US20210169993A1 - Treatment of a subtype of asd - Google Patents

Treatment of a subtype of asd Download PDF

Info

Publication number
US20210169993A1
US20210169993A1 US16/761,622 US201816761622A US2021169993A1 US 20210169993 A1 US20210169993 A1 US 20210169993A1 US 201816761622 A US201816761622 A US 201816761622A US 2021169993 A1 US2021169993 A1 US 2021169993A1
Authority
US
United States
Prior art keywords
asd
patient
nrf2
subtype
inhibitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/761,622
Inventor
Lynn Durham
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stalicla SA
Original Assignee
Stalicla SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stalicla SA filed Critical Stalicla SA
Priority to US16/761,622 priority Critical patent/US20210169993A1/en
Assigned to STALICLA SA reassignment STALICLA SA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DURHAM, Lynn
Publication of US20210169993A1 publication Critical patent/US20210169993A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0004Screening or testing of compounds for diagnosis of disorders, assessment of conditions, e.g. renal clearance, gastric emptying, testing for diabetes, allergy, rheuma, pancreas functions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/26Cyanate or isocyanate esters; Thiocyanate or isothiocyanate esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/167Personality evaluation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/047Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates having two or more hydroxy groups, e.g. sorbitol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/05Phenols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/095Sulfur, selenium, or tellurium compounds, e.g. thiols
    • A61K31/10Sulfides; Sulfoxides; Sulfones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/11Aldehydes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • A61K31/122Ketones having the oxygen directly attached to a ring, e.g. quinones, vitamin K1, anthralin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/155Amidines (), e.g. guanidine (H2N—C(=NH)—NH2), isourea (N=C(OH)—NH2), isothiourea (—N=C(SH)—NH2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/196Carboxylic acids, e.g. valproic acid having an amino group the amino group being directly attached to a ring, e.g. anthranilic acid, mefenamic acid, diclofenac, chlorambucil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/203Retinoic acids ; Salts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/225Polycarboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/27Esters, e.g. nitroglycerine, selenocyanates of carbamic or thiocarbamic acids, meprobamate, carbachol, neostigmine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/34Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
    • A61K31/343Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide condensed with a carbocyclic ring, e.g. coumaran, bufuralol, befunolol, clobenfurol, amiodarone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/366Lactones having six-membered rings, e.g. delta-lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/375Ascorbic acid, i.e. vitamin C; Salts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4409Non condensed pyridines; Hydrogenated derivatives thereof only substituted in position 4, e.g. isoniazid, iproniazid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4425Pyridinium derivatives, e.g. pralidoxime, pyridostigmine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4965Non-condensed pyrazines
    • A61K31/497Non-condensed pyrazines containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/555Heterocyclic compounds containing heavy metals, e.g. hemin, hematin, melarsoprol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/06Fungi, e.g. yeasts
    • A61K36/062Ascomycota
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/31Brassicaceae or Cruciferae (Mustard family), e.g. broccoli, cabbage or kohlrabi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/06Tripeptides
    • A61K38/063Glutathione
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1706Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from fish
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/45Transferases (2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the invention relates to a method of treatment for a subtype of idiopathic autism spectrum disorder (ASD), Phenotype 1, which is characterized by specific molecular and/or genetic underlying alterations.
  • ASD idiopathic autism spectrum disorder
  • Autism spectrum disorder are a group of neurodevelopmental disorder frequently characterized by impairments in social interactions, difficulties with language and communication, and the presence of repetitive, perseverative behaviors (Abrahams B S, Geschwind D H; Advances in autism genetics: on the threshold of a new neurobiology; Nat Rev Genet. 2008 June; 9(6):493), (Zoghbi H Y, Bear M F; Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities; Cold Spring Harb Perspect Biol. 2012 Mar. 1; 4(3)). Characteristic symptoms or behavioral traits of ASD typically appear during the first three years of life and remain present throughout life in the vast majority of patients. Intensity of symptoms may vary from patient to patient and may decrease as the patient develops adaptive skills.
  • DSM-5 additionally requires to specify where patient fits within three levels of increasing severity of ASD, from (1) (“requiring support”) to (2) (“requiring substantial support”), up to (3) (“requiring very substantial support”).
  • Other related behaviorally based definitions for Autism are proposed under various terminologies in other diagnostic manuals and classification system including the WHO-ICD-10 definition of Autistic Disorder (2017/18 ICD-10-CM Diagnosis Code F84.0) (World Health Organization. (1992).
  • the ICD-10 classification of mental and behavioural disorders clinical descriptions and diagnostic guidelines (Geneva: World Health Organization). While ASD can be defined by symptoms in core areas, there exists significant heterogeneity in genetics, phenotypes, clinical presentation, and associated comorbidities (Persico A M, Bourgeron T; Searching for ways out of the autism maze: genetic, epigenetic and environmental clues; Trends Neurosci. 2006 July; 29(7):349-358). The genetic contribution to the causation/predisposition to autism is considered to be substantial on the basis of high concordance in monozygous twins (Folstein S.
  • autism susceptibility genes are known to have important roles in brain development, with functions ranging from synaptic transmission to RNA processing and neurogenesis (Gilman S R et al; Rare de novo variants associated with autism implicate a large functional network of genes involved in information and function of synapses; Neuron. 2011 June 9; 70(5):898-907. O'Roak B J. et al; Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations; Nature. 2012 Apr. 4; 485(7397):246-50. De Rubeis S. et al; Synaptic, transcriptional and chromatin genes disrupted in autism; Nature. 2014 Nov. 13; 515 (7526): 209-15). However, the plethora of genetic targets has highlighted the need for the ASD research community to understand whether genes implicated in ASD may converge on common cellular and developmental processes.
  • Assays on a molecular basis might provide a way to classify ASD patients.
  • specific biomarkers for ASD which could be used to establish such an assay have yet to be identified.
  • biomarkers cannot encompass large groups of ASD patients.
  • Such assays could however in the short term come to support the characterization of genotypically, phenotypically or treatment response pre-identified subgroups.
  • the problem to be solved is thus the provision of means to efficiently treat a subgroup ASD patients which show a distinct subtype with regard to multiple underlying genetic and/or molecular causes.
  • the present invention solves this problem by providing by providing a pharmaceutical composition comprising an Nrf2-inhibitor.
  • the present invention is directed to a pharmaceutical composition comprising an Nrf2-inhibitor.
  • the pharmaceutical composition is for use in the treatment of ASD or ASD subtype 1 patients.
  • ASD subtype 1 patients have a negative response to administration of an Nrf2-activator; therefore, ASD subtype 1 patients will show a positive response to and may be treated with an Nrf2-inhibitor.
  • Nrf2-inhibitor may be defined as any molecule that inhibits or downregulates Nrf2 or otherwise decreases its activity.
  • Nrf2-inhibitors include any molecule which negatively regulates the activation of Nrf2, preferably any natural or synthetic molecule that binds to Nrf2 in the cytoplasm, sends Nrf2 to proteasome digestion, and keeps intracellular Nrf2 concentration low; any molecule which deubiquitinates Keap1 and stabilizes the Keap1-Cu13-E3 ligase complex, and/or enhances the E3 ligase activity, which leads to the binding between Keap1 and Nrf2 and consequently degradation of Nrf2 (e.g., Ubiquitin-specific processing protease 15 (USP15)); any molecule which reduces nuclear accumulation of the Nrf2 protein, blocks expression of proteasomal genes (e.g., s5a/psmd4 and alpha-5/psma5) and reduces proteasome activity regulated by Nrf2 (i.e alkaloids, preferably coffee alkaloids, in particular trigonelline); any molecule which has high capacity of capturing ROS
  • the Nrf2-inhibitor for use in the treatment of ASD or ASD subtype 1 is selected from the group consisting of Kelch-like ECH-associated protein 1 (cytosolic inhibitor of Nrf2, INRF2, Kelch-like protein 19, KIAA0132, KLHL19), Kelch-like ECH-associated protein 1 zebrafish, Maft protein zebrafish, Keap 1 protein rat, trigonelline (N-methylnicotinate), tamibarotene, all-trans retinoic acid (ATRA), Luteolin (Lut), Apigenin (APi), Chrysin (Chry), Wogomin (Wog), 4-methoxychalcone, 3′,4′,5′,5,7-Pentamethox-yflavone (PMF), Epigalocatechin 3-gal-late (EGCG), isoniazid (INH); ethionamide (ETH), ascorbic acid (AA), ARE expression modulator (AEM1),
  • the present invention is directed to a method of treatment of ASD or ASD subtype 1, wherein the treatment comprises administration of a therapeutically effective amount of an Nrf2-inhibitor.
  • the Nrf2-inhibitor may be selected from the group consisting of Kelch-like ECH-associated protein 1 (cytosolic inhibitor of Nrf2, INRF2, Kelch-like protein 19, KIAA0132, KLHL19), Kelch-like ECH-associated protein 1 zebrafish, Maft protein zebrafish, Keap 1 protein rat, trigonelline (N-methylnicotinate), tamibarotene, all-trans retinoic acid (ATRA), Luteolin (Lut), Apigenin (APi), Chrysin (Chry), Wogomin (Wog), 4-methoxychalcone, 3′,4′,5′,5,7-Pentamethox-yflavone (PMF), Epigalocatechin 3-gal-late (EGCG), isonia
  • autism spectrum disorder is understood to cover a family of neurodevelopmental disorders characterized by deficits in social communication and interaction and restricted, repetitive patterns of behavior, interests or activities.
  • autism spectrum disorder As used herein, the term “autism spectrum disorder”, “autism” and “ASD” are used interchangeably.
  • idiopathic ASD refers to ASD having a lack of a clear molecular or genetic alteration causing the reported signs and symptoms. The diagnosis of idiopathic ASD is therefore a diagnosis by exclusion, where the main molecular and genetic known causes of autism must be ruled out
  • ASD phenotype 1 and “phenotype 1” are used interchangeably.
  • patient refers to “ASD patient” and is intended to cover not only humans diagnosed as having ASD, but also humans suspected of having ASD, i.e. subjects presenting behavioral characteristics of ASD and displaying clinical signs of ASD but who have not yet received a formal validation of their diagnostic.
  • ASD Alzheimer's disease
  • DSM-5 Diagnostic and Statistical Manual of Mental Disorders
  • ASD patients may have been diagnosed according to standardized assessments tools including but not limited to DSM IV, ICD-9, ICD-10, DISCO, ADI-R, ADOS, CHAT.
  • patients may have a well-established DSM-IV diagnosis of autistic disorder, Asperger's disorder, or pervasive developmental disorder not otherwise specified (PDD-NOS).
  • DSD-NOS pervasive developmental disorder not otherwise specified
  • the present invention may be useful for subjects displaying clinical signs of ASD, i.e. persistent deficits in social communication and social interaction across multiple contexts as manifested by the following, currently or by history; restricted, repetitive patterns of behavior, interests, or activities, as manifested by at least two of the following, currently or by history; symptoms present in the early development period (but may not become fully manifest until social demands exceed limited capacities, or maybe masked by learned strategies in later life); symptoms cause clinically significant impairment in social, occupational, or other important areas of current functioning; these disturbances are not better explained by intellectual disability (intellectual development disorder) or global development delay.
  • ASD may occur with or without accompanying intellectual and/or language impairment. It may be associated with a known medical or genetic condition or an environmental factor or other neurodevelopmental, mental or behavioral disorders.
  • ASD may occur in different severity levels which may be classified according to impairment in social communication and in terms of restricted, repetitive behavior.
  • the term ASD phenotype 1 is not associated with a particular severity level of ASD.
  • the present invention may be applied to patients suffering from any severity level of ASD.
  • ASD phenotype 1 patients can be defined by the following clinical signs and symptoms: having: 1) at least 1 mandatory characteristics: enlarged head size versus control population characterized by at least one standard deviation above the mean head circumference (HC) at 24 months and/or formal macrocephaly (HC>97% of the general population) and/or cyclical aggravation of core or ancillary autism symptoms potentiated by periods of infectious events, deciduous tooth loss, post-traumatic injury, endogenous and exogenous temperature variation; 2) and at least 2, most preferably at least 3 of the following 20 characteristics: accelerated hair and nail growth versus control population; Increased tendency to present with lighter colors of skin and eyes as compared to individuals of the same ethnicity; Substantially longer eyelashes than control subjects of the same ethnicity; At least 5 non-contiguous areas of hypopigmented skin, particularly presenting on the back of the patient; Signs of edema during periods of infectious events, deciduous tooth loss, post-traumatic injury, or endogenous and exogenous factors modifying body temperature
  • the Nrf2-inhibitor may be administered orally, nasally or parenterally.
  • the Nrf2-inhibitor may be administered orally.
  • the Nrf2-inhibitor may be administered once daily or in several doses per day. In a preferred embodiment, the Nrf2-inhibitor is administered 3 times daily. In another embodiment, the Nrf2-inhibitor is administered 2 times daily. In another embodiment, the Nrf2-inhibitor is administered 1 time per day.
  • Phenotype 1 Individuals with idiopathic ASD were classified as Phenotype 1 is they showed:
  • example 1 Fifteen of the 21 ASD phenotype 1 patients identified in example 1 were considered for in-vitro analysis. Twenty ASD patients were selected as non-phenotype 1 if they did not match the criteria cited in example 1. Twenty controls were identified as individuals in which no signs or symptoms of neurobehavioral disorders have been detected and were therefore considered as typically developing individuals (TDs).
  • TDs typically developing individuals
  • the phenotype 1 cohort (Phi) selected for in vitro experiments was composed by 14 males and 1 female (ratio 14:1), with an age range of 2-17 years (average 7.7).
  • the non-phenotype 1 (non-phi) cohort was composed by 19 males and 1 female (ratio 19:1), with an age range of 2-20 years (average 5.25), while the TD cohort was composed by 15 males and 5 females (3:1 ratio) with the age at the time of sample collection ranging from 3 to 8 years (average 5.1)
  • lymphoblastoid cell lines were generated. Briefly, tubes containing anticoagulant citrate dextrose (ACD) were used to collect blood samples via venipuncture, in order to ensure that the blood cells remained metabolically active. The tubes were kept at room temperature and processed within 24 hours.
  • ACD anticoagulant citrate dextrose
  • lymphoblastoid cell lines were obtained by immortalization of lymphocytes from blood samples using Epstein-Barr virus.
  • the lymphoblastoid cell lines were harvested in Sigma RPMI-1640 with 75 mL fetal bovine serum from Atlanta Biological (Lawrenceville, Ga., USA) and 5 mL L-Glutamine and 5 mL antibiotic/antimycotic from Sigma-Aldrich (St. Louis, Mo., USA).
  • the compound in each well was designed to be used by the cells, either as the sole energy source or as the metabolic effector influencing the utilization of an energy source ( ⁇ -D-glucose) added in the cell suspension.
  • the production of NADH per well was monitored using a colorimetric redox dye chemistry (Bochner et al. Assay of the multiple energy-producing pathways of mammalian cells. PLoS One 2011, 6(3):e18147).
  • cell viability and number were assessed utilizing a BioRad cell counter and a trypan blue dye.
  • the concentration of live cells required for plating was 4 ⁇ 10 5 cells/mL, corresponding to 20,000 cells per well in a volume of 50 ⁇ L.
  • Biolog IF-M1 medium was modified for plates PM-M1 to M4 by adding the following to 100 mL of Biolog IF-M1: 1.1 mL of 100 ⁇ penicillin/streptomycin solution, 0.16 mL of 200 mM glutamine (final concentration 0.3 mM), and 5.3 mL of Fetal Bovine Serum (FBS, final concentration 5%).
  • FBS Fetal Bovine Serum
  • Biolog Redox Dye Mix MB was added (10 ⁇ L/well) and the plates were incubated under the same conditions for an additional 24 hours. As the cells metabolized the energy source, tetrazolium dye in the media was reduced, producing a purple color according to the amount of NADH generated.
  • the plates were incubated in the Omnilog system, which collects optical density readings every 15 minutes, generating 96 data-points for each well.
  • the system also elaborated the kinetic curve for the metabolic reaction in each well and extrapolated parameters such as slope, highest point, endpoint, area under the curve (AUC), and lag.
  • the plates were analyzed utilizing a microplate reader with readings at 590 and 750 nm.
  • the first value (A 590 ) indicated the highest absorbance peak of the redox dye and the second value (A 750 ) gave a measure of the background noise.
  • the relative absorbance (A 590-750 ) was calculated per well.
  • Phenotype 1 cells showed a distinctive profile and the molecular abnormalities detected in these samples was consistent with activation of Nrf2 and Nrf2 signaling pathway expected in ASD phenotype 1 and ultimately with the expected abnormalities in phenotype 1.
  • Nrf2 activates a battery of antioxidant and detoxifying genes, such as GST (glutathione-S-transferase), NC201 (NAD(P)H:quinone oxidoreductase 1), HO-1 (heme oxygenase 1), GCS (glutamate-cysteine ligase catalytic subunit), and of genes encoding free radical scavengers, such as superoxide dismutase 1 (SOD1) and catalase (Dreger et al., Nrf2-dependent upregulation of antioxidative enzymes: a novel pathway for proteasome inhibitor-mediated cardioprotection. Cardiovasc Res, 2009. 83(2): p.
  • GST glutthione-S-transferase
  • NC201 NAD(P)H:quinone oxidoreductase 1
  • HO-1 heme oxygenase 1
  • GCS glycose ligase catalytic subunit
  • free radical scavengers such as superoxid
  • Nrf2 Transcription factor Nrf2 mediates an adaptive response to sulforaphane that protects fibroblasts in vitro against the cytotoxic effects of electrophiles, peroxides and redox-cycling agents. Toxicol Appl Pharmacol, 2009. 237(3): p. 267-80; Shin et al. Role of the Nrf2-ARE pathway in liver diseases. Oxid Med Cell Longev, 2013. 2013: p. 763257).
  • Nrf2 antioxidant activity is on ROS and mitochondrial aerobic metabolism. Nrf2 promotes the inhibition of oxidative reactions, resulting in a decreased energy production by mitochondrial aerobic metabolism, which is reflected in the lower levels of NADH generated by phenotype 1 observed in our metabolic assays.
  • FIG. 1 (for area under the curve values, AUC) and Table 1 (for endpoint absorbance values), show a significantly reduced production of NADH in ASD phenotype 1 cells compared to TDs and non-phenotype 1 cells, when cells were exposed to FGF-1 or hGH, two growth factors that selectively target the PI3K-Akt-mTOR by binding the receptor tyrosine kinase (TRK) expressed in the lymphoblast's membrane.
  • TRK receptor tyrosine kinase
  • IGF-I insulin-like growth factor 1
  • PDGF-AB platelet-derived growth factor AB
  • Nrf2 exerts a stimulatory effect on NF- ⁇ B, inducing a pro-inflammatory profile by enhancing the production of Th1 cytokines.
  • Th1 cytokines such as IL-1p and IL-6
  • Th2 cytokines like IL-2 and IL-8.
  • a similar trend was noted in the PM-M8 plate when the cells were exposed to the Th1 cytokines IFN- ⁇ and TNF- ⁇ .
  • the extract was prepared from selected broccoli seeds known to have high yield of sulforaphane which were surface-disinfected and grown (sprouted) for 3 days in a commercial sprouting facility under controlled light and moisture conditions.
  • a boiling water extract was prepared, filtered, cooled, and treated with the enzyme myrosinase (from daikon sprouts) to convert precursor glucosinolates to isothiocyanates.
  • Behavioral evaluation of patients was performed prior, during and after administration of sulforaphane-containing broccoli sprout extract. Baseline evaluation of patients was performed using standard clinical endpoints (ADI-R subscales ADI-SI, ADI-C and ADI-RI).
  • Challenge regimen consisted of the administration of a Broccoli Sprout Extract dose corresponding to a total daily dosage of 4 ⁇ mol/kg of sulforaphane, administered in 3 doses over the course of the day.
  • Demographics Five male patients, diagnosed by experienced clinical psychiatrist using strict DSM-5 criteria for Autism Spectrum Disorder. Patient 5 had a history of neurological disease and was treated with Lithium (concomitant medication).
  • ADI-R baseline evaluations were conducted prior to any change or adjunct in intervention (either pharmaceutical and/or behavioral).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Zoology (AREA)
  • Emergency Medicine (AREA)
  • Mycology (AREA)
  • Medical Informatics (AREA)
  • Organic Chemistry (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Toxicology (AREA)
  • Diabetes (AREA)
  • Rheumatology (AREA)
  • Endocrinology (AREA)

Abstract

The present invention is directed to a pharmaceutical composition comprising an Nrf2 inhibitor. Likewise, the present invention is directed to a pharmaceutical composition for use in the treatment of ASD in a patient, comprising: determining whether the patient suffers from ASD subtype 1 and administering a therapeutically effective amount of an Nrf-inhibitor if the patients suffers from ASD subtype 1, wherein determining whether the patient suffers from ASD subtype 1 comprises administering the patient an Nrf2-activator and identifying the patient as suffering from ASD subtype 1 if he shows a negative response.

Description

    FIELD OF THE INVENTION
  • The invention relates to a method of treatment for a subtype of idiopathic autism spectrum disorder (ASD), Phenotype 1, which is characterized by specific molecular and/or genetic underlying alterations.
  • BACKGROUND OF THE INVENTION
  • Autism spectrum disorder (ASD) are a group of neurodevelopmental disorder frequently characterized by impairments in social interactions, difficulties with language and communication, and the presence of repetitive, perseverative behaviors (Abrahams B S, Geschwind D H; Advances in autism genetics: on the threshold of a new neurobiology; Nat Rev Genet. 2008 June; 9(6):493), (Zoghbi H Y, Bear M F; Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities; Cold Spring Harb Perspect Biol. 2012 Mar. 1; 4(3)). Characteristic symptoms or behavioral traits of ASD typically appear during the first three years of life and remain present throughout life in the vast majority of patients. Intensity of symptoms may vary from patient to patient and may decrease as the patient develops adaptive skills. Environmental factors, developmental or comorbidities such as epilepsy can also result in a worsening of symptoms. According to the fifth edition of the diagnostic and statistical manual of mental disorders (DSM. 5th Edition. Washington, D.C.: American Psychiatric Association; 2013. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders), ASD is characterized by two sets of core impairments: persisting deficits of social communication and interaction; restricted and repetitive behaviors, interests, activities. Compared to the previous edition (DSM-IV-Text Revision) (DSM-IV-TR 4th Edition. Washington, D.C.: American Psychiatric Association; 2000. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders.) DSM-5 introduced significant changes. In the diagnostic criteria, language abilities not employed in social communication have been de-emphasized. Further, the diagnostic subcategories, namely autistic disorder, Asperger disorder, Rett disorder, childhood disintegrative disorder, and pervasive developmental disorder (PDD) not otherwise specified are now encompassed by the diagnostic criteria for autism spectrum disorder. DSM-5 additionally requires to specify where patient fits within three levels of increasing severity of ASD, from (1) (“requiring support”) to (2) (“requiring substantial support”), up to (3) (“requiring very substantial support”). Other related behaviorally based definitions for Autism are proposed under various terminologies in other diagnostic manuals and classification system including the WHO-ICD-10 definition of Autistic Disorder (2017/18 ICD-10-CM Diagnosis Code F84.0) (World Health Organization. (1992). The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines (Geneva: World Health Organization). While ASD can be defined by symptoms in core areas, there exists significant heterogeneity in genetics, phenotypes, clinical presentation, and associated comorbidities (Persico A M, Bourgeron T; Searching for ways out of the autism maze: genetic, epigenetic and environmental clues; Trends Neurosci. 2006 July; 29(7):349-358). The genetic contribution to the causation/predisposition to autism is considered to be substantial on the basis of high concordance in monozygous twins (Folstein S. Rutter M; Infantile autism: a genetic study of 21 twin pairs; J Child Psycho) Psyquiatry; 1977 September; 18(4): 297-321.). A recently published reanalysis of data from a previous study on the familial risk for autism spectrum disorder (ASD) further supports these initial findings suggesting that genetics contributes 83% of the risk for ASD. Environmental factors thus seem to play a minor 17% though significant role in the developmental etiology of ASD. (Sandin S, Lichtenstein P, Kuja-Halkola R, Hultman C, Larsson H, Reichenberg A. The Heritability of Autism Spectrum Disorder. JAMA. 2017; 318(12):1182-1184. doi:10.1001/jama.2017.12141.) However, to further complexify matters genetic and epigenetic factors intertwine with prenatal and lifelong dynamic environmental factors to draw individual patient pathogenesis. There is growing perception among the scientific community that the current behavioral based approaches to diagnostic do not allow for efficient classification of patients in terms of molecular and genetic alterations, but rather serve as a behavioral umbrella term for a large group of neurodevelopmental disorders with different etiologies. Recent developments of new genetic screening methods (e.g., microarray-based, comparative genomic hybridization assay (a-CGH), whole genome or exome sequencing technics . . . ) have permitted to detect hundreds of genetic risk factors, including common and rare genetic variants, which can increase the likelihood of ASD (Ronemus M. et al; The role of the novo mutations in the genetics of autism spectrum disorders; Nat Rev Genet. 2014 February; 15(2): 133-41). Nevertheless, causal genetic factors can only be identified in 15 to 20% of patients who are screened, thus the vast majority ASD patients are still considered idiopathic.
  • Many autism susceptibility genes are known to have important roles in brain development, with functions ranging from synaptic transmission to RNA processing and neurogenesis (Gilman S R et al; Rare de novo variants associated with autism implicate a large functional network of genes involved in information and function of synapses; Neuron. 2011 June 9; 70(5):898-907. O'Roak B J. et al; Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations; Nature. 2012 Apr. 4; 485(7397):246-50. De Rubeis S. et al; Synaptic, transcriptional and chromatin genes disrupted in autism; Nature. 2014 Nov. 13; 515 (7526): 209-15). However, the plethora of genetic targets has highlighted the need for the ASD research community to understand whether genes implicated in ASD may converge on common cellular and developmental processes.
  • Evidence has recently accumulated to support the theory that the ever-expanding number of ASD susceptibility genes could in fact converge towards a limited number of molecular pathways. This growing assumption offers important translational opportunities as molecular pathways mediating synaptic and circuit formation are also involved in other physiological processes including modulation of the adaptive and innate immune response (Myka L. Estes M L, McAllister A K (2015), Nature Reviews Neuroscience 16, 469-486), cell proliferation, survival and protein synthesis (Subramanian M, Timmerman C K, Schwartz J L, Pham D L and Meffert M K (2015), Front. Neurosci. 9:313. Tang G. et al. (2014), Neuron. 83, 1131-1143).
  • Attempts have been previously made to stratify ASD patients into smaller, more homogeneous subgroups by utilizing specific genetic signatures (Bernier et al; Disruptive CHD8 mutations define a subtype of autism early in development; Cell 2014 Jul. 17; 158 (2): 263-276.) or behavioral and clinical endophenotypes (Eapen V. and Clarke R. A.; Autism Spectrum Disorders: From genotypes to phenotypes; Front Hum Neurosci. 2014; 8:914). However, these strategies face difficulty encompassing the genetic and phenotypic heterogeneity of ASD, and may not assist in the identification of specific neurobiological pathways underlying disease.
  • Assays on a molecular basis might provide a way to classify ASD patients. However, because of the intrinsic complexity of ASD, its heterogeneity and the complex intertwining of genetic and environmental causal factors, specific biomarkers for ASD which could be used to establish such an assay have yet to be identified. Moreover, because of their specifity, such biomarkers cannot encompass large groups of ASD patients. Such assays could however in the short term come to support the characterization of genotypically, phenotypically or treatment response pre-identified subgroups.
  • There is therefore a need for for specific treatments for individual subgroups of ASD patients.
  • OBJECTIVE PROBLEM TO BE SOLVED
  • The problem to be solved is thus the provision of means to efficiently treat a subgroup ASD patients which show a distinct subtype with regard to multiple underlying genetic and/or molecular causes.
  • SUMMARY OF THE INVENTION
  • The present invention solves this problem by providing by providing a pharmaceutical composition comprising an Nrf2-inhibitor.
  • DETAILED DESCRIPTION OF THE INVENTION
  • In one aspect, the present invention is directed to a pharmaceutical composition comprising an Nrf2-inhibitor. In another aspect of the invention, the pharmaceutical composition is for use in the treatment of ASD or ASD subtype 1 patients. According to the present invention, ASD subtype 1 patients have a negative response to administration of an Nrf2-activator; therefore, ASD subtype 1 patients will show a positive response to and may be treated with an Nrf2-inhibitor.
  • An Nrf2-inhibitor according to the present invention may be defined as any molecule that inhibits or downregulates Nrf2 or otherwise decreases its activity.
  • Nrf2-inhibitors include any molecule which negatively regulates the activation of Nrf2, preferably any natural or synthetic molecule that binds to Nrf2 in the cytoplasm, sends Nrf2 to proteasome digestion, and keeps intracellular Nrf2 concentration low; any molecule which deubiquitinates Keap1 and stabilizes the Keap1-Cu13-E3 ligase complex, and/or enhances the E3 ligase activity, which leads to the binding between Keap1 and Nrf2 and consequently degradation of Nrf2 (e.g., Ubiquitin-specific processing protease 15 (USP15)); any molecule which reduces nuclear accumulation of the Nrf2 protein, blocks expression of proteasomal genes (e.g., s5a/psmd4 and alpha-5/psma5) and reduces proteasome activity regulated by Nrf2 (i.e alkaloids, preferably coffee alkaloids, in particular trigonelline); any molecule which has high capacity of capturing ROS and/or keeps low intracellular ROS levels and results in maintenance of low intracellular Nrf2 activity (e.g., water-soluble vitamins, in particular vitamin C (ascorbic acid) or vitamin E); any molecule which inhibits Nrf2 signalling, thus increasing intracellular oxidative stress (e.g., brusatol).
  • In a preferred embodiment, the Nrf2-inhibitor for use in the treatment of ASD or ASD subtype 1 is selected from the group consisting of Kelch-like ECH-associated protein 1 (cytosolic inhibitor of Nrf2, INRF2, Kelch-like protein 19, KIAA0132, KLHL19), Kelch-like ECH-associated protein 1 zebrafish, Maft protein zebrafish, Keap 1 protein rat, trigonelline (N-methylnicotinate), tamibarotene, all-trans retinoic acid (ATRA), Luteolin (Lut), Apigenin (APi), Chrysin (Chry), Wogomin (Wog), 4-methoxychalcone, 3′,4′,5′,5,7-Pentamethox-yflavone (PMF), Epigalocatechin 3-gal-late (EGCG), isoniazid (INH); ethionamide (ETH), ascorbic acid (AA), ARE expression modulator (AEM1), brusatol (Bru), cryptoanshinone (CryP), IM3829 (4-(2-cyclohexylethoxy)aniline), metformin (Met), mycotoxin ochratoxin A (Ota), triptolide (TPL) CBR-031-1, CBR-026-7, CBR-168-5, thiuram disulfides and disulfiram.
  • In another embodiment, the present invention is directed to a method of treatment of ASD or ASD subtype 1, wherein the treatment comprises administration of a therapeutically effective amount of an Nrf2-inhibitor. In one embodiment, the Nrf2-inhibitor may be selected from the group consisting of Kelch-like ECH-associated protein 1 (cytosolic inhibitor of Nrf2, INRF2, Kelch-like protein 19, KIAA0132, KLHL19), Kelch-like ECH-associated protein 1 zebrafish, Maft protein zebrafish, Keap 1 protein rat, trigonelline (N-methylnicotinate), tamibarotene, all-trans retinoic acid (ATRA), Luteolin (Lut), Apigenin (APi), Chrysin (Chry), Wogomin (Wog), 4-methoxychalcone, 3′,4′,5′,5,7-Pentamethox-yflavone (PMF), Epigalocatechin 3-gal-late (EGCG), isoniazid (INH); ethionamide (ETH), ascorbic acid (AA), ARE expression modulator (AEM1), brusatol (Bru), cryptoanshinone (CryP), IM3829 (4-(2-cyclohexylethoxy)aniline), metformin (Met), mycotoxin ochratoxin A (Ota), triptolide (TPL) CBR-031-1, CBR-026-7, CBR-168-5, thiuram disulfides and disulfiram
  • As used herein, the term autism spectrum disorder (ASD) is understood to cover a family of neurodevelopmental disorders characterized by deficits in social communication and interaction and restricted, repetitive patterns of behavior, interests or activities. In the following, the terms “autism spectrum disorder”, “autism” and “ASD” are used interchangeably. The term “idiopathic ASD” refers to ASD having a lack of a clear molecular or genetic alteration causing the reported signs and symptoms. The diagnosis of idiopathic ASD is therefore a diagnosis by exclusion, where the main molecular and genetic known causes of autism must be ruled out
  • Herein, the terms “ASD phenotype 1” and “phenotype 1” are used interchangeably. The term “patient” refers to “ASD patient” and is intended to cover not only humans diagnosed as having ASD, but also humans suspected of having ASD, i.e. subjects presenting behavioral characteristics of ASD and displaying clinical signs of ASD but who have not yet received a formal validation of their diagnostic.
  • The person skilled in the art is well aware of how a patient may be diagnosed with ASD. For example, the skilled person may follow the criteria set up in “American Psychiatric Association; Diagnostic and Statistical Manual of Mental Disorders (DSM-5) Fifth edition” to give a subject a diagnosis of ASD. Likewise, ASD patients may have been diagnosed according to standardized assessments tools including but not limited to DSM IV, ICD-9, ICD-10, DISCO, ADI-R, ADOS, CHAT.
  • In other cases, patients may have a well-established DSM-IV diagnosis of autistic disorder, Asperger's disorder, or pervasive developmental disorder not otherwise specified (PDD-NOS).
  • Additionally, the present invention may be useful for subjects displaying clinical signs of ASD, i.e. persistent deficits in social communication and social interaction across multiple contexts as manifested by the following, currently or by history; restricted, repetitive patterns of behavior, interests, or activities, as manifested by at least two of the following, currently or by history; symptoms present in the early development period (but may not become fully manifest until social demands exceed limited capacities, or maybe masked by learned strategies in later life); symptoms cause clinically significant impairment in social, occupational, or other important areas of current functioning; these disturbances are not better explained by intellectual disability (intellectual development disorder) or global development delay.
  • ASD may occur with or without accompanying intellectual and/or language impairment. It may be associated with a known medical or genetic condition or an environmental factor or other neurodevelopmental, mental or behavioral disorders.
  • ASD may occur in different severity levels which may be classified according to impairment in social communication and in terms of restricted, repetitive behavior. Importantly, the term ASD phenotype 1 is not associated with a particular severity level of ASD. The present invention may be applied to patients suffering from any severity level of ASD.
  • ASD phenotype 1 patients can be defined by the following clinical signs and symptoms: having: 1) at least 1 mandatory characteristics: enlarged head size versus control population characterized by at least one standard deviation above the mean head circumference (HC) at 24 months and/or formal macrocephaly (HC>97% of the general population) and/or cyclical aggravation of core or ancillary autism symptoms potentiated by periods of infectious events, deciduous tooth loss, post-traumatic injury, endogenous and exogenous temperature variation; 2) and at least 2, most preferably at least 3 of the following 20 characteristics: accelerated hair and nail growth versus control population; Increased tendency to present with lighter colors of skin and eyes as compared to individuals of the same ethnicity; Substantially longer eyelashes than control subjects of the same ethnicity; At least 5 non-contiguous areas of hypopigmented skin, particularly presenting on the back of the patient; Signs of edema during periods of infectious events, deciduous tooth loss, post-traumatic injury, or endogenous and exogenous factors modifying body temperature; more specifically, facial edema located in the periorbital and forehead areas; Increased blood levels of gamma-glutamyl transpeptidase (GGT) as compared to typically developing individuals of the same age and ethnicity; Congenital genitourinary malformations and/or functional impairment to initiate urinating; Hypoplasia of the patella; Frequent episodes of diarrhea specifically before the age of 5 years; Frequent episodes of tinnitus; Thinning of the corpus callosum; Positive family history for hematological malignancies in particular but not limited to myeloma and acute promyelocytic leukemia; Positive family history for rheumatoid arthritis, that is at least two affected first-degree relatives in two consecutive generations; Adverse events in response to acetyl-salicylic acid or its derivatives; Iris coloboma, either monolateral or bilateral; Sleep hyperhidrosis particularly in newborns, toddlers and young children (notably increased night sweating during infancy and childhood often reported by relatives to requires bed linen changes); Increased Th1/Th2 ratio (i.e. elevated levels of Interleukin 1 beta, Interleukin 6, TNF-alpha, Interferon gamma); Congenital accessory or duplicated spleen; Congenital absence of the cisterna chyli; Reported history of mother suffering from viral or bacterial infection during pregnancy and/or biologically confirmed Maternal immune activation during pregnancy.
  • The person skilled in the art is aware of ways and methods to administer the Nrf2-inhibitor. For example, the Nrf2-inhibitor may be administered orally, nasally or parenterally. In a preferred embodiment, the Nrf2-inhibitor may be administered orally.
  • In order to achieve the desired dosage level, the Nrf2-inhibitor may be administered once daily or in several doses per day. In a preferred embodiment, the Nrf2-inhibitor is administered 3 times daily. In another embodiment, the Nrf2-inhibitor is administered 2 times daily. In another embodiment, the Nrf2-inhibitor is administered 1 time per day.
  • EXAMPLES Example 1
  • Materials & Methods
  • All patients had previously received a diagnosis of ASD according to DSM-IV or DSM-5 criteria supported by either ADI-R or ADOS-2 scores. No exclusion criteria were considered for age, gender, or ethnicity, although only cases presenting with non-syndromic or isolated ASD were included in the study in order to avoid confounding factors.
  • Individuals with idiopathic ASD were classified as Phenotype 1 is they showed:
      • at least 1 mandatory criterion:
        • enlarged head size versus control population characterized by at least one standard deviations above the mean head circumference (HC) during the first 24 months of life and/or formal macrocephaly (HC>97% of the general population)
        • and/or
        • cyclical aggravation of core autism symptoms potentiated by periods of infectious events, deciduous tooth loss, post-traumatic injury, endogenous and exogenous temperature variation
      • and
      • at least 2, and most preferably at least 3 out of the following 20 characteristics:
        • accelerated hair and nail growth versus control population
        • increased tendency to present with lighter colors of skin and eyes as compared to individuals of the same ethnicity
        • substantially longer eyelashes than control subjects of the same ethnicity
        • at least 5 non-contiguous areas of hypopigmented skin, particularly presenting on the back of the patient
        • signs of edema during periods of infectious events, deciduous tooth loss, post-traumatic injury, or endogenous and exogenous factors modifying body temperature; more specifically, facial edema located in the periorbital and forehead areas
        • increased blood levels of gamma-glutamyl transpeptidase (GGT) as compared to typically developing individuals of the same age and ethnicity
        • Congenital genitourinary malformations and/or functional impairment to initiate urinating
        • hypoplasia of the patella
        • frequent episodes of diarrhea specifically before the age of 5 years
        • frequent episodes of tinnitus
        • thinning or absence of the corpus callosum
        • positive family history for hematological malignancies in particular but not limited to myeloma and acute promyelocytic leukemia
        • positive family history for rheumatoid arthritis, that is at least two affected first-degree relatives in two consecutive generations
        • adverse events in response to acetyl-salicylic acid or its derivatives
        • iris coloboma, either monolateral or bilateral
        • sleep hyperhidrosis particularly as babies, toddlers and young children (notably increased night sweating during infancy and childhood often reported by relatives to requires bed linen changes
        • increased Th1/Th2 ratio (i.e. elevated levels of Interleukin 1 beta, Interleukin 6, TNF-alpha, Interferon gamma)
        • congenital accessory or duplicated spleen
        • congenital absence of the cisterna chyli
        • reported history of mother suffering from viral or bacterial infection during pregnancy and/or biologically confirmed Maternal immune activation during pregnancy
  • Results
  • A cohort of 313 patients with ASD with complete clinical data in the Greenwood Genetic Center (GGC, SC, USA) database was considered in order to select 20 Phenotype 1 and 20 Non-Phenotype 1 samples.
  • Out of these 313 patients with ASD in the GGC database, 90 (28.8%) had at least two well documented measures of head circumference taken in the first 24 months of life by a trained physician. Among these 90 patients, 47 (52.2%) matched with at least 1 primary criterion (i.e. head circumference).
  • The families of the 47 patients with at HC>75 were contacted by telephone to inquire about the presence of the second mandatory criteria for ASD Phenotype 1. The GGC failed to establish contact with the families of 5 of the 47 patients (10.6%). Of the remaining 42 patients from which it was possible to collect further clinical information, 21 (50%) satisfied the ASD Phenotype criteria. Overall, with the exclusion of the 5 cases which could not be followed-up, 21 out of 85 patients (24.7%) fit the criteria for ASD phenotype 1 and showed between 3 and 8 of the secondary characteristics.
  • Example 2
  • Materials & Methods
  • Fifteen of the 21 ASD phenotype 1 patients identified in example 1 were considered for in-vitro analysis. Twenty ASD patients were selected as non-phenotype 1 if they did not match the criteria cited in example 1. Twenty controls were identified as individuals in which no signs or symptoms of neurobehavioral disorders have been detected and were therefore considered as typically developing individuals (TDs).
  • The phenotype 1 cohort (Phi) selected for in vitro experiments was composed by 14 males and 1 female (ratio 14:1), with an age range of 2-17 years (average 7.7). For comparison, the non-phenotype 1 (non-phi) cohort was composed by 19 males and 1 female (ratio 19:1), with an age range of 2-20 years (average 5.25), while the TD cohort was composed by 15 males and 5 females (3:1 ratio) with the age at the time of sample collection ranging from 3 to 8 years (average 5.1)
  • From all subjects, blood samples were collected and lymphoblastoid cell lines generated. Briefly, tubes containing anticoagulant citrate dextrose (ACD) were used to collect blood samples via venipuncture, in order to ensure that the blood cells remained metabolically active. The tubes were kept at room temperature and processed within 24 hours.
  • Cell lines were obtained by immortalization of lymphocytes from blood samples using Epstein-Barr virus. The lymphoblastoid cell lines were harvested in Sigma RPMI-1640 with 75 mL fetal bovine serum from Atlanta Biological (Lawrenceville, Ga., USA) and 5 mL L-Glutamine and 5 mL antibiotic/antimycotic from Sigma-Aldrich (St. Louis, Mo., USA).
  • Energy production of cells was measured using commercially available Phenotype Mammalian MicroArrays (PM-Ms, Biolog, Hayward, Calif., USA).
  • The compound in each well was designed to be used by the cells, either as the sole energy source or as the metabolic effector influencing the utilization of an energy source (α-D-glucose) added in the cell suspension. The production of NADH per well was monitored using a colorimetric redox dye chemistry (Bochner et al. Assay of the multiple energy-producing pathways of mammalian cells. PLoS One 2011, 6(3):e18147). Before plating, cell viability and number were assessed utilizing a BioRad cell counter and a trypan blue dye. The concentration of live cells required for plating was 4×105 cells/mL, corresponding to 20,000 cells per well in a volume of 50 μL. Only cell lines with viability of 55% or above were utilized for the experiments and, in order to minimize artifacts and biases due to prolonged cell culturing of transformed cells, LCLs were not utilized if they had reached 15 passages. Cells were incubated for 48 h at 37° C. in 5% CO2, using the modified Biolog IF-M1 medium.
  • The Biolog IF-M1 medium was modified for plates PM-M1 to M4 by adding the following to 100 mL of Biolog IF-M1: 1.1 mL of 100× penicillin/streptomycin solution, 0.16 mL of 200 mM glutamine (final concentration 0.3 mM), and 5.3 mL of Fetal Bovine Serum (FBS, final concentration 5%). For plates PM-M5 to M8, 5.5 mM α-D-glucose will be added in place of FBS.
  • During the 48-hour incubation, the only energy source the cells had was the chemical in the well. After this first incubation, Biolog Redox Dye Mix MB was added (10 μL/well) and the plates were incubated under the same conditions for an additional 24 hours. As the cells metabolized the energy source, tetrazolium dye in the media was reduced, producing a purple color according to the amount of NADH generated.
  • For the last 24 hours of the experiment, the plates were incubated in the Omnilog system, which collects optical density readings every 15 minutes, generating 96 data-points for each well. The system also elaborated the kinetic curve for the metabolic reaction in each well and extrapolated parameters such as slope, highest point, endpoint, area under the curve (AUC), and lag.
  • At the end of the 24-hour incubation, the plates were analyzed utilizing a microplate reader with readings at 590 and 750 nm. The first value (A590) indicated the highest absorbance peak of the redox dye and the second value (A750) gave a measure of the background noise. The relative absorbance (A590-750) was calculated per well.
  • Results
  • The metabolic findings in Phenotype 1 cells showed a distinctive profile and the molecular abnormalities detected in these samples was consistent with activation of Nrf2 and Nrf2 signaling pathway expected in ASD phenotype 1 and ultimately with the expected abnormalities in phenotype 1.
  • Clear evidence of increased anti-oxidant activity in phenotype 1 cells is provided in Table 1: whenever the cells were exposed to metabolic effectors promoting high energy production (Area Under the Curve, AUC, on the Y axis of the graphics), non-phenotype 1 and control cells generated high NADH levels, while phenotype 1 cells kept a steady profile in the low range of NADH production.
  • In order to generate more energy than the baseline levels, human cells need to increase the rate of aerobic metabolism, that occurs mostly in mitochondria and is based on oxidative reactions, which often produce reactive oxygen species (ROS) as by-products. The cellular anti-oxidant activity is increased in phenotype 1 cells because of the constitutive activated Nrf2 signaling pathway. Nrf2 activates a battery of antioxidant and detoxifying genes, such as GST (glutathione-S-transferase), NC201 (NAD(P)H:quinone oxidoreductase 1), HO-1 (heme oxygenase 1), GCS (glutamate-cysteine ligase catalytic subunit), and of genes encoding free radical scavengers, such as superoxide dismutase 1 (SOD1) and catalase (Dreger et al., Nrf2-dependent upregulation of antioxidative enzymes: a novel pathway for proteasome inhibitor-mediated cardioprotection. Cardiovasc Res, 2009. 83(2): p. 354-61; Higgins et al., Transcription factor Nrf2 mediates an adaptive response to sulforaphane that protects fibroblasts in vitro against the cytotoxic effects of electrophiles, peroxides and redox-cycling agents. Toxicol Appl Pharmacol, 2009. 237(3): p. 267-80; Shin et al. Role of the Nrf2-ARE pathway in liver diseases. Oxid Med Cell Longev, 2013. 2013: p. 763257). Thus, the main impact of the Nrf2 antioxidant activity is on ROS and mitochondrial aerobic metabolism. Nrf2 promotes the inhibition of oxidative reactions, resulting in a decreased energy production by mitochondrial aerobic metabolism, which is reflected in the lower levels of NADH generated by phenotype 1 observed in our metabolic assays.
  • The PI3K-AKT-mTOR pathway is modulated by the Nrf2 signaling pathway. FIG. 1 (for area under the curve values, AUC) and Table 1 (for endpoint absorbance values), show a significantly reduced production of NADH in ASD phenotype 1 cells compared to TDs and non-phenotype 1 cells, when cells were exposed to FGF-1 or hGH, two growth factors that selectively target the PI3K-Akt-mTOR by binding the receptor tyrosine kinase (TRK) expressed in the lymphoblast's membrane. Conversely, no significant differences were detected when the cells were exposed to growth factors that target less specifically the PI3K-AKT-mTOR pathway in LCLs, like insulin-like growth factor 1 (IGF-I) and platelet-derived growth factor AB (PDGF-AB).
  • Nrf2 exerts a stimulatory effect on NF-κB, inducing a pro-inflammatory profile by enhancing the production of Th1 cytokines. As shown in FIG. 1, phenotype 1 cells generate significantly lower levels of NADH than other cells when exposed to Th1 cytokines, such as IL-1p and IL-6, than when exposed to Th2 cytokines, like IL-2 and IL-8. A similar trend was noted in the PM-M8 plate when the cells were exposed to the Th1 cytokines IFN-γ and TNF-α.
  • All in one those results demonstrate a metabolic profile specific of the ASD phenotype 1 when compared to the ASD non-phenotype 1 patients. This metabolic fingerprint validates the existence of a specific ASD phenotype 1.
  • TABLE 1
    List of some of the wells showing different NADH levels between Phenotype 1 and control samples.
    UT Phenotype 1 UT Control
    substrate Patient Average Average P value Note
    A01 NegativeControl 1.2826 1.5439 0.0210 UT Control average is higher
    A02 NegativeControl 2.1039 2.4861 0.0360 UT Control average is higher
    A05 Dextrin 4.4644 6.9303 0.0007 UT Control average is higher
    A08 Maltotriose 4.1511 2.9542 0.0392 UT Phenotype Patient average is higher
    A09 Maltose 5.6163 3.2355 0.0024 UT Phenotype Patient average is higher
    A10 D-Trehalose 2.6570 1.9067 0.0277 UT Phenotype Patient average is higher
    B01 D-Glucose-6- 2.1269 2.8665 0.0085 UT Control average is higher
    Phosphate
    B02 D-Glucose-1- 3.7488 5.5805 0.0002 UT Control average is higher
    Phosphate
    B04 D-(+)-Glucose 11.0869 13.7383 0.0016 UT Control average is higher
    B05 D-(+)-Glucose 5.3267 6.6308 0.0027 UT Control average is higher
    B10 Salicin 3.1458 2.1487 0.0157 UT Phenotype Patient average is higher
    B12 N-Acetyl-D- 1.9120 1.4505 0.0427 UT Phenotype Patient average is higher
    Glucosamine
    C05 D-Mannose 5.5082 7.2586 0.0003 UT Control average is higher
    C10 Sucrose 1.4825 1.1139 0.0302 UT Phenotype Patient average is higher
    C12 Turanose 2.3111 1.6814 0.0210 UT Phenotype Patient average is higher
    D01 D-Tagatose 0.7848 0.9824 0.0210 UT Control average is higher
    D06 D-Fructose-6- 1.9697 2.8775 0.0000 UT Control average is higher
    Phosphate
    E01 MelibionicAcid 1.4852 1.9700 0.0007 UT Control average is higher
    E03 D-Galactose 2.8088 3.7983 0.0030 UT Control average is higher
    E07 Pectin 3.1739 2.3056 0.0105 UT Phenotype Patient average is higher
    E09 Thymidine 0.9345 0.8003 0.0253 UT Phenotype Patient average is higher
    E10 Uridine 1.7966 1.3593 0.0230 UT Phenotype Patient average is higher
    E11 Adenosine 2.7165 1.8644 0.0068 UT Phenotype Patient average is higher
    E12 Inosine 5.0562 3.3001 0.0044 UT Phenotype Patient average is higher
    H01 AcetoaceticAcid 1.2179 1.4480 0.0230 UT Control average is higher
    H03 a-Keto- 0.9645 1.2604 0.0076 UT Control average is higher
    ButyricAcid
    H10 PropionicAcid 1.1854 0.7299 0.0003 UT Phenotype Patient average is higher
    H11 AceticAcid 1.5351 1.2154 0.0210 UT Phenotype Patient average is higher
    H12 HexanoicAcid 1.3682 1.1210 0.0463 UT Phenotype Patient average is higher
    A05 NegativeControl 5.3075 6.4793 0.0277 UT Control average is higher
    B01 Resistin 4.5123 5.6797 0.0129 UT Control average is higher
    B05 Resistin 3.6909 4.6657 0.0129 UT Control average is higher
    C03 Ghrelin 4.2361 5.0063 0.0392 UT Control average is higher
    C05 Ghrelin 4.7857 6.2623 0.0061 UT Control average is higher
    C06 Ghrelin 5.7492 7.2315 0.0143 UT Control average is higher
    D01 Gastrin 4.6075 5.8109 0.0129 UT Control average is higher
    D02 Gastrin 3.6864 4.5578 0.0210 UT Control average is higher
    D03 Gastrin 4.7024 5.9872 0.0253 UT Control average is higher
    D04 Gastrin 4.6552 5.9454 0.0173 UT Control average is higher
    D05 Gastrin 3.3230 4.3135 0.0068 UT Control average is higher
    E01 hGH 3.5131 4.2845 0.0302 UT Control average is higher
    (Somatotropin)
    E02 hGH 6.1886 7.6730 0.0302 UT Control average is higher
    (Somatotropin)
    E03 hGH 5.3069 7.0433 0.0024 UT Control average is higher
    (Somatotropin)
    E04 hGH 4.9185 6.0531 0.0643 UT Control average is higher
    (Somatotropin)
    E05 hGH 3.0475 3.7897 0.0463 UT Control average is higher
    (Somatotropin)
    E06 hGH 3.3055 4.3524 0.0030 UT Control average is higher
    (Somatotropin)
    E07 IGF-I 4.1864 4.7777 0.1394 UT Control average is higher
    E08 IGF-I 6.0383 6.4857 0.3819 UT Control average is higher
    E09 IGF-I 5.0086 5.1495 0.6808 UT Control average is higher
    E10 IGF-I 5.7454 5.8106 0.8051 UT Control average is higher
    E11 IGF-I 4.1026 4.2450 0.7051 UT Control average is higher
    E12 IGF-I 3.8620 3.8312 0.9607 UT Phenotype Patient average is higher
    F01 FGF-1(aFGF) 4.6635 5.4833 0.0191 UT Control average is higher
    F02 FGF-1(aFGF) 6.4952 7.7893 0.0545 UT Control average is higher
    F03 FGF-1(aFGF) 6.7217 8.0864 0.0463 UT Control average is higher
    F04 FGF-1(aFGF) 4.6164 5.5960 0.0392 UT Control average is higher
    F05 FGF-1(aFGF) 6.2132 7.6145 0.0689 UT Control average is higher
    F06 FGF-1(aFGF) 6.2023 7.3791 0.0926 UT Control average is higher
    F07 PDGF-AB 3.4671 4.1317 0.0392 UT Control average is higher
    F08 PDGF-AB 5.7351 6.6622 0.1066 UT Control average is higher
    F09 PDGF-AB 6.4721 7.0717 0.3136 UT Control average is higher
    F10 PDGF-AB 4.7311 4.8924 0.7051 UT Control average is higher
    F11 PDGF-AB 5.2203 5.4621 0.5644 UT Control average is higher
    F12 PDGF-AB 4.2885 4.5090 0.6568 UT Control average is higher
    G01 IL-1beta 3.7944 4.6514 0.0068 UT Control average is higher
    G02 IL-1beta 5.7966 6.7024 0.1905 UT Control average is higher
    G03 IL-1beta 6.0344 7.2291 0.1585 UT Control average is higher
    G04 IL-1beta 5.6973 6.8322 0.0800 UT Control average is higher
    G05 IL-1beta 6.4106 7.7595 0.0926 UT Control average is higher
    G06 IL-1beta 4.4971 5.3874 0.1142 UT Control average is higher
    G07 IL-2 5.6683 6.3875 0.1687 UT Control average is higher
    G08 IL-2 3.7132 4.2621 0.1585 UT Control average is higher
    G09 IL-2 4.6178 5.1066 0.2538 UT Control average is higher
    G10 IL-2 5.8067 6.5109 0.1585 UT Control average is higher
    G11 IL-2 4.0105 4.4238 0.1394 UT Control average is higher
    G12 IL-2 4.6692 4.6766 0.8823 UT Control average is higher
    H01 IL-6 4.4499 5.0238 0.1687 UT Control average is higher
    H02 IL-6 3.4820 4.0160 0.1142 UT Control average is higher
    H03 IL-6 4.3322 5.1575 0.1222 UT Control average is higher
    H04 IL-6 4.3861 5.1877 0.1487 UT Control average is higher
    H05 IL-6 4.3835 5.0178 0.3467 UT Control average is higher
    H06 IL-6 4.7685 5.6056 0.1487 UT Control average is higher
    H07 IL-8 5.0911 5.7886 0.2538 UT Control average is higher
    H08 IL-8 3.6180 4.2129 0.0994 UT Control average is higher
    H09 IL-8 3.6674 3.9547 0.3770 UT Control average is higher
    H10 IL-8 3.3435 3.7976 0.1585 UT Control average is higher
    H11 IL-8 3.4478 3.6975 0.4582 UT Control average is higher
    H12 IL-8 4.6088 4.7185 0.6808 UT Control average is higher
    G01 IFN-gamma 4.0356 4.9801 0.0173 UT Control average is higher
    G02 IFN-gamma 4.7917 5.4039 0.2270 UT Control average is higher
    G03 IFN-gamma 4.8744 5.8787 0.1066 UT Control average is higher
    G04 IFN-gamma 3.5975 4.4725 0.0253 UT Control average is higher
    G05 IFN-gamma 5.4186 6.3358 0.2680 UT Control average is higher
    G06 IFN-gamma 4.4249 5.2327 0.1066 UT Control average is higher
    G07 TNF-alpha 4.9584 5.5748 0.3136 UT Control average is higher
    G08 TNF-alpha 5.0666 6.0854 0.0743 UT Control average is higher
    G09 TNF-alpha 4.1134 4.7635 0.1687 UT Control average is higher
    G10 TNF-alpha 4.8733 5.5308 0.2979 UT Control average is higher
    G11 TNF-alpha 3.8775 4.2126 0.4785 UT Control average is higher
    G12 TNF-alpha 4.3117 4.3135 0.8307 UT Control average is higher
  • Example 3
  • Individuals with idiopathic ASD were classified as phenotype 1 is they showed:
      • at least 1 mandatory characteristics:
        • enlarged head size versus control population characterized by at least one standard deviations above the mean head circumference (HO) during the first 24 months of life and/or formal macrocephaly (HC>97% of the general population)
        • and/or
        • cyclical aggravation of core autism symptoms potentiated by periods of infectious events, deciduous tooth loss, post-traumatic injury, endogenous and exogenous temperature variation
      • and
      • at least 2, and most preferably at least 3 of the following 20 characteristics:
        • accelerated hair and nail growth versus control population
        • increased tendency to present with lighter colors of skin and eyes as compared to individuals of the same ethnicity
        • substantially longer eyelashes than control subjects of the same ethnicity
        • at least 5 non-contiguous areas of hypopigmented skin, particularly presenting on the back of the patient
        • signs of edema during periods of infectious events, deciduous tooth loss, post-traumatic injury, or endogenous and exogenous factors modifying body temperature; more specifically, facial edema located in the periorbital and forehead areas
        • increased blood levels of gamma-glutamyl transpeptidase (GGT) as compared to typically developing individuals of the same age and ethnicity
        • congenital genitourinary malformations and/or functional impairment to initiate urinating
        • hypoplasia of the patella
        • frequent episodes of diarrhea specifically before the age of 5 years
        • frequent episodes of tinnitus
        • thinning or absence of the corpus callosum
        • positive family history for hematological malignancies in particular but not limited to myeloma and acute promyelocytic leukemia
        • positive family history for rheumatoid arthritis, that is at least two affected first-degree relatives in two consecutive generations
        • adverse events in response to acetyl-salicylic acid or its derivatives
        • iris coloboma, either monolateral or bilateral
        • sleep hyperhidrosis particularly as babies, toddlers and young children (notably increased night sweating during infancy and childhood often reported by relatives to requires bed linen changes
        • increased Th1/Th2 ratio (i.e. elevated levels of Interleukin 1 beta, Interleukin 6, TNF-alpha, Interferon gamma)
        • congenital accessory or duplicated spleen
        • congenital absence of the cisterna chyli
        • reported history of mother suffering from viral or bacterial infection during pregnancy and/or biologically confirmed Maternal immune activation during pregnancy
  • The effects of sulforaphane containing Broccoli sprout extract was observed and quantified in 5 individuals suffering from ASD and previously classified as phenotype 1 patients.
  • Procedure
  • We describe a procedure consisting of an evaluation of patients with ASD prior and after administration of broccoli sprout extract. The extract was prepared from selected broccoli seeds known to have high yield of sulforaphane which were surface-disinfected and grown (sprouted) for 3 days in a commercial sprouting facility under controlled light and moisture conditions. A boiling water extract was prepared, filtered, cooled, and treated with the enzyme myrosinase (from daikon sprouts) to convert precursor glucosinolates to isothiocyanates. Behavioral evaluation of patients was performed prior, during and after administration of sulforaphane-containing broccoli sprout extract. Baseline evaluation of patients was performed using standard clinical endpoints (ADI-R subscales ADI-SI, ADI-C and ADI-RI).
  • Challenge regimen consisted of the administration of a Broccoli Sprout Extract dose corresponding to a total daily dosage of 4 μmol/kg of sulforaphane, administered in 3 doses over the course of the day.
  • TABLE 2
    Calculation used to determine which quantity of fresh broccoli sprouts should be used to
    reach a sulforaphane dosage of 4 μmol/kg in patients administered dry broccoli extract
    Estimated Actual
    quantity of quantity of
    Weight of Sulforaphane Total daily dry broccoli fresh 3-day
    ASD patient daily dose sulforaphane extract old broccoli
    Patient # (kg) (μmol/kg) dose (μmol) needed (g) sprouts used (g)
    Patient 1 50 4 200  9.6-17.8 150
    Patient 2 55 4 220 10.5-19.6 150
    Patient 3 22 4  88 4.2-7.8  50
    Patient 4 65 4 260 12.5-23.1 175
    Patient 5 25 4 100 4.8-8.9  50
    Patient 6 32 4 128  6.1-11.4  75
    Patient 7 37 4 148  7.1-13.2 100
  • Steps of the calculation:
      • Estimated sulforaphane content in 50 grams of dry broccoli extract: 102 to 186 mg
      • Resulting quantity of dry broccoli extract to get 1 mg of sulforaphane: 270 to 500 mg
      • Molecular weight of sulforaphane: 177.29 g/mol
      • Number of moles per milligram of sulforaphane: 5.64 μmol
      • Estimated quantity of dry broccoli extract to get 1 μml of sulforaphane: 48 to 89 mg
      • Relative weight of dry broccoli extract to fresh 3-day old broccoli sprouts: 10% (90% is water)
      • Estimated quantity of fresh 3-day old broccoli sprouts to get 1 μmol of sulforaphane: 480 to 890 mg
  • The assessment of baseline scores and post challenge test scores was conducted by two experienced clinicians with extensive experience in conducting ASD clinical assessments, both of which separately rated the patients. In case of diverging scores in test subscales at baseline or after administration of the challenge test, the lowest severity score was retained. Assessment of clinical endpoints was performed at day 3 of administration of challenge test. Behavioral Outcome Measures: (primary efficacy endpoints): ABC, SRS; CGI-S, CGI-1 and ADI-R (ADI-SI, ADI-C, ADI-RI).
  • In order to confirm phenotype 1 patient, at least one of the following primary outcomes had to be attained after challenging the patient by with sulforaphane administration:
      • ADI-R: at least 10% increase in ADI-R scores, preferably but not limit to the following subscales: ADI-SI, ADI-C.
      • CGI-I: patient rated as much worse or very much worse.
  • Results
  • Demographics: Five male patients, diagnosed by experienced clinical psychiatrist using strict DSM-5 criteria for Autism Spectrum Disorder. Patient 5 had a history of neurological disease and was treated with Lithium (concomitant medication).
  • All patients were classified as suffering from a non-syndromic type of autism spectrum disorder. None of them was reported to carry any known autistic linked single gene disorder or copy number variation (CNV) or any other structural variants Four patients used functional language, whereas the remaining one did not (Patient 2). Thus, that last subject was solely administered B1 and B4 module of the “Qualitative abnormalities in Communication” domain.
  • All patients matched the ASD phenotype 1 criteria.
  • Scores for the ADI-R in all subdomains were above the autism cut off (ADI-R-SI cut off=10, ADI-R C Verbal cut off=8, Nonverbal cut off=7; ADI-R-RI cut off=3) in all subjects validating preexisting clinical diagnosis of ASD. ADI-R baseline evaluations were conducted prior to any change or adjunct in intervention (either pharmaceutical and/or behavioral).
  • TABLE 3
    ASD diagnostic scores prior to challenge test, cut off for
    ASD specified in brackets).
    Patient ADI-R-SI ARI-R-C ADI-R-RI
    Patent 1 20 (10) 10 (7) 3 (3)
    Patient 2 25 (10) 12 (8) 5 (3)
    Patient 3 18 (10) 15 (8) 3 (3)
    Patient 4 20 (10) 14 (8) 3 (3)
    Patient 5 16 (10) 12 (8) 3 (3)
  • Summary of the standardized scores showing the effect of Broccoli Sprout Extract (sulforaphane) administration in all five patients:
  • TABLE 4
    ASD scores comparison prior and during challenge test.
    Standardized test Patient 1 B score Patient 1 S score Change (%)
    ADI-R-SI 20 24 20
    ADI-R-C 10 12 20
    ADI-R-RI  3  4 33
    Standardized test Patient 2 B score Patient 2 S score Change (%)
    ADI-R-SI 25 28 11
    ADI-R-C 12 16 33
    ADI-R-RI  5  7 40
    Standardized test Patient 4 B score Patient 4 S score Change (%)
    ADI-R-SI 20 24 20
    ADI-R-C 14 19 36
    ADI-R-RI  3  4 33
    Standardized test Patient 5 B score Patient 3 S score Change (%)
    ADI-R-SI 16 21 31
    ADI-R-C 12 17 42
    ADI-R-RI  3  4 33
    Note:
    B score = Baseline ADI-R scores, S score = ADI-R scores on day 3 of the challenge test administration.
  • We report a significant worsening of ADI-R subscales ADI-SI, ADI-C and ADI-RI in all 5 patients following broccoli sprout extract (sulforaphane) administration in the context of a challenge test. Experienced clinician and parental/primary caretaker reported observation served to determine CGI-I score after 3 days of broccoli sprout extract (sulforaphane) administration.
  • TABLE 5
    CGI-S and CGI-I values after challenge test
    Patient GGI-S CGI-I Clinical significance
    Patient 1 5 6 Much worse
    Patient 2 6 6 Much worse
    Patient 3 6 7 Very much worse
    Patient 4 5 7 Very much worse
    Patient 5 4 6 Much worse

Claims (8)

1. Pharmaceutical composition comprising an Nrf2-inhibitor.
2. The pharmaceutical composition according to claim 1, wherein the Nrf2-inhibitor is selected from the group consisting of Kelch-like ECH-associated protein 1 (cytosolic inhibitor of Nrf2, INRF2, Kelch-like protein 19, KIAA0132, KLHL19), Kelch-like ECH-associated protein 1 zebrafish, Maft protein zebrafish, Keap 1 protein rat, trigonelline (N-methylnicotinate), tamibarotene, all-trans retinoic acid (ATRA), Wogomin (Wog), 4-methoxychalcone, 3′,4′,5′,5,7-Pentamethox-yflavone (PMF), Epigalocatechin 3-gal-late (EGCG), isoniazid (INH); ethionamide (ETH), ascorbic acid (AA), ARE expression modulator (AEM1), brusatol (Bru), cryptoanshinone (CryP), IM3829 (4-(2-cyclohexylethoxy)aniline), metformin (Met), mycotoxin ochratoxin A (Ota), triptolide (TPL) CBR-031-1, CBR-026-7, CBR-168-5, thiuram disulfides and disulfiram-.
3. A method for the treatment of ASD, comprising administering to a subject in need thereof an effective amount of a pharmaceutical composition according to claim 1.
4. The method according to claim 3, wherein the ASD is ASD subtype 1.
5. A method for the treatment of ASD in a patient, comprising: determining whether the patient suffers from ASD subtype 1 and administering a therapeutically effective amount of a pharmaceutical composition according to claim 1 that comprises an Nrf-inhibitor if the patients suffers from ASD subtype 1,
wherein determining whether the patient suffers from ASD subtype 1 comprises administering the patient an Nrf2-activator and identifying the patient as suffering from ASD subtype 1 if the patient shows a negative response.
6. A method for the treatment of ASD, comprising administering to a subject in need thereof an effective amount of a pharmaceutical composition according to claim 2.
7. The method according to claim 6, wherein the ASD is ASD subtype 1.
8. A method for the treatment of ASD in a patient, comprising: determining whether the patient suffers from ASD subtype 1 and administering a therapeutically effective amount of a pharmaceutical composition according to claim 2 that comprises an Nrf-inhibitor if the patients suffers from ASD subtype 1,
wherein determining whether the patient suffers from ASD subtype 1 comprises administering the patient an Nrf2-activator and identifying the patient as suffering from ASD subtype 1 if the patient shows a negative response.
US16/761,622 2017-11-06 2018-11-06 Treatment of a subtype of asd Abandoned US20210169993A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/761,622 US20210169993A1 (en) 2017-11-06 2018-11-06 Treatment of a subtype of asd

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762582198P 2017-11-06 2017-11-06
EP17200185.1 2017-11-06
EP17200185.1A EP3479845A1 (en) 2017-11-06 2017-11-06 Challenge test for diagnosing subtype of autism spectrum disease
US16/761,622 US20210169993A1 (en) 2017-11-06 2018-11-06 Treatment of a subtype of asd
PCT/EP2018/080374 WO2019086723A1 (en) 2017-11-06 2018-11-06 Treatment of a subtype of asd

Publications (1)

Publication Number Publication Date
US20210169993A1 true US20210169993A1 (en) 2021-06-10

Family

ID=60452358

Family Applications (5)

Application Number Title Priority Date Filing Date
US16/761,622 Abandoned US20210169993A1 (en) 2017-11-06 2018-11-06 Treatment of a subtype of asd
US16/761,974 Abandoned US20210187127A1 (en) 2017-11-06 2018-11-06 Challenge test for diagnosing a subtype of autism spectrum disease
US16/182,546 Active US11040117B2 (en) 2017-11-06 2018-11-06 Treatment of a subtype of ASD
US16/182,544 Active 2039-07-23 US11357871B2 (en) 2017-11-06 2018-11-06 Challenge test for diagnosing subtypes of ASD
US16/182,539 Active 2039-08-09 US11364311B2 (en) 2017-11-06 2018-11-06 Method of identifying ASD phenotype 1 patients

Family Applications After (4)

Application Number Title Priority Date Filing Date
US16/761,974 Abandoned US20210187127A1 (en) 2017-11-06 2018-11-06 Challenge test for diagnosing a subtype of autism spectrum disease
US16/182,546 Active US11040117B2 (en) 2017-11-06 2018-11-06 Treatment of a subtype of ASD
US16/182,544 Active 2039-07-23 US11357871B2 (en) 2017-11-06 2018-11-06 Challenge test for diagnosing subtypes of ASD
US16/182,539 Active 2039-08-09 US11364311B2 (en) 2017-11-06 2018-11-06 Method of identifying ASD phenotype 1 patients

Country Status (9)

Country Link
US (5) US20210169993A1 (en)
EP (3) EP3479845A1 (en)
JP (2) JP6979523B2 (en)
KR (2) KR20200096915A (en)
CN (2) CN111511407A (en)
AU (2) AU2018359719B2 (en)
CA (2) CA3081880A1 (en)
IL (2) IL274475B1 (en)
WO (3) WO2019086721A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016518342A (en) 2013-03-15 2016-06-23 アヴィセンナ・コスメティクス・エルエルシーAvisenna Cosmetics, Llc Topical composition to reduce the effects of aging
WO2019028440A1 (en) 2017-08-04 2019-02-07 Skyhawk Therapeutics, Inc. Methods and compositions for modulating splicing
JP2022521467A (en) 2019-02-05 2022-04-08 スカイホーク・セラピューティクス・インコーポレーテッド Methods and compositions for regulating splicing
JP2022519323A (en) 2019-02-06 2022-03-22 スカイホーク・セラピューティクス・インコーポレーテッド Methods and compositions for regulating splicing
CN110353703B (en) * 2019-07-05 2021-11-09 昆山杜克大学 Autism assessment device and system based on parrot tongue learning language model behavior analysis
CN110384707A (en) * 2019-08-29 2019-10-29 武汉轻工大学 Antineoplastic pharmaceutical compositions and its application
CN112999363A (en) * 2019-12-22 2021-06-22 复旦大学 Multi-drug mixed micelle based on metformin and preparation method and application thereof
EP4012414A1 (en) * 2020-12-11 2022-06-15 Stalicla S.A. Diagnosis of autism spectrum disorder phenotype 1
CN112841089A (en) * 2021-01-13 2021-05-28 叶繁全 Preparation method of zebra fish thrombus model
CN113528650B (en) * 2021-08-03 2022-03-08 长沙艾克曼生物科技有限公司 The expression of TMP21 gene can be used as an objective index for early screening, early recognition and symptom severity prediction of autism
CN115607653B (en) * 2022-07-09 2023-09-26 曹霞 Use of low dose interleukin 2 in the treatment of autism

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141254B2 (en) * 2003-05-14 2006-11-28 Indus Biotech Pvt. Ltd. Synergistic composition for the treatment of diabetes mellitus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1387675A2 (en) * 2000-08-07 2004-02-11 Ranbaxy Signature LLC Liquid formulation of metformin
WO2010062681A2 (en) 2008-10-30 2010-06-03 University Of South Florida Luteolin and diosmin/diosmetin as novel stat3 inhibitors for treating autism
US20130295203A1 (en) * 2010-08-16 2013-11-07 Jay L. Lombard Methods and compositions for the treatment of neuropsychiatric disorders
WO2012149472A2 (en) * 2011-04-27 2012-11-01 Ignite Institute For Individualized Health Methods, compositions, and kits for treating and preventing neurological conditions
WO2016054475A1 (en) * 2014-10-03 2016-04-07 The Johns Hopkins University Compositions and methods for treating autism spectrum disorders
EP2773212B1 (en) * 2011-10-31 2024-08-07 The Johns Hopkins University Methods and compositions for treatment of autism
US9994843B2 (en) * 2013-02-15 2018-06-12 National University Corporation Tokyo Medical And Dental University Method for assaying microRNA, cancer therapeutic agent, and medicinal composition containing same for cancer therapy
WO2014172490A1 (en) * 2013-04-16 2014-10-23 Tufts University Models for apc related diseases and disorders, methods of diagnosing and treating, and methods for identifying therapeutic agents for treating apc related diseases and disorders
US20170175189A1 (en) * 2013-12-20 2017-06-22 Lineagen, Inc. Diagnosis and prediction of austism spectral disorder
WO2016187130A1 (en) * 2015-05-15 2016-11-24 The General Hospital Corporation System and methods for early diagnosis of autism spectrum disorders

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141254B2 (en) * 2003-05-14 2006-11-28 Indus Biotech Pvt. Ltd. Synergistic composition for the treatment of diabetes mellitus

Also Published As

Publication number Publication date
US11040117B2 (en) 2021-06-22
EP3479845A1 (en) 2019-05-08
WO2019086722A1 (en) 2019-05-09
IL274476A (en) 2020-06-30
KR102357705B1 (en) 2022-02-08
IL274475B1 (en) 2024-10-01
CN111511406A (en) 2020-08-07
EP3706806A1 (en) 2020-09-16
CA3081782C (en) 2024-01-02
AU2018359719B2 (en) 2021-11-25
AU2018361568A1 (en) 2020-08-13
EP3706807A1 (en) 2020-09-16
CA3081880A1 (en) 2019-05-09
KR20200096915A (en) 2020-08-14
KR20200095478A (en) 2020-08-10
US20190134230A1 (en) 2019-05-09
JP2021501795A (en) 2021-01-21
JP6979523B2 (en) 2021-12-15
CN111511407A (en) 2020-08-07
US20190134229A1 (en) 2019-05-09
AU2018361568B2 (en) 2022-05-26
WO2019086723A1 (en) 2019-05-09
CN111511406B (en) 2023-04-28
WO2019086721A1 (en) 2019-05-09
US11357871B2 (en) 2022-06-14
IL274475A (en) 2020-06-30
JP2021501797A (en) 2021-01-21
US11364311B2 (en) 2022-06-21
CA3081782A1 (en) 2019-05-09
US20210187127A1 (en) 2021-06-24
AU2018359719A1 (en) 2020-05-21
US20190134152A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
US11040117B2 (en) Treatment of a subtype of ASD
Hu et al. Gene expression profiling of lymphoblasts from autistic and nonaffected sib pairs: altered pathways in neuronal development and steroid biosynthesis
Denys et al. Decreased TNF-α and NK activity in obsessive-compulsive disorder
Wang et al. Progesterone attenuates cerebral edema in neonatal rats with hypoxic-ischemic brain damage by inhibiting the expression of matrix metalloproteinase-9 and aquaporin-4
Gürkan et al. Targeted treatments in autism and fragile X syndrome
Gupta et al. Clinical and molecular disease spectrum and outcomes in patients with infantile-onset Pompe disease
Grazina et al. Atypical presentation of Leber's hereditary optic neuropathy associated to mtDNA 11778G> A point mutation—A case report
KR102550459B1 (en) Metabolic profiling for diagnosis of ASD phenotype 1, a subgroup of patients with idiopathic autism spectrum disorder
Shahid et al. Association between vitiligo and diabetes mellitus: a case control study
WO2024019512A2 (en) Composition for ameliorating aging comprising dbn1 gene whose expression is induced by microorganism or product thereof as active ingredient
Haba-Rubio et al. Blood pressure increases with sleep disordered breathing severity in the general population: the HypnoLaus study
Bazhanova et al. The participation of Bcl-2 family in apoptosis regulation in neuroendocrine system of aged TNF-knockout mice
Franceschi Human models of aging and longevity
Blomberg et al. PP-105-08 Effect of age and diseases on Human Type I IFN System K. Uno1, K. Yagi1, E. Muso2, M. Tominaga3, T. Ito-Ihara4, M. Tanigawa1, K. Murata1, G. Hasegawa3, M. Fukui3, N. Nakamura3, T. Yoshikawa5, K. Suzuki6, S. Fujita1. 1Louis Pasteur Center for Medical Research
Didden et al. TREATMENT OF SLEEP PROBLEMS IN INDIVIDUALS W ITH ANGELMAN SYNDROME: A STUDY OF SIX CASES

Legal Events

Date Code Title Description
AS Assignment

Owner name: STALICLA SA, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DURHAM, LYNN;REEL/FRAME:053242/0243

Effective date: 20200608

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION