US20210168967A1 - Fan tray system - Google Patents
Fan tray system Download PDFInfo
- Publication number
- US20210168967A1 US20210168967A1 US17/170,571 US202117170571A US2021168967A1 US 20210168967 A1 US20210168967 A1 US 20210168967A1 US 202117170571 A US202117170571 A US 202117170571A US 2021168967 A1 US2021168967 A1 US 2021168967A1
- Authority
- US
- United States
- Prior art keywords
- fan tray
- chassis
- fan
- side wall
- tray side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000008878 coupling Effects 0.000 claims abstract description 45
- 238000010168 coupling process Methods 0.000 claims abstract description 45
- 238000005859 coupling reaction Methods 0.000 claims abstract description 45
- 238000000034 method Methods 0.000 claims description 20
- 230000008569 process Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000013500 data storage Methods 0.000 description 2
- 230000003116 impacting effect Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20009—Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
- H05K7/20136—Forced ventilation, e.g. by fans
- H05K7/20172—Fan mounting or fan specifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20709—Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
- H05K7/20718—Forced ventilation of a gaseous coolant
- H05K7/20727—Forced ventilation of a gaseous coolant within server blades for removing heat from heat source
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/20—Cooling means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K5/00—Casings, cabinets or drawers for electric apparatus
- H05K5/02—Details
- H05K5/0247—Electrical details of casings, e.g. terminals, passages for cables or wiring
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20009—Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
- H05K7/20136—Forced ventilation, e.g. by fans
- H05K7/20145—Means for directing air flow, e.g. ducts, deflectors, plenum or guides
Definitions
- the present disclosure relates generally to information handling systems, and more particularly to a fan tray system used in information handling systems.
- An information handling system generally processes, compiles, stores, and/or communicates information or data for business, personal, or other purposes thereby allowing users to take advantage of the value of the information.
- information handling systems may also vary regarding what information is handled, how the information is handled, how much information is processed, stored, or communicated, and how quickly and efficiently the information may be processed, stored, or communicated.
- the variations in information handling systems allow for information handling systems to be general or configured for a specific user or specific use such as financial transaction processing, airline reservations, enterprise data storage, or global communications.
- information handling systems may include a variety of hardware and software components that may be configured to process, store, and communicate information and may include one or more computer systems, data storage systems, and networking systems.
- server manufacturers are faced with the challenge of maximizing server feature sets in a limited amount of available server chassis space. For example, it is desirable to provide for tool-less installation and removal of components in the server chassis, as well as to minimize the steps needed to access those components in the server chassis.
- cable routing within the server chassis is always a challenge with regard to finding paths in the server chassis to route cabling, routing that cabling without impacting airflow, and accessing that cabling once it is routed.
- Conventional fan trays are provided in server chassis to allow for fan systems to be coupled to the server chassis, but fail to achieve many of the goals for dense server chassis discussed above.
- an Information Handling System includes a chassis that includes a chassis wall; a cable routed immediately adjacent the chassis wall; a fan tray base that is coupled to the chassis; at least one fan system connector that is coupled to the fan tray base and that is configured to connect to a fan system including at least one fan device; a fan tray side wall including at least one fan system guide member that is configured to align the fan system for connection to the at least one fan system connector; and a moveable coupling connecting the fan tray side wall to the fan tray base, wherein the moveable coupling is configured to allow relative movement between the fan tray side wall and the fan tray base such that: the fan tray side wall may be positioned in a first orientation such that the fan tray side wall is positioned adjacent the chassis wall and impedes access to the cable; and the fan tray side wall may be moved to a second orientation that is different than the first orientation and that allows access to the cable.
- FIG. 1 is a schematic view illustrating an embodiment of an information handling system.
- FIG. 2 is a perspective view illustrating an embodiment of a chassis.
- FIG. 3 is a perspective view illustrating an embodiment of a fan system.
- FIG. 4A is an exploded perspective view illustrating an embodiment of a fan tray system.
- FIG. 4B is an assembled perspective view illustrating an embodiment of the fan tray system of FIG. 4A .
- FIG. 4C is a top view illustrating an embodiment of the fan tray system of FIG. 4B .
- FIG. 4D is a side view illustrating an embodiment of the fan tray system of FIG. 4B with the fan tray side walls in a first orientation.
- FIG. 4E is a side view illustrating an embodiment of the fan tray system of FIG. 4B with the fan tray side walls in a second orientation.
- FIG. 5 is a flow chart illustrating an embodiment of a method for providing a fan tray system in a server chassis.
- FIG. 6A is a perspective view illustrating an embodiment of the fan system of FIG. 3 and the fan tray system of FIGS. 4B-4E being positioned in the chassis of FIG. 2 .
- FIG. 6B is a perspective view illustrating the fan tray system of FIGS. 4B-4E secured in the server chassis of FIG. 2 .
- an information handling system may include any instrumentality or aggregate of instrumentalities operable to compute, calculate, determine, classify, process, transmit, receive, retrieve, originate, switch, store, display, communicate, manifest, detect, record, reproduce, handle, or utilize any form of information, intelligence, or data for business, scientific, control, or other purposes.
- an information handling system may be a personal computer (e.g., desktop or laptop), tablet computer, mobile device (e.g., personal digital assistant (PDA) or smart phone), server (e.g., blade server or rack server), a network storage device, or any other suitable device and may vary in size, shape, performance, functionality, and price.
- the information handling system may include random access memory (RAM), one or more processing resources such as a central processing unit (CPU) or hardware or software control logic, ROM, and/or other types of nonvolatile memory. Additional components of the information handling system may include one or more disk drives, one or more network ports for communicating with external devices as well as various input and output (I/O) devices, such as a keyboard, a mouse, touchscreen and/or a video display. The information handling system may also include one or more buses operable to transmit communications between the various hardware components.
- RAM random access memory
- processing resources such as a central processing unit (CPU) or hardware or software control logic
- ROM read-only memory
- Additional components of the information handling system may include one or more disk drives, one or more network ports for communicating with external devices as well as various input and output (I/O) devices, such as a keyboard, a mouse, touchscreen and/or a video display.
- I/O input and output
- the information handling system may also include one or more buses operable to transmit communications between the various
- IHS 100 includes a processor 102 , which is connected to a bus 104 .
- Bus 104 serves as a connection between processor 102 and other components of IHS 100 .
- An input device 106 is coupled to processor 102 to provide input to processor 102 .
- Examples of input devices may include keyboards, touchscreens, pointing devices such as mouses, trackballs, and trackpads, and/or a variety of other input devices known in the art.
- Programs and data are stored on a mass storage device 108 , which is coupled to processor 102 . Examples of mass storage devices may include hard discs, optical disks, magneto-optical discs, solid-state storage devices, and/or a variety other mass storage devices known in the art.
- IHS 100 further includes a display 110 , which is coupled to processor 102 by a video controller 112 .
- a system memory 114 is coupled to processor 102 to provide the processor with fast storage to facilitate execution of computer programs by processor 102 .
- Examples of system memory may include random access memory (RAM) devices such as dynamic RAM (DRAM), synchronous DRAM (SDRAM), solid state memory devices, and/or a variety of other memory devices known in the art.
- RAM random access memory
- DRAM dynamic RAM
- SDRAM synchronous DRAM
- solid state memory devices solid state memory devices
- a chassis 116 houses some or all of the components of IHS 100 . It should be understood that other buses and intermediate circuits can be deployed between the components described above and processor 102 to facilitate interconnection between the components and the processor 102 .
- chassis 200 may be the chassis 116 discussed above with reference to FIG. 1 . While one of skill in the art in possession of the present disclosure will recognize the chassis 200 as a server chassis, other types of chassis may benefit from the teachings of the present disclosure and thus are envisioned as falling within its scope as well.
- the chassis includes a bottom wall 202 a , a pair of substantially parallel side walls 202 b and 202 c that extend substantially perpendicularly from opposite edges of the bottom wall 202 a , a front wall 202 d that extends substantially perpendicularly from an edge of the bottom wall 202 a and between the side walls 202 b and 202 c , and a rear wall 202 e that extends opposite the bottom wall 202 a from the front wall 202 d and substantially perpendicularly from an edge of the bottom wall 202 a and between the side walls 202 b and 202 c .
- the chassis 200 may include a top wall that is configured to couple to the edges of the side walls 202 b and 202 d , the front wall 202 d , and the rear wall 202 e such that it is positioned opposite those walls from the bottom wall 202 a .
- the bottom wall 202 a , the side walls 202 b and 202 d , the front wall 202 d , and the rear wall 202 e define a chassis housing 204 that is located between them and configured to house components such as, for example, the IHS components of the IHS 100 discussed above with reference to FIG. 1 .
- a portion of the chassis housing 204 is provided as a fan tray system housing 204 a .
- a cable 205 is illustrated as being routed along the side wall 202 b adjacent the fan tray system housing 204 a , but one of skill in the art in possession of the present disclosure will recognize that other cabling, and/or other components may be located adjacent to the fan tray system housing 204 a while remaining within the scope of the present disclosure.
- the remainder of the chassis housing may be configured to house boards (e.g., motherboards), processing systems (e.g., the processor 102 discussed above with reference to FIG.
- the side wall 202 b of the chassis 200 includes a fan tray securing feature 206 that is located adjacent the fan tray system housing 204 a and, while not explicitly illustrated, as discussed below the side wall 202 c of the chassis 200 may include a similar fan tray securing feature as well.
- a keying system 208 is provided on the bottom wall 202 a of the chassis 200 by pegs that extend from the bottom wall 202 a and into the fan tray system housing 204 a . While only two pegs in the keying system 208 are illustrated, as discussed below, two additional pegs (e.g., obscured by the side wall 202 c in FIG. 2 ) may be provided on the chassis 200 . Furthermore, one of skill in the art in possession of the present disclosure will recognize that a variety of other types of keying features may be utilized to provide the functionality of the keying system 208 discussed below. While a specific chassis 200 has been illustrated and described, one of skill in the art in possession of the present disclosure will recognize that a wide variety of chassis having a variety of different features will benefit from the teachings of the present disclosure and thus fall within its scope as well.
- the fan system 300 includes a fan device chassis 302 that defines a plurality of fan device housings 302 a , 302 b , 302 c , and 302 d .
- the fan device chassis 302 includes securing handles 303 that are rotatably coupled to opposite sides of the fan device chassis 302 and configured to provide for both of the supporting of the fan device chassis 302 , and the securing of the fan device chassis in the fan tray system discussed below (e.g., via cam elements 303 a on the securing handles 303 .)
- the fan system also includes a plurality of fan devices 304 a , 304 b , 304 c , 304 d , 304 e , 304 f , 304 g , and 304 h , pairs of which are configured to be housed in the fan device housings 302 a - d defined by the fan device chassis 302 (i.e., when moved in the direction A illustrated in FIG.
- the fan device chassis 302 and/or the fan devices 304 a - h may include securing members for securing the fan devices 304 a - d in the fan device housings 302 a - d
- the fan devices 304 a - h may include connectors (not illustrated) that are configured to be accessed through the fan device chassis 302 when the fan devices 304 a - h are positioned in the fan device housings 302 a - d
- the fan device chassis 302 may include keying features for ensuring proper orientation of the fan devices 304 a - h in the fan device chassis 302 a - d
- the fan system 300 may include a variety of other fan system features known in the art.
- the fan tray system 400 includes a fan tray base 402 having a front edge 402 a , a rear edge 402 b that is located opposite the fan tray base 402 from the front edge 402 a , and a pair of opposing side edges 402 c and 402 d that extend between the front edge 402 a and the rear edge 402 b .
- the fan tray base 402 defines a plurality of keying elements 402 e that, in the illustrated embodiment, are provided by spaced apart apertures that are defined by the fan tray base 402 and that extend through the fan tray base 402 .
- the side edge 402 a of the fan tray base 402 defines a plurality of cable apertures 403 that are configured to allow the routing of cables (e.g., system cables, discussed below) past the fan tray base 402 .
- cable apertures plugs 403 a may be provided to block airflow through cable apertures 403 that are not being used to route cables.
- groups of fan device connectors 404 are coupled to respective system connectors 406 by cabling, and are mounted to the fan tray base 402 via connector mounts 408 that allow the fan device connectors 404 to extend from the fan tray base 402 .
- the fan tray base 402 includes features for securing the connectors 404 and 406 and routing the cabling between those connectors 404 and 406 , only some of which are illustrated in FIGS. 4A-4E .
- the fan tray system 400 of the illustrated embodiment includes cable routing members 410 , a subset of which are configured to gather, clip, or otherwise provide for the routing of cables connecting the fan device connectors 404 and the system connectors 406 through the fan tray system 400 in an organized manner, although the use of the cable routing members 410 for other cabling subsystems (e.g., cabling extending through the housing 204 of the chassis 200 ) will fall within the scope of the present disclosure as well.
- the fan tray system 400 also includes fan tray side wall(s) that are moveably coupled to the fan tray base 402 .
- a fan tray side wall 412 is rotatably coupled to the fan tray base 402 adjacent the side edge 402 c
- a fan tray side wall 414 is rotatably coupled to the fan tray base 402 adjacent the side edge 402 d .
- the fan tray side wall 412 includes a base portion 412 a having a pair of fan system guides 412 b that extend from opposite edges of the base portion 412 a and that each include a rotatable coupling member 412 c to provide the rotatable coupling members 412 c adjacent an edge of, and on opposite sides of, the base portion 412 a .
- the pair of rotatable coupling members 412 c are configured to couple to rotatable coupling features 416 that are provided adjacent the side edge 402 d on the fan tray base 402 .
- the fan tray side wall 412 also defines a handling element 412 d that, in the illustrated embodiment, is provided by a finger hole that is centrally located on the fan tray side wall 412 .
- a fan tray securing subsystem is included on the fan tray side wall 412 and, in the illustrated embodiment, is provided by a securing element 412 e that is coupled to a securing edge 412 f on the fan tray side wall 412 by a securing housing 412 g .
- An airflow directing member 412 h is coupled to the surface of the fan tray side wall 412 that is opposite the fan tray side wall 412 from the fan tray base 412 .
- the fan tray side wall 414 includes a base portion 414 a having a pair of fan system guides 414 b that extend from opposite edges of the base portion 414 a and that each include a rotatable coupling member 414 c to provide the rotatable coupling members 414 c adjacent an edge of, and on opposite sides of, the base portion 414 a .
- the pair of rotatable coupling members 414 c are configured to couple to rotatable coupling features 418 that are provided adjacent the side edge 402 c on the fan tray base 402 .
- the fan tray side wall 414 also defines a handling element 414 d that, in the illustrated embodiment, is provided by a finger hole that is centrally located on the fan tray side wall 414 .
- a fan tray securing subsystem is included on the fan tray side wall 414 and, in the illustrated embodiment, is provided by a securing element 414 e that is coupled to a securing edge 414 f on the fan tray side wall 414 by a securing housing 414 g .
- An airflow directing member 414 h is coupled to the surface of the fan tray side wall 414 that is opposite the fan tray side wall 414 from the majority of the fan tray base 414 .
- the coupling of the rotatable coupling members 412 c on the fan tray side wall 412 to the rotatable coupling features 416 on the fan tray base 402 provide for rotation of the fan tray side wall 412 relative to the fan tray base 402 in a direction B from a first orientation in which the fan tray side wall 412 is substantially perpendicular to the fan tray base 402 (illustrated in FIG. 4D ), to a second orientation in which the fan tray side wall 412 is substantially parallel to the fan tray base 402 (illustrated in FIG.
- the coupling of the rotatable coupling members 414 c on the fan tray side wall 414 to the rotatable coupling features 418 on the fan tray base 402 provide for rotation of the fan tray side wall 414 relative to the fan tray base 402 in a direction C from a first orientation in which the fan tray side wall 414 is substantially perpendicular to the fan tray base 402 (illustrated in FIG. 4D ), to a second orientation in which the fan tray side wall 414 is substantially parallel to the fan tray base 402 (illustrated in FIG.
- fan tray systems may include different numbers of components, other types of components, different configurations of components, and/or perform the functionality described herein in a different manner while remaining within the scope of the present disclosure.
- the fan tray side walls 412 and 414 may translate or perform other types of movement while remaining within the scope of the present disclosure.
- FIG. 5 an embodiment of a method 500 for providing a fan tray system in a chassis is illustrated.
- the system and methods for the present disclosure provide a fan tray system that is configured to couple to a chassis without the use of a tool, along with fan tray side walls that may be moved relative to the chassis (when the fan tray system is coupled to that chassis) between a first orientation and a second orientation to allow access to portions of, or components in, the chassis that may be impeded when the fan tray side walls are in the first orientation.
- the fan tray side walls provide for the guiding of a fan system into the fan tray system to connect to fan device connectors.
- the fan tray side wall may include airflow directing members that engage the chassis when the fan tray side walls are in the first orientation, and that operate to direct air through the fan devices in the fan system.
- the method 500 begins at block 502 where a fan tray base is coupled to a chassis.
- the fan tray system 400 may be positioned adjacent the chassis 200 (e.g., by a user utilizing the handling elements 412 d / 414 d (finger holes in the illustrated embodiment) to hold the fan tray system 400 ) such that the fan tray base 402 is located above the chassis 200 and adjacent the fan tray system housing 204 a defined by the chassis 200 , as illustrated in FIG. 6A .
- the fan tray side walls 412 and 414 are illustrate as being positioned in the first orientation of FIG.
- the fan tray side walls 412 and 414 may be positioned in the second orientation of FIG. 4E when the fan tray system 400 is being positioned in the fan tray system housing 204 a while remaining within the scope of the present disclosure as well.
- the fan tray system 400 may then be moved in a direction D such that the fan tray system enters the fan tray system housing 204 a defined by the chassis 200 , and continued movement of the fan tray system 400 in the direction D will cause the keying system 208 (e.g., the pegs in this embodiment) on the chassis 200 to engage the keying elements 402 e (e.g., the apertures in this embodiment) on the fan tray base 402 in order to allow for proper orientation of the fan tray system 400 in the chassis 200 , as illustrated in FIG. 6B .
- the keying system 208 e.g., the pegs in this embodiment
- the keying elements 402 e e.g., the apertures in this embodiment
- the keying system 208 and the keying elements 402 e may be configured to ensure that the fan tray system 400 may only be coupled to the chassis 200 in a single orientation (e.g., such that fan devices in a fan system 300 coupled to the fan tray system 400 will direct air in a desired direction.)
- the system connectors 406 may be coupled to a system component in the chassis 200 (e.g., a fan system connector on a motherboard, not illustrated.)
- removal of the fan tray system 400 from the chassis 200 may be performed in substantially the reverse of that described above (e.g., disconnecting the system connectors 406 from the system component in the chassis 200 , and using the handling elements 412 d / 414 d (finger holes in the illustrated embodiment) to lift the fan tray system 400 out of the chassis 200 .)
- the fan tray side wall 412 operates to impede access to the cable 205 (i.e., the cable is located between the side wall 202 b of the chassis 200 and the fan tray side wall 412 .)
- the cable is located between the side wall 202 b of the chassis 200 and the fan tray side wall 412 .
- a user may wish to route other cabling and/or position other components between the fan tray side wall 412 and the side wall 202 b of the chassis 200 .
- component(s) in the chassis 200 may be positioned adjacent the fan tray side wall 412 when the fan tray side wall 412 is in the first orientation such that access to those component(s) is impeded.
- a motherboard positioned adjacent the fan tray system 400 may include a connector that is located adjacent the fan tray side wall 412 when the fan tray side wall 412 is in the first orientation such that access to that connector (e.g., the ability to connect a cable to that connector) is impeded. While a few examples directed to the fan tray side wall 412 have been provided, the fan tray side wall 414 may operate in a similar manner. Furthermore, one of skill in the art in possession of the present disclosure will recognize that when positioned in the first orientation, the fan tray side walls 412 and 414 may impede access to components in the chassis 200 in a variety of manners that will fall within the scope of the present disclosure.
- the method 500 then proceeds to block 504 where a fan tray side wall is moved relative to the fan tray base from a first orientation to a second orientation.
- the fan tray side wall 412 may be rotated (e.g., using the handling element 412 d ), about the coupling of the rotatable coupling members 412 c on the fan tray side wall 412 to the rotatable coupling features 416 on the fan tray base 402 and in the direction B from the first orientation illustrated in FIG. 4D to the second orientation illustrated in FIG. 4E .
- the fan tray side wall 414 may be rotated (e.g., using the handling element 414 d ) about the coupling of the rotatable coupling members 414 c on the fan tray side wall 414 to the rotatable coupling features 418 on the fan tray base 402 and in the direction C from the first orientation illustrated in FIG. 4D to the second orientation illustrated in FIG. 4E .
- the illustrated embodiments focus on rotational movement of the fan tray side walls 412 and 414
- other types of moveable couplings and movement e.g., translational movement
- the method 500 then proceeds to block 506 where at least one component in the chassis is accessed with the fan tray side wall in the second orientation.
- a user may access components in the chassis 200 to which access was impeded when the fan tray side walls 412 and/or 414 were in the first orientation. For example, with the fan tray side wall 412 in the second orientation illustrated in FIG.
- a user may access the cable 205 that runs along the side wall 202 b of the chassis 200 (and that was previously located behind the fan tray side wall 412 in the first orientation.) Furthermore, with the fan tray side wall 412 in the second orientation illustrated in FIG. 4E , at block 506 a user may access a connector on a motherboard that is positioned adjacent the fan tray system 400 in order to connect a cable to that connector (an action that was previously impeded due to the positioned of the fan tray side wall 412 in the first orientation and immediately adjacent that connector.)
- a user may move the fan tray side wall 412 from the first orientation to the second orientation in order to route cables along the side wall 202 b of the chassis 200 (e.g., cables that extend from a motherboard on a first side of the fan tray system 400 to a storage system located opposite the fan tray system 400 from the motherboard.)
- the routing of cables in this manner may be compared to conventional fan tray systems that provide a rigid channel adjacent the fan tray system through which cables must be forced for routing, and it will be appreciated by one of skill in the art in possession of the present disclosure that the movable fan tray side walls provide for much more intelligent cable routing and layering than those conventional fan tray systems, allowing a denser feature set via the chassis 200 .
- a conventional fan tray system in the chassis 200 only permitted the routing of cabling for 8 Peripheral Component Interconnect (PCI) Solid State Drives (SSDs) in the chassis 200 , while the fan tray system 400 permitted the routing of cabling for 12 PCI SSDs in the chassis 200 .
- PCI Peripheral Component Interconnect
- SSDs Solid State Drives
- a user may move the fan tray side wall 412 from the first orientation to the second orientation in order to position cards in the chassis 200 adjacent the fan tray system 400 .
- a user may move the fan tray side wall(s) 412 and 414 as discussed above, connect cabling to a backplane connector and a PCI SSD riser, and install the PCI SSD riser in the chassis 200 .
- convention fan tray systems must be removed from the chassis in order to perform the same operation to install PCI SSD devices, greatly increasing the time it takes to install PCI SSD devices in the chassis 200 .
- movement of the fan tray side walls 412 and 414 into the second orientation may be performed in order to position components that will later be impeded by the fan tray side walls 412 and 414 in the first orientation, as well as to access components that are being impeded by the fan tray side walls 412 and 414 in the first orientation.
- the method 500 then proceeds to block 508 where the fan tray side wall is moved relative to the fan tray base from the second orientation to the first orientation.
- the fan tray side wall 412 may be rotated (e.g., using the handling element 412 d ) about the coupling of the rotatable coupling members 412 c on the fan tray side wall 412 to the rotatable coupling features 416 on the fan tray base 402 and from the second orientation illustrated in FIG. 4E and back to the first orientation illustrated in FIG. 4D .
- the fan tray side wall 414 may be rotated (e.g., using the handling element 414 d ) about the coupling of the rotatable coupling members 414 c on the fan tray side wall 414 to the rotatable coupling features 418 on the fan tray base 402 and from the second orientation illustrated in FIG. 4E back to the first orientation illustrated in FIG. 4D .
- rotation of the fan tray side walls 412 and 414 into the first orientation results in the securing element 412 e on the fan tray securing subsystem of the fan tray side wall 412 engaging the fan tray securing feature 206 on the side wall 202 b of the chassis 202 , and results in the securing element 414 e on the fan tray securing subsystem of the fan tray side wall 414 engaging a similar fan tray securing feature on the side wall 202 c of the chassis 202 , in order to secure the fan tray side walls 412 and 414 to the chassis 200 .
- the fan tray system 400 is secured to the chassis 200 (e.g., the securing element 412 e and 414 e must be deactivated to release them from the fan tray securing features on the chassis 200 in order to move the fan tray side walls 412 and 414 out of the first orientation, and/or remove the fan tray system 400 from the chassis 200 .)
- the fan system 300 may then be coupled to the fan tray system 400 .
- FIG. 6A illustrates an exploded view of the fan system 300
- the fan devices 304 a and 304 e may be positioned in the fan device housing 302 a on the fan device chassis 302
- the fan devices 304 b and 304 f may be positioned in the fan device housing 302 b on the fan device chassis 302
- the fan devices 304 c and 304 g may be positioned in the fan device housing 302 c on the fan device chassis 302
- the fan devices 304 d and 304 h may be positioned in the fan device housing 302 d on the fan device chassis 302 .
- the fan system 300 may be moved in the direction D into the fan tray system 400 (that is secured in the chassis 200 as discussed above.) Movement of the fan system 300 into the fan tray chassis 400 causes the fan chassis 300 to engage the fan system guides 412 b on the fan tray side wall 412 and the fan system guides 414 b on the fan tray side wall 414 , which then operate to guide the fan system 300 (during its continued movement in the direction D) into the fan tray system 400 until the connectors on the fan devices 302 a - h engage respective connectors 404 in the fan tray system 400 in order to couple the fan devices 302 a - h to the system via the system connectors 406 (which, as discussed above, may be connected to a component in the chassis 200 such as a motherboard.) While not explicitly illustrated, the securing handles 303 on the fan system 300 may be used (e.g., in an unillustrated orientation in which they are perpendicular to the fan
- the fan devices 302 a - h in the fan system 300 may operate to move air through the chassis 200 .
- the air directing members 412 h and 414 h may operate to direct the airflow in the housing 204 of the chassis 200 .
- the engagement of the air directing members 412 h and 414 h with the side walls 202 b and 202 c of the chassis 202 , respectively, operates to block airflow between the fan tray side wall 412 and the side wall 202 b and between the fan tray side wall 414 and the side wall 202 c , respectively, and direct air through the fan devices 302 a - h .
- the cable aperture plugs 403 a located in the cable apertures 403 may operate in a similar manner to direct the airflow in the housing 204 of the chassis 200 via the blocking of airflow through cable apertures that are not being used to route cables.
- the fan tray system 400 may engage components in the chassis to secure the positioning of those components.
- the fan tray system 400 may engage a motherboard in the chassis 200 to prevent motherboard movement during shock and vibration events.
- a fan tray system that is configured to couple to a chassis without the use of a tool, along with fan tray side walls that may be moved relative to the chassis from a first orientation and a second orientation to allow access to portions of, or components in, the chassis that may be impeded when the fan tray side walls are in the first orientation.
- the tray side walls allow for the simplified routing of cables between the fan tray side walls and the side walls of the chassis, servicing access to cables that are positioned between the fan tray side walls and the side walls of the chassis, and connector access to connectors that are located adjacent the fan tray side walls when those fan tray side walls are in the first orientation.
- the fan tray system described herein introduces improvements over conventional fan tray systems known in the art by providing for tool-less installation and removal of the fan tray system, minimizing the steps needed to access components in the chassis, and routing cables within the chassis without impacting airflow while also allowing access to those cables once they are routed.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
- The present disclosure is a continuation of U.S. patent application Ser. No. 15/691,346, attorney docket no. 16356.1873US01, filed on Aug. 30, 2017, the disclosure of which is incorporated by reference herein in its entirety.
- The present disclosure relates generally to information handling systems, and more particularly to a fan tray system used in information handling systems.
- As the value and use of information continues to increase, individuals and businesses seek additional ways to process and store information. One option available to users is information handling systems. An information handling system generally processes, compiles, stores, and/or communicates information or data for business, personal, or other purposes thereby allowing users to take advantage of the value of the information. Because technology and information handling needs and requirements vary between different users or applications, information handling systems may also vary regarding what information is handled, how the information is handled, how much information is processed, stored, or communicated, and how quickly and efficiently the information may be processed, stored, or communicated. The variations in information handling systems allow for information handling systems to be general or configured for a specific user or specific use such as financial transaction processing, airline reservations, enterprise data storage, or global communications. In addition, information handling systems may include a variety of hardware and software components that may be configured to process, store, and communicate information and may include one or more computer systems, data storage systems, and networking systems.
- As information handling systems such as, for example, servers, continue to increase in computing power, the density of components within the server chassis increases as well. As such, server manufacturers are faced with the challenge of maximizing server feature sets in a limited amount of available server chassis space. For example, it is desirable to provide for tool-less installation and removal of components in the server chassis, as well as to minimize the steps needed to access those components in the server chassis. Furthermore, cable routing within the server chassis is always a challenge with regard to finding paths in the server chassis to route cabling, routing that cabling without impacting airflow, and accessing that cabling once it is routed. Conventional fan trays are provided in server chassis to allow for fan systems to be coupled to the server chassis, but fail to achieve many of the goals for dense server chassis discussed above.
- Accordingly, it would be desirable to provide an improved fan tray system.
- According to one embodiment, an Information Handling System (IHS) includes a chassis that includes a chassis wall; a cable routed immediately adjacent the chassis wall; a fan tray base that is coupled to the chassis; at least one fan system connector that is coupled to the fan tray base and that is configured to connect to a fan system including at least one fan device; a fan tray side wall including at least one fan system guide member that is configured to align the fan system for connection to the at least one fan system connector; and a moveable coupling connecting the fan tray side wall to the fan tray base, wherein the moveable coupling is configured to allow relative movement between the fan tray side wall and the fan tray base such that: the fan tray side wall may be positioned in a first orientation such that the fan tray side wall is positioned adjacent the chassis wall and impedes access to the cable; and the fan tray side wall may be moved to a second orientation that is different than the first orientation and that allows access to the cable.
-
FIG. 1 is a schematic view illustrating an embodiment of an information handling system. -
FIG. 2 is a perspective view illustrating an embodiment of a chassis. -
FIG. 3 is a perspective view illustrating an embodiment of a fan system. -
FIG. 4A is an exploded perspective view illustrating an embodiment of a fan tray system. -
FIG. 4B is an assembled perspective view illustrating an embodiment of the fan tray system ofFIG. 4A . -
FIG. 4C is a top view illustrating an embodiment of the fan tray system ofFIG. 4B . -
FIG. 4D is a side view illustrating an embodiment of the fan tray system ofFIG. 4B with the fan tray side walls in a first orientation. -
FIG. 4E is a side view illustrating an embodiment of the fan tray system ofFIG. 4B with the fan tray side walls in a second orientation. -
FIG. 5 is a flow chart illustrating an embodiment of a method for providing a fan tray system in a server chassis. -
FIG. 6A is a perspective view illustrating an embodiment of the fan system ofFIG. 3 and the fan tray system ofFIGS. 4B-4E being positioned in the chassis ofFIG. 2 . -
FIG. 6B is a perspective view illustrating the fan tray system ofFIGS. 4B-4E secured in the server chassis ofFIG. 2 . - For purposes of this disclosure, an information handling system may include any instrumentality or aggregate of instrumentalities operable to compute, calculate, determine, classify, process, transmit, receive, retrieve, originate, switch, store, display, communicate, manifest, detect, record, reproduce, handle, or utilize any form of information, intelligence, or data for business, scientific, control, or other purposes. For example, an information handling system may be a personal computer (e.g., desktop or laptop), tablet computer, mobile device (e.g., personal digital assistant (PDA) or smart phone), server (e.g., blade server or rack server), a network storage device, or any other suitable device and may vary in size, shape, performance, functionality, and price. The information handling system may include random access memory (RAM), one or more processing resources such as a central processing unit (CPU) or hardware or software control logic, ROM, and/or other types of nonvolatile memory. Additional components of the information handling system may include one or more disk drives, one or more network ports for communicating with external devices as well as various input and output (I/O) devices, such as a keyboard, a mouse, touchscreen and/or a video display. The information handling system may also include one or more buses operable to transmit communications between the various hardware components.
- In one embodiment, IHS 100,
FIG. 1 , includes aprocessor 102, which is connected to abus 104.Bus 104 serves as a connection betweenprocessor 102 and other components of IHS 100. Aninput device 106 is coupled toprocessor 102 to provide input toprocessor 102. Examples of input devices may include keyboards, touchscreens, pointing devices such as mouses, trackballs, and trackpads, and/or a variety of other input devices known in the art. Programs and data are stored on amass storage device 108, which is coupled toprocessor 102. Examples of mass storage devices may include hard discs, optical disks, magneto-optical discs, solid-state storage devices, and/or a variety other mass storage devices known in the art. IHS 100 further includes adisplay 110, which is coupled toprocessor 102 by avideo controller 112. Asystem memory 114 is coupled toprocessor 102 to provide the processor with fast storage to facilitate execution of computer programs byprocessor 102. Examples of system memory may include random access memory (RAM) devices such as dynamic RAM (DRAM), synchronous DRAM (SDRAM), solid state memory devices, and/or a variety of other memory devices known in the art. In an embodiment, achassis 116 houses some or all of the components of IHS 100. It should be understood that other buses and intermediate circuits can be deployed between the components described above andprocessor 102 to facilitate interconnection between the components and theprocessor 102. - Referring now to
FIG. 2 , an embodiment of achassis 200 is illustrated. In an embodiment, thechassis 200 may be thechassis 116 discussed above with reference toFIG. 1 . While one of skill in the art in possession of the present disclosure will recognize thechassis 200 as a server chassis, other types of chassis may benefit from the teachings of the present disclosure and thus are envisioned as falling within its scope as well. In the illustrated embodiment, the chassis includes abottom wall 202 a, a pair of substantiallyparallel side walls bottom wall 202 a, afront wall 202 d that extends substantially perpendicularly from an edge of thebottom wall 202 a and between theside walls rear wall 202 e that extends opposite thebottom wall 202 a from thefront wall 202 d and substantially perpendicularly from an edge of thebottom wall 202 a and between theside walls chassis 200 may include a top wall that is configured to couple to the edges of theside walls front wall 202 d, and therear wall 202 e such that it is positioned opposite those walls from thebottom wall 202 a. Thebottom wall 202 a, theside walls front wall 202 d, and therear wall 202 e define achassis housing 204 that is located between them and configured to house components such as, for example, the IHS components of theIHS 100 discussed above with reference toFIG. 1 . - As discussed in detail below, a portion of the
chassis housing 204 is provided as a fantray system housing 204 a. In the illustrated embodiment, acable 205 is illustrated as being routed along theside wall 202 b adjacent the fantray system housing 204 a, but one of skill in the art in possession of the present disclosure will recognize that other cabling, and/or other components may be located adjacent to the fantray system housing 204 a while remaining within the scope of the present disclosure. Furthermore, while not discussed in detail below, one of skill in the art in possession of the present disclosure will recognize that the remainder of the chassis housing may be configured to house boards (e.g., motherboards), processing systems (e.g., theprocessor 102 discussed above with reference toFIG. 1 ), memory systems (e.g., thesystem memory 114 discussed above with reference toFIG. 1 ), storage systems (e.g., thestorage device 108 discussed above with reference toFIG. 1 ), communications subsystems, and/or a variety of other chassis components known in the art. In the illustrated embodiment, theside wall 202 b of thechassis 200 includes a fantray securing feature 206 that is located adjacent the fantray system housing 204 a and, while not explicitly illustrated, as discussed below theside wall 202 c of thechassis 200 may include a similar fan tray securing feature as well. In the illustrated embodiment, akeying system 208 is provided on thebottom wall 202 a of thechassis 200 by pegs that extend from thebottom wall 202 a and into the fantray system housing 204 a. While only two pegs in thekeying system 208 are illustrated, as discussed below, two additional pegs (e.g., obscured by theside wall 202 c inFIG. 2 ) may be provided on thechassis 200. Furthermore, one of skill in the art in possession of the present disclosure will recognize that a variety of other types of keying features may be utilized to provide the functionality of thekeying system 208 discussed below. While aspecific chassis 200 has been illustrated and described, one of skill in the art in possession of the present disclosure will recognize that a wide variety of chassis having a variety of different features will benefit from the teachings of the present disclosure and thus fall within its scope as well. - Referring now to
FIG. 3 , an embodiment of afan system 300 is illustrated. In the illustrated embodiment, thefan system 300 includes afan device chassis 302 that defines a plurality offan device housings fan device chassis 302 includes securinghandles 303 that are rotatably coupled to opposite sides of thefan device chassis 302 and configured to provide for both of the supporting of thefan device chassis 302, and the securing of the fan device chassis in the fan tray system discussed below (e.g., viacam elements 303 a on the securing handles 303.) The fan system also includes a plurality offan devices fan device housings 302 a-d defined by the fan device chassis 302 (i.e., when moved in the direction A illustrated inFIG. 3 .) While not discussed in detail, one of skill in the art in possession of the present disclosure will recognize that thefan device chassis 302 and/or the fan devices 304 a-h may include securing members for securing the fan devices 304 a-d in thefan device housings 302 a-d, that the fan devices 304 a-h may include connectors (not illustrated) that are configured to be accessed through thefan device chassis 302 when the fan devices 304 a-h are positioned in thefan device housings 302 a-d, that thefan device chassis 302 may include keying features for ensuring proper orientation of the fan devices 304 a-h in thefan device chassis 302 a-d, and/or that thefan system 300 may include a variety of other fan system features known in the art. - Referring now to
FIGS. 4A, 4B, 4C, 4D, and 4E , an embodiment of afan tray system 400 is illustrated. Thefan tray system 400 includes afan tray base 402 having afront edge 402 a, arear edge 402 b that is located opposite thefan tray base 402 from thefront edge 402 a, and a pair of opposing side edges 402 c and 402 d that extend between thefront edge 402 a and therear edge 402 b. In addition, thefan tray base 402 defines a plurality of keyingelements 402 e that, in the illustrated embodiment, are provided by spaced apart apertures that are defined by thefan tray base 402 and that extend through thefan tray base 402. In the illustrated embodiment, theside edge 402 a of thefan tray base 402 defines a plurality ofcable apertures 403 that are configured to allow the routing of cables (e.g., system cables, discussed below) past thefan tray base 402. As discussed below, cable apertures plugs 403 a may be provided to block airflow throughcable apertures 403 that are not being used to route cables. Furthermore, groups offan device connectors 404 are coupled torespective system connectors 406 by cabling, and are mounted to thefan tray base 402 via connector mounts 408 that allow thefan device connectors 404 to extend from thefan tray base 402. While not explicitly described in detail, one of skill in the art in possession of the present disclosure will recognize how thefan tray base 402 includes features for securing theconnectors connectors FIGS. 4A-4E . For example, thefan tray system 400 of the illustrated embodiment includescable routing members 410, a subset of which are configured to gather, clip, or otherwise provide for the routing of cables connecting thefan device connectors 404 and thesystem connectors 406 through thefan tray system 400 in an organized manner, although the use of thecable routing members 410 for other cabling subsystems (e.g., cabling extending through thehousing 204 of the chassis 200) will fall within the scope of the present disclosure as well. - The
fan tray system 400 also includes fan tray side wall(s) that are moveably coupled to thefan tray base 402. In the illustrated embodiment, a fantray side wall 412 is rotatably coupled to thefan tray base 402 adjacent theside edge 402 c, and a fantray side wall 414 is rotatably coupled to thefan tray base 402 adjacent theside edge 402 d. For example, the fantray side wall 412 includes abase portion 412 a having a pair of fan system guides 412 b that extend from opposite edges of thebase portion 412 a and that each include arotatable coupling member 412 c to provide therotatable coupling members 412 c adjacent an edge of, and on opposite sides of, thebase portion 412 a. As can be seen, the pair ofrotatable coupling members 412 c are configured to couple to rotatable coupling features 416 that are provided adjacent theside edge 402 d on thefan tray base 402. The fantray side wall 412 also defines ahandling element 412 d that, in the illustrated embodiment, is provided by a finger hole that is centrally located on the fantray side wall 412. A fan tray securing subsystem is included on the fantray side wall 412 and, in the illustrated embodiment, is provided by a securingelement 412 e that is coupled to a securingedge 412 f on the fantray side wall 412 by a securinghousing 412 g. Anairflow directing member 412 h is coupled to the surface of the fantray side wall 412 that is opposite the fantray side wall 412 from thefan tray base 412. - Similarly, the fan
tray side wall 414 includes a base portion 414 a having a pair of fan system guides 414 b that extend from opposite edges of the base portion 414 a and that each include arotatable coupling member 414 c to provide therotatable coupling members 414 c adjacent an edge of, and on opposite sides of, the base portion 414 a. As can be seen, the pair ofrotatable coupling members 414 c are configured to couple to rotatable coupling features 418 that are provided adjacent theside edge 402 c on thefan tray base 402. The fantray side wall 414 also defines ahandling element 414 d that, in the illustrated embodiment, is provided by a finger hole that is centrally located on the fantray side wall 414. A fan tray securing subsystem is included on the fantray side wall 414 and, in the illustrated embodiment, is provided by a securingelement 414 e that is coupled to a securingedge 414 f on the fantray side wall 414 by a securinghousing 414 g. Anairflow directing member 414 h is coupled to the surface of the fantray side wall 414 that is opposite the fantray side wall 414 from the majority of thefan tray base 414. - As illustrated in
FIGS. 4A, 4D, and 4E , the coupling of therotatable coupling members 412 c on the fantray side wall 412 to the rotatable coupling features 416 on thefan tray base 402 provide for rotation of the fantray side wall 412 relative to thefan tray base 402 in a direction B from a first orientation in which the fantray side wall 412 is substantially perpendicular to the fan tray base 402 (illustrated inFIG. 4D ), to a second orientation in which the fantray side wall 412 is substantially parallel to the fan tray base 402 (illustrated inFIG. 4E .) Similarly, the coupling of therotatable coupling members 414 c on the fantray side wall 414 to the rotatable coupling features 418 on thefan tray base 402 provide for rotation of the fantray side wall 414 relative to thefan tray base 402 in a direction C from a first orientation in which the fantray side wall 414 is substantially perpendicular to the fan tray base 402 (illustrated inFIG. 4D ), to a second orientation in which the fantray side wall 414 is substantially parallel to the fan tray base 402 (illustrated inFIG. 4E .) However, while a specific fan tray system has been illustrated and described, one of skill in the art in possession of the present disclosure will recognize that fan tray systems may include different numbers of components, other types of components, different configurations of components, and/or perform the functionality described herein in a different manner while remaining within the scope of the present disclosure. For example, rather than the rotatable movement enabled by the structures described herein, the fantray side walls - Referring now to
FIG. 5 , an embodiment of amethod 500 for providing a fan tray system in a chassis is illustrated. As discussed below, the system and methods for the present disclosure provide a fan tray system that is configured to couple to a chassis without the use of a tool, along with fan tray side walls that may be moved relative to the chassis (when the fan tray system is coupled to that chassis) between a first orientation and a second orientation to allow access to portions of, or components in, the chassis that may be impeded when the fan tray side walls are in the first orientation. Furthermore, the fan tray side walls provide for the guiding of a fan system into the fan tray system to connect to fan device connectors. Further still, the fan tray side wall may include airflow directing members that engage the chassis when the fan tray side walls are in the first orientation, and that operate to direct air through the fan devices in the fan system. As such, one of skill in the art in possession of the present disclosure will recognize that the fan tray system described herein introduces a variety of improvements over conventional fan tray systems known in the art. - The
method 500 begins atblock 502 where a fan tray base is coupled to a chassis. In an embodiment, atblock 502, thefan tray system 400 may be positioned adjacent the chassis 200 (e.g., by a user utilizing the handlingelements 412 d/414 d (finger holes in the illustrated embodiment) to hold the fan tray system 400) such that thefan tray base 402 is located above thechassis 200 and adjacent the fantray system housing 204 a defined by thechassis 200, as illustrated inFIG. 6A . In the embodiment illustrated inFIG. 6A , the fantray side walls FIG. 4D when thefan tray system 400 is being positioned in the fantray system housing 204 a, but one of skill in the art in possession of the present disclosure will recognize that the fantray side walls FIG. 4E when thefan tray system 400 is being positioned in the fantray system housing 204 a while remaining within the scope of the present disclosure as well. Thefan tray system 400 may then be moved in a direction D such that the fan tray system enters the fantray system housing 204 a defined by thechassis 200, and continued movement of thefan tray system 400 in the direction D will cause the keying system 208 (e.g., the pegs in this embodiment) on thechassis 200 to engage the keyingelements 402 e (e.g., the apertures in this embodiment) on thefan tray base 402 in order to allow for proper orientation of thefan tray system 400 in thechassis 200, as illustrated inFIG. 6B . One of skill in the art in possession of the present disclosure will recognize that thekeying system 208 and the keyingelements 402 e may be configured to ensure that thefan tray system 400 may only be coupled to thechassis 200 in a single orientation (e.g., such that fan devices in afan system 300 coupled to thefan tray system 400 will direct air in a desired direction.) With thefan tray system 400 positioned in thechassis 200, thesystem connectors 406 may be coupled to a system component in the chassis 200 (e.g., a fan system connector on a motherboard, not illustrated.) While not described in detail below, one of skill in the art in possession of the present disclosure will recognize that removal of thefan tray system 400 from thechassis 200 may be performed in substantially the reverse of that described above (e.g., disconnecting thesystem connectors 406 from the system component in thechassis 200, and using thehandling elements 412 d/414 d (finger holes in the illustrated embodiment) to lift thefan tray system 400 out of thechassis 200.) - As can be seed in
FIG. 6B , with thefan tray system 400 positioned in thechassis 200 and the fantray side wall 412 in the first orientation, the fantray side wall 412 operates to impede access to the cable 205 (i.e., the cable is located between theside wall 202 b of thechassis 200 and the fantray side wall 412.) Furthermore, one of skill in the art in possession of the present disclosure will recognize that a user may wish to route other cabling and/or position other components between the fantray side wall 412 and theside wall 202 b of thechassis 200. Further still, component(s) in thechassis 200 may be positioned adjacent the fantray side wall 412 when the fantray side wall 412 is in the first orientation such that access to those component(s) is impeded. For example, a motherboard positioned adjacent thefan tray system 400 may include a connector that is located adjacent the fantray side wall 412 when the fantray side wall 412 is in the first orientation such that access to that connector (e.g., the ability to connect a cable to that connector) is impeded. While a few examples directed to the fantray side wall 412 have been provided, the fantray side wall 414 may operate in a similar manner. Furthermore, one of skill in the art in possession of the present disclosure will recognize that when positioned in the first orientation, the fantray side walls chassis 200 in a variety of manners that will fall within the scope of the present disclosure. - The
method 500 then proceeds to block 504 where a fan tray side wall is moved relative to the fan tray base from a first orientation to a second orientation. In an embodiment, atblock 504, the fantray side wall 412 may be rotated (e.g., using thehandling element 412 d), about the coupling of therotatable coupling members 412 c on the fantray side wall 412 to the rotatable coupling features 416 on thefan tray base 402 and in the direction B from the first orientation illustrated inFIG. 4D to the second orientation illustrated inFIG. 4E . Similarly, atblock 504, the fantray side wall 414 may be rotated (e.g., using thehandling element 414 d) about the coupling of therotatable coupling members 414 c on the fantray side wall 414 to the rotatable coupling features 418 on thefan tray base 402 and in the direction C from the first orientation illustrated inFIG. 4D to the second orientation illustrated inFIG. 4E . As discussed above, while the illustrated embodiments focus on rotational movement of the fantray side walls block 504 will fall within the scope of the present disclosure as well. - The
method 500 then proceeds to block 506 where at least one component in the chassis is accessed with the fan tray side wall in the second orientation. With reference toFIGS. 4E and 6B , one of skill in the art in possession of the present disclosure will recognize how, atblock 506 and with the fantray side walls 412 and/or 414 in the second orientation, a user may access components in thechassis 200 to which access was impeded when the fantray side walls 412 and/or 414 were in the first orientation. For example, with the fantray side wall 412 in the second orientation illustrated inFIG. 4E , at block 506 a user may access thecable 205 that runs along theside wall 202 b of the chassis 200 (and that was previously located behind the fantray side wall 412 in the first orientation.) Furthermore, with the fantray side wall 412 in the second orientation illustrated inFIG. 4E , at block 506 a user may access a connector on a motherboard that is positioned adjacent thefan tray system 400 in order to connect a cable to that connector (an action that was previously impeded due to the positioned of the fantray side wall 412 in the first orientation and immediately adjacent that connector.) - Furthermore, one of skill in the art in possession of the present disclosure will recognize how a user may position the fan
tray side walls chassis 200 that defines the fantray system housing 204 a. For example, a user may move the fantray side wall 412 from the first orientation to the second orientation in order to route cables along theside wall 202 b of the chassis 200 (e.g., cables that extend from a motherboard on a first side of thefan tray system 400 to a storage system located opposite thefan tray system 400 from the motherboard.) The routing of cables in this manner may be compared to conventional fan tray systems that provide a rigid channel adjacent the fan tray system through which cables must be forced for routing, and it will be appreciated by one of skill in the art in possession of the present disclosure that the movable fan tray side walls provide for much more intelligent cable routing and layering than those conventional fan tray systems, allowing a denser feature set via thechassis 200. For example, in one experimental embodiment, a conventional fan tray system in thechassis 200 only permitted the routing of cabling for 8 Peripheral Component Interconnect (PCI) Solid State Drives (SSDs) in thechassis 200, while thefan tray system 400 permitted the routing of cabling for 12 PCI SSDs in thechassis 200. - In another embodiment, a user may move the fan
tray side wall 412 from the first orientation to the second orientation in order to position cards in thechassis 200 adjacent thefan tray system 400. For example, if a user wishes to provide a set of PCI SSD devices in thechassis 200, they may move the fan tray side wall(s) 412 and 414 as discussed above, connect cabling to a backplane connector and a PCI SSD riser, and install the PCI SSD riser in thechassis 200. In comparison, convention fan tray systems must be removed from the chassis in order to perform the same operation to install PCI SSD devices, greatly increasing the time it takes to install PCI SSD devices in thechassis 200. As such, it should be understood that movement of the fantray side walls tray side walls tray side walls - The
method 500 then proceeds to block 508 where the fan tray side wall is moved relative to the fan tray base from the second orientation to the first orientation. With reference toFIGS. 4D, 4E, and 6B , atblock 508 the fantray side wall 412 may be rotated (e.g., using thehandling element 412 d) about the coupling of therotatable coupling members 412 c on the fantray side wall 412 to the rotatable coupling features 416 on thefan tray base 402 and from the second orientation illustrated inFIG. 4E and back to the first orientation illustrated inFIG. 4D . Similarly, atblock 508, the fantray side wall 414 may be rotated (e.g., using thehandling element 414 d) about the coupling of therotatable coupling members 414 c on the fantray side wall 414 to the rotatable coupling features 418 on thefan tray base 402 and from the second orientation illustrated inFIG. 4E back to the first orientation illustrated inFIG. 4D . In an embodiment, rotation of the fantray side walls element 412 e on the fan tray securing subsystem of the fantray side wall 412 engaging the fantray securing feature 206 on theside wall 202 b of the chassis 202, and results in the securingelement 414 e on the fan tray securing subsystem of the fantray side wall 414 engaging a similar fan tray securing feature on theside wall 202 c of the chassis 202, in order to secure the fantray side walls chassis 200. With the fantray side walls chassis 200, thefan tray system 400 is secured to the chassis 200 (e.g., the securingelement chassis 200 in order to move the fantray side walls fan tray system 400 from thechassis 200.) - Furthermore, rotation of the fan
tray side walls air directing member 412 h on the fantray side wall 412 engaging theside wall 202 b of thechassis 200, and results in theair directing member 414 h on the fantray side wall 414 engaging theside wall 202 c of thechassis 200. While not illustrated, one of skill in the art in possession of the present disclosure will recognize that cabling in thechassis 200 may be routed through the any of thecabling apertures 403 and/orcable routing members 410 in order to extend that cabling through thefan tray system 400 as desired. The cable aperture plugs 403 a discussed above may then be positioned in anycable aperture 403 that is not used to route cabling in such a manner. - With the
fan tray system 400 secured in thechassis 200 as illustrated inFIG. 6B , thefan system 300 may then be coupled to thefan tray system 400. For example, whileFIG. 6A illustrates an exploded view of thefan system 300, one of skill in the art in possession of the present disclosure will recognize that thefan devices fan device housing 302 a on thefan device chassis 302, thefan devices fan device housing 302 b on thefan device chassis 302, thefan devices fan device housing 302 c on thefan device chassis 302, and thefan devices fan device housing 302 d on thefan device chassis 302. With thefan devices 302 a-h positioned in thefan device chassis 302, thefan system 300 may be moved in the direction D into the fan tray system 400 (that is secured in thechassis 200 as discussed above.) Movement of thefan system 300 into thefan tray chassis 400 causes thefan chassis 300 to engage the fan system guides 412 b on the fantray side wall 412 and the fan system guides 414 b on the fantray side wall 414, which then operate to guide the fan system 300 (during its continued movement in the direction D) into thefan tray system 400 until the connectors on thefan devices 302 a-h engagerespective connectors 404 in thefan tray system 400 in order to couple thefan devices 302 a-h to the system via the system connectors 406 (which, as discussed above, may be connected to a component in thechassis 200 such as a motherboard.) While not explicitly illustrated, the securing handles 303 on thefan system 300 may be used (e.g., in an unillustrated orientation in which they are perpendicular to the fan device chassis 302) to hold and move thefan system 300 as discussed above, and then utilized (e.g., by rotating them to the orientation illustrated inFIG. 3 ) to secure thefan system 300 in the fan tray system 400 (e.g., via engagement of thecam elements 303 a with thefan tray system 400.) - With the
fan system 300 secured in thefan tray system 400, and thefan tray system 400 secured in thechassis 200, thefan devices 302 a-h in thefan system 300 may operate to move air through thechassis 200. In response to the movement of the air through the chassis using thefan devices 302 a-h in thefan system 300, theair directing members housing 204 of thechassis 200. For example, the engagement of theair directing members side walls tray side wall 412 and theside wall 202 b and between the fantray side wall 414 and theside wall 202 c, respectively, and direct air through thefan devices 302 a-h. Furthermore, the cable aperture plugs 403 a located in thecable apertures 403 may operate in a similar manner to direct the airflow in thehousing 204 of thechassis 200 via the blocking of airflow through cable apertures that are not being used to route cables. Furthermore, in some embodiments, thefan tray system 400 may engage components in the chassis to secure the positioning of those components. For example, thefan tray system 400 may engage a motherboard in thechassis 200 to prevent motherboard movement during shock and vibration events. - Thus, systems and methods have been described that provide a fan tray system that is configured to couple to a chassis without the use of a tool, along with fan tray side walls that may be moved relative to the chassis from a first orientation and a second orientation to allow access to portions of, or components in, the chassis that may be impeded when the fan tray side walls are in the first orientation. The tray side walls allow for the simplified routing of cables between the fan tray side walls and the side walls of the chassis, servicing access to cables that are positioned between the fan tray side walls and the side walls of the chassis, and connector access to connectors that are located adjacent the fan tray side walls when those fan tray side walls are in the first orientation. As such, the fan tray system described herein introduces improvements over conventional fan tray systems known in the art by providing for tool-less installation and removal of the fan tray system, minimizing the steps needed to access components in the chassis, and routing cables within the chassis without impacting airflow while also allowing access to those cables once they are routed.
- Although illustrative embodiments have been shown and described, a wide range of modification, change and substitution is contemplated in the foregoing disclosure and in some instances, some features of the embodiments may be employed without a corresponding use of other features. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the embodiments disclosed herein.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/170,571 US11678461B2 (en) | 2017-08-30 | 2021-02-08 | Fan tray system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/691,346 US10939578B2 (en) | 2017-08-30 | 2017-08-30 | Fan tray system |
US17/170,571 US11678461B2 (en) | 2017-08-30 | 2021-02-08 | Fan tray system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/691,346 Continuation US10939578B2 (en) | 2017-08-30 | 2017-08-30 | Fan tray system |
Publications (2)
Publication Number | Publication Date |
---|---|
US20210168967A1 true US20210168967A1 (en) | 2021-06-03 |
US11678461B2 US11678461B2 (en) | 2023-06-13 |
Family
ID=65434454
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/691,346 Active 2038-04-12 US10939578B2 (en) | 2017-08-30 | 2017-08-30 | Fan tray system |
US17/170,571 Active 2038-01-29 US11678461B2 (en) | 2017-08-30 | 2021-02-08 | Fan tray system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/691,346 Active 2038-04-12 US10939578B2 (en) | 2017-08-30 | 2017-08-30 | Fan tray system |
Country Status (1)
Country | Link |
---|---|
US (2) | US10939578B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111212543A (en) * | 2020-01-03 | 2020-05-29 | 英业达科技有限公司 | Fan module support |
CN113721736A (en) * | 2021-09-15 | 2021-11-30 | 英业达科技有限公司 | Server |
US12242318B2 (en) * | 2023-01-26 | 2025-03-04 | Dell Products L.P. | System and method for managing connector positioning in data processing systems |
US20250053213A1 (en) * | 2023-08-10 | 2025-02-13 | Dell Products L.P. | Air mover assembly |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050254210A1 (en) * | 2004-05-14 | 2005-11-17 | Grady John R | Fan tray for electronics enclosure |
US20080068789A1 (en) * | 2006-09-14 | 2008-03-20 | Dell Products L.P. | Coupling For A Modular Component And Chassis Combination |
US20120026678A1 (en) * | 2010-07-29 | 2012-02-02 | Dell Products L.P. | Fan Mounting System |
US20120148397A1 (en) * | 2010-12-08 | 2012-06-14 | Hon Hai Precision Industry Co., Ltd. | Fan module |
US20160073554A1 (en) * | 2014-09-08 | 2016-03-10 | Dell Products L.P. | Structural subassembly for use in an information handling system chassis |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4862659A (en) | 1986-06-06 | 1989-09-05 | Haworth, Inc. | Wall panel with accessible interior channels for laying in of cables |
TW375295U (en) * | 1997-11-15 | 1999-11-21 | Hon Hai Prec Ind Co Ltd | Holding device for the components of the computer |
US6805623B2 (en) * | 2002-12-10 | 2004-10-19 | Thermo Fan Llc | Apparatus for providing air flow within a vehicle |
TWM341877U (en) * | 2007-10-24 | 2008-10-01 | Akust Technology Co Ltd | Heat sink fan stand for memory card |
US9591775B2 (en) | 2014-09-08 | 2017-03-07 | Dell Products L.P. | Mezzanine-style structure with integrated wiring harness |
-
2017
- 2017-08-30 US US15/691,346 patent/US10939578B2/en active Active
-
2021
- 2021-02-08 US US17/170,571 patent/US11678461B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050254210A1 (en) * | 2004-05-14 | 2005-11-17 | Grady John R | Fan tray for electronics enclosure |
US20080068789A1 (en) * | 2006-09-14 | 2008-03-20 | Dell Products L.P. | Coupling For A Modular Component And Chassis Combination |
US20120026678A1 (en) * | 2010-07-29 | 2012-02-02 | Dell Products L.P. | Fan Mounting System |
US20120148397A1 (en) * | 2010-12-08 | 2012-06-14 | Hon Hai Precision Industry Co., Ltd. | Fan module |
US20160073554A1 (en) * | 2014-09-08 | 2016-03-10 | Dell Products L.P. | Structural subassembly for use in an information handling system chassis |
Also Published As
Publication number | Publication date |
---|---|
US20190069442A1 (en) | 2019-02-28 |
US11678461B2 (en) | 2023-06-13 |
US10939578B2 (en) | 2021-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11678461B2 (en) | Fan tray system | |
US11507133B2 (en) | Configurable all-in-one modular desktop computing system | |
US10810152B2 (en) | Storage device carrier assembly | |
US9066444B2 (en) | Power supply unit with articulating fan assembly | |
US8508929B2 (en) | Implementing enhanced cover-mounted, auto-docking for multiple DASD configurations | |
US7580260B2 (en) | Coupling for a fan bay including fans with a chassis | |
US8405966B2 (en) | Memory carrier and IHS coupling system | |
US9417671B2 (en) | Computer baffle | |
US20100002366A1 (en) | Multiple Component Mounting System | |
US9915983B2 (en) | Drive carrier coupling system | |
US9515399B2 (en) | Connector alignment system | |
US20080068789A1 (en) | Coupling For A Modular Component And Chassis Combination | |
US10146271B1 (en) | Expansion planar coupling system | |
US11985779B2 (en) | Cartridge-based computing system | |
US11251567B2 (en) | Floating multi-connector blind mating system | |
US8144463B2 (en) | Card retention system | |
US20070091549A1 (en) | Method and apparatus for mounting a component in a chassis | |
US9883605B2 (en) | Rack attic device coupling system | |
US10146272B1 (en) | Externally mounted internal component retention system | |
US9632545B2 (en) | Drive tray | |
US11747872B1 (en) | Toolless card/bracket coupling system | |
US20250234475A1 (en) | Multi-device rack width adapter system | |
US11930612B2 (en) | Configurable multi-orientation device mount rack system | |
US9952635B2 (en) | Computer board locating mechanism | |
US20250234480A1 (en) | Multi-device rack width adapter system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: DELL PRODUCTS L.P., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PAV, DARREN BURKE;LAVALLO, JAKE HILL;REEL/FRAME:055195/0926 Effective date: 20170822 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
AS | Assignment |
Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, NORTH CAROLINA Free format text: SECURITY AGREEMENT;ASSIGNORS:DELL PRODUCTS L.P.;EMC IP HOLDING COMPANY LLC;REEL/FRAME:056250/0541 Effective date: 20210514 |
|
AS | Assignment |
Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, NORTH CAROLINA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE MISSING PATENTS THAT WERE ON THE ORIGINAL SCHEDULED SUBMITTED BUT NOT ENTERED PREVIOUSLY RECORDED AT REEL: 056250 FRAME: 0541. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:DELL PRODUCTS L.P.;EMC IP HOLDING COMPANY LLC;REEL/FRAME:056311/0781 Effective date: 20210514 |
|
AS | Assignment |
Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT, TEXAS Free format text: SECURITY INTEREST;ASSIGNORS:DELL PRODUCTS L.P.;EMC IP HOLDING COMPANY LLC;REEL/FRAME:056295/0280 Effective date: 20210513 Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT, TEXAS Free format text: SECURITY INTEREST;ASSIGNORS:DELL PRODUCTS L.P.;EMC IP HOLDING COMPANY LLC;REEL/FRAME:056295/0124 Effective date: 20210513 Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT, TEXAS Free format text: SECURITY INTEREST;ASSIGNORS:DELL PRODUCTS L.P.;EMC IP HOLDING COMPANY LLC;REEL/FRAME:056295/0001 Effective date: 20210513 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: EMC IP HOLDING COMPANY LLC, TEXAS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058297/0332 Effective date: 20211101 Owner name: DELL PRODUCTS L.P., TEXAS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058297/0332 Effective date: 20211101 |
|
AS | Assignment |
Owner name: EMC IP HOLDING COMPANY LLC, TEXAS Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (056295/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:062021/0844 Effective date: 20220329 Owner name: DELL PRODUCTS L.P., TEXAS Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (056295/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:062021/0844 Effective date: 20220329 Owner name: EMC IP HOLDING COMPANY LLC, TEXAS Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (056295/0124);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:062022/0012 Effective date: 20220329 Owner name: DELL PRODUCTS L.P., TEXAS Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (056295/0124);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:062022/0012 Effective date: 20220329 Owner name: EMC IP HOLDING COMPANY LLC, TEXAS Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (056295/0280);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:062022/0255 Effective date: 20220329 Owner name: DELL PRODUCTS L.P., TEXAS Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (056295/0280);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:062022/0255 Effective date: 20220329 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |