US20210182443A1 - Breast Shape and Upper Torso Enhancement Tool - Google Patents

Breast Shape and Upper Torso Enhancement Tool Download PDF

Info

Publication number
US20210182443A1
US20210182443A1 US17/164,647 US202117164647A US2021182443A1 US 20210182443 A1 US20210182443 A1 US 20210182443A1 US 202117164647 A US202117164647 A US 202117164647A US 2021182443 A1 US2021182443 A1 US 2021182443A1
Authority
US
United States
Prior art keywords
user
upper torso
breast
image
neck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/164,647
Inventor
Sharon Amar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Luvlyu Inc
Original Assignee
Luvlyu Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luvlyu Inc filed Critical Luvlyu Inc
Priority to US17/164,647 priority Critical patent/US20210182443A1/en
Publication of US20210182443A1 publication Critical patent/US20210182443A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41CCORSETS; BRASSIERES
    • A41C3/00Brassieres
    • A41C3/12Component parts
    • A41C3/14Stiffening or bust-forming inserts
    • A41C3/144Pads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • G05B19/4099Surface or curve machining, making 3D objects, e.g. desktop manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7532Artificial members, protheses
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/351343-D cad-cam
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49007Making, forming 3-D object, model, surface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/10Additive manufacturing, e.g. 3D printing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/12Cloth
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/18Manufacturability analysis or optimisation for manufacturability

Definitions

  • the invention relates to garment sizing technology.
  • a method of determining brassiere measurements of a user with an imaging device includes capturing one or more image of a trunk of the user with the imaging device, detecting locations on the trunk from the one or more image, and calculating a band size and cup size based on the detected locations on the trunk.
  • the detecting locations on the trunk may include left side and right side of the base of the user.
  • the distance between left and right sides is calculated to determine the band size.
  • the band size can be derived from the formula: (distance between the left side and the right side of the base of the neck) multiplied by the numerical value of pi multiplied by the number 2.
  • the location of the top of the sternum can be located.
  • the band size can be derived from the formula: (distance between one of the either side and the top of the sternum of the user) multiplied by the number 4.
  • Another band size formula may be (D* ⁇ /2)+2D, wherein D is the distance between each side of the base of the neck of the user.
  • a three-dimensional model of the user can be developed by integration of the captured images.
  • the three-dimensional model can be used to obtain measurements, such as, for example, a semicircular distance between each side of a base of a neck of the user.
  • the semicircular distance can be used to calculate band size based on an approximation neck size relative to chest size.
  • the band size can be calculated as the semicircular distance between each side of the base of the neck of the user multiplied by the number 4.
  • Other locations on the trunk can be identified, such as, for example, a location on a breast of the user that is the closest point to the imaging device and a location immediately below the breast of the user that is on a vertical axis relative to the location of the closest point to the imaging device.
  • the cup size can be calculated as the horizontal distance between the location immediately below the breast and the closest point to the imaging device.
  • the closest point to the imaging device may also be on a bra of the user and the cup size can be calculated as the horizontal distance between the location at the bottom of the bra and the closest point on the bra to the imaging device.
  • the user may have a mobile electronic device which incorporated the imaging and bra sizing applications.
  • the application may have display one or more marker or outline appearing on the display screen of the mobile electronics device. The user can be prompted to line up the outline with various parts of the body.
  • the markers may be shoulder, neck or breast position markers that are aligned for proper measurement. Alignment tools may be provided to adjust the positions of the markers on the display screen.
  • Various locations can be identified on the trunk of the user, such as, at each side of a base of a neck ( 1 , 2 ) of the user, at each edge of a rib cage proximate to the bottom of each breast ( 11 , 12 ) of the user, a position at which a bra strap goes over a shoulder ( 3 , 5 ) of the user, a position of maximum curvature at a top of an intersection of an arm and a shoulder ( 9 , 10 ) of the user, a position at a lowest point of each breast ( 7 , 8 ) of the user, a position immediately above a sternum ( 17 ) of the user, a position at a top-center of each breast as the breast begins to arc away from the chest wall ( 4 , 6 ) of the user, and/or a position at a top edge of a bra adjacent to the top, center of the breast as it begins to arc away from the chest wall ( 13 , 14 ) of the user.
  • These identified positions can be used to determine band size and the cup size by measuring a distance between position 1 , 2 and 17 , position 3 and 4 and position 5 and 6 , position 7 and 8 , position 9 and 10 and position 11 and 12 .
  • clusters of pixels may be identified which represent the trunk or body of the user.
  • the number of pixels in the captured images may be used to calculate distances, such as the distance between the image device and the user. More specifically, the number of pixels is calculated, an object on the user can be identified (such as a bra), the distance between the imaging device and the closest point of the object and the imaging device and the bottom of the bra can be calculated based on the number of pixels, and the distance between the closest point and the lowest point can be used to obtain a bust depth measurement which is used to calculate the cup size.
  • a method of obtaining a three-dimensional image of a body of a user with a mobile electronics device located at a fixed position includes capturing more than one image of the body of the user, changing a relative position of a light source from the device during each captured more than one image, and integrating the more images into a three-dimensional image.
  • a method of determining brassiere measurements of a user with an imaging device include identifying a location at each side of a base of a neck of the user, calculating a distance (D) between each side of the base of the neck of the user, and calculating the band size derived from the formula: (D* ⁇ /2)+2D.
  • a method of determining brassiere band size of a user with an imaging device includes identifying a location at a left side ( 1 ) and a right side ( 2 ) of a base of a neck of the user and calculating the band size derived from the formula ((D* ⁇ /2)+2D)*2, wherein D is a straight-line distance between 1 and 2.
  • the visualization and measurements obtained can also be used as a modeling system that utilizes a series of images to develop a three-dimensional image of an upper torso.
  • the 3D model Once the 3D model is completed, it can be manipulated to, for example, simulate a larger breast size or to increase the amount of lift. This result can be saved as a second 3D model.
  • Comparison of the before and after 3D models yields a chest or breast mask product with dimensions and a volume as the difference in dimensions between the two models. With these measurements the chest or breast mask can be printed on a three-dimensional printer to produce as an actual mask with accurate dimensions for a specific user.
  • the breast pad or mask can be worn over the breast to model a simulated result of cosmetic surgery. In another embodiment, the breast pad or mask can be worn inside a brassiere or can be worn instead of a brassiere for aesthetic purposes.
  • a method of making a breast pad or mask includes enhancing a bust size of a three-dimensional (3D) image of a user that illustrates a current body shape, comparing an enhanced 3D image to the current body shape 3D image and subtracting the bust size of the enhanced 3D image from the current body shape 3D image to produce a 3D image of a breast pad or mask.
  • 3D three-dimensional
  • Embodiments may include one or more of the following features.
  • the method may include printing the 3D image of the breast pad or mask on a 3D printer.
  • the user may be prompted to take the current body shape 3D image.
  • the current body shape 3D image may be taken with a single mobile device that provides light from different angles of a display pad of the device.
  • the user may include an object of known size and color in the 3D image of the current body shape. Since the object has a known size, the algorithm can account for variations in how the camera is held and positioned to get a more accurate 3D breast volume image.
  • the object also has one or more known colors, it can be used for calibration purposes to get an accurate skin tone or color of the user's skin.
  • a 3D image of the breast pad or mask may be printed with an accurate the skin color of the user.
  • a method of making a mask that can be worn on a user's upper torso with an imaging device includes capturing more than one image of an upper torso of the user with the imaging device, detecting locations on the upper torso from the more than one image, producing a three dimensional (3D) upper torso image of the user from the detected locations, enhancing a bust size of the 3D upper torso to produce an enhanced 3D image, comparing the enhanced 3D image to the 3D upper torso image, producing a 3D image of the mask based on the comparison of the enhanced 3D image and the 3D upper torso image, wherein the mask includes the difference in volume between the 3D bust size image and the 3D upper torso image, and the mask includes a shape having an inner surface that conforms to the natural contours of the user's body and an outer surface of that conforms to the contours of the user's desired appearance, and producing the mask from the 3D image of the mask.
  • Embodiments may include one or more of the above or following features. For example, detecting locations on the upper torso includes identifying a location at a left side and a right side of a base of a neck of the user and further including calculating a distance between the left side and the right side of the base of the neck.
  • An upper torso circumference may be derived by calculating the distance between the left side and the right side of the base of the neck and then multiplying by a numerical value of ⁇ multiplied by the number 2.
  • determining an upper torso circumference includes identifying a location at either side of a base of a neck of the user, identifying a location at a top of a sternum of the user, calculating a distance between one of the either side and the top of the sternum of the user, and calculating an upper torso circumference as the distance between one of the either side and the top of the sternum of the user) multiplied by the number 4.
  • detecting locations on the upper torso of the user includes identifying a location at each side of a base of a neck of the user, and further including calculating a distance (D) between each side of the base of the neck of the user, and calculating an upper torso circumference from the formula: (D* ⁇ /2)+2D.
  • detecting locations on the upper torso includes identifying a location at each side of a base of a neck of the user, and further including determining a semicircular distance between each side of a base of a neck location at each side of a base of a neck of the user and calculating a semicircular distance between each side of the base of the neck of the user multiplied by the number 4.
  • Detecting locations on the upper torso may also include identifying a location on a breast of the user that is the closest point to the imaging device and identifying a location immediately below the breast of the user that is on a vertical axis relative to the location of the closest point to the imaging device, and further including calculating a breast depth from the horizontal distance between the location immediately below the breast and the closest point to the imaging device.
  • Detecting locations on the upper torso from the more than one image can include identifying a position at each side of a base of a neck ( 1 , 2 ) of the user, at each edge of a rib cage proximate to the bottom of each breast ( 11 , 12 ) of the user, a position at which a bra strap goes over a shoulder ( 3 , 5 ) of the user, a position of maximum curvature at a top of an intersection of an arm and a shoulder ( 9 , 10 ) of the user, a position at a lowest point of each breast ( 7 , 8 ) of the user, a position immediately above a sternum ( 17 ) of the user, a position at a top-center of each breast as the breast begins to arc away from the chest wall ( 4 , 6 ) of the user, and a position at a top edge of a bra adjacent to the top, center of the breast as it begins to arc away from the chest wall ( 13 , 14 ) of the user.
  • Detecting locations on the upper torso from the more than one image may further include identifying one or more cluster of pixels representing the upper torso, and further including counting the number of pixels in the captured more than one image and calculating a distance between the image device and the user based on the number of pixels.
  • actual dimensions may be based on reference to a calibration measurement. It may include identifying an object of known dimensions on the upper torso of the user and calibrating image dimensions based on the known dimensions of the object.
  • the object may have a known color or colors and a comparison may be used to determine a skin tone of the user based on the comparison with the object. The mask may then be produced with the skin tone of the user.
  • the mask may be produced with a 3D printer.
  • the mask may be inserted in a bra-like device to be worn by the user.
  • the mask can also be produced with tabs and/or slots and straps can be attached to the tabs and/or slots for the mask to be worn on the upper torso of the user.
  • each image of the upper torso of the user may be illuminated with different portions of the display screen to produce images with changes in light patterns, reflections and shadows. These differences are detected to assist in producing the 3D image of the upper torso.
  • a device in still another implementation, includes a camera to capture a series of images of a trunk of a user, a display screen to illuminate the trunk of the user from different positions on the display screen for each of the series of images, a processor to produce a three-dimensional (3D) image of the trunk of the user based on the detected changes in light patterns, an input device to allow the user to enhance a bust size of the 3D image on the display screen to produce an enhanced 3D image on the display screen, and a comparison unit to compare the enhanced 3D image to the 3D image of the trunk of the user.
  • a camera to capture a series of images of a trunk of a user
  • a display screen to illuminate the trunk of the user from different positions on the display screen for each of the series of images
  • a processor to produce a three-dimensional (3D) image of the trunk of the user based on the detected changes in light patterns
  • an input device to allow the user to enhance a bust size of the 3D image on the display screen to produce an enhanced 3D image on
  • the processor can produce a 3D image of a chest mask that can be worn over the chest of the user, wherein the chest mask includes differences in volume of the dimensions between the enhanced 3D image and 3D image of the trunk of the user, wherein the chest mask includes an inner surface that conforms to the natural contours of the user's body and an outer surface that conforms to the contours of the user's desired size and the chest mask can be produced with a 3D printer.
  • FIG. 1 is a 3D model of a user
  • FIG. 2 shows an editor application on a mobile device
  • FIGS. 3 and 4 are three dimensional images of a user with enhanced breast sizes
  • FIGS. 5A and 5B show original and enhanced 3D images
  • FIG. 6 shows sizes differences of the two busts
  • FIGS. 7A and 7B show breast masks or cups printed from a 3D printer
  • FIG. 8 shows a display screen of a mobile device
  • FIG. 9 shows a number diagram of positions on the trunk/chest
  • FIG. 10 shows a band measurement methodology
  • FIGS. 11A and 11B shows a cup measurement methodology
  • FIGS. 12-13 show a block diagram of a measurement apparatus.
  • the described system and method can be used for brassiere measurement and/or to produce a three-dimensional chest or breast mask.
  • a user can take a three-dimensional (3D) scan of a front portion of the torso.
  • a 3D scanner software application is downloaded to a portable electronic device, such as, for example, a tablet personal computer or a smartphone is used as a 3D scanner.
  • the 3D scanner application takes a series of images with lighting provided from several different directions by the display panel of the portable device.
  • a camera flash or other source of light is used.
  • light can be projected from upper, lower, left and right quadrants of the display panel while capturing a series of four images.
  • the user can be instructed to take the series of images in a darkened room.
  • the user has a breast cup size A.
  • the 3D image can be converted to a grid pattern and/or a series of measurements.
  • the scanned image can be stored on the device or e-mailed to another device.
  • the user opens another software application and imports the 3D image into an editor of the application.
  • the editor has a variety of tools available to alter breast appearance. For example, the user can slide a control from breast sizes A, B, C or D.
  • the user can also define an area on the screen and use the larger or smaller buttons to increase or decrease the size of the defined area.
  • the user can separately adjust lift and size.
  • the user manipulates the editing controls to product 3d images with size B and C breasts, respectively.
  • the application calculates the change in volume from the original image to be an addition of 220 and 420 cubic centimeters of volume, respectively.
  • the user has various virtual display options. For example, the user has tools to see what the image looks like in swimwear, a gown, a business suit or other clothing.
  • the user selects one of the enhanced images for comparison to the original (before look).
  • the image can be rotated for different views.
  • the user can export a stereo lithography (STL) file of the 3D image to a 3D printer.
  • STL stereo lithography
  • the image of the enhanced breast size can be printed and essentially worn as a mask to try on the new enhanced breast size.
  • FIG. 6 another alternative is to compare the volume of the original 3D scan and the enhanced 3D scan and subtract the dimensions of the two 3D models to produce a breast pad or mask with a volume and dimensions that fits the natural contours of the user's body but increases the bust to the desired size.
  • FIGS. 7A and 7B show two embodiments of the bust pads printed on a 3D printer.
  • FIG. 7A shows an individual bust pad that can be worn over the user's breast.
  • the breast pad or chest mask can also be designed so that it cannot be seen beneath a bra. Thus, the user can wear the breast pad or mask under various clothing.
  • the chest mask can be worn instead of a bra.
  • FIG. 7B shows the breast pad or mask worn as cups in a bra-like device that can be worn by the user.
  • the 3D breast pad or mask can be printed with tabs or slot to attach the straps.
  • a brassiere with pockets is provided to insert the breast mask.
  • the system also allows the user to have a customer brassiere made that includes breast masks.
  • the breast masks may be permanently installed in the customer brassiere.
  • a mobile device 810 includes a display screen 812 and a camera lens 814 .
  • the mobile device 810 may also have a camera flash (not shown), however, this is only used when the flash is located on the same side of the device 810 as the display screen.
  • Illumination from the display screen 812 can be provided from different positions, such as, for example, top left 816 , top right 818 , center 820 , bottom left 822 and bottom right 824 .
  • a series of images can be taken by the camera 814 while the lighting position is varied on the display screen 812 .
  • the intensity of the lighting from the display screen can also be varied.
  • the light from the camera flash may also be used to vary the lighting level or position of the lighting emanating from the device 810 .
  • the images can then be compared and the varied lighting from different angles and positions can be used to produce a three-dimensional image of the front half or a front portion of the object being photographed.
  • the images are taken in a darkened room or similar space so that the major source of light is from the cameral flash or display screen of the device.
  • the mobile device 812 may be, for example, a smart phone, a computer tablet, and/or any mobile computer device having a camera and a display screen.
  • the mobile device may include, for example, random access memory, storage memory, a central processing unit, an operating system and software applications.
  • the device 812 may be used with a SIM card for mobile communications and the device may also have Wi-Fi, Bluetooth and other types of connectivity.
  • the device 812 may also have a global positioning system, touch screen, display, keyboard, pen stylus, speakers, and a microphone.
  • FIG. 9 an image of the trunk/torso/chest of the user is shown with various numbered points that are detected and identified as follows:
  • FIG. 10 shows a methodology of calculating neck size and bra band size.
  • a linear measurement at the base of the neck from 1 - 2 measures the diameter of the neck (D1).
  • the back half circumference of the neck is calculated as D1* ⁇ /2.
  • the distance from each side of the neck to the top of the sternum is assumed to be an equilateral triangle or equal to D1.
  • the band size is then calculated as follows:
  • the band size is then rounded up to the nearest size. For example, assume D1 is 5.25′′, then the band size is calculated as 37.49′′ based on the following:
  • FIGS. 11 a and 11 b show a method of determining cup size of a woman's breast.
  • the device measures the distance from the closest point (CP) 120 on the bra of the subject.
  • the device finds the lowest point (LP) 122 on the bra that is vertically below the CP 120 .
  • the horizontal distance between CP and LP is then calculated to determine a breast depth.
  • the breast depth is then used in conjunction with the band size to determine the cup size.
  • cup size is a measure of depth and not a measure of volume.
  • cup size is a measure of depth and not a measure of volume.
  • a 30-inch band size and one inch of projection results in a cup size of A.
  • the cup size increases to B, C, D, E (DD), F (DDD), G, H, I, J, K, L, respectively.
  • the band size increases to, for example, 32, 34 and 36 inches, the cup size is reduced by one letter to maintain the same volume.
  • the application has an algorithm with a Bayes classifier that classifies image pixels on the trunk/torso of the user into skin pixels and non-skin pixels.
  • a Bayes classifier that classifies image pixels on the trunk/torso of the user into skin pixels and non-skin pixels.
  • FIG. 12 is a block diagram of a system controller of a brassiere measurement apparatus.
  • the system controller includes an alignment controller 210 , a camera controller 220 , a display lighting controller 230 and an image processor 240 .
  • the alignment controller 210 can be used to respond to the user adjustments to adjust the positions of the markers on the display screen.
  • the camera controller 220 automatically controls focus and other image parameters.
  • a series of images may be taken at different focus depths.
  • a mathematical algorithm can be used to calculate the angle at which the light is striking each pixel by comparing slight differences between the images taken from the same position but focused at different depths.
  • the image processor 240 can then combine the images to produce a three-dimensional image.
  • the display lighting controller 230 projects light from the display screen of the mobile device from different portions of the display screen.
  • the display screen may be illuminated in separate quadrants to produce multiple images with lighting from different angles.
  • the algorithm uses the illumination from different positions or angles to detect patterns of light reflected off an object to build a three-dimensional model of the portions of the object that are visible to the camera. This technique may be used in conjunction with very low levels of background lighting to utilize only the light from the display for imaging purposes.
  • the mobile device may be held in a stationary position and still be able to produce a three-dimensional image.
  • the user can hold the camera (mobile device) at arms-length from one position to produce a three-dimensional image of the user's upper trunk/torso.
  • FIG. 13 is a block diagram of an image processor of a measurement apparatus for brassieres or breast masks.
  • the apparatus includes a trunk feature detection unit 310 , a skin and non-skin classifier 320 , a pixel counter 330 , a mapping unit 340 and a measurement unit 350 .
  • the reference measurement or pixel counter unit is used for calibration of dimensions of an object in the field of view based on comparison to the reference.
  • the trunk feature detection unit 310 determines the portions of the object in the field of view that comprises the trunk of a user.
  • the skin and non-skin classifier 320 determines what portion of the trunk is skin and what portion may be clothing. For example, a user can take an imager of her trunk while wearing a bra and the classifier 320 determines the outline of the bra and the outline of the user's body.
  • the measurement unit 350 processes the image in comparison to the dimensions from the reference unit to produce a three-dimensional image with accurate dimensions that include length, width and depth as well as volume.
  • the apparatus can be provided on a mobile device, such as, a handheld computing device, having a display screen with touch input and/or a miniature keyboard.
  • a mobile device such as, a handheld computing device, having a display screen with touch input and/or a miniature keyboard.
  • the handheld computing device has an operating system, and can run various types of application software, known as apps.
  • apps can also be equipped with Wi-Fi, Bluetooth, and GPS capabilities that can allow connections to the Internet and other Bluetooth-capable devices.
  • a camera can also be used on the device which should have a stable battery power source such as a lithium battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Textile Engineering (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Processing Or Creating Images (AREA)
  • Architecture (AREA)
  • Software Systems (AREA)
  • Image Processing (AREA)

Abstract

A method of sizing a garment to fit an upper torso of a user that includes capturing at least one image of the upper torso of the user with an imaging device, detecting locations on the upper torso from the at least one image that include a location at a left side and a right side of a base of a neck of the user, calculating a distance between the left side and the right side of the base of the neck as Diameter 1 (D1), and calculating the fit of the garment that includes the upper torso circumference from the calculated D1.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This utility patent application is a continuation of U.S. patent application Ser. No. 16/205,520 filed on Nov. 30, 2018, and Ser. Nos. 15/082,489 and 15/082,314 filed on Mar. 28, 2016, which are incorporated by reference herein in their entirety.
  • TECHNICAL FIELD
  • The invention relates to garment sizing technology.
  • BACKGROUND
  • Many women wear the wrong bra size for a variety of reasons. Women can take several different bra sizes depending on the shape, cut, fabric and brand of the bra. In addition, there are many different styles to choose from and certain body shapes may not be suitable for particular styles. For example, women have a choice of features and styles that include wired, non-wired, plunge, t-shirt, padded, balcony or demi, full cup, strapless, exercise, and nursing bras. Choosing the wrong style can result in a poor fit. Other problems include a lack of experienced brassier consultants and salespeople to help find the best fit.
  • SUMMARY
  • In one general aspect, a method of determining brassiere measurements of a user with an imaging device includes capturing one or more image of a trunk of the user with the imaging device, detecting locations on the trunk from the one or more image, and calculating a band size and cup size based on the detected locations on the trunk.
  • Embodiments may include one or more of the following features. For example, the detecting locations on the trunk may include left side and right side of the base of the user. The distance between left and right sides is calculated to determine the band size. The band size can be derived from the formula: (distance between the left side and the right side of the base of the neck) multiplied by the numerical value of pi multiplied by the number 2.
  • As another feature, the location of the top of the sternum can be located. In this case, the band size can be derived from the formula: (distance between one of the either side and the top of the sternum of the user) multiplied by the number 4. Another band size formula may be (D*π/2)+2D, wherein D is the distance between each side of the base of the neck of the user.
  • As another feature, a three-dimensional model of the user can be developed by integration of the captured images. The three-dimensional model can be used to obtain measurements, such as, for example, a semicircular distance between each side of a base of a neck of the user. The semicircular distance can be used to calculate band size based on an approximation neck size relative to chest size. For example, the band size can be calculated as the semicircular distance between each side of the base of the neck of the user multiplied by the number 4.
  • Other locations on the trunk can be identified, such as, for example, a location on a breast of the user that is the closest point to the imaging device and a location immediately below the breast of the user that is on a vertical axis relative to the location of the closest point to the imaging device. The cup size can be calculated as the horizontal distance between the location immediately below the breast and the closest point to the imaging device.
  • The closest point to the imaging device may also be on a bra of the user and the cup size can be calculated as the horizontal distance between the location at the bottom of the bra and the closest point on the bra to the imaging device.
  • The user may have a mobile electronic device which incorporated the imaging and bra sizing applications. The application may have display one or more marker or outline appearing on the display screen of the mobile electronics device. The user can be prompted to line up the outline with various parts of the body. For example, the markers may be shoulder, neck or breast position markers that are aligned for proper measurement. Alignment tools may be provided to adjust the positions of the markers on the display screen.
  • Various locations can be identified on the trunk of the user, such as, at each side of a base of a neck (1, 2) of the user, at each edge of a rib cage proximate to the bottom of each breast (11, 12) of the user, a position at which a bra strap goes over a shoulder (3, 5) of the user, a position of maximum curvature at a top of an intersection of an arm and a shoulder (9, 10) of the user, a position at a lowest point of each breast (7, 8) of the user, a position immediately above a sternum (17) of the user, a position at a top-center of each breast as the breast begins to arc away from the chest wall (4, 6) of the user, and/or a position at a top edge of a bra adjacent to the top, center of the breast as it begins to arc away from the chest wall (13, 14) of the user.
  • These identified positions can be used to determine band size and the cup size by measuring a distance between position 1, 2 and 17, position 3 and 4 and position 5 and 6, position 7 and 8, position 9 and 10 and position 11 and 12.
  • As another feature, clusters of pixels may be identified which represent the trunk or body of the user. As a further feature, the number of pixels in the captured images may be used to calculate distances, such as the distance between the image device and the user. More specifically, the number of pixels is calculated, an object on the user can be identified (such as a bra), the distance between the imaging device and the closest point of the object and the imaging device and the bottom of the bra can be calculated based on the number of pixels, and the distance between the closest point and the lowest point can be used to obtain a bust depth measurement which is used to calculate the cup size.
  • In another general aspect, a method of obtaining a three-dimensional image of a body of a user with a mobile electronics device located at a fixed position includes capturing more than one image of the body of the user, changing a relative position of a light source from the device during each captured more than one image, and integrating the more images into a three-dimensional image.
  • In a further general aspect, a method of determining brassiere measurements of a user with an imaging device include identifying a location at each side of a base of a neck of the user, calculating a distance (D) between each side of the base of the neck of the user, and calculating the band size derived from the formula: (D*π/2)+2D.
  • In still a further general aspect, a method of determining brassiere band size of a user with an imaging device includes identifying a location at a left side (1) and a right side (2) of a base of a neck of the user and calculating the band size derived from the formula ((D*π/2)+2D)*2, wherein D is a straight-line distance between 1 and 2.
  • The visualization and measurements obtained can also be used as a modeling system that utilizes a series of images to develop a three-dimensional image of an upper torso. Once the 3D model is completed, it can be manipulated to, for example, simulate a larger breast size or to increase the amount of lift. This result can be saved as a second 3D model. Comparison of the before and after 3D models yields a chest or breast mask product with dimensions and a volume as the difference in dimensions between the two models. With these measurements the chest or breast mask can be printed on a three-dimensional printer to produce as an actual mask with accurate dimensions for a specific user. The breast pad or mask can be worn over the breast to model a simulated result of cosmetic surgery. In another embodiment, the breast pad or mask can be worn inside a brassiere or can be worn instead of a brassiere for aesthetic purposes.
  • In one general aspect, a method of making a breast pad or mask, includes enhancing a bust size of a three-dimensional (3D) image of a user that illustrates a current body shape, comparing an enhanced 3D image to the current body shape 3D image and subtracting the bust size of the enhanced 3D image from the current body shape 3D image to produce a 3D image of a breast pad or mask.
  • Embodiments may include one or more of the following features. For example, the method may include printing the 3D image of the breast pad or mask on a 3D printer. As another feature, the user may be prompted to take the current body shape 3D image. As another feature, the current body shape 3D image may be taken with a single mobile device that provides light from different angles of a display pad of the device.
  • The user may include an object of known size and color in the 3D image of the current body shape. Since the object has a known size, the algorithm can account for variations in how the camera is held and positioned to get a more accurate 3D breast volume image.
  • Since the object also has one or more known colors, it can be used for calibration purposes to get an accurate skin tone or color of the user's skin. Thus, a 3D image of the breast pad or mask may be printed with an accurate the skin color of the user.
  • In another general aspect, a method of making a mask that can be worn on a user's upper torso with an imaging device includes capturing more than one image of an upper torso of the user with the imaging device, detecting locations on the upper torso from the more than one image, producing a three dimensional (3D) upper torso image of the user from the detected locations, enhancing a bust size of the 3D upper torso to produce an enhanced 3D image, comparing the enhanced 3D image to the 3D upper torso image, producing a 3D image of the mask based on the comparison of the enhanced 3D image and the 3D upper torso image, wherein the mask includes the difference in volume between the 3D bust size image and the 3D upper torso image, and the mask includes a shape having an inner surface that conforms to the natural contours of the user's body and an outer surface of that conforms to the contours of the user's desired appearance, and producing the mask from the 3D image of the mask.
  • Embodiments may include one or more of the above or following features. For example, detecting locations on the upper torso includes identifying a location at a left side and a right side of a base of a neck of the user and further including calculating a distance between the left side and the right side of the base of the neck. An upper torso circumference may be derived by calculating the distance between the left side and the right side of the base of the neck and then multiplying by a numerical value of π multiplied by the number 2.
  • As another feature, determining an upper torso circumference includes identifying a location at either side of a base of a neck of the user, identifying a location at a top of a sternum of the user, calculating a distance between one of the either side and the top of the sternum of the user, and calculating an upper torso circumference as the distance between one of the either side and the top of the sternum of the user) multiplied by the number 4.
  • As another embodiment, detecting locations on the upper torso of the user includes identifying a location at each side of a base of a neck of the user, and further including calculating a distance (D) between each side of the base of the neck of the user, and calculating an upper torso circumference from the formula: (D*π/2)+2D.
  • As another feature detecting locations on the upper torso includes identifying a location at each side of a base of a neck of the user, and further including determining a semicircular distance between each side of a base of a neck location at each side of a base of a neck of the user and calculating a semicircular distance between each side of the base of the neck of the user multiplied by the number 4.
  • Detecting locations on the upper torso may also include identifying a location on a breast of the user that is the closest point to the imaging device and identifying a location immediately below the breast of the user that is on a vertical axis relative to the location of the closest point to the imaging device, and further including calculating a breast depth from the horizontal distance between the location immediately below the breast and the closest point to the imaging device.
  • Detecting locations on the upper torso from the more than one image can include identifying a position at each side of a base of a neck (1, 2) of the user, at each edge of a rib cage proximate to the bottom of each breast (11, 12) of the user, a position at which a bra strap goes over a shoulder (3, 5) of the user, a position of maximum curvature at a top of an intersection of an arm and a shoulder (9, 10) of the user, a position at a lowest point of each breast (7, 8) of the user, a position immediately above a sternum (17) of the user, a position at a top-center of each breast as the breast begins to arc away from the chest wall (4, 6) of the user, and a position at a top edge of a bra adjacent to the top, center of the breast as it begins to arc away from the chest wall (13, 14) of the user.
  • Detecting locations on the upper torso from the more than one image may further include identifying one or more cluster of pixels representing the upper torso, and further including counting the number of pixels in the captured more than one image and calculating a distance between the image device and the user based on the number of pixels.
  • As another feature, actual dimensions may be based on reference to a calibration measurement. It may include identifying an object of known dimensions on the upper torso of the user and calibrating image dimensions based on the known dimensions of the object. The object may have a known color or colors and a comparison may be used to determine a skin tone of the user based on the comparison with the object. The mask may then be produced with the skin tone of the user.
  • As another feature, the mask may be produced with a 3D printer. The mask may be inserted in a bra-like device to be worn by the user. The mask can also be produced with tabs and/or slots and straps can be attached to the tabs and/or slots for the mask to be worn on the upper torso of the user.
  • As another feature each image of the upper torso of the user may be illuminated with different portions of the display screen to produce images with changes in light patterns, reflections and shadows. These differences are detected to assist in producing the 3D image of the upper torso.
  • In still another implementation, a device, includes a camera to capture a series of images of a trunk of a user, a display screen to illuminate the trunk of the user from different positions on the display screen for each of the series of images, a processor to produce a three-dimensional (3D) image of the trunk of the user based on the detected changes in light patterns, an input device to allow the user to enhance a bust size of the 3D image on the display screen to produce an enhanced 3D image on the display screen, and a comparison unit to compare the enhanced 3D image to the 3D image of the trunk of the user. The processor can produce a 3D image of a chest mask that can be worn over the chest of the user, wherein the chest mask includes differences in volume of the dimensions between the enhanced 3D image and 3D image of the trunk of the user, wherein the chest mask includes an inner surface that conforms to the natural contours of the user's body and an outer surface that conforms to the contours of the user's desired size and the chest mask can be produced with a 3D printer.
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a 3D model of a user;
  • FIG. 2 shows an editor application on a mobile device;
  • FIGS. 3 and 4 are three dimensional images of a user with enhanced breast sizes;
  • FIGS. 5A and 5B show original and enhanced 3D images;
  • FIG. 6 shows sizes differences of the two busts;
  • FIGS. 7A and 7B show breast masks or cups printed from a 3D printer;
  • FIG. 8 shows a display screen of a mobile device;
  • FIG. 9 shows a number diagram of positions on the trunk/chest;
  • FIG. 10 shows a band measurement methodology;
  • FIGS. 11A and 11B shows a cup measurement methodology;
  • FIGS. 12-13 show a block diagram of a measurement apparatus.
  • DETAILED DESCRIPTION
  • The described system and method can be used for brassiere measurement and/or to produce a three-dimensional chest or breast mask.
  • Referring to FIG. 1, a user can take a three-dimensional (3D) scan of a front portion of the torso. In one embodiment, a 3D scanner software application is downloaded to a portable electronic device, such as, for example, a tablet personal computer or a smartphone is used as a 3D scanner.
  • In one embodiment, the 3D scanner application takes a series of images with lighting provided from several different directions by the display panel of the portable device. In another embodiments, a camera flash or other source of light is used. For example, light can be projected from upper, lower, left and right quadrants of the display panel while capturing a series of four images. In either of these embodiments the user can be instructed to take the series of images in a darkened room.
  • In the example of FIG. 1, the user has a breast cup size A. To ensure privacy, the 3D image can be converted to a grid pattern and/or a series of measurements. The scanned image can be stored on the device or e-mailed to another device.
  • Referring to FIG. 2, the user opens another software application and imports the 3D image into an editor of the application. The editor has a variety of tools available to alter breast appearance. For example, the user can slide a control from breast sizes A, B, C or D. The user can also define an area on the screen and use the larger or smaller buttons to increase or decrease the size of the defined area. As another editing feature, the user can separately adjust lift and size.
  • Referring to FIGS. 3 and 4, the user manipulates the editing controls to product 3d images with size B and C breasts, respectively. The application calculates the change in volume from the original image to be an addition of 220 and 420 cubic centimeters of volume, respectively.
  • At this point, the user has various virtual display options. For example, the user has tools to see what the image looks like in swimwear, a gown, a business suit or other clothing.
  • Referring to FIGS. 5A and 5B, the user selects one of the enhanced images for comparison to the original (before look). The image can be rotated for different views.
  • The user can export a stereo lithography (STL) file of the 3D image to a 3D printer. The image of the enhanced breast size can be printed and essentially worn as a mask to try on the new enhanced breast size.
  • Referring to FIG. 6, another alternative is to compare the volume of the original 3D scan and the enhanced 3D scan and subtract the dimensions of the two 3D models to produce a breast pad or mask with a volume and dimensions that fits the natural contours of the user's body but increases the bust to the desired size.
  • FIGS. 7A and 7B show two embodiments of the bust pads printed on a 3D printer. FIG. 7A shows an individual bust pad that can be worn over the user's breast. The breast pad or chest mask can also be designed so that it cannot be seen beneath a bra. Thus, the user can wear the breast pad or mask under various clothing. In another embodiment, the chest mask can be worn instead of a bra.
  • FIG. 7B shows the breast pad or mask worn as cups in a bra-like device that can be worn by the user. The 3D breast pad or mask can be printed with tabs or slot to attach the straps. In another embodiment, a brassiere with pockets is provided to insert the breast mask. The system also allows the user to have a customer brassiere made that includes breast masks. In this embodiment, the breast masks may be permanently installed in the customer brassiere.
  • Referring to FIG. 8, a mobile device 810 includes a display screen 812 and a camera lens 814. The mobile device 810 may also have a camera flash (not shown), however, this is only used when the flash is located on the same side of the device 810 as the display screen. Illumination from the display screen 812 can be provided from different positions, such as, for example, top left 816, top right 818, center 820, bottom left 822 and bottom right 824. A series of images can be taken by the camera 814 while the lighting position is varied on the display screen 812. The intensity of the lighting from the display screen can also be varied. In another embodiment, the light from the camera flash may also be used to vary the lighting level or position of the lighting emanating from the device 810.
  • The images can then be compared and the varied lighting from different angles and positions can be used to produce a three-dimensional image of the front half or a front portion of the object being photographed. In one embodiment, the images are taken in a darkened room or similar space so that the major source of light is from the cameral flash or display screen of the device.
  • The mobile device 812 may be, for example, a smart phone, a computer tablet, and/or any mobile computer device having a camera and a display screen. The mobile device may include, for example, random access memory, storage memory, a central processing unit, an operating system and software applications. The device 812 may be used with a SIM card for mobile communications and the device may also have Wi-Fi, Bluetooth and other types of connectivity. The device 812 may also have a global positioning system, touch screen, display, keyboard, pen stylus, speakers, and a microphone.
  • Referring to FIG. 9, an image of the trunk/torso/chest of the user is shown with various numbered points that are detected and identified as follows:
      • 1, 2 Base of neck on each side;
      • 3, 5 Position where bra strap sits at top of shoulder;
      • 4, 6 Center of each breast at top of breast as it begins to arc away from the chest wall;
      • 7, 8 Bottom of each breast at lowest point;
      • 9, 10 Position of top edge where shoulder and arm meet at maximum angle;
      • 13, 14 Edge of bra at horizontal position at center of each breast at top of breast as it begins to arc away from the chest wall;
      • 17 Center position of body immediately above top of sternum; and
      • 8, 19 Closest positions to imaging device.
  • These numbered points can be used to determine various measurements:
      • 1-17-2 Circumference around base of neck to the sternum
      • 11-12 Measurement around rib cage, directly under the bust.
      • 15-16 Horizontal distance between edge of breasts at position where breasts are closest.
  • FIG. 10 shows a methodology of calculating neck size and bra band size. In one embodiment, a linear measurement at the base of the neck from 1-2 measures the diameter of the neck (D1). The back half circumference of the neck is calculated as D1*π/2. The distance from each side of the neck to the top of the sternum is assumed to be an equilateral triangle or equal to D1. Based on typical proportions, the band size is then calculated as follows:

  • Band size=(D1+D1+(D1×π/2))×2
  • The band size is then rounded up to the nearest size. For example, assume D1 is 5.25″, then the band size is calculated as 37.49″ based on the following:

  • (5.25+5.25+(5.25×π/2))×2=37.49
  • This calculation is then rounded up to the next standardized band size of 38″.
  • FIGS. 11a and 11b show a method of determining cup size of a woman's breast. The device measures the distance from the closest point (CP) 120 on the bra of the subject. The device then finds the lowest point (LP) 122 on the bra that is vertically below the CP 120. The horizontal distance between CP and LP is then calculated to determine a breast depth. The breast depth is then used in conjunction with the band size to determine the cup size.
  • For each inch of projection of the breast there is a commensurate increase in cup size. That is because cup size is a measure of depth and not a measure of volume. For example, a 30-inch band size and one inch of projection results in a cup size of A. For each additional inch of depth, the cup size increases to B, C, D, E (DD), F (DDD), G, H, I, J, K, L, respectively. The same relationship holds true for other band sizes. However, as the band size increases to, for example, 32, 34 and 36 inches, the cup size is reduced by one letter to maintain the same volume.
  • In one embodiment, the application has an algorithm with a Bayes classifier that classifies image pixels on the trunk/torso of the user into skin pixels and non-skin pixels. Thus, the outline of the bra can be identified, and the measurements can be obtained.
  • FIG. 12 is a block diagram of a system controller of a brassiere measurement apparatus. The system controller includes an alignment controller 210, a camera controller 220, a display lighting controller 230 and an image processor 240. The alignment controller 210 can be used to respond to the user adjustments to adjust the positions of the markers on the display screen. The camera controller 220 automatically controls focus and other image parameters.
  • In one embodiment, a series of images may be taken at different focus depths. A mathematical algorithm can be used to calculate the angle at which the light is striking each pixel by comparing slight differences between the images taken from the same position but focused at different depths. The image processor 240 can then combine the images to produce a three-dimensional image.
  • In another embodiment, the display lighting controller 230 projects light from the display screen of the mobile device from different portions of the display screen. For example, the display screen may be illuminated in separate quadrants to produce multiple images with lighting from different angles. The algorithm uses the illumination from different positions or angles to detect patterns of light reflected off an object to build a three-dimensional model of the portions of the object that are visible to the camera. This technique may be used in conjunction with very low levels of background lighting to utilize only the light from the display for imaging purposes.
  • By using changing focus depths and/or changes in directions of illumination, the mobile device may be held in a stationary position and still be able to produce a three-dimensional image. For example, the user can hold the camera (mobile device) at arms-length from one position to produce a three-dimensional image of the user's upper trunk/torso.
  • FIG. 13 is a block diagram of an image processor of a measurement apparatus for brassieres or breast masks. The apparatus includes a trunk feature detection unit 310, a skin and non-skin classifier 320, a pixel counter 330, a mapping unit 340 and a measurement unit 350. The reference measurement or pixel counter unit is used for calibration of dimensions of an object in the field of view based on comparison to the reference.
  • The trunk feature detection unit 310 determines the portions of the object in the field of view that comprises the trunk of a user. The skin and non-skin classifier 320 determines what portion of the trunk is skin and what portion may be clothing. For example, a user can take an imager of her trunk while wearing a bra and the classifier 320 determines the outline of the bra and the outline of the user's body. The measurement unit 350 processes the image in comparison to the dimensions from the reference unit to produce a three-dimensional image with accurate dimensions that include length, width and depth as well as volume.
  • The apparatus can be provided on a mobile device, such as, a handheld computing device, having a display screen with touch input and/or a miniature keyboard. The handheld computing device has an operating system, and can run various types of application software, known as apps. The device can also be equipped with Wi-Fi, Bluetooth, and GPS capabilities that can allow connections to the Internet and other Bluetooth-capable devices. A camera can also be used on the device which should have a stable battery power source such as a lithium battery.
  • The above description of various embodiments reveals the general nature of the invention so that others can readily modify and/or adapt for various applications other embodiments without departing from the concept, and, therefore, such adaptations and modifications are within the scope of the claims and equivalents. The terminology used herein is for the purpose of description and not of limitation. The means, materials, and steps for carrying out various disclosed functions may take a variety of alternative forms without departing from the invention.

Claims (18)

1. A method of sizing a garment to fit an upper torso of a user, the method comprising:
capturing at least one image of the upper torso of the user with an imaging device;
detecting locations on the upper torso from the at least one image that include a location at a left side and a right side of a base of a neck of the user;
calculating a distance between the left side and the right side of the base of the neck as Diameter 1 (D1); and
calculating the fit of the garment that includes the upper torso circumference from the calculated D1.
2. The method of claim 1, further comprising, recommending the garment to fit the calculated upper torso circumference.
3. The method of claim 1, wherein formulating the upper torso circumference comprises the formula

upper torso circumference=(D1+D1+(D1×π/2))×2.
4. The method of claim 1, wherein the upper torso circumference comprises the distance from each side of the neck to the top of the sternum plus the half the circumference of the neck wherein the distance from each side of the neck to the top of the sternum is assumed as D1.
5. The method of claim 1, wherein the garment comprises a form-fitting under-garment configured to support or cover the user's breasts.
6. The method of claim 5, wherein the undergarment comprises a brassiere, camisole and/or a corset.
7. The method of claim 1, wherein the garment comprises a brassiere with a band size having the calculated upper torso circumference.
8. The method of claim 1, wherein detecting locations on the upper torso comprises identifying a location at each side of a base of a neck of the user; and
further comprising
determining a semicircular distance between each side of a base of a neck location at each side of a base of a neck of the user; and
calculating a semicircular distance between each side of the base of the neck of the user multiplied by the number 4.
9. The method of claim 1, wherein detecting locations on the upper torso comprises: identifying a location on a breast of the user that is the closest point to the imaging device; and
identifying a location immediately below the breast of the user that is on a vertical axis relative to the location of the closest point to the imaging device; and
further comprising calculating a breast depth from the horizontal distance between the location immediately below the breast and the closest point to the imaging device.
10. The method of claim 1, wherein detecting locations on the upper torso from the more than one image comprises identifying a position:
at each side of a base of a neck (1, 2) of the user;
at each edge of a rib cage proximate to the bottom of each breast (11, 12) of the user;
a position at which a bra strap goes over a shoulder (3, 5) of the user;
a position of maximum curvature at a top of an intersection of an arm and a shoulder (9, 10) of the user;
a position at a lowest point of each breast (7, 8) of the user;
a position immediately above a sternum (17) of the user;
a position at a top center of each breast as the breast begins to arc away from the chest wall (4, 6) of the user; and
a position at a top edge of a bra adjacent to the top, center of the breast as it begins to arc away from the chest wall (13, 14) of the user.
11. The method of claim 1, wherein detecting locations on the upper torso from the more than one image comprises identifying one or more cluster of pixels representing the upper torso; and
further comprising:
counting the number of pixels in the captured more than one image; and
calculating a distance between the image device and the user based on the number of pixels.
12. The method of claim 1, further comprising:
identifying an object of known dimensions on the upper torso of the user; and
calibrating image dimensions based on the known dimensions of the object.
13. The method of claim 1, further comprising prompting the user to hold the mobile device at a fixed position when the user takes the more than one image.
14. The method of claim 1, further comprising:
producing the 3D upper torso image with actual dimensions based on reference to a calibration measurement.
15. The method of claim 1, further comprising:
determining a distance from the imaging device to a closest point on a bra of the user;
determining, with the imaging device, a lowest point on the bra that is vertically below the closest point;
determining a distance from the imaging device to a lowest point on the bra of the user;
determining a breast depth from the difference between the distance of the closest point and the lowest point; and
establishing a cup size of the bra based on the breast depth.
16. The method of claim 15, wherein for each inch of breast depth increase there is a commensurate increase in cup size.
17. The method of claim 16, wherein a band size is determined and a cup size is established as sizes A, B, C, D, E (DD), F (DDD), G, H, I, J, K, L, respectively.
18. The method of claim 17, wherein as the band size increases to the cup size is reduced by one letter to maintain the same volume.
US17/164,647 2016-03-28 2021-02-01 Breast Shape and Upper Torso Enhancement Tool Abandoned US20210182443A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/164,647 US20210182443A1 (en) 2016-03-28 2021-02-01 Breast Shape and Upper Torso Enhancement Tool

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201615082314A 2016-03-28 2016-03-28
US15/082,489 US10176275B1 (en) 2016-03-28 2016-03-28 Breast shape visualization and modeling tool
US16/205,520 US10909275B2 (en) 2016-03-28 2018-11-30 Breast shape and upper torso enhancement tool
US17/164,647 US20210182443A1 (en) 2016-03-28 2021-02-01 Breast Shape and Upper Torso Enhancement Tool

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/205,520 Continuation US10909275B2 (en) 2016-03-28 2018-11-30 Breast shape and upper torso enhancement tool

Publications (1)

Publication Number Publication Date
US20210182443A1 true US20210182443A1 (en) 2021-06-17

Family

ID=64815671

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/082,489 Expired - Fee Related US10176275B1 (en) 2016-03-28 2016-03-28 Breast shape visualization and modeling tool
US16/205,520 Active US10909275B2 (en) 2016-03-28 2018-11-30 Breast shape and upper torso enhancement tool
US17/164,647 Abandoned US20210182443A1 (en) 2016-03-28 2021-02-01 Breast Shape and Upper Torso Enhancement Tool

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US15/082,489 Expired - Fee Related US10176275B1 (en) 2016-03-28 2016-03-28 Breast shape visualization and modeling tool
US16/205,520 Active US10909275B2 (en) 2016-03-28 2018-11-30 Breast shape and upper torso enhancement tool

Country Status (1)

Country Link
US (3) US10176275B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10176275B1 (en) * 2016-03-28 2019-01-08 Luvlyu, Inc. Breast shape visualization and modeling tool
KR20180134358A (en) * 2016-04-05 2018-12-18 이스타블리쉬먼트 렙스 에스.에이. Medical imaging systems, devices, and methods
AU2020357051A1 (en) * 2019-10-03 2022-05-05 Cornell University Optimizing bra sizing according to the 3D shape of breasts
WO2022086812A1 (en) * 2020-10-22 2022-04-28 Cornell University Methods, devices and systems to determine and visualize breast boundary, predict bra cup size and/or evaluate performance of a garment using 4d body scans of an individual

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5667422A (en) * 1995-04-17 1997-09-16 The Undrbra, Inc. An undergarment to be worn underneath a brassiere
US5956525A (en) * 1997-08-11 1999-09-21 Minsky; Jacob Method of measuring body measurements for custom apparel manufacturing
US20020031978A1 (en) * 1998-07-01 2002-03-14 Heroff Stephanie L. Bras, bra systems and garments incorporating same
US20020178061A1 (en) * 2002-07-12 2002-11-28 Peter Ar-Fu Lam Body profile coding method and apparatus useful for assisting users to select wearing apparel
US20060075652A1 (en) * 2004-10-13 2006-04-13 Saladucha Katie V Anatomical measuring display apparatus
US20090137894A1 (en) * 2007-11-26 2009-05-28 Les Olson Breast measurement device and bra fitting system
US20090175517A1 (en) * 2008-01-09 2009-07-09 Precision Light, Inc. Anatomical recognition and dimensional analysis of breast measurements to assist breast surgery
US20090193675A1 (en) * 2008-02-04 2009-08-06 Stephen Sieber Systems and methods for collecting body measurements, virtually simulating models of actual and target body shapes, ascertaining garment size fitting, and processing garment orders
US20090215359A1 (en) * 2008-02-22 2009-08-27 Jockey International, Inc. System and method of constructing and sizing brassieres
US20100242291A1 (en) * 2009-01-21 2010-09-30 Zyrra Llc Device, system and method for the fitting and production of brassieres
US20130060123A1 (en) * 2008-01-09 2013-03-07 Allergan, Inc. Method for determining breast volume to assist medical procedure
US20140031700A1 (en) * 2010-12-27 2014-01-30 Joseph Ralph Ferrantelli Method and system for measuring anatomical dimensions from a digital photograph on a mobile device
US20150221090A1 (en) * 2014-01-31 2015-08-06 George Haddad Garment fitment system
US20150223730A1 (en) * 2010-12-27 2015-08-13 Joseph Ralph Ferrantelli Method and system for postural analysis and measuring anatomical dimensions from a digital three-dimensional image on a mobile device
US20150323310A1 (en) * 2014-05-08 2015-11-12 Glasses.Com Systems and methods for determining pupillary distance and scale
US20160029706A1 (en) * 2014-06-04 2016-02-04 Laurie BRAVERMAN Brassiere
US20160183617A1 (en) * 2014-12-12 2016-06-30 Carlanda R. McKinney Method for preparing custom-fitted undergarments
US20170150764A1 (en) * 2015-12-01 2017-06-01 Graziano Meloni System and method for remote tailoring
US20170281367A1 (en) * 2014-08-05 2017-10-05 3Db Resources Llc 3d-printed unibody mesh structures for breast prosthesis and methods of making same
US10909275B2 (en) * 2016-03-28 2021-02-02 Luvlyu, Inc. Breast shape and upper torso enhancement tool

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6564086B2 (en) * 2000-05-03 2003-05-13 Rocky Mountain Biosystems, Inc. Prosthesis and method of making
US7058439B2 (en) * 2002-05-03 2006-06-06 Contourmed, Inc. Methods of forming prostheses
WO2009062020A2 (en) * 2007-11-08 2009-05-14 D4D Technologies, Llc Lighting compensated dynamic texture mapping of 3-d models
US20140028799A1 (en) * 2012-07-25 2014-01-30 James Kuffner Use of Color and Intensity Modulation of a Display for Three-Dimensional Object Information
US9386298B2 (en) * 2012-11-08 2016-07-05 Leap Motion, Inc. Three-dimensional image sensors
GB201302194D0 (en) * 2013-02-07 2013-03-27 Crisalix Sa 3D platform for aesthetic simulation
US10074199B2 (en) * 2013-06-27 2018-09-11 Tractus Corporation Systems and methods for tissue mapping
CN108537628B (en) * 2013-08-22 2022-02-01 贝斯普客公司 Method and system for creating customized products
US9183641B2 (en) * 2014-02-10 2015-11-10 State Farm Mutual Automobile Insurance Company System and method for automatically identifying and matching a color of a structure's external surface
US10082237B2 (en) * 2015-03-27 2018-09-25 A9.Com, Inc. Imaging system for imaging replacement parts
US9855005B2 (en) * 2015-04-22 2018-01-02 Samsung Electronics Co., Ltd. Wearable posture advisory system
US10198872B2 (en) * 2015-08-10 2019-02-05 The Board Of Trustees Of The Leland Stanford Junior University 3D reconstruction and registration of endoscopic data
FR3042610B1 (en) * 2015-10-14 2018-09-07 Quantificare DEVICE AND METHOD FOR RECONSTRUCTING THE HEAD AND BODY INTO THREE DIMENSIONS
WO2017078797A1 (en) * 2015-11-04 2017-05-11 Illusio, Inc. Augmented reality imaging system for cosmetic surgical procedures

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5667422A (en) * 1995-04-17 1997-09-16 The Undrbra, Inc. An undergarment to be worn underneath a brassiere
US5956525A (en) * 1997-08-11 1999-09-21 Minsky; Jacob Method of measuring body measurements for custom apparel manufacturing
US20020031978A1 (en) * 1998-07-01 2002-03-14 Heroff Stephanie L. Bras, bra systems and garments incorporating same
US20020178061A1 (en) * 2002-07-12 2002-11-28 Peter Ar-Fu Lam Body profile coding method and apparatus useful for assisting users to select wearing apparel
US20060075652A1 (en) * 2004-10-13 2006-04-13 Saladucha Katie V Anatomical measuring display apparatus
US20090137894A1 (en) * 2007-11-26 2009-05-28 Les Olson Breast measurement device and bra fitting system
US20130027399A1 (en) * 2008-01-09 2013-01-31 Allergan, Inc. Anatomical recognition, orientation and display of an upper torso to assist breast surgery
US20090175517A1 (en) * 2008-01-09 2009-07-09 Precision Light, Inc. Anatomical recognition and dimensional analysis of breast measurements to assist breast surgery
US20130060123A1 (en) * 2008-01-09 2013-03-07 Allergan, Inc. Method for determining breast volume to assist medical procedure
US20090193675A1 (en) * 2008-02-04 2009-08-06 Stephen Sieber Systems and methods for collecting body measurements, virtually simulating models of actual and target body shapes, ascertaining garment size fitting, and processing garment orders
US20090215359A1 (en) * 2008-02-22 2009-08-27 Jockey International, Inc. System and method of constructing and sizing brassieres
US20100242291A1 (en) * 2009-01-21 2010-09-30 Zyrra Llc Device, system and method for the fitting and production of brassieres
US20140031700A1 (en) * 2010-12-27 2014-01-30 Joseph Ralph Ferrantelli Method and system for measuring anatomical dimensions from a digital photograph on a mobile device
US20150223730A1 (en) * 2010-12-27 2015-08-13 Joseph Ralph Ferrantelli Method and system for postural analysis and measuring anatomical dimensions from a digital three-dimensional image on a mobile device
US20170156413A1 (en) * 2013-03-15 2017-06-08 Laurie BRAVERMAN Bra engineering
US20150221090A1 (en) * 2014-01-31 2015-08-06 George Haddad Garment fitment system
US20150323310A1 (en) * 2014-05-08 2015-11-12 Glasses.Com Systems and methods for determining pupillary distance and scale
US20160029706A1 (en) * 2014-06-04 2016-02-04 Laurie BRAVERMAN Brassiere
US20170281367A1 (en) * 2014-08-05 2017-10-05 3Db Resources Llc 3d-printed unibody mesh structures for breast prosthesis and methods of making same
US20160183617A1 (en) * 2014-12-12 2016-06-30 Carlanda R. McKinney Method for preparing custom-fitted undergarments
US20170150764A1 (en) * 2015-12-01 2017-06-01 Graziano Meloni System and method for remote tailoring
US10909275B2 (en) * 2016-03-28 2021-02-02 Luvlyu, Inc. Breast shape and upper torso enhancement tool

Also Published As

Publication number Publication date
US10176275B1 (en) 2019-01-08
US20190171778A1 (en) 2019-06-06
US10909275B2 (en) 2021-02-02

Similar Documents

Publication Publication Date Title
US20210182443A1 (en) Breast Shape and Upper Torso Enhancement Tool
JP6490430B2 (en) Image processing apparatus, image processing system, image processing method, and program
US11439194B2 (en) Devices and methods for extracting body measurements from 2D images
CN107292948B (en) Human body modeling method and device and electronic equipment
US20150206292A1 (en) Clothing image processing device, clothing image display method and program
US9905019B2 (en) Virtual apparel fitting systems and methods
US10311508B2 (en) Garment modeling simulation system and process
Abtew et al. Development of comfortable and well-fitted bra pattern for customized female soft body armor through 3D design process of adaptive bust on virtual mannequin
US20160286906A1 (en) Method and system for measuring 3-dimensional objects
JP2016054450A (en) Image processing device, image processing system, image processing method, and program
CN101493930B (en) Loading exchanging method and transmission exchanging method
CN110264574B (en) Virtual fitting method and device, intelligent terminal and storage medium
WO2014159726A1 (en) Determining dimension of target object in an image using reference object
KR101499698B1 (en) Apparatus and Method for providing three dimensional model which puts on clothes based on depth information
RU2358628C2 (en) Designing method of clothing based on non-contact anthropometry
CN106666903A (en) Method and device utilizing images to measure human body shape parameter
CN103767219B (en) Contactless humanbody three-dimensional dimension measuring method
JPWO2016035350A1 (en) Portable information terminal, control method thereof, and control program
CA3095732C (en) Size measuring system
CN106887035A (en) A kind of intelligent dressing device
CN106503286A (en) The service of cutting the garment according to the figure and its system
CN107680166A (en) A kind of method and apparatus of intelligent creation
CN105956910A (en) Clothes customized method, image shooting device and control system
CN110188726A (en) Online human body dimension measurement method and the amount body clothing for this method
CN106235486B (en) Personalized clothing method based on 3D anthropometric scanning instrument

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION