656, forward error correction (FEC) decoding in 656, and parallel to serial (P/S) conversion in 658, and detection in 659. From a high level block diagram perspective, the 5G receiver 661 is similar but includes the filter 663 corresponding to the filter 633 in the transmitter.
  • When 5G utilizes the LTE SCell spectrum, as shown in FIG. 7, the 5G transmitter utilizes the transmitter portion 701, which is combined with the transmitter portions 603 to utilize the entire spectrum 310 for 5G transmission.
  • LTE requirements necessitate a conventional guard band between the 5G portion of the spectrum and the LTE portion of the spectrum.
  • The ability to partition spectrum over such short time scales allows fulfillment of the 5G user experience without requiring very large swaths of spectrum cleared for initial deployment. Such an approach provides possibly multi-billion dollars of savings during the 5G roll out since new spectrum does not have to be carved out. Dynamic partitioning of spectrum allows efficient usage of the newly deployed technology even when it is underutilized in the initial phase.
  • To provide further context for various aspects of the subject specification, FIG. 8 provides a high level block diagram of an example embodiment 800 of a LTE eNodeB or 5G base station that may be used to implement the dynamic partitioning described herein. As previously mentioned, a substantial amount of hardware shown in FIG. 8 may be utilized for both the LTE eNodeB and the 5G base station. For simplicity, FIG. 8 will be described simply as a base station with the understanding that the high level blocks implemented may be utilized by either the 5G base station of an LTE eNodeB in various embodiments described herein. In one aspect, the base station 800 can receive and transmit signal(s) (e.g., data traffic and control signals) to and from user equipment, through a set of antennas 809 1-809 N, for example, utilizing the spectrum shown in FIG. 3. Antennas 809 1-809 N form part of communication platform 825, which includes electronic components and associated circuitry for processing received signal(s) (data and control) and for processing signals (data and control) to be transmitted. Communication platform 825 can include a transmitter/receiver (e.g., a transceiver) 866 that can convert signal(s) from analog format to digital format upon reception, and from digital format to analog format for transmission. In addition, transceiver 866 can divide a single data stream into multiple, parallel data streams, or perform the reciprocal operation. Coupled to transceiver 866 is a multiplexer/demultiplexer 867 that facilitates manipulation of signals in the time and/or frequency domain. Multiplexer/demultiplexer 867 can multiplex information (data/traffic and control/signaling) according to various multiplexing schemes such as time division multiplexing (TDM), frequency division multiplexing (FDM), orthogonal frequency division multiplexing (OFDM), filtered OFDM, etc. In addition, multiplexer/demultiplexer component 867 can scramble and spread information (e.g., codes) according to substantially any code known in the art. A modulator/demodulator 868 is also a part of communication platform 825, and can modulate information according to multiple modulation techniques, e.g., M-ary quadrature amplitude modulation (QAM), with M a positive integer), phase-shift keying (PSK), and the like. The communication platform 825 may include the LTE transmitter 601 and/or the 5G transmitter including portions 603 and 701 (see FIGS. 6A and 7)
  • Base station 800 also includes one or more processors 845 configured to confer functionality, at least partially, to substantially any electronic component in the base station 800, in accordance with aspects of the subject disclosure. In particular, processor 845 can facilitate implementing configuration instructions, which can include storing data in memory 855. In addition, processor 845 can facilitate processing data (e.g., symbols, bits, or chips, etc.) for multiplexing/demultiplexing, such as effecting direct and inverse fast Fourier transforms, selection of modulation rates, selection of data packet formats, inter-packet times, etc. Moreover, processor 845 can manipulate antennas 809 1-809 N to facilitate beamforming or selective radiation pattern formation, which can benefit specific locations covered by the base station 800; and exploit substantially any other advantages associated with smart-antenna technology. Thus, the one or more processors 845 may include digital signal processing capability to effectuate necessary functions associated with reception and transmission of information via antennas 809 1 to 809 N. Thus, the one or more processors 845 may implement a significant portion of the processing in communication platform 825.
  • Memory 855 can store data structures, code instructions, and specify capabilities; code sequences for scrambling; spreading and pilot transmission, floor plan configuration, access point deployment and frequency plans; and so on. In one example, computer instructions to implement to synchronization flows shown in FIGS. 5A and/or 5B can be implemented in memory 855.
  • Processor 845 can be coupled to the memory 855 in order to store and retrieve information necessary to operate and/or confer functionality to communication platform 825, network interface 835 (e.g., that coupled the access point to core network devices such as but not limited to a network controller), and other operational components (e.g., multimode chipset(s), power supply source; not shown) that support the access point 800. The access point 800 can further include an interface 865 for communication between the 5G and eNodeB. That interface may instead utilize network interface 835. The access point may also include component 875 to activate/deactivate SCell spectrum working in conjunction with 5G/eNodeB synchronization component 885 to activate/deactivate SCell spectrum for use by the 5G RAT or the LTE RAT. In addition, it is to be noted that the various aspects disclosed in the subject specification can also be implemented through (i) program modules stored in a computer-readable storage medium or memory (e.g., memory 855) and executed by a processor (e.g., processor 845), or (ii) other combination(s) of hardware and software, or hardware and firmware.
  • In the subject specification, terms such as “data store,” data storage,” “database,” “cache,” and substantially any other information storage component relevant to operation and functionality of a component, refer to any form of memory that can store information and be read by computers or processors. Memory may be volatile memory or nonvolatile memory, or both. Nonvolatile memory can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable ROM (EEPROM), or flash memory. In addition non-volatile memory can include magnetic and optical memory. Volatile memory can include random access memory (RAM), available in many forms such as synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), and direct Rambus RAM (DRRAM). Additionally, the disclosed memory components of systems or methods herein are intended to comprise, without being limited to comprising, these and any other suitable types of memory.
  • While dynamic sharing of the spectrum has been described above, in other embodiments, the different RATs share the spectrum on a more static or semi-static basis by using duty cycles. For example, as shown in FIG. 9, where the LTE usage in the cell is high, 55% of the time the spectrum is allocated for LTE and 45% of the time the spectrum is allocated for 5G. Thus, e.g., out of for every X frames, where X is an integer, 55% of X frames are reserved for LTE and the remaining 45% of X frames are reserved for 5G. The traffic statistics may be monitored and the duty cycle may be adjusted on any suitable time scale, e.g., every day, every hour, every 10 minutes, every 10 seconds, or other appropriate time scale. Such an approach has the advantage of reducing signaling between the eNodeB and the 5G base station regarding dynamic spectrum sharing. The UEs still have adjust to the switching between the 5G and LTE and this can be done either by blind detection at the UE or via explicit signaling from the network.
  • Thus, aspects of sharing spectrum between LTE and 5G radio access technologies have been described. The description set forth herein is illustrative, and is not intended to limit the scope of the following claims. Variations and modifications of the embodiments disclosed herein may be made based on the description set forth herein, without departing from the scope of the following claims.

Claims (20)

What is claimed is:
1. A system comprising:
a first base station utilizing a first radio access technology to communicate with first user equipment, wherein the first base station uses a frequency spectrum during a first time period; and
a second base station utilizing a second radio access technology to communicate with second user equipment, wherein the second base station uses a portion of the frequency spectrum during a second time period,
wherein the second base station is configured to send to the first base station a request that the first base station make the portion of the frequency spectrum available for use during the first time period by the second base station,
wherein the second user equipment is configured to determine that the portion of the frequency spectrum is unavailable during the first time period responsive to a detected absence of one or more pilot tones in the portion of the frequency spectrum in the first time period.
2. The system of claim 1, wherein the portion of the frequency spectrum comprises a second portion of the frequency spectrum, wherein the first base station uses a first portion of the frequency spectrum as a primary cell and uses the second portion of the frequency spectrum as a secondary cell aggregated with the primary cell during the first time period.
3. The system of claim 2, wherein the first base station and the second base station communicate regarding availability of the second portion of the frequency spectrum via an interface between the first base station and the second base station.
4. The system of claim 1, wherein the second user equipment does not perform measurement procedures on the portion of the frequency spectrum responsive to the detected absence of the one or more pilot tones in the portion of the frequency spectrum, wherein the absence of the one or more pilot tones is detected by the second user equipment after having detected a presence of pilot tones in the portion of the frequency spectrum.
5. The system of claim 4, wherein the second user equipment periodically performs checking for the presence of pilot tones after detecting the absence of the one or more pilot tones.
6. The system of claim 5, wherein the second user equipment resumes performing the measurement procedures on the portion of the frequency spectrum responsive to detecting the presence of pilot tones while performing the checking.
7. The system of claim 1, wherein the first base station performs deactivating of the portion of the frequency spectrum responsive to the request, and wherein the first base station signals the second base station regarding the deactivating.
8. The system of claim 1, wherein the second base station signals the first base station regarding an availability of the portion of the frequency spectrum for utilization by the first base station.
9. The system of claim 8, wherein the second base station deactivates subcarriers in a primary cell of the second base station in the portion of the frequency spectrum to make the portion of the frequency spectrum available for use by the first base station.
10. A method comprising:
dynamically sharing, by a processing system including a processor and utilizing a first radio access technology, a frequency spectrum with a second radio access technology,
wherein a first base station utilizes the first radio access technology to communicate with first user equipment, the first base station using the frequency spectrum during a first time period; and
wherein a second base station utilizes a second radio access technology to communicate with second user equipment, the second base station using a portion of the frequency spectrum during a second time period,
wherein the second base station is configured to send to the first base station a request that the first base station make the portion of the frequency spectrum available for use during the first time period by the second base station,
wherein the second user equipment is configured to determine that the portion of the frequency spectrum is unavailable during the first time period responsive to a detected absence of one or more pilot tones in the portion of the frequency spectrum in the first time period.
11. The method of claim 10, wherein the portion of the frequency spectrum comprises a second portion of the frequency spectrum, wherein the first base station uses a first portion of the frequency spectrum as a primary cell and uses the second portion of the frequency spectrum as a secondary cell aggregated with the primary cell during the first time period.
12. The method of claim 11, wherein the first base station and the second base station communicate regarding availability of the second portion of the frequency spectrum via an interface between the first base station and the second base station.
13. The method of claim 10, wherein the second user equipment does not perform measurement procedures on the portion of the frequency spectrum responsive to the detected absence of the one or more pilot tones in the portion of the frequency spectrum, wherein the absence of the one or more pilot tones is detected by the second user equipment after having detected a presence of pilot tones in the portion of the frequency spectrum.
14. The method of claim 10, wherein the first base station performs deactivating of the portion of the frequency spectrum responsive to the request, and wherein the first base station signals the second base station regarding the deactivating.
15. The method of claim 10, wherein the second base station signals the first base station regarding an availability of the portion of the frequency spectrum for utilization by the first base station.
16. A device comprising:
a processing system including a processor; and
a memory that stores executable instructions that, when executed by the processing system, facilitate performance of operations comprising:
dynamically sharing, by a first radio access technology, a frequency spectrum with a second radio access technology,
wherein a first base station utilizes the first radio access technology to communicate with first user equipment, the first base station using the frequency spectrum during a first time period; and
wherein a second base station utilizes the second radio access technology to communicate with second user equipment, the second base station using a portion of the frequency spectrum during a second time period,
wherein the second base station is configured to send to the first base station a request that the first base station make the portion of the frequency spectrum available for use during the first time period by the second base station,
wherein the second user equipment is configured to determine that the portion of the frequency spectrum is unavailable during the first time period responsive to a detected absence of one or more pilot tones in the portion of the frequency spectrum in the first time period.
17. The device of claim 16, wherein the portion of the frequency spectrum comprises a second portion of the frequency spectrum, wherein the first base station uses a first portion of the frequency spectrum as a primary cell and uses the second portion of the frequency spectrum as a secondary cell aggregated with the primary cell during the first time period.
18. The device of claim 17, wherein the first base station and the second base station communicate regarding availability of the second portion of the frequency spectrum via an interface between the first base station and the second base station.
19. The device of claim 16, wherein the second user equipment does not perform measurement procedures on the portion of the frequency spectrum responsive to the detected absence of the one or more pilot tones in the portion of the frequency spectrum, wherein the absence of the one or more pilot tones is detected by the second user equipment after having detected a presence of pilot tones in the portion of the frequency spectrum.
20. The device of claim 19, wherein the second user equipment periodically performs checking for the presence of pilot tones after detecting the absence of the one or more pilot tones, and wherein the second user equipment resumes performing the measurement procedures on the portion of the frequency spectrum responsive to detecting the presence of pilot tones while performing the checking.
US17/235,662 2016-03-06 2021-04-20 Dynamic spectrum partitioning between a first radio access technology and a second radio access technology Abandoned US20210243611A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/235,662 US20210243611A1 (en) 2016-03-06 2021-04-20 Dynamic spectrum partitioning between a first radio access technology and a second radio access technology

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/062,162 US10462675B2 (en) 2016-03-06 2016-03-06 Dynamic spectrum partitioning between LTE and 5G systems
US16/661,079 US11012866B2 (en) 2016-03-06 2019-10-23 Dynamic spectrum partitioning between a first radio access technology and a second radio access technology
US17/235,662 US20210243611A1 (en) 2016-03-06 2021-04-20 Dynamic spectrum partitioning between a first radio access technology and a second radio access technology

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/661,079 Continuation US11012866B2 (en) 2016-03-06 2019-10-23 Dynamic spectrum partitioning between a first radio access technology and a second radio access technology

Publications (1)

Publication Number Publication Date
US20210243611A1 true US20210243611A1 (en) 2021-08-05

Family

ID=59723876

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/062,162 Active 2036-08-20 US10462675B2 (en) 2016-03-06 2016-03-06 Dynamic spectrum partitioning between LTE and 5G systems
US16/661,079 Active US11012866B2 (en) 2016-03-06 2019-10-23 Dynamic spectrum partitioning between a first radio access technology and a second radio access technology
US17/235,662 Abandoned US20210243611A1 (en) 2016-03-06 2021-04-20 Dynamic spectrum partitioning between a first radio access technology and a second radio access technology

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US15/062,162 Active 2036-08-20 US10462675B2 (en) 2016-03-06 2016-03-06 Dynamic spectrum partitioning between LTE and 5G systems
US16/661,079 Active US11012866B2 (en) 2016-03-06 2019-10-23 Dynamic spectrum partitioning between a first radio access technology and a second radio access technology

Country Status (1)

Country Link
US (3) US10462675B2 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113630349A (en) * 2016-03-30 2021-11-09 Idac控股公司 WTRU and execution method thereof
US10405332B2 (en) * 2016-09-06 2019-09-03 Samsung Electronics Co., Ltd. Coexistence of different radio access technologies or services on a same carrier
US10536914B2 (en) * 2016-09-22 2020-01-14 Qualcomm Incorporated Synchronizing a 5G communication channel using a 4G timing synchronization parameter
KR20180049750A (en) * 2016-11-03 2018-05-11 삼성전자주식회사 Method and apparatus for communicating in mobile communication system
US10333693B2 (en) 2016-12-09 2019-06-25 Micron Technology, Inc. Wireless devices and systems including examples of cross correlating wireless transmissions
CN112087761B (en) * 2017-01-05 2023-10-03 华为技术有限公司 Resource mapping method and user equipment
CN108633042B (en) * 2017-03-24 2021-03-30 华为技术有限公司 Communication method, terminal and network equipment
US10129823B2 (en) 2017-03-31 2018-11-13 Intel IP Corporation Adaptive envelope tracking threshold
US10153919B2 (en) * 2017-03-31 2018-12-11 Intel IP Corporation RF transmit architecture methods
US10826447B2 (en) 2017-03-31 2020-11-03 Intel IP Corporation Adaptive envelope tracking threshold
US10827474B2 (en) * 2017-05-09 2020-11-03 Qualcomm Incorporated Techniques and apparatuses for nesting a new radio system and a long term evolution system
US10834575B2 (en) 2017-06-16 2020-11-10 At&T Intellectual Property I, L.P. Initial access configuration for coexistence of multiple wireless communication systems
US10177445B1 (en) * 2017-07-05 2019-01-08 National Chung Shan Institute Of Science And Technology Communication structure
US10278227B2 (en) 2017-09-01 2019-04-30 Google Llc Downlink-only fifth generation new radio
US10715208B2 (en) * 2017-10-26 2020-07-14 Qualcomm Incorporated Interference mitigation in wireless communications
KR102438424B1 (en) 2017-11-24 2022-09-01 삼성전자 주식회사 electronic device and method for controlling antenna of the same
JP6865185B2 (en) * 2018-02-27 2021-04-28 日本電信電話株式会社 Line control device, line control method and line control program
US10455429B2 (en) * 2018-03-09 2019-10-22 Google Llc Inter-radio access technology spectrum sharing
CN110730496B (en) * 2018-06-29 2021-04-06 电信科学技术研究院有限公司 Synchronization method and terminal equipment
US20220103410A1 (en) * 2019-02-04 2022-03-31 Telefonaktiebolaget Lm Ericsson (Publ) Lte-m carrier placement with guard band in nr band
KR20210067461A (en) * 2019-11-29 2021-06-08 삼성전자주식회사 Method and appraturs for sharing frequency resource dynamically in wireless communication system
US20230051882A1 (en) * 2019-12-27 2023-02-16 Zte Corporation Downlink signal processing method and apparatus, and base station
US11943630B2 (en) * 2020-02-21 2024-03-26 Qualcomm Incorporated Enhancements for multiple radio protocol dynamic spectrum sharing
US11888610B2 (en) 2020-02-26 2024-01-30 Qualcomm Incorporated Method and apparatus for positioning with LTE-NR dynamic spectrum sharing (DSS)
US11259263B2 (en) * 2020-03-05 2022-02-22 Qualcomm Incorporated Dual registration using dynamic spectrum sharing (DSS) in a wide area network (WAN)
WO2021221403A1 (en) * 2020-04-27 2021-11-04 Samsung Electronics Co., Ltd. A method and an apparatus for performing network aided power saving in nr ues in dss networks deploying tdm dss patterns
WO2021246925A1 (en) * 2020-06-05 2021-12-09 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic spectrum sharing based on machine learning
US11510200B2 (en) * 2020-08-21 2022-11-22 At&T Intellectual Property I, L.P. Methods, systems, and devices for traffic management over dual connectivity mobile networks
KR20220139187A (en) * 2021-04-07 2022-10-14 삼성전자주식회사 Apparatus and method for sharing spectrum between heterogeneous systems based on traffic prediction in wireless communication system
US20220338018A1 (en) * 2021-04-20 2022-10-20 At&T Intellectual Property I, L.P. Enhanced dynamic spectrum sharing for wireless communications
WO2023013911A1 (en) * 2021-08-02 2023-02-09 삼성전자 주식회사 Base station and method for supporting plurality of wireless communication modes
KR20230055680A (en) * 2021-10-19 2023-04-26 에스케이텔레콤 주식회사 Resource control device and control method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5999818A (en) * 1996-08-06 1999-12-07 Cirrus Logic, Inc. Frequency re-used and time-shared cellular communication system having multiple radio communication systems
US20120300715A1 (en) * 2011-05-10 2012-11-29 Interdigital Patent Holdings, Inc. Method and apparatus for obtaining uplink timing alignment on a secondary cell
US20130010687A1 (en) * 2011-07-01 2013-01-10 Qualcomm Incorporated Synchronized uplink-downlink hop for measurements
US20150065152A1 (en) * 2013-09-04 2015-03-05 Qualcomm Incorporated Opportunistic carrier aggregation framework for efficient lte operation in unlicensed spectrum
US20150092707A1 (en) * 2013-09-27 2015-04-02 Innovative Technology Lab Co., Ltd. Method and apparatus for performing activation/deactivation of serving cell in wireless communication system supproting dual connectivity
US20150288809A1 (en) * 2014-04-04 2015-10-08 Apple Inc. OAM System for LTE-U and Wi-Fi Operation and Coexistence Deployment
US20150296385A1 (en) * 2014-04-10 2015-10-15 Qualcomm Incorporated Techniques for transmitting patterns of signal transmissions or reference signals over an unlicensed radio frequency spectrum band
US20160277165A1 (en) * 2015-03-20 2016-09-22 Acer Incorporated Method of transmitting reference signal in unlicensed spectrum for lte-laa system and wireless device using the same
US20170251380A1 (en) * 2016-02-29 2017-08-31 Alcatel-Lucent Usa Inc. Extending a wireless coverage area in an unlicensed frequency band of a small cell using remote radio heads
US20170265172A1 (en) * 2014-09-12 2017-09-14 Nec Corporation Radio station, radio terminal, and method for terminal measurement
US20200221309A1 (en) * 2019-01-07 2020-07-09 Qualcomm Incorporated Handling of channel access problems
US20200252846A1 (en) * 2019-02-01 2020-08-06 Qualcomm Incorporated Handover and cell change due to channel access problems

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7336694B2 (en) 2003-10-10 2008-02-26 Sbc Knowledge Ventures, L.P. Delay-induced scattering with phase randomization and partitioned frequency hopping
US7551547B2 (en) 2005-01-28 2009-06-23 At&T Intellectual Property I, L.P. Delay restricted channel estimation for multi-carrier systems
US8345733B2 (en) 2005-09-13 2013-01-01 At&T Intellectual Property I, Lp Method and apparatus for equalizing signals
KR100794430B1 (en) * 2005-12-30 2008-01-16 포스데이타 주식회사 Method and apparatus for measuring carrier to interference and noise ratio
US7881746B2 (en) 2007-05-10 2011-02-01 Broadcom Corporation Shared processing between wireless interface devices of a host device
US8165098B2 (en) * 2008-02-11 2012-04-24 Mitsubishi Electric Research Laboratories, Inc. Method for allocating resources in cell-edge bands of OFDMA networks
US20100216478A1 (en) * 2009-02-20 2010-08-26 Milind M Buddhikot Method and apparatus for operating a communications arrangement comprising femto cells
US8670432B2 (en) * 2009-06-22 2014-03-11 Qualcomm Incorporated Methods and apparatus for coordination of sending reference signals from multiple cells
EP2553984A1 (en) * 2010-03-29 2013-02-06 Nokia Siemens Networks Oy Power consumption reduction within a telecommunication network operating with different radio access technologies
EP2426974B1 (en) * 2010-09-03 2017-03-01 Alcatel Lucent A femtocell base station, and a method of selecting carrier frequency band of a femtocell base station
US8989025B2 (en) * 2010-11-12 2015-03-24 Telefonaktiebolaget L M Ericsson (Publ) UE timing adjustment in a multi-RAT, carrier aggregation community system
ES2627862T3 (en) * 2011-05-06 2017-07-31 Telefonaktiebolaget Lm Ericsson (Publ) Methods and nodes that support cell change
KR20140022711A (en) * 2012-08-14 2014-02-25 삼성전자주식회사 Method and apparatus for performing handover in mobile communication system with multiple carrier
US8983393B2 (en) 2012-12-13 2015-03-17 At&T Intellectual Property I, Lp Method and apparatus for mitigating interference in a wireless communication system
KR101988506B1 (en) * 2012-12-14 2019-09-30 삼성전자 주식회사 Method and apparatus for transmitting/receiving discovery signal in mobile communication system
US9615336B2 (en) * 2013-05-23 2017-04-04 Qualcomm Incorporated Uplink power headroom management for connectivity with logically separate cells
US9319901B2 (en) * 2013-09-04 2016-04-19 Qualcomm Incorporated Methods and apparatus for parameter selection and conflict resolution for multiple radio access technologies
US9801115B2 (en) * 2013-09-04 2017-10-24 Qualcomm Incorporated Robust inter-radio access technology operations in unlicensed spectrum
US20150063150A1 (en) * 2013-09-04 2015-03-05 Qualcomm Incorporated Measurement reporting in unlicensed spectrum
US9722761B2 (en) * 2013-10-09 2017-08-01 Telefonaktiebolaget L M Ericsson (Publ) Secondary cells in overlapping bands
US9572040B2 (en) * 2013-10-22 2017-02-14 Acer Incorporated Unlicensed spectrum sharing method, base station using the same, and user equipment using the same
IN2013CH05862A (en) 2013-12-16 2015-06-19 Samsung R&D Inst India – Bangalore Private Ltd
US20150189574A1 (en) * 2013-12-26 2015-07-02 Samsung Electronics Co., Ltd. Methods for dormant cell signaling for advanced cellular network
US10200137B2 (en) 2013-12-27 2019-02-05 Huawei Technologies Co., Ltd. System and method for adaptive TTI coexistence with LTE
CN104811929B (en) * 2014-01-29 2020-01-14 北京三星通信技术研究有限公司 Method and device for processing activation/deactivation of carrier aggregation between base stations
US9853797B2 (en) * 2014-02-03 2017-12-26 Apple Inc. Method and apparatus for time division coexistence in unlicensed radio frequency bands for mobile devices
KR102279880B1 (en) 2014-03-11 2021-07-21 삼성전자 주식회사 Method and apparatus for operating a bitrate of bearer dynamically in wireless communication system
US10813043B2 (en) 2014-05-16 2020-10-20 Huawei Technologies Co., Ltd. System and method for communicating wireless transmissions spanning both licensed and un-licensed spectrum
EP3146666B1 (en) 2014-05-19 2021-01-27 Telefonaktiebolaget LM Ericsson (publ) Technique for aggregating radio resources
EP3172923B1 (en) 2014-07-23 2019-10-23 Samsung Electronics Co., Ltd. Method and apparatus for generating and transmitting power headroom report in mobile communication system
US10194324B2 (en) * 2014-08-14 2019-01-29 Spectrum Effect Inc. Carrier aggregation using shared spectrum
EP3796724A1 (en) * 2014-08-25 2021-03-24 Coherent Logix, Inc. Shared spectrum access for broadcast and bi-directional, packet-switched communications
KR102247085B1 (en) 2014-09-01 2021-04-30 삼성전자주식회사 Scheme for communcation in mobile communication system using unlicensed frequency band
US10314050B2 (en) * 2014-11-03 2019-06-04 Telefonaktiebolaget Lm Ericsson (Publ) Small bandwidth cell configuration, for reducing interference with overlapping large bandwidth cell
BR112017019028A2 (en) * 2015-03-06 2018-07-31 Huawei Technologies Co., Ltd. method for using a radio interface technology, device and communications system.
US9794935B2 (en) * 2015-04-14 2017-10-17 Alcatel Lucent Adaptive subframe puncturing for carrier sensing adaptive transmission
US9854585B2 (en) * 2015-04-30 2017-12-26 Qualcomm Incorporated Dynamic medium access control switching
US20170086076A1 (en) * 2015-09-18 2017-03-23 Qualcomm Incorporated Setting transmission parameters in shared spectrum
US10172146B2 (en) * 2015-09-30 2019-01-01 Apple Inc. Wi-Fi and bluetooth coexistence
US10182456B2 (en) * 2015-10-15 2019-01-15 Qualcomm Incorporated Collision detection in a shared radio frequency spectrum band
US10524150B2 (en) * 2016-01-14 2019-12-31 Samsung Electronics Co., Ltd. Method and apparatus for generating cell measurement information in a wireless communication system
US11071002B2 (en) * 2019-02-01 2021-07-20 Qualcomm Incorporated Handling of channel access problems

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5999818A (en) * 1996-08-06 1999-12-07 Cirrus Logic, Inc. Frequency re-used and time-shared cellular communication system having multiple radio communication systems
US20120300715A1 (en) * 2011-05-10 2012-11-29 Interdigital Patent Holdings, Inc. Method and apparatus for obtaining uplink timing alignment on a secondary cell
US20130010687A1 (en) * 2011-07-01 2013-01-10 Qualcomm Incorporated Synchronized uplink-downlink hop for measurements
US20150065152A1 (en) * 2013-09-04 2015-03-05 Qualcomm Incorporated Opportunistic carrier aggregation framework for efficient lte operation in unlicensed spectrum
US20150092707A1 (en) * 2013-09-27 2015-04-02 Innovative Technology Lab Co., Ltd. Method and apparatus for performing activation/deactivation of serving cell in wireless communication system supproting dual connectivity
US20150288809A1 (en) * 2014-04-04 2015-10-08 Apple Inc. OAM System for LTE-U and Wi-Fi Operation and Coexistence Deployment
US20150296385A1 (en) * 2014-04-10 2015-10-15 Qualcomm Incorporated Techniques for transmitting patterns of signal transmissions or reference signals over an unlicensed radio frequency spectrum band
US20170265172A1 (en) * 2014-09-12 2017-09-14 Nec Corporation Radio station, radio terminal, and method for terminal measurement
US20160277165A1 (en) * 2015-03-20 2016-09-22 Acer Incorporated Method of transmitting reference signal in unlicensed spectrum for lte-laa system and wireless device using the same
US20170251380A1 (en) * 2016-02-29 2017-08-31 Alcatel-Lucent Usa Inc. Extending a wireless coverage area in an unlicensed frequency band of a small cell using remote radio heads
US20200221309A1 (en) * 2019-01-07 2020-07-09 Qualcomm Incorporated Handling of channel access problems
US20200252846A1 (en) * 2019-02-01 2020-08-06 Qualcomm Incorporated Handover and cell change due to channel access problems

Also Published As

Publication number Publication date
US11012866B2 (en) 2021-05-18
US20170257774A1 (en) 2017-09-07
US10462675B2 (en) 2019-10-29
US20200059796A1 (en) 2020-02-20

Similar Documents

Publication Publication Date Title
US20210243611A1 (en) Dynamic spectrum partitioning between a first radio access technology and a second radio access technology
CA3042499C (en) Method and apparatus for configuring subband aggregation in nr carrier in wireless communication system
US10609702B2 (en) Base station apparatus, terminal apparatus, and communication method
CN110214466B (en) Base station device, terminal device, communication method, and integrated circuit
US11051290B2 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
AU2019242360B2 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
JP5784697B2 (en) Uplink transmission timing in multi-carrier communication systems
AU2015360910B2 (en) Nested system operation
KR102271205B1 (en) Dynamic uplink/downlink frame structure for enhanced component carriers
US20200059337A1 (en) Base station apparatus, terminal apparatus, and communication method
US20200403748A1 (en) Terminal apparatus and communication method
CN110050452B (en) Base station device, terminal device, communication method, and integrated circuit
JP6923558B2 (en) Base station equipment, terminal equipment, and communication methods
KR102211695B1 (en) Method for performing uplink transmission in wireless communication system and apparatus therefor
US11622386B2 (en) Terminal apparatus, base station apparatus, and communication method
US11134488B2 (en) Base station apparatus for communicating with a terminal apparatus using multiple frequency bands
CA3088105A1 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
US20210022210A1 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
EP3619883A1 (en) Selection of waveform for uplink communications
US10999868B2 (en) Terminal apparatus, base station apparatus, and communication method
WO2018143345A1 (en) Base station device, terminal device, communication method, and integrated circuit
US20210288850A1 (en) Process data to be transmitted via a first radio module
RU2758908C2 (en) Radio network node, wireless device and methods performed in them to maintain communication in wireless communication network
US20210021392A1 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
KR20110059529A (en) A method and a base station for transmitting downlink control information, and a method and a user equipment for receiving downlink control information

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

AS Assignment

Owner name: AT&T INTELLECTUAL PROPERTY I, L.P., GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WOLTER, DAVID R.;GHOSH, ARUNABHA;SIGNING DATES FROM 20160926 TO 20160927;REEL/FRAME:056067/0625

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION