US20210226819A1 - Gateway device for a fire control system - Google Patents

Gateway device for a fire control system Download PDF

Info

Publication number
US20210226819A1
US20210226819A1 US17/222,002 US202117222002A US2021226819A1 US 20210226819 A1 US20210226819 A1 US 20210226819A1 US 202117222002 A US202117222002 A US 202117222002A US 2021226819 A1 US2021226819 A1 US 2021226819A1
Authority
US
United States
Prior art keywords
gateway device
network
interface
fire control
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/222,002
Inventor
Jayaprakash Meruva
Rajesh Babu Nalukurthy
Vipindas E K
Amit Jain
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Priority to US17/222,002 priority Critical patent/US20210226819A1/en
Assigned to HONEYWELL INTERNATIONAL INC. reassignment HONEYWELL INTERNATIONAL INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: E K, VIPIN DAS, JAIN, AMIT, MERUVA, JAYAPRAKASH, NALUKURTHY, RAJESH BABU
Publication of US20210226819A1 publication Critical patent/US20210226819A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/56Provisioning of proxy services
    • H04L67/564Enhancement of application control based on intercepted application data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/66Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0806Configuration setting for initial configuration or provisioning, e.g. plug-and-play
    • H04L41/0809Plug-and-play configuration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0823Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5003Managing SLA; Interaction between SLA and QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5003Managing SLA; Interaction between SLA and QoS
    • H04L41/5019Ensuring fulfilment of SLA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0811Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/20Arrangements for monitoring or testing data switching networks the monitoring system or the monitored elements being virtualised, abstracted or software-defined entities, e.g. SDN or NFV
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/20Support for services
    • H04L49/205Quality of Service based
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/102Gateways
    • H04L67/322
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/56Provisioning of proxy services
    • H04L67/567Integrating service provisioning from a plurality of service providers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/60Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
    • H04L67/61Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources taking into account QoS or priority requirements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/33Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/50Service provisioning or reconfiguring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/22Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks comprising specially adapted graphical user interfaces [GUI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/24Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks using dedicated network management hardware
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/60Software-defined switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/60Subscription-based services using application servers or record carriers, e.g. SIM application toolkits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/90Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • H04W84/22Self-organising networks, e.g. ad-hoc networks or sensor networks with access to wired networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/06Interfaces between hierarchically different network devices between gateways and public network devices

Definitions

  • the present disclosure relates generally to a gateway device for a fire control system.
  • a fire control system may include a number of components located throughout the facility (e.g., on different floors of the facility).
  • a fire control system may include sensors (e.g., smoke detectors) that can sense a fire occurring in the facility, alarms that can provide a notification of the fire to the occupants of the facility, fans and/or dampers that can perform smoke control operations (e.g., pressurizing, purging, exhausting, etc.) during the fire, and/or sprinklers that can provide water to extinguish the fire, among other components.
  • sensors e.g., smoke detectors
  • alarms that can provide a notification of the fire to the occupants of the facility
  • fans and/or dampers that can perform smoke control operations (e.g., pressurizing, purging, exhausting, etc.) during the fire
  • sprinklers that can provide water to extinguish the fire, among other components.
  • a fire control system may also include a physical fire control panel (e.g., box) installed in the facility that can be used by a user to directly control the operation of the components of the fire control system.
  • a gateway device may be used by a user (e.g., maintenance technician or operator) to perform inspections, maintenance, and/or upgrades, among other operations, on a fire control system (e.g., on the components of the fire control system) of a facility.
  • a user e.g., maintenance technician or operator
  • the gateway device may connect to the fire control panel of the fire control system, and the gateway device can use a communication protocol to communicate with the fire control panel to perform the tasks of the operation.
  • FIG. 1 illustrates an example of a gateway device for a fire control system in accordance with an embodiment of the present disclosure.
  • FIG. 2 illustrates an example of a fire control system in accordance with an embodiment of the present disclosure.
  • FIG. 3 illustrates a table associated with operating a gateway device in accordance with an embodiment of the present disclosure.
  • FIG. 4 illustrates a flow chart associated with operating a gateway device in accordance with an embodiment of the present disclosure.
  • FIG. 5 illustrates an example of a gateway device for a fire control system in accordance with an embodiment of the present disclosure.
  • a gateway device for a fire control system is described herein.
  • the gateway device can comprise a processor and a memory having instructions stored thereon which, when executed by the processor, cause the processor to detect a network interface of the gateway device is connected to a network, receive data associated with the fire control system, and determine a data management scheme for the gateway device based on the type of detected network interface and the received data.
  • Previous gateway devices for fire control systems may only be usable with certain interfaces.
  • previous gateway devices may include only one type of physical (e.g. hardware) interface, and hence may only be connectable to a fire control panel or external cloud service using that type of interface.
  • previous gateway devices only support interfaces such as public switched telephone network (PSTN) and Ethernet, but not long-term evolution (LTE).
  • PSTN public switched telephone network
  • LTE long-term evolution
  • a user e.g., maintenance technician or operator
  • operations such as an inspections, maintenance, and/or upgrades, on fire control systems of different facilities (e.g., on the components of the fire control system) using previous gateway devices
  • cellular connectivity e.g., 4G/LTE
  • cloud services may have different bandwidth requirements to exchange data between the gateway and the external cloud.
  • Internet bandwidth on a cellular network e.g., mobile data
  • which utilized cellular connectivity may be limited and/or costlier than an ethernet/telephone based broadband connection.
  • a gateway device in accordance with the present disclosure is usable with (e.g., provides plug and play functionality for) an interface that utilizes cellular connectivity to transmit data.
  • a gateway device in accordance with the present disclosure is capable of communicating with external cloud services via a cellular connection.
  • a gateway device in accordance with the present disclosure is capable of determining how to utilize a bandwidth based on cloud services a user has subscribed to and/or the type of interface the gateway device and external cloud is communicating through.
  • a gateway device in accordance with the present disclosure can determine a data management scheme based on the network interface type and received data associated with the subscribed-to cloud services for the fire control system, where the data management scheme describes how bandwidth is utilized for a particular feature of a cloud service, while ensuring quality of service (QoS) for the subscribed-to cloud services.
  • QoS quality of service
  • a”, “an”, or “a number of” something can refer to one or more such things, while “a plurality of” something can refer to more than one such things.
  • a number of components can refer to one or more components, while “a plurality of components” can refer to more than one component.
  • the designator “N” as used herein, particularly with respect to reference numerals in the drawings indicates that a number of the particular feature so designated can be included with a number of embodiments of the present disclosure. This number may be the same or different between designations.
  • FIG. 1 illustrates an example of a gateway device 101 for a fire control system in accordance with an embodiment of the present disclosure.
  • the fire control system can be the fire control system of a facility (e.g., building), such as, for instance, a large facility having a large number of floors, such as a commercial facility, office building, hospital, and the like.
  • a facility e.g., building
  • a large facility having a large number of floors such as a commercial facility, office building, hospital, and the like.
  • embodiments of the present disclosure are not limited to a particular type of facility.
  • Gateway device 101 may be used by a user (e.g., maintenance technician or operator) to perform inspections, maintenance, and/or upgrades, among other operations, on the fire control system (e.g., on the components of the fire control system), as will be further described herein.
  • gateway device 101 may be permanently installed and/or connected at the facility, such that it can continuously send (e.g., push) data to a centralized server for detection of anomalies or other issues in the fire control system of the facility.
  • gateway device 101 can include a plurality of control panel interfaces 102 - 1 , 102 - 2 , 102 - 3 , 102 - 4 , which may be referred to collectively herein as control panel interfaces 102 . Although four control panel interfaces 102 are shown in the example illustrated in FIG. 1 , embodiments of the present disclosure are not limited to a particular number of control panel interfaces.
  • Each respective one of the control panel interfaces 102 can be a different type of physical (e.g., hardware) interface that is connectable to a fire control panel (e.g., to a corresponding physical interface of the fire control panel) of a fire control system (e.g., interface 102 - 1 can be a first type of physical interface, interface 102 - 2 can be a second type of physical interface, etc.).
  • a fire control panel e.g., to a corresponding physical interface of the fire control panel
  • a fire control system e.g., interface 102 - 1 can be a first type of physical interface, interface 102 - 2 can be a second type of physical interface, etc.
  • interface 102 - 1 can be an ethernet interface that is connectable to an ethernet interface of a fire control panel
  • interface 102 - 2 can be a universal serial bus (USB) interface that is connectable to a USB interface of a fire control panel
  • interface 102 - 3 can be a recommended standard (RS) interface, such as an RS-232 or RS-485 interface, that is connectable to an RS interface of a fire control panel
  • interface 102 - 4 can be a transistor-transistor logic (TTL) interface that is connectable to a TTL interface of a fire control panel.
  • RS recommended standard
  • TTL transistor-transistor logic
  • gateway device 101 can include a plurality of network interfaces 104 - 1 , 104 - 2 , 104 - 3 , 104 - 4 , which may be referred to collectively herein as network interfaces 104 . Although four network interfaces 104 are shown in the example illustrated in FIG. 1 , embodiments of the present disclosure are not limited to a particular number of network interfaces.
  • Each respective one of the network interfaces 104 can be a different type of interface that is connectable to (e.g., that can connect gateway device 101 to) a network (e.g., interface 104 - 1 can be a first type of network interface, interface 104 - 2 can be a second type of network interface, etc.).
  • interface 104 - 1 can be an ethernet interface
  • interface 104 - 2 can be a Wi-Fi interface
  • interface 104 - 3 can be a long-term evolution (LTE) interface
  • interface 104 - 4 can be a public switched telephone network interface.
  • embodiments of the present disclosure are not limited to a particular type(s) of network interface.
  • An example of a network to which network interfaces 104 can connect with be further described herein (e.g., in connection with FIG. 2 ).
  • gateway device 101 can include an interface scanning engine 106 - 1 , a bandwidth optimizer engine 106 - 2 , and a network connector engine 106 - 3 , which may be referred to collectively herein as engine 106 .
  • engine 106 e.g., interface scanning engine 106 - 1
  • engine 106 can detect that one of the plurality of control panel interfaces 102 is connected to a fire control panel (e.g., to a corresponding physical interface of the fire control panel) of a fire control system of a facility.
  • Gateway Engine 106 can detect that one of the plurality of control panel interfaces 102 is connected to the fire control panel by, for instance, sequentially (e.g., one at a time) scanning each respective one of the plurality of control panel interfaces 102 for connectivity to the fire control panel, until a connectivity of one of the control panel interfaces is detected.
  • engine 106 e.g., network connector engine 106 - 3
  • Engine 106 can detect that one of the plurality of network interfaces 104 is connected to a network.
  • Engine 106 e.g., network connector engine 106 - 3
  • Bandwidth optimizer engine 106 - 2 can receive data (e.g., operational data) associated with the fire control system and the type of detected network interface of gateway device 101 . Based on the data associated with the fire control system and the type of detected network interface of gateway device 101 , bandwidth optimizer engine 106 - 2 can determine a data management scheme for gateway device 101 . The data management scheme can facilitate how available bandwidth is utilized by gateway device 101 for a particular feature of a subscribed-to cloud service while ensuring a quality of service (QoS) for the particular feature.
  • QoS quality of service
  • a user of the fire control system can subscribe to a number of services provided via a external cloud service. Each subscribed-to service can include a number of features which will be further described herein (e.g., in connection with FIG. 3 ).
  • a user may select a number of corresponding features associated with the cloud service, prioritize the selected features, and configure a number of behaviors (e.g., actions performed) of each of the selected features. For example, the user can manually select and prioritize the selected features via a computing device (e.g., a mobile device or desktop). Additionally, configured data corresponding to the features, such as the prioritization of each feature, can be saved in a server, which will be described herein (e.g., in connection with FIG. 2 ).
  • Gateway device 101 can communicate with the server which will be further described herein (e.g., in connection with FIG. 2 ).
  • engine 106 - 2 can receive data stored within the server, where the data include data associated with the fire control system and/or data indicating the type of the network interface connected to the network. Such data can be saved within the server.
  • the data received from the server, along with the data received from engine 106 - 3 can be input into engine 106 - 2 , and used by engine 106 - 2 , to determine a data management scheme that utilizes the available bandwidth as optimally as possible while ensuring a QoS for higher priority cloud services a user has subscribed to.
  • a feature of the facility management service can include firmware upgrades, which requires 40 MB to execute via a cellular network.
  • engine 106 - 2 can determine that there is not enough available bandwidth and firmware upgrades will have to be performed manually by a technician having to visit the site.
  • Another feature of the facility management service can include device obscuration and sensitivity querying, where device obscuration and sensitivity levels are transferred to the cloud for continuous monitoring and abnormality detection.
  • engine 106 - 2 can determine a behavior of the device obscuration and sensitivity querying feature. For example, if 106 - 3 detects an ethernet interface, data will be transferred once a day. However, if 106 - 3 detects a cellular interface, data will be transferred only when there is a detected change from previously transferred data.
  • Engine 106 - 2 can determine a data management scheme comprising the behavior of each feature of the subscribed-to services based on data associated with the subscribed-to services, network carrier, available bandwidth, and QoS, among other data associated with the operation of the fire control system and the subscribed-to services.
  • the behavior of each feature utilizes the available bandwidth as optimally as possible while ensuring a QoS for higher priority cloud services a user has subscribed to.
  • gateway 201 can notify the user of the determined data management scheme.
  • the users can be notified though a computing device, such as, for instance, through a mobile device application or web application of their computing device, receiving the notification.
  • the notification can include details about the data management scheme, including, for example, information indicating how to utilize the available bandwidth and the behavior of each feature of the subscribed-to services.
  • FIG. 2 illustrates an example of a fire control system 220 in accordance with an embodiment of the present disclosure.
  • Fire control system 220 can be, for instance, the fire control system previously described in connection with FIG. 1 .
  • fire control system 220 can include gateway device 201 , which can be gateway device 101 previously described in connection with FIG. 1 .
  • fire control system 220 can include a plurality of components 218 - 1 , 218 - 2 , . . . 218 -N located throughout a facility (e.g., on different floors of the facility) that can be used to detect and/or manage a fire occurring in the facility, and/or to prevent a fire from occurring in the facility.
  • a facility e.g., on different floors of the facility
  • 218 -N may include sensors (e.g., smoke detectors) that can sense a fire occurring in the facility, alarms that can provide a notification of the fire to the occupants of the facility, fans and/or dampers that can perform smoke control operations (e.g., pressurizing, purging, exhausting, etc.) during the fire, and/or sprinklers that can provide water to extinguish the fire, among other components.
  • sensors e.g., smoke detectors
  • alarms that can provide a notification of the fire to the occupants of the facility
  • fans and/or dampers that can perform smoke control operations (e.g., pressurizing, purging, exhausting, etc.) during the fire
  • sprinklers that can provide water to extinguish the fire, among other components.
  • fire control system 220 can include a control panel (e.g., fire control panel) 216 .
  • Control panel 216 can be any different type of physical control panel, such as a control box, installed in the facility.
  • Control panel 216 can be used by a user to monitor and/or control components 218 - 1 , 218 - 2 , . . . 218 -N.
  • the user can use control panel 216 to directly control the operation of (e.g., actions performed by) components 218 - 1 , 218 - 2 , . . . 218 -N.
  • control panel 216 can receive (e.g., collect) data, such as, for instance, real-time operational data, associated with components 218 - 1 , 218 - 2 , . . . 218 -N.
  • control panel 216 can receive the data directly from components 218 - 1 , 218 - 2 , . . . 218 -N.
  • Such data can include, for instance, current operational statuses, operational states, and/or properties of components 218 - 1 , 218 - 2 , . . . 218 -N.
  • Gateway device 201 can be used by a user (e.g., maintenance technician or operator) to perform inspections, maintenance, and/or upgrades, among other operations, on components 218 - 1 , 218 - 2 , . . . 218 -N.
  • gateway device 201 can be connected to control panel 216 , and can communicate with control panel 216 to receive the data associated with components 218 - 1 , 218 - 2 , . . . 218 -N collected by control panel 216 .
  • gateway device 201 can detect connectivity to control panel 216 , determine which type of interface is connected to control panel 216 , and communicate with control panel 216 based on the type of connected interface, as previously described herein (e.g., in connection with FIG. 1 ).
  • gateway device 201 may be permanently installed and/or connected at the facility, such that it can continuously send (e.g., push) the data collected by control panel 216 to server 212 .
  • fire control system 220 can include a server 212 .
  • Server 212 can be located remotely from the facility and, in some embodiments, can be part of and/or coupled to a computing device (e.g., computing device 210 illustrated in FIG. 2 ) that is part of a centralized management platform.
  • Gateway device 201 can communicate with server 212 via network 214 , as illustrated in FIG. 2 .
  • gateway device 201 can detect connectivity to network 214 , and send (e.g., transmit and/or upload) data to server 212 via network 214 using the network interface detected to be connected to network 214 .
  • Network 214 can be a network relationship through which gateway device 201 and server 212 can communicate.
  • Examples of such a network relationship can include a distributed computing environment (e.g., a cloud computing environment), a wide area network (WAN) such as the Internet, a local area network (LAN), a personal area network (PAN), a campus area network (CAN), or metropolitan area network (MAN), among other types of network relationships.
  • network 214 can include a number of servers that receive information from, and transmit information to, gateway device 201 and server 212 via a wired or wireless network.
  • a “network” can provide a communication system that directly or indirectly links two or more computers and/or peripheral devices and allows users to access resources on other computing devices and exchange messages with other users.
  • a network can allow users to share resources on their own systems with other network users and to access information on centrally located systems or on systems that are located at remote locations.
  • a network can tie a number of computing devices together to form a distributed control network (e.g., cloud).
  • a network may provide connections to the Internet and/or to the networks of other entities (e.g., organizations, institutions, etc.). Users may interact with network-enabled software applications to make a network request, such as to get a file or print on a network printer. Applications may also communicate with network management software, which can interact with network hardware to transmit information between devices on the network.
  • entities e.g., organizations, institutions, etc.
  • network management software can interact with network hardware to transmit information between devices on the network.
  • the term “cloud”, or distributed control network can be used to refer to a server and/or computing device working in conjunction with other computing resources (hardware, software, logic, memory, processor, etc.) that can be used as a service over a communications network (in a wired and/or wireless manner over the internet).
  • the server, computing device, and other computing resources can all be referred to as being part of the “cloud”.
  • the term “computing device” can include a laptop computer, desktop computer, or mobile device, such as, for instance, a smart phone or tablet, among other types of computing devices.
  • the computing device can include a user interface.
  • a user can interact with the computing device via the user interface.
  • the user interface can provide (e.g., display) information to and/or receive information from (e.g., input by) the user of the computing device.
  • user interface can be a graphical user interface (GUI) that can include a display (e.g., a screen) that can provide information to, and/or receive information from, the user of the computing device.
  • GUI graphical user interface
  • the display can be, for instance, a touch-screen (e.g., the GUI can include touch-screen capabilities).
  • the user interface can include a keyboard and/or mouse that the user can use to input information into the computing device, and/or a speaker that can play audio to, and/or receive audio (e.g., voice input) from, the user.
  • Embodiments of the present disclosure are not limited to a particular type(s) of user interface.
  • FIG. 3 illustrates a table 320 associated with operating a gateway device (e.g., gateway device 101 and/or 201 previously described in connection with FIGS. 1 and 2 , respectively), in accordance with an embodiment of the present disclosure.
  • Table 320 can include data associated with the subscribed-to cloud services, such as the selected features, as previously described herein (e.g., in connection to FIG. 1 ).
  • a user can select a number of features which correspond to each of the subscribed-to services. For example, as shown in FIG. 3 , a user can subscribe to a Runtime Facility Manager service. Upon subscribing to the Runtime Facility Manager service, the user may also select a number of features that correspond to the Runtime Facility Manager service. As shown in FIG. 3 , the user may select an “Alarms and Events” feature and a “Device Obscuration & Sensitivity Query” feature.
  • Additional cloud services the user can subscribe to can include a Commissioning Time service, an Inspection Manager Runtime service, a Common Things Runtime service, and a Remote Diagnostics service.
  • a Commissioning Time service Upon subscribing to any one of these cloud services, the user can select a number of features that correspond to the subscribed-to service. For example, upon subscribing to a Commissioning Time service, the user may select a “Device Configuration Details” feature and/or a “Gateway Configuration” feature.
  • the user may select a “Events” feature.
  • the user may select a “Heartbeat” feature and/or a “Firmware Upgrade” feature.
  • a Remote Diagnostics service the user may select a “Remote Diagnostics” feature.
  • the subscribed-to services and selected features are not limited to those shown in FIG. 3 .
  • the user may also prioritize each of the selected features. For example, the user may assign each selected feature with a priority level of very low, low, medium, high, and very high. Additionally, information relating to the behavior of each feature can be associated with each feature. For instance, the behavior of each feature may correspond to a configured frequency, as shown in FIG. 3 .
  • a user can configure a number of behaviors which can correspond to each feature. Each feature can have what is classified as a “normal” behavior, a “optimal” behavior, and a “lowest” behavior. The classified behavior of a feature may depend on the priority of the feature, along with additional data such as the available bandwidth and detected network interface, among other data.
  • a feature of the commissioning time service can include gateway configuration, which has been assigned a very low priority.
  • a feature of the runtime facility manager service can include alarms and events, which has been assigned a high priority.
  • the gateway device can determine a data management scheme that utilizes the available bandwidth as optimally as possible while ensuring a QoS for higher priority cloud services the user has subscribed to.
  • the data management scheme can utilize the available bandwidth in a way which gives higher priority to the alarms and events feature than the commissioning time feature.
  • the behavior of the alarms and events feature may correspond to a behavior classified as “optimal”, while the behavior of the commissioning time feature may correspond to a behavior classified as “lowest”.
  • FIG. 4 illustrates a flow chart 430 associated with operating a gateway device in accordance with an embodiment of the present disclosure.
  • the gateway device can be gateway device 101 previously described in connection with FIG. 1 and/or gateway device 201 previously described in connection with FIG. 2 .
  • the gateway device can include bandwidth optimizer engine 406 - 2 , which may be referred to engine as 406 - 2 .
  • engine 406 - 2 can determine a data management scheme 444 that utilizes the available bandwidth as optimally as possible while ensuring a QoS for higher priority cloud services a customer has subscribed to.
  • the data management scheme 444 can be determined based on received data 432 , 434 , and 408 .
  • maximum bandwidth data 432 can include data associated with a maximum amount of available bandwidth that can be utilized by the gateway device, such 10 MB of monthly data.
  • Feature priority table data 434 can include data associated with the subscribed-to cloud services, as previously described (e.g., in connection with table 320 shown in FIG. 3 ).
  • Network interface data 408 can include data associated with (e.g., the type of) the detected network interface, as previously described (e.g., in connection with FIG. 1 ).
  • bandwidth optimizer engine 406 - 2 can determine that in a scenario where the user has a cellular network (e.g., 4G/LTE) with 10 MB of monthly data, and has subscribed to a common things runtime service that includes a firmware upgrade which has been assigned a low priority, that firmware upgrades will be manually performed.
  • Bandwidth optimizer engine 406 - 2 can determine the behavior of each of the selected features to make up the data management scheme 444 .
  • FIG. 5 illustrates an example of a gateway device 501 for a fire control system in accordance with an embodiment of the present disclosure.
  • Gateway device 501 can be, for instance, gateway device 101 and/or gateway device 201 previously described herein in connection with FIGS. 1 and 2 , respectively.
  • gateway device 501 can include a processor 544 and a memory 542 .
  • Memory 542 can be any type of storage medium that can be accessed by processor 544 to perform various examples of the present disclosure.
  • memory 542 can be a non-transitory computer readable medium having computer readable instructions (e.g., computer program instructions) stored thereon that are executable by processor 544 to perform various examples of the present disclosure. That is, processor 544 can execute the executable instructions stored in memory 542 to perform various examples in accordance with the present disclosure.
  • Memory 542 can be volatile or nonvolatile memory. Memory 652 can also be removable (e.g., portable) memory, or non-removable (e.g., internal) memory.
  • memory 542 can be random access memory (RAM) (e.g., dynamic random access memory (DRAM), resistive random access memory (RRAM), and/or phase change random access memory (PCRAM)), read-only memory (ROM) (e.g., electrically erasable programmable read-only memory (EEPROM) and/or compact-disk read-only memory (CD-ROM)), flash memory, a laser disk, a digital versatile disk (DVD) or other optical disk storage, and/or a magnetic medium such as magnetic cassettes, tapes, or disks, among other types of memory.
  • RAM random access memory
  • DRAM dynamic random access memory
  • RRAM resistive random access memory
  • PCRAM phase change random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • memory 542 is illustrated as being located in gateway device 501 , embodiments of the present disclosure are not so limited.
  • memory 542 can also be located internal to another computing resource (e.g., enabling computer readable instructions to be downloaded over the Internet or another wired or wireless connection).

Abstract

A gateway device for a fire control system is described herein. The gateway device can comprise a processor and a memory having instructions stored thereon which, when executed by the processor, cause the processor to detect that a network interface of the gateway device is connected to a network, receive data associated with the fire control system, and determine a data management scheme for the gateway device based on the type of detected network interface and the received data.

Description

    PRIORITY INFORMATION
  • This Application is a Continuation of U.S. application Ser. No. 16/451,648 filed Jun. 25, 2019, the contents of which are incorporated herein by reference.
  • TECHNICAL FIELD
  • The present disclosure relates generally to a gateway device for a fire control system.
  • BACKGROUND
  • Large facilities (e.g., buildings), such as commercial facilities, office buildings, hospitals, and the like, may have fire control systems that can be used to prevent a fire from occurring in a facility, and/or to detect and/or manage a fire occurring in the facility. A fire control system may include a number of components located throughout the facility (e.g., on different floors of the facility). For example, a fire control system may include sensors (e.g., smoke detectors) that can sense a fire occurring in the facility, alarms that can provide a notification of the fire to the occupants of the facility, fans and/or dampers that can perform smoke control operations (e.g., pressurizing, purging, exhausting, etc.) during the fire, and/or sprinklers that can provide water to extinguish the fire, among other components. A fire control system may also include a physical fire control panel (e.g., box) installed in the facility that can be used by a user to directly control the operation of the components of the fire control system.
  • A gateway device may be used by a user (e.g., maintenance technician or operator) to perform inspections, maintenance, and/or upgrades, among other operations, on a fire control system (e.g., on the components of the fire control system) of a facility. For instance, the user may connect the gateway device to the fire control panel of the fire control system, and the gateway device can use a communication protocol to communicate with the fire control panel to perform the tasks of the operation.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates an example of a gateway device for a fire control system in accordance with an embodiment of the present disclosure.
  • FIG. 2 illustrates an example of a fire control system in accordance with an embodiment of the present disclosure.
  • FIG. 3 illustrates a table associated with operating a gateway device in accordance with an embodiment of the present disclosure.
  • FIG. 4 illustrates a flow chart associated with operating a gateway device in accordance with an embodiment of the present disclosure.
  • FIG. 5 illustrates an example of a gateway device for a fire control system in accordance with an embodiment of the present disclosure.
  • DETAILED DESCRIPTION
  • A gateway device for a fire control system is described herein. For example, the gateway device can comprise a processor and a memory having instructions stored thereon which, when executed by the processor, cause the processor to detect a network interface of the gateway device is connected to a network, receive data associated with the fire control system, and determine a data management scheme for the gateway device based on the type of detected network interface and the received data.
  • Previous gateway devices for fire control systems may only be usable with certain interfaces. For instance, previous gateway devices may include only one type of physical (e.g. hardware) interface, and hence may only be connectable to a fire control panel or external cloud service using that type of interface. For instance, previous gateway devices only support interfaces such as public switched telephone network (PSTN) and Ethernet, but not long-term evolution (LTE).
  • As such, a user (e.g., maintenance technician or operator) who is performing operations, such as an inspections, maintenance, and/or upgrades, on fire control systems of different facilities (e.g., on the components of the fire control system) using previous gateway devices may not be able utilize cellular connectivity (e.g., 4G/LTE) to connect to a cloud to make use of various cloud services needed to carry multiple types of gateway devices. Further, various cloud services may have different bandwidth requirements to exchange data between the gateway and the external cloud. Internet bandwidth on a cellular network (e.g., mobile data), which utilized cellular connectivity, may be limited and/or costlier than an ethernet/telephone based broadband connection.
  • In contrast, a gateway device in accordance with the present disclosure is usable with (e.g., provides plug and play functionality for) an interface that utilizes cellular connectivity to transmit data. For instance, a gateway device in accordance with the present disclosure is capable of communicating with external cloud services via a cellular connection. Additionally, a gateway device in accordance with the present disclosure is capable of determining how to utilize a bandwidth based on cloud services a user has subscribed to and/or the type of interface the gateway device and external cloud is communicating through. As such, a gateway device in accordance with the present disclosure can determine a data management scheme based on the network interface type and received data associated with the subscribed-to cloud services for the fire control system, where the data management scheme describes how bandwidth is utilized for a particular feature of a cloud service, while ensuring quality of service (QoS) for the subscribed-to cloud services.
  • In the following detailed description, reference is made to the accompanying drawings that form a part hereof. The drawings show by way of illustration how one or more embodiments of the disclosure may be practiced.
  • These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice one or more embodiments of this disclosure. It is to be understood that other embodiments may be utilized and that mechanical, electrical, and/or process changes may be made without departing from the scope of the present disclosure.
  • As will be appreciated, elements shown in the various embodiments herein can be added, exchanged, combined, and/or eliminated so as to provide a number of additional embodiments of the present disclosure. The proportion and the relative scale of the elements provided in the figures are intended to illustrate the embodiments of the present disclosure, and should not be taken in a limiting sense.
  • The figures herein follow a numbering convention in which the first digit or digits correspond to the drawing figure number and the remaining digits identify an element or component in the drawing. Similar elements or components between different figures may be identified by the use of similar digits. For example, 101 may reference element “01” in FIG. 1, and a similar element may be referenced as 201 in FIG. 2.
  • As used herein, “a”, “an”, or “a number of” something can refer to one or more such things, while “a plurality of” something can refer to more than one such things. For example, “a number of components” can refer to one or more components, while “a plurality of components” can refer to more than one component. Additionally, the designator “N” as used herein, particularly with respect to reference numerals in the drawings, indicates that a number of the particular feature so designated can be included with a number of embodiments of the present disclosure. This number may be the same or different between designations.
  • FIG. 1 illustrates an example of a gateway device 101 for a fire control system in accordance with an embodiment of the present disclosure. The fire control system can be the fire control system of a facility (e.g., building), such as, for instance, a large facility having a large number of floors, such as a commercial facility, office building, hospital, and the like. However, embodiments of the present disclosure are not limited to a particular type of facility.
  • Gateway device 101 may be used by a user (e.g., maintenance technician or operator) to perform inspections, maintenance, and/or upgrades, among other operations, on the fire control system (e.g., on the components of the fire control system), as will be further described herein. As an additional example, gateway device 101 may be permanently installed and/or connected at the facility, such that it can continuously send (e.g., push) data to a centralized server for detection of anomalies or other issues in the fire control system of the facility.
  • As shown in FIG. 1, gateway device 101 can include a plurality of control panel interfaces 102-1, 102-2, 102-3, 102-4, which may be referred to collectively herein as control panel interfaces 102. Although four control panel interfaces 102 are shown in the example illustrated in FIG. 1, embodiments of the present disclosure are not limited to a particular number of control panel interfaces.
  • Each respective one of the control panel interfaces 102 can be a different type of physical (e.g., hardware) interface that is connectable to a fire control panel (e.g., to a corresponding physical interface of the fire control panel) of a fire control system (e.g., interface 102-1 can be a first type of physical interface, interface 102-2 can be a second type of physical interface, etc.). For instance, in the example illustrated in FIG. 1, interface 102-1 can be an ethernet interface that is connectable to an ethernet interface of a fire control panel, interface 102-2 can be a universal serial bus (USB) interface that is connectable to a USB interface of a fire control panel, interface 102-3 can be a recommended standard (RS) interface, such as an RS-232 or RS-485 interface, that is connectable to an RS interface of a fire control panel, and interface 102-4 can be a transistor-transistor logic (TTL) interface that is connectable to a TTL interface of a fire control panel. However, embodiments of the present disclosure are not limited to a particular type(s) of physical interface.
  • As shown in FIG. 1, gateway device 101 can include a plurality of network interfaces 104-1, 104-2, 104-3, 104-4, which may be referred to collectively herein as network interfaces 104. Although four network interfaces 104 are shown in the example illustrated in FIG. 1, embodiments of the present disclosure are not limited to a particular number of network interfaces.
  • Each respective one of the network interfaces 104 can be a different type of interface that is connectable to (e.g., that can connect gateway device 101 to) a network (e.g., interface 104-1 can be a first type of network interface, interface 104-2 can be a second type of network interface, etc.). For instance, in the example illustrated in FIG. 1, interface 104-1 can be an ethernet interface, interface 104-2 can be a Wi-Fi interface, interface 104-3 can be a long-term evolution (LTE) interface, and interface 104-4 can be a public switched telephone network interface. However, embodiments of the present disclosure are not limited to a particular type(s) of network interface. An example of a network to which network interfaces 104 can connect with be further described herein (e.g., in connection with FIG. 2).
  • As shown in FIG. 1, gateway device 101 can include an interface scanning engine 106-1, a bandwidth optimizer engine 106-2, and a network connector engine 106-3, which may be referred to collectively herein as engine 106. Upon a powering on (e.g., a powering up and/or restart) of gateway device 101, engine 106 (e.g., interface scanning engine 106-1) can detect that one of the plurality of control panel interfaces 102 is connected to a fire control panel (e.g., to a corresponding physical interface of the fire control panel) of a fire control system of a facility. Engine 106 (e.g., network connector engine 106-1) can detect that one of the plurality of control panel interfaces 102 is connected to the fire control panel by, for instance, sequentially (e.g., one at a time) scanning each respective one of the plurality of control panel interfaces 102 for connectivity to the fire control panel, until a connectivity of one of the control panel interfaces is detected.
  • Additionally, upon the powering on of gateway device 101, engine 106 (e.g., network connector engine 106-3) can detect that one of the plurality of network interfaces 104 is connected to a network. Engine 106 (e.g., network connector engine 106-3) can detect that one of the plurality of network interfaces 104 is connected to the network by, for instance, sequentially (e.g., one at a time) scanning each respective one of the plurality of network interfaces 104 for connectivity to the network, until a connectivity of one of the network interfaces is detected.
  • Bandwidth optimizer engine 106-2 can receive data (e.g., operational data) associated with the fire control system and the type of detected network interface of gateway device 101. Based on the data associated with the fire control system and the type of detected network interface of gateway device 101, bandwidth optimizer engine 106-2 can determine a data management scheme for gateway device 101. The data management scheme can facilitate how available bandwidth is utilized by gateway device 101 for a particular feature of a subscribed-to cloud service while ensuring a quality of service (QoS) for the particular feature. In such an example, a user of the fire control system can subscribe to a number of services provided via a external cloud service. Each subscribed-to service can include a number of features which will be further described herein (e.g., in connection with FIG. 3).
  • Upon subscribing to the number of cloud services, a user may select a number of corresponding features associated with the cloud service, prioritize the selected features, and configure a number of behaviors (e.g., actions performed) of each of the selected features. For example, the user can manually select and prioritize the selected features via a computing device (e.g., a mobile device or desktop). Additionally, configured data corresponding to the features, such as the prioritization of each feature, can be saved in a server, which will be described herein (e.g., in connection with FIG. 2).
  • Gateway device 101 can communicate with the server which will be further described herein (e.g., in connection with FIG. 2). For instance, engine 106-2 can receive data stored within the server, where the data include data associated with the fire control system and/or data indicating the type of the network interface connected to the network. Such data can be saved within the server. The data received from the server, along with the data received from engine 106-3 can be input into engine 106-2, and used by engine 106-2, to determine a data management scheme that utilizes the available bandwidth as optimally as possible while ensuring a QoS for higher priority cloud services a user has subscribed to.
  • For example, in a scenario where a user has a cellular network, with 10 megabytes (MB) of monthly data, and has subscribed to a facility management service, data associated with each of these elements can be input into engine 106-2 and a data management scheme can be determined based on these inputs. A feature of the facility management service can include firmware upgrades, which requires 40 MB to execute via a cellular network. Thus, in a scenario such as this, engine 106-2 can determine that there is not enough available bandwidth and firmware upgrades will have to be performed manually by a technician having to visit the site.
  • Another feature of the facility management service can include device obscuration and sensitivity querying, where device obscuration and sensitivity levels are transferred to the cloud for continuous monitoring and abnormality detection. Based on the received data and the type of detected network interface, engine 106-2 can determine a behavior of the device obscuration and sensitivity querying feature. For example, if 106-3 detects an ethernet interface, data will be transferred once a day. However, if 106-3 detects a cellular interface, data will be transferred only when there is a detected change from previously transferred data.
  • Engine 106-2 can determine a data management scheme comprising the behavior of each feature of the subscribed-to services based on data associated with the subscribed-to services, network carrier, available bandwidth, and QoS, among other data associated with the operation of the fire control system and the subscribed-to services. The behavior of each feature utilizes the available bandwidth as optimally as possible while ensuring a QoS for higher priority cloud services a user has subscribed to.
  • Upon determining the data management scheme, gateway 201 can notify the user of the determined data management scheme. The users can be notified though a computing device, such as, for instance, through a mobile device application or web application of their computing device, receiving the notification. The notification can include details about the data management scheme, including, for example, information indicating how to utilize the available bandwidth and the behavior of each feature of the subscribed-to services.
  • FIG. 2 illustrates an example of a fire control system 220 in accordance with an embodiment of the present disclosure. Fire control system 220 can be, for instance, the fire control system previously described in connection with FIG. 1. For example, as shown in FIG. 2, fire control system 220 can include gateway device 201, which can be gateway device 101 previously described in connection with FIG. 1.
  • As shown in FIG. 2, fire control system 220 can include a plurality of components 218-1, 218-2, . . . 218-N located throughout a facility (e.g., on different floors of the facility) that can be used to detect and/or manage a fire occurring in the facility, and/or to prevent a fire from occurring in the facility. For example, components 218-1, 218-2, . . . 218-N may include sensors (e.g., smoke detectors) that can sense a fire occurring in the facility, alarms that can provide a notification of the fire to the occupants of the facility, fans and/or dampers that can perform smoke control operations (e.g., pressurizing, purging, exhausting, etc.) during the fire, and/or sprinklers that can provide water to extinguish the fire, among other components.
  • As shown in FIG. 2, fire control system 220 can include a control panel (e.g., fire control panel) 216. Control panel 216 can be any different type of physical control panel, such as a control box, installed in the facility.
  • Control panel 216 can be used by a user to monitor and/or control components 218-1, 218-2, . . . 218-N. For instance, the user can use control panel 216 to directly control the operation of (e.g., actions performed by) components 218-1, 218-2, . . . 218-N. Further, control panel 216 can receive (e.g., collect) data, such as, for instance, real-time operational data, associated with components 218-1, 218-2, . . . 218-N. For instance, control panel 216 can receive the data directly from components 218-1, 218-2, . . . 218-N. Such data can include, for instance, current operational statuses, operational states, and/or properties of components 218-1, 218-2, . . . 218-N.
  • Gateway device 201 can be used by a user (e.g., maintenance technician or operator) to perform inspections, maintenance, and/or upgrades, among other operations, on components 218-1, 218-2, . . . 218-N. For example, as previously described herein (e.g., in connection with FIG. 1), gateway device 201 can be connected to control panel 216, and can communicate with control panel 216 to receive the data associated with components 218-1, 218-2, . . . 218-N collected by control panel 216. For instance, gateway device 201 can detect connectivity to control panel 216, determine which type of interface is connected to control panel 216, and communicate with control panel 216 based on the type of connected interface, as previously described herein (e.g., in connection with FIG. 1). As an additional example, gateway device 201 may be permanently installed and/or connected at the facility, such that it can continuously send (e.g., push) the data collected by control panel 216 to server 212.
  • As shown in FIG. 2, fire control system 220 can include a server 212. Server 212 can be located remotely from the facility and, in some embodiments, can be part of and/or coupled to a computing device (e.g., computing device 210 illustrated in FIG. 2) that is part of a centralized management platform.
  • Gateway device 201 can communicate with server 212 via network 214, as illustrated in FIG. 2. For example, as previously described herein (e.g., in connection with FIG. 1), gateway device 201 can detect connectivity to network 214, and send (e.g., transmit and/or upload) data to server 212 via network 214 using the network interface detected to be connected to network 214.
  • Network 214 can be a network relationship through which gateway device 201 and server 212 can communicate. Examples of such a network relationship can include a distributed computing environment (e.g., a cloud computing environment), a wide area network (WAN) such as the Internet, a local area network (LAN), a personal area network (PAN), a campus area network (CAN), or metropolitan area network (MAN), among other types of network relationships. For instance, network 214 can include a number of servers that receive information from, and transmit information to, gateway device 201 and server 212 via a wired or wireless network.
  • As used herein, a “network” can provide a communication system that directly or indirectly links two or more computers and/or peripheral devices and allows users to access resources on other computing devices and exchange messages with other users. A network can allow users to share resources on their own systems with other network users and to access information on centrally located systems or on systems that are located at remote locations. For example, a network can tie a number of computing devices together to form a distributed control network (e.g., cloud).
  • A network may provide connections to the Internet and/or to the networks of other entities (e.g., organizations, institutions, etc.). Users may interact with network-enabled software applications to make a network request, such as to get a file or print on a network printer. Applications may also communicate with network management software, which can interact with network hardware to transmit information between devices on the network.
  • As used herein, the term “cloud”, or distributed control network, can be used to refer to a server and/or computing device working in conjunction with other computing resources (hardware, software, logic, memory, processor, etc.) that can be used as a service over a communications network (in a wired and/or wireless manner over the internet). The server, computing device, and other computing resources can all be referred to as being part of the “cloud”.
  • As used herein, the term “computing device” can include a laptop computer, desktop computer, or mobile device, such as, for instance, a smart phone or tablet, among other types of computing devices. The computing device can include a user interface. A user can interact with the computing device via the user interface. For example, the user interface can provide (e.g., display) information to and/or receive information from (e.g., input by) the user of the computing device.
  • In some embodiments, user interface can be a graphical user interface (GUI) that can include a display (e.g., a screen) that can provide information to, and/or receive information from, the user of the computing device. The display can be, for instance, a touch-screen (e.g., the GUI can include touch-screen capabilities). As an additional example, the user interface can include a keyboard and/or mouse that the user can use to input information into the computing device, and/or a speaker that can play audio to, and/or receive audio (e.g., voice input) from, the user. Embodiments of the present disclosure, however, are not limited to a particular type(s) of user interface.
  • FIG. 3 illustrates a table 320 associated with operating a gateway device (e.g., gateway device 101 and/or 201 previously described in connection with FIGS. 1 and 2, respectively), in accordance with an embodiment of the present disclosure. Table 320 can include data associated with the subscribed-to cloud services, such as the selected features, as previously described herein (e.g., in connection to FIG. 1).
  • Upon subscribing to a number of cloud services, a user can select a number of features which correspond to each of the subscribed-to services. For example, as shown in FIG. 3, a user can subscribe to a Runtime Facility Manager service. Upon subscribing to the Runtime Facility Manager service, the user may also select a number of features that correspond to the Runtime Facility Manager service. As shown in FIG. 3, the user may select an “Alarms and Events” feature and a “Device Obscuration & Sensitivity Query” feature.
  • Additional cloud services the user can subscribe to, as shown in FIG. 3, can include a Commissioning Time service, an Inspection Manager Runtime service, a Common Things Runtime service, and a Remote Diagnostics service. Upon subscribing to any one of these cloud services, the user can select a number of features that correspond to the subscribed-to service. For example, upon subscribing to a Commissioning Time service, the user may select a “Device Configuration Details” feature and/or a “Gateway Configuration” feature. Upon subscribing to an Inspection Manager Runtime service, the user may select a “Events” feature. Upon subscribing to a Common Things Runtime service, the user may select a “Heartbeat” feature and/or a “Firmware Upgrade” feature. Upon subscribing to a Remote Diagnostics service, the user may select a “Remote Diagnostics” feature. The subscribed-to services and selected features are not limited to those shown in FIG. 3.
  • As shown in FIG. 3, the user may also prioritize each of the selected features. For example, the user may assign each selected feature with a priority level of very low, low, medium, high, and very high. Additionally, information relating to the behavior of each feature can be associated with each feature. For instance, the behavior of each feature may correspond to a configured frequency, as shown in FIG. 3. Upon subscribing to cloud services and selecting a number of features, a user can configure a number of behaviors which can correspond to each feature. Each feature can have what is classified as a “normal” behavior, a “optimal” behavior, and a “lowest” behavior. The classified behavior of a feature may depend on the priority of the feature, along with additional data such as the available bandwidth and detected network interface, among other data.
  • For example, in a scenario where a user has a cellular network, with 10 megabytes (MB) of monthly data, and has subscribed to a runtime facility manager service and a commissioning time service, data associated with each of these elements can be received by the gateway and a data management scheme can be determined. As shown in FIG. 3, a feature of the commissioning time service can include gateway configuration, which has been assigned a very low priority. Additionally, a feature of the runtime facility manager service can include alarms and events, which has been assigned a high priority.
  • In such an example, the gateway device can determine a data management scheme that utilizes the available bandwidth as optimally as possible while ensuring a QoS for higher priority cloud services the user has subscribed to. The data management scheme can utilize the available bandwidth in a way which gives higher priority to the alarms and events feature than the commissioning time feature. Thus, if there is a limited amount of bandwidth available, the behavior of the alarms and events feature may correspond to a behavior classified as “optimal”, while the behavior of the commissioning time feature may correspond to a behavior classified as “lowest”.
  • FIG. 4 illustrates a flow chart 430 associated with operating a gateway device in accordance with an embodiment of the present disclosure. The gateway device can be gateway device 101 previously described in connection with FIG. 1 and/or gateway device 201 previously described in connection with FIG. 2. As previously described herein (e.g., in connection with FIG. 1), the gateway device can include bandwidth optimizer engine 406-2, which may be referred to engine as 406-2.
  • As previously described, engine 406-2 can determine a data management scheme 444 that utilizes the available bandwidth as optimally as possible while ensuring a QoS for higher priority cloud services a customer has subscribed to. The data management scheme 444 can be determined based on received data 432, 434, and 408.
  • As shown in FIG. 4, maximum bandwidth data 432 can include data associated with a maximum amount of available bandwidth that can be utilized by the gateway device, such 10 MB of monthly data. Feature priority table data 434 can include data associated with the subscribed-to cloud services, as previously described (e.g., in connection with table 320 shown in FIG. 3). Network interface data 408 can include data associated with (e.g., the type of) the detected network interface, as previously described (e.g., in connection with FIG. 1).
  • For example, bandwidth optimizer engine 406-2 can determine that in a scenario where the user has a cellular network (e.g., 4G/LTE) with 10 MB of monthly data, and has subscribed to a common things runtime service that includes a firmware upgrade which has been assigned a low priority, that firmware upgrades will be manually performed. Bandwidth optimizer engine 406-2 can determine the behavior of each of the selected features to make up the data management scheme 444.
  • FIG. 5 illustrates an example of a gateway device 501 for a fire control system in accordance with an embodiment of the present disclosure. Gateway device 501 can be, for instance, gateway device 101 and/or gateway device 201 previously described herein in connection with FIGS. 1 and 2, respectively.
  • As shown in FIG. 5, gateway device 501 can include a processor 544 and a memory 542. Memory 542 can be any type of storage medium that can be accessed by processor 544 to perform various examples of the present disclosure. For example, memory 542 can be a non-transitory computer readable medium having computer readable instructions (e.g., computer program instructions) stored thereon that are executable by processor 544 to perform various examples of the present disclosure. That is, processor 544 can execute the executable instructions stored in memory 542 to perform various examples in accordance with the present disclosure.
  • Memory 542 can be volatile or nonvolatile memory. Memory 652 can also be removable (e.g., portable) memory, or non-removable (e.g., internal) memory. For example, memory 542 can be random access memory (RAM) (e.g., dynamic random access memory (DRAM), resistive random access memory (RRAM), and/or phase change random access memory (PCRAM)), read-only memory (ROM) (e.g., electrically erasable programmable read-only memory (EEPROM) and/or compact-disk read-only memory (CD-ROM)), flash memory, a laser disk, a digital versatile disk (DVD) or other optical disk storage, and/or a magnetic medium such as magnetic cassettes, tapes, or disks, among other types of memory.
  • Further, although memory 542 is illustrated as being located in gateway device 501, embodiments of the present disclosure are not so limited. For example, memory 542 can also be located internal to another computing resource (e.g., enabling computer readable instructions to be downloaded over the Internet or another wired or wireless connection).
  • Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that any arrangement calculated to achieve the same techniques can be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments of the disclosure.
  • It is to be understood that the above description has been made in an illustrative fashion, and not a restrictive one. Combination of the above embodiments, and other embodiments not specifically described herein will be apparent to those of skill in the art upon reviewing the above description.
  • The scope of the various embodiments of the disclosure includes any other applications in which the above structures and methods are used. Therefore, the scope of various embodiments of the disclosure should be determined with reference to the appended claims, along with the full range of equivalents to which such claims are entitled.
  • In the foregoing Detailed Description, various features are grouped together in example embodiments illustrated in the figures for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the embodiments of the disclosure require more features than are expressly recited in each claim.
  • Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.

Claims (20)

What is claimed is:
1. A gateway device for a fire control system, comprising:
a network interface configured to connect to a network;
a processor; and
a memory having instructions stored thereon, which when executed by the processor cause the processor to determine a data management scheme for the gateway device based on a type of the network interface.
2. The gateway device of claim 1, wherein the instructions when executed by the processor cause the processor to:
receive data associated with the fire control system; and
determine the data management scheme based on the received data.
3. The gateway device of claim 2, wherein the data is received via the network interface.
4. The gateway device of claim 2, wherein the data is received via an additional interface of the gateway device.
5. The gateway device of claim 2, wherein the data is associated with a cloud service for the fire control system.
6. The gateway device of claim 1, wherein the instructions when executed by the processor cause the processor to detect that the network interface is connected to the network.
7. The gateway device of claim 1, wherein the instructions when executed by the processor cause the processor to notify a user of the determined data management scheme.
8. The gateway device of claim 1, wherein the determined data management scheme is for utilizing an available bandwidth of the gateway device.
9. A method of operating a gateway device for a fire control system, comprising:
connecting a network interface of the gateway device to a network; and
determining, by the gateway device, a data management scheme for the gateway device based on a type of the connected network interface.
10. The method of claim 9, wherein the network is a cellular network.
11. The method of claim 9, wherein the determined data management scheme is for a feature associated with a cloud service for the fire control system.
12. The method of claim 11, wherein the method includes receiving, by the gateway device, a selection of the feature.
13. The method of claim 11, wherein the feature is associated with available bandwidth of the gateway device for the cloud service.
14. A fire control system, comprising:
a gateway device having a plurality of network interfaces, wherein the gateway device is configured to:
detect that one of the plurality of network interfaces is connected to a network; and
determine a data management scheme for the gateway device based on a type of the detected network interface.
15. The fire control system of claim 14, wherein:
the system includes a control panel having an interface; and
the gateway device is configured to connect to the interface of the control panel.
16. The fire control system of claim 15, wherein the gateway device and the control panel are located in a same facility.
17. The fire control system of claim 14, wherein the system includes a server configured to connect to the network.
18. The fire control system of claim 17, wherein:
the gateway device is located in a facility; and
the server is located remotely from the facility.
19. The fire control system of claim 14, wherein the gateway device is configured to scan the plurality of network interfaces to detect that one of the plurality of network interfaces is connected to the network.
20. The fire control system of claim 14, wherein the plurality of network interfaces includes at least one of:
an ethernet interface;
a Wi-Fi interface;
a long-term evolution (LTE) interface; and
a public switched telephone network (PSTN) interface.
US17/222,002 2019-06-25 2021-04-05 Gateway device for a fire control system Pending US20210226819A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/222,002 US20210226819A1 (en) 2019-06-25 2021-04-05 Gateway device for a fire control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/451,648 US10972314B2 (en) 2019-06-25 2019-06-25 Gateway device for a fire control system
US17/222,002 US20210226819A1 (en) 2019-06-25 2021-04-05 Gateway device for a fire control system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/451,648 Continuation US10972314B2 (en) 2019-06-25 2019-06-25 Gateway device for a fire control system

Publications (1)

Publication Number Publication Date
US20210226819A1 true US20210226819A1 (en) 2021-07-22

Family

ID=71143503

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/451,648 Active US10972314B2 (en) 2019-06-25 2019-06-25 Gateway device for a fire control system
US17/222,002 Pending US20210226819A1 (en) 2019-06-25 2021-04-05 Gateway device for a fire control system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/451,648 Active US10972314B2 (en) 2019-06-25 2019-06-25 Gateway device for a fire control system

Country Status (2)

Country Link
US (2) US10972314B2 (en)
EP (1) EP3758336A1 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080072314A1 (en) * 2006-09-15 2008-03-20 Tyco Safety Products Canada Ltd. Method and apparatus for automated activation of a security system
US20100071053A1 (en) * 2006-12-29 2010-03-18 Prodea Systems, Inc. Presence Status Notification From Digital Endpoint Devices Through A Multi-Services Gateway Device At The User Premises
US20130285799A1 (en) * 2012-04-26 2013-10-31 Honeywell International Inc. System and method to protect against local control failure using cloud-hosted control system back-up processing
US20160165663A1 (en) * 2014-12-09 2016-06-09 Verizon Patent And Licensing Inc. Secure connected device control and monitoring system
US20170374027A1 (en) * 2014-01-30 2017-12-28 Sierra Nevada Corporation Bi-directional data security for control systems
US20180011461A1 (en) * 2016-07-07 2018-01-11 Tyco Fire & Security Gmbh Building Asset Management System
US20180115901A1 (en) * 2016-10-20 2018-04-26 Fortress Cyber Security, LLC Combined network and physical security appliance
US20180242218A1 (en) * 2017-02-23 2018-08-23 Cisco Technology, Inc. Heterogeneous access gateway for an information-centric networking environment
US20180338236A1 (en) * 2014-04-03 2018-11-22 Comcast Cable Communications, Llc Emergency Information Delivery
US20200080739A1 (en) * 2018-09-11 2020-03-12 Johnson Controls Technology Company Fire notification device with integrated environmental node sensor
US20200145289A1 (en) * 2015-05-26 2020-05-07 Life Safety Distribution Ag. Method for configuring a wireless fire detection system
US20200328979A1 (en) * 2019-04-09 2020-10-15 Charter Communications Operating, Llc Dynamic prioritization of data flows
US11341825B1 (en) * 2018-10-04 2022-05-24 Amazon Technologies, Inc. Implementing deterrent protocols in response to detected security events
US11553320B1 (en) * 2016-04-05 2023-01-10 Alarm.Com Incorporated Detection and handling of home owner moving by a home monitoring system
US20230098176A1 (en) * 2007-08-24 2023-03-30 Icontrol Networks, Inc. Controlling data routing in premises management systems

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100666694B1 (en) * 2005-01-17 2007-01-11 삼성전자주식회사 Home gateway based on OSGi and device registration method thereof
CN100517406C (en) 2005-06-16 2009-07-22 安徽雷森电子有限公司 Wireless fire fighting detector network based on ZigBee and control method
KR100715677B1 (en) 2005-12-02 2007-05-09 한국전자통신연구원 Congestion control access gateway system and method for congestion control in congestion control access gateway system
US9036489B2 (en) * 2012-06-22 2015-05-19 Honey International Inc. Access point synchronization in Wi-Fi fire detection systems
WO2014116699A1 (en) 2013-01-22 2014-07-31 Verax Technology Holdings, Inc. A communications gateway for transmitting and receiving information associated with at least one service class
US10084638B2 (en) 2014-08-13 2018-09-25 Tyco Safety Products Canada Ltd. Method and apparatus for automation and alarm architecture
CN104580370A (en) 2014-12-10 2015-04-29 上海物联网有限公司 Self-adaptive transmission method and device for multimode gateway for information monitoring system
US10084868B2 (en) 2016-09-03 2018-09-25 Microsoft Technology Licensing, Llc IoT gateway for weakly connected settings
US10728218B2 (en) * 2018-02-26 2020-07-28 Mcafee, Llc Gateway with access checkpoint
US11223491B2 (en) * 2018-08-02 2022-01-11 Johnson Controls Tyco IP Holdings LLP Fire alarm system powering a wireless building network
US10679491B1 (en) * 2019-03-20 2020-06-09 Honeywell International Inc. Fire control panel configuration

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080072314A1 (en) * 2006-09-15 2008-03-20 Tyco Safety Products Canada Ltd. Method and apparatus for automated activation of a security system
US20100071053A1 (en) * 2006-12-29 2010-03-18 Prodea Systems, Inc. Presence Status Notification From Digital Endpoint Devices Through A Multi-Services Gateway Device At The User Premises
US20230098176A1 (en) * 2007-08-24 2023-03-30 Icontrol Networks, Inc. Controlling data routing in premises management systems
US20130285799A1 (en) * 2012-04-26 2013-10-31 Honeywell International Inc. System and method to protect against local control failure using cloud-hosted control system back-up processing
US20170374027A1 (en) * 2014-01-30 2017-12-28 Sierra Nevada Corporation Bi-directional data security for control systems
US20180338236A1 (en) * 2014-04-03 2018-11-22 Comcast Cable Communications, Llc Emergency Information Delivery
US20160165663A1 (en) * 2014-12-09 2016-06-09 Verizon Patent And Licensing Inc. Secure connected device control and monitoring system
US20200145289A1 (en) * 2015-05-26 2020-05-07 Life Safety Distribution Ag. Method for configuring a wireless fire detection system
US11553320B1 (en) * 2016-04-05 2023-01-10 Alarm.Com Incorporated Detection and handling of home owner moving by a home monitoring system
US20180011461A1 (en) * 2016-07-07 2018-01-11 Tyco Fire & Security Gmbh Building Asset Management System
US20180115901A1 (en) * 2016-10-20 2018-04-26 Fortress Cyber Security, LLC Combined network and physical security appliance
US20180242218A1 (en) * 2017-02-23 2018-08-23 Cisco Technology, Inc. Heterogeneous access gateway for an information-centric networking environment
US20200080739A1 (en) * 2018-09-11 2020-03-12 Johnson Controls Technology Company Fire notification device with integrated environmental node sensor
US11341825B1 (en) * 2018-10-04 2022-05-24 Amazon Technologies, Inc. Implementing deterrent protocols in response to detected security events
US20200328979A1 (en) * 2019-04-09 2020-10-15 Charter Communications Operating, Llc Dynamic prioritization of data flows

Also Published As

Publication number Publication date
US10972314B2 (en) 2021-04-06
EP3758336A1 (en) 2020-12-30
US20200412580A1 (en) 2020-12-31

Similar Documents

Publication Publication Date Title
US8639791B2 (en) Techniques for evaluating and managing cloud networks
US11632320B2 (en) Centralized analytical monitoring of IP connected devices
US11050632B2 (en) Automated inventory for IoT devices
US11475758B2 (en) Monitoring control panels of a fire control system
US20210191826A1 (en) Building system with ledger based software gateways
US20200014600A1 (en) CHANGE CRITICALITY QUANTIFIER FOR AN IoT WORKSPACE AND ASSOCIATED METHODS
US20210195443A1 (en) Intelligent monitoring systems and methods for Wi-Fi Metric-Based Resolutions for Cloud-Based Wi-Fi Networks
EP4033467A1 (en) Instructions and method for commissioning a fire system
US11930380B2 (en) Intelligent monitoring systems and methods for Wi-Fi metric-based ISP outage detection for cloud based Wi-Fi networks
US11847902B2 (en) Gateway device for a fire control system
EP3745374B1 (en) Operating a fire control system
US10334461B2 (en) System, device and method for testing app performance
US20210226819A1 (en) Gateway device for a fire control system
US11936805B2 (en) AutoMate—automated interface between call center agents and network orchestration systems via application programming interfaces (APIs)
EP3985939A1 (en) Intelligent monitoring systems and methods for cloud-based wi-fi networks
US9967142B2 (en) Method and system for troubleshooting in in-house networks
US11743746B2 (en) Intelligent monitoring systems and methods for Wi-Fi metric-based alarms for cloud-based Wi-Fi networks
US11895511B2 (en) Intelligent monitoring systems and methods for Wi-Fi metric-based predictions for cloud-based Wi-Fi networks

Legal Events

Date Code Title Description
AS Assignment

Owner name: HONEYWELL INTERNATIONAL INC., NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MERUVA, JAYAPRAKASH;NALUKURTHY, RAJESH BABU;E K, VIPIN DAS;AND OTHERS;SIGNING DATES FROM 20190610 TO 20190625;REEL/FRAME:055821/0075

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED