US20210211336A1 - Synchronization apparatus and method for upstream system - Google Patents

Synchronization apparatus and method for upstream system Download PDF

Info

Publication number
US20210211336A1
US20210211336A1 US16/866,007 US202016866007A US2021211336A1 US 20210211336 A1 US20210211336 A1 US 20210211336A1 US 202016866007 A US202016866007 A US 202016866007A US 2021211336 A1 US2021211336 A1 US 2021211336A1
Authority
US
United States
Prior art keywords
complementary
channel estimation
pilot
estimation value
pilots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/866,007
Other versions
US11050593B1 (en
Inventor
Kwan-Woong Ryu
Jin-Hyuk SONG
Joon-Young Jung
Dong-Joon Choi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electronics and Telecommunications Research Institute ETRI
Original Assignee
Electronics and Telecommunications Research Institute ETRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electronics and Telecommunications Research Institute ETRI filed Critical Electronics and Telecommunications Research Institute ETRI
Assigned to ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE reassignment ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHOI, DONG-JOON, JUNG, JOON-YOUNG, RYU, KWAN-WOONG, SONG, Jin-Hyuk
Application granted granted Critical
Publication of US11050593B1 publication Critical patent/US11050593B1/en
Publication of US20210211336A1 publication Critical patent/US20210211336A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2801Broadband local area networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • H04L25/0232Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols by interpolation between sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • H04L27/2659Coarse or integer frequency offset determination and synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • H04L27/3411Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power reducing the peak to average power ratio or the mean power of the constellation; Arrangements for increasing the shape gain of a signal set
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03777Arrangements for removing intersymbol interference characterised by the signalling
    • H04L2025/03783Details of reference signals
    • H04L2025/03796Location of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2695Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with channel estimation, e.g. determination of delay spread, derivative or peak tracking

Definitions

  • the present invention relates generally to cable transmission/reception and communication technology, and more particularly, to synchronization technology for correcting a Carrier Frequency Offset (CFO) and a sampling clock offset, which occur in a Data Over Cable Service Interface Specification (DOCSIS) 3.1 upstream system.
  • CFO Carrier Frequency Offset
  • DOCSIS Data Over Cable Service Interface Specification
  • DOCSIS 3.1 In order to respond to the insufficiency of a transmission band attributable to increased demand for implementation of high-definition broadcasting service and ultra-high-speed Internet service and intensification in media competition attributable to fiber-to-the-home (FTTH)-based Gigabit-level service, DOCSIS 3.1 transmission specifications have been presented.
  • DOCSIS 3.1 refers to technology that enables 10 Gbps-level transmission, which was considered to be possible only when optical cables are installed on a subscriber's premises, to be realized over existing cable broadcasting networks.
  • a DOCSIS 3.1 upstream system uses an Orthogonal Frequency-Division Multiple Access (OFDMA) frame while aiming at a speed of 1 Gbps or more, and has a transmission unit which is a transmission burst composed of multiple minislots.
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • each minislot is composed of multiple sub-carrier groups, and all sub-carriers in each minislot have the same modulation order.
  • a cable modem (CM) is assigned one or more minislots for a transmission burst through a transmission profile, and acquires information about a modulation order and a pilot pattern.
  • the transmission profile defines the modulation order and the pilot pattern of the corresponding minislot on a transmission burst basis.
  • Korean Patent Application Publication No. 10-2018-0058621 entitled “Apparatus of Synchronization for DOCSIS Upstream Signal Transmission through Optical-Based IP Network and Method of the Same” discloses an apparatus and method for transmitting a DOCSIS-based upstream signal, used in cable broadcasting over an optical-based IP network, in synchronization with a DOCSIS network.
  • an object of the present invention is to provide synchronization and channel equalization efficient for a DOCSIS 3.1 upstream system.
  • Another object of the present invention is to effectively eliminate frequency and phase offsets attributable to the sampling clock offset of the DOCSIS 3.1 upstream system.
  • a synchronization apparatus for a upstream system including one or more processors, and an execution memory for storing at least one program that is executed by the one or more processors, wherein the at least one program is configured to receive a signal and calculate a first channel estimation value for the received signal using a predefined pilot, and calculate a second channel estimation value using a predefined complementary pilot and the first channel estimation value.
  • the at least one program may be configured to extract a compensation parameter from a preset symbol range in a symbol constellation from which the predefined complementary pilot is extracted.
  • the at least one program may be configured to extract respective compensation parameters for at least two complementary pilots from preset symbol ranges in symbol constellations of the at least two complementary pilots.
  • the at least one program may be configured to compensate for an error in the complementary pilot using the compensation parameter.
  • the at least one program may be configured to calculate the second channel estimation value using an error-compensated complementary pilot, the predefined pilot, and the first channel estimation value, and to perform channel equalization based on the second channel estimation value.
  • a synchronization method for a upstream system the synchronization method being performed using a synchronization apparatus for the upstream system, the synchronization method including receiving a signal and calculating a first channel estimation value for the received signal using a predefined pilot, and calculating a second channel estimation value using a predefined complementary pilot and the first channel estimation value.
  • Calculating the second channel estimation value may be configured to extract a compensation parameter from a preset symbol range in a symbol constellation from which the predefined complementary pilot is extracted.
  • Calculating the second channel estimation value may be configured to extract respective compensation parameters for at least two complementary pilots from preset symbol ranges in symbol constellations of the at least two complementary pilots.
  • Calculating the second channel estimation value may be configured to compensate for an error in the complementary pilots using the compensation parameters.
  • Calculating the second channel estimation value may be configured to calculate the second channel estimation value using error-compensated complementary pilots, the predefined pilot, and the first channel estimation value, and to perform channel equalization based on the second channel estimation value.
  • FIGS. 1 and 2 are diagrams illustrating a pilot pattern (2K mode) of a DOCSIS 3.1 upstream system according to an embodiment of the present invention
  • FIGS. 3 to 10 are constellations illustrating the results of performing channel equalization using pilots according to an embodiment of the present invention
  • FIG. 11 is a block diagram illustrating a synchronization apparatus for a upstream system according to an embodiment of the present invention.
  • FIG. 12 is a block diagram illustrating in detail an example of the pilot-based channel estimation unit illustrated in FIG. 11 ;
  • FIG. 13 is a block diagram illustrating in detail an example of the complementary pilot-based channel estimation unit illustrated in FIG. 11 ;
  • FIG. 14 is an operation flowchart illustrating a synchronization method for a upstream system according to an embodiment of the present invention
  • FIG. 15 is an operation flowchart illustrating in detail an example of the complementary pilot-based channel estimation step illustrated in FIG. 14 ;
  • FIG. 16 is a diagram illustrating the arrangement of pilots in a pilot pattern according to an embodiment of the present invention.
  • FIG. 17 is a graph illustrating a CFO compensation process in a frequency domain according to an embodiment of the present invention.
  • FIG. 18 is a diagram illustrating a channel estimation process according to an embodiment of the present invention.
  • FIG. 19 is a constellation illustrating an input complementary pilot symbol according to an embodiment of the present invention.
  • FIG. 20 is a constellation illustrating a symbol range for error compensation in a complementary pilot in a sixth symbol according to an embodiment of the present invention.
  • FIG. 21 is a constellation illustrating a symbol range for error compensation in a complementary pilot in an eighth symbol according to an embodiment of the present invention.
  • FIG. 22 is a constellation illustrating a complementary pilot in an error-compensated sixth symbol according to an embodiment of the present invention.
  • FIG. 23 is a constellation illustrating a complementary pilot in an error-compensated eighth symbol according to an embodiment of the present invention.
  • FIG. 24 is a diagram illustrating a channel estimation process using error-compensated complementary pilots according to an embodiment of the present invention.
  • FIGS. 25 to 32 are constellations illustrating an error-compensated complementary pilot according to an embodiment of the present invention.
  • FIG. 33 is a diagram illustrating a computer system according to an embodiment of the present invention.
  • FIGS. 1 and 2 are diagrams illustrating a pilot pattern (2K mode) of a DOCSIS 3.1 upstream system (or a DOCSIS upstream system) according to an embodiment of the present invention.
  • pilots may be scattered in first and third symbols of a frame, and complementary pilots may be scattered in symbols located at first and third locations from an end symbol.
  • each of the pilots may be a Binary Phase-Shift Keying (BPSK) symbol of 1 or ⁇ 1, which is agreed upon between a transmitter and a receiver.
  • BPSK Binary Phase-Shift Keying
  • each of the complementary pilots may transmit data other than symbols agreed upon between the transmitter and the receiver.
  • the complementary pilot may correspond to a data subcarrier having a modulation order lower than that of other data subcarriers in a minislot. If the modulation order used in other data subcarriers in the minislot is M, a complementary pilot may use ‘1’ (BPSK) in a modulation order of M ⁇ 4.
  • BPSK BPSK
  • pilot structure of the DOCSIS 3.1 upstream system when only pilots are used for channel equalization and the correction of a Carrier Frequency Offset (CFO), compensation for a sampling clock offset and a CFO and channel equalization are desirably performed in low-order symbols in which the pilots are present, but degradation of performance may occur in high-order symbols in which pilots are not present.
  • CFO Carrier Frequency Offset
  • FIGS. 3 to 10 are constellations illustrating the results of performing channel equalization using pilots according to an embodiment of the present invention.
  • FIGS. 3 to 10 it can be seen that an embodiment in which only pilots are used for channel equalization and CFO correction when data symbols are 1024-Quadrature amplitude modulation (QAM) symbols and complementary pilot symbols are 64-QAM symbols is illustrated.
  • QAM Quadrature amplitude modulation
  • complementary pilot symbols are 64-QAM symbols.
  • compensation for a sampling clock offset and a CFO and channel equalization are desirably realized in low-order symbols (symbol 1 to symbol 3 ) in which pilots are present, but degradation of performance may occur in high-order symbols (symbol 4 to symbol 8 ) in which pilots are not present, as illustrated in FIGS. 3 to 10 .
  • Such performance degradation may be more severe as the difference between frequency offsets in the transmitter and the receiver (or transmission and reception stages) is larger.
  • FIG. 11 is a block diagram illustrating a synchronization apparatus for a upstream system according to an embodiment of the present invention.
  • FIG. 12 is a block diagram illustrating in detail an example of the pilot-based channel estimation unit illustrated in FIG. 11 .
  • FIG. 13 is a block diagram illustrating in detail an example of the complementary pilot-based channel estimation unit illustrated in FIG. 11 .
  • the synchronization apparatus for the upstream system includes a pilot-based channel estimation unit 110 and a complementary pilot-based channel estimation unit 120 .
  • the pilot-based channel estimation unit 110 may receive a signal, and may calculate a first channel estimation value for the received signal using predefined pilots.
  • the pilot-based channel estimation unit 110 may include a Symbol Timing Offset (STO) estimation unit 111 , a Fast Fourier Transform (FFT) performance unit 112 , a Carrier Frequency Offset (CFO) estimation unit 113 , and a first channel estimation unit 114 .
  • STO Symbol Timing Offset
  • FFT Fast Fourier Transform
  • CFO Carrier Frequency Offset
  • the STO estimation unit 111 may estimate a Symbol Timing Offset (STO) in the time domain of the received signal.
  • STO Symbol Timing Offset
  • the FFT performance unit 112 may estimate a frequency offset after performing a Fast Fourier Transform (FFT) on the received signal.
  • FFT Fast Fourier Transform
  • the CFO estimation unit 113 may compensate for a Carrier Frequency Offset (CFO) in a frequency domain.
  • CFO Carrier Frequency Offset
  • the CFO estimation unit 113 may calculate the amount of frequency angular rotation between symbols in the frequency domain using the following Equation (1):
  • P 1 denotes N pilot symbol vectors in a first symbol
  • P3 denotes N pilot symbol vectors in a third symbol.
  • the CFO estimation unit 113 may apply the amount of frequency angular rotation between the symbols, calculated in Equation (1), to eighth symbols, as represented by the following Equation (2):
  • k of S k denotes a k-th symbol.
  • the first channel estimation unit 114 may obtain the average of channel gains using P1 and P3 pilots and apply the average to the eight symbols in the time domain, and may interpolate the channel gains, calculated in the time domain, and apply the interpolated value to the frequency domain.
  • the complementary pilot-based channel estimation unit 120 may calculate a second channel estimation value using predefined complementary pilots and the first channel estimation value.
  • the complementary pilot-based channel estimation unit 120 may include a first complementary pilot detection unit 121 , a compensation parameter detection unit 122 , a second complementary pilot detection unit 123 , and a second channel estimation unit 124 .
  • the first complementary pilot detection unit 121 may detect predefined complementary pilots.
  • 1024-QAM data symbols and 64-QAM complementary pilot symbols may coexist.
  • the first complementary pilot detection unit 121 may extract only 64-QAM complementary pilot symbols in the sixth symbol and the eighth symbol from input complementary pilot symbols.
  • the compensation parameter detection unit 122 may extract compensation parameters from preset symbol ranges in symbol constellations from which the predefined complementary pilot symbols are extracted.
  • the extracted complementary pilot symbols may exhibit a remarkably high error rate in high-order symbols.
  • the compensation parameter detection unit 122 may extract respective compensation parameters for at least two complementary pilots from preset symbol ranges in the symbol constellations of at least two complementary pilots.
  • the compensation parameter detection unit 122 may set low-power symbol ranges (see blue rectangular ranges in FIGS. 20 and 21 ) in which errors do not occur in the constellations of the sixth symbol and the eighth symbol, and may extract compensation parameters based on the set symbol ranges.
  • the complementary pilot detection values ⁇ cp may be represented by the following Equation (3):
  • r cp denotes a complementary pilot value that is input after CFO estimation and compensation have been performed
  • ⁇ cp denotes an estimated channel value at the location of the corresponding complementary pilot.
  • the compensation parameter detection unit 122 may select only complementary pilot symbols falling within a range (x) having a predetermined size.
  • the compensation parameter detection unit 122 may set the range in which errors do not occur in each of the constellations of the sixth and eighth symbols to a range of [x ⁇ c].
  • the compensation parameter detection unit 122 may set the range to a range of [x ⁇ 0.6].
  • each complementary pilot detection value ⁇ cp matches a transmitted complementary pilot value s cp without causing a symbol error.
  • the compensation parameters may be represented by the following Equation (4):
  • the second complementary pilot detection unit 123 may compensate for errors in the complementary pilots using the compensation parameters, and may detect error-compensated complementary pilots.
  • the complementary pilot values ⁇ tilde over ( ⁇ tilde over (s) ⁇ ) ⁇ cp which are error-compensated using the compensation parameters, may be represented by the following Equation (5):
  • the error rate of the complementary pilots in the sixth and eighth symbols may be ‘0’.
  • the complementary pilot error rate of ‘0’ may mean that the sixth and eighth complementary pilots can be used as known signals (i.e., signals agreed upon between transmission and reception stages), such as pilots.
  • the second channel estimation unit 124 may calculate the second channel estimation value using the error-compensated complementary pilots, the pilots, and the first channel estimation value, and may perform channel equalization based on the second channel estimation value.
  • FIG. 14 is an operation flowchart illustrating a synchronization method for a upstream system according to an embodiment of the present invention.
  • FIG. 15 is an operation flowchart illustrating in detail an example of the complementary pilot-based channel estimation step illustrated in FIG. 14 .
  • the synchronization method for a upstream system may perform pilot-based channel estimation at step S 210 .
  • a signal may be received, and a first channel estimation value for the received signal may be calculated using predefined pilots.
  • a Symbol Timing Offset (STO) may be estimated.
  • a frequency offset may be estimated.
  • a Carrier Frequency Offset (CFO) in the frequency domain may be compensated for.
  • the amount of frequency angular rotation between symbols in the frequency domain may be calculated using the above-described Equation (1).
  • the amount of frequency angular rotation between the symbols, calculated in Equation (1), may be applied to eighth symbols, as represented by the above-described Equation (2).
  • the average of channel gains using P1 and P3 pilots may be obtained and applied to the eight symbols in the time domain.
  • the channel gains, calculated in the time domain may be interpolated, and the interpolated value may be applied to the frequency domain.
  • the synchronization method for the upstream system may perform complementary pilot-based channel estimation at step S 220 .
  • a second channel estimation value may be calculated using predefined complementary pilots and the first channel estimation value.
  • complementary pilots may be detected at step S 221 .
  • the predefined complementary pilots may be detected.
  • 1024-QAM data symbols and 64-QAM complementary pilot symbols may coexist.
  • step S 221 only 64-QAM complementary pilot symbols in the sixth symbol and the eighth symbol may be extracted from input complementary pilot symbols.
  • compensation parameters may be detected at step S 222 .
  • compensation parameters may be extracted from preset symbol ranges in symbol constellations from which the predefined complementary pilot symbols are extracted.
  • the extracted complementary pilot symbols may exhibit a remarkably high error rate in high-order symbols.
  • respective compensation parameters for at least two complementary pilots may be extracted from preset symbol ranges in the symbol constellations of at least two complementary pilots.
  • step S 222 in order to correct this error rate, low-power symbol ranges (see blue rectangular ranges in FIGS. 20 and 21 ) in which errors do not occur in the constellations of the sixth symbol and the eighth symbol may be set, and compensation parameters may be extracted based on the set symbol ranges.
  • the complementary pilot detection values ⁇ cp may be represented by the above-described Equation (3).
  • step S 222 only complementary pilot symbols falling within a range (x) having a predetermined size may be selected.
  • the range in which errors do not occur in each of the constellations of the sixth and eighth symbols may be set to a range of [x ⁇ c].
  • the range may be set to a range of [x ⁇ 0.6].
  • each complementary pilot detection value ⁇ cp matches a transmitted complementary pilot value s cp without causing a symbol error.
  • the compensation parameters may be represented by the above-described Equation (4).
  • the complementary pilots may be detected by applying the compensation parameters at step S 223 .
  • step S 223 errors in the complementary pilots may be compensated for using the compensation parameters, and error-compensated complementary pilots may be detected.
  • the complementary pilot values ⁇ tilde over ( ⁇ tilde over (s) ⁇ ) ⁇ cp which are error-compensated using the compensation parameters, may be represented by the above-described Equation (5).
  • the error rate of the complementary pilots in the sixth and eighth symbols may be ‘0’
  • the complementary pilot error rate of ‘0’ may mean that the sixth and eighth complementary pilots can be used as known signals (i.e., signals agreed upon between transmission and reception stages), such as pilots.
  • channel estimation and equalization may be performed using the error-compensated complementary pilots at step S 224 .
  • the second channel estimation value may be calculated using the error-compensated complementary pilots, the predefined pilots, and the first channel estimation value, and channel equalization may be performed based on the second channel estimation value.
  • FIG. 16 is a diagram illustrating the arrangement of pilots in a pilot pattern according to an embodiment of the present invention.
  • pilots in pilot pattern 2 of a DOCSIS 3.1 upstream system can be seen.
  • FIG. 17 is a graph illustrating a Carrier Frequency Offset (CFO) compensation process in a frequency domain according to an embodiment of the present invention.
  • CFO Carrier Frequency Offset
  • the amount of frequency angular rotation between symbols in the frequency domain may be calculated using the above-described Equation (1).
  • FIG. 18 is a diagram illustrating a channel estimation process according to an embodiment of the present invention.
  • FIG. 19 is a constellation illustrating an input complementary pilot symbol according to an embodiment of the present invention.
  • FIG. 20 is a constellation illustrating a symbol range for error compensation in a complementary pilot in a sixth symbol according to an embodiment of the present invention.
  • FIG. 21 is a constellation illustrating a symbol range for error compensation in a complementary pilot in an eighth symbol according to an embodiment of the present invention.
  • the error rate of a complementary pilot in a sixth symbol is 0.0042 and that the error rate of a complementary pilot in an eighth symbol is 0.46 due to the influence of a sampling clock offset and a CFO corresponding to the results of detection. That is, the drawings show that a remarkably high error rate is exhibited in a high-order symbol.
  • the synchronization apparatus and method for the upstream system may set a low-power symbol range (a blue rectangular range) in which errors do not occur in the constellations of the sixth symbol and the eighth symbol, and may extract compensation parameters based on the low-power symbol range.
  • a low-power symbol range a blue rectangular range
  • FIG. 22 is a constellation illustrating a complementary pilot in an error-compensated sixth symbol according to an embodiment of the present invention.
  • FIG. 23 is a constellation illustrating a complementary pilot in an error-compensated eighth symbol according to an embodiment of the present invention.
  • a complementary pilot error rate of ‘0’ may mean that the complementary pilots in sixth and eighth symbols can be used as known signals (i.e., signals agreed upon between transmission and reception stages), such as pilots.
  • FIG. 24 is a diagram illustrating a channel estimation process using error-compensated complementary pilots according to an embodiment of the present invention.
  • FIG. 24 it can be seen that an embodiment of channel estimation and equalization using error-compensated complementary pilots is illustrated.
  • the synchronization apparatus and method for the upstream system may obtain the average of channel gains in a time domain using pilots in first and third symbols indicated in the red dashed-line rectangle, and may perform interpolation on the channel gains in a frequency domain. Since channel estimation values using only the pilots may be used without change, channel gain values stored in memory may be fetched and used without an operation procedure being performed in the channel estimation and equalization process using the complementary pilots. However, an operation procedure must be able to be performed on fourth to eighth symbols using newly detected complementary pilots.
  • the synchronization apparatus and method for the upstream system may calculate the channel gain of a block indicated by a blue dashed-line rectangle (fourth and sixth symbols) by obtaining a time domain average using a third pilot and a sixth complementary pilot and by obtaining a frequency domain average based on the time domain average.
  • the synchronization apparatus and method for a upstream system may calculate the channel gain of a block indicated by a black dashed-line rectangle (seventh and eighth symbols) by obtaining a time domain average using sixth and eighth complementary pilots and by obtaining a frequency domain average based on the time domain average.
  • FIGS. 25 to 32 are constellations illustrating error-compensated complementary pilots according to embodiment of the present invention.
  • the synchronization apparatus and method for a upstream system may perform channel estimation and equalization based on pilots and perform channel estimation and equalization based on error-compensated complementary pilots.
  • a sampling clock offset and a Carrier Frequency Offset (CFO) in the symbol constellations illustrated in FIGS. 3 to 10 may be compensated for, and thus symbol constellations illustrated in FIGS. 25 to 32 may be obtained.
  • CFO Carrier Frequency Offset
  • FIG. 33 is a diagram illustrating a computer system according to an embodiment of the present invention.
  • a synchronization apparatus for a upstream system may be implemented in a computer system 1100 , such as a computer-readable storage medium.
  • the computer system 1100 may include one or more processors 1110 , memory 1130 , a user interface input device 1140 , a user interface output device 1150 , and storage 1160 , which communicate with each other through a bus 1120 .
  • the computer system 1100 may further include a network interface 1170 connected to a network 1180 .
  • Each processor 1110 may be a Central Processing Unit (CPU) or a semiconductor device for executing processing instructions stored in the memory 1130 or the storage 1160 .
  • Each of the memory 1130 and the storage 1160 may be any of various types of volatile or nonvolatile storage media.
  • the memory 1130 may include Read-Only Memory (ROM) 1131 or Random Access Memory (RAM) 1132 .
  • the synchronization apparatus for the upstream system may include one or more processors 1110 , and execution memory 1130 for storing at least one program executed by the one or more processors 1110 .
  • the at least one program is configured to receive a signal, calculate a first channel estimation value for the received signal using a predefined pilot, and calculate a second channel estimation value using a predefined complementary pilot and the first channel estimation value.
  • the at least one program may be configured to extract compensation parameters from a preset symbol range in a symbol constellation from which the predefined complementary pilot is extracted.
  • the at least one program may be configured to extract compensation parameters for at least two complementary pilots from preset symbol ranges in the symbol constellations of the at least two complementary pilots.
  • the at least one program may be configured to compensate for errors in the complementary pilots using the compensation parameters.
  • the at least one program may calculate a second channel estimation value using the error-compensated complementary pilots, the predefined pilot, and the first channel estimation value, and may perform channel equalization based on the second channel estimation value.
  • the present invention may provide synchronization and channel equalization efficient for a DOCSIS 3.1 upstream system.
  • the present invention may effectively eliminate frequency and phase offsets attributable to the sampling clock offset of a DOCSIS 3.1 upstream system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

Disclosed herein are a synchronization apparatus and method for a upstream system. The synchronization apparatus for a upstream system includes one or more processors, and execution memory for storing at least one program that is executed by the one or more processors, wherein the at least one program is configured to receive a signal and calculate a first channel estimation value for the received signal using a predefined pilot, and calculate a second channel estimation value using a predefined complementary pilot and the first channel estimation value.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of Korean Patent Application No. 10-2020-0001527, filed Jan. 6, 2020, which is hereby incorporated by reference in its entirety into this application.
  • BACKGROUND OF THE INVENTION 1. Technical Field
  • The present invention relates generally to cable transmission/reception and communication technology, and more particularly, to synchronization technology for correcting a Carrier Frequency Offset (CFO) and a sampling clock offset, which occur in a Data Over Cable Service Interface Specification (DOCSIS) 3.1 upstream system.
  • 2. Description of the Related Art
  • In order to respond to the insufficiency of a transmission band attributable to increased demand for implementation of high-definition broadcasting service and ultra-high-speed Internet service and intensification in media competition attributable to fiber-to-the-home (FTTH)-based Gigabit-level service, DOCSIS 3.1 transmission specifications have been presented. DOCSIS 3.1 refers to technology that enables 10 Gbps-level transmission, which was considered to be possible only when optical cables are installed on a subscriber's premises, to be realized over existing cable broadcasting networks.
  • Among these technologies, a DOCSIS 3.1 upstream system uses an Orthogonal Frequency-Division Multiple Access (OFDMA) frame while aiming at a speed of 1 Gbps or more, and has a transmission unit which is a transmission burst composed of multiple minislots. Here, each minislot is composed of multiple sub-carrier groups, and all sub-carriers in each minislot have the same modulation order. A cable modem (CM) is assigned one or more minislots for a transmission burst through a transmission profile, and acquires information about a modulation order and a pilot pattern. The transmission profile defines the modulation order and the pilot pattern of the corresponding minislot on a transmission burst basis.
  • Meanwhile, Korean Patent Application Publication No. 10-2018-0058621 entitled “Apparatus of Synchronization for DOCSIS Upstream Signal Transmission through Optical-Based IP Network and Method of the Same” discloses an apparatus and method for transmitting a DOCSIS-based upstream signal, used in cable broadcasting over an optical-based IP network, in synchronization with a DOCSIS network.
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention has been made keeping in mind the above problems occurring in the prior art, and an object of the present invention is to provide synchronization and channel equalization efficient for a DOCSIS 3.1 upstream system.
  • Another object of the present invention is to effectively eliminate frequency and phase offsets attributable to the sampling clock offset of the DOCSIS 3.1 upstream system.
  • In accordance with an aspect of the present invention to accomplish the above objects, there is provided a synchronization apparatus for a upstream system, including one or more processors, and an execution memory for storing at least one program that is executed by the one or more processors, wherein the at least one program is configured to receive a signal and calculate a first channel estimation value for the received signal using a predefined pilot, and calculate a second channel estimation value using a predefined complementary pilot and the first channel estimation value.
  • The at least one program may be configured to extract a compensation parameter from a preset symbol range in a symbol constellation from which the predefined complementary pilot is extracted.
  • The at least one program may be configured to extract respective compensation parameters for at least two complementary pilots from preset symbol ranges in symbol constellations of the at least two complementary pilots.
  • The at least one program may be configured to compensate for an error in the complementary pilot using the compensation parameter.
  • The at least one program may be configured to calculate the second channel estimation value using an error-compensated complementary pilot, the predefined pilot, and the first channel estimation value, and to perform channel equalization based on the second channel estimation value.
  • In accordance with another aspect of the present invention to accomplish the above objects, there is provided a synchronization method for a upstream system, the synchronization method being performed using a synchronization apparatus for the upstream system, the synchronization method including receiving a signal and calculating a first channel estimation value for the received signal using a predefined pilot, and calculating a second channel estimation value using a predefined complementary pilot and the first channel estimation value.
  • Calculating the second channel estimation value may be configured to extract a compensation parameter from a preset symbol range in a symbol constellation from which the predefined complementary pilot is extracted.
  • Calculating the second channel estimation value may be configured to extract respective compensation parameters for at least two complementary pilots from preset symbol ranges in symbol constellations of the at least two complementary pilots.
  • Calculating the second channel estimation value may be configured to compensate for an error in the complementary pilots using the compensation parameters.
  • Calculating the second channel estimation value may be configured to calculate the second channel estimation value using error-compensated complementary pilots, the predefined pilot, and the first channel estimation value, and to perform channel equalization based on the second channel estimation value.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects, features and advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
  • FIGS. 1 and 2 are diagrams illustrating a pilot pattern (2K mode) of a DOCSIS 3.1 upstream system according to an embodiment of the present invention;
  • FIGS. 3 to 10 are constellations illustrating the results of performing channel equalization using pilots according to an embodiment of the present invention;
  • FIG. 11 is a block diagram illustrating a synchronization apparatus for a upstream system according to an embodiment of the present invention;
  • FIG. 12 is a block diagram illustrating in detail an example of the pilot-based channel estimation unit illustrated in FIG. 11;
  • FIG. 13 is a block diagram illustrating in detail an example of the complementary pilot-based channel estimation unit illustrated in FIG. 11;
  • FIG. 14 is an operation flowchart illustrating a synchronization method for a upstream system according to an embodiment of the present invention;
  • FIG. 15 is an operation flowchart illustrating in detail an example of the complementary pilot-based channel estimation step illustrated in FIG. 14;
  • FIG. 16 is a diagram illustrating the arrangement of pilots in a pilot pattern according to an embodiment of the present invention;
  • FIG. 17 is a graph illustrating a CFO compensation process in a frequency domain according to an embodiment of the present invention;
  • FIG. 18 is a diagram illustrating a channel estimation process according to an embodiment of the present invention;
  • FIG. 19 is a constellation illustrating an input complementary pilot symbol according to an embodiment of the present invention;
  • FIG. 20 is a constellation illustrating a symbol range for error compensation in a complementary pilot in a sixth symbol according to an embodiment of the present invention;
  • FIG. 21 is a constellation illustrating a symbol range for error compensation in a complementary pilot in an eighth symbol according to an embodiment of the present invention;
  • FIG. 22 is a constellation illustrating a complementary pilot in an error-compensated sixth symbol according to an embodiment of the present invention;
  • FIG. 23 is a constellation illustrating a complementary pilot in an error-compensated eighth symbol according to an embodiment of the present invention;
  • FIG. 24 is a diagram illustrating a channel estimation process using error-compensated complementary pilots according to an embodiment of the present invention;
  • FIGS. 25 to 32 are constellations illustrating an error-compensated complementary pilot according to an embodiment of the present invention; and
  • FIG. 33 is a diagram illustrating a computer system according to an embodiment of the present invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention will be described in detail below with reference to the accompanying drawings. Repeated descriptions and descriptions of known functions and configurations which have been deemed to make the gist of the present invention unnecessarily obscure will be omitted below. The embodiments of the present invention are intended to fully describe the present invention to a person having ordinary knowledge in the art to which the present invention pertains. Accordingly, the shapes, sizes, etc. of components in the drawings may be exaggerated to make the description clearer.
  • In the present specification, it should be understood that terms such as “include” or “have” are merely intended to indicate that features, numbers, steps, operations, components, parts, or combinations thereof are present, and are not intended to exclude the possibility that one or more other features, numbers, steps, operations, components, parts, or combinations thereof will be present or added.
  • Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the attached drawings.
  • FIGS. 1 and 2 are diagrams illustrating a pilot pattern (2K mode) of a DOCSIS 3.1 upstream system (or a DOCSIS upstream system) according to an embodiment of the present invention.
  • Referring to FIGS. 1 and 2, it can be seen that pilot patterns 1 to 4 for the DOCSIS 3.1 upstream system are depicted. In a DOCSIS 3.1 upstream frame according to an embodiment of the present invention, pilots may be scattered in first and third symbols of a frame, and complementary pilots may be scattered in symbols located at first and third locations from an end symbol. Here, each of the pilots may be a Binary Phase-Shift Keying (BPSK) symbol of 1 or −1, which is agreed upon between a transmitter and a receiver. Unlike the pilots, each of the complementary pilots may transmit data other than symbols agreed upon between the transmitter and the receiver. The complementary pilot may correspond to a data subcarrier having a modulation order lower than that of other data subcarriers in a minislot. If the modulation order used in other data subcarriers in the minislot is M, a complementary pilot may use ‘1’ (BPSK) in a modulation order of M−4.
  • In the pilot structure of the DOCSIS 3.1 upstream system according to the embodiment of the present invention, when only pilots are used for channel equalization and the correction of a Carrier Frequency Offset (CFO), compensation for a sampling clock offset and a CFO and channel equalization are desirably performed in low-order symbols in which the pilots are present, but degradation of performance may occur in high-order symbols in which pilots are not present.
  • FIGS. 3 to 10 are constellations illustrating the results of performing channel equalization using pilots according to an embodiment of the present invention.
  • Referring to FIGS. 3 to 10, it can be seen that an embodiment in which only pilots are used for channel equalization and CFO correction when data symbols are 1024-Quadrature amplitude modulation (QAM) symbols and complementary pilot symbols are 64-QAM symbols is illustrated. When synchronization is performed using only pilots, it can be seen that compensation for a sampling clock offset and a CFO and channel equalization are desirably realized in low-order symbols (symbol 1 to symbol 3) in which pilots are present, but degradation of performance may occur in high-order symbols (symbol 4 to symbol 8) in which pilots are not present, as illustrated in FIGS. 3 to 10. Such performance degradation may be more severe as the difference between frequency offsets in the transmitter and the receiver (or transmission and reception stages) is larger.
  • FIG. 11 is a block diagram illustrating a synchronization apparatus for a upstream system according to an embodiment of the present invention. FIG. 12 is a block diagram illustrating in detail an example of the pilot-based channel estimation unit illustrated in FIG. 11. FIG. 13 is a block diagram illustrating in detail an example of the complementary pilot-based channel estimation unit illustrated in FIG. 11.
  • Referring to FIG. 11, the synchronization apparatus for the upstream system according to the embodiment of the present invention includes a pilot-based channel estimation unit 110 and a complementary pilot-based channel estimation unit 120.
  • The pilot-based channel estimation unit 110 may receive a signal, and may calculate a first channel estimation value for the received signal using predefined pilots.
  • Referring to FIG. 12, the pilot-based channel estimation unit 110 may include a Symbol Timing Offset (STO) estimation unit 111, a Fast Fourier Transform (FFT) performance unit 112, a Carrier Frequency Offset (CFO) estimation unit 113, and a first channel estimation unit 114.
  • The STO estimation unit 111 may estimate a Symbol Timing Offset (STO) in the time domain of the received signal.
  • The FFT performance unit 112 may estimate a frequency offset after performing a Fast Fourier Transform (FFT) on the received signal.
  • The CFO estimation unit 113 may compensate for a Carrier Frequency Offset (CFO) in a frequency domain.
  • Here, the CFO estimation unit 113 may calculate the amount of frequency angular rotation between symbols in the frequency domain using the following Equation (1):

  • Δϕ=∠[(P 1)°×P3]/N   (1)
  • Here, P1 denotes N pilot symbol vectors in a first symbol, and P3 denotes N pilot symbol vectors in a third symbol.
  • The CFO estimation unit 113 may apply the amount of frequency angular rotation between the symbols, calculated in Equation (1), to eighth symbols, as represented by the following Equation (2):

  • Ŝ k =S k×exp(−j×k×Δϕ)   (2)
  • Here, k of Sk denotes a k-th symbol.
  • The first channel estimation unit 114 may obtain the average of channel gains using P1 and P3 pilots and apply the average to the eight symbols in the time domain, and may interpolate the channel gains, calculated in the time domain, and apply the interpolated value to the frequency domain.
  • The complementary pilot-based channel estimation unit 120 may calculate a second channel estimation value using predefined complementary pilots and the first channel estimation value.
  • Referring to FIG. 13, the complementary pilot-based channel estimation unit 120 may include a first complementary pilot detection unit 121, a compensation parameter detection unit 122, a second complementary pilot detection unit 123, and a second channel estimation unit 124.
  • The first complementary pilot detection unit 121 may detect predefined complementary pilots.
  • For example, in the constellations of a sixth symbol and an eighth symbol, 1024-QAM data symbols and 64-QAM complementary pilot symbols may coexist.
  • Here, the first complementary pilot detection unit 121 may extract only 64-QAM complementary pilot symbols in the sixth symbol and the eighth symbol from input complementary pilot symbols.
  • The compensation parameter detection unit 122 may extract compensation parameters from preset symbol ranges in symbol constellations from which the predefined complementary pilot symbols are extracted.
  • The extracted complementary pilot symbols may exhibit a remarkably high error rate in high-order symbols.
  • Here, the compensation parameter detection unit 122 may extract respective compensation parameters for at least two complementary pilots from preset symbol ranges in the symbol constellations of at least two complementary pilots.
  • Here, in order to correct this error rate, the compensation parameter detection unit 122 may set low-power symbol ranges (see blue rectangular ranges in FIGS. 20 and 21) in which errors do not occur in the constellations of the sixth symbol and the eighth symbol, and may extract compensation parameters based on the set symbol ranges. The complementary pilot detection values ŝcp may be represented by the following Equation (3):

  • ŝ cp =|{tilde over (s)} cp −s cp|mπs   (3)
  • Here, {tilde over (s)}cp denotes sixth and eighth complementary pilot values after first-step channel estimation and channel equalization have been performed, and may be represented by {tilde over (s)}cp=rcpcp. rcp denotes a complementary pilot value that is input after CFO estimation and compensation have been performed, and ĥcp denotes an estimated channel value at the location of the corresponding complementary pilot.
  • Here, the compensation parameter detection unit 122 may select only complementary pilot symbols falling within a range (x) having a predetermined size.
  • Here, the compensation parameter detection unit 122 may set the range in which errors do not occur in each of the constellations of the sixth and eighth symbols to a range of [x<c].
  • For example, the compensation parameter detection unit 122 may set the range to a range of [x<0.6].
  • In the range of [x<0.6], each complementary pilot detection value ŝcp matches a transmitted complementary pilot value scp without causing a symbol error. The compensation parameters may be represented by the following Equation (4):
  • g ^ cp = S ~ cp [ x < 0.6 ] S ^ cp [ x < 0.6 ] = S ~ cp [ x < 0.6 ] S cp [ x < 0.6 ] ( 4 )
  • The second complementary pilot detection unit 123 may compensate for errors in the complementary pilots using the compensation parameters, and may detect error-compensated complementary pilots.
  • The complementary pilot values {tilde over ({tilde over (s)})}cp, which are error-compensated using the compensation parameters, may be represented by the following Equation (5):
  • S ~ ~ cp = S ~ cp g ^ cp ( 5 )
  • Here, when the second complementary pilot detection unit 123 detects again complementary pilots after the application of the compensation parameters, the error rate of the complementary pilots in the sixth and eighth symbols may be ‘0’.
  • The complementary pilot error rate of ‘0’ may mean that the sixth and eighth complementary pilots can be used as known signals (i.e., signals agreed upon between transmission and reception stages), such as pilots.
  • The second channel estimation unit 124 may calculate the second channel estimation value using the error-compensated complementary pilots, the pilots, and the first channel estimation value, and may perform channel equalization based on the second channel estimation value.
  • FIG. 14 is an operation flowchart illustrating a synchronization method for a upstream system according to an embodiment of the present invention. FIG. 15 is an operation flowchart illustrating in detail an example of the complementary pilot-based channel estimation step illustrated in FIG. 14.
  • Referring to FIG. 14, the synchronization method for a upstream system according to the embodiment of the present invention may perform pilot-based channel estimation at step S210.
  • That is, at step S210, a signal may be received, and a first channel estimation value for the received signal may be calculated using predefined pilots.
  • At step S210, in the time domain of the received signal, a Symbol Timing Offset (STO) may be estimated.
  • Here, at step S210, after a FFT has been performed on the received signal, a frequency offset may be estimated.
  • In detail, at step S210, a Carrier Frequency Offset (CFO) in the frequency domain may be compensated for.
  • Here, at step S210, the amount of frequency angular rotation between symbols in the frequency domain may be calculated using the above-described Equation (1).
  • At step S210, the amount of frequency angular rotation between the symbols, calculated in Equation (1), may be applied to eighth symbols, as represented by the above-described Equation (2).
  • In this case, at step S210, the average of channel gains using P1 and P3 pilots may be obtained and applied to the eight symbols in the time domain. Also, the channel gains, calculated in the time domain, may be interpolated, and the interpolated value may be applied to the frequency domain.
  • Next, the synchronization method for the upstream system according to the embodiment of the present invention may perform complementary pilot-based channel estimation at step S220.
  • That is, at step S220, a second channel estimation value may be calculated using predefined complementary pilots and the first channel estimation value.
  • Referring to FIG. 15, in the procedure at step S220, complementary pilots may be detected at step S221.
  • That is, at step S221, the predefined complementary pilots may be detected.
  • For example, in the constellations of a sixth symbol and an eighth symbol, 1024-QAM data symbols and 64-QAM complementary pilot symbols may coexist.
  • Here, at step S221, only 64-QAM complementary pilot symbols in the sixth symbol and the eighth symbol may be extracted from input complementary pilot symbols.
  • Further, in the procedure at step S220, compensation parameters may be detected at step S222.
  • That is, at step S222, compensation parameters may be extracted from preset symbol ranges in symbol constellations from which the predefined complementary pilot symbols are extracted.
  • The extracted complementary pilot symbols may exhibit a remarkably high error rate in high-order symbols.
  • Here, at step S222, respective compensation parameters for at least two complementary pilots may be extracted from preset symbol ranges in the symbol constellations of at least two complementary pilots.
  • In detail, at step S222, in order to correct this error rate, low-power symbol ranges (see blue rectangular ranges in FIGS. 20 and 21) in which errors do not occur in the constellations of the sixth symbol and the eighth symbol may be set, and compensation parameters may be extracted based on the set symbol ranges. The complementary pilot detection values ŝcp may be represented by the above-described Equation (3).
  • At step S222, only complementary pilot symbols falling within a range (x) having a predetermined size may be selected.
  • Here, at step S222, the range in which errors do not occur in each of the constellations of the sixth and eighth symbols may be set to a range of [x<c].
  • For example, at step S222, the range may be set to a range of [x<0.6].
  • In the range of [x<0.6], each complementary pilot detection value ŝcp matches a transmitted complementary pilot value scp without causing a symbol error. The compensation parameters may be represented by the above-described Equation (4).
  • Further, in the procedure at step S220, the complementary pilots may be detected by applying the compensation parameters at step S223.
  • In detail, at step S223, errors in the complementary pilots may be compensated for using the compensation parameters, and error-compensated complementary pilots may be detected.
  • The complementary pilot values {tilde over ({tilde over (s)})}cp, which are error-compensated using the compensation parameters, may be represented by the above-described Equation (5).
  • Here, at step S223, when complementary pilots are detected again after the application of the compensation parameters, the error rate of the complementary pilots in the sixth and eighth symbols may be ‘0’
  • The complementary pilot error rate of ‘0’ may mean that the sixth and eighth complementary pilots can be used as known signals (i.e., signals agreed upon between transmission and reception stages), such as pilots.
  • Furthermore, in the procedure at step S220, channel estimation and equalization may be performed using the error-compensated complementary pilots at step S224.
  • That is, at step S224, the second channel estimation value may be calculated using the error-compensated complementary pilots, the predefined pilots, and the first channel estimation value, and channel equalization may be performed based on the second channel estimation value.
  • FIG. 16 is a diagram illustrating the arrangement of pilots in a pilot pattern according to an embodiment of the present invention.
  • Referring to FIG. 16, the arrangement of pilots in pilot pattern 2 of a DOCSIS 3.1 upstream system according to an embodiment of the present invention can be seen.
  • FIG. 17 is a graph illustrating a Carrier Frequency Offset (CFO) compensation process in a frequency domain according to an embodiment of the present invention.
  • Referring to FIG. 17, it can be seen that the process for compensating for a CFO in a frequency domain is illustrated.
  • The amount of frequency angular rotation between symbols in the frequency domain may be calculated using the above-described Equation (1).
  • FIG. 18 is a diagram illustrating a channel estimation process according to an embodiment of the present invention.
  • Referring to FIG. 18, illustrated is a process for obtaining the average of channel gains using only pilots, that is, P1 and P3 pilots, and applying the average to eight symbols in a time domain and for interpolating the channel gains calculated in the time domain and applying the interpolated value to a frequency domain.
  • FIG. 19 is a constellation illustrating an input complementary pilot symbol according to an embodiment of the present invention.
  • Referring to FIG. 19, input complementary pilot symbols according to an embodiment of the present invention are illustrated.
  • FIG. 20 is a constellation illustrating a symbol range for error compensation in a complementary pilot in a sixth symbol according to an embodiment of the present invention. FIG. 21 is a constellation illustrating a symbol range for error compensation in a complementary pilot in an eighth symbol according to an embodiment of the present invention.
  • Referring to FIGS. 20 and 21, it can be seen that the error rate of a complementary pilot in a sixth symbol is 0.0042 and that the error rate of a complementary pilot in an eighth symbol is 0.46 due to the influence of a sampling clock offset and a CFO corresponding to the results of detection. That is, the drawings show that a remarkably high error rate is exhibited in a high-order symbol.
  • In order to correct this error rate, the synchronization apparatus and method for the upstream system according to embodiments of the present invention may set a low-power symbol range (a blue rectangular range) in which errors do not occur in the constellations of the sixth symbol and the eighth symbol, and may extract compensation parameters based on the low-power symbol range.
  • FIG. 22 is a constellation illustrating a complementary pilot in an error-compensated sixth symbol according to an embodiment of the present invention. FIG. 23 is a constellation illustrating a complementary pilot in an error-compensated eighth symbol according to an embodiment of the present invention.
  • Referring to FIGS. 22 and 23, it can be seen that, when complementary pilots are detected again after compensation parameters have been applied, the error rates of complementary pilots in sixth and eighth symbols are ‘0’. A complementary pilot error rate of ‘0’ may mean that the complementary pilots in sixth and eighth symbols can be used as known signals (i.e., signals agreed upon between transmission and reception stages), such as pilots.
  • FIG. 24 is a diagram illustrating a channel estimation process using error-compensated complementary pilots according to an embodiment of the present invention.
  • Referring to FIG. 24, it can be seen that an embodiment of channel estimation and equalization using error-compensated complementary pilots is illustrated.
  • Here, the synchronization apparatus and method for the upstream system according to an embodiment of the present invention may obtain the average of channel gains in a time domain using pilots in first and third symbols indicated in the red dashed-line rectangle, and may perform interpolation on the channel gains in a frequency domain. Since channel estimation values using only the pilots may be used without change, channel gain values stored in memory may be fetched and used without an operation procedure being performed in the channel estimation and equalization process using the complementary pilots. However, an operation procedure must be able to be performed on fourth to eighth symbols using newly detected complementary pilots.
  • In this case, the synchronization apparatus and method for the upstream system according to an embodiment of the present invention may calculate the channel gain of a block indicated by a blue dashed-line rectangle (fourth and sixth symbols) by obtaining a time domain average using a third pilot and a sixth complementary pilot and by obtaining a frequency domain average based on the time domain average.
  • At this time, the synchronization apparatus and method for a upstream system according to an embodiment of the present invention may calculate the channel gain of a block indicated by a black dashed-line rectangle (seventh and eighth symbols) by obtaining a time domain average using sixth and eighth complementary pilots and by obtaining a frequency domain average based on the time domain average.
  • FIGS. 25 to 32 are constellations illustrating error-compensated complementary pilots according to embodiment of the present invention.
  • Referring to FIGS. 25 to 32, it can be seen that the synchronization apparatus and method for a upstream system according to embodiments of the present invention may perform channel estimation and equalization based on pilots and perform channel estimation and equalization based on error-compensated complementary pilots. As a result, a sampling clock offset and a Carrier Frequency Offset (CFO) in the symbol constellations illustrated in FIGS. 3 to 10 may be compensated for, and thus symbol constellations illustrated in FIGS. 25 to 32 may be obtained.
  • FIG. 33 is a diagram illustrating a computer system according to an embodiment of the present invention.
  • Referring to FIG. 33, a synchronization apparatus for a upstream system according to an embodiment of the present invention may be implemented in a computer system 1100, such as a computer-readable storage medium. As illustrated in FIG. 33, the computer system 1100 may include one or more processors 1110, memory 1130, a user interface input device 1140, a user interface output device 1150, and storage 1160, which communicate with each other through a bus 1120. The computer system 1100 may further include a network interface 1170 connected to a network 1180. Each processor 1110 may be a Central Processing Unit (CPU) or a semiconductor device for executing processing instructions stored in the memory 1130 or the storage 1160. Each of the memory 1130 and the storage 1160 may be any of various types of volatile or nonvolatile storage media. For example, the memory 1130 may include Read-Only Memory (ROM) 1131 or Random Access Memory (RAM) 1132.
  • The synchronization apparatus for the upstream system according to an embodiment of the present invention may include one or more processors 1110, and execution memory 1130 for storing at least one program executed by the one or more processors 1110. Here, the at least one program is configured to receive a signal, calculate a first channel estimation value for the received signal using a predefined pilot, and calculate a second channel estimation value using a predefined complementary pilot and the first channel estimation value.
  • The at least one program may be configured to extract compensation parameters from a preset symbol range in a symbol constellation from which the predefined complementary pilot is extracted.
  • The at least one program may be configured to extract compensation parameters for at least two complementary pilots from preset symbol ranges in the symbol constellations of the at least two complementary pilots.
  • The at least one program may be configured to compensate for errors in the complementary pilots using the compensation parameters.
  • The at least one program may calculate a second channel estimation value using the error-compensated complementary pilots, the predefined pilot, and the first channel estimation value, and may perform channel equalization based on the second channel estimation value.
  • The present invention may provide synchronization and channel equalization efficient for a DOCSIS 3.1 upstream system.
  • Further, the present invention may effectively eliminate frequency and phase offsets attributable to the sampling clock offset of a DOCSIS 3.1 upstream system.
  • As described above, in the synchronization apparatus and method for a upstream system according to the present invention, the configurations and schemes in the above-described embodiments are not limitedly applied, and some or all of the above embodiments can be selectively combined and configured such that various modifications are possible.

Claims (10)

1. A synchronization apparatus for an upstream system, comprising:
one or more processors; and
an execution memory for storing at least one program that is executed by the one or more processors,
wherein the at least one program when executed causes the one or more processors to:
receive a signal and calculate a first channel estimation value for the received signal using a predefined pilot, and
calculate a second channel estimation value using a predefined complementary pilot and the first channel estimation value,
wherein the at least one program when executed further causes the one or more processors to extract a compensation parameter from a preset symbol range in a symbol constellation from which the predefined complementary pilot is extracted.
2. (canceled)
3. The synchronization apparatus of claim 1, wherein the at least one program when executed further causes the one or more processors to extract respective compensation parameters for at least two complementary pilots from preset symbol ranges in symbol constellations of the at least two complementary pilots.
4. The synchronization apparatus of claim 1, wherein the at least one program when executed further causes the one or more processors to compensate for an error in the predefined complementary pilot using the compensation parameter.
5. The synchronization apparatus of claim 4, wherein the at least one program when executed further causes the one or more processors to calculate the second channel estimation value alternatively using an error-compensated complementary pilot, the predefined pilot, and the first channel estimation value, and to perform channel equalization based on the second channel estimation value.
6. A synchronization method for an upstream system, the synchronization method being performed using a synchronization apparatus for the upstream system, the synchronization method comprising:
receiving a signal and calculating a first channel estimation value for the received signal using a predefined pilot; and
calculating a second channel estimation value using a predefined complementary pilot and the first channel estimation value,
wherein calculating the second channel estimation value further comprises extracting a compensation parameter from a preset symbol range in a symbol constellation from which the predefined complementary pilot is extracted.
7. (canceled)
8. The synchronization method of claim 6, wherein calculating the second channel estimation value further comprises extracting respective compensation parameters for at least two complementary pilots from preset symbol ranges in symbol constellations of the at least two complementary pilots.
9. The synchronization method of claim 8, wherein calculating the second channel estimation value further comprises compensating for an error in each of the at least two complementary pilots using the respective compensation parameters.
10. The synchronization method of claim 9, wherein calculating the second channel estimation value further comprises calculating the second channel estimation value alternatively using error-compensated complementary pilots, the predefined pilot, and the first channel estimation value, and to perform channel equalization based on the second channel estimation value.
US16/866,007 2020-01-06 2020-05-04 Synchronization apparatus and method for upstream system Active US11050593B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200001527A KR102579129B1 (en) 2020-01-06 2020-01-06 Apparatus and method for synchronization in docsis upstream system
KR10-2020-0001527 2020-01-06

Publications (2)

Publication Number Publication Date
US11050593B1 US11050593B1 (en) 2021-06-29
US20210211336A1 true US20210211336A1 (en) 2021-07-08

Family

ID=76548297

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/866,007 Active US11050593B1 (en) 2020-01-06 2020-05-04 Synchronization apparatus and method for upstream system

Country Status (2)

Country Link
US (1) US11050593B1 (en)
KR (1) KR102579129B1 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100755038B1 (en) 1999-08-05 2007-09-06 한국전자통신연구원 Orthogonal Code Hopping Multiplexing Communications
KR100448633B1 (en) 2002-10-22 2004-09-13 한국전자통신연구원 Residual freqency offset tracking scheme for single carrier - freuqency domian equalizer system and method thereof
KR101302201B1 (en) 2005-12-10 2013-08-30 한국전자통신연구원 Method and Apparatus for Channel Estimation With Multiple Access Interference Cancellation
US7889799B2 (en) * 2006-08-02 2011-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for OFDM channel estimation
CN1913386A (en) 2006-08-26 2007-02-14 华为技术有限公司 Method for regulating pilot channel transmitting power
US20140341326A1 (en) * 2013-05-20 2014-11-20 Qualcomm Incorporated Channel estimation with discontinuous pilot signals
US9313070B2 (en) 2014-01-15 2016-04-12 Cisco Technology, Inc. Burst noise detection and pilot selection
KR102286298B1 (en) 2016-11-24 2021-08-06 한국전자통신연구원 Apparatus of synchronization for docsis upstream signal transmission through optical based ip network and method of the same
US10291422B2 (en) 2016-11-24 2019-05-14 Electronics And Telecommunications Research Institute Apparatus of synchronization for DOCSIS upstream signal transmission through optical IP network and method of the same
KR20190069133A (en) * 2017-12-11 2019-06-19 한국전자통신연구원 Apparatus and method for estimating channel

Also Published As

Publication number Publication date
KR102579129B1 (en) 2023-09-18
KR20210088283A (en) 2021-07-14
US11050593B1 (en) 2021-06-29

Similar Documents

Publication Publication Date Title
US8406322B2 (en) OFDM demodulation device and method
US8358722B2 (en) Signal processing apparatus, signal processing method, and reception system
KR100932320B1 (en) Receiver device and transmission system
US7313203B2 (en) Method and system for estimating and compensating IQ imbalance
US20090325516A1 (en) System and Method for IQ Imbalance Estimation Using Loopback with Frequency Offset
US20090086841A1 (en) Platform noise mitigation
CN110011734B (en) CPE compensation method in CO-OFDM system based on pilot frequency and two-dimensional projection histogram
US8958491B2 (en) Receiving device of OFDM communication system and method for alleviating phase noise thereof
EP2048845A2 (en) Amplitude attenuation estimation and recovery systems for OFDM signals
US9413580B2 (en) Symbol time offset correction via intercarrier interference detection in OFDM receiver
CN109257308A (en) A kind of phase noise estimation method and device
CN113364716A (en) Phase compensation method for sampling frequency offset in OFDM system
WO2004025826A1 (en) Direct conversion receiver and receiving method
JP2009232238A (en) Phase-tracking circuit, radio receiver, signal processing method, and program used for signal processing
US9954712B1 (en) Blind decoding in orthogonal frequency division multiplexing (OFDM) communication systems
KR100341200B1 (en) Quadrature frequency division multiplexing demodulator
US20210211336A1 (en) Synchronization apparatus and method for upstream system
WO2010072677A1 (en) Method and apparatus for estimating phase noise in an ofdm transmission system
CN113141324A (en) Channel estimation method and device
KR20170050175A (en) Pilot signal generating apparatus and generating method thereof, transmission apparatus
JP3558879B2 (en) Digital communication device
US10171186B2 (en) Method and device for detecting notch band
JP2002152169A (en) Device and method for receiving orthogonal frequency- division multiplex signal
US11689408B2 (en) Dynamic trigger compensation in OFDM systems
JP2010258580A (en) Receiver and noise elimination method

Legal Events

Date Code Title Description
AS Assignment

Owner name: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RYU, KWAN-WOONG;SONG, JIN-HYUK;JUNG, JOON-YOUNG;AND OTHERS;REEL/FRAME:052563/0413

Effective date: 20200416

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE