US20210227144A1 - Target tracking method and device, movable platform, and storage medium - Google Patents

Target tracking method and device, movable platform, and storage medium Download PDF

Info

Publication number
US20210227144A1
US20210227144A1 US17/222,627 US202117222627A US2021227144A1 US 20210227144 A1 US20210227144 A1 US 20210227144A1 US 202117222627 A US202117222627 A US 202117222627A US 2021227144 A1 US2021227144 A1 US 2021227144A1
Authority
US
United States
Prior art keywords
image
shooting
target object
shooting assembly
position area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/222,627
Inventor
Wei Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SZ DJI Technology Co Ltd
Original Assignee
SZ DJI Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SZ DJI Technology Co Ltd filed Critical SZ DJI Technology Co Ltd
Priority to US17/222,627 priority Critical patent/US20210227144A1/en
Assigned to SZ DJI Technology Co., Ltd. reassignment SZ DJI Technology Co., Ltd. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZHANG, WEI
Publication of US20210227144A1 publication Critical patent/US20210227144A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • H04N5/23299
    • G06K9/0063
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/13Satellite images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/17Terrestrial scenes taken from planes or by drones
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/61Control of cameras or camera modules based on recognised objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/695Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/28Mobile studios
    • G06K2009/00644
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30232Surveillance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30241Trajectory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/194Terrestrial scenes using hyperspectral data, i.e. more or other wavelengths than RGB
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/103Static body considered as a whole, e.g. static pedestrian or occupant recognition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service

Definitions

  • the present disclosure generally relates to the field of image processing technology and, more particularly, to a target tracking method and device, a movable platform, and a storage medium.
  • target tracking generally includes performing target recognition on an image captured by a shooting device to determine a target object in the image, and adjusting a shooting attitude of the shooting device to keep the target object in a shooting frame of the shooting device, to realize tracking of the target object in a monitoring environment.
  • the tracking method used in current technologies is to perform the image recognition on the image shot by a visible light shooting device to determine the target object in the image, and adjust the shooting attitude of the visible light shooting device to keep the target object in the shooting frame of the visible light shooting device, to realize tracking of the target object by the visible light shooting device. Since the image captured by the visible light shooting device has rich feature information to facilitate an identification of the target object, the visible light shooting device can accurately track the target object. However, at present, the target object cannot or cannot accurately be recognized in the image output by certain types of shooting devices, and hence these types of shooting devices cannot or cannot accurately track the target object.
  • a target tracking method applicable to a shooting device including a first shooting assembly and a second shooting assembly.
  • the method includes calling the second shooting assembly to shoot an environment to obtain an image, performing target object recognition on the image to obtain a tracking position area of a target object to be tracked in the image, and adjusting a shooting attitude of the shooting device according to the tracking position area of the target object in the image to locate the target object in a shooting frame of the first shooting assembly.
  • a movable platform including a shooting device including a first shooting assembly and a second shooting assembly, a memory storing a computer program including program instructions, and a processor. Imaging modes of the first shooting assembly and the second shooting assembly are different.
  • the processor is configured to execute the program instructions to call the second shooting assembly to shoot the environment to obtain an image, perform target object recognition on the image to obtain a tracking position area of a target object to be tracked in the image, and adjust a shooting attitude of the shooting device according to the tracking position area of the target object in the image to locate the target object in a shooting frame of the first shooting assembly.
  • FIG. 1 is an application scenario of a target tracking method consistent with embodiments of the disclosure.
  • FIG. 2 is a schematic diagram of an imaging process of a shooting device consistent with embodiments of the disclosure.
  • FIG. 3 is a flow chart of a target tracking method consistent with embodiments of the disclosure.
  • FIG. 4 is a flow chart of another target tracking method consistent with embodiments of the disclosure.
  • FIG. 5 is a schematic diagram of a target tracking device consistent with embodiments of the disclosure.
  • FIG. 6 is a structural diagram of a movable platform consistent with embodiments of the disclosure.
  • the present disclosure provides a target tracking method and device, a movable platform, and a storage medium, such that even if a target object cannot or cannot be accurately recognized in an image output by a shooting device, the shooting device can still track the target object.
  • the present disclosure can realize target object recognition through a second image output by a second shooting assembly in the shooting device to obtain a tracking position area of a target object in the second image.
  • a shooting attitude of the shooting device can be adjusted according to the tracking position area of the target object in the second image, such that the target object is located in a shooting frame of a first shooting assembly in the shooting device. As such, even if the target object cannot or cannot accurately be recognized in the image output by the first shooting assembly, the first shooting assembly can still track the target object.
  • FIG. 1 is an application scenario of an example target tracking method consistent with the disclosure.
  • the target tracking method can be applicable to a movable platform 01 .
  • the movable platform 01 may be any apparatus that can be moved by an external force or through its own power system.
  • the movable platform 01 may include an aircraft.
  • the movable platform 01 includes the shooting device configured to shoot an environment, and the shooting device may be carried on a body of the movable platform 01 directly or through a movable component (e.g., a gimbal).
  • the shooting device includes a first shooting assembly 0111 and a second shooting assembly 0112 having different imaging modes.
  • the movable platform 01 can adjust an attitude of a body of the movable platform 01 or adjust an attitude of the movable component connected to the shooting device on the movable platform 01 (e.g., the gimbal), to adjust the shooting device to rotate up, down, left, and right and/or translate up, down, left, right, back, and forth, thereby adjusting a shooting attitude of the shooting device.
  • the first shooting assembly 0111 and the second shooting assembly 0112 may be fixedly connected.
  • the second shooting assembly 0112 of the shooting device can be called first to shoot the environment including the target object (e.g., people, animal, and the like) to obtain a second image.
  • the second image may be any type of image that facilitates the target object recognition.
  • the shooting attitude of the shooting device can be then controlled, such that the target object can be always in a shooting frame of the first shooting assembly 0111 . That is, the target object can be always within a shooting range of the first shooting assembly 0111 .
  • the first shooting assembly 0111 can track the target object.
  • the movable platform 01 can call the second shooting assembly 0112 to shoot the environment to obtain the second image.
  • the target object recognition can be performed on the second image to obtain a tracking position area of the target object to be tracked in the second image.
  • the shooting attitude of the shooting device can be adjusted according to the tracking position area of the target object in the second image, such that the target object is located in the shooting frame of the first shooting assembly 0111 . Therefore, the present disclosure can use the second image to recognize the target object and the tracking position area of the target object in the second image, and adjust the shooting attitude of the shooting device according to the tracking position area of the target object in the second image, such that the target object is located in the shooting frame of the first shooting assembly 0111 .
  • the first shooting assembly can realize an indirect target tracking of the target object.
  • the present disclose provides the target tracking method enabling the first shooting assembly 0111 to track the target object. Even if the target object cannot be accurately recognized in the image output by the first shooting assembly 0111 , the first shooting assembly 0111 can still track the target object.
  • the shooting attitude of the shooting device can be adjusted directly based on the tracking position area of the target object in the second image.
  • the target object can be in a preset position area of the shooting frame of the second shooting assembly 0112 .
  • the target object can be in the target position area, which corresponds to the preset position area, in the shooting frame of the first shooting assembly 0111 .
  • the target position area can be a central position area.
  • a regional correspondence between the images captured by the first shooting assembly 0111 and the second shooting assembly 0112 needs to be determined.
  • a position range of the target object in the image captured by the second shooting assembly 0112 can be used as the preset position area.
  • a position range of the target object in the image captured by the second shooting assembly 0112 can be used as the preset position area.
  • the tracking position area of the target object in the second image can be determined, and the shooting attitude of the shooting device can be adjusted directly based on the position of the target object in the second image.
  • the target object can be in the preset position area of the image captured by the second shooting assembly 0112 . That is, the target object can be ensured to locate in the shooting frame of the first shooting assembly 0111 . It is further ensured that the target object can be located in the target position area, which corresponds to the preset position area, in the shooting frame of the first shooting assembly 0111 .
  • the tracking position area of the target object in the shooting frame of the first shooting assembly 0111 can be determined.
  • the shooting attitude of the shooting device can be adjusted according to the tracking position area of the target object in the shooting frame of the first shooting assembly 0111 , such that the target object is in the shooting frame of the first shooting assembly 0111 .
  • the target object can be in the target position area in the shooting frame of the first shooting assembly 0111 .
  • the tracking position area of the target object in the shooting frame of the first shooting assembly 0111 can be determined.
  • the shooting attitude of the shooting device can be adjusted, such that the target object is located in the shooting frame of the first shooting assembly 0111 .
  • the target object can be in the target position area in the shooting frame of the first shooting assembly 0111 .
  • the tracking position area of the target object in the shooting frame of the first shooting assembly 0111 can be determined according to the tracking position area of the target object in the second image and the relative positional relationship between the first shooting assembly 0111 and the second shooting assembly 0112 .
  • the shooting device can be then adjusted based on the tracking position area of the target object in the shooting frame of the first shooting assembly 0111 .
  • the relative position between the first shooting assembly 0111 and the second shooting assembly 0112 may be fixed, or, the relative position may be not fixed but can be measured by a sensor in the movable platform 01 , and thus, the relative position between the first shooting assembly 0111 and the second shooting assembly 0112 can be known or knowable.
  • the relative positional relationship between the first shooting assembly 0111 and the second shooting assembly 0112 i.e., a position conversion relationship between corresponding pixel points of a first image captured by the first shooting assembly 0111 and the second image captured by the second shooting assembly 0112 , can be determined according to relative positions between the first shooting assembly 0111 and the second shooting assembly 0112 .
  • the present disclosure can quickly obtain the tracking position area of the target object in the shooting frame of the first shooting assembly 0111 according to the tracking position area of the target object in the second image.
  • FIG. 2 is a schematic diagram of an imaging process of an example shooting device 011 consistent with the disclosure.
  • the shooting device 011 will be described below with an example in which the relative position between the first shooting assembly 0111 and the second shooting assembly 0112 is fixed, the first shooting assembly 0111 can include a thermal infrared shooting device, a first image captured by the first shooting assembly 0111 can include a thermal infrared image and can be an image corresponding to the shooting frame of the first shooting assembly 0111 , the second shooting assembly 0112 can include a visible light shooting device, and a second image captured by the second shooting assembly 0112 can include an optical image.
  • the shooting device 011 on the movable platform 01 includes a dual-light camera.
  • the relative position between the first shooting assembly 0111 and the second shooting assembly 0112 in the dual-light camera can be fixed.
  • the first shooting assembly 0111 can include the thermal infrared shooting device and the first image can include the thermal infrared image.
  • the second shooting assembly 0112 can include the visible light shooting device and the second image can include the optical image.
  • the first shooting assembly 0111 can shoot the environment in a thermal infrared imaging mode to obtain the thermal infrared image A1A2A3A4 as the first image
  • the second shooting assembly 0112 can shoot the environment in a visible light imaging mode to obtain the optical image B1B2B3B4 as the second image.
  • a first pixel on the first image A1A2A3A4 corresponds to a second pixel on the second image B1B2B3B4, i.e., the first pixel and the second pixel are imaged for a same target point on the target object.
  • the relative position between the first shooting assembly 0111 and the second shooting assembly 0112 in the dual-light camera is fixed, external parameters of the two shooting assemblies in the dual-light camera can be known.
  • the external parameters can be used to indicate the relative position of the two shooting assemblies, which can be determined according to a relative installation position and a relative installation angle of the two shooting assemblies.
  • Internal parameters of the two shooting assemblies (determined according to a focal length of the shooting assembly and a position of an optical center) can be also known. Therefore, the second pixel in the second image can be easily projected to the first pixel in the first image. For example, assume that the coordinate of a target point on the target object in the camera coordinate system of the first shooting assembly 0111 are (X 1 , Y 1 , Z 1 ).
  • X 1 , Y 1 , and Z 1 are a horizontal coordinate value, a vertical coordinate value, and a depth coordinate value.
  • a relative positional offset between the second shooting assembly and the first shooting assembly can be ( ⁇ X, ⁇ Y, ⁇ Z), and thus, a coordinate of the target object in the camera coordinate system of the second shooting assembly 0112 can be (X 1 + ⁇ X, Y 1 + ⁇ Y, Z 1 + ⁇ Z).
  • a coordinate of the first pixel of the target point of the target object in the first image captured by the first shooting assembly 0111 can be (u 1 , v 1 )
  • a coordinate of the second pixel of the target point in the second image captured by the second shooting assembly 0112 can be (u 2 , v 2 ).
  • the coordinate of the first pixel and the coordinate of the second pixel can have the following relative positional relationship:
  • u 1 f 1 ⁇ X 1 Z 1
  • v 1 f 1 ⁇ Y 1 Z 1
  • u 2 f 2 ⁇ ( X 1 + ⁇ ⁇ ⁇ X ) Z 1 + ⁇ ⁇ ⁇ Z
  • v 2 f 2 ⁇ ( Y 1 + ⁇ ⁇ ⁇ Y ) Z 1 + ⁇ ⁇ ⁇ Z ⁇ ⁇ u 1
  • u 2 f 1 ⁇ X 1 f 2 ⁇ ( X 1 + ⁇ ⁇ ⁇ X ) * Z 1 + ⁇ ⁇ ⁇ Z Z 1 ⁇ f 1 f 2
  • f 1 and f 2 are the focal lengths of the first shooting assembly 0111 and the second shooting assembly 0112 .
  • An observation depth of the target object can be generally above 5 m, i.e., Z 1 >5 m, and the relative positional offset between the two shooting assemblies, ( ⁇ X, ⁇ Y, ⁇ Z), can be very small.
  • the thermal infrared imaging mode can refer to that the thermal infrared shooting device can detect an infrared radiation emitted by the object itself, and convert a temperature distribution of the object into the thermal infrared image through photoelectric conversion, signal processing, and other means. Therefore, the first image A1A2A3A4 obtained by the thermal infrared mode can reflect the temperature distribution information of the object having thermal radiation.
  • Objects having thermal radiation can include, for example, people, animals, electromagnetic equipment, and the like.
  • the thermal imaging mode has the advantage of being able to shoot without light and with an occlusion. It can shoot objects well at night or in other special environments.
  • the imaging principle of the visible light imaging mode can be to use a reflection of visible light from a surface of the object for imaging.
  • the optical image B1B2B3B4 obtained by imaging can include detailed information such as the color and shape of the object, but the imaging result can be greatly affected by light and occlusion.
  • both the first shooting assembly 0111 and the second shooting assembly 0112 can shoot the same target object in the environment. Because the imaging modes of the first shooting assembly 0111 and the second shooting assembly 0112 are different, sizes of the images obtained by the first shooting assembly 0111 and the second shooting assembly 0112 in the shooting environment may be different. For example, due to technical limitations, a range of infrared imaging can be smaller than that of visible light imaging. Generally, the image obtained by infrared imaging can be smaller than the image obtained by visible light imaging. The positions of the target object in the first image and the second image can be different. Since the relative positional relationship between the first shooting assembly 0111 and the second shooting assembly 0112 can be determined, once the position of the target object in one image is determined, the position of the target object in another image can be easily obtained through conversion.
  • the thermal infrared image has insufficient texture information compared to the optical image. If the target recognition and tracking are directly performed on the thermal infrared image, the effect can be very poor. But thermal infrared images have the advantage that they can image objects with thermal radiation in the environment without being hindered by light and occlusion.
  • the target tracking method based on the thermal infrared image can have very important practical significance.
  • the present disclosure can use the optical image output by the visible light shooting device to realize the target object recognition to obtain the tracking position area of the target object in the optical image.
  • the shooting attitude of the shooting device can be adjusted according to the tracking position area of the target object in the optical image, such that the target object is located in the shooting frame of the thermal infrared shooting device in the shooting device. As such, even if the thermal infrared image output by the thermal infrared camera cannot or cannot accurately recognize the target object, the thermal infrared camera can still track the target object.
  • the user can specify the target object to be tracked based on the first image output by the first shooting assembly 0111 , so as to achieve the tracking of the target object.
  • the movable platform 01 can send the first image to a control terminal 02 to cause the control terminal 02 to display the first image.
  • the user can perform a selection operation on the first image displayed on the control terminal 02 , for example, frame an area including the target object to be tracked on the first image.
  • the control terminal 02 can generate first area indication information according to the area including the target object to be tracked, and send the first area indication information to the movable platform 01 .
  • the movable platform 01 After receiving the first area indication information sent by the control terminal 02 , the movable platform 01 can determine second area indication information of the second image according to the first area indication information and the relative positional relationship between the first shooting assembly 0111 and the second shooting assembly 0112 .
  • the movable platform 01 can perform the target recognition on the area indicated by the second area indication information in the second image to determine the target object and obtain the tracking position area of the target object in the second image.
  • the target recognition can be performed on the area indicated by the second area indication information in the second image, and the target object can be recognized in the area.
  • the recognition may be recognized through a neural network.
  • the determined target object may be recognized from the second image output by the second shooting assembly 0112 to obtain the tracking position area of the target object in the second image.
  • the recognition of the determined target object from the second image output by the second shooting assembly 0112 may be recognized using the neural network, or by image tracking.
  • the user can view target tracking result based on the first image at the control terminal 02 .
  • the tracking position area of the target object in the second image can be determined according to the tracking position area of the target object in the second image and the relative positional relationship between the first shooting assembly 0111 and the second shooting assembly 0112 .
  • the target object can be marked in the first image according to the tracking position area of the target object in the first image. All or some of image information in the second image information can be added to the marked first image to enrich contour features of the marked first image.
  • the marked first image can be sent to the control terminal 02 , such that the control terminal 02 can display the marked first image.
  • FIG. 3 is a flow chart of an example target tracking method consistent with the disclosure.
  • the target tracking method may be executed by a movable platform, for example, the movable platform 01 in FIG. 1 .
  • the movable platform calls the second shooting assembly to shoot the environment to obtain the second image, and calls the first shooting assembly to shoot the environment to obtain the first image at the same time.
  • the first shooting assembly can include the thermal infrared imaging device and the second shooting assembly can include the visible light imaging device.
  • the imaging modes of the first shooting assembly and the second shooting assembly can be different.
  • the first shooting assembly can use the thermal infrared imaging mode to obtain the thermal infrared image as the first image
  • the second shooting assembly can use the visible light imaging mode to obtain the optical image as the second image.
  • the second image can include the optical image.
  • the positions of the target object in the first image and the second image may be different. Since the relative positional relationship between the first shooting assembly and the second shooting assembly can be determined, once the position of the target object in one image is determined, the position of the target object in another image can be easily obtained through conversion.
  • target object recognition is performed on the second image to recognize the target object in the second image, and the tracking position area of the target object to be tracked in the second image is obtained using segmentation.
  • Target object recognition can determine the target object and the tracking position area of the target object in the second image through image processing methods of target detection and target segmentation.
  • the target detection and target segmentation may include a conventional target detection method and a conventional segmentation method, or may include a target detection method and a target segmentation method based on deep learning (e.g., a neural network), which is not limited in here.
  • the shooting attitude of the shooting device is adjusted according to the tracking position area of the target object in the second image, such that the target object is located in the shooting frame of the first shooting assembly.
  • the movable platform can adjust the shooting attitude of the shooting device by changing the attitude of the movable platform itself (e.g., the body), or control the shooting device to adjust the shooting attitude through the gimbal connected to the shooting device, i.e., adjust the shooting attitude of the shooting device by adjusting the attitude of the gimbal.
  • adjusting the shooting attitude of the shooting device according to the tracking position area of the target object in the second image may also include determining the tracking position area of the target object in the shooting frame of the first shooting assembly according to the tracking position area of the target object in the second image, and adjusting the shooting attitude of the shooting device according to the tracking position area of the target object in the shooting frame of the first shooting assembly.
  • the thermal infrared image has insufficient texture information compared to the optical image. If the target recognition and tracking are directly performed on the thermal infrared image, the effect can be very poor. But thermal infrared images have the advantage that they can image objects having thermal radiation in the environment without being hindered by light and occlusion. Therefore, the target tracking method based on thermal infrared images can be very important.
  • the present disclosure can solve the problem very well, because the present disclosure can use the optical image output by the visible light shooting device to recognize the target object to obtain the tracking position area of the target object in the optical image.
  • the shooting attitude of the shooting device can be adjusted according to the tracking position area of the target object in the optical image, such that the target object is located in the shooting frame of the thermal infrared shooting device in the shooting device. In this way, even if the target object cannot be or cannot be accurately recognized in the thermal infrared image output by the thermal infrared shooting device, the thermal infrared shooting device can still track the target object.
  • the first image can be first sent to the control terminal of the movable platform, such that the control terminal can display the first image.
  • the user can perform the selection operation on the first image on the control terminal (e.g., frame the area where the target object is located), and then the terminal device can obtain the first area indication information for indicating the selected area of the user in the first image according to the selection operation, and send the first area indication information to the movable platform.
  • the movable platform receives the first area indication information, the processes described above can be used to determine the position of the target object in the first image according to the tracking position area of the target object in the second image.
  • the second area indication information can be determined according to the first area indication information and the relative positional relationship between the first shooting assembly and the second shooting assembly.
  • the second area indication information can be used to indicate the area in the first image mapped from the area selected by the user in the second image, and finally, the target recognition can be performed on the area indicated by the second area indication information in the second image to determine the target object, and obtain the tracking position area of the target object in the second image.
  • the user can specify the target object, and a target tracking efficiency of the target tracking can be improved.
  • the tracking position area of the target object in the first image can be determined according to the tracking position area of the target object in the second image.
  • the target object can be then marked in the first image (e.g., as shown in the first image in FIG. 2 , the location of the target object can be framed).
  • the marked first image can be sent to the control terminal of the movable platform to cause the control terminal to display the marked first image. Determining the tracking position area of the target object in the first image according to the tracking position area of the target object in the second image has been described in connection with FIGS. 1 and 2 , and detailed description thereof is omitted herein.
  • the present disclosure can determine the target object in the tracking position area of the second image by performing the target object recognition on the second image.
  • the tracking position area of the target object in the first image can be determined according to the tracking position area of the target object in the second image, and the target object can be marked in the first image, and the marked target object can be showed to the user through the control terminal. Therefore, indirect target tracking based on the first image can be realized, especially when the first image is the thermal infrared image.
  • the present disclosure can achieve the target tracking based on the thermal infrared image, which has very important practical value.
  • all or some of the image information in the second image information can be first extracted, and all or some of the image information in the second image information can be added to the marked first image to enrich the contour features of the marked first image.
  • the marked first image can be sent to the control terminal, such that the first image finally presented to the user on the control terminal not only can be marked with the target object, but also can have greatly enriched details.
  • a defect that the details of the image, e.g., the thermal imaging image or the like, are not rich can be improved to a certain extent.
  • the present disclosure can achieve not only the target tracking based on the thermal imaging image, but also an interaction with the user through the thermal imaging image, and use the details of the optical image to enrich the contour details of the thermal imaging image that is not rich in details.
  • the practicality of thermal imaging images can be greatly improved.
  • FIG. 4 is a flow chart of another example target tracking method consistent with the disclosure, and the target tracking method may be executed by a movable platform, e.g., the movable platform 01 in FIG. 1 .
  • the first shooting assembly and the second shooting assembly of the shooting device of the movable platform are called to shoot the environment to obtain the first image and the second image.
  • the first shooting assembly can include the thermal infrared imaging device and the second shooting assembly can include the visible light imaging device.
  • the imaging modes of the first shooting assembly and the second shooting assembly can be different.
  • the first shooting assembly can use the thermal infrared imaging mode to obtain the thermal infrared image as the first image
  • the second shooting assembly can use the visible light imaging mode to obtain the optical image as the second image.
  • the second image can include the optical image.
  • the first image is sent to the control terminal of the movable platform to cause the control terminal to display the first image.
  • the target object to be tracked in the second image is determined, and the tracking position area of the target object in the second image is obtained.
  • the second area indication information can be determined according to the first area indication information and the relative positional relationship between the first shooting assembly and the second shooting assembly.
  • the target recognition can be performed on the area indicated by the second area indication information in the second image to determine the target object, and obtain the tracking position area of the target object in the second image.
  • the shooting attitude of the shooting device is adjusted according to the tracking position area of the target object in the second image, such that the target object is located in the shooting frame of the first shooting assembly.
  • the movable platform can adjust the shooting attitude of the shooting device by changing the attitude of the movable platform itself, or control the shooting device to adjust the shooting attitude through the gimbal connected to the shooting device, i.e., adjust the shooting attitude of the shooting device by adjusting the attitude of the gimbal.
  • adjusting the shooting attitude of the shooting device according to the tracking position area of the target object in the second image may include adjusting the target object to the preset position area of the image captured by the second shooting assembly, such that the target object is in the shooting frame of the first shooting assembly, and furthermore, can be in the target position area of the shooting frame.
  • adjusting the shooting attitude of the shooting device according to the tracking position area of the target object in the second image may include determining the tracking position area of the target object in the shooting frame of the first shooting assembly according to the tracking position area of the target object in the second image, and the relative positional relationship between the first shooting assembly and the second shooting assembly, and adjusting the shooting attitude of the shooting device according to the tracking position area of the target object in the shooting frame of the first shooting assembly, such that the target object is in the shooting frame of the first shooting assembly, furthermore, can be in the target position area of the shooting frame.
  • the tracking position area of the target object in the shooting frame of the first shooting assembly is determined. For example, according to the tracking position area of the target object in the second image and the relative positional relationship between the first shooting assembly and the second shooting assembly, the tracking position area of the target object in the first image can be determined.
  • the target object is marked in the first image.
  • the detailed information in the second image is extracted to enrich the contour features in the first image.
  • the image information in the second image information can be first extracted, and all or some of the image information in the second image information can be added to the marked first image to enrich the contour features of the marked first image.
  • the marked first image is sent to the control terminal of the movable platform to cause the control terminal to display the marked first image.
  • the first image can be also referred to as a “displaying image,” and the second image can be also referred to as a “tracking image.”
  • FIG. 5 is a schematic diagram of an example target tracking device consistent with the disclosure.
  • the target tracking device can implement the target tracking method in FIGS. 3 and 4 .
  • the target tracking device can be applied to a movable platform, for example, the movable platform 01 in FIG. 1 .
  • the movable platform can include the shooting device, and the shooting device can include the first shooting assembly and the second shooting assembly.
  • the target tracking device includes a calling circuit 510 , a recognition circuit 520 , and a tracking circuit 530 .
  • the calling circuit 510 can be configured to call the second shooting assembly to shoot the environment to obtain the second image, and the imaging modes of the first shooting assembly and the second shooting assembly can be different.
  • the recognition circuit 520 can be configured to perform the target object recognition on the second image to obtain the tracking position area of the target object to be tracked in the second image.
  • the tracking circuit 530 can be configured to adjust the shooting attitude of the shooting device according to the tracking position area of the target object in the second image, such that the target object is located in the shooting frame of the first shooting assembly.
  • the movable platform can include the gimbal carrying the shooting device
  • the tracking unit 530 can be further configured to adjust the attitude of the movable platform and/or the attitude of the gimbal to adjust the shooting attitude of the shooting device according to the tracking position area of the target object in the second image.
  • the first shooting assembly can include the thermal infrared imaging device
  • the second shooting assembly can include the visible light imaging device
  • the second image can include the optical image
  • the tracking unit 530 can be specifically configured to adjust the shooting attitude of the shooting device according to the tracking position area of the target object in the second image. After the shooting attitude of the shooting device is adjusted, the target object can be located in the preset position area of the shooting frame of the second shooting assembly.
  • the target tracking device can further include a determination circuit 540 configured to determine the tracking position area of the target object in the shooting frame of the first shooting assembly according to the tracking position area of the target object in the second image.
  • the tracking unit 530 can be further configured to adjust the shooting attitude of the shooting device according to the tracking position area of the target object in the shooting frame of the first shooting assembly.
  • the calling unit 510 can be further configured to call the first shooting assembly to shoot the environment to obtain the first image.
  • the target tracking device can further include a sending unit 550 configured to send the first image to the control terminal of the movable platform to cause the control terminal to display the first image.
  • the target tracking device can further include an acquisition unit 560 configured to obtain the first area indication information sent by the control terminal.
  • the first area indication information can be determined by the control terminal by detecting the user's selection operation of the target object on the first image displayed by the control terminal.
  • the recognition unit 520 can be further configured to determine the target object to be tracked in the second image and obtain the tracking position area of the target object in the second image according to the first area indication information.
  • the recognition unit 520 can be further configured to determine the second area indication information of the second image according to the first area indication information and the relative positional relationship between the first shooting assembly and the second shooting assembly, and perform the target recognition on the area indicated by the second area indication information in the second image to determine the target object and obtain the tracking position area of the target object in the second image.
  • the calling unit 510 can be further configured to call the first shooting assembly to shoot the environment to obtain the first image.
  • the determination unit 540 can be further configured to determine the tracking position area of the target object in the shooting frame of the first shooting assembly according to the tracking position area of the target object in the second image.
  • the target tracking device can further include a marking unit 570 configured to mark the target object in the first image according to the tracking position area of the target object in the shooting frame of the first shooting assembly.
  • the sending unit 550 can be further configured to send the marked first image to the control terminal of the movable platform, such that the control terminal can display the marked first image.
  • the target tracking device can further include an extraction unit 580 configured to extract all or some of the image information in the second image information.
  • the target tracking device can further include an adding unit 590 configured to add all or some of the image information in the second image information to the marked first image to enrich the contour features of the marked first image.
  • the determination unit 540 can be further configured to determine the tracking position area of the target object in the first image according to the tracking position area of the target object in the second image and the relative positional relationship between the first shooting assembly and the second shooting assembly.
  • FIG. 6 is a structural diagram of an example movable platform consistent with the disclosure.
  • the movable platform may at least include a processor 610 , a memory 620 , and a shooting device 630 .
  • the shooting device includes a first shooting assembly 631 and a second shooting assembly 632 .
  • the processor 610 , the memory 620 , and the shooting device 630 may be connected through a bus 640 or other means.
  • FIG. 6 takes a connection through the bus as an example.
  • the memory 620 may be configured to store the computer program.
  • the computer program can include the program instructions.
  • the processor 610 may be configured to execute the program instructions stored in the memory 620 .
  • the processor 610 may be a central processing unit (CPU), and the processor may also be another general-purpose processor, i.e., a microprocessor or any conventional processor, such as a digital signal processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field-Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the memory 620 may include a read-only memory and a random access memory, and provide instructions and data to the processor 610 . Therefore, the processor 610 and the memory 620 are not limited herein.
  • the processor 610 can load and execute one or more instructions stored in the computer storage medium to implement some or all processes of the methods in FIGS. 3 and 4 .
  • at least one instruction in the computer storage medium can be loaded and executed by the processor 610 .
  • the shooting device 630 can be configured to shoot the environment.
  • the memory 620 can be configured to store the computer program and the computer program can include the program instructions.
  • the processor 610 can be configured to call the program instructions and configured to call the second shooting assembly to shoot the environment to obtain the second image, the imaging modes of the first shooting assembly and the second shooting assembly being different, perform the target object recognition on the second image to obtain the tracking position area of the target object to be tracked in the second image, adjust the shooting attitude of the shooting device according to the tracking position area of the target object in the second image, such that the target object is located in the shooting frame of the first shooting assembly.
  • the processor 610 can be specifically configured to adjust the attitude of the movable platform and/or the attitude of the gimbal to adjust the shooting attitude of the shooting device according to the tracking position area of the target object in the second image.
  • the first shooting assembly can include the thermal infrared imaging device
  • the second shooting assembly can include the visible light imaging device
  • the second image can include the optical image
  • the processor 610 can be further configured to adjust the shooting attitude of the shooting device according to the tracking position area of the target object in the second image. After the shooting attitude of the shooting device is adjusted, the target object can be located in the preset position area of the shooting frame of the second shooting assembly.
  • the processor can be further configured to determine the tracking position area of the target object in the shooting frame of the first shooting assembly according to the tracking position area of the target object in the second image, and adjust the shooting attitude of the shooting device according to the tracking position area of the target object in the shooting frame of the first shooting assembly.
  • the processor can be further configured to call the first shooting assembly to shoot the environment to obtain the first image.
  • the movable platform further includes a communication interface 650 for data interaction between the movable platform and other terminal devices, and configured to send the first image to the control terminal of the movable platform to cause the control terminal to display the first image.
  • the processor 610 can be further configured to obtain the first area indication information sent by the control terminal, the first area indication information being determined by the control terminal by detecting the user's selection operation of the target object on the first image displayed by the control terminal, and determine the target object to be tracked in the second image and obtain the tracking position area of the target object in the second image according to the first area indication information.
  • the processor 610 can be further configured to determine the second area indication information of the second image according to the first area indication information and the relative positional relationship between the first shooting assembly and the second shooting assembly, and perform the target recognition on the area indicated by the second area indication information in the second image to determine the target object and obtain the tracking position area of the target object in the second image.
  • the processor 610 can be further configured to call the first shooting assembly to shoot the environment to obtain the first image.
  • the processor 610 can be further configured to determine the tracking position area of the target object in the shooting frame of the first shooting assembly according to the tracking position area of the target object in the second image.
  • the processor 610 can be further configured to mark the target object in the first image according to the tracking position area of the target object in the shooting frame of the first shooting assembly.
  • the communication interface 650 can be configured to send the marked first image to the control terminal of the movable platform, such that the control terminal can display the marked first image.
  • the processor 610 can be further configured to extract all or some of the image information in the second image information, and add all or some of the image information in the second image information to the marked first image to enrich the contour features of the marked first image.
  • the processor 610 can be further configured to determine the tracking position area of the target object in the first image according to the tracking position area of the target object in the second image and the relative positional relationship between the first shooting assembly and the second shooting assembly.
  • Embodiments of the present disclosure also provide a control device.
  • the control device can be in communication connection with the shooting device, and the shooting device can include the first shooting assembly and the second shooting assembly.
  • the control device is characterized in that the control device includes a memory and a processor.
  • the memory may be configured to store the computer program.
  • the computer program can include the program instructions.
  • the processor may be configured to call the program instructions and configured to call the second shooting assembly to shoot the environment to obtain the second image, the imaging modes of the first shooting assembly and the second shooting assembly being different, perform the target object recognition on the second image to obtain the tracking position area of the target object to be tracked in the second image, and adjust the shooting attitude of the shooting device according to the tracking position area of the target object in the second image, such that the target object is located in the shooting frame of the first shooting assembly.
  • the control device can be provided in the movable platform, and the movable platform can include the control device and the shooting device.
  • the control device may be communicatively connected to the shooting device.
  • the processor of the control device can execute the methods in FIGS. 3 and 4 . For the details, reference may be made to the previous sections, and will not be repeated herein.
  • the integrated units can be stored in a computer readable storage medium when implemented in form of software functional units and sold or used as a standalone product. Based on such understanding, all or part of the technical solution of the disclosure can be embodied in the form of software product stored in a storage medium comprising a number of instructions for causing a computer processor to perform the entire or part of a method consistent with embodiments of the disclosure, such as one of the above-described exemplary methods.
  • the storage medium can comprise a flask disk, a portable hard drive, a read only memory (ROM), a random access memory (RAM), a magnet disk, an optical disk, or other media capable of storing program code.
  • the program may be stored in a computer-readable storage medium, and when the program is executed, it may include the processes of the foregoing method embodiments.
  • the storage medium may include a magnetic disk, an optical disk, a ROM or RAM, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Remote Sensing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Astronomy & Astrophysics (AREA)
  • Human Computer Interaction (AREA)
  • Studio Devices (AREA)

Abstract

A target tracking method includes calling a first and second shooting assemblies to shoot an environment to obtain a first image and a second image, respectively; performing recognition on the second image to obtain a second tracking position area of a target object in the second image; adjusting a shooting attitude of the shooting device according to the second tracking position area to adjust the target object's location in a shooting frame of the first shooting assembly; determining a first tracking position area of the target object in the shooting frame of the first shooting assembly according to the second tracking position area of and a relative positional relationship between the first and second shooting assemblies; marking the target object in the first image according to the first tracking position area to obtain a marked first image; and sending the marked first image to a control terminal for displaying.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 16/880,553, filed on May 21, 2020, which is a continuation of International Application No. PCT/CN2019/089248, filed May 30, 2019, the entire contents of both of which are incorporated herein by reference.
  • TECHNICAL FIELD
  • The present disclosure generally relates to the field of image processing technology and, more particularly, to a target tracking method and device, a movable platform, and a storage medium.
  • BACKGROUND
  • Currently, target tracking generally includes performing target recognition on an image captured by a shooting device to determine a target object in the image, and adjusting a shooting attitude of the shooting device to keep the target object in a shooting frame of the shooting device, to realize tracking of the target object in a monitoring environment.
  • The tracking method used in current technologies is to perform the image recognition on the image shot by a visible light shooting device to determine the target object in the image, and adjust the shooting attitude of the visible light shooting device to keep the target object in the shooting frame of the visible light shooting device, to realize tracking of the target object by the visible light shooting device. Since the image captured by the visible light shooting device has rich feature information to facilitate an identification of the target object, the visible light shooting device can accurately track the target object. However, at present, the target object cannot or cannot accurately be recognized in the image output by certain types of shooting devices, and hence these types of shooting devices cannot or cannot accurately track the target object.
  • SUMMARY
  • Consistent with the disclosure, there is provided a target tracking method applicable to a shooting device including a first shooting assembly and a second shooting assembly. The method includes calling the second shooting assembly to shoot an environment to obtain an image, performing target object recognition on the image to obtain a tracking position area of a target object to be tracked in the image, and adjusting a shooting attitude of the shooting device according to the tracking position area of the target object in the image to locate the target object in a shooting frame of the first shooting assembly.
  • Also consistent with the disclosure, there is provided a movable platform including a shooting device including a first shooting assembly and a second shooting assembly, a memory storing a computer program including program instructions, and a processor. Imaging modes of the first shooting assembly and the second shooting assembly are different. The processor is configured to execute the program instructions to call the second shooting assembly to shoot the environment to obtain an image, perform target object recognition on the image to obtain a tracking position area of a target object to be tracked in the image, and adjust a shooting attitude of the shooting device according to the tracking position area of the target object in the image to locate the target object in a shooting frame of the first shooting assembly.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In order to provide a clearer illustration of technical solutions of disclosed embodiments, the drawings used in the description of the disclosed are briefly described below.
  • FIG. 1 is an application scenario of a target tracking method consistent with embodiments of the disclosure.
  • FIG. 2 is a schematic diagram of an imaging process of a shooting device consistent with embodiments of the disclosure.
  • FIG. 3 is a flow chart of a target tracking method consistent with embodiments of the disclosure.
  • FIG. 4 is a flow chart of another target tracking method consistent with embodiments of the disclosure.
  • FIG. 5 is a schematic diagram of a target tracking device consistent with embodiments of the disclosure.
  • FIG. 6 is a structural diagram of a movable platform consistent with embodiments of the disclosure.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • The present disclosure provides a target tracking method and device, a movable platform, and a storage medium, such that even if a target object cannot or cannot be accurately recognized in an image output by a shooting device, the shooting device can still track the target object.
  • The present disclosure can realize target object recognition through a second image output by a second shooting assembly in the shooting device to obtain a tracking position area of a target object in the second image. A shooting attitude of the shooting device can be adjusted according to the tracking position area of the target object in the second image, such that the target object is located in a shooting frame of a first shooting assembly in the shooting device. As such, even if the target object cannot or cannot accurately be recognized in the image output by the first shooting assembly, the first shooting assembly can still track the target object.
  • FIG. 1 is an application scenario of an example target tracking method consistent with the disclosure. The target tracking method can be applicable to a movable platform 01. The movable platform 01 may be any apparatus that can be moved by an external force or through its own power system. For example, the movable platform 01 may include an aircraft. As shown in FIG. 1, the movable platform 01 includes the shooting device configured to shoot an environment, and the shooting device may be carried on a body of the movable platform 01 directly or through a movable component (e.g., a gimbal). The shooting device includes a first shooting assembly 0111 and a second shooting assembly 0112 having different imaging modes. The movable platform 01 can adjust an attitude of a body of the movable platform 01 or adjust an attitude of the movable component connected to the shooting device on the movable platform 01 (e.g., the gimbal), to adjust the shooting device to rotate up, down, left, and right and/or translate up, down, left, right, back, and forth, thereby adjusting a shooting attitude of the shooting device. The first shooting assembly 0111 and the second shooting assembly 0112 may be fixedly connected. When the movable platform 01 performs target tracking on a target object, the second shooting assembly 0112 of the shooting device can be called first to shoot the environment including the target object (e.g., people, animal, and the like) to obtain a second image. The second image may be any type of image that facilitates the target object recognition. According to a position area of the target object in the second image, the shooting attitude of the shooting device can be then controlled, such that the target object can be always in a shooting frame of the first shooting assembly 0111. That is, the target object can be always within a shooting range of the first shooting assembly 0111. Thus, the first shooting assembly 0111 can track the target object. For example, the movable platform 01 can call the second shooting assembly 0112 to shoot the environment to obtain the second image. The target object recognition can be performed on the second image to obtain a tracking position area of the target object to be tracked in the second image. The shooting attitude of the shooting device can be adjusted according to the tracking position area of the target object in the second image, such that the target object is located in the shooting frame of the first shooting assembly 0111. Therefore, the present disclosure can use the second image to recognize the target object and the tracking position area of the target object in the second image, and adjust the shooting attitude of the shooting device according to the tracking position area of the target object in the second image, such that the target object is located in the shooting frame of the first shooting assembly 0111. Thus, the first shooting assembly can realize an indirect target tracking of the target object. The present disclose provides the target tracking method enabling the first shooting assembly 0111 to track the target object. Even if the target object cannot be accurately recognized in the image output by the first shooting assembly 0111, the first shooting assembly 0111 can still track the target object.
  • For example, there are two adjustment methods for adjusting the shooting attitude of the shooting device. In some embodiments, the shooting attitude of the shooting device can be adjusted directly based on the tracking position area of the target object in the second image. After the shooting attitude of the shooting device is adjusted, the target object can be in a preset position area of the shooting frame of the second shooting assembly 0112. When the target object is in the preset position area of the shooting frame of the second shooting assembly 0112, the target object can be in the target position area, which corresponds to the preset position area, in the shooting frame of the first shooting assembly 0111. The target position area can be a central position area.
  • Before adjusting the shooting attitude of the shooting device based on the tracking position area of the target object in the second image, a regional correspondence between the images captured by the first shooting assembly 0111 and the second shooting assembly 0112 needs to be determined. For example, when the target object is maintained in the image captured by the first shooting assembly 0111, a position range of the target object in the image captured by the second shooting assembly 0112 can be used as the preset position area. In some embodiments, when the target object is maintained in the image captured by the first shooting assembly 0111, a position range of the target object in the image captured by the second shooting assembly 0112 can be used as the preset position area. Therefore, the tracking position area of the target object in the second image can be determined, and the shooting attitude of the shooting device can be adjusted directly based on the position of the target object in the second image. As such, the target object can be in the preset position area of the image captured by the second shooting assembly 0112. That is, the target object can be ensured to locate in the shooting frame of the first shooting assembly 0111. It is further ensured that the target object can be located in the target position area, which corresponds to the preset position area, in the shooting frame of the first shooting assembly 0111.
  • In some other embodiments, according to the tracking position area of the target object in the second image, the tracking position area of the target object in the shooting frame of the first shooting assembly 0111 can be determined. The shooting attitude of the shooting device can be adjusted according to the tracking position area of the target object in the shooting frame of the first shooting assembly 0111, such that the target object is in the shooting frame of the first shooting assembly 0111. Furthermore, the target object can be in the target position area in the shooting frame of the first shooting assembly 0111. For example, according to the tracking position area of the target object in the second image and a relative positional relationship between the first shooting assembly 0111 and the second shooting assembly 0112, the tracking position area of the target object in the shooting frame of the first shooting assembly 0111 can be determined. According to the tracking position area of the target object in the shooting frame of the first shooting assembly 0111, the shooting attitude of the shooting device can be adjusted, such that the target object is located in the shooting frame of the first shooting assembly 0111. For example, the target object can be in the target position area in the shooting frame of the first shooting assembly 0111.
  • Therefore, the tracking position area of the target object in the shooting frame of the first shooting assembly 0111 can be determined according to the tracking position area of the target object in the second image and the relative positional relationship between the first shooting assembly 0111 and the second shooting assembly 0112. The shooting device can be then adjusted based on the tracking position area of the target object in the shooting frame of the first shooting assembly 0111. For example, because the relative position between the first shooting assembly 0111 and the second shooting assembly 0112 may be fixed, or, the relative position may be not fixed but can be measured by a sensor in the movable platform 01, and thus, the relative position between the first shooting assembly 0111 and the second shooting assembly 0112 can be known or knowable. The relative positional relationship between the first shooting assembly 0111 and the second shooting assembly 0112, i.e., a position conversion relationship between corresponding pixel points of a first image captured by the first shooting assembly 0111 and the second image captured by the second shooting assembly 0112, can be determined according to relative positions between the first shooting assembly 0111 and the second shooting assembly 0112. As such, the present disclosure can quickly obtain the tracking position area of the target object in the shooting frame of the first shooting assembly 0111 according to the tracking position area of the target object in the second image.
  • FIG. 2 is a schematic diagram of an imaging process of an example shooting device 011 consistent with the disclosure. As shown in FIG. 2, the shooting device 011 will be described below with an example in which the relative position between the first shooting assembly 0111 and the second shooting assembly 0112 is fixed, the first shooting assembly 0111 can include a thermal infrared shooting device, a first image captured by the first shooting assembly 0111 can include a thermal infrared image and can be an image corresponding to the shooting frame of the first shooting assembly 0111, the second shooting assembly 0112 can include a visible light shooting device, and a second image captured by the second shooting assembly 0112 can include an optical image.
  • In one embodiment, as shown in FIG. 2, the shooting device 011 on the movable platform 01 includes a dual-light camera. The relative position between the first shooting assembly 0111 and the second shooting assembly 0112 in the dual-light camera can be fixed. The first shooting assembly 0111 can include the thermal infrared shooting device and the first image can include the thermal infrared image. The second shooting assembly 0112 can include the visible light shooting device and the second image can include the optical image.
  • When the movable platform 01 calls the shooting device 011 to shoot the environment including the target object (e.g., one of two people), the first shooting assembly 0111 can shoot the environment in a thermal infrared imaging mode to obtain the thermal infrared image A1A2A3A4 as the first image, and the second shooting assembly 0112 can shoot the environment in a visible light imaging mode to obtain the optical image B1B2B3B4 as the second image. Assume that a first pixel on the first image A1A2A3A4 corresponds to a second pixel on the second image B1B2B3B4, i.e., the first pixel and the second pixel are imaged for a same target point on the target object. Since the relative position between the first shooting assembly 0111 and the second shooting assembly 0112 in the dual-light camera is fixed, external parameters of the two shooting assemblies in the dual-light camera can be known. The external parameters can be used to indicate the relative position of the two shooting assemblies, which can be determined according to a relative installation position and a relative installation angle of the two shooting assemblies. Internal parameters of the two shooting assemblies (determined according to a focal length of the shooting assembly and a position of an optical center) can be also known. Therefore, the second pixel in the second image can be easily projected to the first pixel in the first image. For example, assume that the coordinate of a target point on the target object in the camera coordinate system of the first shooting assembly 0111 are (X1, Y1, Z1). X1, Y1, and Z1 are a horizontal coordinate value, a vertical coordinate value, and a depth coordinate value. A relative positional offset between the second shooting assembly and the first shooting assembly can be (ΔX, ΔY, ΔZ), and thus, a coordinate of the target object in the camera coordinate system of the second shooting assembly 0112 can be (X1+ΔX, Y1+ΔY, Z1+ΔZ). A coordinate of the first pixel of the target point of the target object in the first image captured by the first shooting assembly 0111 can be (u1, v1), and a coordinate of the second pixel of the target point in the second image captured by the second shooting assembly 0112 can be (u2, v2). The coordinate of the first pixel and the coordinate of the second pixel can have the following relative positional relationship:
  • u 1 = f 1 X 1 Z 1 , v 1 = f 1 Y 1 Z 1 u 2 = f 2 ( X 1 + Δ X ) Z 1 + Δ Z , v 2 = f 2 ( Y 1 + Δ Y ) Z 1 + Δ Z } u 1 u 2 = f 1 X 1 f 2 ( X 1 + Δ X ) * Z 1 + Δ Z Z 1 f 1 f 2 v 1 v 2 = f 1 Y 1 f 2 ( Y 1 + Δ Y ) * Z 1 + Δ Z Z 1 f 1 f 2 }
  • where f1 and f2 are the focal lengths of the first shooting assembly 0111 and the second shooting assembly 0112.
  • An observation depth of the target object can be generally above 5 m, i.e., Z1>5 m, and the relative positional offset between the two shooting assemblies, (ΔX, ΔY, ΔZ), can be very small. For example, a Euclidean distance d between the two shooting assemblies can be d=√{square root over (ΔX2+ΔY2+ΔZ2)}≈0.02 m. Therefore, Z1>>ΔX, ΔY, ΔZ and the relative position offset can be ignored, and the relative positional relationship between the first pixel in the first image and the second pixel in the second image can be obtained as u1/u2=f1/f2 and v1/v2=f1/f2. It can be seen that, according to the position of the second pixel in the second image and the relative positional relationship between the first shooting assembly and the second shooting assembly, the position of the first pixel in the first image can be easily obtained through conversion.
  • The thermal infrared imaging mode can refer to that the thermal infrared shooting device can detect an infrared radiation emitted by the object itself, and convert a temperature distribution of the object into the thermal infrared image through photoelectric conversion, signal processing, and other means. Therefore, the first image A1A2A3A4 obtained by the thermal infrared mode can reflect the temperature distribution information of the object having thermal radiation. Objects having thermal radiation can include, for example, people, animals, electromagnetic equipment, and the like. The thermal imaging mode has the advantage of being able to shoot without light and with an occlusion. It can shoot objects well at night or in other special environments. The imaging principle of the visible light imaging mode, e.g., red-green-blue (RGB) imaging mode and the like, can be to use a reflection of visible light from a surface of the object for imaging. The optical image B1B2B3B4 obtained by imaging can include detailed information such as the color and shape of the object, but the imaging result can be greatly affected by light and occlusion.
  • Although the relative position of the first shooting assembly 0111 and the second shooting assembly 0112 may or may not be fixed, both the first shooting assembly 0111 and the second shooting assembly 0112 can shoot the same target object in the environment. Because the imaging modes of the first shooting assembly 0111 and the second shooting assembly 0112 are different, sizes of the images obtained by the first shooting assembly 0111 and the second shooting assembly 0112 in the shooting environment may be different. For example, due to technical limitations, a range of infrared imaging can be smaller than that of visible light imaging. Generally, the image obtained by infrared imaging can be smaller than the image obtained by visible light imaging. The positions of the target object in the first image and the second image can be different. Since the relative positional relationship between the first shooting assembly 0111 and the second shooting assembly 0112 can be determined, once the position of the target object in one image is determined, the position of the target object in another image can be easily obtained through conversion.
  • The thermal infrared image has insufficient texture information compared to the optical image. If the target recognition and tracking are directly performed on the thermal infrared image, the effect can be very poor. But thermal infrared images have the advantage that they can image objects with thermal radiation in the environment without being hindered by light and occlusion. The target tracking method based on the thermal infrared image can have very important practical significance. The present disclosure can use the optical image output by the visible light shooting device to realize the target object recognition to obtain the tracking position area of the target object in the optical image. The shooting attitude of the shooting device can be adjusted according to the tracking position area of the target object in the optical image, such that the target object is located in the shooting frame of the thermal infrared shooting device in the shooting device. As such, even if the thermal infrared image output by the thermal infrared camera cannot or cannot accurately recognize the target object, the thermal infrared camera can still track the target object.
  • In one embodiment, the user can specify the target object to be tracked based on the first image output by the first shooting assembly 0111, so as to achieve the tracking of the target object. For example, referring back to FIG. 1, after the first shooting assembly 0111 and the second shooting assembly 0112 shoot the environment to obtain the first image and the second image, the movable platform 01 can send the first image to a control terminal 02 to cause the control terminal 02 to display the first image. The user can perform a selection operation on the first image displayed on the control terminal 02, for example, frame an area including the target object to be tracked on the first image. The control terminal 02 can generate first area indication information according to the area including the target object to be tracked, and send the first area indication information to the movable platform 01. After receiving the first area indication information sent by the control terminal 02, the movable platform 01 can determine second area indication information of the second image according to the first area indication information and the relative positional relationship between the first shooting assembly 0111 and the second shooting assembly 0112. The movable platform 01 can perform the target recognition on the area indicated by the second area indication information in the second image to determine the target object and obtain the tracking position area of the target object in the second image. For example, the target recognition can be performed on the area indicated by the second area indication information in the second image, and the target object can be recognized in the area. The recognition may be recognized through a neural network. After the target object is determined, the determined target object may be recognized from the second image output by the second shooting assembly 0112 to obtain the tracking position area of the target object in the second image. Furthermore, the recognition of the determined target object from the second image output by the second shooting assembly 0112 may be recognized using the neural network, or by image tracking.
  • In one embodiment, the user can view target tracking result based on the first image at the control terminal 02. After the tracking position area of the target object in the second image is determined, the tracking position area of the target object in the first image can be determined according to the tracking position area of the target object in the second image and the relative positional relationship between the first shooting assembly 0111 and the second shooting assembly 0112. The target object can be marked in the first image according to the tracking position area of the target object in the first image. All or some of image information in the second image information can be added to the marked first image to enrich contour features of the marked first image. Finally, the marked first image can be sent to the control terminal 02, such that the control terminal 02 can display the marked first image.
  • It can be understood that the system architecture and application scenarios described in the embodiments of the present disclosure are intended to more clearly explain the technical solutions of the embodiments of the present disclosure, and do not constitute a limitation on the technical solutions provided by the embodiments of the present disclosure. Those of ordinary skill in the art may know that with the evolution of the system architecture and the emergence of new application scenarios, the technical solutions provided by the embodiments of the present disclosure can be also applicable to similar technical problems.
  • FIG. 3 is a flow chart of an example target tracking method consistent with the disclosure. The target tracking method may be executed by a movable platform, for example, the movable platform 01 in FIG. 1.
  • At S301, the movable platform calls the second shooting assembly to shoot the environment to obtain the second image, and calls the first shooting assembly to shoot the environment to obtain the first image at the same time. The first shooting assembly can include the thermal infrared imaging device and the second shooting assembly can include the visible light imaging device. The imaging modes of the first shooting assembly and the second shooting assembly can be different. The first shooting assembly can use the thermal infrared imaging mode to obtain the thermal infrared image as the first image, and the second shooting assembly can use the visible light imaging mode to obtain the optical image as the second image. The second image can include the optical image.
  • Due to the different imaging modes of the first shooting assembly and the second shooting assembly, the positions of the target object in the first image and the second image may be different. Since the relative positional relationship between the first shooting assembly and the second shooting assembly can be determined, once the position of the target object in one image is determined, the position of the target object in another image can be easily obtained through conversion.
  • At S302, target object recognition is performed on the second image to recognize the target object in the second image, and the tracking position area of the target object to be tracked in the second image is obtained using segmentation. Target object recognition can determine the target object and the tracking position area of the target object in the second image through image processing methods of target detection and target segmentation. The target detection and target segmentation may include a conventional target detection method and a conventional segmentation method, or may include a target detection method and a target segmentation method based on deep learning (e.g., a neural network), which is not limited in here.
  • At 303, the shooting attitude of the shooting device is adjusted according to the tracking position area of the target object in the second image, such that the target object is located in the shooting frame of the first shooting assembly. The movable platform can adjust the shooting attitude of the shooting device by changing the attitude of the movable platform itself (e.g., the body), or control the shooting device to adjust the shooting attitude through the gimbal connected to the shooting device, i.e., adjust the shooting attitude of the shooting device by adjusting the attitude of the gimbal.
  • The relative position between the first shooting assembly and the second shooting assembly can be known, and the corresponding relationship between the first image and the second image can be also known. Therefore, when the target object is in the preset position area in the second image, the target object should also be in the shooting frame of the first shooting assembly. Furthermore, the target object can be in the target position area of the shooting frame. Adjusting the shooting attitude of the shooting device according to the tracking position area of the target object in the second image may include adjusting the shooting attitude of the shooting device according to the tracking position area of the target object in the second image, such that after the shooting attitude of the shooting device is adjusted, it can be ensured that the target object is in the preset position area of the image captured by the second shooting assembly. Therefore, the target object can be located in the shooting frame of the first shooting assembly, and further, it can be in the target position area of the shooting frame.
  • In some embodiments, it can be ensured that after the shooting attitude of the shooting device is adjusted, the target object is in the shooting frame of the first shooting assembly, and further, the target object can be in the target position area of the shooting frame. For example, adjusting the shooting attitude of the shooting device according to the tracking position area of the target object in the second image may also include determining the tracking position area of the target object in the shooting frame of the first shooting assembly according to the tracking position area of the target object in the second image, and adjusting the shooting attitude of the shooting device according to the tracking position area of the target object in the shooting frame of the first shooting assembly.
  • The thermal infrared image has insufficient texture information compared to the optical image. If the target recognition and tracking are directly performed on the thermal infrared image, the effect can be very poor. But thermal infrared images have the advantage that they can image objects having thermal radiation in the environment without being hindered by light and occlusion. Therefore, the target tracking method based on thermal infrared images can be very important. The present disclosure can solve the problem very well, because the present disclosure can use the optical image output by the visible light shooting device to recognize the target object to obtain the tracking position area of the target object in the optical image. The shooting attitude of the shooting device can be adjusted according to the tracking position area of the target object in the optical image, such that the target object is located in the shooting frame of the thermal infrared shooting device in the shooting device. In this way, even if the target object cannot be or cannot be accurately recognized in the thermal infrared image output by the thermal infrared shooting device, the thermal infrared shooting device can still track the target object.
  • In one embodiment, after the first image and the second image are obtained in the shooting environment of the two shooting assemblies of the shooting device, the first image can be first sent to the control terminal of the movable platform, such that the control terminal can display the first image. Thus, the user can perform the selection operation on the first image on the control terminal (e.g., frame the area where the target object is located), and then the terminal device can obtain the first area indication information for indicating the selected area of the user in the first image according to the selection operation, and send the first area indication information to the movable platform. After the movable platform receives the first area indication information, the processes described above can be used to determine the position of the target object in the first image according to the tracking position area of the target object in the second image. The second area indication information can be determined according to the first area indication information and the relative positional relationship between the first shooting assembly and the second shooting assembly. The second area indication information can be used to indicate the area in the first image mapped from the area selected by the user in the second image, and finally, the target recognition can be performed on the area indicated by the second area indication information in the second image to determine the target object, and obtain the tracking position area of the target object in the second image.
  • Therefore, when multiple objects are included in the environment, the user can specify the target object, and a target tracking efficiency of the target tracking can be improved.
  • In one embodiment, after the tracking position area of the target object in the second image is determined at S301, the tracking position area of the target object in the first image can be determined according to the tracking position area of the target object in the second image. According to the tracking position area of the target object in the first image, the target object can be then marked in the first image (e.g., as shown in the first image in FIG. 2, the location of the target object can be framed). The marked first image can be sent to the control terminal of the movable platform to cause the control terminal to display the marked first image. Determining the tracking position area of the target object in the first image according to the tracking position area of the target object in the second image has been described in connection with FIGS. 1 and 2, and detailed description thereof is omitted herein.
  • The present disclosure can determine the target object in the tracking position area of the second image by performing the target object recognition on the second image. The tracking position area of the target object in the first image can be determined according to the tracking position area of the target object in the second image, and the target object can be marked in the first image, and the marked target object can be showed to the user through the control terminal. Therefore, indirect target tracking based on the first image can be realized, especially when the first image is the thermal infrared image. The present disclosure can achieve the target tracking based on the thermal infrared image, which has very important practical value.
  • In one embodiment, after the target object is marked in the first image, all or some of the image information in the second image information can be first extracted, and all or some of the image information in the second image information can be added to the marked first image to enrich the contour features of the marked first image. The marked first image can be sent to the control terminal, such that the first image finally presented to the user on the control terminal not only can be marked with the target object, but also can have greatly enriched details. A defect that the details of the image, e.g., the thermal imaging image or the like, are not rich can be improved to a certain extent.
  • Therefore, the present disclosure can achieve not only the target tracking based on the thermal imaging image, but also an interaction with the user through the thermal imaging image, and use the details of the optical image to enrich the contour details of the thermal imaging image that is not rich in details. The practicality of thermal imaging images can be greatly improved.
  • FIG. 4 is a flow chart of another example target tracking method consistent with the disclosure, and the target tracking method may be executed by a movable platform, e.g., the movable platform 01 in FIG. 1.
  • As shown in FIG. 4, at S401, the first shooting assembly and the second shooting assembly of the shooting device of the movable platform are called to shoot the environment to obtain the first image and the second image. The first shooting assembly can include the thermal infrared imaging device and the second shooting assembly can include the visible light imaging device. The imaging modes of the first shooting assembly and the second shooting assembly can be different. The first shooting assembly can use the thermal infrared imaging mode to obtain the thermal infrared image as the first image, and the second shooting assembly can use the visible light imaging mode to obtain the optical image as the second image. The second image can include the optical image.
  • At S402, the first image is sent to the control terminal of the movable platform to cause the control terminal to display the first image.
  • At S403, the first area indication information sent by the control terminal is obtained.
  • At S404, according to the first area indication information, the target object to be tracked in the second image is determined, and the tracking position area of the target object in the second image is obtained. For example, the second area indication information can be determined according to the first area indication information and the relative positional relationship between the first shooting assembly and the second shooting assembly. The target recognition can be performed on the area indicated by the second area indication information in the second image to determine the target object, and obtain the tracking position area of the target object in the second image.
  • At S405, the shooting attitude of the shooting device is adjusted according to the tracking position area of the target object in the second image, such that the target object is located in the shooting frame of the first shooting assembly. The movable platform can adjust the shooting attitude of the shooting device by changing the attitude of the movable platform itself, or control the shooting device to adjust the shooting attitude through the gimbal connected to the shooting device, i.e., adjust the shooting attitude of the shooting device by adjusting the attitude of the gimbal.
  • For example, adjusting the shooting attitude of the shooting device according to the tracking position area of the target object in the second image may include adjusting the target object to the preset position area of the image captured by the second shooting assembly, such that the target object is in the shooting frame of the first shooting assembly, and furthermore, can be in the target position area of the shooting frame.
  • In some embodiments, adjusting the shooting attitude of the shooting device according to the tracking position area of the target object in the second image may include determining the tracking position area of the target object in the shooting frame of the first shooting assembly according to the tracking position area of the target object in the second image, and the relative positional relationship between the first shooting assembly and the second shooting assembly, and adjusting the shooting attitude of the shooting device according to the tracking position area of the target object in the shooting frame of the first shooting assembly, such that the target object is in the shooting frame of the first shooting assembly, furthermore, can be in the target position area of the shooting frame.
  • At S406, according to the tracking position area of the target object in the second image, the tracking position area of the target object in the shooting frame of the first shooting assembly is determined. For example, according to the tracking position area of the target object in the second image and the relative positional relationship between the first shooting assembly and the second shooting assembly, the tracking position area of the target object in the first image can be determined.
  • At S407, according to the tracking position area of the target object in the first image, the target object is marked in the first image.
  • In one embodiment, after the target object is marked in the first image, the detailed information in the second image is extracted to enrich the contour features in the first image. For example, all or some of the image information in the second image information can be first extracted, and all or some of the image information in the second image information can be added to the marked first image to enrich the contour features of the marked first image.
  • At S408, the marked first image is sent to the control terminal of the movable platform to cause the control terminal to display the marked first image.
  • It should be noted that the above description of the various embodiments tends to emphasize the differences between the various embodiments. The same aspects or similarities of the various embodiments can be referred to each other, and for the sake of brevity, they will not be repeated here.
  • The first image can be also referred to as a “displaying image,” and the second image can be also referred to as a “tracking image.”
  • FIG. 5 is a schematic diagram of an example target tracking device consistent with the disclosure. The target tracking device can implement the target tracking method in FIGS. 3 and 4. The target tracking device can be applied to a movable platform, for example, the movable platform 01 in FIG. 1. The movable platform can include the shooting device, and the shooting device can include the first shooting assembly and the second shooting assembly. The target tracking device includes a calling circuit 510, a recognition circuit 520, and a tracking circuit 530. The calling circuit 510 can be configured to call the second shooting assembly to shoot the environment to obtain the second image, and the imaging modes of the first shooting assembly and the second shooting assembly can be different. The recognition circuit 520 can be configured to perform the target object recognition on the second image to obtain the tracking position area of the target object to be tracked in the second image. The tracking circuit 530 can be configured to adjust the shooting attitude of the shooting device according to the tracking position area of the target object in the second image, such that the target object is located in the shooting frame of the first shooting assembly.
  • For example, the movable platform can include the gimbal carrying the shooting device, and the tracking unit 530 can be further configured to adjust the attitude of the movable platform and/or the attitude of the gimbal to adjust the shooting attitude of the shooting device according to the tracking position area of the target object in the second image.
  • The first shooting assembly can include the thermal infrared imaging device, the second shooting assembly can include the visible light imaging device, and the second image can include the optical image.
  • For example, the tracking unit 530 can be specifically configured to adjust the shooting attitude of the shooting device according to the tracking position area of the target object in the second image. After the shooting attitude of the shooting device is adjusted, the target object can be located in the preset position area of the shooting frame of the second shooting assembly.
  • In some embodiment, the target tracking device can further include a determination circuit 540 configured to determine the tracking position area of the target object in the shooting frame of the first shooting assembly according to the tracking position area of the target object in the second image. The tracking unit 530 can be further configured to adjust the shooting attitude of the shooting device according to the tracking position area of the target object in the shooting frame of the first shooting assembly.
  • In one embodiment, the calling unit 510 can be further configured to call the first shooting assembly to shoot the environment to obtain the first image. The target tracking device can further include a sending unit 550 configured to send the first image to the control terminal of the movable platform to cause the control terminal to display the first image. The target tracking device can further include an acquisition unit 560 configured to obtain the first area indication information sent by the control terminal. The first area indication information can be determined by the control terminal by detecting the user's selection operation of the target object on the first image displayed by the control terminal. The recognition unit 520 can be further configured to determine the target object to be tracked in the second image and obtain the tracking position area of the target object in the second image according to the first area indication information.
  • In one embodiment, the recognition unit 520 can be further configured to determine the second area indication information of the second image according to the first area indication information and the relative positional relationship between the first shooting assembly and the second shooting assembly, and perform the target recognition on the area indicated by the second area indication information in the second image to determine the target object and obtain the tracking position area of the target object in the second image.
  • In one embodiment, the calling unit 510 can be further configured to call the first shooting assembly to shoot the environment to obtain the first image. The determination unit 540 can be further configured to determine the tracking position area of the target object in the shooting frame of the first shooting assembly according to the tracking position area of the target object in the second image. The target tracking device can further include a marking unit 570 configured to mark the target object in the first image according to the tracking position area of the target object in the shooting frame of the first shooting assembly. The sending unit 550 can be further configured to send the marked first image to the control terminal of the movable platform, such that the control terminal can display the marked first image.
  • In one embodiment, the target tracking device can further include an extraction unit 580 configured to extract all or some of the image information in the second image information. The target tracking device can further include an adding unit 590 configured to add all or some of the image information in the second image information to the marked first image to enrich the contour features of the marked first image.
  • In one embodiment, the determination unit 540 can be further configured to determine the tracking position area of the target object in the first image according to the tracking position area of the target object in the second image and the relative positional relationship between the first shooting assembly and the second shooting assembly.
  • FIG. 6 is a structural diagram of an example movable platform consistent with the disclosure. The movable platform may at least include a processor 610, a memory 620, and a shooting device 630. The shooting device includes a first shooting assembly 631 and a second shooting assembly 632. The processor 610, the memory 620, and the shooting device 630 may be connected through a bus 640 or other means. FIG. 6 takes a connection through the bus as an example. The memory 620 may be configured to store the computer program. The computer program can include the program instructions. The processor 610 may be configured to execute the program instructions stored in the memory 620.
  • In one embodiment, the processor 610 may be a central processing unit (CPU), and the processor may also be another general-purpose processor, i.e., a microprocessor or any conventional processor, such as a digital signal processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field-Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • The memory 620 may include a read-only memory and a random access memory, and provide instructions and data to the processor 610. Therefore, the processor 610 and the memory 620 are not limited herein.
  • In the embodiments of the present disclosure, the processor 610 can load and execute one or more instructions stored in the computer storage medium to implement some or all processes of the methods in FIGS. 3 and 4. In some embodiment, at least one instruction in the computer storage medium can be loaded and executed by the processor 610.
  • In some embodiments, the shooting device 630 can be configured to shoot the environment.
  • The memory 620 can be configured to store the computer program and the computer program can include the program instructions.
  • The processor 610 can be configured to call the program instructions and configured to call the second shooting assembly to shoot the environment to obtain the second image, the imaging modes of the first shooting assembly and the second shooting assembly being different, perform the target object recognition on the second image to obtain the tracking position area of the target object to be tracked in the second image, adjust the shooting attitude of the shooting device according to the tracking position area of the target object in the second image, such that the target object is located in the shooting frame of the first shooting assembly.
  • In some embodiments, the processor 610 can be specifically configured to adjust the attitude of the movable platform and/or the attitude of the gimbal to adjust the shooting attitude of the shooting device according to the tracking position area of the target object in the second image.
  • The first shooting assembly can include the thermal infrared imaging device, the second shooting assembly can include the visible light imaging device, and the second image can include the optical image.
  • In some embodiments, the processor 610 can be further configured to adjust the shooting attitude of the shooting device according to the tracking position area of the target object in the second image. After the shooting attitude of the shooting device is adjusted, the target object can be located in the preset position area of the shooting frame of the second shooting assembly.
  • In some embodiments, the processor can be further configured to determine the tracking position area of the target object in the shooting frame of the first shooting assembly according to the tracking position area of the target object in the second image, and adjust the shooting attitude of the shooting device according to the tracking position area of the target object in the shooting frame of the first shooting assembly.
  • In one embodiment, the processor can be further configured to call the first shooting assembly to shoot the environment to obtain the first image. The movable platform further includes a communication interface 650 for data interaction between the movable platform and other terminal devices, and configured to send the first image to the control terminal of the movable platform to cause the control terminal to display the first image. The processor 610 can be further configured to obtain the first area indication information sent by the control terminal, the first area indication information being determined by the control terminal by detecting the user's selection operation of the target object on the first image displayed by the control terminal, and determine the target object to be tracked in the second image and obtain the tracking position area of the target object in the second image according to the first area indication information.
  • In some embodiments, the processor 610 can be further configured to determine the second area indication information of the second image according to the first area indication information and the relative positional relationship between the first shooting assembly and the second shooting assembly, and perform the target recognition on the area indicated by the second area indication information in the second image to determine the target object and obtain the tracking position area of the target object in the second image.
  • In one embodiment, the processor 610 can be further configured to call the first shooting assembly to shoot the environment to obtain the first image. The processor 610 can be further configured to determine the tracking position area of the target object in the shooting frame of the first shooting assembly according to the tracking position area of the target object in the second image. The processor 610 can be further configured to mark the target object in the first image according to the tracking position area of the target object in the shooting frame of the first shooting assembly.
  • In one embodiment, the communication interface 650 can be configured to send the marked first image to the control terminal of the movable platform, such that the control terminal can display the marked first image.
  • In one embodiment, the processor 610 can be further configured to extract all or some of the image information in the second image information, and add all or some of the image information in the second image information to the marked first image to enrich the contour features of the marked first image.
  • In some embodiments, the processor 610 can be further configured to determine the tracking position area of the target object in the first image according to the tracking position area of the target object in the second image and the relative positional relationship between the first shooting assembly and the second shooting assembly.
  • Embodiments of the present disclosure also provide a control device. The control device can be in communication connection with the shooting device, and the shooting device can include the first shooting assembly and the second shooting assembly. The control device is characterized in that the control device includes a memory and a processor.
  • The memory may be configured to store the computer program. The computer program can include the program instructions.
  • The processor may be configured to call the program instructions and configured to call the second shooting assembly to shoot the environment to obtain the second image, the imaging modes of the first shooting assembly and the second shooting assembly being different, perform the target object recognition on the second image to obtain the tracking position area of the target object to be tracked in the second image, and adjust the shooting attitude of the shooting device according to the tracking position area of the target object in the second image, such that the target object is located in the shooting frame of the first shooting assembly.
  • The control device can be provided in the movable platform, and the movable platform can include the control device and the shooting device. The control device may be communicatively connected to the shooting device. The processor of the control device can execute the methods in FIGS. 3 and 4. For the details, reference may be made to the previous sections, and will not be repeated herein.
  • It should be noted that, for the specific working process of the movable platform described above, reference may be made to the related descriptions in the foregoing embodiments, and details will not be repeated herein.
  • The integrated units can be stored in a computer readable storage medium when implemented in form of software functional units and sold or used as a standalone product. Based on such understanding, all or part of the technical solution of the disclosure can be embodied in the form of software product stored in a storage medium comprising a number of instructions for causing a computer processor to perform the entire or part of a method consistent with embodiments of the disclosure, such as one of the above-described exemplary methods. The storage medium can comprise a flask disk, a portable hard drive, a read only memory (ROM), a random access memory (RAM), a magnet disk, an optical disk, or other media capable of storing program code.
  • Those of ordinary skill in the art can understand that all or some of the processes in the methods of the above embodiments can be completed by a computer program instructing relevant hardware. The program may be stored in a computer-readable storage medium, and when the program is executed, it may include the processes of the foregoing method embodiments. The storage medium may include a magnetic disk, an optical disk, a ROM or RAM, or the like.
  • The above description merely illustrates some embodiments of the disclosure and is not intended to limit the scope of the disclosure. Those of ordinary skill in the art can understand all or some of the processes of implementing the above embodiments. Any equivalent changes in light of the claims of the present disclosure should all be covered by the scope of the present disclosure.

Claims (20)

What is claimed is:
1. A target tracking method applicable to a shooting device including a first shooting assembly and a second shooting assembly, comprising:
calling the first shooting assembly to shoot an environment to obtain a first image;
calling the second shooting assembly to shoot the environment to obtain a second image;
performing target object recognition on the second image to obtain a tracking position area of a target object to be tracked in the second image;
adjusting a shooting attitude of the shooting device according to the tracking position area of the target object in the second image to adjust a location of the target object in a shooting frame of the first shooting assembly;
determining a tracking position area of the target object in the shooting frame of the first shooting assembly according to the tracking position area of the target object in the second image and a relative positional relationship between the first shooting assembly and the second shooting assembly;
marking the target object in the first image according to the tracking position area of the target object in the shooting frame of the first shooting assembly to obtain a marked first image; and
sending the marked first image to a control terminal of a movable platform carrying the shooting device, such that the control terminal displays the marked first image.
2. The method according to claim 1, wherein adjusting the shooting attitude of the shooting device includes:
adjusting at least one of an attitude of the movable platform including the shooting device or an attitude of a gimbal carrying the shooting device to adjust the shooting attitude of the shooting device according to the tracking position area of the target object in the second image.
3. The method according to claim 1, wherein the first shooting assembly includes a thermal infrared imaging device, the second shooting assembly includes a visible light imaging device, and the second image includes an optical image.
4. The method according to claim 1, wherein adjusting the shooting attitude of the shooting device includes:
adjusting the shooting attitude of the shooting device according to the tracking position area of the target object in the second image to locate the target object in a preset position area of a shooting frame of the second shooting assembly.
5. The method according to claim 1, wherein adjusting the shooting attitude of the shooting device includes:
adjusting the shooting attitude of the shooting device according to the tracking position area of the target object in the shooting frame of the first shooting assembly.
6. The method according to claim 1, comprising:
sending the first image to the control terminal to cause the control terminal to display the first image;
wherein performing the target object recognition on the second image to obtain the tracking position area of the target object to be tracked in the second image includes:
obtaining area indication information sent by the control terminal, the area indication information being determined by the control terminal by detecting a selection operation of the target object performed by a user on the first image displayed by the control terminal; and
determining the target object to be tracked in the second image to obtain the tracking position area of the target object in the second image according to the area indication information.
7. The method according to the claim 6, wherein:
the area indication information is first area indication information; and
determining the target object to be tracked in the second image to obtain the tracking position area of the target object in the second image includes:
determining second area indication information of the second image according to the first area indication information and the relative positional relationship between the first shooting assembly and the second shooting assembly; and
performing the target recognition on an area indicated by the second area indication information in the second image to determine the target object to obtain the tracking position area of the target object in the second image.
8. The method according to the claim 1, further comprising, after marking the target object in the first image and before sending the marked first image to the control terminal:
extracting at least part of second image information; and
adding the at least part of the second image information to the marked first image.
9. The method according to the claim 1, further comprising:
obtaining the elative positional relationship between the first shooting assembly and the second shooting assembly.
10. The method according to the claim 9, wherein obtaining the elative positional relationship includes:
obtaining the elative positional relationship measured by a sensor in the movable platform.
11. A movable platform comprising:
a shooting device including a first shooting assembly and a second shooting assembly, imaging modes of the first shooting assembly and the second shooting assembly being different;
a communication interface;
a control terminal;
a memory storing a computer program including program instructions; and
a processor configured to execute the program instructions to:
call the first shooting assembly to shoot an environment to obtain a first image;
call the second shooting assembly to shoot the environment to obtain a second image;
perform target object recognition on the second image to obtain a tracking position area of a target object to be tracked in the second image;
adjust a shooting attitude of the shooting device according to the tracking position area of the target object in the second image to adjust a location of the target object in a shooting frame of the first shooting assembly;
determine a tracking position area of the target object in the shooting frame of the first shooting assembly according to the tracking position area of the target object in the second image and a relative positional relationship between the first shooting assembly and the second shooting assembly;
mark the target object in the first image according to the tracking position area of the target object in the shooting frame of the first shooting assembly to obtain a marked first image; and
send, via the communication interface, the marked first image to the control terminal, such that the control terminal displays the marked first image.
12. The movable platform according to the claim 11, further comprising:
a gimbal carrying the shooting device;
wherein the processor is further configured to execute the program instructions to adjust at least one of an attitude of the movable platform or an attitude of the gimbal to adjust the shooting attitude of the shooting device according to the tracking position area of the target object in the second image.
13. The movable platform according to the claim 11, wherein the first shooting assembly includes a thermal infrared imaging device, the second shooting assembly includes a visible light imaging device, and the second image includes an optical image.
14. The movable platform according to claim 11, wherein the processor is further configured to execute the program instructions to:
adjust the shooting attitude of the shooting device according to the tracking position area of the target object in second the image to locate the target object in a preset position area of a shooting frame of the second shooting assembly.
15. The movable platform according to the claim 11, wherein the processor is further configured to execute the program instructions to:
adjust the shooting attitude of the shooting device according to the tracking position area of the target object in the shooting frame of the first shooting assembly.
16. The movable platform according to the claim 11, wherein:
the communication interface is configured to send the first image to the control terminal to cause the control terminal to display the first image; and
the processor is further configured to execute the program instructions to:
obtain area indication information sent by the control terminal, the area indication information being determined by the control terminal by detecting a selection operation of the target object performed by a user on the first image displayed by the control terminal; and
determine the target object to be tracked in the second image to obtain the tracking position area of the target object in the second image according to the area indication information.
17. The movable platform according to the claim 16, wherein:
the area indication information is first area indication information; and
the processor is further configured to:
determine second area indication information of the second image according to the first area indication information and the relative positional relationship between the first shooting assembly and the second shooting assembly; and
perform the target recognition on an area indicated by the second area indication information in the second image to determine the target object to obtain the tracking position area of the target object in the second image.
18. The movable platform according to the claim 11, wherein the processor is further configured to execute the program instructions to, after marking the target object in the first image and before sending the marked first image to the control terminal:
extract at least part of the second image information; and
add in the at least part of the second image information to the marked first image.
19. The movable platform according to the claim 11, wherein the processor is further configured to:
obtain the elative positional relationship between the first shooting assembly and the second shooting assembly.
20. The movable platform according to the claim 19, wherein the processor is further configured to:
obtain the elative positional relationship measured by a sensor in the movable platform.
US17/222,627 2019-05-30 2021-04-05 Target tracking method and device, movable platform, and storage medium Abandoned US20210227144A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/222,627 US20210227144A1 (en) 2019-05-30 2021-04-05 Target tracking method and device, movable platform, and storage medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/089248 WO2020237565A1 (en) 2019-05-30 2019-05-30 Target tracking method and device, movable platform and storage medium
US16/880,553 US10999519B2 (en) 2019-05-30 2020-05-21 Target tracking method and device, movable platform, and storage medium
US17/222,627 US20210227144A1 (en) 2019-05-30 2021-04-05 Target tracking method and device, movable platform, and storage medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/880,553 Continuation US10999519B2 (en) 2019-05-30 2020-05-21 Target tracking method and device, movable platform, and storage medium

Publications (1)

Publication Number Publication Date
US20210227144A1 true US20210227144A1 (en) 2021-07-22

Family

ID=71187716

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/880,553 Active US10999519B2 (en) 2019-05-30 2020-05-21 Target tracking method and device, movable platform, and storage medium
US17/222,627 Abandoned US20210227144A1 (en) 2019-05-30 2021-04-05 Target tracking method and device, movable platform, and storage medium

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/880,553 Active US10999519B2 (en) 2019-05-30 2020-05-21 Target tracking method and device, movable platform, and storage medium

Country Status (4)

Country Link
US (2) US10999519B2 (en)
EP (1) EP3771198B1 (en)
CN (1) CN111345029B (en)
WO (1) WO2020237565A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112840374A (en) * 2020-06-30 2021-05-25 深圳市大疆创新科技有限公司 Image processing method, image acquisition device, unmanned aerial vehicle system and storage medium
CN113973171B (en) * 2020-07-23 2023-10-10 宁波舜宇光电信息有限公司 Multi-camera shooting module, camera shooting system, electronic equipment and imaging method
CN114401371B (en) * 2020-08-05 2024-03-26 深圳市浩瀚卓越科技有限公司 tracking control method, device, object tracking unit, and storage medium
WO2022094772A1 (en) * 2020-11-03 2022-05-12 深圳市大疆创新科技有限公司 Position estimation method, following control method, device and storage medium
CN112601022B (en) * 2020-12-14 2021-08-31 中标慧安信息技术股份有限公司 On-site monitoring system and method based on network camera
CN113327271B (en) * 2021-05-28 2022-03-22 北京理工大学重庆创新中心 Decision-level target tracking method and system based on double-optical twin network and storage medium
CN113409358A (en) * 2021-06-24 2021-09-17 浙江大华技术股份有限公司 Image tracking method, image tracking device, storage medium and electronic equipment
CN115190237B (en) * 2022-06-20 2023-12-15 亮风台(上海)信息科技有限公司 Method and device for determining rotation angle information of bearing device
CN115623336B (en) * 2022-11-07 2023-06-30 北京拙河科技有限公司 Image tracking method and device for hundred million-level camera equipment

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120105634A1 (en) * 2009-07-08 2012-05-03 Elbit Systems Ltd. Automatic video surveillance system and method
US20120143808A1 (en) * 2010-12-02 2012-06-07 Pukoa Scientific, Llc Apparatus, system, and method for object detection and identification
US20140253737A1 (en) * 2011-09-07 2014-09-11 Yitzchak Kempinski System and method of tracking an object in an image captured by a moving device
US9164506B1 (en) * 2014-07-30 2015-10-20 SZ DJI Technology Co., Ltd Systems and methods for target tracking
US9274204B2 (en) * 2010-08-16 2016-03-01 Korea Research Institute Of Standards And Science Camera tracing and surveillance system and method for security using thermal image coordinate
KR101634966B1 (en) * 2016-04-05 2016-06-30 삼성지투비 주식회사 Image tracking system using object recognition information based on Virtual Reality, and image tracking method thereof
US9769387B1 (en) * 2013-11-05 2017-09-19 Trace Live Network Inc. Action camera system for unmanned aerial vehicle
US9774797B2 (en) * 2014-04-18 2017-09-26 Flir Systems, Inc. Multi-sensor monitoring systems and methods
US9785147B1 (en) * 2014-08-13 2017-10-10 Trace Live Network Inc. Pixel based image tracking system for unmanned aerial vehicle (UAV) action camera system
US20190171201A1 (en) * 2016-07-28 2019-06-06 SZ DJI Technology Co., Ltd. Target-based image exposure adjustment
US10477157B1 (en) * 2016-03-02 2019-11-12 Meta View, Inc. Apparatuses, methods and systems for a sensor array adapted for vision computing
US20200053292A1 (en) * 2018-08-10 2020-02-13 Aurora Flight Sciences Corporation Object-Tracking System

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050128291A1 (en) * 2002-04-17 2005-06-16 Yoshishige Murakami Video surveillance system
JP4107273B2 (en) * 2004-08-04 2008-06-25 日産自動車株式会社 Moving body detection device
CN105915784A (en) * 2016-04-01 2016-08-31 纳恩博(北京)科技有限公司 Information processing method and information processing device
CN106506941A (en) * 2016-10-20 2017-03-15 深圳市道通智能航空技术有限公司 The method and device of image procossing, aircraft
EP3428884B1 (en) * 2017-05-12 2020-01-08 HTC Corporation Tracking system and tracking method thereof
WO2018214093A1 (en) * 2017-05-25 2018-11-29 深圳市大疆创新科技有限公司 Tracking method and apparatus
JP6849272B2 (en) * 2018-03-14 2021-03-24 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Methods for controlling unmanned aerial vehicles, unmanned aerial vehicles, and systems for controlling unmanned aerial vehicles

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120105634A1 (en) * 2009-07-08 2012-05-03 Elbit Systems Ltd. Automatic video surveillance system and method
US9274204B2 (en) * 2010-08-16 2016-03-01 Korea Research Institute Of Standards And Science Camera tracing and surveillance system and method for security using thermal image coordinate
US20120143808A1 (en) * 2010-12-02 2012-06-07 Pukoa Scientific, Llc Apparatus, system, and method for object detection and identification
US20140253737A1 (en) * 2011-09-07 2014-09-11 Yitzchak Kempinski System and method of tracking an object in an image captured by a moving device
US9769387B1 (en) * 2013-11-05 2017-09-19 Trace Live Network Inc. Action camera system for unmanned aerial vehicle
US9774797B2 (en) * 2014-04-18 2017-09-26 Flir Systems, Inc. Multi-sensor monitoring systems and methods
US9164506B1 (en) * 2014-07-30 2015-10-20 SZ DJI Technology Co., Ltd Systems and methods for target tracking
US20170322551A1 (en) * 2014-07-30 2017-11-09 SZ DJI Technology Co., Ltd Systems and methods for target tracking
US9785147B1 (en) * 2014-08-13 2017-10-10 Trace Live Network Inc. Pixel based image tracking system for unmanned aerial vehicle (UAV) action camera system
US10477157B1 (en) * 2016-03-02 2019-11-12 Meta View, Inc. Apparatuses, methods and systems for a sensor array adapted for vision computing
KR101634966B1 (en) * 2016-04-05 2016-06-30 삼성지투비 주식회사 Image tracking system using object recognition information based on Virtual Reality, and image tracking method thereof
US20190171201A1 (en) * 2016-07-28 2019-06-06 SZ DJI Technology Co., Ltd. Target-based image exposure adjustment
US20200053292A1 (en) * 2018-08-10 2020-02-13 Aurora Flight Sciences Corporation Object-Tracking System

Also Published As

Publication number Publication date
EP3771198A4 (en) 2021-06-16
WO2020237565A1 (en) 2020-12-03
EP3771198B1 (en) 2022-08-24
CN111345029A (en) 2020-06-26
US10999519B2 (en) 2021-05-04
EP3771198A1 (en) 2021-01-27
US20200288065A1 (en) 2020-09-10
CN111345029B (en) 2022-07-08

Similar Documents

Publication Publication Date Title
US10999519B2 (en) Target tracking method and device, movable platform, and storage medium
CN111179358B (en) Calibration method, device, equipment and storage medium
US10288418B2 (en) Information processing apparatus, information processing method, and storage medium
US10234873B2 (en) Flight device, flight control system and method
CN108986164B (en) Image-based position detection method, device, equipment and storage medium
CN108875730B (en) Deep learning sample collection method, device, equipment and storage medium
US10659753B2 (en) Photogrammetry system and method of operation
CN111970454B (en) Shot picture display method, device, equipment and storage medium
CN110287907A (en) A kind of method for checking object and device
CN109934873B (en) Method, device and equipment for acquiring marked image
CN109447902B (en) Image stitching method, device, storage medium and equipment
CN114612786A (en) Obstacle detection method, mobile robot and machine-readable storage medium
JP2006090957A (en) Surrounding object detecting device for moving body, and surrounding object detection method for moving body
CN116160458B (en) Multi-sensor fusion rapid positioning method, equipment and system for mobile robot
CN113125434A (en) Image analysis system and method of controlling photographing of sample image
CN115861407A (en) Safe distance detection method and system based on deep learning
CN116125489A (en) Indoor object three-dimensional detection method, computer equipment and storage medium
US20220129660A1 (en) System and method of acquiring coordinates of pupil center point
WO2021114775A1 (en) Object detection method, object detection device, terminal device, and medium
US20220270282A1 (en) Information processing device, data generation method, and non-transitory computer-readable medium storing program
CN114155258A (en) Detection method for highway construction enclosed area
KR20160090632A (en) Flight information estimator and estimation method of the flying objects
CN117459688B (en) Camera angle marking method, device and medium based on map system
US20230386055A1 (en) Image feature matching method, computer device, and storage medium
US11282280B2 (en) Method and system for node vectorisation

Legal Events

Date Code Title Description
AS Assignment

Owner name: SZ DJI TECHNOLOGY CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZHANG, WEI;REEL/FRAME:055827/0395

Effective date: 20200515

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE