US20210186580A1 - Knotless suture locking bone plate - Google Patents

Knotless suture locking bone plate Download PDF

Info

Publication number
US20210186580A1
US20210186580A1 US17/190,497 US202117190497A US2021186580A1 US 20210186580 A1 US20210186580 A1 US 20210186580A1 US 202117190497 A US202117190497 A US 202117190497A US 2021186580 A1 US2021186580 A1 US 2021186580A1
Authority
US
United States
Prior art keywords
bone
locking
strand
locking element
flexible strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/190,497
Inventor
Daniel F. McCormick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wright Medical Technology Inc
Original Assignee
Wright Medical Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wright Medical Technology Inc filed Critical Wright Medical Technology Inc
Priority to US17/190,497 priority Critical patent/US20210186580A1/en
Publication of US20210186580A1 publication Critical patent/US20210186580A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8004Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with means for distracting or compressing the bone or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/06Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
    • A61B17/06166Sutures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8061Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates specially adapted for particular bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/683Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin comprising bone transfixation elements, e.g. bolt with a distal cooperating element such as a nut
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/842Flexible wires, bands or straps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0414Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors having a suture-receiving opening, e.g. lateral opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0417T-fasteners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0427Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors having anchoring barbs or pins extending outwardly from the anchor body
    • A61B2017/0437Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors having anchoring barbs or pins extending outwardly from the anchor body the barbs being resilient or spring-like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0446Means for attaching and blocking the suture in the suture anchor
    • A61B2017/0448Additional elements on or within the anchor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0446Means for attaching and blocking the suture in the suture anchor
    • A61B2017/0454Means for attaching and blocking the suture in the suture anchor the anchor being crimped or clamped on the suture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0446Means for attaching and blocking the suture in the suture anchor
    • A61B2017/0459Multiple holes in the anchor through which the suture extends and locking the suture when tension is applied

Definitions

  • Various injuries include separation of soft tissue from one or more bones and/or separation of bones from normally anatomical correct positioning. Maintaining the bones in the correct anatomical positions during healing is important to provide proper soft tissue reattachment and proper bone healing. For example, during syndesmosis repair, a first bone and a second bone must be maintained in a fixed position to allow the connective tissue to heal.
  • a system in various embodiments, includes an anchoring device and an anchor.
  • the anchoring device includes a body extending between a first surface and a second surface.
  • the body defines a strand-locking hole extending from the first surface to the second surface.
  • a first locking element and a second locking element each extend from a first side wall of the strand-locking hole to a second side wall of the strand-locking hole.
  • Each of the first anchor and the second anchor extend transverse to a central axis of the anchor hole.
  • the anchor includes a body defining a first wing and a second wing.
  • the first and second wings are coupled at a distal end and biased away from a longitudinal axis of the body.
  • the first and second wings are configured to maintain the anchor in a fixed position when the anchor is inserted into a hole formed in a bone.
  • a method of syndesmosis includes forming a bone tunnel through a first bone and a second bone and passing at least one flexible strand through the bone tunnel from a first side to a second side.
  • the at least one flexible strand is coupled to an anchor including a body defining a first wing and a second wing coupled at a distal end and biased away from a longitudinal axis of the body.
  • the body is sized and configured for insertion into a first side of the bone tunnel.
  • the at least one flexible strand is passed through a locking hole formed in a bone plate.
  • the bone plate is configured to abut a surface of the second bone defining the second side of the bone tunnel.
  • the first bone and the second bone are positioned at a predetermined spacing by applying a tensioning force to the at least one flexible strand.
  • the at least one flexible strand is locked at a predetermined length.
  • the at least one flexible strand is locked by a first locking element and a second locking element positioned within the locking hole formed in the bone plate.
  • a system in various embodiments, includes a bone plate, an anchor, and a flexible strand extending between the bone plate and the anchor.
  • the bone plate includes a body extending between a first surface and a second surface and defining a strand-locking hole extending from the first surface to the second surface.
  • a first locking element and a second locking element each extend from a first side wall of the strand-locking hole to a second side wall of the strand-locking hole.
  • Each of the first locking element and the second locking element extend transverse to a central axis of the anchor hole.
  • the anchor includes a body defining a first wing and a second wing that are coupled at a distal end and biased away from a longitudinal axis of the body.
  • the first and second wings are configured to maintain the anchor in a fixed position when the anchor is inserted into a hole formed in a bone.
  • the anchor includes a coupling extension extending from the distal end of the first wing and the second wing and defining at least one hole extending therethrough.
  • a first end of the flexible strand is coupled to the at least one hole formed in the coupling extension of the anchor and a second end of the flexible strand extends beneath the second locking element, between the first locking element and the second locking element, and above the first locking element of the bone plate.
  • FIG. 1 illustrates a joint including a first bone and a second bone coupled by at least one flexible strand extending between a bone plate and an anchor, in accordance with some embodiments.
  • FIG. 2 illustrates a bone plate including at least one strand-locking hole, in accordance with some embodiments.
  • FIG. 3 illustrates an expanded view of the strand-locking hole of the bone plate of FIG. 2 , in accordance with some embodiments.
  • FIG. 4 illustrates a cross-sectional view of the strand-locking hole taken along line A-A of FIG. 3 , in accordance with some embodiments.
  • FIG. 5 illustrates the cross-sectional view of FIG. 4 having a second locking element in a second, locked position, in accordance with some embodiments.
  • FIG. 6 illustrates an anchor, in accordance with some embodiments.
  • FIG. 7 illustrates the anchor of FIG. 6 having a first flexible strand and a second flexible strand coupled thereto, in accordance with some embodiments.
  • FIG. 8 illustrates a method of syndesmosis, in accordance with some embodiments.
  • FIG. 1 illustrates a joint 2 including a first bone 4 and a second bone 6 coupled by at least one flexible strand 16 a, 16 b extending between a bone plate 12 and an anchor 14 , in accordance with some embodiments.
  • the joint 2 is an ankle joint including a tibia 4 , a fibula 6 , and a talus 8 .
  • An anchoring construct 10 includes a bone plate 12 and an anchor 14 having at least one flexible strand 16 a, 16 b extending therebetween.
  • the flexible strands 16 a, 16 b can include any suitable material, such as one or more sutures, threads, ribbons, and/or any other suitable flexible material.
  • the flexible strands 16 a, 16 b extend through a bone tunnel 18 having a first portion 20 a extending through the first bone 4 and a second portion 20 b extending through the second bone 6 .
  • the first and second portions 20 a, 20 b can be aligned along a common longitudinal axis (as shown in FIG. 1 ) and/or can be offset.
  • the flexible strands 16 a, 16 b of the anchoring construct 10 can be adjusted (e.g., shortened) to apply a tensioning force to the first bone 4 and the second bone 6 to position the first bone 4 and the second bone 6 in a predetermined spaced relationship.
  • the predetermined spaced relationship is selected to mimic a natural spacing of the first bone 4 and the second bone 6 .
  • the flexible strands 16 a, 16 b allow the first bone 4 and the second bone 6 to be maintained in the predetermined spaced relationship while allowing natural range of movement between the first bone 4 and the second bone 6 .
  • the flexible strands 16 a, 16 b can be locked after adjustment to maintain the first bone 4 and the second bone 6 in the predetermined spaced relationship.
  • a first end 22 a of each of the flexible strands 16 a, 16 b is fixedly coupled to an anchor 14 coupled to the first bone 4 .
  • the first end 22 a of the flexible strands 16 a, 16 b can be coupled to the anchor 14 using any suitable coupling mechanism.
  • the flexible strands 16 a, 16 b can be inserted through one or more holes formed in the anchor 14 , as described in greater detail below.
  • a knot can be formed at the first end 22 a of each of the flexible strands 16 a, 16 b to prevent the flexible strands 16 a, 16 b from passing back through the one or more holes formed in the anchor 14 .
  • the flexible strands 16 a, 16 b can be coupled to the anchor 14 using a crimp and/or other compression coupling. Although specific embodiments are discussed herein, it will be appreciated that the flexible strands 16 a, 16 b can be coupled to the anchor 14 using any suitable coupling mechanism.
  • a second end 22 b of each of the flexible strands 16 a, 16 b is passed through a strand-locking hole 50 formed in the bone plate 12 .
  • the strand-locking hole 50 is configured to prevent movement (e.g., lengthening/shortening) of the flexible strands 16 a, 16 b when a predetermined tension is applied to the flexible strands 16 a, 16 b.
  • the predetermined tension corresponds to a predetermined spacing of the first bone 4 and the second bone 6 .
  • the strand-locking hole 50 can include one or more locking elements configured to lock the first strand 16 a and/or the second strand 16 b in a fixed position when the predetermined tension is applied to the flexible strands 16 a, 16 b, as discussed in greater detail below with respect to FIGS. 2-5 .
  • FIG. 2 illustrates a bone plate 12 a including at least one locking hole 50 a, in accordance with some embodiments.
  • the bone plate 12 a is similar to the bone plate 12 discussed above, and similar description is not repeated herein.
  • the bone plate 12 a includes a body 30 extending between a bone-contacting surface 32 a and an opposed, outer surface 32 b.
  • a perimeter of the bone plate is defined by a first side edge 34 and a second side edge 34 b extending generally along a longitudinal axis 38 of the bone plate 12 a and a top edge 36 a and a bottom edge 36 b generally extending perpendicular to the longitudinal axis 38 .
  • the body 30 has a predetermined thickness between the bone-contacting surface 32 a and the outer surface 32 b.
  • the body 30 includes a shaft portion 40 and a head portion 42 .
  • the shaft portion 40 extends generally along a longitudinal axis 38 of the bone plate 12 a and is sized and configured to conform to a portion of the second bone 6 , such as, for example, a diaphysis of the second bone 6 .
  • the shaft portion 40 has a first width.
  • the shaft portion 40 can include one or more locking fastener holes 44 a - 44 b, non-locking fastener holes 46 a - 46 b, slots 48 , and/or strand-locking holes 50 a.
  • the bone plate can include any combination of locking fastener holes 44 a - 44 b , non-locking fastener holes 46 a - 46 b, and slots 48 and is within the scope of this disclosure.
  • each of the locking fastener holes 44 a - 44 b includes a circumferential opening extending from the bone-contacting surface 32 a to the outer surface 32 b .
  • An interrupted thread 52 extends at least partially therethrough.
  • the interrupted thread 52 is formed by tapping a continuous thread into the locking fastener holes 44 a - 44 b and forming one or more interruptions (or cutouts) 54 through the thread.
  • the interrupted thread 52 is configured to allow a locking fastener to be inserted into the locking fastener holes 44 a - 44 b at a variable, user-selected angle, to lock the bone plate 12 a to a bone, such as the second bone 6 .
  • each of the non-locking fastener holes 46 a - 46 b include a circumferential opening having a smooth side surface extending from the bone-contacting surface 32 a to the outer surface 32 b.
  • the non-locking fastener holes 46 a - 46 b are configured to receive a non-locking fastener therein.
  • the non-locking fastener is coupled to a bone, such as the second bone 6 , to pull the bone-contacting surface 32 a of the bone plate 12 a into contact with an outer surface of the bone 6 .
  • the non-locking fastener holes 46 a - 46 b are omitted.
  • a slot 48 includes an oblong opening having a smooth side surface extending from the bone-contacting surface 32 a to the outer surface 32 b.
  • the slot 48 is sized and configured to receive a non-locking fastener therein.
  • the non-locking fastener can be variably positioned within the slot 48 and coupled to a bone.
  • the shaft portion 40 is coupled to a head portion 42 at a lower end of the shaft portion 40 .
  • the head portion 42 has a second width. In some embodiments, the second width of the head portion 42 is greater than the first width of the shaft portion 40 .
  • the head portion 42 can be configured to conform to a portion of the second bone 6 , such as a metaphysis of the second bone 6 .
  • the head portion 42 can include a plurality of locking fastener holes, non-locking fastener holes, and/or slots extending from the bone-contacting surface 32 a to the outer surface 32 b.
  • the bone plate 12 a defines five locking fastener holes 54 a - 54 e extending therethrough, although it will be appreciated that a greater and/or lesser number of locking fastener holes and/or one or more non-locking fastener holes or slots can be formed through the head portion 42 .
  • the locking fastener holes 54 a - 54 e are similar to the locking fastener holes 44 a - 44 b formed through the shaft portion 40 , and similar description is not repeated herein.
  • the head 42 of the bone plate 12 a is offset from the shaft 40 by an offset portion 56 .
  • the shaft 40 is substantially disposed in a first plane and the head 42 is substantially disposed in a second plane.
  • the offset portion 56 extends from the shaft 40 (e.g., the first plane) to the head 42 (e.g., the second plane) at a predetermined angle.
  • the offset portion 56 positions an outer surface 32 b of the head 42 above an outer surface 32 b of the shaft 40 and the bone contacting surface 32 a of the head 42 above the bone contacting surface 32 a of the shaft 40 .
  • the offset portion 56 positions the bone contacting surface 32 a of the head 42 above the outer surface 32 b of the shaft 40 .
  • the offset portion 56 is configured to position the shaft 40 and the head 42 such that the bone plate 12 a conforms to an outer surface of a bone, such as, a lateral side of a fibula, a medial side of a tibia, and/or any other suitable bone.
  • the bone plate 10 a can be coupled to the second bone 6 using any combination of locking and/or non-locking fasteners inserted through any combination of locking holes 44 a - 44 b, 54 a - 54 b, non-locking holes 46 a - 46 b, and/or slots 48 .
  • the bone plate 12 a includes at least one strand-locking hole 50 a.
  • a strand-locking hole 50 a can extend through any portion of the plate 12 a, such as the shaft 40 , the head 42 , and/or the offset portion 56 .
  • the strand-locking hole 50 a is sized and configured to receive a flexible strand, such as flexible strands 16 a, 16 b, therethrough.
  • the strand-locking hole 50 a includes a locking element 60 including one or more locking elements 62 , 64 configured to lock a flexible strand 16 a, 16 b in a fixed position when a predetermined tension is applied to the flexible strand 16 a, 16 b.
  • FIG. 3 illustrates an expanded view of the strand-locking hole 50 a of the bone plate 12 a, in accordance with some embodiments.
  • the strand-locking hole 50 a extends hole 50 a from the bone contacting surface 32 a to the outer surface 32 b.
  • the strand hole 50 a can include any suitable shape, such as a circular, oblong, square, and/or any other suitable shape.
  • a locking element 60 is disposed within the strand-locking hole 50 a.
  • the locking element 60 includes a first locking element 62 and a second locking element 64 extending from a first side 60 a of the strand hole 50 a to a second side 60 b of the strand hole 50 a.
  • the first locking element 62 and the second locking element 64 include beams or pins extending from the first side 60 a to a second side 60 b of the strand hole 50 a and that are transverse to a central axis 61 of the strand hole 50 a.
  • the first locking element 62 and the second locking element 64 are configured to lock a flexible strand 16 a, 16 b in a fixed position when a predetermined tension is applied.
  • the first locking element 62 is a fixed locking element having a fixed position within the strand hole 50 a and the second locking element 64 is a moveable locking element having a variable position within the strand hole 50 a.
  • the second locking element 64 is configured to be transitioned from a first, unlocked position to a second, locked position.
  • the second locking element 64 is disposed within a first channel 66 a and a second channel 66 b extending through the first side 60 a and the second side 60 b of the strand hole 50 a, respectively.
  • the second locking element 64 is configured to transition from a first end of each of the channels 66 a, 66 b to a second end of each of the channels 66 a, 66 b when a predetermined force is applied to the second locking element 64 .
  • the predetermined force can be applied to the second locking element 64 by the at least one flexible strand 16 a, 16 b.
  • a retention element (not shown) is configured to lock and/or fix the second locking element 64 at the second end of the channels 66 a, 66 b.
  • the retention element can include any suitable element, such as a notch, a hook, an adhesive, a mechanical retention element, and/or any other suitable retention element.
  • the flexible strand 16 a can extend through the bone tunnel 18 from an anchor 14 coupled to the first bone 4 , as discussed above.
  • the flexible strand 16 a, 16 b can further be passed through the strand-locking hole 50 a in a locking arrangement with the first locking element 62 and/or the second locking element 64 .
  • at least one flexible strand, such as flexible strand 16 a extends through the strand hole 50 a from the bone contacting surface 32 a to the outer surface 32 b below the second locking element 64 .
  • the flexible strand 16 a is returned through the strand hole 50 a from the outer surface 32 b to the bone contacting surface 32 a in a gap 68 between the first locking element 62 and the second locking element 64 such that the flexible strand 16 a loops around the second locking element 64 .
  • the flexible strand 16 a extends a second time through the strand hole 50 a from the bone contacting surface 32 a to the outer surface 32 b above the first locking element 62 .
  • a tensioning force is applied to a proximal end 22 b of the flexible strand 16 a.
  • the tensioning force initially causes the flexible strand 16 a to advance through the locking hole 50 and reduce the spacing between the first bone 4 and the second bone 6 .
  • the first end 22 a of the flexible strand 16 a, 16 b is coupled to the first bone 4 by the anchor 14 .
  • the flexible strand 16 a, 16 b is advanced through the strand-locking hole 50 a (for example, by the tensioning force) the spacing between the first bone 4 and the second bone 6 is reduced.
  • a force applied by the flexible strand 16 a to the second locking element 64 increases.
  • the second locking element 64 moves from the first, unlocked position to the second, locked position. In the unlocked position, the flexible strand 16 a is capable of advancing through the locking hole. The second locking element 64 is retained in the locked position by a retention element (not shown).
  • the flexible strand 16 a When the second locking element 64 transitions to the second, locked position, the flexible strand 16 a is prevented from moving through the strand-locking hole 50 a.
  • a flexible strand 16 a extends through a gap 68 between the first locking element 62 and the second locking element 64 .
  • the gap 68 In the first position, the gap 68 has a first spacing and is configured to allow free movement of the flexible strand 16 a.
  • the second locking element 64 transitions to the second position, as shown in FIG. 5 .
  • the gap 68 is reduced to a spacing less than the thickness of the flexible strand 16 a such that the flexible strand 16 a is compressed and locked between the first locking element 62 and the second locking element 64 .
  • the predetermined threshold corresponds to a predetermined spacing of the first bone 4 and the second bone 6 .
  • the locking element 60 can be positioned within any suitable anchoring body configured to be coupled to the first bone 4 and/or the second bone 6 .
  • a locking element 60 can be disposed within a capsule anchor configured to be at least partially inserted into the first bone 4 and/or the second bone 6 .
  • the locking element 60 can be positioned within an opening defined by a flat button and/or other fastener configured to be positioned against an outer surface of the first bone 4 and/or the second bone 6 . It will be appreciated that the locking element 60 can be positioned within any suitable structure and/or body, and is within the scope of this disclosure.
  • FIGS. 6-7 illustrates an anchor 14 a , in accordance with some embodiments.
  • the anchor 14 a is similar to the anchor 14 , and similar description is not repeated herein.
  • the anchor 14 a includes a body 80 defining a first wing 82 a and a second wing 82 b defining a slot 84 therebetween.
  • the first wing 82 a and the second wing 82 b each define a longitudinal section 86 extending generally along a longitudinal axis 88 and a lateral section 90 extending at an angle with respect to the longitudinal axis 88 .
  • the lateral sections 90 extend at a substantially 90° angle, although it will be appreciated that the lateral sections 90 can have a greater and/or lesser angle.
  • the first wing 82 a and the second wing 82 b are biased in opposite directions.
  • the first wing 82 a and the second wing 82 b are coupled at a distal end 92 a and are separated by a slot 84 at a proximal end 92 b such that the first wing 82 a and the second wing 82 b can be compressed towards each other.
  • the first wing 82 a and the second wing 82 b are compressed towards a center line 88 for insertion into a bone tunnel 18 a .
  • the first wing 82 a and the second wing 82 b expand apart and apply a force to an inner surface of the bone tunnel 18 a to maintain the anchor 14 a in a fixed position within the bone tunnel 18 a.
  • a strand anchoring extension 94 extends from the distal end 92 a of the body 80 .
  • the strand anchoring extension 94 includes a substantially flat body 96 extending from body 80 a substantially along the longitudinal axis 88 .
  • the strand anchoring extension 94 is configured to couple one or more flexible strands 16 a , 16 b to the body 80 .
  • the strand anchoring extension 94 defines a plurality of anchoring holes 98 a , 98 b extending through the flat body 96 .
  • a distal end 22 b of the flexible strands 16 a , 16 b extend through the anchoring holes 98 a , 98 b .
  • a knot can be formed at the distal end 22 b of the flexible strands 16 a , 16 b to prevent the flexible strands 16 a , 16 b from passing back through the anchoring holes 98 a , 98 b .
  • the strand anchoring extension can include a peg, screw, knotless coupling element and/or any other suitable anchor for coupling the flexible strands 16 a , 16 b to the strand anchoring extension 94 .
  • FIG. 8 illustrates a method 200 of syndesmosis, in accordance with some embodiments.
  • a bone tunnel 18 is formed through a first bone 4 and a second bone 6 .
  • the bone tunnel 18 can include a first portion 20 a extending through the first bone and a second portion 20 b extending through the second bone 6 .
  • the first and second portions 20 a , 20 b can be aligned along a common longitudinal axis and/or can be offset.
  • the bone tunnel 18 can be formed using any suitable device, such as a drill, needle, k-wire, and/or any other suitable device.
  • At step 204 at least one flexible strand 16 a , 16 b is passed through the bone tunnel 18 from a first end corresponding to a surface 4 a of the first bone to a second end corresponding to a surface 6 a of the second bone 6 .
  • a first end 22 a of the at least one flexible strand 16 a , 16 b is coupled to an anchor 14 and a second end 22 b of the flexible strand 16 a , 16 b is passed through the bone tunnel 18 .
  • the anchor 14 includes a body 80 defining a first wing 82 a and a second wing 82 b coupled at a distal end and each biased away from a longitudinal axis of the body 80 .
  • the anchor 14 includes a coupling extension 94 extending distally from the distal end 92 a of the body 80 .
  • the coupling extension 94 defines one or more holes 98 a , 98 b extending therethrough.
  • each flexible strand 16 a , 16 b is passed through a selected on of the holes 98 a , 98 b .
  • a knot or other anchor can be formed at an end of the flexible strand 16 a , 16 b to couple the flexible strand 16 a , 16 b to the coupling extension 94 .
  • the wings 82 a , 82 b of the anchor 14 are compressed and the anchor 14 is inserted into the first portion 20 a of the bone tunnel 18 .
  • the longitudinal portion 86 of each of the wings 82 a , 82 b is disposed within the bone tunnel 18 and the transverse portions 90 of each of the wings is disposed against an outer surface 4 a of the first bone 4 .
  • the anchor 14 is partially inserted into the first portion 20 a of the bone tunnel 18 such the longitudinal portion 86 extends at least partially from the bone tunnel 18 .
  • the second end 22 b of the flexible strand 16 a , 16 b is coupled to a strand-locking hole 50 of a bone plate 12 .
  • the strand-locking hole 50 includes one or more locking element 62 , 64 configured to couple to the flexible strands 16 a , 16 b .
  • the flexible strand 16 a , 16 b can be coupled to the strand-locking hole 50 by passing the flexible strand 16 a , 16 b from a bone contact surface 32 a to an outer surface 32 b of the bone plate 12 a through the strand-locking hole 50 and beneath the second locking element 64 .
  • the flexible strand 16 a , 16 b is passed back through the strand-locking hole 50 from the outer surface 32 b to the bone contacting surface 32 a and between the first locking element 62 and the second locking element 64 .
  • the flexible strand 16 a , 16 b is subsequently returned through the strand-locking hole 50 from the bone contacting surface 32 a to the outer surface 32 b and above the first locking element 62 .
  • the flexible strands 16 a , 16 b and the locking elements 62 , 64 are discussed herein, it will be appreciated that the flexible strands 16 a , 16 b can pass through the strand-locking hole 50 and/or interact with the locking elements 62 , 64 in any suitable manner and is within the scope of this disclosure.
  • the bone plate 12 a is coupled to the second bone 6 by one or more fasteners.
  • one or more locking fasteners are inserted through one or more locking fastener holes 44 a - 44 b , 54 a - 54 b formed in the shaft 40 and/or the head 42 of the bone plate 12 a .
  • the one or more locking fasteners are inserted through the locking fastener holes 44 a - 44 b , 54 a - 54 b at a variable angle.
  • the locking fasteners can include any suitable locking fastener, such as a locking fastener having a threaded shaft configured to interface with the second bone 6 and a threaded head configured to lock the locking fastener at a selected angle within the locking fastener hole 44 a - 44 b , 54 a - 54 b .
  • one or more non-locking fasteners are inserted through one or more non-locking fastener holes 46 a - 46 b formed in the shaft 40 and/or the head 42 . The one or more non-locking fasteners compress the bone plate 12 against the outer surface 6 a of the second bone.
  • the non-locking fasteners include a threaded shaft and an unthreaded head, although it will be appreciated that any suitable non-locking fastener can be used.
  • one or more fasteners are inserted through one or more slots 48 formed through the shaft 40 and/or the head 42 . The one or more fasteners can be positioned within a variable location within the slot 48 and coupled to the second bone to compress the bone plate 12 a against the second bone 6 .
  • a tensioning force is applied to the second end 22 b of the at least one flexible strand 16 a , 16 b to position the first bone 4 and the second bone 6 at a predetermined spacing.
  • the tensioning force advances the second end 22 b of the flexible strand 16 a , 16 b through the strand-locking hole 50 of the bone plate 12 .
  • the first end 22 a is coupled to the anchor 14 positioned within the bone tunnel 18 .
  • the anchor 14 maintains the first end 22 a in a fixed position, causing the first bone 4 and the second bone 6 to move towards each other to a predetermined spacing.
  • the tensioning force causes the anchor 14 to advance into the bone tunnel 18 to a fixed position.
  • the tensioning force maintains the bone plate 12 a in a fixed position with respect to the second bone 6 .
  • the at least one flexible strand 16 a , 16 b is locked at a predetermined length corresponding to a predetermined spacing of the first bone 4 and the second bone 6 .
  • the at least one flexible strand 16 a , 16 b is locked at the predetermined length by the first locking element 62 and the second locking element 64 disposed within the strand-locking hole 50 .
  • the at least one flexible strand 16 a , 16 b applies a force to the second locking element 64 during tensioning of the first bone 4 and the second bone 6 .
  • the second locking element 64 transitions from a first position (in which the at least one flexible strand 16 a , 16 b is freely moveable through the strand-locking hole 50 ) to a second position (in which the at least one flexible strand 16 a , 16 b is compressed between the first locking element 62 and the second locking element 64 ).
  • the compressive force is configured to prevent movement of the at least one flexible strand 16 a , 16 b through the strand-locking hole 50 and lock the first and second bones 4 , 6 at the predetermined spacing.
  • the at least one flexible strand 16 a , 16 b can be cut or otherwise shortened to remove a portion of the at least one flexible strand 16 a , 16 b extending substantially beyond the outer surface 32 b of the bone plate 12 .
  • the steps of the method 200 can be performed in any suitable order, can be omitted, and/or can be repeated and are within the scope of this disclosure.

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Neurology (AREA)
  • Rheumatology (AREA)
  • Surgical Instruments (AREA)

Abstract

A syndesmosis system includes a bone plate and an anchor. The bone plate includes a body extending between first and second surfaces. The body defines a strand-locking hole extending from the first surface to the second surface. A first locking element and a second locking element each extend from a first side wall of the strand-locking hole to a second side wall of the strand-locking hole. Each of the first anchor and the second anchor extend transverse to a central axis of the anchor hole. The anchor includes a body defining a first wing and a second wing. The first and second wings are coupled at a distal end and are biased away from a longitudinal axis of the body. The first and second wings are configured to maintain the anchor in a fixed position when inserted into a hole formed in a bone.

Description

  • This application claims the benefit of priority of U.S. Provisional Patent Application No. 62/518,312, filed Jun. 12, 2017 of which is expressly incorporated herein by reference in its entirety.
  • BACKGROUND
  • Various injuries include separation of soft tissue from one or more bones and/or separation of bones from normally anatomical correct positioning. Maintaining the bones in the correct anatomical positions during healing is important to provide proper soft tissue reattachment and proper bone healing. For example, during syndesmosis repair, a first bone and a second bone must be maintained in a fixed position to allow the connective tissue to heal.
  • Current suture systems include one or more knots for maintaining sutures in a fixed position. Knots formed on the sutures can cause irritation during healing and may be subject to tearing due to friction or other forces applied to the knot. Current systems further require surgeons to form knots during surgery. Such systems are prone to failure and increase time of surgery.
  • SUMMARY
  • In various embodiments, a system is disclosed. The system includes an anchoring device and an anchor. The anchoring device includes a body extending between a first surface and a second surface. The body defines a strand-locking hole extending from the first surface to the second surface. A first locking element and a second locking element each extend from a first side wall of the strand-locking hole to a second side wall of the strand-locking hole. Each of the first anchor and the second anchor extend transverse to a central axis of the anchor hole. The anchor includes a body defining a first wing and a second wing. The first and second wings are coupled at a distal end and biased away from a longitudinal axis of the body. The first and second wings are configured to maintain the anchor in a fixed position when the anchor is inserted into a hole formed in a bone.
  • In various embodiments, a method of syndesmosis is disclosed. The method includes forming a bone tunnel through a first bone and a second bone and passing at least one flexible strand through the bone tunnel from a first side to a second side. The at least one flexible strand is coupled to an anchor including a body defining a first wing and a second wing coupled at a distal end and biased away from a longitudinal axis of the body. The body is sized and configured for insertion into a first side of the bone tunnel. The at least one flexible strand is passed through a locking hole formed in a bone plate. The bone plate is configured to abut a surface of the second bone defining the second side of the bone tunnel. The first bone and the second bone are positioned at a predetermined spacing by applying a tensioning force to the at least one flexible strand. The at least one flexible strand is locked at a predetermined length. The at least one flexible strand is locked by a first locking element and a second locking element positioned within the locking hole formed in the bone plate.
  • In various embodiments, a system is disclosed. The system includes a bone plate, an anchor, and a flexible strand extending between the bone plate and the anchor. The bone plate includes a body extending between a first surface and a second surface and defining a strand-locking hole extending from the first surface to the second surface. A first locking element and a second locking element each extend from a first side wall of the strand-locking hole to a second side wall of the strand-locking hole. Each of the first locking element and the second locking element extend transverse to a central axis of the anchor hole. The anchor includes a body defining a first wing and a second wing that are coupled at a distal end and biased away from a longitudinal axis of the body. The first and second wings are configured to maintain the anchor in a fixed position when the anchor is inserted into a hole formed in a bone. The anchor includes a coupling extension extending from the distal end of the first wing and the second wing and defining at least one hole extending therethrough. A first end of the flexible strand is coupled to the at least one hole formed in the coupling extension of the anchor and a second end of the flexible strand extends beneath the second locking element, between the first locking element and the second locking element, and above the first locking element of the bone plate.
  • BRIEF DESCRIPTION OF THE FIGURES
  • The features and advantages of the present invention will be more fully disclosed in, or rendered obvious by the following detailed description of the preferred embodiments, which are to be considered together with the accompanying drawings wherein like numbers refer to like parts and further wherein:
  • FIG. 1 illustrates a joint including a first bone and a second bone coupled by at least one flexible strand extending between a bone plate and an anchor, in accordance with some embodiments.
  • FIG. 2 illustrates a bone plate including at least one strand-locking hole, in accordance with some embodiments.
  • FIG. 3 illustrates an expanded view of the strand-locking hole of the bone plate of FIG. 2, in accordance with some embodiments.
  • FIG. 4 illustrates a cross-sectional view of the strand-locking hole taken along line A-A of FIG. 3, in accordance with some embodiments.
  • FIG. 5 illustrates the cross-sectional view of FIG. 4 having a second locking element in a second, locked position, in accordance with some embodiments.
  • FIG. 6 illustrates an anchor, in accordance with some embodiments.
  • FIG. 7 illustrates the anchor of FIG. 6 having a first flexible strand and a second flexible strand coupled thereto, in accordance with some embodiments.
  • FIG. 8 illustrates a method of syndesmosis, in accordance with some embodiments.
  • DETAILED DESCRIPTION
  • This description of the exemplary embodiments is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description, relative terms such as “lower,” “upper,” “horizontal,” “vertical,”, “above,” “below,” “up,” “down,” “top,” “bottom,” “proximal,” “distal,” “superior,” “inferior,” “medial,” and “lateral” as well as derivative thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description and do not require that the apparatus be constructed or operated in a particular orientation. Terms concerning attachments, coupling and the like, such as “connected,” refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise.
  • FIG. 1 illustrates a joint 2 including a first bone 4 and a second bone 6 coupled by at least one flexible strand 16 a, 16 b extending between a bone plate 12 and an anchor 14, in accordance with some embodiments. In some embodiments, the joint 2 is an ankle joint including a tibia 4, a fibula 6, and a talus 8. An anchoring construct 10 includes a bone plate 12 and an anchor 14 having at least one flexible strand 16 a, 16 b extending therebetween. The flexible strands 16 a, 16 b can include any suitable material, such as one or more sutures, threads, ribbons, and/or any other suitable flexible material. The flexible strands 16 a, 16 b extend through a bone tunnel 18 having a first portion 20 a extending through the first bone 4 and a second portion 20 b extending through the second bone 6. The first and second portions 20 a, 20 b can be aligned along a common longitudinal axis (as shown in FIG. 1) and/or can be offset.
  • In some embodiments, the flexible strands 16 a, 16 b of the anchoring construct 10 can be adjusted (e.g., shortened) to apply a tensioning force to the first bone 4 and the second bone 6 to position the first bone 4 and the second bone 6 in a predetermined spaced relationship. In some embodiments, the predetermined spaced relationship is selected to mimic a natural spacing of the first bone 4 and the second bone 6. The flexible strands 16 a, 16 b allow the first bone 4 and the second bone 6 to be maintained in the predetermined spaced relationship while allowing natural range of movement between the first bone 4 and the second bone 6.
  • In some embodiments, the flexible strands 16 a, 16 b can be locked after adjustment to maintain the first bone 4 and the second bone 6 in the predetermined spaced relationship. For example, in the illustrated embodiment, a first end 22 a of each of the flexible strands 16 a, 16 b is fixedly coupled to an anchor 14 coupled to the first bone 4. The first end 22 a of the flexible strands 16 a, 16 b can be coupled to the anchor 14 using any suitable coupling mechanism. For example, in some embodiments, the flexible strands 16 a, 16 b can be inserted through one or more holes formed in the anchor 14, as described in greater detail below. A knot can be formed at the first end 22 a of each of the flexible strands 16 a, 16 b to prevent the flexible strands 16 a, 16 b from passing back through the one or more holes formed in the anchor 14. In other embodiments, the flexible strands 16 a, 16 b can be coupled to the anchor 14 using a crimp and/or other compression coupling. Although specific embodiments are discussed herein, it will be appreciated that the flexible strands 16 a, 16 b can be coupled to the anchor 14 using any suitable coupling mechanism.
  • In some embodiments, a second end 22 b of each of the flexible strands 16 a, 16 b is passed through a strand-locking hole 50 formed in the bone plate 12. The strand-locking hole 50 is configured to prevent movement (e.g., lengthening/shortening) of the flexible strands 16 a, 16 b when a predetermined tension is applied to the flexible strands 16 a, 16 b. In some embodiments, the predetermined tension corresponds to a predetermined spacing of the first bone 4 and the second bone 6. The strand-locking hole 50 can include one or more locking elements configured to lock the first strand 16 a and/or the second strand 16 b in a fixed position when the predetermined tension is applied to the flexible strands 16 a, 16 b, as discussed in greater detail below with respect to FIGS. 2-5.
  • FIG. 2 illustrates a bone plate 12 a including at least one locking hole 50 a, in accordance with some embodiments. The bone plate 12 a is similar to the bone plate 12 discussed above, and similar description is not repeated herein. The bone plate 12 a includes a body 30 extending between a bone-contacting surface 32 a and an opposed, outer surface 32 b. A perimeter of the bone plate is defined by a first side edge 34 and a second side edge 34 b extending generally along a longitudinal axis 38 of the bone plate 12 a and a top edge 36 a and a bottom edge 36 b generally extending perpendicular to the longitudinal axis 38. The body 30 has a predetermined thickness between the bone-contacting surface 32 a and the outer surface 32 b.
  • In some embodiments, the body 30 includes a shaft portion 40 and a head portion 42. The shaft portion 40 extends generally along a longitudinal axis 38 of the bone plate 12 a and is sized and configured to conform to a portion of the second bone 6, such as, for example, a diaphysis of the second bone 6. The shaft portion 40 has a first width. The shaft portion 40 can include one or more locking fastener holes 44 a-44 b, non-locking fastener holes 46 a-46 b, slots 48, and/or strand-locking holes 50 a. Although embodiments are discussed herein having locking fastener holes 44 a-44 b, non-locking fastener holes 46 a-46 b, and compression slots 48, it will be appreciated that the bone plate can include any combination of locking fastener holes 44 a-44 b, non-locking fastener holes 46 a-46 b, and slots 48 and is within the scope of this disclosure.
  • In some embodiments, each of the locking fastener holes 44 a-44 b includes a circumferential opening extending from the bone-contacting surface 32 a to the outer surface 32 b. An interrupted thread 52 extends at least partially therethrough. The interrupted thread 52 is formed by tapping a continuous thread into the locking fastener holes 44 a-44 b and forming one or more interruptions (or cutouts) 54 through the thread. The interrupted thread 52 is configured to allow a locking fastener to be inserted into the locking fastener holes 44 a-44 b at a variable, user-selected angle, to lock the bone plate 12 a to a bone, such as the second bone 6.
  • In some embodiments, each of the non-locking fastener holes 46 a-46 b include a circumferential opening having a smooth side surface extending from the bone-contacting surface 32 a to the outer surface 32 b. The non-locking fastener holes 46 a-46 b are configured to receive a non-locking fastener therein. The non-locking fastener is coupled to a bone, such as the second bone 6, to pull the bone-contacting surface 32 a of the bone plate 12 a into contact with an outer surface of the bone 6. In some embodiments, the non-locking fastener holes 46 a-46 b are omitted.
  • In some embodiments, a slot 48 includes an oblong opening having a smooth side surface extending from the bone-contacting surface 32 a to the outer surface 32 b. The slot 48 is sized and configured to receive a non-locking fastener therein. The non-locking fastener can be variably positioned within the slot 48 and coupled to a bone.
  • In some embodiments, the shaft portion 40 is coupled to a head portion 42 at a lower end of the shaft portion 40. The head portion 42 has a second width. In some embodiments, the second width of the head portion 42 is greater than the first width of the shaft portion 40. The head portion 42 can be configured to conform to a portion of the second bone 6, such as a metaphysis of the second bone 6. In some embodiments, the head portion 42 can include a plurality of locking fastener holes, non-locking fastener holes, and/or slots extending from the bone-contacting surface 32 a to the outer surface 32 b. For example, in the illustrated embodiment, the bone plate 12 a defines five locking fastener holes 54 a-54 e extending therethrough, although it will be appreciated that a greater and/or lesser number of locking fastener holes and/or one or more non-locking fastener holes or slots can be formed through the head portion 42. The locking fastener holes 54 a-54 e are similar to the locking fastener holes 44 a-44 b formed through the shaft portion 40, and similar description is not repeated herein.
  • In some embodiments, the head 42 of the bone plate 12 a is offset from the shaft 40 by an offset portion 56. The shaft 40 is substantially disposed in a first plane and the head 42 is substantially disposed in a second plane. The offset portion 56 extends from the shaft 40 (e.g., the first plane) to the head 42 (e.g., the second plane) at a predetermined angle. The offset portion 56 positions an outer surface 32 b of the head 42 above an outer surface 32 b of the shaft 40 and the bone contacting surface 32 a of the head 42 above the bone contacting surface 32 a of the shaft 40. In some embodiments, the offset portion 56 positions the bone contacting surface 32 a of the head 42 above the outer surface 32 b of the shaft 40. In some embodiments, the offset portion 56 is configured to position the shaft 40 and the head 42 such that the bone plate 12 a conforms to an outer surface of a bone, such as, a lateral side of a fibula, a medial side of a tibia, and/or any other suitable bone. The bone plate 10 a can be coupled to the second bone 6 using any combination of locking and/or non-locking fasteners inserted through any combination of locking holes 44 a-44 b, 54 a-54 b, non-locking holes 46 a-46 b, and/or slots 48.
  • In some embodiments, the bone plate 12 a includes at least one strand-locking hole 50 a. A strand-locking hole 50 a can extend through any portion of the plate 12 a, such as the shaft 40, the head 42, and/or the offset portion 56. The strand-locking hole 50 a is sized and configured to receive a flexible strand, such as flexible strands 16 a, 16 b, therethrough. The strand-locking hole 50 a includes a locking element 60 including one or more locking elements 62, 64 configured to lock a flexible strand 16 a, 16 b in a fixed position when a predetermined tension is applied to the flexible strand 16 a, 16 b.
  • FIG. 3 illustrates an expanded view of the strand-locking hole 50 a of the bone plate 12 a, in accordance with some embodiments. The strand-locking hole 50 a extends hole 50 a from the bone contacting surface 32 a to the outer surface 32 b. The strand hole 50 a can include any suitable shape, such as a circular, oblong, square, and/or any other suitable shape. In some embodiments, a locking element 60 is disposed within the strand-locking hole 50 a. The locking element 60 includes a first locking element 62 and a second locking element 64 extending from a first side 60 a of the strand hole 50 a to a second side 60 b of the strand hole 50 a. For example, in some embodiments, the first locking element 62 and the second locking element 64 include beams or pins extending from the first side 60 a to a second side 60 b of the strand hole 50 a and that are transverse to a central axis 61 of the strand hole 50 a. The first locking element 62 and the second locking element 64 are configured to lock a flexible strand 16 a, 16 b in a fixed position when a predetermined tension is applied.
  • In some embodiments, the first locking element 62 is a fixed locking element having a fixed position within the strand hole 50 a and the second locking element 64 is a moveable locking element having a variable position within the strand hole 50 a. The second locking element 64 is configured to be transitioned from a first, unlocked position to a second, locked position. For example, in the illustrated embodiment, the second locking element 64 is disposed within a first channel 66 a and a second channel 66 b extending through the first side 60 a and the second side 60 b of the strand hole 50 a, respectively. The second locking element 64 is configured to transition from a first end of each of the channels 66 a, 66 b to a second end of each of the channels 66 a, 66 b when a predetermined force is applied to the second locking element 64. The predetermined force can be applied to the second locking element 64 by the at least one flexible strand 16 a, 16 b. When the second locking element 64 is transitioned to a second end of the channels 66 a, 66 b, a retention element (not shown) is configured to lock and/or fix the second locking element 64 at the second end of the channels 66 a, 66 b. The retention element can include any suitable element, such as a notch, a hook, an adhesive, a mechanical retention element, and/or any other suitable retention element.
  • The flexible strand 16 a can extend through the bone tunnel 18 from an anchor 14 coupled to the first bone 4, as discussed above. The flexible strand 16 a, 16 b can further be passed through the strand-locking hole 50 a in a locking arrangement with the first locking element 62 and/or the second locking element 64. In some embodiments, at least one flexible strand, such as flexible strand 16 a, extends through the strand hole 50 a from the bone contacting surface 32 a to the outer surface 32 b below the second locking element 64. The flexible strand 16 a is returned through the strand hole 50 a from the outer surface 32 b to the bone contacting surface 32 a in a gap 68 between the first locking element 62 and the second locking element 64 such that the flexible strand 16 a loops around the second locking element 64. The flexible strand 16 a extends a second time through the strand hole 50 a from the bone contacting surface 32 a to the outer surface 32 b above the first locking element 62. Although specific embodiments are discussed herein, it will be appreciated that the flexible strands 16 a, 16 b can be coupled to the locking elements 62, 64 in any suitable locking arrangement.
  • In use, a tensioning force is applied to a proximal end 22 b of the flexible strand 16 a. The tensioning force initially causes the flexible strand 16 a to advance through the locking hole 50 and reduce the spacing between the first bone 4 and the second bone 6. For example, in some embodiments, the first end 22 a of the flexible strand 16 a, 16 b is coupled to the first bone 4 by the anchor 14. As the flexible strand 16 a, 16 b is advanced through the strand-locking hole 50 a (for example, by the tensioning force) the spacing between the first bone 4 and the second bone 6 is reduced. As the first bone 4 and the second bone 6 are adjusted, a force applied by the flexible strand 16 a to the second locking element 64 increases. When the force exceeds a predetermined threshold, the second locking element 64 moves from the first, unlocked position to the second, locked position. In the unlocked position, the flexible strand 16 a is capable of advancing through the locking hole. The second locking element 64 is retained in the locked position by a retention element (not shown).
  • When the second locking element 64 transitions to the second, locked position, the flexible strand 16 a is prevented from moving through the strand-locking hole 50 a. For example, as shown in FIG. 4, a flexible strand 16 a extends through a gap 68 between the first locking element 62 and the second locking element 64. In the first position, the gap 68 has a first spacing and is configured to allow free movement of the flexible strand 16 a. When the force applied by the flexible strands 16 a, 16 b exceeds the predetermined threshold, the second locking element 64 transitions to the second position, as shown in FIG. 5. In the second position, the gap 68 is reduced to a spacing less than the thickness of the flexible strand 16 a such that the flexible strand 16 a is compressed and locked between the first locking element 62 and the second locking element 64. In some embodiments, the predetermined threshold corresponds to a predetermined spacing of the first bone 4 and the second bone 6.
  • Although embodiments are discussed herein including a bone plate 12, 12 a, it will be appreciated that the locking element 60 can be positioned within any suitable anchoring body configured to be coupled to the first bone 4 and/or the second bone 6. For example, in various embodiments, a locking element 60 can be disposed within a capsule anchor configured to be at least partially inserted into the first bone 4 and/or the second bone 6. In other embodiments, the locking element 60 can be positioned within an opening defined by a flat button and/or other fastener configured to be positioned against an outer surface of the first bone 4 and/or the second bone 6. It will be appreciated that the locking element 60 can be positioned within any suitable structure and/or body, and is within the scope of this disclosure.
  • FIGS. 6-7 illustrates an anchor 14 a, in accordance with some embodiments. The anchor 14 a is similar to the anchor 14, and similar description is not repeated herein. The anchor 14 a includes a body 80 defining a first wing 82 a and a second wing 82 b defining a slot 84 therebetween. The first wing 82 a and the second wing 82 b each define a longitudinal section 86 extending generally along a longitudinal axis 88 and a lateral section 90 extending at an angle with respect to the longitudinal axis 88. In some embodiments, the lateral sections 90 extend at a substantially 90° angle, although it will be appreciated that the lateral sections 90 can have a greater and/or lesser angle.
  • In some embodiments, the first wing 82 a and the second wing 82 b are biased in opposite directions. For example, in some embodiments, the first wing 82 a and the second wing 82 b are coupled at a distal end 92 a and are separated by a slot 84 at a proximal end 92 b such that the first wing 82 a and the second wing 82 b can be compressed towards each other. In use, the first wing 82 a and the second wing 82 b are compressed towards a center line 88 for insertion into a bone tunnel 18 a. After insertion, the first wing 82 a and the second wing 82 b expand apart and apply a force to an inner surface of the bone tunnel 18 a to maintain the anchor 14 a in a fixed position within the bone tunnel 18 a.
  • In some embodiments, a strand anchoring extension 94 extends from the distal end 92 a of the body 80. The strand anchoring extension 94 includes a substantially flat body 96 extending from body 80 a substantially along the longitudinal axis 88. The strand anchoring extension 94 is configured to couple one or more flexible strands 16 a, 16 b to the body 80. For example, in the illustrated embodiment, the strand anchoring extension 94 defines a plurality of anchoring holes 98 a, 98 b extending through the flat body 96. A distal end 22 b of the flexible strands 16 a, 16 b extend through the anchoring holes 98 a, 98 b. A knot can be formed at the distal end 22 b of the flexible strands 16 a, 16 b to prevent the flexible strands 16 a, 16 b from passing back through the anchoring holes 98 a, 98 b. In other embodiments, the strand anchoring extension can include a peg, screw, knotless coupling element and/or any other suitable anchor for coupling the flexible strands 16 a, 16 b to the strand anchoring extension 94.
  • FIG. 8 illustrates a method 200 of syndesmosis, in accordance with some embodiments. At step 202, a bone tunnel 18 is formed through a first bone 4 and a second bone 6. The bone tunnel 18 can include a first portion 20 a extending through the first bone and a second portion 20 b extending through the second bone 6. The first and second portions 20 a, 20 b can be aligned along a common longitudinal axis and/or can be offset. The bone tunnel 18 can be formed using any suitable device, such as a drill, needle, k-wire, and/or any other suitable device.
  • At step 204, at least one flexible strand 16 a, 16 b is passed through the bone tunnel 18 from a first end corresponding to a surface 4 a of the first bone to a second end corresponding to a surface 6 a of the second bone 6. In some embodiments, a first end 22 a of the at least one flexible strand 16 a, 16 b is coupled to an anchor 14 and a second end 22 b of the flexible strand 16 a, 16 b is passed through the bone tunnel 18. The anchor 14 includes a body 80 defining a first wing 82 a and a second wing 82 b coupled at a distal end and each biased away from a longitudinal axis of the body 80. In some embodiments, the anchor 14 includes a coupling extension 94 extending distally from the distal end 92 a of the body 80. The coupling extension 94 defines one or more holes 98 a, 98 b extending therethrough. In some embodiments, each flexible strand 16 a, 16 b is passed through a selected on of the holes 98 a, 98 b. A knot or other anchor can be formed at an end of the flexible strand 16 a, 16 b to couple the flexible strand 16 a, 16 b to the coupling extension 94.
  • At step 206, the wings 82 a, 82 b of the anchor 14 are compressed and the anchor 14 is inserted into the first portion 20 a of the bone tunnel 18. In some embodiments, the longitudinal portion 86 of each of the wings 82 a, 82 b is disposed within the bone tunnel 18 and the transverse portions 90 of each of the wings is disposed against an outer surface 4 a of the first bone 4. In some embodiments, the anchor 14 is partially inserted into the first portion 20 a of the bone tunnel 18 such the longitudinal portion 86 extends at least partially from the bone tunnel 18.
  • At step 208, the second end 22 b of the flexible strand 16 a, 16 b is coupled to a strand-locking hole 50 of a bone plate 12. The strand-locking hole 50 includes one or more locking element 62, 64 configured to couple to the flexible strands 16 a, 16 b. In some embodiments, the flexible strand 16 a, 16 b can be coupled to the strand-locking hole 50 by passing the flexible strand 16 a, 16 b from a bone contact surface 32 a to an outer surface 32 b of the bone plate 12 a through the strand-locking hole 50 and beneath the second locking element 64. The flexible strand 16 a, 16 b is passed back through the strand-locking hole 50 from the outer surface 32 b to the bone contacting surface 32 a and between the first locking element 62 and the second locking element 64. The flexible strand 16 a, 16 b is subsequently returned through the strand-locking hole 50 from the bone contacting surface 32 a to the outer surface 32 b and above the first locking element 62. Although specific embodiments and arrangements of the flexible strands 16 a, 16 b and the locking elements 62, 64 are discussed herein, it will be appreciated that the flexible strands 16 a, 16 b can pass through the strand-locking hole 50 and/or interact with the locking elements 62, 64 in any suitable manner and is within the scope of this disclosure.
  • At optional step 210, the bone plate 12 a is coupled to the second bone 6 by one or more fasteners. In some embodiments, one or more locking fasteners are inserted through one or more locking fastener holes 44 a-44 b, 54 a-54 b formed in the shaft 40 and/or the head 42 of the bone plate 12 a. The one or more locking fasteners are inserted through the locking fastener holes 44 a-44 b, 54 a-54 b at a variable angle. The locking fasteners can include any suitable locking fastener, such as a locking fastener having a threaded shaft configured to interface with the second bone 6 and a threaded head configured to lock the locking fastener at a selected angle within the locking fastener hole 44 a-44 b, 54 a-54 b. In some embodiments, one or more non-locking fasteners are inserted through one or more non-locking fastener holes 46 a-46 b formed in the shaft 40 and/or the head 42. The one or more non-locking fasteners compress the bone plate 12 against the outer surface 6 a of the second bone. In some embodiments, the non-locking fasteners include a threaded shaft and an unthreaded head, although it will be appreciated that any suitable non-locking fastener can be used. In some embodiments, one or more fasteners are inserted through one or more slots 48 formed through the shaft 40 and/or the head 42. The one or more fasteners can be positioned within a variable location within the slot 48 and coupled to the second bone to compress the bone plate 12 a against the second bone 6.
  • At step 212, a tensioning force is applied to the second end 22 b of the at least one flexible strand 16 a, 16 b to position the first bone 4 and the second bone 6 at a predetermined spacing. The tensioning force advances the second end 22 b of the flexible strand 16 a, 16 b through the strand-locking hole 50 of the bone plate 12. The first end 22 a is coupled to the anchor 14 positioned within the bone tunnel 18. The anchor 14 maintains the first end 22 a in a fixed position, causing the first bone 4 and the second bone 6 to move towards each other to a predetermined spacing. In some embodiments, the tensioning force causes the anchor 14 to advance into the bone tunnel 18 to a fixed position. In some embodiments, the tensioning force maintains the bone plate 12 a in a fixed position with respect to the second bone 6.
  • At step 214, the at least one flexible strand 16 a, 16 b is locked at a predetermined length corresponding to a predetermined spacing of the first bone 4 and the second bone 6. In some embodiments, the at least one flexible strand 16 a, 16 b is locked at the predetermined length by the first locking element 62 and the second locking element 64 disposed within the strand-locking hole 50. For example, in some embodiments, the at least one flexible strand 16 a, 16 b applies a force to the second locking element 64 during tensioning of the first bone 4 and the second bone 6. When the force applied to the second locking element 64 exceeds a predetermined threshold, the second locking element 64 transitions from a first position (in which the at least one flexible strand 16 a, 16 b is freely moveable through the strand-locking hole 50) to a second position (in which the at least one flexible strand 16 a, 16 b is compressed between the first locking element 62 and the second locking element 64). In some embodiments, the compressive force is configured to prevent movement of the at least one flexible strand 16 a, 16 b through the strand-locking hole 50 and lock the first and second bones 4, 6 at the predetermined spacing.
  • At optional step 216, the at least one flexible strand 16 a, 16 b can be cut or otherwise shortened to remove a portion of the at least one flexible strand 16 a, 16 b extending substantially beyond the outer surface 32 b of the bone plate 12. Although specific embodiments are discussed herein, it will be appreciated that the steps of the method 200 can be performed in any suitable order, can be omitted, and/or can be repeated and are within the scope of this disclosure.
  • Although the devices, kits, systems, and methods have been described in terms of exemplary embodiments, they are not limited thereto. Rather, the appended claims should be construed broadly, to include other variants and embodiments of the devices, kits, systems, and methods, which may be made by those skilled in the art without departing from the scope and range of equivalents of the devices, kits, systems, and methods.

Claims (9)

What is claimed is:
1.-20. (canceled)
21. A method of syndesmosis, comprising:
forming a bone tunnel through a first bone and a second bone;
passing at least one flexible strand through the bone tunnel from a first side to a second side, wherein the at least one flexible strand is coupled to an anchor including a body defining a first wing and a second wing, wherein the first and second wings are coupled at a distal end and biased away from a longitudinal axis of the body, and wherein the body is sized and configured for insertion into a first side of the bone tunnel;
passing the at least one flexible strand through a locking hole formed in a bone plate, wherein the bone plate is configured to abut a surface of the second bone defining the second side of the bone tunnel;
positioning the first bone and the second bone at a predetermined spacing by applying a tensioning force to the at least one flexible strand; and
locking the at least one flexible strand at a predetermined length, wherein the at least one flexible strand is locked by a first locking element and a second locking element positioned within the locking hole formed in the bone plate.
22. The method of claim 21, wherein insertion of the anchor into the first side of the bone tunnel comprises compressing the first wing and the second wing towards the longitudinal axis.
23. The method of claim 21, wherein passing the at least one flexible strand through a locking formed in the bone plate comprises passing the at least one flexible strand beneath the second locking element, between the first locking element and the second locking element, and above the first locking element.
24. The method of claim 21, wherein the at least one flexible strand is coupled to the anchor by passing the at least one flexible strand through a hole formed in a coupling portion of the anchor and forming a knot in the at least one flexible strand.
25. The method of claim 21, wherein the at least one flexible strand is locked at the predetermined length by transitioning the second locking element from a first position to a second position, wherein the second locking element compresses the at least one flexible strand in the second position.
26. The method of claim 25, wherein the second locking element transitions from the first position to the second position when a predetermined force is applied to the second locking element by the at least one flexible strand.
27. The method of claim 21, coupling the bone plate to the second bone by inserting one or more fasteners through one or more fastener holes formed through the bone plate, wherein the bone plate is coupled to the second bone prior to positioning the first and second bone at a predetermined spacing.
28. The method of claim 27, wherein at least one of the one or more fasteners is a locking fastener and wherein at least one of the one or more fastener holes is a locking hole.
US17/190,497 2017-06-12 2021-03-03 Knotless suture locking bone plate Abandoned US20210186580A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/190,497 US20210186580A1 (en) 2017-06-12 2021-03-03 Knotless suture locking bone plate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762518312P 2017-06-12 2017-06-12
US16/004,587 US10966764B2 (en) 2017-06-12 2018-06-11 Knotless suture locking bone plate
US17/190,497 US20210186580A1 (en) 2017-06-12 2021-03-03 Knotless suture locking bone plate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/004,587 Continuation US10966764B2 (en) 2017-06-12 2018-06-11 Knotless suture locking bone plate

Publications (1)

Publication Number Publication Date
US20210186580A1 true US20210186580A1 (en) 2021-06-24

Family

ID=64562809

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/004,587 Active 2038-12-03 US10966764B2 (en) 2017-06-12 2018-06-11 Knotless suture locking bone plate
US17/190,497 Abandoned US20210186580A1 (en) 2017-06-12 2021-03-03 Knotless suture locking bone plate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/004,587 Active 2038-12-03 US10966764B2 (en) 2017-06-12 2018-06-11 Knotless suture locking bone plate

Country Status (1)

Country Link
US (2) US10966764B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11925397B2 (en) 2020-06-25 2024-03-12 Medartis Ag System and method for bone fixation
US11974785B2 (en) * 2020-10-16 2024-05-07 Globus Medical, Inc Band clamp implants
US20220183733A1 (en) * 2020-12-10 2022-06-16 Tyber Medical Llc Extremity Fusion Plate Assembly

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030236555A1 (en) * 2002-06-20 2003-12-25 Brian Thornes Apparatus and method for fixation of ankle syndesmosis
US20050277961A1 (en) * 2004-06-09 2005-12-15 Arthrotek, Inc. Method and apparatus for soft tissue fixation
US20090118776A1 (en) * 2004-09-24 2009-05-07 Biomec, Inc. Tissue anchors
US20090216270A1 (en) * 2008-02-27 2009-08-27 Scott Humphrey Fixable suture anchor plate and method for tendon-to-bone repair
US20090228049A1 (en) * 2008-03-09 2009-09-10 Park Sangdo Connecting Cannulated Bone Screws
US20120123474A1 (en) * 2010-11-17 2012-05-17 Zajac Eric S Adjustable suture-button construct for ankle syndesmosis repair
US20130123841A1 (en) * 2009-09-30 2013-05-16 Thomas Lyon Apparatus and Method for a Suture Button
US20130172944A1 (en) * 2012-01-03 2013-07-04 Biomet Manufacturing Corp. Suture button
US20130197579A1 (en) * 2012-01-27 2013-08-01 Seth A. Foerster Method for soft tissue repair with free floating suture locking member
US20130197575A1 (en) * 2012-01-27 2013-08-01 Emil Karapetian Rotating locking member suture anchor and method for soft tissue repair
US20140052176A1 (en) * 2012-08-15 2014-02-20 Synthes Usa, Llc Bone plate suture anchor
US20140257294A1 (en) * 2013-03-07 2014-09-11 Philippe Gédet Improvements in and relating to implants
US20150032134A1 (en) * 2012-02-15 2015-01-29 Layerwise N.V. Cosmetic Implant
US20150039029A1 (en) * 2013-08-01 2015-02-05 Dallen Medical, Inc. Implant device and system for stabilized fixation of bone and soft tissue
US20150201929A1 (en) * 2013-12-18 2015-07-23 Arthex, Inc. Knotless tensionable suture construct for tissue reattachment
US20160100932A1 (en) * 2014-10-14 2016-04-14 Avinash Kumar Muscle tissue anchor plate
US20160213368A1 (en) * 2015-01-26 2016-07-28 Panthera Medtech Active tension bone and joint stabilization devices
US20180014865A1 (en) * 2015-03-25 2018-01-18 Coracoid Solutions, Llc Joint repair system
US20180153601A1 (en) * 2016-12-06 2018-06-07 A. Jamie Riley Surgical procedure
US20180318097A1 (en) * 2017-05-04 2018-11-08 Wright Medical Technology, Inc. Implant and method for ankle syndesmosis treatment
US20190125333A1 (en) * 2017-11-01 2019-05-02 Wright Medical Technology, Inc. Partially assembled knotless suture construct
US20190254713A1 (en) * 2016-12-15 2019-08-22 Wright Medical Technology, Inc. Knotless syndesmosis system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8475504B2 (en) 2007-07-19 2013-07-02 Acumed Llc Method of bone fixation with slender spanning members disposed outside bone
AU2003295749B2 (en) 2002-11-19 2007-12-06 Acumed Llc Adjustable bone plates
US7582088B2 (en) 2003-02-07 2009-09-01 Dsm Ip Assets B.V. Bone fixing device
JP2009501575A (en) 2005-07-13 2009-01-22 アキュームド・エルエルシー Bone plate with movable locking element
US20100292733A1 (en) 2009-05-12 2010-11-18 Foundry Newco Xi, Inc. Knotless suture anchor and methods of use
US8535313B1 (en) 2011-03-14 2013-09-17 Marcos V. Masson Bone plate with suture retaining elements
US9277912B2 (en) * 2011-06-14 2016-03-08 University Of South Florida Systems and methods for ankle syndesmosis fixation
US8998904B2 (en) * 2012-07-17 2015-04-07 Fastforward Surgical Inc. Winged tether plate and method of use for reducing angular bone deformity
EP2730244B1 (en) 2012-11-07 2017-04-26 Arthrex, Inc. Bone plate with suture holes for soft tissue reattachment on the diaphyseal region of the plate

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030236555A1 (en) * 2002-06-20 2003-12-25 Brian Thornes Apparatus and method for fixation of ankle syndesmosis
US20050277961A1 (en) * 2004-06-09 2005-12-15 Arthrotek, Inc. Method and apparatus for soft tissue fixation
US20090118776A1 (en) * 2004-09-24 2009-05-07 Biomec, Inc. Tissue anchors
US20090216270A1 (en) * 2008-02-27 2009-08-27 Scott Humphrey Fixable suture anchor plate and method for tendon-to-bone repair
US20090228049A1 (en) * 2008-03-09 2009-09-10 Park Sangdo Connecting Cannulated Bone Screws
US20130123841A1 (en) * 2009-09-30 2013-05-16 Thomas Lyon Apparatus and Method for a Suture Button
US20120123474A1 (en) * 2010-11-17 2012-05-17 Zajac Eric S Adjustable suture-button construct for ankle syndesmosis repair
US20130172944A1 (en) * 2012-01-03 2013-07-04 Biomet Manufacturing Corp. Suture button
US20130197579A1 (en) * 2012-01-27 2013-08-01 Seth A. Foerster Method for soft tissue repair with free floating suture locking member
US20130197575A1 (en) * 2012-01-27 2013-08-01 Emil Karapetian Rotating locking member suture anchor and method for soft tissue repair
US20150032134A1 (en) * 2012-02-15 2015-01-29 Layerwise N.V. Cosmetic Implant
US20140052176A1 (en) * 2012-08-15 2014-02-20 Synthes Usa, Llc Bone plate suture anchor
US20140257294A1 (en) * 2013-03-07 2014-09-11 Philippe Gédet Improvements in and relating to implants
US20150039029A1 (en) * 2013-08-01 2015-02-05 Dallen Medical, Inc. Implant device and system for stabilized fixation of bone and soft tissue
US20150201929A1 (en) * 2013-12-18 2015-07-23 Arthex, Inc. Knotless tensionable suture construct for tissue reattachment
US20160100932A1 (en) * 2014-10-14 2016-04-14 Avinash Kumar Muscle tissue anchor plate
US20160213368A1 (en) * 2015-01-26 2016-07-28 Panthera Medtech Active tension bone and joint stabilization devices
US20180014865A1 (en) * 2015-03-25 2018-01-18 Coracoid Solutions, Llc Joint repair system
US20180153601A1 (en) * 2016-12-06 2018-06-07 A. Jamie Riley Surgical procedure
US20190254713A1 (en) * 2016-12-15 2019-08-22 Wright Medical Technology, Inc. Knotless syndesmosis system
US20180318097A1 (en) * 2017-05-04 2018-11-08 Wright Medical Technology, Inc. Implant and method for ankle syndesmosis treatment
US20190125333A1 (en) * 2017-11-01 2019-05-02 Wright Medical Technology, Inc. Partially assembled knotless suture construct

Also Published As

Publication number Publication date
US20180353228A1 (en) 2018-12-13
US10966764B2 (en) 2021-04-06

Similar Documents

Publication Publication Date Title
US20210186580A1 (en) Knotless suture locking bone plate
US9445827B2 (en) Method and apparatus for intraosseous membrane reconstruction
US6656183B2 (en) Tissue repair system
US11730466B2 (en) Syndesmosis construct
US20030120309A1 (en) Reattachment of tissue to base tissue
US11013506B2 (en) Partially assembled knotless suture construct
US11896211B2 (en) Orthopedic stabilization device, kit, and method
US10722344B2 (en) Adjustable fixation device
US20220079627A1 (en) Knotless syndesmosis system
KR20150043395A (en) Method and apparatus for attaching soft tissue to bone
US9289202B2 (en) Suture-retaining device and anchor
US11903574B2 (en) Augmented suture construct for syndesmotic stabilization
WO2022252625A1 (en) Periarticular repair plate and periarticular repair system
CA3127308A1 (en) Partially assembled knotless suture construct

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION