US20210198540A1 - Two-component solventless adhesive compositions comprising an amine-initiated polyol - Google Patents

Two-component solventless adhesive compositions comprising an amine-initiated polyol Download PDF

Info

Publication number
US20210198540A1
US20210198540A1 US17/202,658 US202117202658A US2021198540A1 US 20210198540 A1 US20210198540 A1 US 20210198540A1 US 202117202658 A US202117202658 A US 202117202658A US 2021198540 A1 US2021198540 A1 US 2021198540A1
Authority
US
United States
Prior art keywords
component
polyol
adhesive composition
amine
isocyanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/202,658
Inventor
Daniele Vinci
Thorsten Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Global Technologies LLC
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Priority to US17/202,658 priority Critical patent/US20210198540A1/en
Publication of US20210198540A1 publication Critical patent/US20210198540A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • C08G18/3275Hydroxyamines containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • C08G18/3278Hydroxyamines containing at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • C08G18/3278Hydroxyamines containing at least three hydroxy groups
    • C08G18/3281Hydroxyamines containing at least three hydroxy groups containing three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • C08G18/3278Hydroxyamines containing at least three hydroxy groups
    • C08G18/3284Hydroxyamines containing at least three hydroxy groups containing four hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3819Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/12Polyurethanes from compounds containing nitrogen and active hydrogen, the nitrogen atom not being part of an isocyanate group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/04Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving separate application of adhesive ingredients to the different surfaces to be joined
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2170/00Compositions for adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2475/00Presence of polyurethane

Definitions

  • the instant disclosure relates to solventless adhesive compositions. More particularly, the disclosure relates to two-component solventless polyurethane adhesive compositions for use in laminated structures.
  • the disclosed adhesive compositions comprise amine-initiated polyols providing for laminate structures having improved conversion efficiency.
  • the adhesive compositions exhibit high reactivity and, thus, are formulated to be applied to two substrates independently which are then brought together to mix and react the adhesive composition.
  • one component of the adhesive composition is configured to be uniformly applied to a surface of a first substrate and the other component of the adhesive composition is configured to be applied to a surface of a second substrate.
  • the first and second substrates are subsequently brought together, thereby mixing and reacting the two components to form an adhesive between the first and second substrates. In this way, the adhesive can then be cured, thereby bonding the first and second substrates.
  • Adhesive compositions are useful for a wide variety of purposes. For instance, adhesive compositions are used to bond together substrates such as polyethylene, polypropylene, polyester, polyamide, metal, paper, or cellophane to form composite films, i.e., laminates.
  • substrates such as polyethylene, polypropylene, polyester, polyamide, metal, paper, or cellophane
  • the use of adhesives in different end-use applications is generally known.
  • adhesives can be used in the manufacture of film/film and film/foil laminates used in the packaging industry, especially for food packaging.
  • Adhesives used in laminating applications, or “laminating adhesives,” can be generally placed into three categories: solvent-based, water-based, and solventless. The performance of an adhesive varies by category and by the application in which the adhesive is applied.
  • Solventless laminating adhesives can be applied up to one hundred percent solids without either organic solvent or an aqueous carrier. Because no organic solvent or water has to be dried from the adhesive upon application, these adhesives can be run at high line speeds and are preferable in applications requiring quick adhesive application. Solvent and water-based laminating adhesives are limited by the rate at which the solvent or water can be effectively dried and removed from the laminate structure after application of the adhesive. For environmental, health, and safety reasons, laminating adhesives are preferably aqueous or solventless.
  • a two-component polyurethane-based laminating adhesive includes a first component comprising an isocyanate-containing prepolymer and/or a polyisocyanate and a second component comprising a polyol.
  • the prepolymer can be obtained by the reaction of excess isocyanate with a polyether and/or polyester containing two or more hydroxyl groups per molecule.
  • the second component comprises a polyether and/or polyester initiated with two or more hydroxyl groups per molecule.
  • the two components are combined in a predetermined ratio, or “premixed,” and then applied on a first substrate (“carrier web”).
  • carrier web The first substrate is then brought together with a second substrate to form a laminate structure.
  • Additional layers of substrate can be added to the structure with additional layers of adhesive composition located between each successive substrate.
  • the adhesive is then cured, either at room temperature or elevated temperature, thereby bonding the substrates together.
  • Further processing of the laminate structure depends upon the curing speed of the adhesive.
  • the curing speed of the adhesive is indicated by the time in which the mechanical bond between the laminated substrates takes to become sufficient to allow for further processing and the laminate is in compliance with applicable regulations (e.g., food contact regulations).
  • Slow curing speed results in lower conversion efficiency.
  • Premixed two-component solventless laminating adhesives compared to traditional solvent-containing adhesives, exhibit weak initial bonds and slow curing speed.
  • the general trend in the converting industry is towards faster curing laminating adhesives.
  • Faster curing improves the operational efficiency for converters. Specifically, quickly moving finished products out of a warehouse increases production capacity and flexibility for handling last minute orders (e.g., retailer promotional campaigns).
  • an adhesive composition with a reactivity much higher than existing adhesive compositions should be used to form laminates.
  • such an adhesive composition would provide a challenge for traditional adhesive application technologies.
  • the solventless adhesive composition includes an isocyanate component including at least one isocyanate.
  • the solventless adhesive composition further includes a polyol component including at least one highly-reactive amine-initiated polyol.
  • the at least one isocyanate can be selected from the group consisting of an aromatic isocyanate, an aliphatic isocyanate, and combinations thereof.
  • the amine-initiated polyol can further comprise a functionality of from about 2 to about 12, a hydroxyl number of from about 5 to about 1,830, and a molecular weight of from about 500 to about 20,000.
  • the adhesive composition can exhibit a viscosity greater than 10,000 mPa-s (at 40° C.) within 10 minutes.
  • the polyol component can further include a non-amine-initiated polyol.
  • the disclosed adhesive compositions exhibit fast curing rates relative to existing two-component solventless adhesive compositions.
  • laminated structures comprising the adhesive compositions can be slit within as little as two hours after lamination and delivered within two days to a customer.
  • Laminates comprising existing general purpose adhesive compositions typically require two to three days from lamination for slitting and five to seven days for delivery. Accordingly, the process efficiencies are greatly improved using the disclosed adhesive compositions.
  • the pot-life of the disclosed adhesive compositions is indefinite compared to a twenty to thirty minute pot-life for existing general purpose adhesives. This is because the pot-life of the disclosed adhesive compositions is completely decoupled from the curing process, as will be discussed below.
  • the disclosed adhesive compositions are formulated to be more highly reactive and exhibit faster curing rates than existing adhesive compositions, they are not ideally suited for use with existing adhesive application apparatuses. This is because the two components react very quickly, causing the adhesive to gel and be unfit for application to a substrate. For this reason, the disclosed adhesive compositions are formulated such that the isocyanate and polyol components are applied separately on two different substrates, instead of being premixed and applied on a carrier web.
  • the disclosed adhesive compositions are formulated such the isocyanate component can be uniformly applied to a surface of a first substrate and the polyol component can be applied to a surface of a second substrate.
  • the surface of the first substrate is then brought into contact with the surface of the second substrate to mix and react the two components, thereby forming a laminate.
  • the adhesive composition is then curable.
  • FIG. 1 is a plot illustrating the viscosity of adhesive compositions versus time.
  • the two-component solventless adhesive composition according to this disclosure comprises an isocyanate component and a polyol component, as stated above.
  • the isocyanate component comprises at least one isocyanate.
  • the at least one isocyanate can be selected from the group consisting of an isocyanate prepolymer, an isocyanate monomer, a polyisocyanate (e.g., dimers, trimmers, etc.), and combinations of two or more thereof.
  • a “polyisocyanate” is any compound that contains two or more isocyanate groups.
  • the isocyanate prepolymer is the reaction product of reactants comprising at least one isocyanate and at least one polyol.
  • the “isocyanate prepolymer” can be a polyisocyanate itself.
  • the at least one isocyanate comprises a functionality of from 1.5 to 10, or from 1.8 to 5, or from 2 to 3.
  • “functionality” refers to the number of hydroxyl reactive sites per molecule.
  • Compounds having isocyanate groups, such as the isocyanate component may be characterized by the parameter “% NCO,” which is the amount of isocyanate groups by weight based on the weight of the compound.
  • the parameter % NCO is measured by the method of ASTM D 2572-97 (2010).
  • the disclosed isocyanate component has a % NCO of at least 3%, or at least 6%, or at least 10%.
  • the isocyanate component has a % NCO not to exceed 25%, or 18%, or 14%.
  • the at least one isocyanate comprises a free monomer content of from 0 to 50%, or from 5 to 40%, or from 10 to 30%. Still further, the at least one isocyanate comprises a molecular weight of from 200 to 3,000 g/mol, or from 300 to 2,000 g/mol, or from 500 to 1,000 g/mol. Even further, the isocyanate component has viscosity at 25° C. of from 300 to 40,000 mPa-s, or from 500 to 20,000 mPa-s, or from 1,000 to 10,000 mPa-s, as measured by the method of ASTM D2196.
  • the at least one isocyanate of the isocyanate component can be selected from the group consisting of an aromatic isocyanate, an aliphatic isocyanate, a cycloaliphatic isocyanate, and combinations thereof.
  • An “aromatic polyisocyanate” is an isocyanate that contains one or more aromatic rings.
  • An “aliphatic polyisocyanate” contains no aromatic rings.
  • a “cycloaliphatic polyisocyanate” is a subset of aliphatic polyisocyanates, wherein the chemical chain is ring-structured.
  • aromatic isocyanates suitable for use according to the disclosure include, but are not limited to, isomers of methylene diphenyl diisocyanate (“MDI”), such as 4,4-MDI, 2,2-MDI and 2,4-MDI, isomers of toluene-diisocyanate (“TDI”) such as 2,4-TDI, 2,6-TDI, isomers of naphthalene-diisocyanate (“NDI”) such as 1,5-NDI, isomers of norbornane diisocyanate (“NBDI”), isomers of tetramethylxylylene diisocyanate (“TMXDI”), and combinations of two or more thereof.
  • MDI methylene diphenyl diisocyanate
  • TDI toluene-diisocyanate
  • NDI naphthalene-diisocyanate
  • NBDI norbornane diisocyanate
  • TMXDI tetramethylxyly
  • aliphatic and cycloaliphatic isocyanates suitable for use according to the disclosure include, but are not limited to, isomers of hexamethylene diisocyanate (“HDI”), isomers of isophorone diisocyanate (“IPDI”), isomers of xylene diisocyanate (“XDI”), and combinations thereof.
  • HDI hexamethylene diisocyanate
  • IPDI isomers of isophorone diisocyanate
  • XDI xylene diisocyanate
  • the amount of the at least one isocyanate in the adhesive composition is, by weight based on the weight of the adhesive composition (i.e., the total weight of the isocyanate component and the polyol component), at least 5 wt %, or at least 10 wt %, or at least 20 wt %.
  • the amount of the at least one isocyanate in the adhesive composition is, by weight based on the weight of the adhesive composition, not to exceed 100 wt %, or not to exceed 95 wt %, or not to exceed 90 wt %.
  • the isocyanate component can further comprise other constituents commonly known to those of ordinary skill in the art.
  • the solventless adhesive composition further comprises a polyol component comprising at least one highly-reactive amine-initiated polyol. Inclusion of the at least one amine-initiated polyol in the polyol component provides for higher reactivity and faster curing than traditional polyols used in existing two component solventless adhesive compositions.
  • the amine-initiated polyol comprises primary hydroxyl groups and a backbone incorporating at least one tertiary amine
  • the polyol component can also comprise another type of polyol which is a non-amine-initiated polyol.
  • Each polyol type may include one kind of polyol. Alternatively, each polyol type may include mixtures of different kinds of polyols. In some embodiments, one polyol type may be one kind of polyol whereas the other polyol type may be a mixture of different kinds of polyols.
  • the amine-initiated polyol comprises primary hydroxyl groups and a backbone incorporating at least one tertiary amine
  • the amine-initiated polyol has the chemical structure of I:
  • R 1 , R 2 , and R 3 are each independently a linear or branched alkyl group.
  • R 1 , R 2 , and R 3 are each independently a linear or branched alkyl group.
  • R 3 can each independently be a C 1 -C 6 linear or branched alkyl group.
  • the amine-initiated polyol comprises tertiary amines and secondary amines.
  • the at least one amine-initiated polyol comprises a functionality of from 2 to 12, or from 3 to 10, or from 4 to 8.
  • “functionality” refers to the number of isocyanate reactive sites per molecule.
  • the at least one amine-initiated polyol comprises a hydroxyl number of from 5 to 1,830, or from 20 to 100, or from 31 to 40.
  • “hydroxyl number” is a measure of the amount of reactive hydroxyl groups available for reaction. This number is determined in a wet analytical method and is reported as the number of milligrams of potassium hydroxide equivalent to the hydroxyl groups found in one gram of the sample.
  • the at least one amine-initiated polyol comprises a viscosity at 25° C. of from 500 to 20,000 mPa-s, or from 1,000 to 15,000 mPa-s, or from 1,500 to 10,000 mPa-s.
  • Amine-initiated polyols suitable for use according to this disclosure are made by alkoxylating one or more amine initiators with one or more alkylene oxides.
  • the amount of the at least one amine-initiated polyol in the adhesive composition is, by weight based on the weight of the adhesive composition (i.e., the total weight of the isocyanate component and the polyol component), at least 2 wt %, or at least 10 wt %, or at least 20 wt %.
  • the amount of the at least one amine-initiated polyol in the adhesive composition is, by weight based on the weight of the adhesive composition, not to exceed 100 wt %, or not to exceed 95 wt %, or not to exceed 90 wt %.
  • At least one non-amine-initiated polyol may optionally be included in the adhesive composition, e.g., in the polyol component.
  • the non-amine-initiated polyol include, but are not limited to, polyester polyols, polyether polyols, polycarbonate polyols, polyacrylate polyols, polycaprolactone polyols, polyolefin polyols, natural oil polyols, and combinations of two or more thereof.
  • the non-amine-initiated polyol has viscosity at 25° C.
  • the non-amine-initiated polyol has viscosity of 100 to 10,000 mPa-s at 25° C., as measured by the method of ASTM D2196.
  • the amount of the at least one non-amine-initiated polyol in the adhesive composition is at least 0 wt %, or at least 5 wt %, or at least 10 wt %.
  • the amount of the at least one non-amine-initiated polyol in the adhesive composition is not to exceed 98 wt %, or not to exceed 90 wt %, or not to exceed 80 wt %.
  • the mix ratio of the isocyanate component to the polyol component, by weight, is controlled by adjusting the coating weight of each component to its respective substrate.
  • the mix ratio of the isocyanate component to the polyol component in the final adhesive composition can be 100:100, or 100:90, or 100:80.
  • the disclosed adhesive compositions are more forgiving than traditional adhesives and can accommodate some coating weight error (e.g., up to about 10% coating weight error).
  • one or more additives can optionally be included in the adhesive composition.
  • additives include, but are not limited to, tackifiers, plasticizers, rheology modifiers, adhesion promoters, antioxidants, fillers, colorants, surfactants, solvents, and combinations of two or more thereof.
  • the polyol component can further comprise other constituents commonly known to those of ordinary skill in the art, e.g., additional polyols, isocyanates, etc.
  • the isocyanate component and the polyol component of the disclosed solventless adhesive composition are formulated separately and stored until it is desired to form a laminate structure.
  • the isocyanate component and polyol component are in a liquid state at 25° C. Even if the components are solid at 25° C., it is acceptable to heat the components as necessary to put them into a liquid state. As the pot-life of the adhesive composition is decoupled from the curing process, the components can be stored indefinitely.
  • a laminate comprising the disclosed adhesive compositions can be formed by applying the isocyanate and polyol components of the adhesive composition separately to two different substrates, such as two films.
  • a “film” is any structure that is 0.5 mm or less in one dimension and is 1 cm or more in both of the other two dimensions.
  • a “polymer film” is a film that is made of a polymer or mixture of polymers. The composition of a polymer film is, typically, 80 percent by weight or more by weight one or more polymers.
  • a layer of the isocyanate component is applied to a surface of a first substrate.
  • the thickness of the layer of the isocyanate component on the first substrate is from 0.5 to 2.5 ⁇ m.
  • a layer of the polyol component is applied to a surface of a second substrate.
  • the thickness of the layer of the polyol component on the second substrate is from 0.5 to 2.5 ⁇ m.
  • the surfaces of the first and second substrates are then run through a device for applying external pressure to the first and second substrates, such as nip roller. Bringing the isocyanate component and polyol component together forms a curable adhesive mixture layer. When the surfaces of the first and second substrates are brought together, the thickness of the curable adhesive mixture layer is 1 to 5 ⁇ m.
  • the isocyanate component and polyol component begin mixing and reacting when the first and second substrates are brought together and the components come into contact with each other. This marks the beginning of the curing process.
  • Further mixing and reacting is accomplished as the first and second substrates are run through various other rollers and ultimately to a rewind roller.
  • the further mixing and reacting occurs as the first and second substrates pass through rollers because the substrates each take longer or shorter paths than the other substrate across each roller. In this way, the two substrates move relative to one another, mixing the components on the respective substrates. Arrangements of such rollers in an application apparatus are commonly known in the art.
  • the curable mixture is then cured or allowed to cure.
  • Suitable substrates in the laminate structure include films such as paper, woven and nonwoven fabric, metal foil, polymer films, and metal-coated polymer films. Some films optionally have a surface on which an image is printed with ink which may be in contact with the adhesive composition.
  • the substrates are layered to form a laminate structure, with an adhesive composition according to this disclosure adhering one or more of the substrates together.
  • FIG. 1 a plot showing the reactivity profiles of an adhesive composition according to the present disclosure, i.e., comprising a disclosed amine-initiated polyol, and that of an adhesive composition without an amine-initiated polyol are shown.
  • the adhesive composition comprising an amine-initiated polyol initially comprises a viscosity at 40° C. of approximately 6,000 mPa-s at the time of lamination. Surprisingly, the viscosity increases rapidly to greater than 10,000 mPa-s in less than ten minutes after lamination.
  • the adhesive composition without an amine-initiated polyol initially comprises a viscosity at 40° C. of approximately 1,000 mPa-s at the time of lamination. The viscosity does not exceed 10,000 mPa-s until approximately fifty minutes after lamination.
  • This reactivity profile is typical of existing solventless adhesive compositions.
  • inclusion of a disclosed amine-initiated polyol in the polyol component of the adhesive composition provides for an adhesive composition with a significantly faster reactivity profile.
  • Such adhesive compositions are particularly suited for lamination according to the methods disclosed herein.
  • the isocyanate component comprises aromatic isocyanates commonly known to those of ordinary skill in the art, e.g., TDI MDI.
  • the polyol components of the Examples are prepared according to the formulations listed in Table 1, below:
  • Laminate structures comprising the polyol components described in Table 1 are prepared on a Nordmeccanica LABO COMBITM laminator. The prepared laminate structures are then tested for bond strength and primary aromatic amine decay on the LABO COMBITM laminator. The bond strength of the laminate structures is tested according to ASTM F904.
  • the primary aromatic amine decay analysis is a test for the determination of primary aromatic amines in aqueous food stimulants (3% acetic acid). The test is based on the official BrF Method No. L 00-00.6 and Commission Regulation (EU) No. 10/2011.
  • Bond strength is measured according to ASTM F904 at 2 hours, 4 hours, 1 day, and 2 days after lamination.
  • Primary aromatic amine decay is tested according to BrF Method No. L 00-00.6 and Commission Regulation (EU) No. 10/2011 at 24 hours, 2 days, and 3 days after lamination.
  • a bond sufficient to slit the laminate structure is achieved within one hour after lamination using the polyol component comprising the highly-reactive amine-initiated polyol.
  • a laminate structure has a bond sufficient to slit when it has a bond strength of at least 1 N/15 min and a tack-free adhesive.
  • Laminate structures are also formed on a lamination machine with two coating heads, as envisioned according to this disclosure. The prepared laminate structures are then tested for bond strength and primary aromatic amine decay.
  • adhesive compositions including the disclosed amine-initiated polyol surprisingly all achieved bond strengths in excess of 1.0 N/15 min within two hours of laminating. Many of the Examples even exhibited bond strengths in excess of 2.0 N/15 min within two hours of laminating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Two-component solventless polyurethane adhesive compositions comprising an isocyanate component and a polyol component comprising at least one highly-reactive amine-initiated polyol are disclosed. The at least one amine-initiated polyol comprises primary hydroxyl groups and a backbone incorporating one or more tertiary amines. The amine-initiated polyol further comprises a functionality of from 2 to 12, a hydroxyl number of from 5 to 1,830, and a viscosity at 40° C. of from 500 to 20,000 mPa-s. The polyol component can further comprise a non-amine-initiated polyol. The adhesive compositions are formulated such that the isocyanate and polyol components can be applied to separate substrates prior to mixing. Still further, a laminate comprising the adhesive compositions is disclosed.

Description

    REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation application of U.S. application Ser. No. 16/300,559, filed on Nov. 10, 2018, which is a section 371 of PCT/US2017/029295 filed on Apr. 25, 2017, which claims the benefit of Italy Application No. 102016000047936, filed on May 10, 2016; each application is incorporated herein, in its entirety, be reference.
  • FIELD OF THE DISCLOSURE
  • The instant disclosure relates to solventless adhesive compositions. More particularly, the disclosure relates to two-component solventless polyurethane adhesive compositions for use in laminated structures. The disclosed adhesive compositions comprise amine-initiated polyols providing for laminate structures having improved conversion efficiency.
  • In some embodiments, the adhesive compositions exhibit high reactivity and, thus, are formulated to be applied to two substrates independently which are then brought together to mix and react the adhesive composition. In particular, one component of the adhesive composition is configured to be uniformly applied to a surface of a first substrate and the other component of the adhesive composition is configured to be applied to a surface of a second substrate. The first and second substrates are subsequently brought together, thereby mixing and reacting the two components to form an adhesive between the first and second substrates. In this way, the adhesive can then be cured, thereby bonding the first and second substrates.
  • BACKGROUND OF THE DISCLOSURE
  • Adhesive compositions are useful for a wide variety of purposes. For instance, adhesive compositions are used to bond together substrates such as polyethylene, polypropylene, polyester, polyamide, metal, paper, or cellophane to form composite films, i.e., laminates. The use of adhesives in different end-use applications is generally known. For example, adhesives can be used in the manufacture of film/film and film/foil laminates used in the packaging industry, especially for food packaging. Adhesives used in laminating applications, or “laminating adhesives,” can be generally placed into three categories: solvent-based, water-based, and solventless. The performance of an adhesive varies by category and by the application in which the adhesive is applied.
  • Solventless laminating adhesives can be applied up to one hundred percent solids without either organic solvent or an aqueous carrier. Because no organic solvent or water has to be dried from the adhesive upon application, these adhesives can be run at high line speeds and are preferable in applications requiring quick adhesive application. Solvent and water-based laminating adhesives are limited by the rate at which the solvent or water can be effectively dried and removed from the laminate structure after application of the adhesive. For environmental, health, and safety reasons, laminating adhesives are preferably aqueous or solventless.
  • Within the category of solventless laminating adhesives, there are many varieties. One particular variety includes premixed, two-component, polyurethane-based laminating adhesives. Typically, a two-component polyurethane-based laminating adhesive includes a first component comprising an isocyanate-containing prepolymer and/or a polyisocyanate and a second component comprising a polyol. The prepolymer can be obtained by the reaction of excess isocyanate with a polyether and/or polyester containing two or more hydroxyl groups per molecule. The second component comprises a polyether and/or polyester initiated with two or more hydroxyl groups per molecule. The two components are combined in a predetermined ratio, or “premixed,” and then applied on a first substrate (“carrier web”). The first substrate is then brought together with a second substrate to form a laminate structure.
  • Additional layers of substrate can be added to the structure with additional layers of adhesive composition located between each successive substrate. The adhesive is then cured, either at room temperature or elevated temperature, thereby bonding the substrates together.
  • Further processing of the laminate structure depends upon the curing speed of the adhesive. The curing speed of the adhesive is indicated by the time in which the mechanical bond between the laminated substrates takes to become sufficient to allow for further processing and the laminate is in compliance with applicable regulations (e.g., food contact regulations). Slow curing speed results in lower conversion efficiency. Premixed two-component solventless laminating adhesives, compared to traditional solvent-containing adhesives, exhibit weak initial bonds and slow curing speed. The general trend in the converting industry is towards faster curing laminating adhesives. Faster curing improves the operational efficiency for converters. Specifically, quickly moving finished products out of a warehouse increases production capacity and flexibility for handling last minute orders (e.g., retailer promotional campaigns). In order to increase operational efficiency, an adhesive composition with a reactivity much higher than existing adhesive compositions should be used to form laminates. However, such an adhesive composition would provide a challenge for traditional adhesive application technologies.
  • Accordingly, two-component solventless polyurethane-based laminating adhesive compositions with improved bond strength and faster curing speeds are desirable.
  • SUMMARY OF THE DISCLOSURE
  • Two-component solventless polyurethane adhesive compositions are disclosed. In some embodiments, the solventless adhesive composition includes an isocyanate component including at least one isocyanate. The solventless adhesive composition further includes a polyol component including at least one highly-reactive amine-initiated polyol. The at least one isocyanate can be selected from the group consisting of an aromatic isocyanate, an aliphatic isocyanate, and combinations thereof. The amine-initiated polyol can further comprise a functionality of from about 2 to about 12, a hydroxyl number of from about 5 to about 1,830, and a molecular weight of from about 500 to about 20,000. Upon combining the isocyanate and polyol components, thereby forming the adhesive composition, the adhesive composition can exhibit a viscosity greater than 10,000 mPa-s (at 40° C.) within 10 minutes. The polyol component can further include a non-amine-initiated polyol.
  • The disclosed adhesive compositions exhibit fast curing rates relative to existing two-component solventless adhesive compositions. As a result, laminated structures comprising the adhesive compositions can be slit within as little as two hours after lamination and delivered within two days to a customer. Laminates comprising existing general purpose adhesive compositions typically require two to three days from lamination for slitting and five to seven days for delivery. Accordingly, the process efficiencies are greatly improved using the disclosed adhesive compositions. In addition, the pot-life of the disclosed adhesive compositions is indefinite compared to a twenty to thirty minute pot-life for existing general purpose adhesives. This is because the pot-life of the disclosed adhesive compositions is completely decoupled from the curing process, as will be discussed below.
  • Because the disclosed adhesive compositions are formulated to be more highly reactive and exhibit faster curing rates than existing adhesive compositions, they are not ideally suited for use with existing adhesive application apparatuses. This is because the two components react very quickly, causing the adhesive to gel and be unfit for application to a substrate. For this reason, the disclosed adhesive compositions are formulated such that the isocyanate and polyol components are applied separately on two different substrates, instead of being premixed and applied on a carrier web.
  • In particular, the disclosed adhesive compositions are formulated such the isocyanate component can be uniformly applied to a surface of a first substrate and the polyol component can be applied to a surface of a second substrate. The surface of the first substrate is then brought into contact with the surface of the second substrate to mix and react the two components, thereby forming a laminate. The adhesive composition is then curable.
  • BRIEF DESCRIPTION OF THE DRAWING
  • Reference is made to the accompanying drawing in which:
  • FIG. 1 is a plot illustrating the viscosity of adhesive compositions versus time.
  • DETAILED DESCRIPTION OF THE DISCLOSURE
  • The two-component solventless adhesive composition according to this disclosure comprises an isocyanate component and a polyol component, as stated above.
  • Isocyanate Component
  • The isocyanate component comprises at least one isocyanate. The at least one isocyanate can be selected from the group consisting of an isocyanate prepolymer, an isocyanate monomer, a polyisocyanate (e.g., dimers, trimmers, etc.), and combinations of two or more thereof. As used herein, a “polyisocyanate” is any compound that contains two or more isocyanate groups. The isocyanate prepolymer is the reaction product of reactants comprising at least one isocyanate and at least one polyol. As used herein, the “isocyanate prepolymer” can be a polyisocyanate itself.
  • The at least one isocyanate comprises a functionality of from 1.5 to 10, or from 1.8 to 5, or from 2 to 3. As used with respect to the isocyanate component, “functionality” refers to the number of hydroxyl reactive sites per molecule. Compounds having isocyanate groups, such as the isocyanate component, may be characterized by the parameter “% NCO,” which is the amount of isocyanate groups by weight based on the weight of the compound. The parameter % NCO is measured by the method of ASTM D 2572-97 (2010). The disclosed isocyanate component has a % NCO of at least 3%, or at least 6%, or at least 10%. Preferably the isocyanate component has a % NCO not to exceed 25%, or 18%, or 14%.
  • Further, the at least one isocyanate comprises a free monomer content of from 0 to 50%, or from 5 to 40%, or from 10 to 30%. Still further, the at least one isocyanate comprises a molecular weight of from 200 to 3,000 g/mol, or from 300 to 2,000 g/mol, or from 500 to 1,000 g/mol. Even further, the isocyanate component has viscosity at 25° C. of from 300 to 40,000 mPa-s, or from 500 to 20,000 mPa-s, or from 1,000 to 10,000 mPa-s, as measured by the method of ASTM D2196.
  • The at least one isocyanate of the isocyanate component can be selected from the group consisting of an aromatic isocyanate, an aliphatic isocyanate, a cycloaliphatic isocyanate, and combinations thereof. An “aromatic polyisocyanate” is an isocyanate that contains one or more aromatic rings. An “aliphatic polyisocyanate” contains no aromatic rings. A “cycloaliphatic polyisocyanate” is a subset of aliphatic polyisocyanates, wherein the chemical chain is ring-structured.
  • Examples of aromatic isocyanates suitable for use according to the disclosure include, but are not limited to, isomers of methylene diphenyl diisocyanate (“MDI”), such as 4,4-MDI, 2,2-MDI and 2,4-MDI, isomers of toluene-diisocyanate (“TDI”) such as 2,4-TDI, 2,6-TDI, isomers of naphthalene-diisocyanate (“NDI”) such as 1,5-NDI, isomers of norbornane diisocyanate (“NBDI”), isomers of tetramethylxylylene diisocyanate (“TMXDI”), and combinations of two or more thereof. Preferred are isomers of MDI, particularly a mixture of 4,4-MDI and 2,4-MDI (i.e., liquid MDI) or 4,4-MDI (i.e., solid MDI).
  • Examples of aliphatic and cycloaliphatic isocyanates suitable for use according to the disclosure include, but are not limited to, isomers of hexamethylene diisocyanate (“HDI”), isomers of isophorone diisocyanate (“IPDI”), isomers of xylene diisocyanate (“XDI”), and combinations thereof.
  • The amount of the at least one isocyanate in the adhesive composition is, by weight based on the weight of the adhesive composition (i.e., the total weight of the isocyanate component and the polyol component), at least 5 wt %, or at least 10 wt %, or at least 20 wt %. The amount of the at least one isocyanate in the adhesive composition is, by weight based on the weight of the adhesive composition, not to exceed 100 wt %, or not to exceed 95 wt %, or not to exceed 90 wt %.
  • The isocyanate component can further comprise other constituents commonly known to those of ordinary skill in the art.
  • Polyol Component
  • The solventless adhesive composition further comprises a polyol component comprising at least one highly-reactive amine-initiated polyol. Inclusion of the at least one amine-initiated polyol in the polyol component provides for higher reactivity and faster curing than traditional polyols used in existing two component solventless adhesive compositions. The amine-initiated polyol comprises primary hydroxyl groups and a backbone incorporating at least one tertiary amine In some embodiments, the polyol component can also comprise another type of polyol which is a non-amine-initiated polyol. Each polyol type may include one kind of polyol. Alternatively, each polyol type may include mixtures of different kinds of polyols. In some embodiments, one polyol type may be one kind of polyol whereas the other polyol type may be a mixture of different kinds of polyols.
  • The amine-initiated polyol comprises primary hydroxyl groups and a backbone incorporating at least one tertiary amine In some embodiments, the amine-initiated polyol has the chemical structure of I:
  • Figure US20210198540A1-20210701-C00001
  • wherein R1, R2, and R3 are each independently a linear or branched alkyl group. For instance, can each independently be a C1-C6 linear or branched alkyl group. In some embodiments, the amine-initiated polyol comprises tertiary amines and secondary amines.
  • The at least one amine-initiated polyol comprises a functionality of from 2 to 12, or from 3 to 10, or from 4 to 8. As used with respect to the polyol component, “functionality” refers to the number of isocyanate reactive sites per molecule. Further, the at least one amine-initiated polyol comprises a hydroxyl number of from 5 to 1,830, or from 20 to 100, or from 31 to 40. As used with respect to the polyol component, “hydroxyl number” is a measure of the amount of reactive hydroxyl groups available for reaction. This number is determined in a wet analytical method and is reported as the number of milligrams of potassium hydroxide equivalent to the hydroxyl groups found in one gram of the sample. The most commonly used methods to determine hydroxyl number are described in ASTM D 4274 D. Still further, the at least one amine-initiated polyol comprises a viscosity at 25° C. of from 500 to 20,000 mPa-s, or from 1,000 to 15,000 mPa-s, or from 1,500 to 10,000 mPa-s.
  • Amine-initiated polyols suitable for use according to this disclosure are made by alkoxylating one or more amine initiators with one or more alkylene oxides.
  • The amount of the at least one amine-initiated polyol in the adhesive composition is, by weight based on the weight of the adhesive composition (i.e., the total weight of the isocyanate component and the polyol component), at least 2 wt %, or at least 10 wt %, or at least 20 wt %. The amount of the at least one amine-initiated polyol in the adhesive composition is, by weight based on the weight of the adhesive composition, not to exceed 100 wt %, or not to exceed 95 wt %, or not to exceed 90 wt %.
  • In some embodiments, at least one non-amine-initiated polyol may optionally be included in the adhesive composition, e.g., in the polyol component. Examples of the non-amine-initiated polyol include, but are not limited to, polyester polyols, polyether polyols, polycarbonate polyols, polyacrylate polyols, polycaprolactone polyols, polyolefin polyols, natural oil polyols, and combinations of two or more thereof. Preferably the non-amine-initiated polyol has viscosity at 25° C. of from 30 to 40,000 mPa-s, or from 50 to 30,000 mPa-s, or from 70 to 20,000 mPa-s, as measured by the method of ASTM D2196. Preferably the non-amine-initiated polyol has viscosity of 100 to 10,000 mPa-s at 25° C., as measured by the method of ASTM D2196.
  • The amount of the at least one non-amine-initiated polyol in the adhesive composition is at least 0 wt %, or at least 5 wt %, or at least 10 wt %. The amount of the at least one non-amine-initiated polyol in the adhesive composition is not to exceed 98 wt %, or not to exceed 90 wt %, or not to exceed 80 wt %.
  • The mix ratio of the isocyanate component to the polyol component, by weight, is controlled by adjusting the coating weight of each component to its respective substrate. In some embodiments, the mix ratio of the isocyanate component to the polyol component in the final adhesive composition can be 100:100, or 100:90, or 100:80. The disclosed adhesive compositions are more forgiving than traditional adhesives and can accommodate some coating weight error (e.g., up to about 10% coating weight error).
  • In some embodiments, one or more additives can optionally be included in the adhesive composition. Examples of such additives include, but are not limited to, tackifiers, plasticizers, rheology modifiers, adhesion promoters, antioxidants, fillers, colorants, surfactants, solvents, and combinations of two or more thereof.
  • The polyol component can further comprise other constituents commonly known to those of ordinary skill in the art, e.g., additional polyols, isocyanates, etc.
  • Laminate Formation
  • It is contemplated that the isocyanate component and the polyol component of the disclosed solventless adhesive composition are formulated separately and stored until it is desired to form a laminate structure. Preferably, the isocyanate component and polyol component are in a liquid state at 25° C. Even if the components are solid at 25° C., it is acceptable to heat the components as necessary to put them into a liquid state. As the pot-life of the adhesive composition is decoupled from the curing process, the components can be stored indefinitely.
  • A laminate comprising the disclosed adhesive compositions can be formed by applying the isocyanate and polyol components of the adhesive composition separately to two different substrates, such as two films. As used herein, a “film” is any structure that is 0.5 mm or less in one dimension and is 1 cm or more in both of the other two dimensions. A “polymer film” is a film that is made of a polymer or mixture of polymers. The composition of a polymer film is, typically, 80 percent by weight or more by weight one or more polymers.
  • For instance, a layer of the isocyanate component is applied to a surface of a first substrate. Preferably, the thickness of the layer of the isocyanate component on the first substrate is from 0.5 to 2.5 μm. A layer of the polyol component is applied to a surface of a second substrate. Preferably, the thickness of the layer of the polyol component on the second substrate is from 0.5 to 2.5 μm. By controlling the thickness of the layers applied to each substrate, the ratio of the components can be controlled.
  • The surfaces of the first and second substrates are then run through a device for applying external pressure to the first and second substrates, such as nip roller. Bringing the isocyanate component and polyol component together forms a curable adhesive mixture layer. When the surfaces of the first and second substrates are brought together, the thickness of the curable adhesive mixture layer is 1 to 5 μm. The isocyanate component and polyol component begin mixing and reacting when the first and second substrates are brought together and the components come into contact with each other. This marks the beginning of the curing process.
  • Further mixing and reacting is accomplished as the first and second substrates are run through various other rollers and ultimately to a rewind roller. The further mixing and reacting occurs as the first and second substrates pass through rollers because the substrates each take longer or shorter paths than the other substrate across each roller. In this way, the two substrates move relative to one another, mixing the components on the respective substrates. Arrangements of such rollers in an application apparatus are commonly known in the art. The curable mixture is then cured or allowed to cure.
  • Suitable substrates in the laminate structure include films such as paper, woven and nonwoven fabric, metal foil, polymer films, and metal-coated polymer films. Some films optionally have a surface on which an image is printed with ink which may be in contact with the adhesive composition. The substrates are layered to form a laminate structure, with an adhesive composition according to this disclosure adhering one or more of the substrates together.
  • Turning now to FIG. 1, a plot showing the reactivity profiles of an adhesive composition according to the present disclosure, i.e., comprising a disclosed amine-initiated polyol, and that of an adhesive composition without an amine-initiated polyol are shown. In FIG. 1, the adhesive composition comprising an amine-initiated polyol initially comprises a viscosity at 40° C. of approximately 6,000 mPa-s at the time of lamination. Surprisingly, the viscosity increases rapidly to greater than 10,000 mPa-s in less than ten minutes after lamination. Conversely, the adhesive composition without an amine-initiated polyol initially comprises a viscosity at 40° C. of approximately 1,000 mPa-s at the time of lamination. The viscosity does not exceed 10,000 mPa-s until approximately fifty minutes after lamination. This reactivity profile is typical of existing solventless adhesive compositions.
  • Accordingly, inclusion of a disclosed amine-initiated polyol in the polyol component of the adhesive composition provides for an adhesive composition with a significantly faster reactivity profile. Such adhesive compositions are particularly suited for lamination according to the methods disclosed herein.
  • EXAMPLES OF THE DISCLOSURE
  • The present disclosure will now be explained in further detail by describing examples illustrating the disclosed adhesive compositions and existing adhesive compositions (collectively, “the Examples”). However, the scope of the present disclosure is not, of course, limited to the Examples.
  • In the Examples, the isocyanate component comprises aromatic isocyanates commonly known to those of ordinary skill in the art, e.g., TDI MDI. The polyol components of the Examples are prepared according to the formulations listed in Table 1, below:
  • TABLE 1
    OH Component Sample Formulations
    Chemical E1 E2 E3 E4 E5 E6 E7
    Component Nature (wt %) (wt %) (wt %) (wt %) (wt %) (wt %) (wt %)
    A Polyol 61 73 75 74
    B Polyol 55 54 55
    C Polyol 15
    D Polyol 20
    E Polyol 4 2 2 2
    F Polyol 8 5
    G Amine- 11 20 20 10 10 11
    Initiated
    Polyol
    H Polyester 8
    I Polyester 16
    J Polyester 16
    K Polyester 8 8 8
    L Aromatic 10 5 10 8 6 10
    Isocyanate
    OH Number 149 226 128 136 128 130 142
  • Laminate structures comprising the polyol components described in Table 1 are prepared on a Nordmeccanica LABO COMBI™ laminator. The prepared laminate structures are then tested for bond strength and primary aromatic amine decay on the LABO COMBI™ laminator. The bond strength of the laminate structures is tested according to ASTM F904. The primary aromatic amine decay analysis is a test for the determination of primary aromatic amines in aqueous food stimulants (3% acetic acid). The test is based on the official BrF Method No. L 00-00.6 and Commission Regulation (EU) No. 10/2011.
  • Performance results are shown in Table 2, below. Bond strength is measured according to ASTM F904 at 2 hours, 4 hours, 1 day, and 2 days after lamination. Primary aromatic amine decay is tested according to BrF Method No. L 00-00.6 and Commission Regulation (EU) No. 10/2011 at 24 hours, 2 days, and 3 days after lamination.
  • TABLE 2
    Performance Results on LABO COMBI ™
    OH Bond Strength PAA decay
    Component Laminate (N/15 mm) (μg/100 mL)
    Sample Structure 2 hr 4 hr 1 day 2 day 24 h 2 d 3 d
    E2 PET-ALU/PE 0.5 a 2.1 a PE 4.8 a ALU + 4.8 a 0.6 <0.2
    coex WL PE ALU
    E3 PET-ALU/PE 1.6 a 3.5 a PE 2.5 a PE 2.1 a PE 0.4 0.3
    coex
    E4 PET-ALU/PE 2.4 a PE 2.5 a PE 2.1 a PE 1.9 a PE 1 0.6
    E5 PET-ALU/PE 0.7 a 2.6 a PE 3.9 a PE 3.8 a PE <0.2 <0.2
    coex
    E6 PET-ALU/PE <0.2 a 1.6 a PE 3.6 a PE 2.7 a PE <0.2
    coex
    E7 PET-ALU/PE 0.7 a 2.9 a PE 3.0 a PE 4.1 a PE 0.24 0.34
    coex
    E1 PET-ALU/PE 0.9 a 2.3 a PE 5.2 a PE 6.0 a 0.24 <0.2
    coex coex
    E1 PET/PE 0.7 a 1.9 a PE 2.9 t PET 5.3 t 0.23 <0.2
    (mix ratio coex PET
    100/90)
    E1 PET/PE 0.7 a 1.9 a PE 2.4 t PET 4.2 t 0.26 <0.2
    (mix ratio coex PET
    100/95)
    E1 BOPP 1.4 a 1.6 a 1.6 a 1.7 a <0.2
    ink/metPP BOPP BOPP BOPP BOPP
    E1 OPA/PE 2.2 a 5.0 t 5.7 t + b 6.9 t + b 0.5 0.5
    coex PE PE PE
    E1 PET/PE 0.7 a 1.9 a 2.9 t 5.3 t 0.2 <0.2
    (mix ratio coex PE PET PET
    100/90)
  • In Table 2, “a” indicates that the adhesive remains intact, and “t” indicates that one of the laminate structures is torn. Based upon the data in Table 2, inclusion of an amine-initiated polyol increases the reactivity of the adhesive composition. As illustrated in Table 3, the formulations comprising the amine-initiated polyol exhibit faster bond development and faster PAA decay. In particular, full bond development is achieved in two days. Full bond development occurs when all functional groups (e.g., NCO and OH groups) of the at least one isocyanate and polyols have been reacted and integrated into the final polymer chain, i.e., no further crosslinking reaction are ongoing and the final bond performance, thermal and chemical resistance is achieved. However, a bond sufficient to slit the laminate structure is achieved within one hour after lamination using the polyol component comprising the highly-reactive amine-initiated polyol. A laminate structure has a bond sufficient to slit when it has a bond strength of at least 1 N/15 min and a tack-free adhesive.
  • Laminate structures are also formed on a lamination machine with two coating heads, as envisioned according to this disclosure. The prepared laminate structures are then tested for bond strength and primary aromatic amine decay.
  • TABLE 3
    Performance Results on Two Coating Head Laminator
    OH NCO OH Coating Line Bond Bond Bond Bond
    Component Component Component Weight/Sub- Speed (N/15 mm) (N/15 mm) (N/15 mm) (N/15 mm)
    Sample Substrate Substrate strate (g/m2) (m/min) @ 0.5 hr @ 1 hr @ 1.5 hr @ 2 hr
    E2 PET-ALU PE 1.8 300 0.5
    E1 PET Metallized 1.8 300 0.13 0.47 1.1 2.0
    Unprinted PP
    E1 Metallized PET 1.8 150 0.11 0.43 0.94 1.5
    PP Unprinted
    E1 PET-ALU PE 1.75 300 0.15 0.37 1.4 2.1
    E1 PE ALU-PET 1.75 300 0.13 0.32 1.1 2.1
    E1 BOPP PE 2 300 0.11 0.27 0.93 1.5
    Printed
    E1 PE BOPP 1.85 150 0.11 0.21 0.61 1.0
    Printed
  • As indicated in Table 3, adhesive compositions including the disclosed amine-initiated polyol surprisingly all achieved bond strengths in excess of 1.0 N/15 min within two hours of laminating. Many of the Examples even exhibited bond strengths in excess of 2.0 N/15 min within two hours of laminating.

Claims (14)

1. A two-component solventless adhesive composition, comprising:
an isocyanate component comprising at least one isocyanate; and
a polyol component comprising at least one amine-initiated polyol comprising two or more primary hydroxyl groups and a backbone incorporating tertiary amines, wherein the amine-initiated polyol comprises a functionality of from 2 to 12, a hydroxyl number of from 5 to 1,830, and a viscosity at 40° C. of from 500 to 20,000 mPa-s.
2. The two-component solventless adhesive composition according to claim 1, wherein the isocyanate component is adapted for application to a first substrate and the polyol component is adapted for application to a second substrate.
3. The two-component solventless adhesive composition of claim 1, the adhesive composition comprising a viscosity greater than 10,000 mPa-s (at 40° C.) within 10 minutes of mixing the isocyanate component and polyol component.
4. A two-component solventless adhesive composition, comprising:
an isocyanate component adapted for application to a first substrate and comprising at least one isocyanate; and
a polyol component adapted for application to a second substrate and comprising at least one amine-initiated polyol comprising primary hydroxyl groups and a backbone incorporating tertiary amines
5. The two-component solventless adhesive composition of claim 4, wherein the amine-initiated polyol has the structure I:
Figure US20210198540A1-20210701-C00002
wherein R1, R2, and R3 are independently a linear or branched alkyl group.
6. The two-component solventless adhesive composition of claim 4, wherein the amine-initiated polyol comprises a functionality of 4.
7. The two-component solventless adhesive composition of claim 4, wherein the amine-initiated polyol comprises a hydroxyl number of 37.
8. The two-component solventless adhesive composition of claim 4, wherein the amine-initiated polyol comprises a viscosity at 25° C. of about 1,200 mPa-s.
9. The two-component solventless adhesive composition of claim 4, wherein the amine-initiated polyol comprise a molecular weight of about 6,000 g/mol.
10. The two-component solventless adhesive composition of claim 4, wherein the ratio by weight of isocyanate component to polyol component is from 0.5:1 to 1.5:1.
11. The two-component solventless adhesive composition of claim 4, wherein the isocyanate component comprises less than about 50% monomer content.
12. The two-component solventless adhesive composition of claim 4, wherein the isocyanate component comprises a viscosity at 40° C. from 500 to 10,000 mPa-s.
13. The two-component solventless adhesive composition of claim 4, wherein the at least one polyisocyanate is selected from the group consisting of 4,4-methylene diphenyl dipolyisocyanate (“MDI”), 2,4-MDI, 2,2′-MDI, 2,4-toluene-dipolyisocyanate (“TDI”), 2,6-TDI, isomers of hexamethylene diisocyanate (“HDI”), and combinations of two or more thereof.
14. A laminate structure comprising the two-component solventless adhesive composition according to any one of the foregoing claims.
US17/202,658 2016-05-10 2021-03-16 Two-component solventless adhesive compositions comprising an amine-initiated polyol Abandoned US20210198540A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/202,658 US20210198540A1 (en) 2016-05-10 2021-03-16 Two-component solventless adhesive compositions comprising an amine-initiated polyol

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
ITUA20163304 2016-05-10
IT102016000047936 2016-05-10
PCT/US2017/029295 WO2017196530A1 (en) 2016-05-10 2017-04-25 Two-component solventless adhesive compositions comprising an amine-initiated polyol
US201816300559A 2018-11-10 2018-11-10
US17/202,658 US20210198540A1 (en) 2016-05-10 2021-03-16 Two-component solventless adhesive compositions comprising an amine-initiated polyol

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2017/029295 Continuation WO2017196530A1 (en) 2016-05-10 2017-04-25 Two-component solventless adhesive compositions comprising an amine-initiated polyol
US16/300,559 Continuation US11041100B2 (en) 2016-05-10 2017-04-25 Two-component solventless adhesive compositions comprising an amine-initiated polyol

Publications (1)

Publication Number Publication Date
US20210198540A1 true US20210198540A1 (en) 2021-07-01

Family

ID=56801748

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/300,559 Active US11041100B2 (en) 2016-05-10 2017-04-25 Two-component solventless adhesive compositions comprising an amine-initiated polyol
US17/202,658 Abandoned US20210198540A1 (en) 2016-05-10 2021-03-16 Two-component solventless adhesive compositions comprising an amine-initiated polyol

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/300,559 Active US11041100B2 (en) 2016-05-10 2017-04-25 Two-component solventless adhesive compositions comprising an amine-initiated polyol

Country Status (10)

Country Link
US (2) US11041100B2 (en)
EP (2) EP3455274B1 (en)
JP (2) JP6955515B2 (en)
CN (2) CN114874738A (en)
AR (1) AR108244A1 (en)
BR (1) BR112018072824B1 (en)
MX (1) MX2018013648A (en)
RU (1) RU2753834C2 (en)
TW (1) TWI791434B (en)
WO (1) WO2017196530A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI756219B (en) * 2016-05-10 2022-03-01 美商陶氏全球科技有限責任公司 Two-component solventless adhesive compositions comprising an amine-initiated polyol
TWI793073B (en) * 2016-05-10 2023-02-21 美商陶氏全球科技有限責任公司 Two-component solventless adhesive compositions comprising an amine-initiated polyol
CN106903969B (en) * 2016-05-10 2022-01-25 陶氏环球技术有限责任公司 Method for forming a laminate comprising a two-part solventless adhesive composition comprising an amine-initiated polyol
WO2018058479A1 (en) 2016-09-29 2018-04-05 Dic Corporation Adhesive, laminated film using the same and polyol composition for adhesive
US11607864B2 (en) * 2017-09-22 2023-03-21 Dow Global Technologies Llc Laminate film structures having barrier adhesive layer
EP3732222B1 (en) * 2017-12-27 2022-08-17 Dow Global Technologies LLC Two-component solventless adhesive compositions for adhesion to polymeric barrier substrates
MX2020005608A (en) * 2017-12-27 2020-09-25 Dow Global Technologies Llc Two-component solventless adhesive compositions for adhesion to metal and/or metallized substrates.
TWI796450B (en) * 2018-03-23 2023-03-21 日商迪愛生股份有限公司 Adhesive, laminated film, and method for manufacturing laminated film
EP3774973A1 (en) * 2018-03-28 2021-02-17 Dow Global Technologies LLC Two-component adhesive compositions based on phosphate ester modified isocyanates, and methods for making same
US20220010182A1 (en) * 2018-07-26 2022-01-13 Sun Chemical Corporation Flexible food packaging laminates
CN113166619B (en) * 2018-11-16 2023-02-17 陶氏环球技术有限责任公司 Solvent-free adhesive composition and method for producing a laminate and use for forming a laminate
WO2020256877A1 (en) 2019-06-18 2020-12-24 Dow Global Technologies Llc Retort adhesive composition
EP4095211A4 (en) * 2021-02-15 2023-04-05 DIC Corporation Two-component curing adhesive, laminated film, device for producing laminated film, and method for producing laminated film

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1331627A (en) * 1970-12-21 1973-09-26 Ucb Sa Composite packing material
DE2705751C2 (en) * 1977-02-11 1979-03-08 Bayer Ag, 5090 Leverkusen Cartridge for fastening anchor rods in boreholes
US4342613A (en) 1979-09-21 1982-08-03 Leary James N O Method of bonding surfaces with a solid adhesive
US5853895A (en) * 1995-04-11 1998-12-29 Donnelly Corporation Bonded vehicular glass assemblies utilizing two-component urethanes, and related methods of bonding
US5614575A (en) * 1995-04-24 1997-03-25 Rpg. Inc. Sprayable polyurethane compositions
WO2000071343A1 (en) * 1999-05-20 2000-11-30 Reichhold, Inc. Method of forming laminates
JP2003171643A (en) * 2001-12-03 2003-06-20 Sekisui Chem Co Ltd Separated-application-type two-part polyurethane adhesive
JP2003171642A (en) * 2001-12-03 2003-06-20 Sekisui Chem Co Ltd Separated-application-type two-part polyurethane adhesive
JP2006096785A (en) * 2004-09-28 2006-04-13 Aica Kogyo Co Ltd Urethane resin-based adhesive composition and bonding method
DE102005001565A1 (en) * 2005-01-13 2006-07-27 Bayer Materialscience Ag wood adhesives
DK1940931T3 (en) * 2005-10-14 2011-03-28 Dow Global Technologies Inc Composite article and process for its preparation using isocyanate-terminated prepolymer which binds
EP1958975B1 (en) * 2007-02-06 2011-07-20 nolax AG Dual component glue
DE102007062529A1 (en) * 2007-12-20 2009-06-25 Henkel Ag & Co. Kgaa 2K PU adhesive for bonding fiber molded parts
US8022164B1 (en) * 2010-03-04 2011-09-20 Microvast, Inc. Two-component solvent-free polyurethane adhesives
EP2803685A1 (en) 2013-05-15 2014-11-19 Sika Technology AG Two-component polyurethane composition
US10010064B2 (en) * 2013-10-04 2018-07-03 Kerr Corporation Methods and compositions for treating a hoof of an ungulate animal
TWI596180B (en) * 2014-08-12 2017-08-21 陶氏全球科技責任有限公司 Urethane adhesive
EP3280516B1 (en) * 2015-04-09 2019-12-18 Elantas Pdg, Inc. Polyurethane adhesives for reverse osmosis modules
TWI793073B (en) * 2016-05-10 2023-02-21 美商陶氏全球科技有限責任公司 Two-component solventless adhesive compositions comprising an amine-initiated polyol
TWI756219B (en) * 2016-05-10 2022-03-01 美商陶氏全球科技有限責任公司 Two-component solventless adhesive compositions comprising an amine-initiated polyol
CN106903969B (en) * 2016-05-10 2022-01-25 陶氏环球技术有限责任公司 Method for forming a laminate comprising a two-part solventless adhesive composition comprising an amine-initiated polyol
RU2019126525A (en) * 2017-01-27 2021-02-24 Дау Глоубл Текнолоджиз Ллк TWO-COMPONENT ADHESIVE COMPOSITIONS WITHOUT SOLVENT

Also Published As

Publication number Publication date
CN109071759B (en) 2022-05-27
JP6955515B2 (en) 2021-10-27
RU2753834C2 (en) 2021-08-23
EP3455274B1 (en) 2022-09-07
WO2017196530A1 (en) 2017-11-16
EP4095176A1 (en) 2022-11-30
RU2018141120A (en) 2020-05-22
TWI791434B (en) 2023-02-11
JP2019518819A (en) 2019-07-04
RU2018141120A3 (en) 2020-06-03
EP3455274A1 (en) 2019-03-20
BR112018072824A2 (en) 2019-03-06
TW201807143A (en) 2018-03-01
AR108244A1 (en) 2018-08-01
US20190390095A1 (en) 2019-12-26
US11041100B2 (en) 2021-06-22
JP2022003138A (en) 2022-01-11
MX2018013648A (en) 2019-03-21
CN109071759A (en) 2018-12-21
CN114874738A (en) 2022-08-09
BR112018072824B1 (en) 2022-10-25

Similar Documents

Publication Publication Date Title
US20210198540A1 (en) Two-component solventless adhesive compositions comprising an amine-initiated polyol
US20210197523A1 (en) Method for forming a laminate comprising a two-component solventless adhesive composition including an amine-initiated polyl
EP3574031B1 (en) Two-component solventless adhesive compositions
US11078382B2 (en) Two-component solventless adhesive compositions comprising an amine-initiated polyol
EP3732222B1 (en) Two-component solventless adhesive compositions for adhesion to polymeric barrier substrates
EP3732226B1 (en) Two-component solventless adhesive compositions for adhesion to metal and/or metallized substrates

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION