US20210226579A1 - Leak Resistant Solar Panel Installation Clamp and Method of Use - Google Patents

Leak Resistant Solar Panel Installation Clamp and Method of Use Download PDF

Info

Publication number
US20210226579A1
US20210226579A1 US17/131,489 US202017131489A US2021226579A1 US 20210226579 A1 US20210226579 A1 US 20210226579A1 US 202017131489 A US202017131489 A US 202017131489A US 2021226579 A1 US2021226579 A1 US 2021226579A1
Authority
US
United States
Prior art keywords
solar panel
head
base
foot
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/131,489
Inventor
Greg J. Olson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Blue Lightning LLC
Original Assignee
Blue Lightning LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blue Lightning LLC filed Critical Blue Lightning LLC
Priority to US17/131,489 priority Critical patent/US20210226579A1/en
Publication of US20210226579A1 publication Critical patent/US20210226579A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B5/00Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
    • F16B5/0004Joining sheets, plates or panels in abutting relationship
    • F16B5/0008Joining sheets, plates or panels in abutting relationship by moving the sheets, plates or panels substantially in their own plane, perpendicular to the abutting edge
    • F16B5/0028Joining sheets, plates or panels in abutting relationship by moving the sheets, plates or panels substantially in their own plane, perpendicular to the abutting edge using I-shaped connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B5/00Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
    • F16B5/06Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of clamps or clips
    • F16B5/0607Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of clamps or clips joining sheets or plates to each other
    • F16B5/0621Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of clamps or clips joining sheets or plates to each other in parallel relationship
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/10Frame structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • a leak resistant solar panel installation that uses an I-beam partially nested within a channel formed by a rail.
  • the solar panel is placed between the top of the beam and the edge of the channel opening.
  • An adjustable clamp extends from the underside of the rail through the interior of the channel, where it embraces the foot of the I-beam. By manipulating the clamp, the beam is drawn further into the channel, pinching or holding the panel between the I-beam and the rail, securing it in place.
  • the points of contact between the solar panel and beam and rail include protective and leak resistant fittings. Additional watertight applications may be used to create a leak-proof assembly.
  • FIG. 1 depicts a cross-section of an embodiment of the solar panel assembly with a mounted solar panel.
  • FIG. 2 depicts an exploded view of an embodiment of the solar panel assembly.
  • FIG. 3 depicts a cross-section view of an embodiment of the solar panel assembly.
  • FIG. 4 depicts a prospective view an embodiment of the I-beam.
  • FIG. 5 is a cross sectional view of an embodiment of the I-beam.
  • FIG. 6 depicts a cross sectional view and an exploded view of an embodiment of the solar panel assembly.
  • FIG. 7 depicts a cross sectional view and an exploded view of an embodiment of the solar panel assembly.
  • FIG. 8 depicts a side view of an embodiment of the solar panel assembly.
  • FIG. 9 depicts a side view of an embodiment of the solar panel assembly.
  • FIG. 10 depicts a top perspective view of an embodiment of the layout of the parallel tracks for the solar panel assembly.
  • FIG. 11 depicts a top perspective view of an embodiment of the solar panel assembly.
  • FIG. 12 depicts a top perspective view of the channel in an embodiment of the solar panel assembly.
  • FIG. 1 is a cross-section of the solar panel assembly with a mounted solar panel.
  • the assembly 10 includes a rail 12 with a base 14 and two walls 16 a, 16 b.
  • the base 14 has a first side 15 , a second side 17 , and holes 19 connecting the first side 15 and the second side 17 .
  • Each of the walls 16 a, 16 b has a base edge 20 and a free edge 22 .
  • the walls 16 a, 16 b are attached to the first side 15 of the base 14 at each base edge 20 .
  • Each of the walls 16 a, 16 b extends away from the first side 15 of the base 14 such that the walls 16 a, 16 b oppose each other to form a channel, with the space between the free edges 22 defining an opening into the channel.
  • FIG. 1 also shows an I-beam 30 having a foot 32 , a spine 34 , and a head 36 .
  • the foot 32 and head 36 are each a flat, elongated member, and are positioned parallel to each other and joined by perpendicular attachment of the spine 34 .
  • the I-beam is positioned within the rail 12 such that the foot 32 is situated within the channel and the spine 34 extends through the channel opening with the head 36 outside of the channel.
  • the relative position of the head 36 and free edges 22 on either side of the spine 34 defines a gap 40 between the free edges 22 and the head 36 .
  • the gap 40 is capable of accommodating the thickness of a solar panel 50 . In FIG. 1 , a solar panel 50 is inserted into the gap 40 .
  • each clamp 60 has a pair of retaining flanges 62 , a coupler 64 , and an adjuster 66 .
  • the coupler 64 and the adjuster 66 can link directly to the clamp 60 without the need for a pair of retaining flanges.
  • the pair of retaining flanges 62 is positioned inside the channel and configured to clasp the foot 32 .
  • the coupler 64 is attached to the pair of retaining flanges 62 and extends through one of the holes 19 in the base 14 .
  • the adjuster 66 is attached to the coupler 64 and is located and accessible from the underside of the rail, outside the channel.
  • the clamp 60 is configured such that manipulation of the adjuster 66 changes the distance between the pair of retaining flanges 62 and the adjuster 66 .
  • the adjuster 66 may be manipulated so as to shorten the distance between the adjuster 66 and the pair of retaining flanges 62 , thereby pulling the I-beam 30 further into the channel of the rail 12 and reducing the size of the gap 40 until the solar panel is securely held between a free edge 22 and the head 36 .
  • the pair of retaining flanges 62 is curved to clasp the foot 32 and contains an aperture near its center.
  • the coupler 64 is a bolt inserted through the pair of retaining flanges aperture and anchored into a lock nut nested in, or optionally integrated into, the pair of retaining flanges 62 .
  • the adjuster 66 is an integrated head of the bolt, which is contoured to allow turning of the bolt.
  • the bolt turns and, because it is interfaced with the lock nut on the other side of the pair of retaining flanges 62 , the pair of retaining flanges 62 is pulled deeper into the channel, bringing the I-beam 30 with it.
  • a protective layer such as a foam cushion, rubber, etc.
  • This will help secure the solar panel 50 into the assembly while minimizing the risk of damage to the solar panel 50 .
  • a leak resistant material such as rubber
  • an additional sealing layer such as silicone or some similar substance, may be applied to the junction 60 between the solar panel 50 and the head 36 to further minimize any potential invasion by water.
  • FIG. 1 depicts the head 36 and foot 32 as being a roughly the same width, different widths may be used.
  • the foot 32 need be of sufficient width so as to be able to be positioned within the opening of the channel.
  • a relatively wider head 36 may be desired to achieve greater contact with the solar panel 50 and a more secure installation.
  • FIG. 2 shows an exploded view of the embodiment described above. Sample part dimensions are provided, though other dimensions may be used.
  • FIG. 2 shows the rail 12 and I-beam 34 .
  • the parts making up the clamp 60 include the coupler 64 with integrated head 66 , and the pair of retaining flanges 62 .
  • the coupler 64 is anchored into the pair of retaining flanges using a square nut that is set within a recess in the pair of retaining flanges 62 which prevents it from turning.
  • FIG. 3 shows another embodiment of the solar panel assembly 10 .
  • a nut with internal threading is pressed into a custom hole in the I-beam 34 and is aligned with a hole drilled into the foot of the I-beam.
  • This nut functions as the pair of retaining flanges 62 and the coupler 64 with integrated adjuster 66 is inserted in to the hole in the I-beam and engages the nut such that the I-beam is drawn into the rail as the adjuster is turned.
  • FIGS. 4 and 5 A detailed view of the construction of the I-beam holes and insertion of the nut is shown in FIGS. 4 and 5 , respectively.
  • FIG. 6 shows an alternative embodiment of the solar panel assembly 10 .
  • a washer or bolt fits into this opening and has one or more holes to allow for the passage of one or more bolts 94 or screws.
  • the bolts or screws pass through openings 91 in the washer 92 , through the holes in the bottom of the U-shaped bracket, and through the foot of the I-beam.
  • the top of the I-beam can be configured to have one or more openings for passage of one or more bolts which pass through the top of the I-beam, the foot of the I-beam, and through the base to the washer, as shown in FIG. 7 .
  • the washer or bolt serves to align the connector bolts or screws that pass through the clamp and into the I-beam.
  • the connector bolts can be made to insert on either side of the I-beam, with the I-beam externally threaded 90 as shown in FIG. 6 .
  • a single bolt can be utilized to pass through the center of the I-beam to connect the I-beam to the U-bracket. Tightening of the connector bolts or screws serves to draw the I-beam toward the bottom of the U-shaped connector, thus tightening the I-beam grip on the solar panels illustrated in each of the figures. Rubber or similar gaskets can be positioned between the I-beam flanges and the solar panel to provide a further weather resistant or weather tight junction.
  • FIGS. 8 and 9 illustrate of an embodiment of the invention utilized to clamp an edge of the solar panel.
  • FIGS. 10 illustrates a layout of two parallel tracks for securing opposing edges of a solar panel.
  • FIG. 11 illustrates two opposing parallel channels used to clamp opposing edges of a solar panel.
  • FIG. 12 illustrates a top view of the channel in an embodiment of the invention.

Abstract

A solar panel mounting assembly having a rail having two opposing edges. An I-beam having a foot and a head separated by a spine is positioned such that the foot is within the rail and the head is outside of the channel. A gap is positioned between the head of the I-beam and the edges of the rail. One or more bolts is utilized that extends through the base of the rail and through the foot of the I-beam such that tightening the bolts causes the gap between the head of the I-beam and the edges of the rail to reduce in size. This causes the I-beam to tighten on a solar panel held in the gap, thus securing the I-beam in place.

Description

    PRIORITY/CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Nonprovisional application Ser. No. 16/375,759, filed May Apr. 4, 2019, which claims benefit to U.S. Provisional Application No. 62/652,817, filed Apr. 4, 2018, the disclosure of each of which is incorporated by reference.
  • SUMMARY OF THE DISCLOSURE
  • Disclosed is a leak resistant solar panel installation that uses an I-beam partially nested within a channel formed by a rail. The solar panel is placed between the top of the beam and the edge of the channel opening. An adjustable clamp extends from the underside of the rail through the interior of the channel, where it embraces the foot of the I-beam. By manipulating the clamp, the beam is drawn further into the channel, pinching or holding the panel between the I-beam and the rail, securing it in place. The points of contact between the solar panel and beam and rail include protective and leak resistant fittings. Additional watertight applications may be used to create a leak-proof assembly.
  • Still other features and advantages of the presently disclosed and claimed inventive concept(s) will become readily apparent to those skilled in this art from the following detailed description describing preferred embodiments of the inventive concept(s), simply by way of illustration of the best mode contemplated by carrying out the inventive concept(s). As will be realized, the inventive concept(s) is capable of modification in various obvious respects all without departing from the inventive concept(s). Accordingly, the drawings and description of the preferred embodiments are to be regarded as illustrative in nature, and not as restrictive in nature.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 depicts a cross-section of an embodiment of the solar panel assembly with a mounted solar panel.
  • FIG. 2 depicts an exploded view of an embodiment of the solar panel assembly.
  • FIG. 3 depicts a cross-section view of an embodiment of the solar panel assembly.
  • FIG. 4 depicts a prospective view an embodiment of the I-beam.
  • FIG. 5 is a cross sectional view of an embodiment of the I-beam.
  • FIG. 6 depicts a cross sectional view and an exploded view of an embodiment of the solar panel assembly.
  • FIG. 7 depicts a cross sectional view and an exploded view of an embodiment of the solar panel assembly.
  • FIG. 8 depicts a side view of an embodiment of the solar panel assembly.
  • FIG. 9 depicts a side view of an embodiment of the solar panel assembly.
  • FIG. 10 depicts a top perspective view of an embodiment of the layout of the parallel tracks for the solar panel assembly.
  • FIG. 11 depicts a top perspective view of an embodiment of the solar panel assembly.
  • FIG. 12 depicts a top perspective view of the channel in an embodiment of the solar panel assembly.
  • DETAILED DESCRIPTION
  • A leak resistant solar panel assembly can be used to securely mount solar panels while minimizing leakage of fluid between the solar panels and the assembly hardware. FIG. 1 is a cross-section of the solar panel assembly with a mounted solar panel. As shown in FIG. 1, the assembly 10 includes a rail 12 with a base 14 and two walls 16 a, 16 b. The base 14 has a first side 15, a second side 17, and holes 19 connecting the first side 15 and the second side 17.
  • Each of the walls 16 a, 16 b has a base edge 20 and a free edge 22. The walls 16 a, 16 b are attached to the first side 15 of the base 14 at each base edge 20. Each of the walls 16 a, 16 b extends away from the first side 15 of the base 14 such that the walls 16 a, 16 b oppose each other to form a channel, with the space between the free edges 22 defining an opening into the channel.
  • FIG. 1 also shows an I-beam 30 having a foot 32, a spine 34, and a head 36. The foot 32 and head 36 are each a flat, elongated member, and are positioned parallel to each other and joined by perpendicular attachment of the spine 34. The I-beam is positioned within the rail 12 such that the foot 32 is situated within the channel and the spine 34 extends through the channel opening with the head 36 outside of the channel. The relative position of the head 36 and free edges 22 on either side of the spine 34 defines a gap 40 between the free edges 22 and the head 36. The gap 40 is capable of accommodating the thickness of a solar panel 50. In FIG. 1, a solar panel 50 is inserted into the gap 40.
  • Also shown in FIG. 1 is one of a plurality of clamps. In a preferred embodiment each clamp 60 has a pair of retaining flanges 62, a coupler 64, and an adjuster 66. In alternative embodiments, the coupler 64 and the adjuster 66 can link directly to the clamp 60 without the need for a pair of retaining flanges. As shown in FIG. 1, the pair of retaining flanges 62 is positioned inside the channel and configured to clasp the foot 32. The coupler 64 is attached to the pair of retaining flanges 62 and extends through one of the holes 19 in the base 14. The adjuster 66 is attached to the coupler 64 and is located and accessible from the underside of the rail, outside the channel. The clamp 60 is configured such that manipulation of the adjuster 66 changes the distance between the pair of retaining flanges 62 and the adjuster 66.
  • When the edge of a solar panel 50 is inserted into the gap 40, the adjuster 66 may be manipulated so as to shorten the distance between the adjuster 66 and the pair of retaining flanges 62, thereby pulling the I-beam 30 further into the channel of the rail 12 and reducing the size of the gap 40 until the solar panel is securely held between a free edge 22 and the head 36.
  • Different clamp configurations may be employed. In one embodiment, shown in FIG. 1, the pair of retaining flanges 62 is curved to clasp the foot 32 and contains an aperture near its center. The coupler 64 is a bolt inserted through the pair of retaining flanges aperture and anchored into a lock nut nested in, or optionally integrated into, the pair of retaining flanges 62. The adjuster 66 is an integrated head of the bolt, which is contoured to allow turning of the bolt. By turning the adjuster 66, the bolt turns and, because it is interfaced with the lock nut on the other side of the pair of retaining flanges 62, the pair of retaining flanges 62 is pulled deeper into the channel, bringing the I-beam 30 with it.
  • Because the solar panel is secured by tightening the clamp 30 and thereby narrowing the gap 40 between the solar panel 50 and the head 36, pressure is exerted on the edge of the solar panel 50 during installation. Thus, it may be useful to insert a protective layer, such as a foam cushion, rubber, etc., between the free edge 22 and the underside of the head 36. This will help secure the solar panel 50 into the assembly while minimizing the risk of damage to the solar panel 50. Using a leak resistant material, such as rubber, as this protective layer will also minimize leakage between the solar panel 50 and the head 36. Once installed, an additional sealing layer, such as silicone or some similar substance, may be applied to the junction 60 between the solar panel 50 and the head 36 to further minimize any potential invasion by water.
  • While FIG. 1 depicts the head 36 and foot 32 as being a roughly the same width, different widths may be used. For example, the foot 32 need be of sufficient width so as to be able to be positioned within the opening of the channel. A relatively wider head 36, however, may be desired to achieve greater contact with the solar panel 50 and a more secure installation.
  • FIG. 2 shows an exploded view of the embodiment described above. Sample part dimensions are provided, though other dimensions may be used. FIG. 2 shows the rail 12 and I-beam 34. The parts making up the clamp 60 include the coupler 64 with integrated head 66, and the pair of retaining flanges 62. In the embodiment show, the coupler 64 is anchored into the pair of retaining flanges using a square nut that is set within a recess in the pair of retaining flanges 62 which prevents it from turning.
  • FIG. 3 shows another embodiment of the solar panel assembly 10. In this embodiment, a nut with internal threading is pressed into a custom hole in the I-beam 34 and is aligned with a hole drilled into the foot of the I-beam. This nut functions as the pair of retaining flanges 62 and the coupler 64 with integrated adjuster 66 is inserted in to the hole in the I-beam and engages the nut such that the I-beam is drawn into the rail as the adjuster is turned. A detailed view of the construction of the I-beam holes and insertion of the nut is shown in FIGS. 4 and 5, respectively.
  • FIG. 6 shows an alternative embodiment of the solar panel assembly 10. In this embodiment there is an indentation and opening at the bottom of the U-bracket/rail base 14. A washer or bolt fits into this opening and has one or more holes to allow for the passage of one or more bolts 94 or screws. The bolts or screws pass through openings 91 in the washer 92, through the holes in the bottom of the U-shaped bracket, and through the foot of the I-beam. Alternatively, the top of the I-beam can be configured to have one or more openings for passage of one or more bolts which pass through the top of the I-beam, the foot of the I-beam, and through the base to the washer, as shown in FIG. 7. The washer or bolt serves to align the connector bolts or screws that pass through the clamp and into the I-beam. The connector bolts can be made to insert on either side of the I-beam, with the I-beam externally threaded 90 as shown in FIG. 6. Alternatively a single bolt can be utilized to pass through the center of the I-beam to connect the I-beam to the U-bracket. Tightening of the connector bolts or screws serves to draw the I-beam toward the bottom of the U-shaped connector, thus tightening the I-beam grip on the solar panels illustrated in each of the figures. Rubber or similar gaskets can be positioned between the I-beam flanges and the solar panel to provide a further weather resistant or weather tight junction.
  • FIGS. 8 and 9 illustrate of an embodiment of the invention utilized to clamp an edge of the solar panel.
  • FIGS. 10 illustrates a layout of two parallel tracks for securing opposing edges of a solar panel. FIG. 11 illustrates two opposing parallel channels used to clamp opposing edges of a solar panel.
  • FIG. 12 illustrates a top view of the channel in an embodiment of the invention.
  • While certain exemplary embodiments are shown in the Figures and described herein, it is to be distinctly understood that the presently disclosed inventive concept(s) is not limited thereto but may be variously embodied to practice within the scope of this disclosure. From the foregoing description, it will be apparent that various changes may be made without departing from the spirit and scope of the disclosure as defined herein.

Claims (16)

1. A solar panel mounting assembly for mounting a solar panel to a structure, said solar panel mounting assembly comprising:
a rail having a base and two walls, with said base having a first side and a second side, and a pair of holes extending between said first side and said second side of said base;
each of said walls having a base edge and a free edge, with each of said base edges attached to said first side of said base and each of said walls extending away from said base such that said walls oppose each other to form a channel, with the space between said free edges defining an opening into said channel;
an I-beam having a foot, a spine, and a head, with said foot and said head each defining a flat, elongated member, said foot and said head positioned parallel to each other and joined by perpendicular attachment of said spine;
said I-beam positioned within said rail such that said foot is situated within said channel and said spine extends through said opening of said channel with said head outside of said channel to define a gap having a distance between said free edges and said head, said gap capable of accommodating the thickness of a solar panel; and
at least one bolt, wherein said bolt, wherein said bolts extends through said foot of said I-beam and through said base of said channel, wherein manipulation of said bolt changes the width of said gap between said head of said I-beam and said free edges of said walls of said channel;
wherein, when the edge of a solar panel is inserted into said gap, said bolt may be manipulated so as to shorten the distance between said adjuster and said pair of retaining flanges, thereby pulling said I-beam further into said channel and reducing the size of said gap until the solar panel is securely held between said free edges of said walls and said head of said I-beam.
2. The solar panel mounting assembly of claim 1 further comprising a protective layer attached to at least one of said free edges and said head to minimize damage to solar panel during installation and adjustment.
3. The solar panel mounting assembly of claim 1 further comprising a sealing layer between said head and said solar panel to minimize leakage of fluid between said head and said solar panel.
4. The solar panel mounting assembly of claim 1 wherein said at least one bolt comprises a pair of bolts, wherein said pair of bolts is inserted through said foot on opposing sides of said spine.
5. The solar panel mounting assembly of claim 1 wherein said bolt is first inserted through said base and second through said foot of said I-beam.
6. The solar panel mounting assembly of claim 1 wherein said bolt is first inserted through said head then through said foot then through said base.
7. The solar panel mounting assembly of claim 5 wherein said at least one bolt comprises a pair of bolts, wherein said pair of bolts is inserted through said foot on opposing sides of said spine.
8. The solar panel mounting assembly of claim 7, wherein said spine comprises a series of threads positioned on opposing sides of said spine and each configured for threaded engagement with one of said bolts.
9. The solar panel mounting assembly of claim 1 further comprising a washer, wherein said bolts pass through said washer.
10. The solar panel mounting assembly of claim 5 further comprising a washer, wherein said washer is positioned between a head of said bolt and said base.
11. The solar assembly of claim 6 further comprising a washer, wherein said washer is positioned between a head of said bolt and said head of said I-beam.
12. A method of mounting solar panels, comprising:
providing a solar panel having one or more edges;
providing a rail comprising a base and two walls, with said base having a first side and a second side, and one or more holes connecting said first side and said second side;
each of said walls having a base edge and a free edge, with each of said base edges attached to said first side of said base and each of said walls extending away from said base such that said walls oppose each other to form a channel, with the space between said free edges defining an opening into said channel;
providing an I-beam having a foot, a spine, and a head, with said foot and said head each defining a flat, elongated member, said foot and said head positioned parallel to each other and joined by perpendicular attachment of said spine;
positioning said I-beam within said rail such that said foot is situated within said channel and said spine extends through said opening of said channel with said head outside of said channel to define a gap between said free edges and said head, said gap capable of accommodating the thickness of a solar panel;
providing a plurality of bolts, each bolt configured to extend from said I-beam to said base of said rail,
inserting said edge of said solar panel into said gap and manipulating installing said bolts through said base and said foot of said I beam such that tightening said bolts thereby pulling said I-beam further into said channel and reducing the size of said gap until the solar panel is securely held between said free edges and said spine side of said head.
13. The method of claim 12, wherein said bolts are first inserted through said base and second through said foot of said I-beam.
14. The method of claim 12, wherein said bolts are first inserted through said head then through said foot then through said base.
15. The method of claim 12, wherein said bolts are inserted in opposing pairs with each bolt of said opposing pair inserted into said I-beam foot on opposing sides of said I-beam spine.
16. The method of claim 12, wherein said method comprises the step of providing a washer, wherein said washer is positioned such that said bolt passes through said washer such that a head of said bolt contacts said washer.
US17/131,489 2018-04-04 2020-12-22 Leak Resistant Solar Panel Installation Clamp and Method of Use Abandoned US20210226579A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/131,489 US20210226579A1 (en) 2018-04-04 2020-12-22 Leak Resistant Solar Panel Installation Clamp and Method of Use

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862652817P 2018-04-04 2018-04-04
US16/375,759 US10873290B2 (en) 2018-04-04 2019-04-04 Leak resistant solar panel installation clamp and method of use
US17/131,489 US20210226579A1 (en) 2018-04-04 2020-12-22 Leak Resistant Solar Panel Installation Clamp and Method of Use

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/375,759 Continuation US10873290B2 (en) 2018-04-04 2019-04-04 Leak resistant solar panel installation clamp and method of use

Publications (1)

Publication Number Publication Date
US20210226579A1 true US20210226579A1 (en) 2021-07-22

Family

ID=68695295

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/375,759 Active US10873290B2 (en) 2018-04-04 2019-04-04 Leak resistant solar panel installation clamp and method of use
US17/131,489 Abandoned US20210226579A1 (en) 2018-04-04 2020-12-22 Leak Resistant Solar Panel Installation Clamp and Method of Use

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/375,759 Active US10873290B2 (en) 2018-04-04 2019-04-04 Leak resistant solar panel installation clamp and method of use

Country Status (1)

Country Link
US (2) US10873290B2 (en)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7600349B2 (en) 2003-02-26 2009-10-13 Unirac, Inc. Low profile mounting system
NL2001200C2 (en) 2008-01-18 2009-07-21 Walraven Holding Bv J Van Mounting for solar panels.
US20090250580A1 (en) 2008-02-25 2009-10-08 Renewable Energy Holdings, Llc Modular solar panel mounting clamps
US8176693B2 (en) 2008-05-19 2012-05-15 Robert W. Mitchell Photovoltaic mounting system with locking connectors, adjustable rail height and hinge lock
CN102245979A (en) 2008-10-11 2011-11-16 美国太阳能股份有限公司 Efficient installation solar panel systems
US8256169B2 (en) 2009-03-20 2012-09-04 Northern States Metals Company Support system for solar panels
US8413944B2 (en) 2009-05-01 2013-04-09 Applied Energy Technologies Mounting systems for solar panels
US20110214365A1 (en) 2010-03-08 2011-09-08 JAC-Rack, Inc. Apparatus and method for securing solar panel cells to a support frame
US20120152326A1 (en) 2010-12-13 2012-06-21 John Raymond West Discrete Attachment Point Apparatus and System for Photovoltaic Arrays
US8776454B2 (en) 2011-04-05 2014-07-15 Michael Zuritis Solar array support structure, mounting rail and method of installation thereof
US9160273B2 (en) 2011-07-08 2015-10-13 Unirac, Inc. Universal end clamp
US9299868B2 (en) 2012-10-01 2016-03-29 Marc M. Thomas Solar panel mounting and installation
US10256766B2 (en) * 2012-10-01 2019-04-09 Marc M. Thomas Solar panel installation and dimension compensating retention device
US9303663B2 (en) 2013-04-11 2016-04-05 Northern States Metals Company Locking rail alignment system
US9080792B2 (en) 2013-07-31 2015-07-14 Ironridge, Inc. Method and apparatus for mounting solar panels
US9985575B2 (en) * 2014-04-07 2018-05-29 Rillito River Solar, Llc Height adjustment bracket for roof applications
US9584062B2 (en) * 2014-10-16 2017-02-28 Unirac Inc. Apparatus for mounting photovoltaic modules
US10340837B2 (en) * 2015-03-11 2019-07-02 Ecolibrium Solar, Inc Sloped roof solar panel mounting system

Also Published As

Publication number Publication date
US10873290B2 (en) 2020-12-22
US20190372515A1 (en) 2019-12-05

Similar Documents

Publication Publication Date Title
US8276854B2 (en) Clamp for circular objects
US8480330B2 (en) Fixture for attaching a profile rail to another component
US9464734B2 (en) Cord-like member holder for working machine
US10100950B2 (en) Pipe clamp
US10113676B2 (en) Clip for adjustable pipe fitting
JP2009281114A (en) Metal fitting for folded-plate roof
JP2015520306A (en) Fixing the solar panel
KR101348039B1 (en) Clamp for fixing cable
US20210180739A1 (en) Pipe insulation coupling with sealing mechanism
JP5215264B2 (en) Attachment body device and attachment body
US20210226579A1 (en) Leak Resistant Solar Panel Installation Clamp and Method of Use
KR20070013178A (en) Blind branch outlet fitting system
JP5433119B2 (en) Arrangement body support
TW201823595A (en) Holder
RU2750739C2 (en) Mounting system for attaching a wall angle element of a fluid conducting installation on the wall
JP2013023855A (en) Clip fitting for ceiling backing
US9602902B2 (en) Speaker mounting assembly
US20200278077A1 (en) Metal roof mounting brackets
JP6957817B2 (en) Connection fixing bracket, connection fixing device, connection fixing method, wall base structure and wall base structure construction method
JP2009281423A (en) Mounting bracket for mounting object to be mounted to mounting rail
JP7266721B1 (en) securing bracket
JP5893718B1 (en) Wiring support bracket
JP6852899B2 (en) Piping mounting bracket
US20060243475A1 (en) Trunking and connecting means therefor
KR20180070038A (en) Bolting clamp for U-Bolt and Tube mounting assembly including same supporter

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION