US20210147441A1 - Therapeutic compounds and methods of use thereof - Google Patents

Therapeutic compounds and methods of use thereof Download PDF

Info

Publication number
US20210147441A1
US20210147441A1 US17/028,574 US202017028574A US2021147441A1 US 20210147441 A1 US20210147441 A1 US 20210147441A1 US 202017028574 A US202017028574 A US 202017028574A US 2021147441 A1 US2021147441 A1 US 2021147441A1
Authority
US
United States
Prior art keywords
optionally substituted
compound
ethoxy
synthesis
nmr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/028,574
Inventor
Wei Hung
Thomas Hugo Keller
Wei Ling Wang
Gang Wang
Congbao Kang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agency for Science Technology and Research Singapore
Original Assignee
Agency for Science Technology and Research Singapore
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency for Science Technology and Research Singapore filed Critical Agency for Science Technology and Research Singapore
Assigned to AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH (A*STAR) reassignment AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH (A*STAR) ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUNG, WEI, KANG, Congbao, KELLER, THOMAS HUGO, WANG, GANG, WANG, Wei Ling
Publication of US20210147441A1 publication Critical patent/US20210147441A1/en
Priority to US17/483,731 priority Critical patent/US11542274B1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/14Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/55Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/32Oxygen atoms
    • C07D209/34Oxygen atoms in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00

Definitions

  • the present disclosure relates, in general terms, to therapeutic compounds for use as modulators of ubiquitination.
  • the present disclosure also relates to methods of use thereof.
  • the Ubiquitin-Proteasome Pathway is a critical pathway regulating proteins and degrading misfolded or abnormal proteins. UPP is central to multiple cellular processes and, if defective or imbalanced, leads to pathogenesis in a variety of diseases.
  • the covalent attachment of ubiquitin to specific protein substrates is achieved through the action of E3 ubiquitin ligases. These ligases comprise over 500 different proteins and are categorized into multiple classes defined by the structural element of their E3 functional activity. For example, cereblon (CRBN) interacts with damaged DNA binding protein 1 and forms an E3 ubiquitin ligase complex with Cullin 4 in which the proteins recognized by CRBN are ubiquitinated and degraded by proteasomes.
  • cereblon CRBN
  • immunomodulatory drugs e.g., thalidomide and lenalidomide
  • CRBN CRBN
  • thalidomide and lenalidomide bind to CRBN and modulate CRBN's role in the ubiquitination and degradation of protein factors involved in maintaining regular cellular function.
  • Protein dimers formed between a target protein and an E3 ubiquitin ligase have been shown to induce proteasome-mediated degradation of selected proteins. See, e.g., U.S. Pat. Nos. 6,306,663; 7,041,298; 7,041,298; U.S. 2016/0058872; U.S. 2016/0045607; U.S. 2020/0102298; U.S. 2014/0356322; U.S. 2016/0176916; U.S. 2016/0235730; U.S. 2016/0235731; U.S.
  • Heterobifunctional compounds composed of a target protein-binding moiety and an E3 ubiquitin ligase-binding moiety, which promote formation of a dimer between a target protein and E3 ubiquitin ligase have been shown to chemically induce targeted protein degradation using heterobifunctional compounds (small molecule ligands often referred to as degraders or PROTACs for PROteolysis-TArgeting Chimeras).
  • Targeted protein degradation refers to small molecule induced ubiquitination and degradation of disease targets, in which a small molecule simultaneously recruits both an ubiquitin E3 ligase and the target protein to be ubiquitinylated; therefore representing a functional application of chemically induced protein dimerization.
  • IMiDs potent anti-cancer drugs thalidomide, lenalidomide and pomalidomide
  • Heterobifunctional PROTACs typically comprise an E3 ligase binding scaffold (hereafter E3-moiety), often an analogue of thalidomide, or a ligand to the von Hippel-Lindau tumor suppressor (VHL) protein, attached through a linker to another small molecule (hereafter target-moiety) that binds a target protein of interest. Recruitment of this target protein to the E3 ubiquitin ligase facilitates ubiquitination and subsequent degradation of the target protein.
  • E3-moiety E3 ligase binding scaffold
  • VHL von Hippel-Lindau tumor suppressor
  • BET Bromodomain and Extra Terminal
  • Bromodomain-containing proteins have been implicated in proliferative disease.
  • BRD4 knockout mice die shortly after implantation and are compromised in their ability to maintain an inner cell mass, and heterozygotes display pre- and postnatal growth defects associated with reduced proliferation rates.
  • BRD4 regulates genes expressed during M/GI, including growth-associated genes, and remains bound to chromatin throughout the cell cycle (Dey, et al. (2009) Mol. Biol. Cell 20:4899-4909).
  • BRD4 also physically associates with Mediator and P-TEFb (CDK9/cyclin TI) to facilitate transcriptional elongation (Yang, et al. (2005) Oncogene 24:1653-1662; Yang, et al. (2005) Mol.
  • CDK9 is a validated target in chronic lymphocytic leukemia (CLL), and is linked to c-MYC-dependent transcription (Phelps, et al. Blood 113:2637-2645; Rahl, et al. (2010) Cell 141:432-445).
  • CLL chronic lymphocytic leukemia
  • PROTACs have been found to exhibit different efficacy and selectivity profiles depending on the nature of the E3-moiety used, often exhibiting improved selectivity over the parental target-moiety (Zengerle et al., Chem. Biol. 2015, 10, 8, 1770-1777). While positive cooperativity can explain certain cases such as MZ1, it is unlikely to exist for a broad number of ligase-substrate pairs and whether desired selectivity profiles can be achieved for highly homologous proteins such as BRD2/3/4 is unknown. Based upon these current limitations, there remains a need for heterobifunctional compounds (PROTACs) that can selectively target a target protein, especially, over highly homologous related proteins.
  • Induced protein degradation represents a new mode of therapeutic intervention that have the potential to disrupt the way conventional small molecule drug discovery is performed.
  • the ability to directly decrease protein abundance in a post-translational manner presents huge advantages in the discovery of new therapeutics.
  • Ligand binding to E3-ubiquitin ligases form the cornerstone towards the generation of new bifunctional compounds for protein degradation.
  • most of the protein degradation compounds revolves around thalidomide-based analogs and HIF1 ⁇ peptidomimetic compounds as E3-binding ligands to trigger protein degradation.
  • E3-binding ligands to trigger protein degradation.
  • there exist a dearth of new ligands binding to novel E3 ligases which hold the key to development of high quality small molecule protein degraders.
  • Proteolysis targeting chimeras are bivalent ligands in which a compound that binds to the protein target of interest is connected to a second molecule that binds an E3 ligase via a linker.
  • the E3 protein is usually either Cereblon or Von Hippel-Lindau.
  • Small molecule induced protein degradation by PROTACs or other small molecules requires ligand mediated binding of two proteins that typically do not interact. While this is evidently possible, the design of such molecules remains an empirical process in which molecules for new targets frequently fail, likely due to insufficient understanding of the fundamental principles that govern these neo-interactions.
  • the present invention is based, at least in part, upon the discovery and development of new and improved methods for designing and generating heterobifunctional binders.
  • the heterobifunctional binders can be “small molecule,” or “low molecular weight” compounds that bind, and promote interaction between, two proteins.
  • the methods can be used to create libraries of heterobifunctional binder and/or screen heterobifunctional binder (e.g., for drug discovery, development).
  • the methods can be used to assess/predict the suitability of a target to ligand for inducing protein dimerization and/or protein degradation.
  • the methods can be used to screen and/or interrogate protein interactions and function.
  • a heterobifunctional binder developed using methods of the invention can be used for medical treatment, for example a cancer treatment.
  • the methods are used for generating small molecule heterobifunctional degraders (e.g., PROTACs).
  • small molecule heterobifunctional degraders e.g., PROTACs
  • Exemplary aspects of the present disclosure are predicated on the discovery that specific oxindole compounds can act as modulators of targeted ubiquitination and, subsequently, degradation.
  • specific oxindole compounds can act as modulators of targeted ubiquitination and, subsequently, degradation.
  • the protein binding moiety When formed as a hetero-bifunctional molecule via a linker to, for example, a protein binding moiety (small molecule) for targeting a protein, the protein binding moiety is ear-marked for ubiquitination and degradation.
  • accumulation of the protein is avoided, the accumulation of which can, in some instances, trigger cellular stress responses and/or induce specific death pathways.
  • the present disclosure relates to a compound of Formula (I) or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof:
  • R 1 is selected from optionally substituted heterocyclylene, optionally substituted arylene, optionally substituted heteroarylene, optionally substituted aminylacylene, optionally substituted acylaminylene and optionally substituted acylene;
  • R 2 is selected from H, halogen optionally substituted heteroaryl, and optionally substituted alkyl (e.g., methyl);
  • R 3 and R 4 are independently selected from H, optionally substituted cycloalkyl (e.g., cyclopropyl) and optionally substituted alkyl (e.g., methyl);
  • R 5 is selected from H and optionally substituted alkyl (e.g., methyl);
  • L is an optionally substituted linker having 2 to 18 atoms in the chain length;
  • X is a protein binding moiety;
  • Z is N or CH.
  • X is selective for a protein overexpressed or malfunctioning in a disease state. In an exemplary embodiment, X is specific for a protein overexpressed or malfunctioning in a disease state.
  • R 1 is located at either a 5′ or 6′ position of the oxindole ring.
  • R 1 is optionally substituted heteroarylene and R 2 is selected from H, halogen or methyl.
  • L is selected from optionally substituted alkylene, optionally substituted heteroalkylene, optionally substituted cycloalkylene and optionally substituted heterocyclylene, each having 1 to 18 atoms in the chain length, and optionally substituted ethoxy, e.g., polyethoxy, having 3 to 18 atoms in the chain length.
  • L is optionally substituted polyethoxy having 2, 3, 4, 5, 6, 7 or 8 repeating ethoxy units.
  • X is selected from bromodomain-containing protein 4 (BRD4) binding moiety, transcriptional enhanced associate domain (TEAD) binding moiety, Polycomb Repressive Complex 2 (PRC2) binding moiety, focal adhesion kinase (FAK) binding moiety, BCR-ABL binding moiety, Hippo pathway protein binding moiety and transcription factor binding moiety.
  • BBD4 bromodomain-containing protein 4
  • TEAD transcriptional enhanced associate domain
  • PRC2 Polycomb Repressive Complex 2
  • FK focal adhesion kinase
  • the compound of Formula (I) is represented by Formula (I′):
  • R 1 , R 2 , R 3 , R 4 , R 5 and L are as defined herein; and wherein R 1 is located at either a 5′ or 6′ position of the oxindole ring.
  • R 1 , R 2 , R 3 , R 4 , R 5 and L are as defined herein; and wherein R 1 is located at either a 5′ or 6′ position of the oxindole ring.
  • the present disclosure relates to a compound of Formula (II) or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof:
  • R 1 ′ is selected from optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted aminoacyl, optionally substituted acylamino, and optionally substituted acyl;
  • R 2 is selected from H, halogen and methyl;
  • R 3 and R 4 are independently selected from H and methyl;
  • R 5 is selected from H and methyl; wherein R 1′ is located at either a 5′ or 6′ position of the oxindole ring.
  • the present disclosure relates to a compound of Formula (III) or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof:
  • R 1 , R 2 , R 3 , R 4 and R 5 are as defined herein; wherein R 1 is located at either a 5′ or 6′ position of the oxindole ring; and L is an optionally substituted linker having 1 to 18 atoms in the chain length.
  • the present disclosure relates to a pharmaceutical composition
  • a pharmaceutical composition comprising an effective amount of compound of a Formula set forth herein or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof, optionally in combination with a pharmaceutically acceptable carrier, excipient or diluent.
  • the present disclosure relates to a method of inducing degradation of an overexpressed protein in a cell, including a step of contacting a compound of a Formula set forth herein with the cell to induce degradation of the overexpressed protein in the cell.
  • the present disclosure relates to a method of treating a disease or condition associated with an overexpressed protein, comprising administering a compound of Formula set forth herein or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof in a patient in need thereof.
  • the present disclosure relates to a compound of Formula set forth herein or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof for use as a medicament.
  • the present disclosure relates to a compound of Formula set forth herein or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof for use in the treatment of a disease or condition associated with an overexpressed protein.
  • the present disclosure relates to a use of a compound of Formula set forth herein or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof in the manufacture of a medicament for the treatment of a disease or condition associated with an overexpressed protein.
  • the overexpressed protein is selected from BRD4, transcriptional enhanced associate domain (TEAD), Polycomb Repressive Complex 2 (PRC2), focal adhesion kinase (FAK), BCR-ABL, Hippo pathway protein and transcription factor.
  • TEAD transcriptional enhanced associate domain
  • PRC2 Polycomb Repressive Complex 2
  • FK focal adhesion kinase
  • BCR-ABL Hippo pathway protein and transcription factor.
  • the disease or condition is selected from hyperplasia and cancer (such as multiple myeloma, glioblastoma, uveal melanoma, liposarcoma, hepatocellular carcinoma, midline carcinoma, acute myeloid leukemia, Burkitt lymphoma and prostate cancer).
  • the diseases can also be a protein accumulation disease, for example Alzheimer's disease and amyotrophic lateral sclerosis.
  • FIG. 1A - FIG. 1F is a display of 1 H- 15 N-HSQC spectra of selected ligands bound to protein CRBN.
  • the 1 H- 15 N-HSQC spectra of a mixture of 0.5 mM CRBN in the absence (black) and presence of different concentration of ligands were collected, processed and shown.
  • the concentration-dependent chemical shift perturbations for a few residues suggest that ligands bind to protein CRBN.
  • the ligand to CRBN ratios are shown. The binding was saturated when ligand to protein ratio was 1 to 1.
  • FIG. 2 098 induced ternary complex formation.
  • the 1 H- 15 N-HSQC spectra of a mixture of 0.5 mM CRBN and 0.5 mM BRD4 BD2 in the absence and presence of different concentrations of 098 were collected, and processed.
  • the signal broadening of the cross peaks in the spectra confirms the formation of ternary complex.
  • the present invention provides a novel class of heterobifunctional molecules operating to promote degradation of a protein of interest (POI) by initiating ubiquitination of the POI.
  • POI protein of interest
  • the compounds of the invention operate in a manner differentiated by the standard occupancy-driven paradigm of drug development in which potency is dependent on binding affinity. For example, protein inhibition likely cannot influence non-catalytic target protein function(s). Additionally, sustained target engagement is difficult in cases of target overexpression, the presence of competing native ligand(s), or target protein mutations that result in loss of target engagement and subsequent resistance. Since the compounds of the invention inhibit protein function via degradation, this event-driven technology can be used to circumvent these common disadvantages of traditional occupancy-driven inhibitors described above.
  • the term “about” or “approximately” means within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, i.e., the limitations of the measurement system. For example, “about” can mean within 1 or more than 1 standard deviation, per the practice in the art. Alternatively, “about” can mean a range of up to 20%, preferably up to 10%, more preferably up to 5%, and more preferably still up to 1% of a given value. Alternatively, particularly with respect to biological systems or processes, the term can mean within an order of magnitude, preferably within 5-fold, and more preferably within 2-fold, of a value. Where particular values are described in the application and claims, unless otherwise stated the term “about” meaning within an acceptable error range for the particular value should be assumed.
  • the terms “compounds herein described”, “compounds of the present application” and equivalent expressions refer to compounds described in the present application, e.g., those encompassed by the structural Formulae, optionally with reference to any of the applicable embodiments, and also includes exemplary compounds, as well as their pharmaceutically acceptable salts, solvates, esters, and prodrugs when applicable.
  • the compound may be drawn as its neutral form for practical purposes, but the compound is understood to also include its zwitterionic form.
  • Embodiments herein may also exclude one or more of the compounds.
  • Compounds may be identified either by their chemical structure or their chemical name. In a case where the chemical structure and chemical name would conflict, the chemical structure will prevail.
  • structures depicted herein are also meant to include all isomeric (e.g., enantiomeric, diastereomeric, and geometric (or conformational)) forms of the structure; for example, the R and S configurations for each asymmetric center, Z and E double bond isomers, and Z and E conformational isomers. Therefore, single stereochemical isomers as well as enantiomeric, diastereomeric, and geometric (or conformational) mixtures of the present compounds are within the scope of the present description. Unless otherwise stated, all tautomeric forms of the compounds are within the scope of the present description.
  • structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms.
  • compounds having the present structures including the replacement of hydrogen by deuterium or tritium, or the replacement of a carbon by a 13 C- or 14 C-enriched carbon are within the scope of the present description.
  • Such compounds are useful, for example, as analytical tools, as probes in biological assays, or as therapeutic agents in accordance with the present description.
  • a particular enantiomer may, in some embodiments be provided substantially free of the corresponding enantiomer, and may also be referred to as “optically enriched.”
  • “Optically-enriched,” as used herein, means that the compound is made up of a significantly greater proportion of one enantiomer. In certain embodiments the compound is made up of at least about 90% by weight of a preferred enantiomer. In other embodiments the compound is made up of at least about 95%, 98%, or 99% by weight of a preferred enantiomer.
  • Preferred enantiomers may be isolated from racemic mixtures by any method known to those skilled in the art, including chiral high pressure liquid chromatography (HPLC) and the formation and crystallization of chiral salts or prepared by asymmetric syntheses.
  • HPLC high pressure liquid chromatography
  • Jacques et al. Enantiomers, Racemates and Resolutions (Wiley Interscience, New York, 1981); Wilen, et al., Tetrahedron 33:2725 (1977); Eliel, E. L. Stereochemistry of Carbon Compounds (McGraw-Hill, N Y, 1962); Wilen, S. H. Tables of Resolving Agents and Optical Resolutions, p. 268 (E. L. Eliel, Ed., Univ. of Notre Dame Press, Notre Dame, Ind. 1972).
  • the invention provides compounds according to a Formula set forth herein which are “optically enriched”.
  • abbreviations may also be used throughout the application, unless otherwise noted, such abbreviations are intended to have the meaning generally understood by the field. Examples of such abbreviations include Me (methyl), Et (ethyl), Pr (propyl), i-Pr (isopropyl), Bu (butyl), t-Bu (tert-butyl), i-Bu (iso-butyl), s-Bu (sec-butyl), c-Bu (cyclobutyl), Ph (phenyl), Bn (benzyl), Bz (benzoyl), CBz or Cbz or Z (carbobenzyloxy), Boc or BOC (tert-butoxycarbonyl), and Su or Suc (succinimide). For greater certainty, examples of abbreviations used in the present application are listed in a table in the Examples section.
  • the number of carbon atoms in a hydrocarbyl or other substituent can be indicated by the prefix “C x -C.sub y ,” where x is the minimum and y is the maximum number of carbon atoms in the substituent.
  • C x -C.sub y When reference is made to “x to y membered” heterocyclic ring (e.g., heterocycloalkyl or heteroaryl), then x and y define respectively, the minimum and maximum number of atoms in the cycle, including carbons as well as heteroatom(s).
  • halo indicates that the substituent to which the prefix is attached is substituted with one or more independently selected halogen atoms. More specifically, the terms “halo” and “halogen” as used herein refer to an atom selected from fluorine (fluoro, —F), chlorine (chloro, —Cl), bromine (bromo, —Br), and iodine (iodo, —I).
  • haloalkyl means an alkyl substituent wherein at least one hydrogen atom is replaced with a halogen atom
  • haloalkoxy means an alkoxy substituent wherein at least one hydrogen atom is replaced with a halogen atom.
  • heteroatom means one or more of oxygen, sulfur, nitrogen, phosphorus, or silicon (including, any oxidized form of nitrogen, sulfur, phosphorus, or silicon; the quaternized form of any basic nitrogen or; a substitutable nitrogen of a heterocyclic ring, for example N (as in 3,4-dihydro-2H-pyrrolyl), NH (as in pyrrolidinyl) or NR+(as in N-substituted pyrrolidinyl).
  • a “direct bond” or “covalent bond” refers to a single, double or triple bond. In certain embodiments, a “direct bond” or “covalent bond” refers to a single bond. This term is also synonymous with a “zero-order linker”.
  • substituent groups are specified by their conventional chemical formulae, written from left to right, they optionally equally encompass the chemically identical substituents, which would result from writing the structure from right to left, e.g., —CH 2 O— is intended to also recite —OCH 2 —.
  • alkyl by itself or as part of another substituent, means a straight or branched chain hydrocarbon, which may be fully saturated, mono- or polyunsaturated and includes mono-, di- and multivalent radicals.
  • saturated hydrocarbon radicals include, but are not limited to, groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, sec-butyl, cyclohexyl, (cyclohexyl)methyl, cyclopropylmethyl, homologs and isomers of, for example, n-pentyl, n-hexyl, n-heptyl, n-octyl, and the like.
  • An unsaturated alkyl group is one having one or more double bonds or triple bonds (i.e., alkenyl and alkynyl moieties).
  • unsaturated alkyl groups include, but are not limited to, vinyl, 2-propenyl, crotyl, 2-isopentenyl, 2-(butadienyl), 2,4-pentadienyl, 3-(1,4-pentadienyl), ethynyl, 1- and 3-propynyl, 3-butynyl, and the higher homologs and isomers.
  • alkyl can refer to “alkylene”, which by itself or as part of another substituent means a divalent radical derived from an alkane, as exemplified, but not limited, by —CH 2 CH 2 CH 2 CH 2 —.
  • an alkyl (or alkylene) group will have from 1 to 30 carbon atoms.
  • a “lower alkyl” or “lower alkylene” is a shorter chain alkyl or alkylene group, generally having eight or fewer carbon atoms.
  • alkyl refers to an alkyl or combination of alkyls selected from C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 , C 12 , C 13 , C 14 , C 15 , C 16 , C 17 , C 18 , C 19 , C 20 , C 21 , C 22 , C 23 , C 24 , C 25 , C 26 , C 27 , C 28 , C 29 and C 30 alkyl.
  • alkyl refers to C 1 -C 25 alkyl.
  • alkyl refers to C 1 -C 20 alkyl.
  • alkyl refers to C 1 -C 15 alkyl. In some embodiments, alkyl refers to C 1 -C 10 alkyl. In some embodiments, alkyl refers to C 1 -C 6 alkyl.
  • Alkyl refers to monovalent alkyl groups which may be straight chained or branched and preferably have from 1 to 10 carbon atoms or more preferably 1 to 6 carbon atoms. Examples of such alkyl groups include methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, n-hexyl, and the like.
  • Alkylene refers to divalent alkyl groups preferably having from 1 to 10 carbon atoms and more preferably 1 to 6 carbon atoms. Examples of such alkylene groups include methylene (—CH 2 —), ethylene (—CH 2 CH 2 —), and the propylene isomers (e.g., —CH 2 CH 2 CH 2 — and —CH(CH 3 )CH 2 —), and the like.
  • Alkenyl refers to a monovalent alkenyl group which may be straight chained or branched and preferably have from 2 to 10 carbon atoms and more preferably 2 to 6 carbon atoms and have at least 1 and preferably from 1-2, carbon to carbon, double bonds. Examples include ethenyl (—CH ⁇ CH 2 ), n-propenyl (—CH 2 CH ⁇ CH 2 ), iso-propenyl (—C(CH 3 ) ⁇ CH 2 ), but-2-enyl (—CH 2 CH ⁇ CHCH 3 ), and the like.
  • Alkenylene refers to divalent alkenyl groups preferably having from 2 to 8 carbon atoms and more preferably 2 to 6 carbon atoms. Examples include ethenylene (—CH ⁇ CH—), and the propenylene isomers (e.g., —CH 2 CH ⁇ CH— and —C(CH 3 ) ⁇ CH—), and the like.
  • Alkynyl refers to alkynyl groups preferably having from 2 to 10 carbon atoms and more preferably 2 to 6 carbon atoms and having at least 1, and preferably from 1-2, carbon to carbon, triple bonds.
  • alkynyl groups include ethynyl CH), propargyl (—CH 2 C CH), pent-2-ynyl (—CH 2 C ⁇ CCH 2 —CH 3 ), and the like.
  • Alkynylene refers to the divalent alkynyl groups preferably having from 2 to 8 carbon atoms and more preferably 2 to 6 carbon atoms. Examples include ethynylene (—C ⁇ C—), propynylene (—CH 2 —C ⁇ C—), and the like.
  • Alkoxy refers to the group alkyl-O— where the alkyl group is as described above. Examples include, methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, tert-butoxy, sec-butoxy, n-pentoxy, n-hexoxy, 1,2-dimethylbutoxy, and the like.
  • Alkenyloxy refers to the group alkenyl-O— wherein the alkenyl group is as described above.
  • Alkynyloxy refers to the group alkynyl-O— wherein the alkynyl groups is as described above.
  • cycloalkyl and “heterocycloalkyl”, by themselves or in combination with other terms, refer to cyclic versions of “alkyl” and “heteroalkyl”, respectively. Additionally, for heterocycloalkyl, a heteroatom can occupy the position at which the heterocycle is attached to the remainder of the molecule. Examples of cycloalkyl include, but are not limited to, cyclopentyl, cyclohexyl, 1-cyclohexenyl, 3-cyclohexenyl, cycloheptyl, and the like.
  • heterocycloalkyl examples include, but are not limited to, 1-(1,2,5,6-tetrahydropyridyl), 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-morpholinyl, 3-morpholinyl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydrothien-2-yl, tetrahydrothien-3-yl, 1-piperazinyl, 2-piperazinyl, and the like.
  • Haloalkyl refers to an alkyl group wherein the alkyl group is substituted by one or more halo group as described above.
  • haloalkenyl refers to an alkyl group wherein the alkyl group is substituted by one or more halo group as described above.
  • haloalkenyl refers to an alkyl group wherein the alkyl group is substituted by one or more halo group as described above.
  • haloalkenyl haloalkynyl
  • haloalkoxy are likewise defined.
  • heteroalkyl by itself or in combination with another term, means an alkyl in which one or more carbons are replaced with one or more heteroatoms selected from the group consisting of O, N, Si and S, (preferably O, N and S), wherein the nitrogen and sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized.
  • the heteroatoms O, N, Si and S may be placed at any interior position of the heteroalkyl group or at the position at which the alkyl group is attached to the remainder of the molecule.
  • the heteroatom may be bonded to one or more H or substituents such as (C 1 , C 2 , C 3 , C 4 , C 5 or C 6 ) alkyl according to the valence of the heteroatom.
  • heteroalkyl groups include, but are not limited to, —CH 2 —CH 2 —O—CH 3 , —CH 2 —CH 2 —NH—CH 3 , —CH 2 —CH 2 —N(CH 3 )—CH 3 , —CH 2 —S—CH 2 —CH 3 , —CH 2 —CH 2 , —S(O)—CH 3 , —CH 2 —CH 2 —S(O) 2 —CH 3 , —CH ⁇ CH—O—CH 3 , —Si(CH 3 ) 3 , —CH 2 —CH ⁇ N—OCH 3 , and —CH ⁇ CH—N(CH 3 )—CH 3 .
  • heteroalkylene by itself or as part of another substituent means a divalent radical derived from heteroalkyl, as exemplified, but not limited by, —CH 2 —CH 2 —S—CH 2 —CH 2 — and —CH 2 —S—CH 2 —CH 2 —NH—CH 2 —.
  • the designated number of carbons in heteroforms of alkyl, alkenyl and alkynyl includes the heteroatom count.
  • a (C 1 , C 2 , C 3 , C 4 , C 5 or C 6 ) heteroalkyl will contain, respectively, 1, 2, 3, 4, 5 or 6 atoms selected from C, N, O, Si and S such that the heteroalkyl contains at least one C atom and at least one heteroatom, for example 1-5 C and 1 N or 1-4 C and 2 N.
  • a heteroalkyl may also contain one or more carbonyl groups.
  • a heteroalkyl is any C 2 -C 30 alkyl, C 2 -C 25 alkyl, C 2 -C 20 alkyl, C 2 -C 15 alkyl, C 2 -C 10 alkyl or C 2 -C 6 alkyl in any of which one or more carbons are replaced by one or more heteroatoms selected from O, N, Si and S (or from O, N and S). In some embodiments, each of 1, 2, 3, 4 or 5 carbons is replaced with a heteroatom.
  • alkoxy alkylamino and “alkylthio” (or thioalkoxy) are used in their conventional sense, and refer to those alkyl and heteroalkyl groups attached to the remainder of the molecule via an oxygen atom, a nitrogen atom (e.g., an amine group), or a sulfur atom, respectively.
  • Aryl refers to an unsaturated aromatic carbocyclic group having a single ring (eg. phenyl) or multiple condensed rings (e.g., naphthyl or anthryl), preferably having from 6 to 14 carbon atoms.
  • aryl groups include phenyl, naphthyl and the like.
  • Heteroaryl refers to a monovalent aromatic heterocyclic group which fulfils the Hückel criteria for aromaticity (ie. contains 4n+2 ⁇ electrons) and preferably has from 2 to 10 carbon atoms and 1 to 4 heteroatoms selected from oxygen, nitrogen, selenium, and sulfur within the ring (and includes oxides of sulfur, selenium and nitrogen).
  • Such heteroaryl groups can have a single ring (eg. pyridyl, pyrrolyl or N-oxides thereof or furyl) or multiple condensed rings (eg. indolizinyl, benzoimidazolyl, coumarinyl, quinolinyl, isoquinolinyl or benzothienyl).
  • heteroaryl groups include, but are not limited to, azaoxindole, oxazole, pyrrole, imidazole, pyrazole, pyridine, pyrazine, pyrimidine, pyridazine, indolizine, isoindole, indole, indazole, purine, isoquinoline, quinoline, phthalazine, naphthylpyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, phenanthroline, isothiazole, phenazine, isoxazole, isothiazole, phenoxazine, phenothiazine, thiazole, thiadiazoles, oxadiazole, oxatriazole, tetrazole, thiophene, benzo[b]thiophene, triazo
  • Allene refers to a divalent aryl group wherein the aryl group is as described above.
  • Aryloxy refers to the group aryl-O— wherein the aryl group is as described above.
  • Arylalkyl refers to -alkylene-aryl groups preferably having from 1 to 10 carbon atoms in the alkylene moiety and from 6 to 10 carbon atoms in the aryl moiety. Such arylalkyl groups are exemplified by benzyl, phenethyl and the like.
  • Arylalkoxy refers to the group arylalkyl-O— wherein the arylalkyl group are as described above. Such arylalkoxy groups are exemplified by benzyloxy and the like.
  • acyl refers to a species that include the moiety —C(O)R, where R has the meaning defined herein.
  • exemplary species for R include H, halogen, substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, and substituted or unsubstituted heterocycloalkyl.
  • exemplary acyl groups include H—C(O)—, cycloalkyl-C(O)—, aryl-C(O)—, heteroaryl-C(O)— and heterocyclyl-C(O)—, where alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl are as described herein.
  • R is selected from H and (C 1 -C 6 )alkyl.
  • Oxyacyl refers to groups HOC(O)—, alkyl-OC(O)—, cycloalkyl-OC(O)—, aryl-OC(O)—, heteroaryl-OC(O)—, and heterocyclyl-OC(O)—, where alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl are as described herein.
  • Amino refers to the group —NR′′R′′ where each R′′ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is as described herein.
  • Aminoacyl refers to the group —C(O)NR′′R′′ where each R′′ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is as described herein.
  • Amylacylene refers to a divalent group group —C(O)NR′′— where each R′′ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is as described herein. As used herein, the divalent group is attached as L-C(O)NR′′-oxindolyl moiety.
  • “Acylamino” refers to the group —NR′′C(O)R′′ where each R′′ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl are as described herein.
  • “Acylaminylene” refers to the divalent group —NR′′C(O)— where each R′′ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl are as described herein. As used herein, the divalent group is attached as L-NR′′C(O)-oxindolyl moiety.
  • Alkyloxy refers to the groups —OC(O)-alkyl, —OC(O)-aryl, —C(O)O— heteroaryl, and —C(O)O-heterocyclyl where alkyl, aryl, heteroaryl and heterocyclyl are as described herein.
  • “Aminoacyloxy” refers to the groups —OC(O)NR′′-alkyl, —OC(O)NR′′-aryl, —OC(O)NR′′-heteroaryl, and —OC(O)NR′′-heterocyclyl where R′′ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is as described herein.
  • Oxyacylamino refers to the groups —NR′′C(O)O-alkyl, —NR′′C(O)O-aryl, —NR′′ C(O)O-heteroaryl, and NR′′C(O)O-heterocyclyl where R′′ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is as described herein.
  • Oxyacyloxy refers to the groups —OC(O)O-alkyl, —O—C(O)O-aryl, —OC(O)O— heteroaryl, and —OC(O)O-heterocyclyl where alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl are as described herein.
  • Acylimino refers to the groups —C(NR′′)—R′′ where each R′′ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl are as described herein.
  • Acyliminoxy refers to the groups —O—C(NR′′)—R′′ where each R′′ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl are as described herein.
  • Oxyacylimino refers to the groups —C(NR′′)—OR′′ where each R′′ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl are as described herein.
  • Cycloalkyl refers to cyclic alkyl groups having a single cyclic ring or multiple condensed rings, preferably incorporating 3 to 11 carbon atoms.
  • Such cycloalkyl groups include, by way of example, single ring structures such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclooctyl, and the like, or multiple ring structures such as adamantanyl, indanyl, 1,2,3,4-tetrahydronapthalenyl and the like.
  • ‘cycloalkyl’ comprises bridged cycloalkyl, spiro cycloalkyl and fused cycloalkyl.
  • bridged cycloalkyl comprises two or more rings bonded to each other at bridgehead atoms (ring junctions).
  • two rings share two adjacent atoms; i.e. the rings share one covalent bond or the so-called bridgehead atoms are directly connected.
  • two or more rings are linked together by one common atom.
  • Cycloalkenyl refers to cyclic alkenyl groups having a single cyclic ring or multiple condensed rings, and at least one point of internal unsaturation, preferably incorporating 4 to 11 carbon atoms.
  • suitable cycloalkenyl groups include, for instance, cyclobut-2-enyl, cyclopent-3-enyl, cyclohex-4-enyl, cyclooct-3-enyl, indenyl and the like.
  • Heterocyclyl refers to a monovalent saturated or unsaturated group having a single ring or multiple condensed rings, preferably from 1 to 8 carbon atoms and from 1 to 4 hetero atoms selected from nitrogen, sulfur, oxygen, selenium or phosphorous within the ring. The most preferred heteroatom is nitrogen. It will be understood that where, for instance, R 2 or R′ is an optionally substituted heterocyclyl which has one or more ring heteroatoms, the heterocyclyl group can be connected to the core molecule of the compounds of the present invention, through a C—C or C-heteroatom bond, in particular a C—N bond. Spiro heterocyclyl are also included within this definition.
  • heterocyclyl and heteroaryl groups include, but are not limited to, oxazole, pyrrole, imidazole, pyrazole, pyridine, pyrazine, pyrimidine, pyridazine, indolizine, isoindole, indole, indazole, purine, quinolizine, isoquinoline, quinoline, phthalazine, naphthylpyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, phenanthroline, isothiazole, phenazine, isoxazole, isothiazole, phenoxazine, phenothiazine, imidazolidine, imidazoline, piperidine, piperazine, indoline, phthalimide, 1,2,3,4-tetrahydroisoquinoline, 4,5,6,7
  • Heteroarylene refers to a divalent heteroaryl group wherein the heteroaryl group is as described above.
  • Heterocyclylene refers to a divalent heterocyclyl group wherein the heterocyclyl group is as described above.
  • Thio refers to groups H—S—, alkyl-S—, cycloalkyl-S—, aryl-S—, heteroaryl-S—, and heterocyclyl-S—, where alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl are as described herein.
  • Thioacyl refers to groups H—C(S)—, alkyl-C(S)—, cycloalkyl-C(S)—, aryl-C(S)—, heteroaryl-C(S)—, and heterocyclyl-C(S)—, where alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl are as described herein.
  • Oxythioacyl refers to groups HO—C(S)—, alkylO—C(S)—, cycloalkylO—C(S)—, arylO—C(S)—, heteroarylO—C(S)—, and heterocyclylO—C(S)—, where alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl are as described herein.
  • Oxythioacyloxy refers to groups HO—C(S)—O—, alkylO—C(S)—O—, cycloalkylO—C(S)—O—, arylO—C(S)—O—, heteroarylO—C(S)—O—, and heterocyclylO—C(S)—O—, where alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl are as described herein.
  • Phosphorylamino refers to the groups —NR′′—P(O)(R′′′)(OR′′′′) where R′′ represents H, alkyl, cycloalkyl, alkenyl, or aryl, R′′′ represents OR′′′′ or is hydroxy or amino and R′′′′ is alkyl, cycloalkyl, aryl or arylalkyl, where alkyl, amino, alkenyl, aryl, cycloalkyl, and arylalkyl are as described herein.
  • Thioacyloxy refers to groups H—C(S)—O—, alkyl-C(S)—O—, cycloalkyl-C(S)—O—, aryl-C(S)—O—, heteroaryl-C(S)—O—, and heterocyclyl-C(S)—O—, where alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl are as described herein.
  • “Sulfinyl” refers to groups H—S(O)—, alkyl-S(O)—, cycloalkyl-S(O)—, aryl-S(O)—, heteroaryl-S(O)—, and heterocyclyl-S(O)—, where alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl are as described herein.
  • “Sulfonyl” refers to groups H—S(O) 2 —, alkyl-S(O) 2 —, cycloalkyl-S(O) 2 —, aryl-S(O) 2 —, heteroaryl-S(O) 2 —, and heterocyclyl-S(O) 2 —, where alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl are as described herein.
  • “Sulfinylamino” refers to groups H—S(O)—NR′′—, alkyl-S(O)—NR′′—, cycloalkyl-S(O)—NR′′—, aryl-S(O)—NR′′—, heteroaryl-S(O)—NR′′—, and heterocyclyl-S(O)—NR′′—, where R′′ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is as described herein.
  • “Sulfonylamino” refers to groups H—S(O) 2 —NR′′—, alkyl-S(O) 2 —NR′′—, cycloalkyl-S(O) 2 —NR′′—, aryl-S(O) 2 —NR′′—, heteroaryl-S(O) 2 —NR′′—, and heterocyclyl-S(O) 2 —NR′′—, where R′′ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is as described herein.
  • Oxysulfinylamino refers to groups HO—S(O)—NR′′—, alkylO—S(O)—NR′′—, cycloalkylO—S(O)—NR′′—, arylO—S(O)—NR′′—, heteroarylO—S(O)—NR′′—, and heterocyclylO—S(O)—NR′′—, where R′′ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is as described herein.
  • Oxysulfonylamino refers to groups HO—S(O) 2 —NR′′—, alkylO—S(O) 2 —NR′′—, cycloalkylO—S(O) 2 —NR′′—, arylO—S(O) 2 —NR′′—, heteroarylO—S(O) 2 —NR′′—, and heterocyclylO—S(O) 2 —NR′′—, where R′′ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is as described herein.
  • Aminothioacyl refers to groups R′′R′′N—C(S)—, where each R′′ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclic and where each of alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is as described herein.
  • Thioacylamino refers to groups H—C(S)—NR′′—, alkyl-C(S)—NR′′—, cycloalkyl-C(S)—NR′′—, aryl-C(S)—NR′′—, heteroaryl-C(S)—NR′′—, and heterocyclyl-C(S)—NR′′—, where R′′ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is as described herein.
  • Aminosulfinyl refers to groups R′′R′′N—S(O)—, where each R′′ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclic and where each of alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is as described herein.
  • Aminosulfonyl refers to groups R′′R′′N—S(O) 2 —, where each R′′ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclic and where each of alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is as described herein.
  • any of alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl is optionally substituted. That is, in some embodiments, any of these groups is substituted or unsubstituted or fused (so as to form a condensed polycyclic group) with one or more groups.
  • substituents for selected radicals are selected from those provided below.
  • alkyl, heteroalkyl, cycloalkyl and heterocycloalkyl radicals are generically referred to as “alkyl group substituents”.
  • an alkyl group substituent is selected from -halogen, —OR′, ⁇ O, ⁇ NR′, ⁇ N—OR′, —NR′R′′, —SR′, —SiR′R′′R′′′, —OC(O)R′, —C(O)R′, —CO 2 R′, —CONR′R′′, —OC(O)NR′R′′, —NR′′C(O)R′, —NR′—C(O)NR′′R′′′, —NR′′C(O) 2 R′, —NR—C(NR′R′′R′′′) ⁇ NR′′′′, —NR—C(NR′R′′) ⁇ NR′′′, —S(O)R′, —S(O) 2 R′, —S(O) 2 NR′R′′, —NRSO 2 R′, —CN and —NO 2 in a number ranging from zero to (2m′+1), where m′ is the total number of carbon
  • R′, R′′, R′′′ and R′′′′ are each independently selected from hydrogen, alkyl (e.g., C 1 , C 2 , C 3 , C 4 , C 5 and C 6 alkyl).
  • R′, R′′, R′′′ and R′′′′ each independently refer to hydrogen, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, e.g., aryl substituted with 1-3 halogens, substituted or unsubstituted alkyl, alkoxy or thioalkoxy groups, or arylalkyl groups.
  • R′, R′′, R′′′ and R′′′′ are each independently selected from hydrogen, alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, thioalkoxy groups, and arylalkyl.
  • R′ and R′′ are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 5-, 6-, or 7-membered ring.
  • —NR′R′′ can include 1-pyrrolidinyl and 4-morpholinyl.
  • an alkyl group substituent is selected from substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl and substituted or unsubstituted heteroaryl.
  • an aryl group substituent is selected from -halogen, —OR′, ⁇ O, ⁇ NR′, ⁇ N—OR′, —NR′R′′, —SR′, —SiR′R′′R′′′, —OC(O)R′, —C(O)R′, —CO 2 R′, —CONR′R′′, —OC(O)NR′R′′, —NR′′C(O)R′, —NR′—C(O)NR′′R′′′, —NR′′C(O) 2 R′, —NR—C(NR′R′′R′′′) ⁇ NR′′′′, —NR—C(NR′R′′) ⁇ NR′′′, —S(O)R′, —S(O) 2 R′, —S(O) 2 NR′R′′
  • R′, R′′, R′′′ and R′′′′ are independently selected from hydrogen and alkyl (e.g., C1, C2, C3, C4, C5 and C6 alkyl). In some embodiments, R′, R′′, R′′′ and R′′′′ are independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl and substituted or unsubstituted heteroaryl. In some embodiments, R′, R′′, R′′′ and R′′′′ are independently selected from hydrogen, alkyl, heteroalkyl, aryl and heteroaryl.
  • an aryl group substituent is selected from substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl and substituted or unsubstituted heteroaryl.
  • Two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -T-C(O)—(CRR′) q —U—, wherein T and U are independently —NR—, —O—, —CRR′— or a single bond, and q is an integer of from 0 to 3.
  • two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -A-(CH 2 ) r —B—, wherein A and B are independently —CRR′—, —O—, —NR—, —S—, —S(O)—, —S(O) 2 —, —S(O) 2 NR′— or a single bond, and r is an integer of from 1 to 4.
  • One of the single bonds of the new ring so formed may optionally be replaced with a double bond.
  • two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula —(CRR′) s —X—(CR′′R′′′) d —, where s and d are independently integers of from 0 to 3, and X is —O—, —NR′—, —S—, —S(O)—, —S(O) 2 —, or —S(O) 2 NR′—.
  • the substituents R, R′, R′′ and R′′′ are preferably independently selected from hydrogen or substituted or unsubstituted (C 1 -C 6 )alkyl.
  • one or more substituents are selected from hydroxyl, acyl, acyliminoxy, acylimino, alkyl, alkoxy, alkenyl, aryl, aryloxy, alkynyl, alkenyloxy, alkynyloxy, halo, haloalkyl, aryl, arylene, aryloxy, arylalkyl, arylalkoxy, cycloalkyl, cycloalkenyl, oxy, oxyacyl, acylene, amino, aminylacylene, acylamino, acylaminylene, acyloxy, aminoacyloxy, carboxyl, acylamino, cyano, halogen, nitro, oxyacylamino, oxyacyloxy, oxyacylimino, phosphono, sulfo, phosphorylamino, phosphinyl, heteroaryl, heteroarylalkyl, heteroaryloxy, hetero
  • linker is a moiety that joins or potentially joins, covalently or noncovalently, a first moiety to a second moiety.
  • a linker attaches or could potentially attach a ligand described herein to another molecule, such as a targeting moiety.
  • linkers L comprised of stable bonds include by way of example and not limitation, alkyldiyls, substituted alkyldiyls, alkylenos, substituted alkylenos, heteroalkyldiyls, substituted heteroalkyldiyls, heteroalkylenos, substituted heteroalkylenos, acyclic heteroatomic bridges, aryldiyls, substituted aryldiyls, arylaryldiyls, substituted arylaryldiyls, arylalkyldiyls, substituted arylalkyldiyls, heteroaryldiyls, substituted heteroaryldiyls, heteroaryl-heteroaryldiyls, substituted heteroaryl-heteroaryldiyls, heteroarylalkyldiyls, substituted heteroarylalkyldiyls, heteroaryl-
  • linker L may include single, double, triple or aromatic carbon-carbon bonds, nitrogen-nitrogen bonds, carbon-nitrogen, carbon-oxygen bonds and/or carbon-sulfur bonds, and may therefore include functionalities such as carbonyls, ethers, thioethers, carboxamides, sulfonamides, ureas, urethanes, hydrazines, etc.
  • linker L has from 1-20 non-hydrogen atoms selected from the group consisting of C, N, O, and S and is composed of any combination of ether, thioether, amine, ester, carboxamide, sulfonamides, hydrazide, aromatic and heteroaromatic bonds.
  • L may be a rigid polypeptide such as polyproline, a rigid polyunsaturated alkyldiyl or an aryldiyl, biaryldiyl, arylarydiyl, arylalkyldiyl, heteroaryldiyl, biheteroaryldiyl, heteroarylalkyldiyl, heteroaryl-heteroaryldiyl, etc.
  • polyproline a rigid polyunsaturated alkyldiyl or an aryldiyl, biaryldiyl, arylarydiyl, arylalkyldiyl, heteroaryldiyl, biheteroaryldiyl, heteroarylalkyldiyl, heteroaryl-heteroaryldiyl, etc.
  • L may be a flexible polypeptide such as polyglycine or a flexible saturated alkanyldiyl or heteroalkanyldiyl.
  • Hydrophilic linkers may be, for example, polyalcohols or polyethers such as polyalkyleneglycols.
  • Hydrophobic linkers may be, for example, alkyldiyls or aryldiyls.
  • the symbol displayed perpendicular to a bond, indicates the point at which the displayed moiety is attached to the remainder of the molecule.
  • the definition of terms used herein is according to IUPAC.
  • pharmaceutically acceptable salt refers to those salts of the compounds formed by the process of the present description which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio.
  • Pharmaceutically acceptable salts are well known in the art. For example, S. M. Berge, et al. describes pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 66: 1-19 (1977).
  • the salts can be prepared in situ during the final isolation and purification of the compounds of the present description, or separately by reacting a free base function of the compound with a suitable organic or inorganic acid (acid addition salts) or by reacting an acidic function of the compound with a suitable organic or inorganic base (base-addition salts).
  • salts include, but are not limited to, nontoxic acid addition salts, or salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid
  • organic acids such as acetic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange.
  • salts include, but are not limited to, adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamo
  • Representative base addition alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, or magnesium salts, and the like.
  • Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, sulfonate and aryl sulfonate.
  • solvate refers to a physical association of one of the present compounds with one or more solvent molecules. This physical association includes hydrogen bonding. In certain instances, the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of a crystalline solid. “Solvate” encompasses both solution-phase and insoluble solvates.
  • Exemplary solvates include, without limitation, hydrates, hemihydrates, ethanolates, hemiethanolates, n-propanolates, iso-propanolates, 1-butanolates, 2-butanolate, and solvates of other physiologically acceptable solvents, such as the Class 3 solvents described in the International Conference on Harmonization (ICH), Guide for Industry, Q3C Impurities: Residual Solvents (1997).
  • the compounds as herein described also include each of their solvates and mixtures thereof.
  • ester refers to esters of the compounds formed by the process of the present description which hydrolyze in vivo and include those that break down readily in the human body to leave the parent compound or a salt thereof.
  • Suitable ester groups include, for example, those derived from pharmaceutically acceptable aliphatic carboxylic acids, particularly alkanoic, alkenoic, cycloalkanoic and alkanedioic acids, in which each alkyl or alkenyl moiety advantageously has not more than 6 carbon atoms.
  • esters include, but are not limited to, formates, acetates, propionates, butyrates, acrylates and ethylsuccinates.
  • prodrugs refers to those prodrugs of the compounds formed by the process of the present description which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals with undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use.
  • Prodrug as used herein means a compound which is convertible in vivo by metabolic means (e.g. by hydrolysis) to afford any compound delineated by the formulae of the instant description.
  • prodrugs are known in the art, for example, as discussed in Bundgaard, (ed.), Design of Prodrugs, Elsevier (1985); Widder, et al. (ed.), Methods in Enzymology, vol. 4, Academic Press (1985); Krogsgaard-Larsen, et al., (ed). “Design and Application of Prodrugs, Textbook of Drug Design and Development”, Chapter 5, 113-191 (1991); Bundgaard, et al., Journal of Drug Deliver Reviews, 8:1-38 (1992); Bundgaard, J. Of Pharmaceutical Sciences, 77:285 et seq.
  • stable refers to compounds which possess stability sufficient to allow manufacture and which maintains the integrity of the compound for a sufficient period of time to be useful for the purposes detailed herein (e.g., therapeutic or prophylactic administration to a subject).
  • the term “effective amount” means that amount of a drug or pharmaceutical agent that will elicit the biological or medical response of a tissue, system, animal or human that is being sought, for instance, by a researcher or clinician.
  • therapeutically effective amount means any amount which, as compared to a corresponding subject who has not received such amount, results in treatment, healing, prevention, or amelioration of a disease, disorder, or side effect, or a decrease in the rate of advancement of a disease or disorder.
  • the term also includes within its scope amounts effective to enhance normal physiological function.
  • treatment refers to reversing, alleviating, delaying the onset of, or inhibiting the progress of a disease or disorder, or one or more symptoms thereof, as described herein.
  • treatment may be administered after one or more symptoms have developed.
  • treatment may be administered in the absence of symptoms.
  • treatment may be administered to a susceptible individual prior to the onset of symptoms (e.g., in light of a history of symptoms and/or in light of genetic or other susceptibility factors). Treatment may also be continued after symptoms have resolved, for example to prevent or delay their recurrence.
  • bromodomain inhibitor denotes a compound which inhibits the binding of a bromodomain with its cognate acetylated proteins.
  • the bromodomain inhibitor is a compound which inhibits the binding of a bromodomain to acetylated lysine residues.
  • the bromodomain inhibitor is a compound which inhibits the binding of a bromodomain to acetylated lysine residues on histones, particularly histones H3 and H4.
  • the bromodomain inhibitor is a compound that inhibits the binding of BET family bromodomains to acetylated lysine residues (hereafter referred to as a “BET family bromodomain inhibitor”).
  • BET family of bromodomain containing proteins comprises 4 proteins (BRD2, BRD3, BRD4 and BRD-t) which contain tandem bromodomains capable of binding to two acetylated lysine residues in close proximity, increasing the specificity of the interaction.
  • the term “inhibitor” is defined as a compound that binds to and/or inhibits the target bromodomain-containing protein (such as a BET protein, e.g., BRD2, BRD3, BRD4, and/or BRDT) with measurable affinity.
  • the binding is selective for the bromodomain-containing protein, or it is specific for this protein.
  • measurable affinity and “measurably inhibit,” as used herein, means a measurable change in activity of at least one bromodomain-containing protein between a sample comprising a provided compound, or composition thereof, and at least one histone methyltransferase, and an equivalent sample comprising at least one bromodomain-containing protein, in the absence of said compound, or composition thereof.
  • patient or subject refers to a mammal.
  • a subject therefore refers to, for example, humans, dogs, cats, horses, cows, pigs, guinea pigs, and the like.
  • the subject is a human.
  • the subject may be either a patient or a healthy human.
  • proliferative disorder refers to cells having the capacity for autonomous growth, i.e., an abnormal state of condition characterized by rapidly proliferating cell growth which generally forms a distinct mass that show partial or total lack of structural organization and functional coordination with normal tissue.
  • the compounds of the invention are used to treat, ameliorate or cure a proliferative disorder.
  • the therapeutically effective amount of a compound as defined herein can be administered to a patient alone or admixed with a pharmaceutically acceptable carrier, adjuvant, or vehicle.
  • compositions of this disclosure include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxyprop
  • a “pharmaceutically acceptable derivative” means any non-toxic salt, ester, salt of an ester, prodrug, salt of a prodrug, or other derivative of a compound of the present description that, upon administration to a recipient, is capable of providing, either directly or indirectly, a compound of the present description or an inhibitory active metabolite or residue thereof.
  • the present disclosure relates to compounds which are heterobifunctional molecules consisting of: (1) a protein binding moiety that binds a protein of interest (POI); (2) a ubiquitination moiety for recruiting an E3 ubiquitin ligase to promote ubiquitination of the protein of interest; and (3) a linker covalently connecting these moieties.
  • the compounds mediate the degradation of select proteins of interest by hijacking the activity of E3 ubiquitin ligases for POI ubiquitination and subsequent degradation by the 26S proteasome.
  • the compounds of the present invention are not degraded in this process, they can “recycle” and promote ubiquitination and degradation of multiple proteins, thus operating substoichiometrically. This catalytic, event-driven modality contrasts with the traditional inhibitor paradigm in which sustained target binding is indispensable for eliciting a desired biological response.
  • the compounds of the present application may be prepared by conventional chemical synthesis, such as exemplified in the Examples appended hereto. As will be appreciated by the skilled artisan, further methods of synthesizing the compounds of the formulae herein will be evident to those of ordinary skill in the art. Additionally, the various synthetic steps may be performed in an alternate sequence or order to give the desired compounds. In addition, the solvents, temperatures, reaction durations, etc. delineated herein are for purposes of illustration only and one of ordinary skill in the art will recognize that variation of the reaction conditions can produce the desired products of the present description. Synthetic chemistry transformations and/or protecting group methodologies (protection and deprotection) useful in synthesizing the compounds described herein are known in the art and include, for example, those such as described in R.
  • the compounds of the present description may be modified by appending various functionalities via any synthetic means delineated herein or otherwise know in the art to enhance selective chemical (e.g. stability) and biological (e.g., affinity for the POI) properties.
  • modifications are known in the art and include those which increase biological penetration into a given biological system (e.g., blood, lymphatic system, central nervous system), increase oral availability, increase solubility to allow administration by injection, alter metabolism and alter rate of excretion.
  • variable herein includes definitions of that variable as any single group or combination of listed groups.
  • the recitation of an embodiment for a variable herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.
  • the recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof. As such, the following embodiments are present alone or in combination if applicable.
  • a compound of Formula (I) or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof is:
  • R 1 is selected from optionally substituted heterocyclylene, optionally substituted arylene, optionally substituted heteroarylene, optionally substituted aminylacylene, optionally substituted acylaminylene and optionally substituted acylene;
  • R 2 is selected from H, halogen and optionally substituted C 1 -C 6 alkyl, e.g., methyl;
  • R 3 and R 4 are independently selected from H and optionally substituted C 1 -C 6 alkyl, e.g., methyl;
  • R 5 is selected from H and optionally substituted C 1 -C 6 alkyl, e.g., methyl;
  • L is an optionally substituted linker having 2 to 18 atoms in the chain length;
  • X is a protein binding moiety;
  • Z is N or CH.
  • R 1 is located at either a 5′ or 6′ position of the oxindole (or azaoxindole) ring.
  • this particular 2-oxindole (2-indolone) structure is advantageous for binding to the E3 ligase. This was determined based on a fragment based screening using thermal shift and structure-activity relationship (SAR) between the chemical structure of the oxindole molecule and its biological activity to E3 ligase. The binding was further validated using ligand-based NMR methods.
  • SAR thermal shift and structure-activity relationship
  • the (non-covalent) compound can be released so it will always be able to achieve a base level of catalysis. Accordingly, there is no need for very strong affinity of the compound for the POI and/or E3 ligase.
  • compounds of Formula (I), and in particular the ubiquitination moiety have an IC 50 (thalidomide binding domain CRBN) value of from about 30 ⁇ M to >300 ⁇ M, e.g., about 100 ⁇ M.
  • IC 50 thalidomide binding domain CRBN
  • compounds of Formula (I), and in particular the ubiquitination moiety have a GI 50 value of from about 0.005 ⁇ M to >10 ⁇ M.
  • the range would be from 0.005 ⁇ M to >10 ⁇ M.
  • the oxindole moiety is not a drug, e.g., an immunomodulatory drug, known in the art as of the International Filing Date of this application.
  • the oxindole moiety is not such a known drug derivatized to allow its attachment to the linker and incorporation into a compound of the invention.
  • Such known drug moieties and derivatives thereof are, in these embodiments, expressly removed by proviso.
  • the positioning on the oxindole ring is as follows:
  • R 1 is selected from optionally substituted heterocyclylene, optionally substituted arylene, optionally substituted heteroarylene, optionally substituted aminylacylene, optionally substituted acylaminylene and optionally substituted acylene. In other embodiments, R 1 is selected from optionally substituted heterocyclylene, optionally substituted arylene, optionally substituted heteroarylene, optionally substituted aminylacylene and optionally substituted acylaminylene. In other embodiments, R 1 is selected from optionally substituted arylene, optionally substituted heteroarylene, optionally substituted aminylacylene and optionally substituted acylaminylene.
  • R 1 is selected from optionally substituted phenylene, optionally substituted pyridinylene, optionally substituted pyrazolylene, optionally substituted indolylene, optionally substituted azaindolylene, optionally substituted aminylacylene, optionally substituted acylaminylene, optionally substituted heterocyclylacylene, optionally substituted heterocyclyloxyene, optionally substituted heteroaryloxyene, optionally substituted alkoxyene and optionally substituted piperidinylene.
  • R 1 is selected from optionally substituted phenylene, optionally substituted pyridinylene, optionally substituted pyrazolylene, optionally substituted aminylacylene and optionally substituted acylaminylene.
  • the optional substituent at R 1 is selected from halogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted alkoxy, optionally substituted amino, optionally substituted oxyacyl, optionally substituted acyl, optionally substituted aminoacyl, optionally substituted acylamino, optionally substituted aryl, optionally substituted heteroaryl and optionally substituted heterocyclylacyl.
  • the optional substituent at R 1 is selected from optionally substituted heterocyclyl, optionally substituted amino, optionally substituted aminoacyl, optionally substituted acylamino, optionally substituted aryl, optionally substituted heteroaryl.
  • the optional substituent at R 1 is selected from fluoro, chloro, bromo, methyl, ethyl, methoxy, amino and acyloxy.
  • R 1 is pyridyl substituted with an amine moiety, which is a terminal moiety of linker L 3 .
  • R 2 is selected from H, halogen and optionally substituted methyl. In other embodiments, R 2 is selected from H, halogen and methyl. In an exemplary embodiment, R 2 is fluoro.
  • R 1 is optionally substituted heteroarylene and R 2 is selected from H, halogen or optionally substituted methyl.
  • R 2 is optionally substituted phenylene, optionally substituted pyridinylene, optionally substituted pyrazolylene, optionally substituted indolylene, optionally substituted azaindolylene and optionally substituted piperidinylene, and R 2 is selected from H, halogen or methyl.
  • R 3 , R 4 and R 5 are independently selected from H, optionally substituted methyl. In other embodiments, R 3 , R 4 and R 5 are independently selected from H and methyl.
  • the compounds of the invention have a structure according to Formula (II):
  • R 6 is H or C 1 -C 6 alkyl, e.g., methyl.
  • X 1 , X 2 and X 3 are independently selected from N and CH, and C-L 3 , such that when X 1 and X 3 are N, X 2 is C-L 3 .
  • L 3 is a linker as that term is defined herein.
  • X 2 is N, X 1 and X 3 are CH.
  • X 2 is N, X 1 and X 3 are C-L 3 or CH, and the pyridyl moiety is attached at the 5-position of the oxindole ring.
  • X 2 is N and X 1 is C-L 3 .
  • the compounds of the invention have a structure according to Formula (III):
  • L 4 is a linker as described herein.
  • X 1 , X 2 and X 3 are independently selected from N and CH, and C-L 4 , such that when X 1 and X 3 are N, X 2 is C-L 4 .
  • X 2 is N, X 1 and X 3 are CH.
  • X 2 is N, X 1 and X 3 are C-L 4 or CH, and the pyridyl moiety is attached at the 5-position of the oxindole ring.
  • X 2 is N and X 1 is C-L 4 .
  • the compounds of the invention have a structure according to Formula (IV):
  • L 2 is a linker as that term is defined herein.
  • the index a represents an integer selected from 2, 3, 4, 5, 6, 7, 8, 9, and 10.
  • the compounds of the invention have a structure according to Formula (V):
  • L 1 is a linker as that term is defined herein.
  • the protein binding moiety X can be any moiety that is able to target a desired protein of interest.
  • X can be a bromodomain-containing protein 4 (BRD4) binding moiety.
  • BRD4 BRD4 inhibitor.
  • BRD4 belongs to the bromodomain and extraterminal domain (BET) family of proteins, which is characterized by two bromodomains (BD) at the N-terminus and an extraterminal domain (ET domain) at the C-terminus.
  • BET bromodomain and extraterminal domain
  • the two BDs recognize and interact with acetylated lysine residues at the N-terminal tails of histones; the ET domain is largely considered to serve a scaffolding function in recruiting diverse transcriptional regulators.
  • BRD4 plays a key role in regulating gene expression by recruiting relevant transcription modulators to specific genomic loci. Owing to its pivotal role in modulating the expression of essential oncogenes, BRD4 has emerged as a promising therapeutic target in multiple cancer types, including midline carcinoma, acute myeloid leukemia, multiple myeloma, Burkitt lymphoma and prostate cancer. Additionally, by using BRD4 to target c-MYC, many of human cancers that has remained undruggable can be targeted.
  • X is a derivative of JQ1:
  • X is a derivative of OTX015 (e.g., S enantiomer):
  • X can be selected from bromodomain-containing protein 4 (BRD4) binding moiety, transcriptional enhanced associate domain (TEAD) binding moiety, Polycomb Repressive Complex 2 (PRC2) binding moiety, focal adhesion kinase (FAK) binding moiety, BCR-ABL binding moiety, Hippo pathway protein binding moiety and transcription factor binding moiety.
  • BBD4 bromodomain-containing protein 4
  • TEAD transcriptional enhanced associate domain
  • PRC2 Polycomb Repressive Complex 2
  • FK focal adhesion kinase
  • the protein binding moiety can be a drug compound with a low or moderate binding affinity with the protein of interest. This is in accordance with what is discussed above; i.e. there is no need for very strong affinity of the compound for the POI and/or E3 ligase to achieve the catalytic, event-driven modality.
  • X can be a small molecule, for example a drug compound.
  • these precursor molecules are modifiable by placement of one or more reactive functional group, such as those set forth herein, thereby allowing the resulting reactive derivative to be covalently joined to a component of a linker and forming a compound of the invention.
  • the invention provides compounds according to Formula (VI):
  • L 2 is a linker as that term is defined herein.
  • the index a represents an integer selected from 1-18, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10.
  • the invention provides compounds according to Formula (VII):
  • L 1 is a linker as that term is defined herein.
  • the invention provides compound according to Formula (VIII):
  • L 1 is a linker as that term is defined herein.
  • L 5 is a linker as that term is defined herein.
  • the compounds of the invention have the formula:
  • L 5 is a linker as that term is defined herein.
  • R 1 when R 1 is selected from optionally substituted heterocyclylene, optionally substituted arylene, optionally substituted heteroarylene, optionally substituted heteroarylaminoacylene, optionally substituted heteroarylacylaminoene, optionally substituted heteroarylacylene, optionally substituted arylaminoacylene, optionally substituted arylacylaminoene and optionally substituted arylacylene.
  • R 1 is selected from the formulae below:
  • the linker moiety (“L”) is attached at a para or ortho position of the 6 membered ring.
  • the ubiquitination moiety (oxindole ring, azaoxindole ring) is connected to the protein binding moiety X by means of a linker L.
  • the connection is by means of covalent bond via the linker L.
  • a linker can be any useful structure for that joins a ligand to a reactive functional group or a targeting moiety, such as an antibody.
  • Examples of a linker include 0-order linkers (i.e., a bond), substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl and substituted or unsubstituted heteroaryl.
  • linkers include substituted or unsubstituted (C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 , C 12 , C 13 , C 14 , C 15 , C 16 , C 17 , C 18 , C 19 , C 20 ) alkyl, substituted or unsubstituted heteroalkyl, —C(O)NR′—, —C(O)O—, —C(O)S—, and —C(O)CR′R′′, wherein R′ and R′′ are members independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl and substituted or unsubstituted heterocycloalkyl.
  • a linker includes at least one heteroatom.
  • exemplary linkers also include —C(O)NH—, —C(O), —NH—, —S—, —O—, and the like.
  • a linker is a heteroalkyl substituted with a reactive functional group.
  • L is an optionally substituted linker having 2 to 18 atoms in the chain length. In other embodiments, L is an optionally substituted linker having 2 to 15 atoms in the chain length. In other embodiments, L is an optionally substituted linker having 2 to 12 atoms in the chain length. In some embodiments, L is a linker selected from optionally substituted alkyl, optionally substituted heteroalkyl, optionally substituted cycloalkyl (such as spirocycloalkyl) and optionally substituted heterocyclyl, each having 2 to 15 atoms in the chain length.
  • L is a linker selected from optionally substituted C 2 -C 15 alkyl and optionally substituted polyethoxy having 2 to 15 atoms in the chain length. In other embodiments, L is a linker selected from optionally substituted C 2 -C 10 alkyl and optionally substituted polyethoxy having 2 to 10 atoms in the chain length.
  • the linker is ethylene glycol or polyethylene glycol includes 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10, e.g., 1-6, ethylene glycol (OCH 2 CH 2 O), or (CH 2 CH 2 OCH 2 CH 2 ) subunits.
  • the linker is polyethylene glycol with one repeating unit (PEG-1) or polyethylene glycol with three repeating units (PEG-3).
  • the linker is selected from piperidinylene, piperazinylene, pyrrolidinylene, azetidinylene, spirocycloalkylene (such as spiro[3.3]heptanylene, spiro[4.4]nonanylene) and amides.
  • the linker L can be selected from, but is not limited to (wherein represents the connection to the ubiquitination moiety or oxindolyl moiety and the protein targeting moiety):
  • a linker precursor which has one or more reactive functional group as a component thereof.
  • the functional group(s) is reacted with a reactive group on other components of the molecule to form the final molecule.
  • the linker precursor becomes the linker.
  • Reactive functional groups and classes of reactions useful in practicing the present invention are generally those that are well known in the art of bioconjugate chemistry. Currently favored classes of reactions available with reactive functional groups of the invention are those which proceed under relatively mild conditions.
  • nucleophilic substitutions e.g., reactions of amines and alcohols with acyl halides and activated esters
  • electrophilic substitutions e.g., enamine reactions
  • additions to carbon-carbon and carbon-heteroatom multiple bonds e.g., Michael reactions and Diels-Alder reactions.
  • a reactive functional group refers to a group selected from olefins, acetylenes, alcohols, phenols, ethers, oxides, halides, aldehydes, ketones, carboxylic acids, esters, amides, cyanates, isocyanates, thiocyanates, isothiocyanates, amines, hydrazines, hydrazones, hydrazides, diazo, diazonium, nitro, nitriles, mercaptans, sulfides, disulfides, sulfoxides, sulfones, sulfonic acids, sulfinic acids, acetals, ketals, anhydrides, sulfates, sulfenic acids isonitriles, amidines, imides, imidates, nitrones, hydroxylamines, oximes, hydroxamic acids thiohydroxamic acids, allenes, ortho esters,
  • Reactive functional groups also include those used to prepare bioconjugates, e.g., N-hydroxysuccinimide esters, maleimides and the like. Methods to prepare each of these functional groups are well known in the art and their application or modification for a particular purpose is within the ability of one of skill in the art (see, for example, Sandler and Karo, eds., Organic Functional Group Preparations, (Academic Press, San Diego, 1989)).
  • a reactive functional group can be chosen according to a selected reaction partner.
  • an activated ester such as an NHS ester will be useful to label a a moiety via amine residues.
  • Sulfhydryl reactive groups such as maleimides can be used to label moieties carrying an SH-group (e.g., cysteine).
  • SH-group e.g., cysteine
  • Compounds with hydroxyl groups may be reacted by first oxidizing their carbohydrate moieties (e.g., with periodate) and reacting resulting aldehyde groups with a hydrazine containing ligand.
  • the reactive functional groups can be chosen such that they do not participate in, or interfere with reactions with which they are not involved, which are necessary to assemble the compound.
  • a reactive functional group can be protected from participating in the reaction by means of a protecting group.
  • protecting groups see, for example, Greene et al., PROTECTIVE GROUPS IN ORGANIC SYNTHESIS, John Wiley & Sons, New York, 1991.
  • a reactive functional group is selected from an amine, (such as a primary or secondary amine), hydrazine, hydrazide and sulfonylhydrazide.
  • Amines can, for example, be acylated, alkylated or oxidized.
  • Useful non-limiting examples of amino-reactive groups include N-hydroxysuccinimide (NHS) esters, sulfur-NHS esters, imidoesters, isocyanates, isothiocyanates, acylhalides, arylazides, p-nitrophenyl esters, aldehydes, sulfonyl chlorides, thiazolides and carboxyl groups.
  • NHS N-hydroxysuccinimide
  • NHS esters and sulfo-NHS esters react preferentially with primary (including aromatic) amino groups of a reaction partner.
  • the imidazole groups of histidines are known to compete with primary amines for reaction, but the reaction products are unstable and readily hydrolyzed.
  • the reaction involves the nucleophilic attack of an amine on the acid carboxyl of an NHS ester to form an amide, releasing the N-hydroxysuccinimide.
  • Imidoesters are the most specific acylating reagents for reaction with amine groups of a molecule such as a protein. At a pH between 7 and 10, imidoesters react only with primary amines. Primary amines attack imidates nucleophilically to produce an intermediate that breaks down to amidine at high pH or to a new imidate at low pH. The new imidate can react with another primary amine, thus crosslinking two amino groups, a case of a putatively monofunctional imidate reacting bifunctionally. The principal product of reaction with primary amines is an amidine that is a stronger base than the original amine. The positive charge of the original amino group is therefore retained. As a result, imidoesters do not affect the overall charge of the conjugate.
  • Isocyanates (and isothiocyanates) react with the primary amines of the conjugate components to form stable bonds. Their reactions with sulfhydryl, imidazole, and tyrosyl groups give relatively unstable products.
  • Acylazides are also used as amino-specific reagents in which nucleophilic amines of the reaction partner attack acidic carboxyl groups under slightly alkaline conditions, e.g. pH 8.5.
  • Arylhalides such as 1,5-difluoro-2,4-dinitrobenzene react preferentially with the amino groups and tyrosine phenolic groups of the conjugate components, but also with its sulfhydryl and imidazole groups.
  • p-Nitrophenyl esters of carboxylic acids are also useful amino-reactive groups. Although the reagent specificity is not very high, ⁇ - and ⁇ -amino groups appear to react most rapidly.
  • Aldehydes react with primary amines of the conjugate components (e.g., 6-amino group of lysine residues). Although unstable, Schiff bases are formed upon reaction of the protein amino groups with the aldehyde. Schiff bases, however, are stable, when conjugated to another double bond. The resonant interaction of both double bonds prevents hydrolysis of the Schiff linkage. Furthermore, amines at high local concentrations can attack the ethylenic double bond to form a stable Michael addition product. Alternatively, a stable bond may be formed by reductive amination.
  • Aromatic sulfonyl chlorides react with a variety of sites of the conjugate components, but reaction with the amino groups is the most important, resulting in a stable sulfonamide linkage.
  • Free carboxyl groups react with carbodiimides, soluble in both water and organic solvents, forming pseudoureas that can then couple to available amines yielding an amide linkage.
  • Yamada et al., Biochemistry, 1981, 20: 4836-4842 e.g., teach how to modify a protein with carbodiimides.
  • a reactive functional group is selected from a sulfhydryl group (which can be converted to disulfides) and sulfhydryl-reactive group.
  • sulfhydryl-reactive groups include maleimides, alkyl halides, acyl halides (including bromoacetamide or chloroacetamide), pyridyl disulfides, and thiophthalimides.
  • Maleimides react preferentially with the sulfhydryl group of the conjugate components to form stable thioether bonds. They also react at a much slower rate with primary amino groups and the imidazole groups of histidines. However, at pH 7 the maleimide group can be considered a sulfhydryl-specific group, since at this pH the reaction rate of simple thiols is 1000-fold greater than that of the corresponding amine.
  • Alkyl halides react with sulfhydryl groups, sulfides, imidazoles, and amino groups. At neutral to slightly alkaline pH, however, alkyl halides react primarily with sulfhydryl groups to form stable thioether bonds. At higher pH, reaction with amino groups is favored.
  • Pyridyl disulfides react with free sulfhydryl groups via disulfide exchange to give mixed disulfides.
  • pyridyl disulfides are relatively specific sulfhydryl-reactive groups.
  • Thiophthalimides react with free sulfhydryl groups to also form disulfides.
  • any of these reactive functional groups in any useful combination can be placed on any component of the precursors of the compounds of the invention in the course of the synthesis of the compounds of the invention.
  • the compounds of the present disclosure initiate a degradation cascade by forming a ternary complex with a POI and an E3, bringing the ubiquitination machinery in close proximity for subsequent POI ubiquitination.
  • the polyubiquitinated POI is then recognized and degraded by the 26S proteasome. Accordingly, the ‘close proximity’ is part of the key for proper functioning of this mechanism.
  • a specific linker length is particularly advantageous for the purpose of this invention.
  • the linker length is too short, it was found that the oxindole moiety hinders the protein binding moiety in binding to the target protein.
  • the linker length is too long, ubiquitination does not occur or occurs at a very slow rate as the proper signals are not transmitted to the target protein.
  • the chain length as disclosed herein is optimal such that the oxindole moiety does not hinder the protein binding moiety and the rate of ubiquitination is acceptable.
  • the linker is of the para-vector motif with a poly(ethylene glycol) moiety, and the poly(ethylene glycol) and m is 3 or 4.
  • Preferred compounds according to this motif form a ternary complex as discussed herein.
  • the linker is of the ortho-vector motif with a poly(ethylene glycol) moiety, and the poly(ethylene glycol) and m is 1, 2, 3 or 4.
  • Preferred compounds according to this motif form a ternary complex as discussed herein.
  • linker is, at one end of the linker, connected to the ubiquitination moiety, and that the linker is, at the other end, connected to the protein binding moiety.
  • Such connection can be the same at both ends or different at both ends.
  • the connection can be by means of an amide bond.
  • connection can play a role in influencing the activity of the compounds as it increases the linker length and also add to the electron density of the compound.
  • the nature of the linkage site, linker length and linker composition also play an important role. Additionally, some moieties are more labile than others and may not be suitable for use in a linker. In this regard, the pharmacophore of the compound may change as the 3D spatial arrangement of the protein binding moiety and/or ubiquitination moiety may be impacted.
  • the attachment of the linker to the protein binding moiety and/or ubiquitination moiety also play a role. It is believed that the attachment of the linker alters the spatial availability of the protein binding moiety and/or ubiquitination moiety to their respective targets, and according influences the affinity. In this regard, a one atom difference can potentially result in a large difference in activity.
  • R 1 is, in some embodiments, advantageously located at either a 5′ or 6′ position of the oxindole ring.
  • the compound of Formula (I) may alternatively be represented by Formula (Ia) or (Ib):
  • R 1 , R 2 , R 3 , R 4 and R 5 are as defined herein.
  • compounds of the present invention are represented by Formulae (Ia′) or (Ib′):
  • R 2 , R 3 , R 4 , R 5 and R 6 are as defined herein.
  • the compound of the invention has a formula selected from:
  • the compound of the invention has a formula selected from:
  • the compound of the invention has a formula selected from:
  • the substituents R 3 , R 4 , R 5 and R 6 , and X are as described herein.
  • the six-member ring of the oxindole (or oxazaindole) is substituted with halogen, e.g., fluoro.
  • an exemplary compound of the invention is selected from 148, 151, 152, 154, 156, 157, 158, 159 and 160.
  • L is poly(ethylene glycol) and L is covalently attached to the oxindole (or oxazaindole) moiety via O, or NH.
  • An exemplary poly(ethylene glycol) includes 2, 3, or 4 ethylene glycol subunits.
  • R 6 is selected from halogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted alkoxy, optionally substituted amino, optionally substituted oxyacyl, optionally substituted acyl, optionally substituted aminoacyl and optionally substituted acylamino.
  • R 6 is selected from halogen, optionally substituted alkyl, optionally substituted alkoxy and optionally substituted amino. In other embodiments, R 6 is selected from Cl, F, Br, methyl, ethyl, propyl, methoxy, —NH 2 , —NHCH 3 , —C(O)NH 2 , —C(O)NHCH 3 , —NHC(O)CH 3 , and —C(O)OCH 2 CH 3 .
  • the compound of the invention may be represented as Formula (I′):
  • R 1 , R 2 , R 3 , R 4 , R 5 and L are as defined herein; and wherein R 1 is optionally located at either a 5′ or 6′ position of the oxindole ring.
  • the compound of the invention may be represented by Formula (I′′):
  • R 1 , R 2 , R 3 , R 4 , R 5 and L are as defined herein; and wherein R 1 is optionally located at either a 5′ or 6′ position of the oxindole ring.
  • the exemplary compounds of the invention are able to permeate cells to exert their effect, and accordingly have good cellular activity.
  • the compound the invention can be selected from the following compounds in Table 1:
  • the present disclosure also relates to a compound of Formula (XI) or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof:
  • R 1′ is selected from optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted aminoacyl, optionally substituted acylamino, and optionally substituted acyl;
  • R 2 is selected from H, halogen and methyl;
  • R 3 and R 4 are independently selected from H and methyl;
  • R 5 is selected from H and methyl; wherein R 1′ is located at either a 5′ or 6′ position of the oxindole ring.
  • R 1′ is selected from optionally substituted phenyl, optionally substituted pyridinyl, optionally substituted pyrazolyl, optionally substituted indolyl, optionally substituted azaindolyl, optionally substituted aminoacyl, optionally substituted acylamino, optionally substituted heterocyclylacyl and optionally substituted piperidinyl.
  • R 3 , R 4 and R 5 are independently selected from H and methyl.
  • the compound of Formula (XI) may be represented as Formula (XI′) or (XI′′):
  • R 1′ , R 2 , R 3 , R 4 and R 5 are as defined herein.
  • compounds of Formula (II′) have R′ located at a 6′ position of the oxindole ring and compounds of Formula (II′′) have R′ located at a 5′ position of the oxindole ring.
  • the compound of Formula (XI) may also be represented as Formulae (XI′a) or (II′′a):
  • R 2 , R 3 , R 4 and R 5 are as defined herein, and R 6 is selected from halogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted alkoxy, optionally substituted amino, optionally substituted oxyacyl, optionally substituted acyl, optionally substituted aminoacyl and optionally substituted acylamino.
  • R 6 is selected from optionally substituted amino, optionally substituted aminoacyl and optionally substituted acylamino.
  • R 6 is optionally substituted spirocycloalkyl.
  • Exemplary compounds of the invention include a fragment of use as a ubiquitination moiety, e.g., XI, XI′, XI′′, XI′a, XI′a, which is substituted as shown in the Formulae set forth herein and which is selected from the fragments in Table 2:
  • the present disclosure also relates to a compound of Formula (III) or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof:
  • R 1 , R 2 , R 3 , R 4 and R 5 are as defined herein; R 1 is located at either a 5′ or 6′ position of the oxindole ring; and L is an optionally substituted linker having 2 to 18 atoms in the chain length.
  • L is a linker selected from optionally substituted alkyl, optionally substituted heteroalkyl, optionally substituted cycloalkyl (such as spirocycloalkyl) and optionally substituted heterocyclyl, each having 2 to 18 atoms in the chain length. In other embodiments, L is a linker having 2 to 15 atoms in the chain length.
  • Fragments containing a linker covalently attached to a ubiquitination moiety may be formed using compound of Formula (XII).
  • Exemplary compounds (and the fragments inferred from these compounds are set forth in Table 3.
  • the present disclosure relates to a pharmaceutical composition
  • a pharmaceutical composition comprising an effective amount of compound set forth in a Formula herein or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof.
  • the pharmaceutical composition may optionally be in combination with a pharmaceutically acceptable carrier, excipient or diluent.
  • the present disclosure relates to a method of inducing degradation of an overexpressed protein in a cell, including a step of contacting a compound set forth in a Formula herein with the cell to induce degradation of the overexpressed protein in the cell.
  • the present disclosure relates to a method of treating a disease or condition associated with an overexpressed protein, comprising administering a compound of a Formula set forth herein or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof in a subject in need thereof.
  • the present disclosure relates to a compound of a Formula set forth herein or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof for use as a medicament.
  • the present disclosure relates to a compound of Formula (I) or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof for use in the treatment of a disease or condition associated with an overexpressed protein.
  • the present disclosure relates to a use of a compound of the invention or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof in the manufacture of a medicament for the treatment of a disease or condition associated with an overexpressed protein.
  • the overexpressed or malfunctioning protein can be selected from BRD4, transcriptional enhanced associate domain (TEAD), Polycomb Repressive Complex 2 (PRC2), focal adhesion kinase (FAK), BCR-ABL, Hippo pathway protein and transcription factor.
  • the disease or condition can be selected from hyperplasia and cancer (such as multiple myeloma, glioblastoma, uveal melanoma, liposarcoma, hepatocellular carcinoma, midline carcinoma, acute myeloid leukemia, Burkitt lymphoma and prostate cancer).
  • the diseases can also be a protein accumulation disease, for example Alzheimer's disease and amyotrophic lateral sclerosis.
  • Suitable pharmaceutically acceptable salts include, but are not limited to salts of pharmaceutically acceptable inorganic acids such as hydrochloric, sulphuric, phosphoric, nitric, carbonic, boric, sulfamic, and hydrobromic acids, or salts of pharmaceutically acceptable organic acids such as acetic, propionic, butyric, tartaric, maleic, hydroxymaleic, fumaric, maleic, citric, lactic, mucic, gluconic, benzoic, succinic, oxalic, phenylacetic, methanesulphonic, toluenesulphonic, benezenesulphonic, salicyclic sulphanilic, aspartic, glutamic, edetic, stearic, palmitic, oleic, lauric, pantothenic, tannic, ascorbic and valeric acids.
  • pharmaceutically acceptable inorganic acids such as hydrochloric, sulphuric, phosphoric, nitric
  • Base salts include, but are not limited to, those formed with pharmaceutically acceptable cations, such as sodium, potassium, lithium, calcium, magnesium, ammonium and alkylammonium.
  • the present invention includes within its scope cationic salts eg sodium or potassium salts, or alkyl esters (eg methyl, ethyl) of the phosphate group.
  • Basic nitrogen-containing groups may be quarternised with such agents as lower alkyl halide, such as methyl, ethyl, propyl, and butyl chlorides, bromides and iodides; dialkyl sulfates like dimethyl and diethyl sulfate; and others.
  • lower alkyl halide such as methyl, ethyl, propyl, and butyl chlorides, bromides and iodides
  • dialkyl sulfates like dimethyl and diethyl sulfate; and others.
  • prodrug any compound that is a prodrug of the compound the invention is also within the scope and spirit of the invention.
  • the compound of the invention can be administered to a subject in the form of a pharmaceutically acceptable pro-drug.
  • pro-drug is used in its broadest sense and encompasses those derivatives that are converted in vivo to the compound of the invention. Such derivatives would readily occur to those skilled in the art.
  • Other texts which generally describe prodrugs (and the preparation thereof) include: Design of Prodrugs, 1985, H. Bundgaard (Elsevier); The Practice of Medicinal Chemistry, 1996, Camille G.
  • N atom on the oxindole ring may be reacted with an acid (for example acetic acid) to form N-acetyloxindole.
  • an acid for example acetic acid
  • the compound of the invention may be in crystalline form either as the free compound or as a solvate (e.g. hydrate) and it is intended that both forms are within the scope of the present invention.
  • Methods of solvation are generally known within the art.
  • the compound of the invention or a pharmaceutically acceptable salt, solvate or prodrug thereof is administered to the patient in a therapeutically effective amount.
  • the term “effective amount” relates to an amount of compound which, when administered according to a desired dosing regimen, provides the desired therapeutic activity. Dosing may occur at intervals of minutes, hours, days, weeks, months or years or continuously over any one of these periods. Suitable dosages may lie within the range of about 0.1 ng per kg of body weight to 1 g per kg of body weight per dosage, such as is in the range of 1 mg to 1 g per kg of body weight per dosage. In one embodiment, the dosage may be in the range of 1 mg to 500 mg per kg of body weight per dosage. In another embodiment, the dosage may be in the range of 1 mg to 250 mg per kg of body weight per dosage. In yet another embodiment, the dosage may be in the range of 1 mg to 100 mg per kg of body weight per dosage, such as up to 50 mg per body weight per dosage.
  • the compound, composition or combinations of the invention may also be suitable for intravenous administration.
  • a compound of the invention or a pharmaceutically acceptable salt, solvate or prodrug thereof may be administered intravenously at a dose of up to 16 mg/m 2 .
  • Suitable dosage amounts and dosing regimens can be determined by the attending physician and may depend on the severity of the condition as well as the general age, health and weight of the patient to be treated.
  • the compound of the invention may be administered in a single dose or a series of doses. While it is possible for the active ingredient to be administered alone, it is preferable to present it as a composition, preferably as a pharmaceutical composition.
  • the formulation of such compositions is well known to those skilled in the art.
  • the composition may contain any suitable carriers, diluents or excipients. These include all conventional solvents, dispersion media, fillers, solid carriers, coatings, antifungal and antibacterial agents, dermal penetration agents, surfactants, isotonic and absorption agents and the like. It will be understood that the compositions of the invention may also include other supplementary physiologically active agents.
  • the carrier is pharmaceutically “acceptable” in the sense of being compatible with the other ingredients of the composition and not injurious to the patient.
  • the compositions may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. Such methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more accessory ingredients. In general, the compositions are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both, and then if necessary shaping the product.
  • Injectables for such use can be prepared in conventional forms, either as a liquid solution or suspension or in a solid form suitable for preparation as a solution or suspension in a liquid prior to injection, or as an emulsion.
  • Carriers can include, for example, water, saline (e.g., normal saline (NS), phosphate-buffered saline (PBS), balanced saline solution (BSS)), sodium lactate Ringer's solution, dextrose, glycerol, ethanol, and the like; and if desired, minor amounts of auxiliary substances, such as wetting or emulsifying agents, buffers, and the like can be added.
  • saline e.g., normal saline (NS), phosphate-buffered saline (PBS), balanced saline solution (BSS)
  • sodium lactate Ringer's solution sodium lactate Ringer's solution
  • dextrose dextrose
  • glycerol glyce
  • the compound of the invention is administered to the eye of a subject in need of treatment with a compound of the invention.
  • the compound, composition or combination can be dissolved in a pharmaceutically effective carrier and be injected into the vitreous of the eye with a fine gauge hollow bore needle (e.g., 30 gauge, 1 ⁇ 2 or 3 ⁇ 8 inch needle) using a temporal approach (e.g., about 3 to about 4 mm posterior to the limbus for human eye to avoid damaging the lens).
  • the compound may be injected directly to the eye, and in particular the vitreous of the eye.
  • the compound, composition or combination of the invention can be administered to the vitreous of the eye using any intravitreal or transscleral administration technique.
  • the compound, composition or combination can be administered to the vitreous of the eye by intravitreal injection.
  • Intravitreal injection typically involves administering a compound of the invention or a pharmaceutically acceptable salt, solvate or prodrug in a total amount between 0.1 ng to 10 mg per dose.
  • a person skilled in the art will appreciate that other means for injecting and/or administering the compound, composition or combinations to the vitreous of the eye can also be used.
  • These other means can include, for example, intravitreal medical delivery devices.
  • These devices and methods can include, for example, intravitreal medicine delivery devices, and biodegradable polymer delivery members that are inserted in the eye for long term delivery of medicaments.
  • These devices and methods can further include transscleral delivery devices.
  • a therapeutically effective amount is intended to include at least partially attaining the desired effect, or delaying the onset of, or inhibiting the progression of, or halting or reversing altogether the onset or progression of macular degeneration.
  • solutions or suspensions of the compound, composition or combinations of the invention may be formulated as eye drops, or as a membranous ocular patch, which is applied directly to the surface of the eye.
  • Topical application typically involves administering the compound of the invention in an amount between 0.1 ng and 10 mg.
  • the compound, composition or combinations of the invention may also be suitable for oral administration and may be presented as discrete units such as capsules, sachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous or non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion.
  • the active ingredient may also be presented as a bolus, electuary or paste.
  • the compound of formula (I) or a pharmaceutically acceptable salt, solvate or prodrug is orally administerable.
  • a tablet may be made by compression or moulding, optionally with one or more accessory ingredients.
  • Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder (e.g inert diluent, preservative disintegrant (e.g. sodium starch glycolate, cross-linked polyvinyl pyrrolidone, cross-linked sodium carboxymethyl cellulose) surface-active or dispersing agent.
  • a binder e.g inert diluent, preservative disintegrant (e.g. sodium starch glycolate, cross-linked polyvinyl pyrrolidone, cross-linked sodium carboxymethyl cellulose) surface-active or dispersing agent.
  • Moulded tablets may be made by moulding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
  • the tablets may optionally be coated or scored and may be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile. Tablets may optionally be provided with an enteric coating, to provide release in parts of the gut other than the stomach.
  • the compound, composition or combinations of the invention may be suitable for topical administration in the mouth including lozenges comprising the active ingredient in a flavoured base, usually sucrose and acacia or tragacanth gum; pastilles comprising the active ingredient in an inert basis such as gelatine and glycerin, or sucrose and acacia gum; and mouthwashes comprising the active ingredient in a suitable liquid carrier.
  • lozenges comprising the active ingredient in a flavoured base, usually sucrose and acacia or tragacanth gum
  • pastilles comprising the active ingredient in an inert basis such as gelatine and glycerin, or sucrose and acacia gum
  • mouthwashes comprising the active ingredient in a suitable liquid carrier.
  • the compound, composition or combinations of the invention may be suitable for topical administration to the skin may comprise the compounds dissolved or suspended in any suitable carrier or base and may be in the form of lotions, gel, creams, pastes, ointments and the like.
  • suitable carriers include mineral oil, propylene glycol, polyoxyethylene, polyoxypropylene, emulsifying wax, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water.
  • Transdermal patches may also be used to administer the compounds of the invention.
  • the compound, composition or combination of the invention may be suitable for parenteral administration include aqueous and non-aqueous isotonic sterile injection solutions which may contain anti-oxidants, buffers, bactericides and solutes which render the compound, composition or combination isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
  • the compound, composition or combination may be presented in unit-dose or multi-dose sealed containers, for example, ampoules and vials, and may be stored in a freeze-dried (lyophilised) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use.
  • Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.
  • Preferred unit dosage composition or combinations are those containing a daily dose or unit, daily sub-dose, as herein above described, or an appropriate fraction thereof, of the active ingredient.
  • composition or combination of this invention may include other agents conventional in the art having regard to the type of composition or combination in question, for example, those suitable for oral administration may include such further agents as binders, sweeteners, thickeners, flavouring agents disintegrating agents, coating agents, preservatives, lubricants and/or time delay agents.
  • suitable sweeteners include sucrose, lactose, glucose, aspartame or saccharine.
  • Suitable disintegrating agents include cornstarch, methylcellulose, polyvinylpyrrolidone, xanthan gum, bentonite, alginic acid or agar.
  • Suitable flavouring agents include peppermint oil, oil of wintergreen, cherry, orange or raspberry flavouring.
  • Suitable coating agents include polymers or copolymers of acrylic acid and/or methacrylic acid and/or their esters, waxes, fatty alcohols, zein, shellac or gluten.
  • Suitable preservatives include sodium benzoate, vitamin E, alpha-tocopherol, ascorbic acid, methyl paraben, propyl paraben or sodium bisulphite.
  • Suitable lubricants include magnesium stearate, stearic acid, sodium oleate, sodium chloride or talc.
  • Suitable time delay agents include glyceryl monostearate or glyceryl distearate.
  • fragments were identified which bind to CRBN.
  • Protein NMR studies and ligand competition assays were performed to analyse the fragments and one fragment binding to the thalidomide binding region of CRBN was identified as the most viable option, after balancing the various factors such as affinity, pharmacokinetics and toxicity. These fragments were then further modified and optimized to generate more potent CRBN binders.
  • Step 1 SNAr reaction: To a thick wall vial/pressure tube was added pyridyl halide (1.0 equiv.), amine (1.2 equiv.), N-methylpyrrolidine and trimethylamine. The reaction mixture was stirred at 80-110° C. for 2-12 h. The reaction mixture was diluted with ethyl acetate and washed with water and brine. The organic phase was dried with anhydrous Na 2 SO 4 and concentrated under vacuum. The crude product was purified by column chromatography to afford the purified product as pale yellow solid/oil with a yield of 30-80%.
  • Step 2 (Suzuki reaction): A mixture of compound from step 1 (1.0 equiv.), boronic acid/ester (1.2 equiv.) and potassium phosphate (3.0 equiv.) in 1,4-dioxane and water (4:1) was degassed for 15 min with nitrogen. Tetrakis(triphenylphosphine)palladium(O) or Pd(dppf)Cl 2 .DCM (0.05-0.15 equiv.) was added and the reaction mixture was heated to reflux for 3-18 h. After completion of starting material, the reaction mixture was concentrated under vacuum. Water was added to the residue and extracted with ethyl acetate. The combined organic layers were washed with brine, dried with Na 2 SO 4 and concentrated under vacuum. The crude compound was purified by column chromatography and/or reversed phase chromatography to afford the purified product.
  • Step 3 (Hydrogenation): Compound from step 2 (1.0 equiv.), 10% Pd/C in MeOH was stirred at room temperature for 5 h under hydrogen atmosphere. After LCMS confirmed the completion of the reaction, the mixture was filtered and the solid was washed with MeOH. The filtrate was concentrated under vacuum to afford the desired amine product as an oil. It was used in next step without further purification.
  • Step 4 Amide coupling: To a mixture of acid (1.0 equiv.), amine from step 3 (1.1 equiv.) in DMF was added triethylamine (4.0 equiv.), followed by HATU (1.2 equiv.). The reaction was stirred at room temperature for 0.5-1 h. After completion of starting material, dichloromethane was added and the organic layer was washed with water and brine, dried with Na 2 SO 4 and concentrated under vacuum. The crude compound was purified by column chromatography and/or reversed phase chromatography to afford the purified product.
  • Fluorescence quenching end point measurements were performed in black polystyrene 384-plates on Tecan Safire monochromator reader with the following settings: excitation 280 nm; excitation bandwidth 10.0 nm; emission collection 340 nm; emission bandwidth 20.0 nm; high sensitivity flash mode; integration time 40 ⁇ S; delay 0 ⁇ m. All measurements were done in duplicates; GraphPad Prism 5.03 was used for data evaluation, curve fitting, plotting and determination of IC 50 values.
  • IC 50 is the compound concentration that causes 50% quenching of the desired activity.
  • the affinity to CRBN is graded as follows:
  • the affinity to CRBN is graded as follows:
  • cells were seeded in 96-well cell culture plates at a density of 3000 of RAMOS cells/well in 100 ⁇ L of culture medium. 100 ⁇ L of the diluted solution containing the tested compound was added to the appropriate wells of the cell plate. After addition of the tested compound, the cells were incubated at 37° C. in an atmosphere of 5% CO2 for 3 days.
  • CCG CellTiter-Glo reagent from the Promega CellTiter-Glo Luminescent Cell Viability Assay kit (#G7572) was added into an OptiPlate 96 (Perkin Elmer, White, Opaque, #6005299) in the dark, incubated for at least 2 hrs, and luminescence signal was read using Tecan Safire II Multi-Mode Plate Reader.
  • the GI 50 was calculated by nonlinear regression analysis using GraphPad Prism5 software.
  • GI 50 is the concentration for 50% of maximal inhibition of cell proliferation.
  • the affinity to Burkitt's lymphoma cell line (RAMOS) is graded as follows: D: 1 nM ⁇ GI 50 ⁇ 100 nM E: 100 nM ⁇ GI 50 ⁇ 1 ⁇ M
  • the ternary complex formation is graded as follows:
  • Ramos (ATCC, CRL-1596) cells cultured in Roswell Park Memorial Institute (RPMI) 1640 Medium supplemented with 10% Fetal bovine serum and 1% Penicillin-streptomycin at 37° C. in humidified atmosphere with 5% CO2.
  • RPMI Roswell Park Memorial Institute
  • PROTAC compounds 0.1% final concentration (v/v) of DMSO for desired duration of time.
  • Pelleted cells were lysed in RIPA buffer (1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS in 1 ⁇ Tris-buffered saline) supplemented with protease inhibitor cocktail, 0.5 U/ ⁇ L Benzonase (Novagen) and 1 mM MgCl 2 .
  • Lysates were incubated on ice for 10 minutes followed by 15 minutes' centrifugation at 15000 ⁇ g at 4° C. Supernatant was collected and subjected to Bradford protein quantification assay. Heat-denatured lysates (50 ⁇ g total protein) were loaded on NuPAGE 3-8% Tris-Acetate SDS protein gels. Proteins were transferred to PVDF membrane using iBlot 2 Dry Blotting Device (Thermo Fisher Scientific) at 20V for 13 minutes. Membranes were processed using iBind Flex Western Device (Thermo Fisher Scientific) by following the manufacturer's guideline. Membranes were probed with anti-BRD4 (Cell Signaling, Cat. #13440S), anti-c-Myc (Cell Signaling, Cat.
  • the compounds were tested against BRD4 and are found to be effective in promoting degradation of BRD4.
  • Table 1 shows % BRD4 degradation induced by select compounds in RAMOS cells using Western Blot analysis. The protocol was run at 4 different inhibitor concentrations: 5 ⁇ M, 1 ⁇ M, 0.3 ⁇ M, 0.1 ⁇ M, using neat DMSO as the negative control. The numbers correspond to the compounds selected as examples shown in Table 1.
  • the % BRD4 degradation in western blot analysis is graded as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

There are provided new heterobifuctional agents designed to mediated formation of protein-protein dimers and promote ubiqutination of a protein of the dimer. Also provided are methods of synthesizing the agents, pharmaceutical formulations including the agents, and methods of using the agents to treat, ameliorate or cure diseases characterized by protein over-expression or malfunction.

Description

    TECHNICAL FIELD
  • The present disclosure relates, in general terms, to therapeutic compounds for use as modulators of ubiquitination. The present disclosure also relates to methods of use thereof.
  • BACKGROUND
  • Drug development is a lengthy, complex, and costly process, entrenched with a high degree of uncertainty that a drug will actually succeed. This is further acerbated by the unknown pathophysiology for many disorders which makes target identification and drug development challenging. Further, animal models often cannot recapitulate an entire disorder or disease, and hence critical decisions about a pipeline drug are often made at too late a stage at too high a cost. Challenges are also present when relating to the heterogeneity of the patient population. All in all, the inability to target and modulate certain classes of bio macromolecules limits our ability to develop effective anti-cancer drugs.
  • The Ubiquitin-Proteasome Pathway (UPP) is a critical pathway regulating proteins and degrading misfolded or abnormal proteins. UPP is central to multiple cellular processes and, if defective or imbalanced, leads to pathogenesis in a variety of diseases. The covalent attachment of ubiquitin to specific protein substrates is achieved through the action of E3 ubiquitin ligases. These ligases comprise over 500 different proteins and are categorized into multiple classes defined by the structural element of their E3 functional activity. For example, cereblon (CRBN) interacts with damaged DNA binding protein 1 and forms an E3 ubiquitin ligase complex with Cullin 4 in which the proteins recognized by CRBN are ubiquitinated and degraded by proteasomes. Various immunomodulatory drugs (IMiDs), e.g., thalidomide and lenalidomide, bind to CRBN and modulate CRBN's role in the ubiquitination and degradation of protein factors involved in maintaining regular cellular function.
  • Harnessing the ubiquitin-proteasome pathway for therapeutic intervention has received significant interest from the scientific community. The publication by Gosink et al. (Proc. Natl. Acad. Sci. USA 1995, 92, 9117-9121) demonstrated proof of concept in vitro engineering peptides selectively directing ubiquitination to intracellular proteins. Nawaz et al. (Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 1858-1862) described ER degradation as a target for the ubiquitin-proteasome pathway, and Zhou et al. (Mol. Cell 2000, 6, 751-756) demonstrated an engineered receptor capable of directing ubiquitination in mammalian and yeast cells.
  • Protein dimers formed between a target protein and an E3 ubiquitin ligase have been shown to induce proteasome-mediated degradation of selected proteins. See, e.g., U.S. Pat. Nos. 6,306,663; 7,041,298; 7,041,298; U.S. 2016/0058872; U.S. 2016/0045607; U.S. 2020/0102298; U.S. 2014/0356322; U.S. 2016/0176916; U.S. 2016/0235730; U.S. 2016/0235731; U.S. 2016/0243247; WO 2016/105518; WO 2016/077380; WO2016/105518; WO 2016/077375; WO2017/007612; WO2017/02431; WO 2013/170147; WO 2013/170147; WO 2015/160845; Sakamoto et al. (Proc. Natl. Acad. Sci. USA 2001, 98, 8554-8559); Sakamoto et al. (Mol. Cell. Proteomics 2003, 2, 1350-1358); Schneekloth et al. (J. Am. Chem. Soc. 2004, 126, 3748-3754); Schneekloth et al. (ChemBioChem 2005, 6, 40-46); Schneekloth et al. (Bioorg. Med. Chem. Lett. 2008, 18, 5904-5908); Buckley et al. (Angew. Chem. Int. Ed. Engl. 2014, 53, 2312-2330); Lu et al. (Chem. Biol. 2015, 22, 755-763); Bondeson et al. (Nat. Chem. Biol. 2015, 11, 611-617); Gustafson et al. (Angewandte Chemie, Int. Ed. Engl. 2015, 54, 9659 9662); Buckley et al. (J. Am. Chem. Soc. 2012, 134, 4465-4468); Lai et al. (Angewandte Chemie, Int. Ed. Engl. 201, 55, 807-810); and Toure et al. (Angew. Chemie. Int. Ed. Engl. 2016, 5, 1966-1973).
  • Heterobifunctional compounds composed of a target protein-binding moiety and an E3 ubiquitin ligase-binding moiety, which promote formation of a dimer between a target protein and E3 ubiquitin ligase have been shown to chemically induce targeted protein degradation using heterobifunctional compounds (small molecule ligands often referred to as degraders or PROTACs for PROteolysis-TArgeting Chimeras). Targeted protein degradation refers to small molecule induced ubiquitination and degradation of disease targets, in which a small molecule simultaneously recruits both an ubiquitin E3 ligase and the target protein to be ubiquitinylated; therefore representing a functional application of chemically induced protein dimerization. Clinical proof of concept for targeted protein degradation is provided by the recent discovery that the potent anti-cancer drugs thalidomide, lenalidomide and pomalidomide (collectively known as IMiDs) exert their therapeutic effects through induced degradation of key efficacy targets, such as IKZF1, IKZF3, or caseine kinase 1 alpha (Ck1α).
  • Heterobifunctional PROTACs typically comprise an E3 ligase binding scaffold (hereafter E3-moiety), often an analogue of thalidomide, or a ligand to the von Hippel-Lindau tumor suppressor (VHL) protein, attached through a linker to another small molecule (hereafter target-moiety) that binds a target protein of interest. Recruitment of this target protein to the E3 ubiquitin ligase facilitates ubiquitination and subsequent degradation of the target protein. This principle has been successfully applied to several targets including the Bromodomain and Extra Terminal (BET) family (BRD2, BRD3, BRD4), RIPK2, BCR-ABL, FKBP12, BRD9, and ERRa and is a promising new pharmacologic modality now widely explored in chemical biology and drug discovery.
  • Bromodomain-containing proteins (such as BET proteins) have been implicated in proliferative disease. BRD4 knockout mice die shortly after implantation and are compromised in their ability to maintain an inner cell mass, and heterozygotes display pre- and postnatal growth defects associated with reduced proliferation rates. BRD4 regulates genes expressed during M/GI, including growth-associated genes, and remains bound to chromatin throughout the cell cycle (Dey, et al. (2009) Mol. Biol. Cell 20:4899-4909). BRD4 also physically associates with Mediator and P-TEFb (CDK9/cyclin TI) to facilitate transcriptional elongation (Yang, et al. (2005) Oncogene 24:1653-1662; Yang, et al. (2005) Mol. Cell 19:535-545). CDK9 is a validated target in chronic lymphocytic leukemia (CLL), and is linked to c-MYC-dependent transcription (Phelps, et al. Blood 113:2637-2645; Rahl, et al. (2010) Cell 141:432-445).
  • In general, PROTACs have been found to exhibit different efficacy and selectivity profiles depending on the nature of the E3-moiety used, often exhibiting improved selectivity over the parental target-moiety (Zengerle et al., Chem. Biol. 2015, 10, 8, 1770-1777). While positive cooperativity can explain certain cases such as MZ1, it is unlikely to exist for a broad number of ligase-substrate pairs and whether desired selectivity profiles can be achieved for highly homologous proteins such as BRD2/3/4 is unknown. Based upon these current limitations, there remains a need for heterobifunctional compounds (PROTACs) that can selectively target a target protein, especially, over highly homologous related proteins.
  • Induced protein degradation represents a new mode of therapeutic intervention that have the potential to disrupt the way conventional small molecule drug discovery is performed. Specifically, the ability to directly decrease protein abundance in a post-translational manner presents huge advantages in the discovery of new therapeutics. Ligand binding to E3-ubiquitin ligases form the cornerstone towards the generation of new bifunctional compounds for protein degradation. However, to date most of the protein degradation compounds revolves around thalidomide-based analogs and HIF1α peptidomimetic compounds as E3-binding ligands to trigger protein degradation. Clearly, there exist a dearth of new ligands binding to novel E3 ligases which hold the key to development of high quality small molecule protein degraders.
  • Based upon these limitations, prior to the invention described herein, there was a need for improved methods for generating small molecule degraders and dimerizers (e.g., heterobifunctional).
  • It would be desirable to overcome or ameliorate at least one of the above-described problems, or at least to provide a useful alternative.
  • SUMMARY
  • Proteolysis targeting chimeras (PROTACs) are bivalent ligands in which a compound that binds to the protein target of interest is connected to a second molecule that binds an E3 ligase via a linker. The E3 protein is usually either Cereblon or Von Hippel-Lindau. Small molecule induced protein degradation by PROTACs or other small molecules, requires ligand mediated binding of two proteins that typically do not interact. While this is evidently possible, the design of such molecules remains an empirical process in which molecules for new targets frequently fail, likely due to insufficient understanding of the fundamental principles that govern these neo-interactions.
  • The present invention is based, at least in part, upon the discovery and development of new and improved methods for designing and generating heterobifunctional binders. The heterobifunctional binders can be “small molecule,” or “low molecular weight” compounds that bind, and promote interaction between, two proteins. The methods can be used to create libraries of heterobifunctional binder and/or screen heterobifunctional binder (e.g., for drug discovery, development). The methods can be used to assess/predict the suitability of a target to ligand for inducing protein dimerization and/or protein degradation. The methods can be used to screen and/or interrogate protein interactions and function. A heterobifunctional binder developed using methods of the invention can be used for medical treatment, for example a cancer treatment.
  • In various embodiments, the methods are used for generating small molecule heterobifunctional degraders (e.g., PROTACs).
  • Exemplary aspects of the present disclosure are predicated on the discovery that specific oxindole compounds can act as modulators of targeted ubiquitination and, subsequently, degradation. When formed as a hetero-bifunctional molecule via a linker to, for example, a protein binding moiety (small molecule) for targeting a protein, the protein binding moiety is ear-marked for ubiquitination and degradation. In this regard, accumulation of the protein is avoided, the accumulation of which can, in some instances, trigger cellular stress responses and/or induce specific death pathways.
  • In various embodiments, the present disclosure relates to a compound of Formula (I) or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof:
  • Figure US20210147441A1-20210520-C00001
  • wherein R1 is selected from optionally substituted heterocyclylene, optionally substituted arylene, optionally substituted heteroarylene, optionally substituted aminylacylene, optionally substituted acylaminylene and optionally substituted acylene;
    R2 is selected from H, halogen optionally substituted heteroaryl, and optionally substituted alkyl (e.g., methyl);
    R3 and R4 are independently selected from H, optionally substituted cycloalkyl (e.g., cyclopropyl) and optionally substituted alkyl (e.g., methyl);
    R5 is selected from H and optionally substituted alkyl (e.g., methyl);
    L is an optionally substituted linker having 2 to 18 atoms in the chain length;
    X is a protein binding moiety; and
  • Z is N or CH.
  • In an exemplary embodiment, X is selective for a protein overexpressed or malfunctioning in a disease state. In an exemplary embodiment, X is specific for a protein overexpressed or malfunctioning in a disease state.
  • In exemplary embodiments, R1 is located at either a 5′ or 6′ position of the oxindole ring.
  • In some embodiments, R1 is optionally substituted heteroarylene and R2 is selected from H, halogen or methyl.
  • In some embodiments, L is selected from optionally substituted alkylene, optionally substituted heteroalkylene, optionally substituted cycloalkylene and optionally substituted heterocyclylene, each having 1 to 18 atoms in the chain length, and optionally substituted ethoxy, e.g., polyethoxy, having 3 to 18 atoms in the chain length. In various embodiments, L is optionally substituted polyethoxy having 2, 3, 4, 5, 6, 7 or 8 repeating ethoxy units.
  • In some embodiments, X is selected from bromodomain-containing protein 4 (BRD4) binding moiety, transcriptional enhanced associate domain (TEAD) binding moiety, Polycomb Repressive Complex 2 (PRC2) binding moiety, focal adhesion kinase (FAK) binding moiety, BCR-ABL binding moiety, Hippo pathway protein binding moiety and transcription factor binding moiety.
  • In some embodiments, the compound of Formula (I) is represented by Formula (I′):
  • Figure US20210147441A1-20210520-C00002
  • wherein R1, R2, R3, R4, R5 and L are as defined herein; and
    wherein R1 is located at either a 5′ or 6′ position of the oxindole ring.
  • The compound of Formula (I), as represented by Formula (I″):
  • Figure US20210147441A1-20210520-C00003
  • wherein R1, R2, R3, R4, R5 and L are as defined herein; and
    wherein R1 is located at either a 5′ or 6′ position of the oxindole ring.
  • In another aspect, the present disclosure relates to a compound of Formula (II) or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof:
  • Figure US20210147441A1-20210520-C00004
  • wherein R1′ is selected from optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted aminoacyl, optionally substituted acylamino, and optionally substituted acyl;
    R2 is selected from H, halogen and methyl;
    R3 and R4 are independently selected from H and methyl; and
    R5 is selected from H and methyl;
    wherein R1′ is located at either a 5′ or 6′ position of the oxindole ring.
  • In another aspect, the present disclosure relates to a compound of Formula (III) or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof:
  • Figure US20210147441A1-20210520-C00005
  • wherein R1, R2, R3, R4 and R5 are as defined herein;
    wherein R1 is located at either a 5′ or 6′ position of the oxindole ring; and
    L is an optionally substituted linker having 1 to 18 atoms in the chain length.
  • In another aspect, the present disclosure relates to a pharmaceutical composition comprising an effective amount of compound of a Formula set forth herein or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof, optionally in combination with a pharmaceutically acceptable carrier, excipient or diluent.
  • In another aspect, the present disclosure relates to a method of inducing degradation of an overexpressed protein in a cell, including a step of contacting a compound of a Formula set forth herein with the cell to induce degradation of the overexpressed protein in the cell.
  • In another aspect, the present disclosure relates to a method of treating a disease or condition associated with an overexpressed protein, comprising administering a compound of Formula set forth herein or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof in a patient in need thereof.
  • In another aspect, the present disclosure relates to a compound of Formula set forth herein or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof for use as a medicament.
  • In another aspect, the present disclosure relates to a compound of Formula set forth herein or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof for use in the treatment of a disease or condition associated with an overexpressed protein.
  • In another aspect, the present disclosure relates to a use of a compound of Formula set forth herein or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof in the manufacture of a medicament for the treatment of a disease or condition associated with an overexpressed protein.
  • In some embodiments, the overexpressed protein is selected from BRD4, transcriptional enhanced associate domain (TEAD), Polycomb Repressive Complex 2 (PRC2), focal adhesion kinase (FAK), BCR-ABL, Hippo pathway protein and transcription factor.
  • In other embodiments, the disease or condition is selected from hyperplasia and cancer (such as multiple myeloma, glioblastoma, uveal melanoma, liposarcoma, hepatocellular carcinoma, midline carcinoma, acute myeloid leukemia, Burkitt lymphoma and prostate cancer). The diseases can also be a protein accumulation disease, for example Alzheimer's disease and amyotrophic lateral sclerosis.
  • DESCRIPTION OF THE DRAWINGS
  • The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee
  • FIG. 1A-FIG. 1F is a display of 1H-15N-HSQC spectra of selected ligands bound to protein CRBN. The 1H-15N-HSQC spectra of a mixture of 0.5 mM CRBN in the absence (black) and presence of different concentration of ligands were collected, processed and shown. The concentration-dependent chemical shift perturbations for a few residues suggest that ligands bind to protein CRBN. The ligand to CRBN ratios are shown. The binding was saturated when ligand to protein ratio was 1 to 1. (a) 011; (b) 012; (c) 013; (d) 040; (e) 042; (f) 045.
  • FIG. 2 098 induced ternary complex formation. The 1H-15N-HSQC spectra of a mixture of 0.5 mM CRBN and 0.5 mM BRD4 BD2 in the absence and presence of different concentrations of 098 were collected, and processed. The signal broadening of the cross peaks in the spectra confirms the formation of ternary complex.
  • DETAILED DESCRIPTION I. Introduction
  • The present invention provides a novel class of heterobifunctional molecules operating to promote degradation of a protein of interest (POI) by initiating ubiquitination of the POI. The compounds of the invention operate in a manner differentiated by the standard occupancy-driven paradigm of drug development in which potency is dependent on binding affinity. For example, protein inhibition likely cannot influence non-catalytic target protein function(s). Additionally, sustained target engagement is difficult in cases of target overexpression, the presence of competing native ligand(s), or target protein mutations that result in loss of target engagement and subsequent resistance. Since the compounds of the invention inhibit protein function via degradation, this event-driven technology can be used to circumvent these common disadvantages of traditional occupancy-driven inhibitors described above.
  • II. Definitions
  • The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. It should be noted that, the singular forms “a”, “an”, and “the” include plural forms as well, unless the content clearly dictates otherwise. Thus, for example, reference to a composition containing “a compound” also contemplates a mixture of two or more compounds. It should also be noted that the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise. Furthermore, to the extent that the terms “including”, “includes”, “having”, “has”, “with”, or variants thereof are used in either the detailed description and/or the claims, such terms are intended to be inclusive in a manner similar to the term “comprising”.
  • The term “about” or “approximately” means within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, i.e., the limitations of the measurement system. For example, “about” can mean within 1 or more than 1 standard deviation, per the practice in the art. Alternatively, “about” can mean a range of up to 20%, preferably up to 10%, more preferably up to 5%, and more preferably still up to 1% of a given value. Alternatively, particularly with respect to biological systems or processes, the term can mean within an order of magnitude, preferably within 5-fold, and more preferably within 2-fold, of a value. Where particular values are described in the application and claims, unless otherwise stated the term “about” meaning within an acceptable error range for the particular value should be assumed.
  • As used herein, the terms “compounds herein described”, “compounds of the present application” and equivalent expressions refer to compounds described in the present application, e.g., those encompassed by the structural Formulae, optionally with reference to any of the applicable embodiments, and also includes exemplary compounds, as well as their pharmaceutically acceptable salts, solvates, esters, and prodrugs when applicable. When a zwitterionic form is possible, the compound may be drawn as its neutral form for practical purposes, but the compound is understood to also include its zwitterionic form. Embodiments herein may also exclude one or more of the compounds. Compounds may be identified either by their chemical structure or their chemical name. In a case where the chemical structure and chemical name would conflict, the chemical structure will prevail.
  • Unless otherwise stated, structures depicted herein are also meant to include all isomeric (e.g., enantiomeric, diastereomeric, and geometric (or conformational)) forms of the structure; for example, the R and S configurations for each asymmetric center, Z and E double bond isomers, and Z and E conformational isomers. Therefore, single stereochemical isomers as well as enantiomeric, diastereomeric, and geometric (or conformational) mixtures of the present compounds are within the scope of the present description. Unless otherwise stated, all tautomeric forms of the compounds are within the scope of the present description. Additionally, unless otherwise stated, structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures including the replacement of hydrogen by deuterium or tritium, or the replacement of a carbon by a 13C- or 14C-enriched carbon are within the scope of the present description. Such compounds are useful, for example, as analytical tools, as probes in biological assays, or as therapeutic agents in accordance with the present description.
  • Where a particular enantiomer is preferred, it may, in some embodiments be provided substantially free of the corresponding enantiomer, and may also be referred to as “optically enriched.” “Optically-enriched,” as used herein, means that the compound is made up of a significantly greater proportion of one enantiomer. In certain embodiments the compound is made up of at least about 90% by weight of a preferred enantiomer. In other embodiments the compound is made up of at least about 95%, 98%, or 99% by weight of a preferred enantiomer. Preferred enantiomers may be isolated from racemic mixtures by any method known to those skilled in the art, including chiral high pressure liquid chromatography (HPLC) and the formation and crystallization of chiral salts or prepared by asymmetric syntheses. See, for example, Jacques et al., Enantiomers, Racemates and Resolutions (Wiley Interscience, New York, 1981); Wilen, et al., Tetrahedron 33:2725 (1977); Eliel, E. L. Stereochemistry of Carbon Compounds (McGraw-Hill, N Y, 1962); Wilen, S. H. Tables of Resolving Agents and Optical Resolutions, p. 268 (E. L. Eliel, Ed., Univ. of Notre Dame Press, Notre Dame, Ind. 1972). In certain embodiments, the invention provides compounds according to a Formula set forth herein which are “optically enriched”.
  • Definitions of specific functional groups and chemical terms are described in more detail below. For purposes of the present description, the chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, 75th Ed., inside cover, and specific functional groups are generally defined as described therein. Additionally, general principles of organic chemistry, as well as specific functional moieties and reactivity, are described in Organic Chemistry, Thomas Sorrell, University Science Books, Sausalito, 1999; Smith and March March's Advanced Organic Chemistry, 5.sup.th, Edition, John Wiley & Sons, Inc., New York, 2001; Larock, Comprehensive Organic Transformations, VCH Publishers, Inc., New York, 1989; Carruthers, Some Modern Methods of Organic Synthesis, 3.sup.rd Edition, Cambridge University Press, Cambridge, 1987.
  • The chemical structures herein are drawn according to the conventional standards known in the art. Thus, where an atom, such as a carbon atom, as drawn appears to have an unsatisfied valency, then that valency is assumed to be satisfied by a hydrogen atom even though that hydrogen atom is not necessarily explicitly drawn. Hydrogen atoms should be inferred to be part of the compound.
  • Abbreviations may also be used throughout the application, unless otherwise noted, such abbreviations are intended to have the meaning generally understood by the field. Examples of such abbreviations include Me (methyl), Et (ethyl), Pr (propyl), i-Pr (isopropyl), Bu (butyl), t-Bu (tert-butyl), i-Bu (iso-butyl), s-Bu (sec-butyl), c-Bu (cyclobutyl), Ph (phenyl), Bn (benzyl), Bz (benzoyl), CBz or Cbz or Z (carbobenzyloxy), Boc or BOC (tert-butoxycarbonyl), and Su or Suc (succinimide). For greater certainty, examples of abbreviations used in the present application are listed in a table in the Examples section.
  • The number of carbon atoms in a hydrocarbyl or other substituent can be indicated by the prefix “Cx-C.suby,” where x is the minimum and y is the maximum number of carbon atoms in the substituent. When reference is made to “x to y membered” heterocyclic ring (e.g., heterocycloalkyl or heteroaryl), then x and y define respectively, the minimum and maximum number of atoms in the cycle, including carbons as well as heteroatom(s).
  • The prefix “halo” indicates that the substituent to which the prefix is attached is substituted with one or more independently selected halogen atoms. More specifically, the terms “halo” and “halogen” as used herein refer to an atom selected from fluorine (fluoro, —F), chlorine (chloro, —Cl), bromine (bromo, —Br), and iodine (iodo, —I). For example, “haloalkyl” means an alkyl substituent wherein at least one hydrogen atom is replaced with a halogen atom and “haloalkoxy” means an alkoxy substituent wherein at least one hydrogen atom is replaced with a halogen atom.
  • The term “heteroatom” means one or more of oxygen, sulfur, nitrogen, phosphorus, or silicon (including, any oxidized form of nitrogen, sulfur, phosphorus, or silicon; the quaternized form of any basic nitrogen or; a substitutable nitrogen of a heterocyclic ring, for example N (as in 3,4-dihydro-2H-pyrrolyl), NH (as in pyrrolidinyl) or NR+(as in N-substituted pyrrolidinyl).
  • As used herein a “direct bond” or “covalent bond” refers to a single, double or triple bond. In certain embodiments, a “direct bond” or “covalent bond” refers to a single bond. This term is also synonymous with a “zero-order linker”.
  • Where substituent groups are specified by their conventional chemical formulae, written from left to right, they optionally equally encompass the chemically identical substituents, which would result from writing the structure from right to left, e.g., —CH2O— is intended to also recite —OCH2—.
  • The term “alkyl”, by itself or as part of another substituent, means a straight or branched chain hydrocarbon, which may be fully saturated, mono- or polyunsaturated and includes mono-, di- and multivalent radicals. Examples of saturated hydrocarbon radicals include, but are not limited to, groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, sec-butyl, cyclohexyl, (cyclohexyl)methyl, cyclopropylmethyl, homologs and isomers of, for example, n-pentyl, n-hexyl, n-heptyl, n-octyl, and the like. An unsaturated alkyl group is one having one or more double bonds or triple bonds (i.e., alkenyl and alkynyl moieties). Examples of unsaturated alkyl groups include, but are not limited to, vinyl, 2-propenyl, crotyl, 2-isopentenyl, 2-(butadienyl), 2,4-pentadienyl, 3-(1,4-pentadienyl), ethynyl, 1- and 3-propynyl, 3-butynyl, and the higher homologs and isomers. The term “alkyl” can refer to “alkylene”, which by itself or as part of another substituent means a divalent radical derived from an alkane, as exemplified, but not limited, by —CH2CH2CH2CH2—. Typically, an alkyl (or alkylene) group will have from 1 to 30 carbon atoms. A “lower alkyl” or “lower alkylene” is a shorter chain alkyl or alkylene group, generally having eight or fewer carbon atoms. In some embodiments, alkyl refers to an alkyl or combination of alkyls selected from C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, C20, C21, C22, C23, C24, C25, C26, C27, C28, C29 and C30 alkyl. In some embodiments, alkyl refers to C1-C25 alkyl. In some embodiments, alkyl refers to C1-C20 alkyl. In some embodiments, alkyl refers to C1-C15 alkyl. In some embodiments, alkyl refers to C1-C10 alkyl. In some embodiments, alkyl refers to C1-C6 alkyl. In exemplary embodiments, “Alkyl” refers to monovalent alkyl groups which may be straight chained or branched and preferably have from 1 to 10 carbon atoms or more preferably 1 to 6 carbon atoms. Examples of such alkyl groups include methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, n-hexyl, and the like.
  • “Alkylene” refers to divalent alkyl groups preferably having from 1 to 10 carbon atoms and more preferably 1 to 6 carbon atoms. Examples of such alkylene groups include methylene (—CH2—), ethylene (—CH2CH2—), and the propylene isomers (e.g., —CH2CH2CH2— and —CH(CH3)CH2—), and the like.
  • “Alkenyl” refers to a monovalent alkenyl group which may be straight chained or branched and preferably have from 2 to 10 carbon atoms and more preferably 2 to 6 carbon atoms and have at least 1 and preferably from 1-2, carbon to carbon, double bonds. Examples include ethenyl (—CH═CH2), n-propenyl (—CH2CH═CH2), iso-propenyl (—C(CH3)═CH2), but-2-enyl (—CH2CH═CHCH3), and the like.
  • “Alkenylene” refers to divalent alkenyl groups preferably having from 2 to 8 carbon atoms and more preferably 2 to 6 carbon atoms. Examples include ethenylene (—CH═CH—), and the propenylene isomers (e.g., —CH2CH═CH— and —C(CH3)═CH—), and the like.
  • “Alkynyl” refers to alkynyl groups preferably having from 2 to 10 carbon atoms and more preferably 2 to 6 carbon atoms and having at least 1, and preferably from 1-2, carbon to carbon, triple bonds. Examples of alkynyl groups include ethynyl CH), propargyl (—CH2C CH), pent-2-ynyl (—CH2C≡CCH2—CH3), and the like.
  • “Alkynylene” refers to the divalent alkynyl groups preferably having from 2 to 8 carbon atoms and more preferably 2 to 6 carbon atoms. Examples include ethynylene (—C≡C—), propynylene (—CH2—C≡C—), and the like.
  • “Alkoxy” refers to the group alkyl-O— where the alkyl group is as described above. Examples include, methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, tert-butoxy, sec-butoxy, n-pentoxy, n-hexoxy, 1,2-dimethylbutoxy, and the like.
  • “Alkenyloxy” refers to the group alkenyl-O— wherein the alkenyl group is as described above.
  • “Alkynyloxy” refers to the group alkynyl-O— wherein the alkynyl groups is as described above.
  • The terms “cycloalkyl” and “heterocycloalkyl”, by themselves or in combination with other terms, refer to cyclic versions of “alkyl” and “heteroalkyl”, respectively. Additionally, for heterocycloalkyl, a heteroatom can occupy the position at which the heterocycle is attached to the remainder of the molecule. Examples of cycloalkyl include, but are not limited to, cyclopentyl, cyclohexyl, 1-cyclohexenyl, 3-cyclohexenyl, cycloheptyl, and the like. Examples of heterocycloalkyl include, but are not limited to, 1-(1,2,5,6-tetrahydropyridyl), 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-morpholinyl, 3-morpholinyl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydrothien-2-yl, tetrahydrothien-3-yl, 1-piperazinyl, 2-piperazinyl, and the like.
  • “Haloalkyl” refers to an alkyl group wherein the alkyl group is substituted by one or more halo group as described above. The terms “haloalkenyl”, “haloalkynyl” and “haloalkoxy” are likewise defined.
  • The term “heteroalkyl,” by itself or in combination with another term, means an alkyl in which one or more carbons are replaced with one or more heteroatoms selected from the group consisting of O, N, Si and S, (preferably O, N and S), wherein the nitrogen and sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized. The heteroatoms O, N, Si and S may be placed at any interior position of the heteroalkyl group or at the position at which the alkyl group is attached to the remainder of the molecule. In some embodiments, depending on whether a heteroatom terminates a chain or is in an interior position, the heteroatom may be bonded to one or more H or substituents such as (C1, C2, C3, C4, C5 or C6) alkyl according to the valence of the heteroatom. Examples of heteroalkyl groups include, but are not limited to, —CH2—CH2—O—CH3, —CH2—CH2—NH—CH3, —CH2—CH2—N(CH3)—CH3, —CH2—S—CH2—CH3, —CH2—CH2, —S(O)—CH3, —CH2—CH2—S(O)2—CH3, —CH═CH—O—CH3, —Si(CH3)3, —CH2—CH═N—OCH3, and —CH═CH—N(CH3)—CH3. No more than two heteroatoms may be consecutive, as in, for example, —CH2—NH—OCH3 and —CH2—O—Si(CH3)3, and in some instances, this may place a limit on the number of heteroatom substitutions. Similarly, the term “heteroalkylene” by itself or as part of another substituent means a divalent radical derived from heteroalkyl, as exemplified, but not limited by, —CH2—CH2—S—CH2—CH2— and —CH2—S—CH2—CH2—NH—CH2—. The designated number of carbons in heteroforms of alkyl, alkenyl and alkynyl includes the heteroatom count. For example, a (C1, C2, C3, C4, C5 or C6) heteroalkyl will contain, respectively, 1, 2, 3, 4, 5 or 6 atoms selected from C, N, O, Si and S such that the heteroalkyl contains at least one C atom and at least one heteroatom, for example 1-5 C and 1 N or 1-4 C and 2 N. Further, a heteroalkyl may also contain one or more carbonyl groups. In some embodiments, a heteroalkyl is any C2-C30 alkyl, C2-C25 alkyl, C2-C20 alkyl, C2-C15 alkyl, C2-C10 alkyl or C2-C6 alkyl in any of which one or more carbons are replaced by one or more heteroatoms selected from O, N, Si and S (or from O, N and S). In some embodiments, each of 1, 2, 3, 4 or 5 carbons is replaced with a heteroatom. The terms “alkoxy,” “alkylamino” and “alkylthio” (or thioalkoxy) are used in their conventional sense, and refer to those alkyl and heteroalkyl groups attached to the remainder of the molecule via an oxygen atom, a nitrogen atom (e.g., an amine group), or a sulfur atom, respectively.
  • “Aryl” refers to an unsaturated aromatic carbocyclic group having a single ring (eg. phenyl) or multiple condensed rings (e.g., naphthyl or anthryl), preferably having from 6 to 14 carbon atoms. Examples of aryl groups include phenyl, naphthyl and the like.
  • “Heteroaryl” refers to a monovalent aromatic heterocyclic group which fulfils the Hückel criteria for aromaticity (ie. contains 4n+2 π electrons) and preferably has from 2 to 10 carbon atoms and 1 to 4 heteroatoms selected from oxygen, nitrogen, selenium, and sulfur within the ring (and includes oxides of sulfur, selenium and nitrogen). Such heteroaryl groups can have a single ring (eg. pyridyl, pyrrolyl or N-oxides thereof or furyl) or multiple condensed rings (eg. indolizinyl, benzoimidazolyl, coumarinyl, quinolinyl, isoquinolinyl or benzothienyl).
  • Examples of heteroaryl groups include, but are not limited to, azaoxindole, oxazole, pyrrole, imidazole, pyrazole, pyridine, pyrazine, pyrimidine, pyridazine, indolizine, isoindole, indole, indazole, purine, isoquinoline, quinoline, phthalazine, naphthylpyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, phenanthroline, isothiazole, phenazine, isoxazole, isothiazole, phenoxazine, phenothiazine, thiazole, thiadiazoles, oxadiazole, oxatriazole, tetrazole, thiophene, benzo[b]thiophene, triazole, imidazopyridine and the like.
  • “Arylene” refers to a divalent aryl group wherein the aryl group is as described above.
  • “Aryloxy” refers to the group aryl-O— wherein the aryl group is as described above.
  • “Arylalkyl” refers to -alkylene-aryl groups preferably having from 1 to 10 carbon atoms in the alkylene moiety and from 6 to 10 carbon atoms in the aryl moiety. Such arylalkyl groups are exemplified by benzyl, phenethyl and the like.
  • “Arylalkoxy” refers to the group arylalkyl-O— wherein the arylalkyl group are as described above. Such arylalkoxy groups are exemplified by benzyloxy and the like.
  • The term “acyl” refers to a species that include the moiety —C(O)R, where R has the meaning defined herein. Exemplary species for R include H, halogen, substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, and substituted or unsubstituted heterocycloalkyl. Exemplary acyl groups include H—C(O)—, cycloalkyl-C(O)—, aryl-C(O)—, heteroaryl-C(O)— and heterocyclyl-C(O)—, where alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl are as described herein. In some embodiments, R is selected from H and (C1-C6)alkyl.
  • ‘Oxy’ or ‘oxo’ refers to
  • “Oxyacyl” refers to groups HOC(O)—, alkyl-OC(O)—, cycloalkyl-OC(O)—, aryl-OC(O)—, heteroaryl-OC(O)—, and heterocyclyl-OC(O)—, where alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl are as described herein.
  • “Acylene” refers to the group —C(O)—.
  • “Amino” refers to the group —NR″R″ where each R″ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is as described herein.
  • “Aminoacyl” refers to the group —C(O)NR″R″ where each R″ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is as described herein.
  • “Aminylacylene” refers to a divalent group group —C(O)NR″— where each R″ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is as described herein. As used herein, the divalent group is attached as L-C(O)NR″-oxindolyl moiety.
  • “Acylamino” refers to the group —NR″C(O)R″ where each R″ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl are as described herein.
  • “Acylaminylene” refers to the divalent group —NR″C(O)— where each R″ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl are as described herein. As used herein, the divalent group is attached as L-NR″C(O)-oxindolyl moiety.
  • “Acyloxy” refers to the groups —OC(O)-alkyl, —OC(O)-aryl, —C(O)O— heteroaryl, and —C(O)O-heterocyclyl where alkyl, aryl, heteroaryl and heterocyclyl are as described herein.
  • “Aminoacyloxy” refers to the groups —OC(O)NR″-alkyl, —OC(O)NR″-aryl, —OC(O)NR″-heteroaryl, and —OC(O)NR″-heterocyclyl where R″ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is as described herein.
  • “Oxyacylamino” refers to the groups —NR″C(O)O-alkyl, —NR″C(O)O-aryl, —NR″ C(O)O-heteroaryl, and NR″C(O)O-heterocyclyl where R″ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is as described herein.
  • “Oxyacyloxy” refers to the groups —OC(O)O-alkyl, —O—C(O)O-aryl, —OC(O)O— heteroaryl, and —OC(O)O-heterocyclyl where alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl are as described herein.
  • “Acylimino” refers to the groups —C(NR″)—R″ where each R″ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl are as described herein.
  • “Acyliminoxy” refers to the groups —O—C(NR″)—R″ where each R″ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl are as described herein.
  • “Oxyacylimino” refers to the groups —C(NR″)—OR″ where each R″ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl are as described herein.
  • “Cycloalkyl” refers to cyclic alkyl groups having a single cyclic ring or multiple condensed rings, preferably incorporating 3 to 11 carbon atoms. Such cycloalkyl groups include, by way of example, single ring structures such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclooctyl, and the like, or multiple ring structures such as adamantanyl, indanyl, 1,2,3,4-tetrahydronapthalenyl and the like. As used herein, ‘cycloalkyl’ comprises bridged cycloalkyl, spiro cycloalkyl and fused cycloalkyl. The skilled person would understand that bridged cycloalkyl comprises two or more rings bonded to each other at bridgehead atoms (ring junctions). In fused bicyclic compounds, two rings share two adjacent atoms; i.e. the rings share one covalent bond or the so-called bridgehead atoms are directly connected. In spiro cycloalkyl, two or more rings are linked together by one common atom.
  • “Cycloalkenyl” refers to cyclic alkenyl groups having a single cyclic ring or multiple condensed rings, and at least one point of internal unsaturation, preferably incorporating 4 to 11 carbon atoms. Examples of suitable cycloalkenyl groups include, for instance, cyclobut-2-enyl, cyclopent-3-enyl, cyclohex-4-enyl, cyclooct-3-enyl, indenyl and the like.
  • “Heterocyclyl” refers to a monovalent saturated or unsaturated group having a single ring or multiple condensed rings, preferably from 1 to 8 carbon atoms and from 1 to 4 hetero atoms selected from nitrogen, sulfur, oxygen, selenium or phosphorous within the ring. The most preferred heteroatom is nitrogen. It will be understood that where, for instance, R2 or R′ is an optionally substituted heterocyclyl which has one or more ring heteroatoms, the heterocyclyl group can be connected to the core molecule of the compounds of the present invention, through a C—C or C-heteroatom bond, in particular a C—N bond. Spiro heterocyclyl are also included within this definition.
  • Examples of heterocyclyl and heteroaryl groups include, but are not limited to, oxazole, pyrrole, imidazole, pyrazole, pyridine, pyrazine, pyrimidine, pyridazine, indolizine, isoindole, indole, indazole, purine, quinolizine, isoquinoline, quinoline, phthalazine, naphthylpyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, phenanthroline, isothiazole, phenazine, isoxazole, isothiazole, phenoxazine, phenothiazine, imidazolidine, imidazoline, piperidine, piperazine, indoline, phthalimide, 1,2,3,4-tetrahydroisoquinoline, 4,5,6,7-tetrahydrobenzo[b]thiophene, thiazole, thiadiazoles, oxadiazole, oxatriazole, tetrazole, thiazolidine, thiophene, benzo[b]thiophene, morpholino, piperidinyl, pyrrolidine, tetrahydrofuranyl, triazole, and the like.
  • “Heteroarylene” refers to a divalent heteroaryl group wherein the heteroaryl group is as described above.
  • “Heterocyclylene” refers to a divalent heterocyclyl group wherein the heterocyclyl group is as described above.
  • “Thio” refers to groups H—S—, alkyl-S—, cycloalkyl-S—, aryl-S—, heteroaryl-S—, and heterocyclyl-S—, where alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl are as described herein.
  • “Thioacyl” refers to groups H—C(S)—, alkyl-C(S)—, cycloalkyl-C(S)—, aryl-C(S)—, heteroaryl-C(S)—, and heterocyclyl-C(S)—, where alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl are as described herein.
  • “Oxythioacyl” refers to groups HO—C(S)—, alkylO—C(S)—, cycloalkylO—C(S)—, arylO—C(S)—, heteroarylO—C(S)—, and heterocyclylO—C(S)—, where alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl are as described herein.
  • “Oxythioacyloxy” refers to groups HO—C(S)—O—, alkylO—C(S)—O—, cycloalkylO—C(S)—O—, arylO—C(S)—O—, heteroarylO—C(S)—O—, and heterocyclylO—C(S)—O—, where alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl are as described herein.
  • “Phosphorylamino” refers to the groups —NR″—P(O)(R′″)(OR″″) where R″ represents H, alkyl, cycloalkyl, alkenyl, or aryl, R′″ represents OR″″ or is hydroxy or amino and R″″ is alkyl, cycloalkyl, aryl or arylalkyl, where alkyl, amino, alkenyl, aryl, cycloalkyl, and arylalkyl are as described herein.
  • “Thioacyloxy” refers to groups H—C(S)—O—, alkyl-C(S)—O—, cycloalkyl-C(S)—O—, aryl-C(S)—O—, heteroaryl-C(S)—O—, and heterocyclyl-C(S)—O—, where alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl are as described herein.
  • “Sulfinyl” refers to groups H—S(O)—, alkyl-S(O)—, cycloalkyl-S(O)—, aryl-S(O)—, heteroaryl-S(O)—, and heterocyclyl-S(O)—, where alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl are as described herein.
  • “Sulfonyl” refers to groups H—S(O)2—, alkyl-S(O)2—, cycloalkyl-S(O)2—, aryl-S(O)2—, heteroaryl-S(O)2—, and heterocyclyl-S(O)2—, where alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl are as described herein.
  • “Sulfinylamino” refers to groups H—S(O)—NR″—, alkyl-S(O)—NR″—, cycloalkyl-S(O)—NR″—, aryl-S(O)—NR″—, heteroaryl-S(O)—NR″—, and heterocyclyl-S(O)—NR″—, where R″ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is as described herein.
  • “Sulfonylamino” refers to groups H—S(O)2—NR″—, alkyl-S(O)2—NR″—, cycloalkyl-S(O)2—NR″—, aryl-S(O)2—NR″—, heteroaryl-S(O)2—NR″—, and heterocyclyl-S(O)2—NR″—, where R″ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is as described herein.
  • “Oxysulfinylamino” refers to groups HO—S(O)—NR″—, alkylO—S(O)—NR″—, cycloalkylO—S(O)—NR″—, arylO—S(O)—NR″—, heteroarylO—S(O)—NR″—, and heterocyclylO—S(O)—NR″—, where R″ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is as described herein.
  • “Oxysulfonylamino” refers to groups HO—S(O)2—NR″—, alkylO—S(O)2—NR″—, cycloalkylO—S(O)2—NR″—, arylO—S(O)2—NR″—, heteroarylO—S(O)2—NR″—, and heterocyclylO—S(O)2—NR″—, where R″ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is as described herein.
  • “Aminothioacyl” refers to groups R″R″N—C(S)—, where each R″ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclic and where each of alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is as described herein.
  • “Thioacylamino” refers to groups H—C(S)—NR″—, alkyl-C(S)—NR″—, cycloalkyl-C(S)—NR″—, aryl-C(S)—NR″—, heteroaryl-C(S)—NR″—, and heterocyclyl-C(S)—NR″—, where R″ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl and where each of alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is as described herein.
  • “Aminosulfinyl” refers to groups R″R″N—S(O)—, where each R″ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclic and where each of alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is as described herein.
  • “Aminosulfonyl” refers to groups R″R″N—S(O)2—, where each R″ is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclic and where each of alkyl, cycloalkyl, aryl, heteroaryl and heterocyclyl is as described herein.
  • In some embodiments, any of alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl is optionally substituted. That is, in some embodiments, any of these groups is substituted or unsubstituted or fused (so as to form a condensed polycyclic group) with one or more groups.
  • In some embodiments, substituents for selected radicals are selected from those provided below.
  • Substituents for the alkyl, heteroalkyl, cycloalkyl and heterocycloalkyl radicals (including those groups often referred to as alkylene, alkenyl, heteroalkylene, heteroalkenyl, alkynyl, cycloalkyl, heterocycloalkyl, cycloalkenyl, and heterocycloalkenyl) are generically referred to as “alkyl group substituents”. In some embodiments, an alkyl group substituent is selected from -halogen, —OR′, ═O, ═NR′, ═N—OR′, —NR′R″, —SR′, —SiR′R″R′″, —OC(O)R′, —C(O)R′, —CO2R′, —CONR′R″, —OC(O)NR′R″, —NR″C(O)R′, —NR′—C(O)NR″R′″, —NR″C(O)2R′, —NR—C(NR′R″R′″)═NR″″, —NR—C(NR′R″) ═NR′″, —S(O)R′, —S(O)2R′, —S(O)2NR′R″, —NRSO2R′, —CN and —NO2 in a number ranging from zero to (2m′+1), where m′ is the total number of carbon atoms in such radical. In one embodiment, R′, R″, R′″ and R″″ are each independently selected from hydrogen, alkyl (e.g., C1, C2, C3, C4, C5 and C6 alkyl). In one embodiment, R′, R″, R′″ and R″″ each independently refer to hydrogen, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, e.g., aryl substituted with 1-3 halogens, substituted or unsubstituted alkyl, alkoxy or thioalkoxy groups, or arylalkyl groups. In one embodiment, R′, R″, R′″ and R″″ are each independently selected from hydrogen, alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, thioalkoxy groups, and arylalkyl. When R′ and R″ are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 5-, 6-, or 7-membered ring. For example, —NR′R″ can include 1-pyrrolidinyl and 4-morpholinyl. In some embodiments, an alkyl group substituent is selected from substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl and substituted or unsubstituted heteroaryl.
  • Similar to the substituents described for the alkyl radical, substituents for the aryl and heteroaryl groups are generically referred to as “aryl group substituents”. In some embodiments, an aryl group substituent is selected from -halogen, —OR′, ═O, ═NR′, ═N—OR′, —NR′R″, —SR′, —SiR′R″R′″, —OC(O)R′, —C(O)R′, —CO2R′, —CONR′R″, —OC(O)NR′R″, —NR″C(O)R′, —NR′—C(O)NR″R′″, —NR″C(O)2R′, —NR—C(NR′R″R′″)═NR″″, —NR—C(NR′R″)═NR′″, —S(O)R′, —S(O)2R′, —S(O)2NR′R″, —NRSO2R′, —CN and —NO2, —R′, —N3, —CH(Ph)2, fluoro(C1-C4)alkoxy, and fluoro(C1-C4)alkyl, in a number ranging from zero to the total number of open valences on the aromatic ring system. In some embodiments, R′, R″, R′″ and R″″ are independently selected from hydrogen and alkyl (e.g., C1, C2, C3, C4, C5 and C6 alkyl). In some embodiments, R′, R″, R′″ and R″″ are independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl and substituted or unsubstituted heteroaryl. In some embodiments, R′, R″, R′″ and R″″ are independently selected from hydrogen, alkyl, heteroalkyl, aryl and heteroaryl. In some embodiments, an aryl group substituent is selected from substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl and substituted or unsubstituted heteroaryl.
  • Two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -T-C(O)—(CRR′)q—U—, wherein T and U are independently —NR—, —O—, —CRR′— or a single bond, and q is an integer of from 0 to 3. Alternatively, two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -A-(CH2)r—B—, wherein A and B are independently —CRR′—, —O—, —NR—, —S—, —S(O)—, —S(O)2—, —S(O)2NR′— or a single bond, and r is an integer of from 1 to 4. One of the single bonds of the new ring so formed may optionally be replaced with a double bond. Alternatively, two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula —(CRR′)s—X—(CR″R′″)d—, where s and d are independently integers of from 0 to 3, and X is —O—, —NR′—, —S—, —S(O)—, —S(O)2—, or —S(O)2NR′—. The substituents R, R′, R″ and R′″ are preferably independently selected from hydrogen or substituted or unsubstituted (C1-C6)alkyl.
  • In various embodiments, one or more substituents are selected from hydroxyl, acyl, acyliminoxy, acylimino, alkyl, alkoxy, alkenyl, aryl, aryloxy, alkynyl, alkenyloxy, alkynyloxy, halo, haloalkyl, aryl, arylene, aryloxy, arylalkyl, arylalkoxy, cycloalkyl, cycloalkenyl, oxy, oxyacyl, acylene, amino, aminylacylene, acylamino, acylaminylene, acyloxy, aminoacyloxy, carboxyl, acylamino, cyano, halogen, nitro, oxyacylamino, oxyacyloxy, oxyacylimino, phosphono, sulfo, phosphorylamino, phosphinyl, heteroaryl, heteroarylalkyl, heteroaryloxy, heterocyclyl, heterocyclylalkyl, heterocyclyloxy, heteroarylene, heterocyclylene, thio, thioacyl, oxythioacyl, oxythioacyloxy, thioacyloxy, sulfinyl, sulfonyl, sulfinylamino, sulfonylamino, oxysulfinylamino, oxysulfonylamino, aminothioacyl, thioacylamino, aminosulfinyl, aminosulfonyl, oxyacyl, oxime, oxime ether, hydrazone, oxyacylamino, oxysulfonylamino, aminoacyloxy, trihalomethyl, trialkylsilyl, pentafluoroethyl, trifluoromethoxy, difluoromethoxy, trifluoromethanethio, trifluoroethenyl, mono- and di-alkylamino, mono- and di-(substituted alkyl)amino, mono- and di-arylamino, mono- and di-heteroarylamino, mono- and di-heterocyclyl amino, and unsymmetric di-substituted amines having different substituents selected from alkyl, aryl, heteroaryl and heterocyclyl, and the like, and may also include a bond to a solid support material, (for example, substituted onto a polymer resin). For instance, an “optionally substituted amino” group may include amino acid and peptide residues.
  • A “linker”, “linking member”, or “linking moiety” as used herein is a moiety that joins or potentially joins, covalently or noncovalently, a first moiety to a second moiety. In particular, a linker attaches or could potentially attach a ligand described herein to another molecule, such as a targeting moiety. A wide variety of linkers L comprised of stable bonds are known in the art, and include by way of example and not limitation, alkyldiyls, substituted alkyldiyls, alkylenos, substituted alkylenos, heteroalkyldiyls, substituted heteroalkyldiyls, heteroalkylenos, substituted heteroalkylenos, acyclic heteroatomic bridges, aryldiyls, substituted aryldiyls, arylaryldiyls, substituted arylaryldiyls, arylalkyldiyls, substituted arylalkyldiyls, heteroaryldiyls, substituted heteroaryldiyls, heteroaryl-heteroaryldiyls, substituted heteroaryl-heteroaryldiyls, heteroarylalkyldiyls, substituted heteroarylalkyldiyls, heteroaryl-heteroalkyldiyls, substituted heteroaryl-heteroalkyldiyls, and the like. Thus, linker L may include single, double, triple or aromatic carbon-carbon bonds, nitrogen-nitrogen bonds, carbon-nitrogen, carbon-oxygen bonds and/or carbon-sulfur bonds, and may therefore include functionalities such as carbonyls, ethers, thioethers, carboxamides, sulfonamides, ureas, urethanes, hydrazines, etc. In one embodiment, linker L has from 1-20 non-hydrogen atoms selected from the group consisting of C, N, O, and S and is composed of any combination of ether, thioether, amine, ester, carboxamide, sulfonamides, hydrazide, aromatic and heteroaromatic bonds.
  • Choosing a linker having properties suitable for a particular application is within the capabilities of those having skill in the art. For example, where a rigid linker is desired, L may be a rigid polypeptide such as polyproline, a rigid polyunsaturated alkyldiyl or an aryldiyl, biaryldiyl, arylarydiyl, arylalkyldiyl, heteroaryldiyl, biheteroaryldiyl, heteroarylalkyldiyl, heteroaryl-heteroaryldiyl, etc. Where a flexible linker is desired, L may be a flexible polypeptide such as polyglycine or a flexible saturated alkanyldiyl or heteroalkanyldiyl. Hydrophilic linkers may be, for example, polyalcohols or polyethers such as polyalkyleneglycols. Hydrophobic linkers may be, for example, alkyldiyls or aryldiyls.
  • The symbol
    Figure US20210147441A1-20210520-P00001
    , displayed perpendicular to a bond, indicates the point at which the displayed moiety is attached to the remainder of the molecule.
  • In some embodiments, the definition of terms used herein is according to IUPAC.
  • The expression “pharmaceutically acceptable salt” refers to those salts of the compounds formed by the process of the present description which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art. For example, S. M. Berge, et al. describes pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 66: 1-19 (1977). The salts can be prepared in situ during the final isolation and purification of the compounds of the present description, or separately by reacting a free base function of the compound with a suitable organic or inorganic acid (acid addition salts) or by reacting an acidic function of the compound with a suitable organic or inorganic base (base-addition salts). Examples of pharmaceutically acceptable salts include, but are not limited to, nontoxic acid addition salts, or salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange. Other pharmaceutically acceptable salts include, but are not limited to, adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, p-toluenesulfonate, undecanoate, valerate salts, and the like. Representative base addition alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, or magnesium salts, and the like. Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, sulfonate and aryl sulfonate.
  • The term “solvate” refers to a physical association of one of the present compounds with one or more solvent molecules. This physical association includes hydrogen bonding. In certain instances, the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of a crystalline solid. “Solvate” encompasses both solution-phase and insoluble solvates. Exemplary solvates include, without limitation, hydrates, hemihydrates, ethanolates, hemiethanolates, n-propanolates, iso-propanolates, 1-butanolates, 2-butanolate, and solvates of other physiologically acceptable solvents, such as the Class 3 solvents described in the International Conference on Harmonization (ICH), Guide for Industry, Q3C Impurities: Residual Solvents (1997). The compounds as herein described also include each of their solvates and mixtures thereof.
  • As used herein, the term “pharmaceutically acceptable ester” refers to esters of the compounds formed by the process of the present description which hydrolyze in vivo and include those that break down readily in the human body to leave the parent compound or a salt thereof. Suitable ester groups include, for example, those derived from pharmaceutically acceptable aliphatic carboxylic acids, particularly alkanoic, alkenoic, cycloalkanoic and alkanedioic acids, in which each alkyl or alkenyl moiety advantageously has not more than 6 carbon atoms. Examples of particular esters include, but are not limited to, formates, acetates, propionates, butyrates, acrylates and ethylsuccinates.
  • The expression “pharmaceutically acceptable prodrugs” as used herein refers to those prodrugs of the compounds formed by the process of the present description which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals with undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use. “Prodrug”, as used herein means a compound which is convertible in vivo by metabolic means (e.g. by hydrolysis) to afford any compound delineated by the formulae of the instant description. Various forms of prodrugs are known in the art, for example, as discussed in Bundgaard, (ed.), Design of Prodrugs, Elsevier (1985); Widder, et al. (ed.), Methods in Enzymology, vol. 4, Academic Press (1985); Krogsgaard-Larsen, et al., (ed). “Design and Application of Prodrugs, Textbook of Drug Design and Development”, Chapter 5, 113-191 (1991); Bundgaard, et al., Journal of Drug Deliver Reviews, 8:1-38 (1992); Bundgaard, J. Of Pharmaceutical Sciences, 77:285 et seq. (1988); Higuchi and Stella (eds.) Prodrugs as Novel Drug Delivery Systems, American Chemical Society (1975); and Bernard Testa & Joachim Mayer, “Hydrolysis In Drug And Prodrug Metabolism: Chemistry, Biochemistry And Enzymology”, John Wiley and Sons, Ltd. (2002).
  • Combinations of substituents and variables envisioned by the present description are only those that result in the formation of stable compounds. The term “stable”, as used herein, refers to compounds which possess stability sufficient to allow manufacture and which maintains the integrity of the compound for a sufficient period of time to be useful for the purposes detailed herein (e.g., therapeutic or prophylactic administration to a subject).
  • As used herein, the term “effective amount” means that amount of a drug or pharmaceutical agent that will elicit the biological or medical response of a tissue, system, animal or human that is being sought, for instance, by a researcher or clinician. Furthermore, the term “therapeutically effective amount” means any amount which, as compared to a corresponding subject who has not received such amount, results in treatment, healing, prevention, or amelioration of a disease, disorder, or side effect, or a decrease in the rate of advancement of a disease or disorder. The term also includes within its scope amounts effective to enhance normal physiological function.
  • As used herein, the terms “treatment,” “treat,” and “treating” refer to reversing, alleviating, delaying the onset of, or inhibiting the progress of a disease or disorder, or one or more symptoms thereof, as described herein. In some embodiments, treatment may be administered after one or more symptoms have developed. In other embodiments, treatment may be administered in the absence of symptoms. For example, treatment may be administered to a susceptible individual prior to the onset of symptoms (e.g., in light of a history of symptoms and/or in light of genetic or other susceptibility factors). Treatment may also be continued after symptoms have resolved, for example to prevent or delay their recurrence.
  • As used herein, the term “bromodomain inhibitor” denotes a compound which inhibits the binding of a bromodomain with its cognate acetylated proteins. In one embodiment the bromodomain inhibitor is a compound which inhibits the binding of a bromodomain to acetylated lysine residues. In a further embodiment the bromodomain inhibitor is a compound which inhibits the binding of a bromodomain to acetylated lysine residues on histones, particularly histones H3 and H4.
  • In a particular embodiment the bromodomain inhibitor is a compound that inhibits the binding of BET family bromodomains to acetylated lysine residues (hereafter referred to as a “BET family bromodomain inhibitor”). The BET family of bromodomain containing proteins comprises 4 proteins (BRD2, BRD3, BRD4 and BRD-t) which contain tandem bromodomains capable of binding to two acetylated lysine residues in close proximity, increasing the specificity of the interaction.
  • As used herein, the term “inhibitor” is defined as a compound that binds to and/or inhibits the target bromodomain-containing protein (such as a BET protein, e.g., BRD2, BRD3, BRD4, and/or BRDT) with measurable affinity. In various embodiments, the binding is selective for the bromodomain-containing protein, or it is specific for this protein.
  • The terms “measurable affinity” and “measurably inhibit,” as used herein, means a measurable change in activity of at least one bromodomain-containing protein between a sample comprising a provided compound, or composition thereof, and at least one histone methyltransferase, and an equivalent sample comprising at least one bromodomain-containing protein, in the absence of said compound, or composition thereof.
  • The term “patient or subject” as used herein refers to a mammal. A subject therefore refers to, for example, humans, dogs, cats, horses, cows, pigs, guinea pigs, and the like. Generally the subject is a human. When the subject is a human, the subject may be either a patient or a healthy human.
  • The term “proliferative disorder” refers to cells having the capacity for autonomous growth, i.e., an abnormal state of condition characterized by rapidly proliferating cell growth which generally forms a distinct mass that show partial or total lack of structural organization and functional coordination with normal tissue. In various embodiments, the compounds of the invention are used to treat, ameliorate or cure a proliferative disorder.
  • In some embodiments, the therapeutically effective amount of a compound as defined herein can be administered to a patient alone or admixed with a pharmaceutically acceptable carrier, adjuvant, or vehicle.
  • The expression “pharmaceutically acceptable carrier, adjuvant, or vehicle” and equivalent expressions, refer to a non-toxic carrier, adjuvant, or vehicle that does not destroy the pharmacological activity of the compound with which it is formulated. Pharmaceutically acceptable carriers, adjuvants or vehicles that may be used in the compositions of this disclosure include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.
  • A “pharmaceutically acceptable derivative” means any non-toxic salt, ester, salt of an ester, prodrug, salt of a prodrug, or other derivative of a compound of the present description that, upon administration to a recipient, is capable of providing, either directly or indirectly, a compound of the present description or an inhibitory active metabolite or residue thereof.
  • III. The Embodiments
  • The present disclosure relates to compounds which are heterobifunctional molecules consisting of: (1) a protein binding moiety that binds a protein of interest (POI); (2) a ubiquitination moiety for recruiting an E3 ubiquitin ligase to promote ubiquitination of the protein of interest; and (3) a linker covalently connecting these moieties. In this regard, the compounds mediate the degradation of select proteins of interest by hijacking the activity of E3 ubiquitin ligases for POI ubiquitination and subsequent degradation by the 26S proteasome. Advantageously, since the compounds of the present invention are not degraded in this process, they can “recycle” and promote ubiquitination and degradation of multiple proteins, thus operating substoichiometrically. This catalytic, event-driven modality contrasts with the traditional inhibitor paradigm in which sustained target binding is indispensable for eliciting a desired biological response.
  • The compounds of the present application may be prepared by conventional chemical synthesis, such as exemplified in the Examples appended hereto. As will be appreciated by the skilled artisan, further methods of synthesizing the compounds of the formulae herein will be evident to those of ordinary skill in the art. Additionally, the various synthetic steps may be performed in an alternate sequence or order to give the desired compounds. In addition, the solvents, temperatures, reaction durations, etc. delineated herein are for purposes of illustration only and one of ordinary skill in the art will recognize that variation of the reaction conditions can produce the desired products of the present description. Synthetic chemistry transformations and/or protecting group methodologies (protection and deprotection) useful in synthesizing the compounds described herein are known in the art and include, for example, those such as described in R. Larock, Comprehensive Organic Transformations, VCH Publishers (1989); T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, 2d. Ed., John Wiley and Sons (1991); L. Fieser and M. Fieser, Fieser and Fieser's Reagents for Organic Synthesis, John Wiley and Sons (1994); and L. Paquette, ed., Encyclopedia of Reagents for Organic Synthesis, John Wiley and Sons (1995), and subsequent editions thereof. The synthesized compounds can be separated from a reaction mixture and further purified by standard methods such as column chromatography, high pressure liquid chromatography, or recrystallization.
  • The compounds of the present description may be modified by appending various functionalities via any synthetic means delineated herein or otherwise know in the art to enhance selective chemical (e.g. stability) and biological (e.g., affinity for the POI) properties. Such modifications are known in the art and include those which increase biological penetration into a given biological system (e.g., blood, lymphatic system, central nervous system), increase oral availability, increase solubility to allow administration by injection, alter metabolism and alter rate of excretion.
  • The recitation of a listing of chemical groups in any definition of a variable herein includes definitions of that variable as any single group or combination of listed groups. The recitation of an embodiment for a variable herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof. The recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof. As such, the following embodiments are present alone or in combination if applicable.
  • Accordingly, the present disclosure relates to a compound of Formula (I) or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof is:
  • Figure US20210147441A1-20210520-C00006
  • wherein R1 is selected from optionally substituted heterocyclylene, optionally substituted arylene, optionally substituted heteroarylene, optionally substituted aminylacylene, optionally substituted acylaminylene and optionally substituted acylene;
    R2 is selected from H, halogen and optionally substituted C1-C6 alkyl, e.g., methyl;
    R3 and R4 are independently selected from H and optionally substituted C1-C6 alkyl, e.g., methyl;
    R5 is selected from H and optionally substituted C1-C6 alkyl, e.g., methyl;
    L is an optionally substituted linker having 2 to 18 atoms in the chain length;
    X is a protein binding moiety; and
  • Z is N or CH.
  • In some embodiments, R1 is located at either a 5′ or 6′ position of the oxindole (or azaoxindole) ring.
  • The inventors have found that this particular 2-oxindole (2-indolone) structure is advantageous for binding to the E3 ligase. This was determined based on a fragment based screening using thermal shift and structure-activity relationship (SAR) between the chemical structure of the oxindole molecule and its biological activity to E3 ligase. The binding was further validated using ligand-based NMR methods.
  • For the compounds to act in the catalytic, event-driven modality, there is no need for the compound to continue to bind to the POI once it is ubiquitinated; i.e. it would be more advantageous for it to dissociate and find a fresh target to be ubiquitinated. Very tight binding of the compound to the POI (i.e. slow off-rate) may even reduce the overall efficiency of the compound: too short residence time (low affinity) and the E3 will not have enough time to catalyse the transfer of ubiquitin from the E2 to the POI. A residence time, on the other hand, that is too long may slow down the traveling of the compound between different POI copies. In this regard, once the POI is being degraded, the (non-covalent) compound can be released so it will always be able to achieve a base level of catalysis. Accordingly, there is no need for very strong affinity of the compound for the POI and/or E3 ligase.
  • In this regard, advantageously, and as shown in the examples, compounds of Formula (I), and in particular the ubiquitination moiety, have an IC50 (thalidomide binding domain CRBN) value of from about 30 μM to >300 μM, e.g., about 100 μM. This allows compounds of the present invention to have an acceptable residence time with E3 ligase, such that the catalytic, event-driven modality can be achieved.
  • In this regard, advantageously, and as shown in the examples, compounds of Formula (I), and in particular the ubiquitination moiety, have a GI50 value of from about 0.005 μM to >10 μM. This allows compounds of the present invention to have an acceptable residence time with E3 ligase, such that the catalytic, event-driven modality can be achieved. The range would be from 0.005 μM to >10 μM.
  • In various embodiments, the oxindole moiety is not a drug, e.g., an immunomodulatory drug, known in the art as of the International Filing Date of this application. In various embodiments, the oxindole moiety is not such a known drug derivatized to allow its attachment to the linker and incorporation into a compound of the invention. Such known drug moieties and derivatives thereof are, in these embodiments, expressly removed by proviso.
  • As used herein, the positioning on the oxindole ring is as follows:
  • Figure US20210147441A1-20210520-C00007
  • In some embodiments, R1 is selected from optionally substituted heterocyclylene, optionally substituted arylene, optionally substituted heteroarylene, optionally substituted aminylacylene, optionally substituted acylaminylene and optionally substituted acylene. In other embodiments, R1 is selected from optionally substituted heterocyclylene, optionally substituted arylene, optionally substituted heteroarylene, optionally substituted aminylacylene and optionally substituted acylaminylene. In other embodiments, R1 is selected from optionally substituted arylene, optionally substituted heteroarylene, optionally substituted aminylacylene and optionally substituted acylaminylene.
  • In some embodiments, R1 is selected from optionally substituted phenylene, optionally substituted pyridinylene, optionally substituted pyrazolylene, optionally substituted indolylene, optionally substituted azaindolylene, optionally substituted aminylacylene, optionally substituted acylaminylene, optionally substituted heterocyclylacylene, optionally substituted heterocyclyloxyene, optionally substituted heteroaryloxyene, optionally substituted alkoxyene and optionally substituted piperidinylene. In other embodiments, R1 is selected from optionally substituted phenylene, optionally substituted pyridinylene, optionally substituted pyrazolylene, optionally substituted aminylacylene and optionally substituted acylaminylene.
  • In some embodiments, the optional substituent at R1 is selected from halogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted alkoxy, optionally substituted amino, optionally substituted oxyacyl, optionally substituted acyl, optionally substituted aminoacyl, optionally substituted acylamino, optionally substituted aryl, optionally substituted heteroaryl and optionally substituted heterocyclylacyl. In other embodiments, the optional substituent at R1 is selected from optionally substituted heterocyclyl, optionally substituted amino, optionally substituted aminoacyl, optionally substituted acylamino, optionally substituted aryl, optionally substituted heteroaryl. In other embodiments, the optional substituent at R1 is selected from fluoro, chloro, bromo, methyl, ethyl, methoxy, amino and acyloxy.
  • In an exemplary embodiment, R1 is pyridyl substituted with an amine moiety, which is a terminal moiety of linker L3.
  • In some embodiments, R2 is selected from H, halogen and optionally substituted methyl. In other embodiments, R2 is selected from H, halogen and methyl. In an exemplary embodiment, R2 is fluoro.
  • In some embodiments, R1 is optionally substituted heteroarylene and R2 is selected from H, halogen or optionally substituted methyl. In other embodiments, R2 is optionally substituted phenylene, optionally substituted pyridinylene, optionally substituted pyrazolylene, optionally substituted indolylene, optionally substituted azaindolylene and optionally substituted piperidinylene, and R2 is selected from H, halogen or methyl.
  • In some embodiments, R3, R4 and R5 are independently selected from H, optionally substituted methyl. In other embodiments, R3, R4 and R5 are independently selected from H and methyl.
  • As will be apparent to those of skill in the art, each combination of the substituents set forth above, in any number, variation and combination is within the purview of the instant disclosure.
  • In some embodiments, the compounds of the invention have a structure according to Formula (II):
  • Figure US20210147441A1-20210520-C00008
  • wherein X, Z, R2, R3, R4, and R5 are as described herein. R6 is H or C1-C6 alkyl, e.g., methyl. X1, X2 and X3 are independently selected from N and CH, and C-L3, such that when X1 and X3 are N, X2 is C-L3. L3 is a linker as that term is defined herein. In an exemplary embodiment, X2 is N, X1 and X3 are CH. In an exemplary embodiment, X2 is N, X1 and X3 are C-L3 or CH, and the pyridyl moiety is attached at the 5-position of the oxindole ring. In an exemplary embodiment, X2 is N and X1 is C-L3.
  • In various embodiments, the compounds of the invention have a structure according to Formula (III):
  • Figure US20210147441A1-20210520-C00009
  • in which X, X1, X2 and X3, Z, R2, R3, R4, R5 and R6 are as described herein. L4 is a linker as described herein. X1, X2 and X3 are independently selected from N and CH, and C-L4, such that when X1 and X3 are N, X2 is C-L4. In an exemplary embodiment, X2 is N, X1 and X3 are CH. In an exemplary embodiment, X2 is N, X1 and X3 are C-L4 or CH, and the pyridyl moiety is attached at the 5-position of the oxindole ring. In an exemplary embodiment, X2 is N and X1 is C-L4.
  • In some embodiments, the compounds of the invention have a structure according to Formula (IV):
  • Figure US20210147441A1-20210520-C00010
  • in which X, Z, R1, R2, R3, R4, and R5 are as described herein. L2 is a linker as that term is defined herein. The index a represents an integer selected from 2, 3, 4, 5, 6, 7, 8, 9, and 10.
  • In exemplary embodiments, the compounds of the invention have a structure according to Formula (V):
  • Figure US20210147441A1-20210520-C00011
  • in which X, Z, R1, R2, R3, R4, and R5 are as described herein. L1 is a linker as that term is defined herein.
  • The protein binding moiety X can be any moiety that is able to target a desired protein of interest. In this regard, X can be a bromodomain-containing protein 4 (BRD4) binding moiety. For example, X can be a BRD4 inhibitor. BRD4 belongs to the bromodomain and extraterminal domain (BET) family of proteins, which is characterized by two bromodomains (BD) at the N-terminus and an extraterminal domain (ET domain) at the C-terminus. The two BDs recognize and interact with acetylated lysine residues at the N-terminal tails of histones; the ET domain is largely considered to serve a scaffolding function in recruiting diverse transcriptional regulators. Thus, BRD4 plays a key role in regulating gene expression by recruiting relevant transcription modulators to specific genomic loci. Owing to its pivotal role in modulating the expression of essential oncogenes, BRD4 has emerged as a promising therapeutic target in multiple cancer types, including midline carcinoma, acute myeloid leukemia, multiple myeloma, Burkitt lymphoma and prostate cancer. Additionally, by using BRD4 to target c-MYC, many of human cancers that has remained undruggable can be targeted.
  • In some embodiments, X is a derivative of JQ1:
  • Figure US20210147441A1-20210520-C00012
  • In other embodiments, X is a derivative of OTX015 (e.g., S enantiomer):
  • Figure US20210147441A1-20210520-C00013
  • Alternatively, X can be selected from bromodomain-containing protein 4 (BRD4) binding moiety, transcriptional enhanced associate domain (TEAD) binding moiety, Polycomb Repressive Complex 2 (PRC2) binding moiety, focal adhesion kinase (FAK) binding moiety, BCR-ABL binding moiety, Hippo pathway protein binding moiety and transcription factor binding moiety.
  • As an alternative, the protein binding moiety can be a drug compound with a low or moderate binding affinity with the protein of interest. This is in accordance with what is discussed above; i.e. there is no need for very strong affinity of the compound for the POI and/or E3 ligase to achieve the catalytic, event-driven modality. In this regard, X can be a small molecule, for example a drug compound.
  • As will be appreciated by those of skill in the art, these precursor molecules are modifiable by placement of one or more reactive functional group, such as those set forth herein, thereby allowing the resulting reactive derivative to be covalently joined to a component of a linker and forming a compound of the invention.
  • In exemplary embodiments, the invention provides compounds according to Formula (VI):
  • Figure US20210147441A1-20210520-C00014
  • in which Z, R1, R2, R3, R4, and R5 are as described herein. L2 is a linker as that term is defined herein. The index a represents an integer selected from 1-18, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10.
  • In some embodiments, the invention provides compounds according to Formula (VII):
  • Figure US20210147441A1-20210520-C00015
  • in which Z, R1, R2, R3, R4, and R5 are as described herein. L1 is a linker as that term is defined herein.
  • In certain embodiments, the invention provides compound according to Formula (VIII):
  • Figure US20210147441A1-20210520-C00016
  • in which Z, R1, R2, R3, R4, and R5 are as described herein. L1 is a linker as that term is defined herein.
  • In exemplary embodiments, there are provided compounds according to Formula (IX):
  • Figure US20210147441A1-20210520-C00017
  • in which Z, R1, R2, R3, R4, R5, R6, and a are as described herein. L5 is a linker as that term is defined herein.
  • In an exemplary embodiment, the compounds of the invention have the formula:
  • Figure US20210147441A1-20210520-C00018
  • in which the index a, X2, Z, R2, R3, R4, R5 and R6 are as described herein. L5 is a linker as that term is defined herein.
  • In some embodiments, when R1 is selected from optionally substituted heterocyclylene, optionally substituted arylene, optionally substituted heteroarylene, optionally substituted heteroarylaminoacylene, optionally substituted heteroarylacylaminoene, optionally substituted heteroarylacylene, optionally substituted arylaminoacylene, optionally substituted arylacylaminoene and optionally substituted arylacylene.
  • In various embodiments, R1 is selected from the formulae below:
  • Figure US20210147441A1-20210520-C00019
  • In various embodiments, the linker moiety (“L”) is attached at a para or ortho position of the 6 membered ring. Some examples are as follows, where
    Figure US20210147441A1-20210520-P00002
    represents the connection to the oxindolyl moiety:
  • Figure US20210147441A1-20210520-C00020
  • The ubiquitination moiety (oxindole ring, azaoxindole ring) is connected to the protein binding moiety X by means of a linker L. In some embodiments, the connection is by means of covalent bond via the linker L.
  • A linker can be any useful structure for that joins a ligand to a reactive functional group or a targeting moiety, such as an antibody. Examples of a linker include 0-order linkers (i.e., a bond), substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl and substituted or unsubstituted heteroaryl. Further exemplary linkers include substituted or unsubstituted (C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, C20) alkyl, substituted or unsubstituted heteroalkyl, —C(O)NR′—, —C(O)O—, —C(O)S—, and —C(O)CR′R″, wherein R′ and R″ are members independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl and substituted or unsubstituted heterocycloalkyl. In some embodiments, a linker includes at least one heteroatom. Exemplary linkers also include —C(O)NH—, —C(O), —NH—, —S—, —O—, and the like. In an exemplary embodiment, a linker is a heteroalkyl substituted with a reactive functional group.
  • In some embodiments, L is an optionally substituted linker having 2 to 18 atoms in the chain length. In other embodiments, L is an optionally substituted linker having 2 to 15 atoms in the chain length. In other embodiments, L is an optionally substituted linker having 2 to 12 atoms in the chain length. In some embodiments, L is a linker selected from optionally substituted alkyl, optionally substituted heteroalkyl, optionally substituted cycloalkyl (such as spirocycloalkyl) and optionally substituted heterocyclyl, each having 2 to 15 atoms in the chain length. In other embodiments, L is a linker selected from optionally substituted C2-C15 alkyl and optionally substituted polyethoxy having 2 to 15 atoms in the chain length. In other embodiments, L is a linker selected from optionally substituted C2-C10 alkyl and optionally substituted polyethoxy having 2 to 10 atoms in the chain length.
  • In an exemplary embodiment, the linker is ethylene glycol or polyethylene glycol includes 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10, e.g., 1-6, ethylene glycol (OCH2CH2O), or (CH2CH2OCH2CH2) subunits. In some embodiments, the linker is polyethylene glycol with one repeating unit (PEG-1) or polyethylene glycol with three repeating units (PEG-3). In other embodiments, the linker is selected from piperidinylene, piperazinylene, pyrrolidinylene, azetidinylene, spirocycloalkylene (such as spiro[3.3]heptanylene, spiro[4.4]nonanylene) and amides. The linker L can be selected from, but is not limited to (wherein
    Figure US20210147441A1-20210520-P00003
    represents the connection to the ubiquitination moiety or oxindolyl moiety and the protein targeting moiety):
  • Figure US20210147441A1-20210520-C00021
  • During synthesis of the compound of the invention, a linker precursor is used, which has one or more reactive functional group as a component thereof. The functional group(s) is reacted with a reactive group on other components of the molecule to form the final molecule. In the finished compound, the linker precursor becomes the linker. Reactive functional groups and classes of reactions useful in practicing the present invention are generally those that are well known in the art of bioconjugate chemistry. Currently favored classes of reactions available with reactive functional groups of the invention are those which proceed under relatively mild conditions. These include, but are not limited to nucleophilic substitutions (e.g., reactions of amines and alcohols with acyl halides and activated esters), electrophilic substitutions (e.g., enamine reactions) and additions to carbon-carbon and carbon-heteroatom multiple bonds (e.g., Michael reactions and Diels-Alder reactions). These and other useful reactions are discussed, for example, in March, Advanced Organic Chemistry (3rd Ed., John Wiley & Sons, New York, 1985); Hermanson, Bioconjugate Techniques (Academic Press, San Diego, 1996); and Feeney et al., Modification of Proteins, Advances in Chemistry Series, Vol. 198 (American Chemical Society, Washington, D.C., 1982).
  • In some embodiments, a reactive functional group refers to a group selected from olefins, acetylenes, alcohols, phenols, ethers, oxides, halides, aldehydes, ketones, carboxylic acids, esters, amides, cyanates, isocyanates, thiocyanates, isothiocyanates, amines, hydrazines, hydrazones, hydrazides, diazo, diazonium, nitro, nitriles, mercaptans, sulfides, disulfides, sulfoxides, sulfones, sulfonic acids, sulfinic acids, acetals, ketals, anhydrides, sulfates, sulfenic acids isonitriles, amidines, imides, imidates, nitrones, hydroxylamines, oximes, hydroxamic acids thiohydroxamic acids, allenes, ortho esters, sulfites, enamines, ynamines, ureas, pseudoureas, semicarbazides, carbodiimides, carbamates, imines, azides, azo compounds, azoxy compounds, and nitroso compounds. Reactive functional groups also include those used to prepare bioconjugates, e.g., N-hydroxysuccinimide esters, maleimides and the like. Methods to prepare each of these functional groups are well known in the art and their application or modification for a particular purpose is within the ability of one of skill in the art (see, for example, Sandler and Karo, eds., Organic Functional Group Preparations, (Academic Press, San Diego, 1989)).
  • A reactive functional group can be chosen according to a selected reaction partner. As an example, an activated ester, such as an NHS ester will be useful to label a a moiety via amine residues. Sulfhydryl reactive groups, such as maleimides can be used to label moieties carrying an SH-group (e.g., cysteine). Compounds with hydroxyl groups may be reacted by first oxidizing their carbohydrate moieties (e.g., with periodate) and reacting resulting aldehyde groups with a hydrazine containing ligand.
  • The reactive functional groups can be chosen such that they do not participate in, or interfere with reactions with which they are not involved, which are necessary to assemble the compound. Alternatively, a reactive functional group can be protected from participating in the reaction by means of a protecting group. Those of skill in the art understand how to protect a particular functional group so that it does not interfere with a chosen set of reaction conditions. For examples of useful protecting groups, see, for example, Greene et al., PROTECTIVE GROUPS IN ORGANIC SYNTHESIS, John Wiley & Sons, New York, 1991.
  • In one embodiment, a reactive functional group is selected from an amine, (such as a primary or secondary amine), hydrazine, hydrazide and sulfonylhydrazide. Amines can, for example, be acylated, alkylated or oxidized. Useful non-limiting examples of amino-reactive groups include N-hydroxysuccinimide (NHS) esters, sulfur-NHS esters, imidoesters, isocyanates, isothiocyanates, acylhalides, arylazides, p-nitrophenyl esters, aldehydes, sulfonyl chlorides, thiazolides and carboxyl groups.
  • NHS esters and sulfo-NHS esters react preferentially with primary (including aromatic) amino groups of a reaction partner. The imidazole groups of histidines are known to compete with primary amines for reaction, but the reaction products are unstable and readily hydrolyzed. The reaction involves the nucleophilic attack of an amine on the acid carboxyl of an NHS ester to form an amide, releasing the N-hydroxysuccinimide.
  • Imidoesters are the most specific acylating reagents for reaction with amine groups of a molecule such as a protein. At a pH between 7 and 10, imidoesters react only with primary amines. Primary amines attack imidates nucleophilically to produce an intermediate that breaks down to amidine at high pH or to a new imidate at low pH. The new imidate can react with another primary amine, thus crosslinking two amino groups, a case of a putatively monofunctional imidate reacting bifunctionally. The principal product of reaction with primary amines is an amidine that is a stronger base than the original amine. The positive charge of the original amino group is therefore retained. As a result, imidoesters do not affect the overall charge of the conjugate.
  • Isocyanates (and isothiocyanates) react with the primary amines of the conjugate components to form stable bonds. Their reactions with sulfhydryl, imidazole, and tyrosyl groups give relatively unstable products.
  • Acylazides are also used as amino-specific reagents in which nucleophilic amines of the reaction partner attack acidic carboxyl groups under slightly alkaline conditions, e.g. pH 8.5.
  • Arylhalides such as 1,5-difluoro-2,4-dinitrobenzene react preferentially with the amino groups and tyrosine phenolic groups of the conjugate components, but also with its sulfhydryl and imidazole groups.
  • p-Nitrophenyl esters of carboxylic acids are also useful amino-reactive groups. Although the reagent specificity is not very high, α- and ε-amino groups appear to react most rapidly.
  • Aldehydes react with primary amines of the conjugate components (e.g., 6-amino group of lysine residues). Although unstable, Schiff bases are formed upon reaction of the protein amino groups with the aldehyde. Schiff bases, however, are stable, when conjugated to another double bond. The resonant interaction of both double bonds prevents hydrolysis of the Schiff linkage. Furthermore, amines at high local concentrations can attack the ethylenic double bond to form a stable Michael addition product. Alternatively, a stable bond may be formed by reductive amination.
  • Aromatic sulfonyl chlorides react with a variety of sites of the conjugate components, but reaction with the amino groups is the most important, resulting in a stable sulfonamide linkage.
  • Free carboxyl groups react with carbodiimides, soluble in both water and organic solvents, forming pseudoureas that can then couple to available amines yielding an amide linkage. Yamada et al., Biochemistry, 1981, 20: 4836-4842, e.g., teach how to modify a protein with carbodiimides.
  • In another embodiment, a reactive functional group is selected from a sulfhydryl group (which can be converted to disulfides) and sulfhydryl-reactive group. Useful non-limiting examples of sulfhydryl-reactive groups include maleimides, alkyl halides, acyl halides (including bromoacetamide or chloroacetamide), pyridyl disulfides, and thiophthalimides.
  • Maleimides react preferentially with the sulfhydryl group of the conjugate components to form stable thioether bonds. They also react at a much slower rate with primary amino groups and the imidazole groups of histidines. However, at pH 7 the maleimide group can be considered a sulfhydryl-specific group, since at this pH the reaction rate of simple thiols is 1000-fold greater than that of the corresponding amine.
  • Alkyl halides react with sulfhydryl groups, sulfides, imidazoles, and amino groups. At neutral to slightly alkaline pH, however, alkyl halides react primarily with sulfhydryl groups to form stable thioether bonds. At higher pH, reaction with amino groups is favored.
  • Pyridyl disulfides react with free sulfhydryl groups via disulfide exchange to give mixed disulfides. As a result, pyridyl disulfides are relatively specific sulfhydryl-reactive groups.
  • Thiophthalimides react with free sulfhydryl groups to also form disulfides.
  • Other exemplary reactive functional groups include:
      • (i) carboxyl groups and various derivatives thereof including, but not limited to, N-hydroxybenztriazole esters, acid halides, acyl imidazoles, thioesters, p-nitrophenyl esters, alkyl, alkenyl, alkynyl and aromatic esters;
      • (ii) hydroxyl groups, which can be converted to esters, ethers, aldehydes, etc.;
      • (iii) haloalkyl groups, wherein the halide can be displaced with a nucleophilic group such as, for example, an amine, a carboxylate anion, thiol anion, carbanion, or an alkoxide ion, thereby resulting in the covalent attachment of a new group at the site of the halogen atom;
      • (iv) dienophile groups, which are capable of participating in Diels-Alder reactions such as, for example, maleimido groups;
      • (v) aldehyde or ketone groups, such that subsequent derivatization is possible via formation of carbonyl derivatives such as, for example, imines, hydrazones, semicarbazones or oximes, or via such mechanisms as Grignard addition or alkyllithium addition;
      • (vi) alkenes, which can undergo, for example, cycloadditions, acylation, Michael addition, etc;
      • (vii) epoxides, which can react with, for example, amines and hydroxyl groups;
      • (ix) phosphoramidites and other standard functional groups useful in nucleic acid synthesis and
      • (x) any other functional group useful to form a covalent bond between the functionalized ligand and a molecular entity or a surface.
  • As will be apparent to those of skill in the art, any of these reactive functional groups in any useful combination can be placed on any component of the precursors of the compounds of the invention in the course of the synthesis of the compounds of the invention.
  • The compounds of the present disclosure initiate a degradation cascade by forming a ternary complex with a POI and an E3, bringing the ubiquitination machinery in close proximity for subsequent POI ubiquitination. The polyubiquitinated POI is then recognized and degraded by the 26S proteasome. Accordingly, the ‘close proximity’ is part of the key for proper functioning of this mechanism.
  • The inventors have found that, in some embodiments, a specific linker length is particularly advantageous for the purpose of this invention. In particular, if the linker length is too short, it was found that the oxindole moiety hinders the protein binding moiety in binding to the target protein. On the other hand, if the linker length is too long, ubiquitination does not occur or occurs at a very slow rate as the proper signals are not transmitted to the target protein. In this regard, it was found that the chain length as disclosed herein is optimal such that the oxindole moiety does not hinder the protein binding moiety and the rate of ubiquitination is acceptable.
  • In an exemplary embodiment, the linker is of the para-vector motif with a poly(ethylene glycol) moiety, and the poly(ethylene glycol) and m is 3 or 4. Preferred compounds according to this motif form a ternary complex as discussed herein.
  • In an exemplary embodiment, the linker is of the ortho-vector motif with a poly(ethylene glycol) moiety, and the poly(ethylene glycol) and m is 1, 2, 3 or 4. Preferred compounds according to this motif form a ternary complex as discussed herein.
  • The skilled person would understand that the linker is, at one end of the linker, connected to the ubiquitination moiety, and that the linker is, at the other end, connected to the protein binding moiety. Such connection can be the same at both ends or different at both ends. For example, the connection can be by means of an amide bond.
  • The type of connection can play a role in influencing the activity of the compounds as it increases the linker length and also add to the electron density of the compound. The nature of the linkage site, linker length and linker composition also play an important role. Additionally, some moieties are more labile than others and may not be suitable for use in a linker. In this regard, the pharmacophore of the compound may change as the 3D spatial arrangement of the protein binding moiety and/or ubiquitination moiety may be impacted.
  • The attachment of the linker to the protein binding moiety and/or ubiquitination moiety also play a role. It is believed that the attachment of the linker alters the spatial availability of the protein binding moiety and/or ubiquitination moiety to their respective targets, and according influences the affinity. In this regard, a one atom difference can potentially result in a large difference in activity.
  • In this regard, the inventors have found that R1 is, in some embodiments, advantageously located at either a 5′ or 6′ position of the oxindole ring. The compound of Formula (I) may alternatively be represented by Formula (Ia) or (Ib):
  • Figure US20210147441A1-20210520-C00022
  • wherein R1, R2, R3, R4 and R5 are as defined herein.
  • In some embodiments, compounds of the present invention are represented by Formulae (Ia′) or (Ib′):
  • Figure US20210147441A1-20210520-C00023
  • wherein R2, R3, R4, R5 and R6 are as defined herein.
  • In an exemplary embodiment, the compound of the invention has a formula selected from:
  • Figure US20210147441A1-20210520-C00024
  • In various embodiments, the compound of the invention has a formula selected from:
  • Figure US20210147441A1-20210520-C00025
  • In various embodiments, the compound of the invention has a formula selected from:
  • Figure US20210147441A1-20210520-C00026
  • In the formulae set forth above, the substituents R3, R4, R5 and R6, and X are as described herein. In various embodiments, the six-member ring of the oxindole (or oxazaindole) is substituted with halogen, e.g., fluoro.
  • In various embodiments, an exemplary compound of the invention is selected from 148, 151, 152, 154, 156, 157, 158, 159 and 160.
  • In exemplary compound according to the formulae set forth above, L is poly(ethylene glycol) and L is covalently attached to the oxindole (or oxazaindole) moiety via O, or NH. An exemplary poly(ethylene glycol) includes 2, 3, or 4 ethylene glycol subunits.
  • In some embodiments, R6 is selected from halogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted alkoxy, optionally substituted amino, optionally substituted oxyacyl, optionally substituted acyl, optionally substituted aminoacyl and optionally substituted acylamino.
  • In some embodiments, R6 is selected from halogen, optionally substituted alkyl, optionally substituted alkoxy and optionally substituted amino. In other embodiments, R6 is selected from Cl, F, Br, methyl, ethyl, propyl, methoxy, —NH2, —NHCH3, —C(O)NH2, —C(O)NHCH3, —NHC(O)CH3, and —C(O)OCH2CH3.
  • The compound of the invention may be represented as Formula (I′):
  • Figure US20210147441A1-20210520-C00027
  • wherein R1, R2, R3, R4, R5 and L are as defined herein; and
    wherein R1 is optionally located at either a 5′ or 6′ position of the oxindole ring.
  • The compound of the invention may be represented by Formula (I″):
  • Figure US20210147441A1-20210520-C00028
  • wherein R1, R2, R3, R4, R5 and L are as defined herein; and
    wherein R1 is optionally located at either a 5′ or 6′ position of the oxindole ring.
  • Advantageously, the exemplary compounds of the invention are able to permeate cells to exert their effect, and accordingly have good cellular activity.
  • In some embodiments, the compound the invention can be selected from the following compounds in Table 1:
  • TABLE 1
    Com-
    pound
    ID Structure
    096
    Figure US20210147441A1-20210520-C00029
    097
    Figure US20210147441A1-20210520-C00030
    098
    Figure US20210147441A1-20210520-C00031
    099
    Figure US20210147441A1-20210520-C00032
    100
    Figure US20210147441A1-20210520-C00033
    101
    Figure US20210147441A1-20210520-C00034
    102
    Figure US20210147441A1-20210520-C00035
    103
    Figure US20210147441A1-20210520-C00036
    104
    Figure US20210147441A1-20210520-C00037
    105
    Figure US20210147441A1-20210520-C00038
    106
    Figure US20210147441A1-20210520-C00039
    107
    Figure US20210147441A1-20210520-C00040
    108
    Figure US20210147441A1-20210520-C00041
    109
    Figure US20210147441A1-20210520-C00042
    110
    Figure US20210147441A1-20210520-C00043
    111
    Figure US20210147441A1-20210520-C00044
    112
    Figure US20210147441A1-20210520-C00045
    113
    Figure US20210147441A1-20210520-C00046
    114
    Figure US20210147441A1-20210520-C00047
    115
    Figure US20210147441A1-20210520-C00048
    116
    Figure US20210147441A1-20210520-C00049
    117
    Figure US20210147441A1-20210520-C00050
    118
    Figure US20210147441A1-20210520-C00051
    119
    Figure US20210147441A1-20210520-C00052
    120
    Figure US20210147441A1-20210520-C00053
    121
    Figure US20210147441A1-20210520-C00054
    122
    Figure US20210147441A1-20210520-C00055
    123
    Figure US20210147441A1-20210520-C00056
    124
    Figure US20210147441A1-20210520-C00057
    125
    Figure US20210147441A1-20210520-C00058
    126
    Figure US20210147441A1-20210520-C00059
    127
    Figure US20210147441A1-20210520-C00060
    128
    Figure US20210147441A1-20210520-C00061
    129
    Figure US20210147441A1-20210520-C00062
    130
    Figure US20210147441A1-20210520-C00063
    131
    Figure US20210147441A1-20210520-C00064
    132
    Figure US20210147441A1-20210520-C00065
    133
    Figure US20210147441A1-20210520-C00066
    134
    Figure US20210147441A1-20210520-C00067
    135
    Figure US20210147441A1-20210520-C00068
    136
    Figure US20210147441A1-20210520-C00069
    137
    Figure US20210147441A1-20210520-C00070
    138
    Figure US20210147441A1-20210520-C00071
    139
    Figure US20210147441A1-20210520-C00072
    140
    Figure US20210147441A1-20210520-C00073
    141
    Figure US20210147441A1-20210520-C00074
    142
    Figure US20210147441A1-20210520-C00075
    143
    Figure US20210147441A1-20210520-C00076
    144
    Figure US20210147441A1-20210520-C00077
    145
    Figure US20210147441A1-20210520-C00078
    146
    Figure US20210147441A1-20210520-C00079
    147
    Figure US20210147441A1-20210520-C00080
    148
    Figure US20210147441A1-20210520-C00081
    149
    Figure US20210147441A1-20210520-C00082
    150
    Figure US20210147441A1-20210520-C00083
    151
    Figure US20210147441A1-20210520-C00084
    152
    Figure US20210147441A1-20210520-C00085
    153
    Figure US20210147441A1-20210520-C00086
    154
    Figure US20210147441A1-20210520-C00087
    155
    Figure US20210147441A1-20210520-C00088
    156
    Figure US20210147441A1-20210520-C00089
    157
    Figure US20210147441A1-20210520-C00090
    158
    Figure US20210147441A1-20210520-C00091
    159
    Figure US20210147441A1-20210520-C00092
    160
    Figure US20210147441A1-20210520-C00093
    161
    Figure US20210147441A1-20210520-C00094
    162
    Figure US20210147441A1-20210520-C00095
    163
    Figure US20210147441A1-20210520-C00096
    164
    Figure US20210147441A1-20210520-C00097
    165
    Figure US20210147441A1-20210520-C00098
    166
    Figure US20210147441A1-20210520-C00099
    167
    Figure US20210147441A1-20210520-C00100
    168
    Figure US20210147441A1-20210520-C00101
    169
    Figure US20210147441A1-20210520-C00102
    170
    Figure US20210147441A1-20210520-C00103
  • In various embodiments, the present disclosure also relates to a compound of Formula (XI) or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof:
  • Figure US20210147441A1-20210520-C00104
  • wherein R1′ is selected from optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted aminoacyl, optionally substituted acylamino, and optionally substituted acyl;
    R2 is selected from H, halogen and methyl;
    R3 and R4 are independently selected from H and methyl; and
    R5 is selected from H and methyl;
    wherein R1′ is located at either a 5′ or 6′ position of the oxindole ring.
  • Compounds of Formula (XI) can be used as the ubiquitination moiety as disclosed herein.
  • In some embodiments, R1′ is selected from optionally substituted phenyl, optionally substituted pyridinyl, optionally substituted pyrazolyl, optionally substituted indolyl, optionally substituted azaindolyl, optionally substituted aminoacyl, optionally substituted acylamino, optionally substituted heterocyclylacyl and optionally substituted piperidinyl.
  • In some embodiments, R3, R4 and R5 are independently selected from H and methyl.
  • The compound of Formula (XI) may be represented as Formula (XI′) or (XI″):
  • Figure US20210147441A1-20210520-C00105
  • wherein R1′, R2, R3, R4 and R5 are as defined herein. In this regard, compounds of Formula (II′) have R′ located at a 6′ position of the oxindole ring and compounds of Formula (II″) have R′ located at a 5′ position of the oxindole ring.
  • The compound of Formula (XI) may also be represented as Formulae (XI′a) or (II″a):
  • Figure US20210147441A1-20210520-C00106
  • wherein R2, R3, R4 and R5 are as defined herein, and R6 is selected from halogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted alkoxy, optionally substituted amino, optionally substituted oxyacyl, optionally substituted acyl, optionally substituted aminoacyl and optionally substituted acylamino.
  • In some embodiments, R6 is selected from optionally substituted amino, optionally substituted aminoacyl and optionally substituted acylamino.
  • In some embodiments, R6 is optionally substituted spirocycloalkyl.
  • Exemplary compounds of the invention include a fragment of use as a ubiquitination moiety, e.g., XI, XI′, XI″, XI′a, XI′a, which is substituted as shown in the Formulae set forth herein and which is selected from the fragments in Table 2:
  • TABLE 2
    Com-
    pound
    ID Structure
    001
    Figure US20210147441A1-20210520-C00107
    002
    Figure US20210147441A1-20210520-C00108
    003
    Figure US20210147441A1-20210520-C00109
    004
    Figure US20210147441A1-20210520-C00110
    005
    Figure US20210147441A1-20210520-C00111
    006
    Figure US20210147441A1-20210520-C00112
    007
    Figure US20210147441A1-20210520-C00113
    008
    Figure US20210147441A1-20210520-C00114
    009
    Figure US20210147441A1-20210520-C00115
    010
    Figure US20210147441A1-20210520-C00116
    011
    Figure US20210147441A1-20210520-C00117
    012
    Figure US20210147441A1-20210520-C00118
    013
    Figure US20210147441A1-20210520-C00119
    014
    Figure US20210147441A1-20210520-C00120
    015
    Figure US20210147441A1-20210520-C00121
    016
    Figure US20210147441A1-20210520-C00122
    017
    Figure US20210147441A1-20210520-C00123
    018
    Figure US20210147441A1-20210520-C00124
    019
    Figure US20210147441A1-20210520-C00125
    020
    Figure US20210147441A1-20210520-C00126
    021
    Figure US20210147441A1-20210520-C00127
    022
    Figure US20210147441A1-20210520-C00128
    023
    Figure US20210147441A1-20210520-C00129
    024
    Figure US20210147441A1-20210520-C00130
    025
    Figure US20210147441A1-20210520-C00131
    026
    Figure US20210147441A1-20210520-C00132
    027
    Figure US20210147441A1-20210520-C00133
    028
    Figure US20210147441A1-20210520-C00134
    029
    Figure US20210147441A1-20210520-C00135
    030
    Figure US20210147441A1-20210520-C00136
    031
    Figure US20210147441A1-20210520-C00137
    032
    Figure US20210147441A1-20210520-C00138
    033
    Figure US20210147441A1-20210520-C00139
    034
    Figure US20210147441A1-20210520-C00140
    035
    Figure US20210147441A1-20210520-C00141
    036
    Figure US20210147441A1-20210520-C00142
    037
    Figure US20210147441A1-20210520-C00143
    038
    Figure US20210147441A1-20210520-C00144
    039
    Figure US20210147441A1-20210520-C00145
    040
    Figure US20210147441A1-20210520-C00146
    041
    Figure US20210147441A1-20210520-C00147
    042
    Figure US20210147441A1-20210520-C00148
    043
    Figure US20210147441A1-20210520-C00149
    044
    Figure US20210147441A1-20210520-C00150
    045
    Figure US20210147441A1-20210520-C00151
    046
    Figure US20210147441A1-20210520-C00152
    047
    Figure US20210147441A1-20210520-C00153
    048
    Figure US20210147441A1-20210520-C00154
    049
    Figure US20210147441A1-20210520-C00155
    050
    Figure US20210147441A1-20210520-C00156
    051
    Figure US20210147441A1-20210520-C00157
    052
    Figure US20210147441A1-20210520-C00158
    053
    Figure US20210147441A1-20210520-C00159
    054
    Figure US20210147441A1-20210520-C00160
    055
    Figure US20210147441A1-20210520-C00161
    056
    Figure US20210147441A1-20210520-C00162
    057
    Figure US20210147441A1-20210520-C00163
    058
    Figure US20210147441A1-20210520-C00164
    059
    Figure US20210147441A1-20210520-C00165
    060
    Figure US20210147441A1-20210520-C00166
    061
    Figure US20210147441A1-20210520-C00167
    062
    Figure US20210147441A1-20210520-C00168
    063
    Figure US20210147441A1-20210520-C00169
    064
    Figure US20210147441A1-20210520-C00170
    065
    Figure US20210147441A1-20210520-C00171
    066
    Figure US20210147441A1-20210520-C00172
    067
    Figure US20210147441A1-20210520-C00173
    068
    Figure US20210147441A1-20210520-C00174
    069
    Figure US20210147441A1-20210520-C00175
    070
    Figure US20210147441A1-20210520-C00176
    071
    Figure US20210147441A1-20210520-C00177
    072
    Figure US20210147441A1-20210520-C00178
    073
    Figure US20210147441A1-20210520-C00179
    074
    Figure US20210147441A1-20210520-C00180
    075
    Figure US20210147441A1-20210520-C00181
    076
    Figure US20210147441A1-20210520-C00182
    077
    Figure US20210147441A1-20210520-C00183
    078
    Figure US20210147441A1-20210520-C00184
    079
    Figure US20210147441A1-20210520-C00185
    080
    Figure US20210147441A1-20210520-C00186
    081
    Figure US20210147441A1-20210520-C00187
    082
    Figure US20210147441A1-20210520-C00188
    083
    Figure US20210147441A1-20210520-C00189

    The fragments of Table 2, the moieties identified as linkers and X can be combined in any useful combination.
  • The present disclosure also relates to a compound of Formula (III) or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof:
  • Figure US20210147441A1-20210520-C00190
  • wherein R1, R2, R3, R4 and R5 are as defined herein; R1 is located at either a 5′ or 6′ position of the oxindole ring; and
    L is an optionally substituted linker having 2 to 18 atoms in the chain length.
  • In some embodiments, L is a linker selected from optionally substituted alkyl, optionally substituted heteroalkyl, optionally substituted cycloalkyl (such as spirocycloalkyl) and optionally substituted heterocyclyl, each having 2 to 18 atoms in the chain length. In other embodiments, L is a linker having 2 to 15 atoms in the chain length.
  • Fragments containing a linker covalently attached to a ubiquitination moiety may be formed using compound of Formula (XII). Exemplary compounds (and the fragments inferred from these compounds are set forth in Table 3.
  • TABLE 3
    Compound ID Structure
    084
    Figure US20210147441A1-20210520-C00191
    085
    Figure US20210147441A1-20210520-C00192
    086
    Figure US20210147441A1-20210520-C00193
    087
    Figure US20210147441A1-20210520-C00194
    088
    Figure US20210147441A1-20210520-C00195
    089
    Figure US20210147441A1-20210520-C00196
    090
    Figure US20210147441A1-20210520-C00197
    091
    Figure US20210147441A1-20210520-C00198
    092
    Figure US20210147441A1-20210520-C00199
    093
    Figure US20210147441A1-20210520-C00200
    094
    Figure US20210147441A1-20210520-C00201
    095
    Figure US20210147441A1-20210520-C00202
  • The exemplars in Table 3 are based on a linker based on repeat ethylene glycol subunits. As will be apparent to those of skill in the art, any of the species discussed herein in the context of linkers may be substituted for the linkers of Table 3.
  • In another aspect, the present disclosure relates to a pharmaceutical composition comprising an effective amount of compound set forth in a Formula herein or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof. The pharmaceutical composition may optionally be in combination with a pharmaceutically acceptable carrier, excipient or diluent.
  • In another aspect, the present disclosure relates to a method of inducing degradation of an overexpressed protein in a cell, including a step of contacting a compound set forth in a Formula herein with the cell to induce degradation of the overexpressed protein in the cell.
  • In another aspect, the present disclosure relates to a method of treating a disease or condition associated with an overexpressed protein, comprising administering a compound of a Formula set forth herein or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof in a subject in need thereof.
  • In another aspect, the present disclosure relates to a compound of a Formula set forth herein or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof for use as a medicament.
  • In another aspect, the present disclosure relates to a compound of Formula (I) or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof for use in the treatment of a disease or condition associated with an overexpressed protein.
  • In another aspect, the present disclosure relates to a use of a compound of the invention or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof in the manufacture of a medicament for the treatment of a disease or condition associated with an overexpressed protein.
  • The overexpressed or malfunctioning protein can be selected from BRD4, transcriptional enhanced associate domain (TEAD), Polycomb Repressive Complex 2 (PRC2), focal adhesion kinase (FAK), BCR-ABL, Hippo pathway protein and transcription factor. The disease or condition can be selected from hyperplasia and cancer (such as multiple myeloma, glioblastoma, uveal melanoma, liposarcoma, hepatocellular carcinoma, midline carcinoma, acute myeloid leukemia, Burkitt lymphoma and prostate cancer). The diseases can also be a protein accumulation disease, for example Alzheimer's disease and amyotrophic lateral sclerosis.
  • The compound of the invention can be administered to a subject as a pharmaceutically acceptable salt thereof. Suitable pharmaceutically acceptable salts include, but are not limited to salts of pharmaceutically acceptable inorganic acids such as hydrochloric, sulphuric, phosphoric, nitric, carbonic, boric, sulfamic, and hydrobromic acids, or salts of pharmaceutically acceptable organic acids such as acetic, propionic, butyric, tartaric, maleic, hydroxymaleic, fumaric, maleic, citric, lactic, mucic, gluconic, benzoic, succinic, oxalic, phenylacetic, methanesulphonic, toluenesulphonic, benezenesulphonic, salicyclic sulphanilic, aspartic, glutamic, edetic, stearic, palmitic, oleic, lauric, pantothenic, tannic, ascorbic and valeric acids.
  • Base salts include, but are not limited to, those formed with pharmaceutically acceptable cations, such as sodium, potassium, lithium, calcium, magnesium, ammonium and alkylammonium. In particular, the present invention includes within its scope cationic salts eg sodium or potassium salts, or alkyl esters (eg methyl, ethyl) of the phosphate group.
  • Basic nitrogen-containing groups may be quarternised with such agents as lower alkyl halide, such as methyl, ethyl, propyl, and butyl chlorides, bromides and iodides; dialkyl sulfates like dimethyl and diethyl sulfate; and others.
  • It will be appreciated that any compound that is a prodrug of the compound the invention is also within the scope and spirit of the invention. Thus the compound of the invention can be administered to a subject in the form of a pharmaceutically acceptable pro-drug. The term “pro-drug” is used in its broadest sense and encompasses those derivatives that are converted in vivo to the compound of the invention. Such derivatives would readily occur to those skilled in the art. Other texts which generally describe prodrugs (and the preparation thereof) include: Design of Prodrugs, 1985, H. Bundgaard (Elsevier); The Practice of Medicinal Chemistry, 1996, Camille G. Wermuth et al., Chapter 31 (Academic Press); and A Textbook of Drug Design and Development, 1991, Bundgaard et al., Chapter 5, (Harwood Academic Publishers). For example, the N atom on the oxindole ring may be reacted with an acid (for example acetic acid) to form N-acetyloxindole.
  • The compound of the invention may be in crystalline form either as the free compound or as a solvate (e.g. hydrate) and it is intended that both forms are within the scope of the present invention. Methods of solvation are generally known within the art.
  • The compound of the invention, or a pharmaceutically acceptable salt, solvate or prodrug thereof is administered to the patient in a therapeutically effective amount.
  • As used herein, the term “effective amount” relates to an amount of compound which, when administered according to a desired dosing regimen, provides the desired therapeutic activity. Dosing may occur at intervals of minutes, hours, days, weeks, months or years or continuously over any one of these periods. Suitable dosages may lie within the range of about 0.1 ng per kg of body weight to 1 g per kg of body weight per dosage, such as is in the range of 1 mg to 1 g per kg of body weight per dosage. In one embodiment, the dosage may be in the range of 1 mg to 500 mg per kg of body weight per dosage. In another embodiment, the dosage may be in the range of 1 mg to 250 mg per kg of body weight per dosage. In yet another embodiment, the dosage may be in the range of 1 mg to 100 mg per kg of body weight per dosage, such as up to 50 mg per body weight per dosage.
  • The compound, composition or combinations of the invention may also be suitable for intravenous administration. For example, a compound of the invention or a pharmaceutically acceptable salt, solvate or prodrug thereof may be administered intravenously at a dose of up to 16 mg/m2.
  • Suitable dosage amounts and dosing regimens can be determined by the attending physician and may depend on the severity of the condition as well as the general age, health and weight of the patient to be treated.
  • The compound of the invention may be administered in a single dose or a series of doses. While it is possible for the active ingredient to be administered alone, it is preferable to present it as a composition, preferably as a pharmaceutical composition. The formulation of such compositions is well known to those skilled in the art. The composition may contain any suitable carriers, diluents or excipients. These include all conventional solvents, dispersion media, fillers, solid carriers, coatings, antifungal and antibacterial agents, dermal penetration agents, surfactants, isotonic and absorption agents and the like. It will be understood that the compositions of the invention may also include other supplementary physiologically active agents.
  • The carrier is pharmaceutically “acceptable” in the sense of being compatible with the other ingredients of the composition and not injurious to the patient. The compositions may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. Such methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more accessory ingredients. In general, the compositions are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both, and then if necessary shaping the product.
  • Injectables for such use can be prepared in conventional forms, either as a liquid solution or suspension or in a solid form suitable for preparation as a solution or suspension in a liquid prior to injection, or as an emulsion. Carriers can include, for example, water, saline (e.g., normal saline (NS), phosphate-buffered saline (PBS), balanced saline solution (BSS)), sodium lactate Ringer's solution, dextrose, glycerol, ethanol, and the like; and if desired, minor amounts of auxiliary substances, such as wetting or emulsifying agents, buffers, and the like can be added. Proper fluidity can be maintained, for example, by using a coating such as lecithin, by maintaining the required particle size in the case of dispersion and by using surfactants.
  • In an exemplary embodiment, the compound of the invention is administered to the eye of a subject in need of treatment with a compound of the invention. By way of example, the compound, composition or combination can be dissolved in a pharmaceutically effective carrier and be injected into the vitreous of the eye with a fine gauge hollow bore needle (e.g., 30 gauge, ½ or ⅜ inch needle) using a temporal approach (e.g., about 3 to about 4 mm posterior to the limbus for human eye to avoid damaging the lens). The compound may be injected directly to the eye, and in particular the vitreous of the eye. The compound, composition or combination of the invention can be administered to the vitreous of the eye using any intravitreal or transscleral administration technique. For example, the compound, composition or combination can be administered to the vitreous of the eye by intravitreal injection. Intravitreal injection typically involves administering a compound of the invention or a pharmaceutically acceptable salt, solvate or prodrug in a total amount between 0.1 ng to 10 mg per dose.
  • A person skilled in the art will appreciate that other means for injecting and/or administering the compound, composition or combinations to the vitreous of the eye can also be used. These other means can include, for example, intravitreal medical delivery devices. These devices and methods can include, for example, intravitreal medicine delivery devices, and biodegradable polymer delivery members that are inserted in the eye for long term delivery of medicaments. These devices and methods can further include transscleral delivery devices.
  • As used herein, a therapeutically effective amount is intended to include at least partially attaining the desired effect, or delaying the onset of, or inhibiting the progression of, or halting or reversing altogether the onset or progression of macular degeneration.
  • Other modes of administration including topical or intravenous administration are also of use. For example, solutions or suspensions of the compound, composition or combinations of the invention may be formulated as eye drops, or as a membranous ocular patch, which is applied directly to the surface of the eye. Topical application typically involves administering the compound of the invention in an amount between 0.1 ng and 10 mg.
  • The compound, composition or combinations of the invention may also be suitable for oral administration and may be presented as discrete units such as capsules, sachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous or non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion. The active ingredient may also be presented as a bolus, electuary or paste. In another embodiment, the compound of formula (I) or a pharmaceutically acceptable salt, solvate or prodrug is orally administerable.
  • A tablet may be made by compression or moulding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder (e.g inert diluent, preservative disintegrant (e.g. sodium starch glycolate, cross-linked polyvinyl pyrrolidone, cross-linked sodium carboxymethyl cellulose) surface-active or dispersing agent. Moulded tablets may be made by moulding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent. The tablets may optionally be coated or scored and may be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile. Tablets may optionally be provided with an enteric coating, to provide release in parts of the gut other than the stomach.
  • The compound, composition or combinations of the invention may be suitable for topical administration in the mouth including lozenges comprising the active ingredient in a flavoured base, usually sucrose and acacia or tragacanth gum; pastilles comprising the active ingredient in an inert basis such as gelatine and glycerin, or sucrose and acacia gum; and mouthwashes comprising the active ingredient in a suitable liquid carrier.
  • The compound, composition or combinations of the invention may be suitable for topical administration to the skin may comprise the compounds dissolved or suspended in any suitable carrier or base and may be in the form of lotions, gel, creams, pastes, ointments and the like. Suitable carriers include mineral oil, propylene glycol, polyoxyethylene, polyoxypropylene, emulsifying wax, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water. Transdermal patches may also be used to administer the compounds of the invention.
  • The compound, composition or combination of the invention may be suitable for parenteral administration include aqueous and non-aqueous isotonic sterile injection solutions which may contain anti-oxidants, buffers, bactericides and solutes which render the compound, composition or combination isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. The compound, composition or combination may be presented in unit-dose or multi-dose sealed containers, for example, ampoules and vials, and may be stored in a freeze-dried (lyophilised) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.
  • Preferred unit dosage composition or combinations are those containing a daily dose or unit, daily sub-dose, as herein above described, or an appropriate fraction thereof, of the active ingredient.
  • It should be understood that in addition to the active ingredients particularly mentioned above, the composition or combination of this invention may include other agents conventional in the art having regard to the type of composition or combination in question, for example, those suitable for oral administration may include such further agents as binders, sweeteners, thickeners, flavouring agents disintegrating agents, coating agents, preservatives, lubricants and/or time delay agents. Suitable sweeteners include sucrose, lactose, glucose, aspartame or saccharine. Suitable disintegrating agents include cornstarch, methylcellulose, polyvinylpyrrolidone, xanthan gum, bentonite, alginic acid or agar. Suitable flavouring agents include peppermint oil, oil of wintergreen, cherry, orange or raspberry flavouring. Suitable coating agents include polymers or copolymers of acrylic acid and/or methacrylic acid and/or their esters, waxes, fatty alcohols, zein, shellac or gluten. Suitable preservatives include sodium benzoate, vitamin E, alpha-tocopherol, ascorbic acid, methyl paraben, propyl paraben or sodium bisulphite. Suitable lubricants include magnesium stearate, stearic acid, sodium oleate, sodium chloride or talc. Suitable time delay agents include glyceryl monostearate or glyceryl distearate.
  • It will be appreciated that many further modifications and permutations of various aspects of the described embodiments are possible. Accordingly, the described aspects are intended to embrace all such alterations, modifications, and variations that fall within the spirit and scope of the appended statements.
  • Throughout this specification and the statements which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising”, will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.
  • The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.
  • EXAMPLES Example 1 Identification of the Ubiquitination Moiety
  • Using state-of-the-art biophysical fragment screening techniques, fragments were identified which bind to CRBN. Protein NMR studies and ligand competition assays were performed to analyse the fragments and one fragment binding to the thalidomide binding region of CRBN was identified as the most viable option, after balancing the various factors such as affinity, pharmacokinetics and toxicity. These fragments were then further modified and optimized to generate more potent CRBN binders.
  • Example 2 2.1 Synthesis of Oxindole Fragments (1) 2.1a General Procedure for Suzuki Reaction
  • A stirred mixture of aryl halide (1.0 equiv.), boronic acid/ester (1.2 equiv.) and potassium phosphate (3.0 equiv.) in 1,4-Dioxane and water (4:1) was degassed for 15 min with nitrogen. Tetrakis(triphenylphosphine)palladium(0) or Pd(dppf)Cl2.DCM (0.05-0.15 equiv.) was added to the reaction mixture and heated to reflux for 1-18 h. After completion of starting material, the reaction mixture was concentrated under vacuum. Water was added to the residue and extracted with ethyl acetate. The combined organic layers were washed with brine, dried with Na2SO4 and concentrated under vacuum. The crude compound was purified by column chromatography and/or reversed phase chromatography to afford the purified product.
  • 2.1b General Procedure for Amide Coupling
  • To a mixture of acid (1.0 equiv.), amine (1.1 equiv.) in DMF was added triethylamine (4.0 equiv.), followed by HATU (1.2 equiv.). The reaction was stirred at room temperature for 0.5-1 h. After completion of starting material, dichloromethane was added and the organic layer was washed with water and brine, dried with Na2SO4 and concentrated under vacuum. The crude compound was purified by column chromatography and/or reversed phase chromatography to afford the purified product.
  • 2.1c De-Protection of Boc Protecting Group
  • To a solution of N-Boc intermediate (1.0 equiv.) in dichloromethane was added triflouroacetic acid (10.0 equiv.). The reaction mixture was stirred at room temperature for 1-2 h. After completion of starting material as confirmed by LCMS, the crude product was concentrated under vacuum and purified by reversed phase chromatography to afford the purified product.
  • 2.1.1 Synthesis of 5-phenylindolin-2-one (001)
  • Figure US20210147441A1-20210520-C00203
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.45 (s, 1H), 7.61-7.58 (m, 2H), 7.47-7.34 (m, 3H), 7.28 (d, J=8.0 Hz, 1H), 7.21-7.19 (dd, J=8.0, 1.2 Hz, 1H), 7.02 (d, J=1.2 Hz, 1H), 3.51 (s, 2H). LC-MS m/z [M+H]+: 210.0 with a purity of 99%.
  • 2.1.2 Synthesis of 6-(pyridin-4-yl)indolin-2-one (002)
  • Figure US20210147441A1-20210520-C00204
  • 1H NMR (400 MHz, CDCl3) δ (ppm): 9.32 (s, 1H), 8.66 (d, J=6.0 Hz, 2H), 7.47 (d, J=6.0 Hz, 2H), 7.35-7.28 (m, 2H), 7.16 (bs, 1H), 3.61 (s, 2H). LC-MS m/z [M+H]+: 211.1 with a purity of >99%.
  • 2.1.3 Synthesis of 6-(pyridin-3-yl)indolin-2-one (003)
  • Figure US20210147441A1-20210520-C00205
  • 1H NMR (400 MHz, CDCl3) δ (ppm): 9.02 (s, 1H), 8.84 (s, 1H), 8.61 (d, J=3.6 Hz, 1H), 7.91-7.89 (m, 1H), 7.43-7.40 (m, 1H), 7.34 (d, J=7.6 Hz, 1H), 7.23 (dd, J=7.6, 1.6 Hz, 1H), 7.12 (bs, 1H), 3.62 (s, 2H). LC-MS m/z [M+H]+: 211.1 with a purity of >99%.
  • 2.1.4 Synthesis of 6-(pyridin-2-yl)indolin-2-one (004)
  • Figure US20210147441A1-20210520-C00206
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.45 (s, 1H), 8.65-8.63 (m, 1H), 7.91-7.84 (m, 2H), 7.65 (dd, J=8.0, 1.6 Hz, 1H), 7.56 (d, J=1.2 Hz, 1H), 7.35-7.33 (m, 2H), 3.53 (s, 2H). LC-MS m/z [M+H]+: 211.1 with a purity of 98%.
  • 2.1.5 Synthesis of 6-(2-methylpyridin-4-yl)indolin-2-one (005)
  • Figure US20210147441A1-20210520-C00207
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.53 (s, 1H), 8.48 (d, J=5.2 Hz, 1H), 7.50 (s, 1H), 7.42 (dd, J=5.2, 1.6 Hz, 1H), 7.33 (bs, 2H), 7.11 (bs, 1H), 3.54 (s, 2H), 3.34 (s, 3H). LC-MS m/z [M+H]+: 225.1 with a purity of 97%.
  • 2.1.6 Synthesis of 6-(3-methylpyridin-4-yl)indolin-2-one (006)
  • Figure US20210147441A1-20210520-C00208
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.45 (s, 1H), 8.49 (s, 1H), 8.43 (d, J=4.8 Hz, 1H), 7.31 (d, J=7.6 Hz, 1H), 7.21 (d, J=5.2 Hz, 1H), 6.95 (dd, J=7.6, 1.2 Hz, 1H), 6.78 (bs, 1H), 3.54 (s, 2H), 2.25 (s, 3H). LC-MS m/z [M+H]+: 225.1 with a purity of 98%.
  • 2.1.7 Synthesis of 3-methyl-6-(pyridin-4-yl)indolin-2-one (007)
  • Figure US20210147441A1-20210520-C00209
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.50 (s, 1H), 8.62 (d, J=6.0 Hz, 2H), 7.64 (dd, J=7.6, 1.2 Hz, 2H), 7.41-7.36 (m, 2H), 7.14 (s, 1H), 3.49-3.46 (m, 1H), 1.36 (d, J=7.6 Hz, 3H). LC-MS m/z [M+H]+: 225.1 with a purity of 95%.
  • 2.1.8 Synthesis of 1-methyl-6-(pyridin-4-yl)indolin-2-one (008)
  • Figure US20210147441A1-20210520-C00210
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 8.64 (d, J=6.0 Hz, 2H), 7.76 (dd, J=4.4, 1.6 Hz, 2H), 7.45 (dd, J=7.6, 1.6 Hz, 1H), 7.41-7.38 (m, 2H), 3.61 (s, 2H), 3.21 (s, 3H). LC-MS m/z [M+H]+: 225.1 with a purity of 98%.
  • 2.1.9 Synthesis of 6-(2-chloropyridin-4-yl)indolin-2-one (009)
  • Figure US20210147441A1-20210520-C00211
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.57 (s, 1H), 8.45 (d, J=5.2 Hz, 1H), 7.77 (d, J=1.2 Hz, 1H), 7.68 (dd, J=5.2, 1.2 Hz, 1H), 7.43-7.33 (m, 2H), 7.16 (d, J=1.2 Hz, 1H), 3.55 (s, 2H). LC-MS m/z [M+H]+: 245.0 with a purity of 98%.
  • 2.1.10 Synthesis of 6-(2-methoxypyridin-4-yl)indolin-2-one (010)
  • Figure US20210147441A1-20210520-C00212
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.50 (s, 1H), 8.21 (d, J=5.2 Hz, 1H), 7.32 (bs, 2H), 7.24 (dd, J=5.2, 1.6 Hz, 1H), 7.09 (bs, 1H), 7.01 (bs, 1H), 3.89 (s, 3H), 3.53 (s, 2H). LC-MS m/z [M+H]+: 244.1 with a purity of 98%.
  • 2.1.11 Synthesis of 6-(2-aminopyridin-4-yl)indolin-2-one (011)
  • Figure US20210147441A1-20210520-C00213
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.50 (s, 1H), 7.94 (d, J=5.2 Hz, 1H), 7.29 (d, J=7.6 Hz, 1H), 7.19 (d, J=7.6 Hz, 1H), 7.00 (s, 1H), 6.71 (d, J=5.2 Hz, 1H), 6.50 (bs, 1H), 5.97 (s, 2H), 3.52 (s, 2H). LC-MS m/z [M+H]+: 226.1 with a purity of 99%.
  • 2.1.12 Synthesis of 6-(3-aminopyridin-4-yl)indolin-2-one (012)
  • Figure US20210147441A1-20210520-C00214
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.43 (s, 1H), 7.94 (d, J=4.4 Hz, 1H), 7.30-7.27 (m, 2H), 6.96 (d, J=7.6 Hz, 1H), 6.85 (s, 1H), 6.65-6.62 (m, 1H), 5.54 (s, 2H), 3.50 (s, 2H). LC-MS m/z [M+H]+: 226.1 with a purity of >99%.
  • 2.1.13 Synthesis of 6-(6-aminopyridin-3-yl)indolin-2-one (013)
  • Figure US20210147441A1-20210520-C00215
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.40 (s, 1H), 8.17 (s, 1H), 7.62 (d, J=8.8 Hz, 1H), 7.22 (d, J=7.6 Hz, 1H), 7.10 (d, J=7.6 Hz, 1H), 6.92 (s, 1H), 6.51 (d, J=8.8 Hz, 1H), 6.04 (s, 2H), 3.47 (s, 2H). LC-MS m/z [M+H]+: 226.1 with a purity of >99%.
  • 2.1.14 Synthesis of ethyl 4-(2-oxoindolin-6-yl)picolinate (014)
  • Figure US20210147441A1-20210520-C00216
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.54 (s, 1H), 8.75 (d, J=4.8 Hz, 1H), 8.22 (d, J=1.6 Hz, 1H), 7.92 (dd, J=4.8, 1.6 Hz, 1H), 7.45-7.35 (m, 2H), 7.18 (d, J=1.2 Hz, 1H), 4.38 (q, J=7.2 Hz, 2H), 3.56 (s, 2H), 1.36 (t, J=7.2 Hz, 3H). LC-MS m/z [M+H]+: 283.1 with a purity of 97%.
  • 2.1.15 Synthesis of 6-(1-methyl-1H-pyrazol-4-yl)indolin-2-one (015)
  • Figure US20210147441A1-20210520-C00217
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.45 (s, 1H), 8.07 (s, 1H), 7.78 (s, 1H), 7.17-7.10 (m, 2H), 6.93 (bs, 1H), 3.85 (s, 3H), 3.44 (s, 2H). LC-MS m/z [M+H]+: 214.1 with a purity of 98%.
  • 2.1.16 Synthesis of 6-(1H-indol-5-yl)indolin-2-one (016)
  • Figure US20210147441A1-20210520-C00218
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 11.13 (s, 1H), 10.41 (s, 1H), 7.63-7.56 (m, 2H), 7.41-7.36 (m, 1H), 7.29-7.20 (m, 3H), 7.05 (s, 1H), 6.44 (t, J=2.0 Hz, 1H), 3.50 (s, 2H). LC-MS m/z [M+H]+: 249.1 with a purity of >99%.
  • 2.1.17 Synthesis of 6-(1H-pyrrolo[2,3-b]pyridin-5-yl)indolin-2-one (017)
  • Figure US20210147441A1-20210520-C00219
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 11.69 (s, 1H), 10.46 (s, 1H), 8.44 (d, J=2.0 Hz, 1H), 8.13 (d, J=2.0 Hz, 1H), 7.53-7.48 (m, 1H), 7.29 (d, J=7.6 Hz, 1H), 7.25 (dd, J=7.6, 1.6 Hz, 1H), 7.06 (d, J=0.8 Hz, 1H), 6.50 (dd, J=3.6, 1.6 Hz, 1H), 3.52 (s, 2H). LC-MS m/z [M+H]+: 250.1 with a purity of 95%.
  • 2.1.18 Synthesis of 6-(4-(piperazin-1-ylmethyl)phenyl)indolin-2-one (018)
  • Figure US20210147441A1-20210520-C00220
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.46 (s, 1H), 8.28 (s, 1H), 7.56 (d, J=8.0 Hz, 2H), 7.39-7.36 (m, 2H), 7.27 (d, J=7.6 Hz, 1H), 7.20 (d, J=7.6 Hz, 1H), 7.02 (bs 1H), 3.53-3.50 (m, 4H), 2.93-2.91 (m, 4H), 2.49-2.47 (m, 4H). LC-MS m/z [M+H]+: 308.2 with a purity of 98%.
  • 2.1.19 Synthesis of 6-(3-(piperazin-1-ylmethyl)phenyl)indolin-2-one (019)
  • Figure US20210147441A1-20210520-C00221
  • 1H NMR (400 MHz, MeOD) δ (ppm): 7.60 (s, 1H), 7.54 (d, J=7.6 Hz, 1H), 7.44 (t, J=7.6 Hz, 1H), 7.36-7.34 (m, 2H), 7.27 (dd, J=7.6, 1.2 Hz, 1H), 7.14 (bs, 1H), 3.70 (s, 2H), 3.58 (s, 2H), 3.25-3.23 (m, 4H), 2.75-2.71 (m, 4H). LC-MS m/z [M+H]+: 308.2 with a purity of 99%.
  • 2.1.20 Synthesis of 6-(4-(piperazine-1-carbonyl)phenyl)indolin-2-one (020)
  • Figure US20210147441A1-20210520-C00222
  • 1H NMR (400 MHz, MeOD) δ (ppm): 7.73 (d, J=8.2 Hz, 2H), 7.56 (d, J=8.2 Hz, 2H), 7.37-7.29 (m, 2H), 7.18 (bs, 1H), 3.91-3.74 (m, 4H), 3.32 (s, 2H), 3.25-3.13 (m, 4H), LC-MS m/z [M+H]+: 322.2 with a purity of 95%.
  • 2.1.21 Synthesis of 6-(3-(piperazine-1-carbonyl)phenyl)indolin-2-one (021)
  • Figure US20210147441A1-20210520-C00223
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.51 (s, 1H), 7.70-7.25 (m, 7H), 7.06 (bs, 1H), 3.52-3.47 (m, 6H), 3.30-2.81 (m, 4H). LC-MS m/z [M+H]+: 322.2 with a purity of 94%.
  • 2.1.22 Synthesis of N-methyl-4-(2-oxoindolin-6-yl)benzamide (022)
  • Figure US20210147441A1-20210520-C00224
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.45 (s, 1H), 10.01 (s, 1H), 7.65 (d, J=7.6 Hz, 2H), 7.53 (d, J=7.6 Hz, 2H), 7.25 (d, J=7.6 Hz, 1H), 7.18 (dd, J=7.6, 1.2 Hz, 1H), 7.00 (d, J=1.2 Hz, 1H), 3.49 (s, 2H), 2.06 (s, 3H). LC-MS m/z [M+H]+: 267.1 with a purity of >99%.
  • 2.1.23 Synthesis of N-methyl-3-(2-oxoindolin-6-yl)benzamide (023)
  • Figure US20210147441A1-20210520-C00225
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.47 (s, 1H), 10.02 (s, 1H), 7.54 (d, J=8.4 Hz, 1H), 7.36 (t, J=7.6 Hz, 1H), 7.27 (m, 2H), 7.17 (dd, J=7.6, 1.6 Hz, 1H), 7.00 (d, J=1.2 Hz, 1H), 6.99 (d, J=1.2 Hz, 1H), 3.51 (s, 2H), 2.06 (s, 3H). LC-MS m/z [M+H]+: 267.1 with a purity of 93%.
  • 2.1.24 Synthesis of 2-oxo-N-phenylindoline-6-carboxamide (024)
  • Figure US20210147441A1-20210520-C00226
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.58 (s, 1H), 10.21 (s, 1H), 7.76 (d, J=7.6 Hz, 2H), 7.57 (dd, J=7.6, 1.2 Hz, 1H), 7.36-7.32 (m, 4H), 7.11-7.07 (m, 1H), 3.60 (s, 2H). LC-MS m/z [M+H]+: 253.0 with a purity of 98%.
  • 2.1.25 Synthesis of N-cyclohexyl-2-oxoindoline-6-carboxamide (025)
  • Figure US20210147441A1-20210520-C00227
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.49 (s, 1H), 8.14 (d, J=7.6 Hz, 1H), 7.43 (dd, J=8.0, 1.2 Hz, 1H), 7.25-7.23 (m, 2H), 3.85-3.76 (m, 1H), 3.51 (s, 2H), 1.79-1.27 (m, 10H). LC-MS m/z [M+H]+: 259.1 with a purity of 98%.
  • 2.1.26 Synthesis of N-(1-acetylpiperidin-4-yl)-2-oxoindoline-6-carboxamide (026)
  • Figure US20210147441A1-20210520-C00228
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.34 (s, 1H), 9.86 (s, 1H), 7.34 (d, J=1.2 Hz, 1H), 7.08 (d, J=8.0 Hz, 1H), 7.02 (dd, J=8.0, 1.6 Hz, 1H), 4.40 (d, J=12.8 Hz, 1H), 3.86 (d, J=12.8 Hz, 1H), 3.38 (s, 2H), 3.08-3.01 (m, 1H), 2.59-2.56 (m, 2H), 2.00 (s, 3H), 1.81-1.24 (m, 4H). LC-MS m/z [M+H]+: 302.1 with a purity of 96%.
  • 2.1.27 Synthesis of N-(1-methylpiperidin-4-yl)-2-oxoindoline-6-carboxamide (027)
  • Figure US20210147441A1-20210520-C00229
  • 1H NMR (400 MHz, MeOD) δ (ppm): 8.49 (s, 1H), 7.49 (dd, J=7.6, 1.6 Hz, 1H), 7.34 (d, J=7.6 Hz, 2H), 4.11-4.05 (m, 1H), 3.39-3.36 (m, 4H), 2.92 (t, J=11.6 Hz, 2H), 2.74 (s, 3H), 2.16 (d, J=11.6 Hz, 2H), 1.91-1.85 (m, 2H). LC-MS m/z [M+H]+: 274.1 with a purity of 99%.
  • 2.1.28 Synthesis of N-(2-(1-methylpiperidin-4-yl)ethyl)-2-oxoindoline-6-carboxamide (028)
  • Figure US20210147441A1-20210520-C00230
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.52 (s, 1H), 8.31 (t, J=5.6, 1H), 7.41 (dd, J=7.6, 1.2 Hz, 1H), 7.26 (d, J=7.6 Hz, 1H), 7.24 (s, 1H), 3.52 (s, 2H), 3.36-3.34 (m, 3H), 2.45-2.30 (m, 10H), 2.13 (s, 3H). LC-MS m/z [M+H]+: 303.1 with a purity of 97%.
  • 2.1.29 Synthesis of 6-(piperidine-1-carbonyl)indolin-2-one (029)
  • Figure US20210147441A1-20210520-C00231
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.43 (s, 1H), 7.24 (d, J=7.6, 1H), 6.90 (dd, J=7.6, 1.2 Hz, 1H), 6.74 (d, J=0.4 Hz, 1H), 3.50-3.31 (m, 6H), 1.61-1.48 (m, 6H). LC-MS m/z [M+H]+: 245.1 with a purity of 99%.
  • 2.1.30 Synthesis of 5-chloro-6-(piperidine-1-carbonyl)indolin-2-one (030)
  • Figure US20210147441A1-20210520-C00232
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.57 (s, 1H), 7.15 (s, 1H), 6.85 (s, 1H), 6.74 (d, J=0.4 Hz, 1H), 3.66-3.49 (m, 4H), 3.14-3.10 (m, 2H), 1.59-1.53 (m, 6H). LC-MS m/z [M+H]+: 279.0 with a purity of 98%.
  • 2.1.31 Synthesis of 2-oxo-N-(pyridin-4-yl)indoline-6-carboxamide (031)
  • Figure US20210147441A1-20210520-C00233
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.61 (s, 1H), 10.56 (s, 1H), 8.46 (d, J=1.6 Hz, 2H), 7.78 (dd, J=4.8, 1.2 Hz, 2H), 7.59 (dd, J=7.6, 1.6 Hz, 1H), 7.38-7.35 (m, 2H), 3.58 (s, 2H). LC-MS m/z [M+H]+: 254.0 with a purity of 95%.
  • 2.1.32 Synthesis of N-(2-oxoindolin-6-yl)isonicotinamide (032)
  • Figure US20210147441A1-20210520-C00234
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.44 (s, 2H), 8.78 (dd, J=8.4, 1.6 Hz, 2H), 7.84 (dd, J=8.4, 1.6 Hz, 2H), 7.47 (d, J=1.6 Hz, 1H), 7.28 (dd, J=8.0, 1.6 Hz, 1H), 7.17 (d, J=8.0 Hz, 1H), 3.44 (s, 2H). LC-MS m/z [M+H]+: 254.0 with a purity of 97%.
  • 2.1.33 Synthesis of 2-oxo-N-(pyridin-3-ylmethyl)indoline-6-carboxamide (033)
  • Figure US20210147441A1-20210520-C00235
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.53 (s, 1H), 9.04 (t, J=5.2 Hz, 1H), 8.54 (d, J=2.0 Hz, 1H), 8.46-8.44 (m, 1H), 7.70 (d, J=7.6 Hz, 1H), 7.48 (dd, J=7.6, 1.6 Hz, 1H), 7.36-7.27 (m, 3H), 4.46 (d, J=5.6 Hz, 2H), 3.53 (s, 2H). LC-MS m/z [M+H]+: 268.1 with a purity of 97%.
  • 2.1.34 Synthesis of 6-(piperidin-4-yloxy)indolin-2-one (034)
  • Figure US20210147441A1-20210520-C00236
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.25 (s, 1H), 7.05 (d, J=8.4 Hz, 1H), 6.47 (dd, J=8.0, 1.6 Hz, 1H), 6.38 (d, J=1.6 Hz, 1H), 4.34-4.31 (m, 1H), 4.46 (d, J=5.6 Hz, 2H), 3.35-3.32 (m, 3H), 2.95-2.92 (m, 2H), 2.59-2.51 (m, 2H), 1.90-1.87 (m, 4H). LC-MS m/z [M+H]+: 233.1 with a purity of 99%.
  • 2.1.35 Synthesis of 6-((2-chloropyrimidin-4-yl)oxy)indolin-2-one (035)
  • Figure US20210147441A1-20210520-C00237
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.52 (s, 1H), 8.60 (d, J=2.0 Hz, 1H), 7.28 (d, J=8.0 Hz, 1H), 7.14 (d, J=5.6 Hz, 1H), 6.78 (dd, J=8.0, 2.4 Hz, 1H), 6.70 (d, J=2.4 Hz, 1H), 3.51 (s, 2H). LC-MS m/z [M+H]+: 262.0 with a purity of 98%.
  • 2.1.36 Synthesis of methyl 2-((2-oxoindolin-6-yl)oxy)acetate (036)
  • Figure US20210147441A1-20210520-C00238
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.30 (s, 1H), 7.07 (d, J=8.0 Hz, 1H), 6.46 (dd, J=8.0, 2.4 Hz, 1H), 6.37 (d, J=2.4 Hz, 1H), 4.75 (s, 2H), 3.69 (s, 3H), 3.37 (s, 2H). LC-MS m/z [M+H]+: 222.0 with a purity of 98%.
  • 2.1.37 Synthesis of 7-(pyridin-4-yl)indolin-2-one (037)
  • Figure US20210147441A1-20210520-C00239
  • 1H NMR (400 MHz, CDCl3) δ (ppm): 8.71 (d, J=5.6 Hz, 2H), 7.83 (bs, 1H), 7.36 (d, J=5.6 Hz, 2H), 7.30-7.25 (m, 2H), 7.16-7.12 (m, 1H), 3.62 (s, 2H). LC-MS m/z [M+H]+: 211.1 with a purity of >99%.
  • 2.1.38 Synthesis of 4-(pyridin-4-yl)indolin-2-one (038)
  • Figure US20210147441A1-20210520-C00240
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.51 (s, 1H), 8.64 (d, J=4.4 Hz, 2H), 7.60 (dd, J=4.4, 1.6 Hz, 2H), 7.33 (t, J=7.6 Hz, 1H), 7.11 (d, J=7.6 Hz, 1H), 6.91 (d, J=7.6 Hz, 1H), 3.65 (s, 2H). LC-MS m/z [M+H]+: 211.1 with a purity of 97%.
  • 2.1.39 Synthesis of 5-(pyridin-4-yl)indolin-2-one (039)
  • Figure US20210147441A1-20210520-C00241
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.56 (s, 1H), 8.56 (d, J=6.0 Hz, 2H), 7.68-7.63 (m, 4H), 6.94 (d, J=8.0 Hz, 1H), 3.56 (s, 2H). LC-MS m/z [M+H]+: 211.1 with a purity of 97%.
  • 2.1.40 Synthesis of 5-(2-aminopyridin-4-yl)indolin-2-one (040)
  • Figure US20210147441A1-20210520-C00242
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.51 (s, 1H), 8.13 (s, 1H), 7.91 (dd, J=5.2 Hz, 1H), 7.49 (s, 1H), 6.90 (d, J=8.0 Hz, 1H), 6.74 (dd, J=5.6, 1.6 Hz, 1H), 6.66 (bs, 1H), 5.95 (s, 2H), 3.54 (s, 2H). LC-MS m/z [M+H]+: 225.9 with a purity of 98%.
  • 2.1.41 Synthesis of 5-(2-methoxypyridin-4-yl)indolin-2-one (041)
  • Figure US20210147441A1-20210520-C00243
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.54 (s, 1H), 8.16 (d, J=5.2 Hz, 1H), 7.65-7.61 (m, 2H), 7.25 (dd, J=5.2, 1.2 Hz, 1H), 7.02 (s, 1H), 6.92 (d, J=8.0 Hz, 1H), 3.88 (s, 3H), 3.55 (s, 2H). LC-MS m/z [M+H]+: 241.1 with a purity of 97%.
  • 2.1.42 Synthesis of 5-(2-aminopyridin-3-yl)indolin-2-one (042)
  • Figure US20210147441A1-20210520-C00244
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.37 (s, 1H), 8.15-8.13 (m, 1H), 7.62 (dd, J=8.4, 2.4 Hz, 1H), 7.39 (s, 1H), 7.32 (dd, J=8.0, 1.6 Hz, 1H), 6.83 (d, J=8.0 Hz, 1H), 6.49 (d, J=8.4 Hz, 1H), 5.96 (s, 2H), 3.50 (s, 2H). LC-MS m/z [M+H]+: 225.9 with a purity of 98%.
  • 2.1.43 Synthesis of 5-(6-amino-4-methylpyridin-3-yl)indolin-2-one (043)
  • Figure US20210147441A1-20210520-C00245
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.33 (s, 1H), 7.07-7.01 (m, 2H), 6.82-6.79 (m, 1H), 6.45-6.41 (m, 2H), 4.97 (s, 2H), 3.47 (s, 2H), 2.10 (s, 3H). LC-MS m/z [M+H]+: 240.1 with a purity of >99%.
  • 2.1.44 Synthesis of 5-(6-amino-2-methylpyridin-3-yl)indolin-2-one (044)
  • Figure US20210147441A1-20210520-C00246
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.37 (s, 1H), 7.17 (d, J=8.0 Hz, 1H), 7.11 (s, 1H), 7.06 (d, J=8.0 Hz, 1H), 6.82 (d, J=8.0 Hz, 1H), 6.32 (d, J=8.0 Hz, 1H), 5.82 (s, 2H), 3.49 (s, 2H), 2.22 (s, 3H). LC-MS m/z [M+H]+: 240.1 with a purity of >99%.
  • 2.1.45 Synthesis of 5-(2-aminopyridin-3-yl)indolin-2-one 045)
  • Figure US20210147441A1-20210520-C00247
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.45 (s, 1H), 7.91 (d, J=4.4 Hz, 1H), 7.28-7.26 (m, 2H), 7.21 (d, J=8.0 Hz, 1H), 6.89 (d, J=8.0 Hz, 1H), 6.64 (d, J=5.2 Hz, 1H), 5.50 (s, 2H), 3.51 (s, 2H). LC-MS m/z [M+H]+: 226.1 with a purity of >99%.
  • 2.1.46 Synthesis of 5-(6-(methylamino)pyridin-3-yl)indolin-2-one (046)
  • Figure US20210147441A1-20210520-C00248
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.36 (s, 1H), 8.23 (s, 1H), 8.13 (s, 1H), 7.62 (d, J=8.0 Hz, 1H), 7.40 (s, 1H), 7.34 (d, J=8.0 Hz, 1H), 6.84 (d, J=8.0 Hz, 1H), 6.49 (d, J=8.0 Hz, 1H), 3.50 (s, 2H), 2.79 (d, J=4.4 Hz, 3H). LC-MS m/z [M+H]+: 240.1 with a purity of 99%.
  • 2.1.47 Synthesis of 5-(2-(methylamino)pyridin-4-yl)indolin-2-one 047)
  • Figure US20210147441A1-20210520-C00249
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.51 (s, 1H), 7.99 (d, J=5.2 Hz, 1H), 7.50-7.48 (m, 2H), 6.90 (d, J=8.0 Hz, 1H), 6.71 (d, J=5.2 Hz, 1H), 6.61 (s, 1H), 6.41 (d, J=4.4 Hz, 1H), 3.54 (s, 2H), 2.79 (d, J=4.4 Hz, 3H), LC-MS m/z [M+H]+: 240.1 with a purity of >99%.
  • 2.1.48 Synthesis of N-(3-methyl-5-(2-oxoindolin-5-yl)pyridin-2-yl)acetamide (048)
  • Figure US20210147441A1-20210520-C00250
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.48 (s, 1H), 9.97 (s, 1H), 8.47 (s, 1H), 7.88 (s, 1H), 7.58 (s, 1H), 7.52 (d, J=8.0 Hz, 1H), 6.91 (d, J=8.0 Hz, 1H), 3.54 (s, 2H), 2.20 (s, 3H), 2.06 (s, 3H). LC-MS m/z [M+H]+: 282.1 with a purity of 99%.
  • 2.1.49 Synthesis of N-(6-methyl-5-(2-oxoindolin-5-yl)pyridin-2-yl)acetamide (049)
  • Figure US20210147441A1-20210520-C00251
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.48 (s, 1H), 10.44 (s, 1H), 7.94 (d, J=8.4 Hz, 1H), 7.54 (d, J=8.4 Hz, 1H), 7.21 (s, 1H), 7.16 (d, J=8.0 Hz, 1H), 6.87 (d, J=8.0 Hz, 1H), 3.55 (s, 2H), 2.31 (s, 3H), 2.09 (s, 3H). LC-MS m/z [M+H]+: 282.1 with a purity of 98%.
  • 2.1.50 Synthesis of N-(4-methyl-5-(2-oxoindolin-5-yl)pyridin-2-yl)acetamide (050)
  • Figure US20210147441A1-20210520-C00252
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.45 (s, 1H), 10.42 (s, 1H), 8.06 (s, 1H), 8.00 (s, 1H), 7.23 (s, 1H), 7.16 (d, J=8.0 Hz, 1H), 6.89 (d, J=8.0 Hz, 1H), 3.52 (s, 2H), 2.25 (s, 3H), 2.09 (s, 3H). LC-MS m/z [M+H]+: 282.1 with a purity of 99%.
  • 2.1.51 Synthesis of 5-phenylindolin-2-one (051)
  • Figure US20210147441A1-20210520-C00253
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.44 (s, 1H), 7.60-7.57 (m, 2H), 7.57-7.40 (m, 4H), 7.30 (t, J=8.0 Hz, 1H), 6.89 (d, J=8.0 Hz, 1H), 3.53 (s, 2H). LC-MS m/z [M+H]+: 210.0 with a purity of 99%.
  • 2.1.52 Synthesis of tert-butyl 4-(4-(2-oxoindolin-5-yl)benzoyl)piperazine-1-carboxylate (052)
  • Figure US20210147441A1-20210520-C00254
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.45 (s, 1H), 7.66 (d, J=8.0 Hz, 2H), 7.56 (s, 1H), 7.52 (d, J=8.0 Hz, 1H), 7.46 (d, J=8.0 Hz, 2H), 6.91 (d, J=8.0 Hz, 1H), 3.54-3.38 (m, 10H), 1.41 (s, 9H). LC-MS m/z [M+H]+: 422.2 with a purity of 97%.
  • 2.1.53 Synthesis of tert-butyl 4-(3-(2-oxoindolin-5-yl)benzoyl)piperazine-1-carboxylate (053)
  • Figure US20210147441A1-20210520-C00255
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.46 (s, 1H), 7.68 (d, J=8.0 Hz, 1H), 7.59 (s, 1H), 7.56 (s, 1H), 7.52-7.49 (m, 2H), 7.32 (d, J=8.0 Hz, 1H), 6.90 (d, J=8.0 Hz, 1H), 3.53-3.37 (m, 10H), 1.41 (s, 9H). LC-MS m/z [M+H]+: 422.2 with a purity of >99%.
  • 2.1.54 Synthesis of 5-(4-(piperazine-1-carbonyl)phenyl)indolin-2-one (054)
  • Figure US20210147441A1-20210520-C00256
  • 1H NMR (400 MHz, MeOD) δ (ppm): 7.72 (d, J=8.4 Hz, 2H), 7.58-7.53 (m, 4H), 7.01 (d, J=8.0 Hz, 1H), 3.87-3.59 (m, 4H), 3.33-3.26 (m, 6H). LC-MS m/z [M+H]+: 322.1 with a purity of 96%.
  • 2.1.56 Synthesis of 5-(3-(piperazine-1-carbonyl)phenyl)indolin-2-one (055)
  • Figure US20210147441A1-20210520-C00257
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.50 (s, 1H), 7.70-7.35 (m, 6H), 6.92 (d, J=6.8 Hz, 1H), 3.61-3.02 (m, 11H). LC-MS m/z [M+H]+: 322.1 with a purity of >99%.
  • 2.1.57 Synthesis of 5-(pyridin-3-yl)indolin-2-one (056)
  • Figure US20210147441A1-20210520-C00258
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.50 (s, 1H), 8.83 (d, J=2.4 Hz, 1H), 8.51 (dd, J=4.8, 1.6 Hz, 1H), 8.01-7.98 (m, 1H), 7.58-7.52 (m, 2H), 7.44 (dd, J=8.0, 4.8 Hz, 1H), 6.93 (d, J=8.0 Hz, 1H), 3.55 (s, 2H). LC-MS m/z [M+H]+: 211.1 with a purity of >99%.
  • 2.1.58 Synthesis of 5-(6-(piperidin-1-yl)pyridin-3-yl)indolin-2-one (057)
  • Figure US20210147441A1-20210520-C00259
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.34 (s, 1H), 8.33 (d, J=2.4 Hz, 1H), 7.74 (dd, J=8.0, 2.4 Hz, 1H), 7.44 (s, 1H), 7.39 (d, J=8.0 Hz, 1H), 6.93 (d, J=8.0 Hz, 2H), 3.54-3.50 (m, 6H), 1.61-1.54 (m, 6H). LC-MS m/z [M+H]+: 294.1 with a purity of 99%.
  • 2.1.59 Synthesis of 5-(piperidine-1-carbonyl)indolin-2-one (058)
  • Figure US20210147441A1-20210520-C00260
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.51 (s, 1H), 7.20 (d, J=2.4 Hz, 2H), 6.83 (d, J=8.0 Hz, 1H), 3.50 (s, 2H), 3.43-3.31 (m, 4H), 1.61-1.49 (m, 6H). LC-MS m/z [M+H]+: 245.1 with a purity of 98%.
  • 2.1.60 Synthesis of N-(2-oxoindolin-5-yl)isonicotinamide (059)
  • Figure US20210147441A1-20210520-C00261
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.38-10.35 (m, 2H), 8.77 (d, J=6.0 Hz, 2H), 7.84 (d, J=6.0 Hz, 2H), 7.65 (s, 1H), 7.52 (d, J=8.4 Hz, 1H), 6.80 (d, J=8.4 Hz, 1H), 3.50 (s, 2H). LC-MS m/z [M+H]+: with a purity of 94%.
  • 2.1.60 Synthesis of 1-acetyl-N-(2-oxoindolin-5-yl)piperidine-4-carboxamide (060)
  • Figure US20210147441A1-20210520-C00262
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.26 (s, 1H), 9.74 (s, 1H), 7.50 (s, 1H), 7.33 (dd, J=8.4, 2.0 Hz, 1H), 6.71 (d, J=8.4 Hz, 1H), 4.39 (d, J=13.2 Hz, 1H), 3.86 (d, J=13.2 Hz, 1H), 3.44 (s, 2H), 3.08-3.02 (m, 1H), 2.60-2.52 (m, 2H), 2.00 (s, 3H), 1.80-1.38 (m, 4H). LC-MS m/z [M+H]+: 302.1 with a purity of 99%.
  • 2.1.61 Synthesis of 3,3-difluoro-6-(pyridin-4-yl)indolin-2-one (061)
  • Figure US20210147441A1-20210520-C00263
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 8.68 (d, J=5.6 Hz, 2H), 7.80 (d, J=7.6 Hz, 1H), 7.71 (d, J=5.6 Hz, 2H), 7.55 (d, J=7.6 Hz, 1H), 7.28 (s, 1H). LC-MS m/z [M+H]+: 247.0 with a purity of 98%.
  • 2.1.62 Synthesis of 3,3-dimethyl-6-(pyridin-4-yl)indolin-2-one (062)
  • Figure US20210147441A1-20210520-C00264
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.49 (s, 1H), 8.62 (d, J=5.6 Hz, 2H), 7.64 (d, J=5.6 Hz, 2H), 7.44-7.36 (m, 2H), 7.15 (d, J=1.6 Hz, 1H), 1.29 (s, 6H). LC-MS m/z [M+H]+: 239.1 with a purity of 99%.
  • 2.1.63 Synthesis of benzyl 4-(2-oxoindolin-6-yl)-3,6-dihydropyridine-1(2H)-carboxylate (063)
  • Figure US20210147441A1-20210520-C00265
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.37 (s, 1H), 7.35-7.31 (m, 5H), 7.16 (d, J=8.0 Hz, 1H), 7.00 (dd, J=8.0, 1.6 Hz, 1H), 6.82 (s, 1H), 6.09 (s, 1H), 5.12 (s, 2H), 4.07 (bs, 2H), 3.61 (bs, 2H), 3.44 (s, 2H), 2.46 (bs, 2H). LC-MS m/z [M+H]+: 349.1 with a purity of 99%.
  • 2.1.64 Synthesis of 6-(6-(piperidin-1-yl)pyridin-3-yl)indolin-2-one (064)
  • Figure US20210147441A1-20210520-C00266
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.44 (s, 1H), 8.38 (d, J=2.4 Hz, 1H), 8.26 (s, 1H), 7.81 (dd, J=8.8, 2.4 Hz, 1H), 7.24 (d, J=7.6 Hz, 1H), 7.16 (dd, J=7.6, 1.2 Hz, 1H), 6.97 (s, 1H), 6.91 (d, J=8.4 Hz, 1H), 3.59-3.57 (m, 4H), 3.48 (s, 2H), 3.00-2.98 (m, 4H). LC-MS m/z [M+H]+: 294.2 with a purity of 99%.
  • 2.1.65 Synthesis of 6-(6-(piperazin-1-yl)pyridin-3-yl)indolin-2-one (065)
  • Figure US20210147441A1-20210520-C00267
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.44 (s, 1H), 8.38 (d, J=2.4 Hz, 1H), 8.26 (s, 1H), 7.81 (dd, J=8.8, 2.4 Hz, 1H), 7.24 (d, J=7.6 Hz, 1H), 7.16 (dd, J=7.6, 1.2 Hz, 1H), 6.97 (s, 1H), 6.91 (d, J=8.4 Hz, 1H), 3.59-3.57 (m, 4H), 3.48 (s, 2H), 3.00-2.98 (m, 4H). LC-MS m/z [M+H]+: 295.1 with a purity of 96%.
  • 2.1.66 Synthesis of ethyl 4-(2-oxoindolin-6-yl)picolinate (066)
  • Figure US20210147441A1-20210520-C00268
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.54 (s, 1H), 8.75 (d, J=4.8 Hz, 1H), 8.22 (d, J=1.6 Hz, 1H), 7.92 (dd, J=4.8, 1.6 Hz, 1H), 7.45-7.35 (m, 2H), 7.18 (d, J=1.2 Hz, 1H), 4.38 (q, J=7.2 Hz, 2H), 3.56 (s, 2H), 1.36 (t, J=7.2 Hz, 3H). LC-MS m/z [M+H]+: 283.1 with a purity of 97%.
  • 2.1.67 Synthesis of 5-(4-methylpiperazine-1-carbonyl)indolin-2-one (067)
  • Figure US20210147441A1-20210520-C00269
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.53 (s, 1H), 7.23-7.21 (m, 2H), 6.83 (d, J=8.0 Hz, 1H), 3.50 (s, 2H), 3.49-3.40 (m, 4H), 2.30-2.28 (m, 4H), 2.19 (s, 3H). LC-MS m/z [M+H]+: 260.1 with a purity of 99%.
  • 2.1.68 Synthesis of 5-(4-phenylpiperidine-1-carbonyl)indolin-2-one (068)
  • Figure US20210147441A1-20210520-C00270
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.50 (s, 1H), 7.28-7.18 (m, 7H), 6.84 (d, J=8.0 Hz, 1H), 3.51 (s, 2H), 2.98-2.76 (m, 4H), 1.80-1.55 (m, 5H). LC-MS m/z [M+H]+: 321.1 with a purity of 99%.
  • 2.1.69 Synthesis of 5-(4-benzylpiperidine-1-carbonyl)indolin-2-one (069)
  • Figure US20210147441A1-20210520-C00271
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.27 (s, 1H), 7.28-7.15 (m, 7H), 6.82 (d, J=7.6 Hz, 1H), 4.03 (d, J=13.6 Hz, 2H), 3.47 (s, 2H), 2.87-2.80 (m, 2H), 2.55-2.53 (m, 2H), 1.85-1.76 (m, 1H), 1.61-1.13 (m, 4H). LC-MS m/z [M+H]+: 335.1 with a purity of 99%.
  • 2.1.70 Synthesis of 6-(6-fluoropyridin-3-yl)indolin-2-one (070)
  • Figure US20210147441A1-20210520-C00272
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.52 (s, 1H), 8.48 (d, J=2.8 Hz, 1H), 8.24-8.20 (m, 1H), 7.32 (d, J=7.6 Hz, 1H), 7.28-7.23 (m, 2H), 7.05 (s, 1H), 3.53 (s, 2H). LC-MS m/z [M+H]+: 229.0 with a purity of 99%.
  • 2.1.71 Synthesis of N-(2-oxoindolin-6-yl)nicotinamide (071)
  • Figure US20210147441A1-20210520-C00273
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.44 (s, 1H), 10.39 (s, 1H), 9.08 (d, J=1.6 Hz, 1H), 8.75-8.74 (m, 1H), 8.29-8.26 (m, 1H), 7.58-7.54 (m, 1H), 7.47 (d, J=1.6 Hz, 1H), 7.27 (d, J=8.0, 1.6 Hz, 1H), 7.17 (d, J=8.0 Hz, 1H), 3.44 (s, 2H). LC-MS m/z [M+H]+: 254.0 with a purity of 99%.
  • 2.1.72 Synthesis of N-(2-oxoindolin-5-yl)nicotinamide (072)
  • Figure US20210147441A1-20210520-C00274
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.34 (s, 1H), 10.30 (s, 1H), 9.08 (d, J=1.6 Hz, 1H), 8.75 (dd, J=4.8, 1.6 Hz, 1H), 8.28-8.25 (m, 1H), 7.65 (s, 1H), 7.57-7.51 (m, 2H), 6.80 (d, J=8.4 Hz, 1H), 3.53 (s, 2H). LC-MS m/z [M+H]+: 254.0 with a purity of 98%.
  • 2.1.73 Synthesis of 5-(pyridin-4-yl)-1,3-dihydro-2H-pyrrolo[2,3-c]pyridin-2-one (073)
  • Figure US20210147441A1-20210520-C00275
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.34 (s, 1H), 10.30 (s, 1H), 9.08 (d, J=1.6 Hz, 1H), 8.75 (dd, J=4.8, 1.6 Hz, 1H), 8.28-8.25 (m, 1H), 7.65 (s, 1H), 7.57-7.51 (m, 2H), 6.80 (d, J=8.4 Hz, 1H), 4.29 (s, 2H). LC-MS m/z [M+H]+: 212.1 with a purity of 90%.
  • 2.1.74 Synthesis of 6-(pyridin-4-yl)-1,3-dihydro-2H-pyrrolo[3,2-c]pyridin-2-one (074)
  • Figure US20210147441A1-20210520-C00276
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.98 (s, 1H), 8.67 (d, J=6.0 Hz, 2H), 8.41 (s, 1H), 7.98 (dd, J=4.4, 1.6 Hz, 2H), 7.44 (s, 1H), 3.63 (s, 2H). LC-MS m/z [M+H]+: 212.1 with a purity of 95%.
  • 21.75 Synthesis of 6-(pyridin-4-yl)-1,3-dihydro-2H-pyrrolo[3,2-b]pyridin-2-one (075)
  • Figure US20210147441A1-20210520-C00277
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.98 (s, 1H), 8.67 (d, J=6.0 Hz, 2H), 8.75 (d, J=4.4, 1.6 Hz, 2H), 8.41 (s, 1H), 7.44 (s, 1H), 3.63 (s, 2H). LC-MS m/z [M+H]+: 212.1 with a purity of 95%.
  • 21.76 Synthesis of 2-fluoro-N-(2-oxoindolin-5-yl)isonicotinamide (076)
  • Figure US20210147441A1-20210520-C00278
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.42 (s, 1H), 10.37 (s, 1H), 8.44 (d, J=5.2 Hz, 1H), 7.84-7.80 (m, 1H), 7.75-7.63 (m, 2H), 7.51 (dd, J=8.4, 2.0 Hz, 1H), 6.81 (d, J=8.4 Hz, 1H), 3.51 (s, 2H). LC-MS m/z [M+H]+: 272.1 with a purity of 99%.
  • 21.77 Synthesis of 6-(4-aminopiperidine-1-carbonyl)indolin-2-one (077)
  • Figure US20210147441A1-20210520-C00279
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.50 (s, 1H), 7.26 (d, J=7.6 Hz, 1H), 6.91 (dd, J=7.6, 1.2 Hz, 1H), 6.74 (bs, 1H), 3.52 (s, 2H), 3.31-3.16 (m, 7H), 1.90-1.35 (m, 4H). LC-MS m/z [M+H]+: 260.1 with a purity of 90%.
  • 21.78 Synthesis of 5-(4-aminopiperidine-1-carbonyl)indolin-2-one (078)
  • Figure US20210147441A1-20210520-C00280
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.56 (s, 1H), 7.22-6.84 (m, 2H), 6.85 (d, J=8.0 Hz, 1H), 3.52 (s, 2H), 3.30-3.16 (m, 7H), 1.95-1.38 (m, 4H). LC-MS m/z [M+H]+: 260.1 with a purity of 90%.
  • 21.79 Synthesis of methyl 2-(2-oxoindolin-6-yl)benzoate (079)
  • Figure US20210147441A1-20210520-C00281
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.39 (s, 1H), 7.71-7.59 (m, 2H), 7.50-7.42 (m, 2H), 7.24 (d, J=7.6 Hz, 1H), 6.85 (dd, J=7.6, 1.6 Hz, 1H), 6.71 (d, J=1.2 Hz, 1H), 3.62 (s, 3H), 3.52 (s, 2H). LC-MS m/z [M+H]+: 268.1 with a purity of 98%.
  • 21.80 Synthesis of 6-(3-aminopiperidine-1-carbonyl)indolin-2-one (080)
  • Figure US20210147441A1-20210520-C00282
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.50 (s, 1H), 7.27 (d, J=7.6 Hz, 1H), 6.97 (d, J=7.6 Hz, 1H), 6.83 (s, 1H), 3.53 (s, 2H), 3.31-3.17 (m, 7H), 2.02-1.43 (m, 4H). LC-MS m/z [M+H]+: 260.1 with a purity of 90%.
  • 21.81 Synthesis of 5-(3-aminopiperidine-1-carbonyl)indolin-2-one (081)
  • Figure US20210147441A1-20210520-C00283
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.57 (s, 1H), 7.28-7.26 (m, 2H), 6.85 (d, J=8.0 Hz, 1H), 3.52 (s, 2H), 3.35-3.06 (m, 7H), 2.00-1.49 (m, 4H). LC-MS m/z [M+H]+: 260.1 with a purity of 90%.
  • 21.82 Synthesis of 3-isopropyl-5-(pyridin-4-yl)indolin-2-one (082)
  • Figure US20210147441A1-20210520-C00284
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.53 (s, 1H), 8.57 (d, J=4.4 Hz, 2H), 7.68-7.65 (m, 4H), 6.95 (dd, J=8.0, 1.6 Hz, 1H), 3.46-3.44 (m, 1H), 2.44-2.40 (m, 1H), 1.00-0.92 (m, 6H). LC-MS m/z [M+H]+: 252.9 with a purity of 98%.
  • 21.83 Synthesis of 1-methyl-5-(piperidine-1-carbonyl)indolin-2-one (083)
  • Figure US20210147441A1-20210520-C00285
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 7.31 (dd, J=8.0, 1.2 Hz, 1H), 7.27 (d, J=1.2 Hz, 1H), 7.00 (d, J=8.0 Hz, 1H), 3.58 (s, 2H), 3.55-3.44 (m, 4H), 3.13 (s, 3H), 1.61-1.49 (m, 6H). LC-MS m/z [M+H]+: 258.9 with a purity of 99%.
  • 2.2 Synthesis of Oxindole Compounds (II)
  • General Procedures:
  • 2.2a Step 1 (SNAr reaction): To a thick wall vial/pressure tube was added pyridyl halide (1.0 equiv.), amine (1.2 equiv.), N-methylpyrrolidine and trimethylamine. The reaction mixture was stirred at 80-110° C. for 2-12 h. The reaction mixture was diluted with ethyl acetate and washed with water and brine. The organic phase was dried with anhydrous Na2SO4 and concentrated under vacuum. The crude product was purified by column chromatography to afford the purified product as pale yellow solid/oil with a yield of 30-80%.
  • 2.2b Step 2 (Suzuki reaction): A mixture of compound from step 1 (1.0 equiv.), boronic acid/ester (1.2 equiv.) and potassium phosphate (3.0 equiv.) in 1,4-dioxane and water (4:1) was degassed for 15 min with nitrogen. Tetrakis(triphenylphosphine)palladium(O) or Pd(dppf)Cl2.DCM (0.05-0.15 equiv.) was added and the reaction mixture was heated to reflux for 3-18 h. After completion of starting material, the reaction mixture was concentrated under vacuum. Water was added to the residue and extracted with ethyl acetate. The combined organic layers were washed with brine, dried with Na2SO4 and concentrated under vacuum. The crude compound was purified by column chromatography and/or reversed phase chromatography to afford the purified product.
  • 2.2c Step 3 (Hydrogenation): Compound from step 2 (1.0 equiv.), 10% Pd/C in MeOH was stirred at room temperature for 5 h under hydrogen atmosphere. After LCMS confirmed the completion of the reaction, the mixture was filtered and the solid was washed with MeOH. The filtrate was concentrated under vacuum to afford the desired amine product as an oil. It was used in next step without further purification.
  • 2.2d Step 4 (Amide coupling): To a mixture of acid (1.0 equiv.), amine from step 3 (1.1 equiv.) in DMF was added triethylamine (4.0 equiv.), followed by HATU (1.2 equiv.). The reaction was stirred at room temperature for 0.5-1 h. After completion of starting material, dichloromethane was added and the organic layer was washed with water and brine, dried with Na2SO4 and concentrated under vacuum. The crude compound was purified by column chromatography and/or reversed phase chromatography to afford the purified product.
  • 2.2.1 Synthesis of N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(2-oxoindolin-6-yl)picolinamide (084)
  • Figure US20210147441A1-20210520-C00286
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.54 (s, 1H), 8.75 (t, J=5.6 Hz, 1H), 8.68 (d, J=5.2 Hz, 1H), 8.23 (s, 1H), 7.87 (d, J=5.2 Hz, 1H), 7.45-7.35 (m, 2H), 7.19 (s, 1H), 3.63-3.46 (m, 16H), 3.40-3.34 (m, 2H). LC-MS m/z [M+H]+: 455.1 with a purity of 98%.
  • 2.2.2 Synthesis of 6-(2-((2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)amino)pyridin-4-yl)indolin-2-one (085)
  • Figure US20210147441A1-20210520-C00287
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.49 (s, 1H), 8.04-7.97 (m, 1H), 7.29 (d, J=7.6 Hz, 1H), 7.20 (dd, J=7.6, 1.6 Hz, 1H), 7.00 (d, J=1.2 Hz, 1H), 6.74-6.68 (m, 2H), 6.58 (t, J=6.0 Hz, 1H), 3.61-3.53 (m, 12H), 3.52 (s, 2H), 3.48-3.42 (m, 2H), 3.39-3.35 (m, 2H). LC-MS m/z [M+H]+: 427.1 with a purity of 98%.
  • 2.2.3 Synthesis of 6-((2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)amino)-N-(2-oxoindolin-5-yl)nicotinamide (086)
  • Figure US20210147441A1-20210520-C00288
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.29 (s, 1H), 9.77 (s, 1H), 8.60 (d, J=2.4 Hz, 1H), 7.88 (dd, J=8.8, 2.4 Hz, 1H), 7.61 (s, 1H), 7.47 (dd, J=8.4, 2.0 Hz, 1H), 7.17 (t, J=5.6 Hz, 1H), 6.75 (d, J=8.4 Hz, 1H), 6.54 (d, J=8.8 Hz, 1H), 3.63-3.52 (m, 12H), 3.52-3.44 (m, 4H), 3.42-3.35 (m, 2H). LC-MS m/z [M+H]+: 470.1 with a purity of 98%.
  • 2.2.4 Synthesis of 6-(2-((5-aminopentyl)amino)pyridin-4-yl)indolin-2-one (087)
  • Figure US20210147441A1-20210520-C00289
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.46 (bs, 1H), 7.99 (d, J=5.2 Hz, 1H), 7.29 (d, J=7.6 Hz, 1H), 7.20 (dd, J=7.6, 1.6 Hz, 1H), 7.00 (d, J=0.8 Hz, 1H), 6.68 (dd, J=5.2, 1.6 Hz, 1H), 6.64 (s, 1H), 6.54 (t, J=5.6 Hz, 1H), 3.52 (s, 2H), 3.29-3.20 (m, 2H), 2.65-2.50 (m, 2H), 1.60-1.30 (m, 6H). LC-MS m/z [M+H]+: 311.1 with a purity of 99%.
  • 2.2.5 Synthesis of 5-(2-((2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)amino)pyridin-4-yl)indolin-2-one (088)
  • Figure US20210147441A1-20210520-C00290
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.49 (s, 1H), 7.97 (d, J=5.2 Hz, 1H), 7.56-7.47 (m, 2H), 6.89 (d, J=8.0 Hz, 1H), 6.73-6.69 (m, 2H), 6.44 (t, J=5.2, 1 H), 3.72-3.36 (m, 18H). LC-MS m/z [M+H]+: 427.1 with a purity of 98%.
  • 2.2.6 Synthesis of 6-(6-((2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)amino)pyridin-3-yl)indolin-2-one (089)
  • Figure US20210147441A1-20210520-C00291
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.40 (s, 1H), 8.23 (d, J=2.4 Hz, 1H), 7.62 (dd, J=8.8, 2.4 Hz, 1H), 7.21 (d, J=7.6 Hz, 1H), 7.10 (dd, J=7.6, 1.6 Hz, 1H), 6.92 (d, J=1.2 Hz, 1H), 6.67 (t, J=5.6 Hz, 1H), 6.58 (d, J=8.8 Hz, 1H), 3.62-3.52 (m, 12H), 3.51-3.42 (m, 4H), 3.38 (d, J=4.8 Hz, 2H). LC-MS m/z [M+H]+: 427.2 with a purity of 99%.
  • 2.2.7 Synthesis of N-(2-(2-(2-(2-(4-aminophenoxy)ethoxy)ethoxy)ethoxy)ethyl)-3-(2-oxoindolin-6-yl)benzamide (090)
  • Figure US20210147441A1-20210520-C00292
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.49 (s, 1H), 8.65 (t, J=5.6 Hz, 1H), 8.07 (s, 1H), 7.83 (d, J=7.6 Hz, 1H), 7.75 (d, J=7.6 Hz, 1H), 7.53 (t, J=7.6 Hz, 1H), 7.32-7.28 (m, 2H), 7.08 (s, 1H), 6.62 (d, J=8.4 Hz, 2H), 6.48 (d, J=8.4 Hz, 2H), 3.88 (t, J=4.8 Hz, 2H), 3.62-3.43 (m, 18H). LC-MS m/z [M+H]+: 520.2 with a purity of 90%.
  • 2.2.8 Synthesis of N-(2-(2-(2-(2-(4-aminophenoxy)ethoxy)ethoxy)ethoxy)ethyl)-3-(2-oxoindolin-5-yl)benzamide (091)
  • Figure US20210147441A1-20210520-C00293
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.47 (s, 1H), 8.61 (t, J=5.6 Hz, 1H), 8.07 (s, 1H), 7.78-7.73 (m, 2H), 7.59 (s, 1H), 7.55-7.48 (m, 2H), 6.91 (d, J=8.0 Hz, 1H), 6.62 (d, J=8.4 Hz, 2H), 6.48 (d, J=8.4 Hz, 2H), 3.88 (t, J=4.8 Hz, 2H), 3.63-3.42 (m, 18H). LC-MS m/z [M+H]+: 520.2 with a purity of 90%.
  • 2.2.9 Synthesis of 5-(6-((2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)amino)pyridin-3-yl)indolin-2-one (092)
  • Figure US20210147441A1-20210520-C00294
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.37 (s, 1H), 8.21 (d, J=2.4 Hz, 1H), 7.61 (dd, J=8.8, 2.4 Hz, 1H), 7.40 (s, 1H), 7.34 (d, J=8.0 Hz, 1H), 6.83 (d, J=8.0 Hz, 1H), 6.63-6.52 (m, 2H), 3.63-3.52 (m, 12H), 3.50 (s, 2H), 3.48-3.36 (m, 4H). LC-MS m/z [M+H]+: 427.1 with a purity of 98%.
  • 2.2.10 Synthesis of 5-(6-((2-(2-(2-(2-(4-aminophenoxy)ethoxy)ethoxy)ethoxy)ethyl)amino)-pyridin-3-yl)indolin-2-one (093)
  • Figure US20210147441A1-20210520-C00295
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.37 (s, 1H), 8.21 (d, J=2.0 Hz, 1H), 7.59 (dd, J=8.8, 3.0 Hz, 1H), 7.39 (s, 1H), 7.34 (d, J=8.0 Hz, 1H), 6.83 (d, J=8.0 Hz, 1H), 6.68-6.61 (m, 2H), 6.60-6.53 (m, 2H), 6.52-6.46 (m, 2H), 4.58 (s, 2H), 3.94-3.89 (m, 2H), 3.69-3.63 (m, 2H), 3.60-3.51 (m, 10H), 3.50 (s, 2H), 3.48-3.40 (m, 2H). LC-MS m/z [M+H]+: 493.2 with a purity of 96%.
  • 2.2.11 Synthesis of 5-(2-((2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)amino)pyridin-3-yl)indolin-2-one (094)
  • Figure US20210147441A1-20210520-C00296
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.47 (s, 1H), 7.99 (dd, J=4.8, 1.6 Hz, 1H), 7.24-7.17 (m, 3H), 6.90 (d, J=8.0 Hz, 1H), 6.61 (dd, J=7.2, 4.0 Hz, 1H), 5.47 (t, J=5.2 Hz, 1H), 3.57-3.50 (m, 16H), 3.49-3.35 (m, 2H). LC-MS: m/z [M+H]+: 427.1 with a purity of 97%.
  • 2.2.12 Synthesis of 6-(2-((2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)amino)pyridin-3-yl)indolin-2-one (095)
  • Figure US20210147441A1-20210520-C00297
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.45 (s, 1H), 8.01 (dd, J=4.8, 1.6 Hz, 1H), 7.30-7.25 (m, 2H), 6.93 (dd, J=7.6, 1.6 Hz, 1H), 6.78 (dd, J=4.0, 1.2 Hz, 1H), 6.64-6.61 (m, 1H), 5.53 (t, J=5.2 Hz, 1H), 3.57-3.51 (m, 16H), 3.49-3.32 (m, 2H). LC-MS: m/z [M+H]+: 427.1 with a purity of 99%.
  • 2.2.13 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(5-((4-(2-oxoindolin-6-yl)pyridin-2-yl)amino)pentyl)acetamide (096)
  • Figure US20210147441A1-20210520-C00298
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.48 (s, 1H), 8.19 (t, J=5.2 Hz, 1H), 7.99 (d, J=5.2 Hz, 1H), 7.47 (d, J=8.8 Hz, 2H), 7.41 (d, J=8.4 Hz, 2H), 7.29 (d, J=7.6 Hz, 1H), 7.19 (dd, J=7.6, 1.2 Hz, 1H), 6.99 (d, J=0.8 Hz, 1H), 6.68 (dd, J=5.2, 1.6 Hz, 1H), 6.64 (s, 1H), 6.53 (t, J=5.2 Hz, 1H), 4.57-4.46 (m, 1H), 3.51 (s, 2H), 3.26-3.03 (m, 6H), 2.59 (s, 3H), 2.39 (s, 3H), 1.60 (s, 3H), 1.59-1.32 (m, 6H). LC-MS m/z [M+H]+: 693.2 with a purity of 98%.
  • 2.2.14 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(2-(2-(2-(2-((4-(2-oxoindolin-5-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethyl)acetamide (097)
  • Figure US20210147441A1-20210520-C00299
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.48 (s, 1H), 8.24 (t, J=5.6 Hz, 1H), 7.96 (d, J=5.6 Hz, 1H), 7.54-7.38 (m, 6H), 6.89 (d, J=8.0 Hz, 1H), 6.75-6.66 (m, 2H), 6.43 (t, J=5.6 Hz, 1H), 4.51 (t, J=7.2 Hz, 1H), 3.58-3.51 (m, 12H), 3.49-3.41 (m, 4H), 3.26-3.17 (m, 4H), 2.59 (s, 3H), 2.40 (s, 3H), 1.61 (s, 3H). LC-MS m/z [M+H]+: 784.2 with a purity of 98%.
  • 2.2.15 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(4-(2-(2-(2-(2-((5-(2-oxoindolin-5-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethoxy)phenyl)acetamide (098)
  • Figure US20210147441A1-20210520-C00300
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.36 (s, 1H), 10.16 (s, 1H), 8.21 (t, J=2.4 Hz, 1H), 7.59 (dd, J=8.8, 2.4 Hz, 1H), 7.56-7.50 (m, 2H), 7.41 (d, J=7.2 Hz, 2H), 7.45-7.37 (m, 3H), 7.33 (d, J=8.0 Hz, 1H), 6.93-6.86 (m, 2H), 6.83 (d, J=8.0 Hz, 1H), 6.60-6.52 (m, 2H), 4.59 (t, J=7.2 Hz, 1H), 4.08-4.00 (m, 2H), 3.76-3.68 (m, 2H), 3.60-3.52 (m, 10H), 3.51-3.41 (m, 6H), 2.60 (s, 3H), 2.41 (s, 3H), 1.62 (s, 3H). LC-MS m/z [M+H]+: 873.1 with a purity of 96%.
  • 2.2.16 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(2-(2-(2-(2-((5-(2-oxoindolin-5-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethyl)acetamide (099)
  • Figure US20210147441A1-20210520-C00301
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.36 (s, 1H), 8.28 (t, J=5.6 Hz, 1H), 8.20 (d, J=2.4 Hz, 1H), 7.59 (dd, J=8.4, 2.4 Hz, 1H), 7.53-7.38 (m, 5H), 7.33 (d, J=8.0 Hz, 1H), 6.83 (d, J=8.0 Hz, 1H), 6.60-6.52 (m, 2H), 4.50 (dd, J=8.0, 6.4 Hz, 1H), 3.62-3.40 (m, 18H), 3.27-3.17 (m, 2H), 2.59 (s, 3H), 2.40 (s, 3H), 1.61 (s, 3H). LC-MS m/z [M+H]+: 783.3 with a purity of 97%.
  • 2.2.17 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(2-(2-(2-(2-((5-(2-oxoindolin-6-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethyl)acetamide (100)
  • Figure US20210147441A1-20210520-C00302
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.39 (s, 1H), 8.26 (t, J=5.6 Hz, 1H), 8.22 (d, J=2.0 Hz, 1H), 7.61 (dd, J=8.4, 2.4 Hz, 1H), 7.47 (d, J=8.4 Hz, 2H), 7.41 (d, J=8.8 Hz, 2H), 7.21 (d, J=8.0 Hz, 1H), 7.09 (dd, J=7.6, 1.6 Hz, 1H), 6.92 (s, 1H), 6.66 (t, J=5.6 Hz, 1H), 6.57 (d, J=8.4 Hz, 1H), 4.50 (dd, J=7.6, 6.0 Hz, 1H), 3.59-3.52 (m, 10H), 3.50-3.42 (m, 6H), 3.28-3.16 (m, 4H), 2.59 (s, 3H), 2.40 (s, 3H), 1.61 (s, 3H). LC-MS m/z [M+H]+: 783.2 with a purity of 99%.
  • 2.2.18 Synthesis of (S)-6-((1-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-2-oxo-6,9,12-trioxa-3-azatetradecan-14-yl)amino)-N-(2-oxoindolin-5-yl)nicotinamide (101)
  • Figure US20210147441A1-20210520-C00303
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.28 (s, 1H), 9.76 (s, 1H), 8.60 (t, J=2.4 Hz, 1H), 8.26 (t, J=5.6 Hz, 1H), 7.87 (dd, J=8.8, 2.4 Hz, 1H), 7.61 (s, 1H), 7.53-7.37 (m, 5H), 7.17 (t, J=5.6 Hz, 1H), 6.75 (d, J=8.4 Hz, 1H), 6.54 (d, J=8.8 Hz, 1H), 4.50 (dd, J=7.6, 6.0 Hz, 1H), 3.57-3.53 (m, 10H), 3.52-3.43 (m, 6H), 3.29-3.16 (m, 4H), 2.67 (s, 3H), 2.40 (s, 3H), 1.61 (s, 3H). LC-MS m/z [M+H]+: 826.2 with a purity of 99%.
  • 2.2.19 Synthesis of (S)—N-(2-(2-(2-(2-(4-(2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3a][1,4]diazepin-6-yl)acetamido)phenoxy)ethoxy)ethoxy)ethoxy)ethyl)-3-(2-oxoindolin-6-yl)benzamide (102)
  • Figure US20210147441A1-20210520-C00304
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.48 (s, 1H), 10.15 (s, 1H), 8.65 (t, J=2.4 Hz, 1H), 8.07 (s, 1H), 7.82 (d, J=7.6 Hz, 1H), 7.74 (d, J=7.6 Hz, 1H), 7.54-7.46 (m, 5H), 7.41 (d, J=8.4 Hz, 2H), 7.29-7.28 (m, 2H), 7.08 (s, 1H), 6.87 (d, J=8.8 Hz, 2H), 4.59 (t, J=7.2 Hz, 1H), 4.02-4.00 (m, 2H), 3.69-3.67 (m, 2H), 3.57-3.38 (m, 16H), 2.60 (s, 3H), 2.41 (s, 3H), 1.62 (s, 3H). LC-MS m/z [M+H]+: 902.2 with a purity of 99%.
  • 2.2.20 Synthesis of (S)—N-(2-(2-(2-(2-(4-(2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3a][1,4]diazepin-6-yl)acetamido)phenoxy)ethoxy)ethoxy)ethoxy)ethyl)-3-(2-oxoindolin-5-yl)benzamide (103)
  • Figure US20210147441A1-20210520-C00305
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.49 (s, 1H), 10.15 (s, 1H), 8.60 (t, J=5.6 Hz, 1H), 8.06 (s, 1H), 7.76 (d, J=7.6 Hz, 1H), 7.73 (d, J=7.6 Hz, 1H), 7.59 (s, 1H), 7.55-7.46 (m, 6H), 7.41 (d, J=8.4 Hz, 2H), 6.92-6.86 (m, 3H), 4.59 (t, J=7.2 Hz, 1H), 4.02-4.00 (m, 2H), 3.69-3.67 (m, 2H), 3.57-3.42 (m, 16H), 2.60 (s, 3H), 2.41 (s, 3H), 1.62 (s, 3H). LC-MS m/z [M+H]+: 902.2 with a purity of 99%.
  • 2.2.21 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(4-(2-(2-(2-(2-((4-(2-oxoindolin-5-yl)phenyl)amino)ethoxy)ethoxy)ethoxy)ethoxy)phenyl)acetamide (104)
  • Figure US20210147441A1-20210520-C00306
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.33 (s, 1H), 10.17 (s, 1H), 7.54 (d, J=9.0 Hz, 2H), 7.48 (d, J=8.7 Hz, 2H), 7.44-7.36 (m, 3H), 7.35-7.29 (m, 3H), 6.90 (d, J=9.0 Hz, 2H), 6.81 (d, J=8.0 Hz, 2H), 6.64 (d, J=8.7 Hz, 2H), 5.61 (t, J=5.7 Hz, 1H), 4.60 (t, J=7.2 Hz, 1H), 4.08-4.02 (m, 2H), 3.77-3.70 (m, 2H), 3.63-3.54 (m, 9 H), 3.51-3.44 (m, 4H), 3.25-3.17 (m, 2H), 2.61 (s, 3H), 2.42 (s, 3H), 1.63 (s, 3H). LC-MS m/z [M+H]+: 874.1 with a purity of 96%.
  • 2.2.22 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(5-((3-(2-oxoindolin-5-yl)pyridin-2-yl)amino)pentyl)acetamide (105)
  • Figure US20210147441A1-20210520-C00307
  • 1H NMR (400 MHz, MEOD) δ (ppm): 7.92 (dd, J=5.4, 1.8 Hz, 1H), 7.46-7.33 (m, 5H), 7.26 (bs, 1H), 7.21 (dd, J=8.2, 1.6 Hz, 1H), 6.98 (d, J=8.0 Hz, 1H), 6.70 (dd, J=7.2, 5.5 Hz, 1H), 4.60 (dd, J=8.8, 5.4 Hz, 1H), 3.54 (bs, 2H), 3.43-3.34 (m, 3H), 3.29-3.22 (m, 3H), 2.69 (s, 3H), 2.44 (s, 3H), 1.68 (s, 3H), 1.65-1.55 (m, 4H), 1.47-1.38 (m, 2H) LC-MS m/z [M+H]+: 693.5 with a purity of 99%.
  • 2.2.23 Synthesis of (S)—N-(2-(2-(4-(2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3a][1,4]diazepin-6-yl)acetamido)phenoxy)ethoxy)ethyl)-3-(2-oxoindolin-5-yl)benzamide (106)
  • Figure US20210147441A1-20210520-C00308
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.48 (s, 1H), 10.15 (s, 1H), 8.66 (t, J=5.2 Hz, 1H), 8.07 (s, 1H), 7.78-7.74 (m, 2H), 7.60 (s, 1H), 7.56-7.48 (m, 8H), 6.93-6.87 (m, 3H), 4.59 (t, J=7.2 Hz, 1H), 4.07 (t, J=4.4 Hz, 2H), 3.76 (t, J=4.4 Hz, 2H), 3.63-3.45 (m, 8H), 2.61 (s, 3H), 2.43 (s, 3H), 1.64 (s, 3H). LC-MS m/z [M+H]+: 814.1 with a purity of 99%.
  • 2.2.24 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(2-(2-(2-(2-((3-(2-oxoindolin-5-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethyl)acetamide (107)
  • Figure US20210147441A1-20210520-C00309
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.47 (s, 1H), 8.25 (t, J=5.6 Hz, 1H), 7.99 (dd, J=2.5, 1.8 Hz, 1H), 7.47 (d, J=8.6 Hz, 2H), 7.42 (d, J=8.6 Hz, 2H), 7.28-7.14 (m, 3H), 6.90 (d, J=7.9 Hz, 1H), 6.60 (d, J=5.0. 3.6 Hz, 1H), 5.48 (t, J=5.3 Hz, 1H), 4.49 (dd, J=8.0, 6.2 Hz, 1H), 3.53-3.41 (m, 16H), 3.28-3.16 (m, 4H), 2.59 (s, 3H), 2.40 (s, 3H), 1.61 (s, 3H). LC-MS m/z [M+H]+: 783.1 with a purity of 99%.
  • 2.2.25 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(2-(2-(2-(2-((3-(2-oxoindolin-6-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethyl)acetamide (108)
  • Figure US20210147441A1-20210520-C00310
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.45 (s, 1H), 8.25 (t, J=5.5 Hz, 1H), 8.01 (dd, J=2.5, 1.8 Hz, 1H), 7.48 (d, J=8.7 Hz, 2H), 7.42 (d, J=8.6 Hz, 2H), 7.33-7.21 (m, 2H), 6.94 (dd, J=3.8, 1.4 Hz, 1H), 6.79 (s, 1H), 6.62 (dd, J=7.2, 5.0 Hz, 1H), 5.55 (t, J=5.3 Hz, 1H), 4.49 (dd, J=8.0, 6.2 Hz, 1H), 3.52-3.41 (m, 16H), 3.25-3.18 (m, 4H), 2.59 (s, 3H), 2.40 (s, 3H), 1.61 (s, 3H). LC-MS m/z [M+H]+: 783.1 with a purity of 98%.
  • 2.2.26 Synthesis of (S)-3-(2-(2-(2-(2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3a][1,4]diazepin-6-yl)acetamido)ethoxy)ethoxy)ethoxy)-N-(1-(2-oxoindoline-5-carbonyl)piperidin-4-yl)propanamide (109)
  • Figure US20210147441A1-20210520-C00311
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.53 (s, 1H), 8.26 (t, J=5.6 Hz, 1H), 7.82 (d, J=7.6 Hz, 1H), 7.48 (d, J=8.4 Hz, 2H), 7.42 (d, J=8.4 Hz, 2H), 7.21-7.19 (m, 2H), 6.83 (d, J=7.6 Hz, 1H), 4.50 (t, J=5.3 Hz, 1H), 3.80-3.78 (m, 1H), 3.61-3.30 (m, 20H), 3.05-2.99 (m, 2H), 2.59 (s, 3H), 2.41 (s, 3H), 2.39-2.28 (m, 2H), 1.85-1.74 (m, 2H), 1.62 (s, 3H), 1.39-1.28 (m, 2H). LC-MS m/z [M+H]+: 845.2 with a purity of 99%.
  • 2.2.27 Synthesis of (S)-3-(2-(2-(2-(2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3a][1,4]diazepin-6-yl)acetamido)ethoxy)ethoxy)ethoxy)-N-(1-(2-oxoindoline-6-carbonyl)piperidin-4-yl)propanamide (110)
  • Figure US20210147441A1-20210520-C00312
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.46 (s, 1H), 8.26 (t, J=5.6 Hz, 1H), 7.83 (d, J=7.6 Hz, 1H), 7.48 (d, J=8.4 Hz, 2H), 7.42 (d, J=8.4 Hz, 2H), 7.25 (d, J=7.6 Hz, 1H), 6.90 (dd, J=7.6, 1.2 Hz, 1H), 6.75 (s, 1H), 4.51 (t, J=5.3 Hz, 1H), 3.85-3.75 (m, 1H), 3.61-3.43 (m, 20H), 3.20-3.17 (m, 2H), 2.59 (s, 3H), 2.42 (s, 3H), 2.30-2.20 (m, 2H), 1.84-1.74 (m, 2H), 1.63 (s, 3H), 1.35-1.23 (m, 2H). LC-MS m/z [M+H]+: 845.2 with a purity of 99%.
  • 2.2.28 Synthesis of 3-(2-(2-(2-(2-((S)-4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3a][1,4]diazepin-6-yl)acetamido)ethoxy)ethoxy)ethoxy)-N-(1-(2-oxoindoline-6-carbonyl)piperidin-3-yl)propanamide (111)
  • Figure US20210147441A1-20210520-C00313
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.46 (s, 1H), 8.26 (t, J=5.6 Hz, 1H), 7.85 (bs, 1H), 7.48 (d, J=8.4 Hz, 2H), 7.42 (d, J=8.4 Hz, 2H), 7.22 (d, J=7.2 Hz, 1H), 6.93 (d, J=7.2 Hz, 1H), 6.77 (bs, 1H), 4.51 (t, J=5.3 Hz, 1H), 3.80-3.20 (m, 21H), 3.20-3.17 (m, 2H), 2.59 (s, 3H), 2.42 (s, 3H), 2.30-2.20 (m, 2H), 1.84-1.74 (m, 2H), 1.63 (s, 3H), 1.35-1.23 (m, 2H). LC-MS m/z [M+H]+: 845.2 with a purity of 99%.
  • 2.2.29 Synthesis of 3-(2-(2-(2-(2-((S)-4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetamido)ethoxy)ethoxy)ethoxy)-N-(1-(2-oxoindoline-5-carbonyl)piperidin-3-yl)propanamide (112)
  • Figure US20210147441A1-20210520-C00314
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.53 (s, 1H), 8.26 (t, J=5.6 Hz, 1H), 7.84 (bs, 1H), 7.83 (d, J=7.6 Hz, 1H), 7.48 (d, J=8.4 Hz, 2H), 7.42 (d, J=8.4 Hz, 2H), 7.26-7.22 (m, 2H), 6.82 (d, J=8.0 Hz, 1H), 4.52-4.49 (m, 1H), 3.57-3.44 (m, 16H), 3.20-3.17 (m, 2H), 2.59 (s, 3H), 2.42 (s, 3H), 1.62 (s, 3H). LC-MS m/z [M+H]+: 845.2 with a purity of 99%.
  • 2.2.30 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(2-(2-(2-(2-((4-(2-oxoindolin-6-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethyl)acetamide (113)
  • Figure US20210147441A1-20210520-C00315
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.49 (s, 1H), 8.27 (t, J=5.6 Hz, 1H), 8.02-7.97 (m, 1H), 7.48 (d, J=8.8 Hz, 2H), 7.42 (d, J=8.6 Hz, 2H), 7.29 (d, J=7.7 Hz, 1H), 7.20 (dd, J=7.7, 1.6 Hz, 1H), 7.00 (d, J=1.3 Hz, 1H), 6.75-6.66 (m, 2H), 6.59 (t, J=5.6 Hz, 1H), 4.50 (dd, J=8.0, 6.2 Hz, 1H), 3.56-3.50 (m, 12H), 3.47-3.43 (m, 4H), 3.30-3.18 (m, 4H), 2.59 (s, 3H), 2.40 (s, 3H), 1.61 (s, 3H). LC-MS m/z [M+H]+: 783.3 with a purity of 95%.
  • 2.2.31 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(14-((5-(2-oxoindolin-5-yl)pyridin-2-yl)amino)-3,6,9,12-tetraoxatetradecyl)acetamide (114)
  • Figure US20210147441A1-20210520-C00316
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.37 (s, 1H), 8.27 (t, J=5.5 Hz, 1H), 8.21 (d, J=2.4 Hz, 1H), 7.60 (dd, J=8.7, 2.5 Hz, 1H), 7.48 (d, J=8.8 Hz, 2H), 7.45-7.38 (m, 3H), 7.34 (dd, J=8.1, 1.8 Hz, 1H), 6.83 (d, J=8.1 Hz, 1H), 6.62-6.52 (m, 2H), 4.50 (dd, J=8.0, 6.1 Hz, 1H), 3.55-3.40 (m, 20H), 3.31-3.16 (m, 4H), 2.59 (s, 3H), 2.40 (s, 3H), 1.61 (s, 3H). LC-MS m/z [M+H]+: 827.3 with a purity of 98%.
  • 2.2.32 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(17-((5-(2-oxoindolin-5-yl)pyridin-2-yl)amino)-3,6,9,12,15-pentaoxaheptadecyl)acetamide (115)
  • Figure US20210147441A1-20210520-C00317
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.37 (s, 1H), 8.27 (t, J=5.5 Hz, 1H), 8.21 (d, J=2.3 Hz, 1H), 7.60 (dd, J=8.7, 2.5 Hz, 1H), 7.48 (d, J=8.8 Hz, 2H), 7.45-7.38 (m, 3H), 7.34 (dd, J=8.1, 1.8 Hz, 1H), 6.83 (d, J=8.1 Hz, 1H), 6.62-6.52 (m, 2H), 4.50 (dd, J=8.0, 6.1 Hz, 1H), 3.55-3.40 (m, 24H), 3.31-3.16 (m, 4H), 2.59 (s, 3H), 2.40 (s, 3H), 1.61 (s, 3H). LC-MS m/z [M+H]+: 871.3 with a purity of 99%.
  • 2.2.32 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(2-(2-(2-((5-(2-oxoindolin-5-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethyl)acetamide (116)
  • Figure US20210147441A1-20210520-C00318
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.39 (s, 1H), 8.28 (t, J=5.5 Hz, 1H), 8.18 (d, J=2.3 Hz, 1H), 7.67 (d, J=7.2 Hz, 1H), 7.47 (d, J=8.8 Hz, 2H), 7.44-7.40 (m, 3H), 7.35 (d, J=8.0 Hz, 1H), 6.83 (d, J=8.0 Hz, 1H), 6.64-6.60 (m, 2H), 4.50 (dd, J=8.0, 6.1 Hz, 1H), 3.58-3.45 (m, 12H), 3.31-3.22 (m, 4H), 2.58 (s, 3H), 2.40 (s, 3H), 1.61 (s, 3H). LC-MS m/z [M+H]+: 738.5 with a purity of 99%.
  • 2.2.33 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(2-(2-((5-(2-oxoindolin-5-yl)pyridin-2-yl)amino)ethoxy)ethyl)acetamide (117)
  • Figure US20210147441A1-20210520-C00319
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.37 (s, 1H), 8.30 (t, J=5.5 Hz, 1H), 8.20 (d, J=2.3 Hz, 1H), 7.59 (dd, J=8.7, 2.5 Hz, 1H), 7.48 (d, J=8.8 Hz, 2H), 7.44-7.39 (m, 3H), 7.33 (dd, J=8.0, 2.0 Hz, 1H), 6.83 (d, J=8.0 Hz, 1H), 6.60-6.55 (m, 2H), 4.51 (dd, J=8.0, 6.1 Hz, 1H), 3.58-3.44 (m, 8H), 3.31-3.22 (m, 4H), 2.59 (s, 3H), 2.38 (s, 3H), 1.59 (s, 3H). LC-MS m/z [M+H]+: 694.6 with a purity of 99%.
  • 2.2.34 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(4-(2-(2-(2-((5-(2-oxoindolin-5-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)phenyl)acetamide (118)
  • Figure US20210147441A1-20210520-C00320
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.37 (s, 1H), 10.17 (s, 1H), 8.21 (d, J=2.4 Hz, 1H), 7.59 (dd, J=8.4, 2.4 Hz, 1H), 7.53 (d, J=8.4 Hz, 2H), 7.48 (d, J=8.4 Hz, 2H), 7.39-7.35 (m, 3H), 7.33 (d, J=1.6 Hz, 1H), 6.89 (d, J=8.8 Hz, 2H), 6.81 (d, J=8.0 Hz, 1H), 6.60-6.58 (m, 2H), 4.59 (t, J=7.2 Hz, 1H), 4.06-4.03 (m, 2H), 3.74-3.72 (m, 2H), 3.61-3.55 (m, 6H), 3.49-3.44 (m, 6H), 2.61 (s, 3H), 2.42 (s, 3H), 1.63 (s, 3H). LC-MS m/z [M+H]+: 830.4 with a purity of 98%.
  • 2.2.35 Synthesis of (S)-5-(6-(4-(2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3a][1,4]diazepin-6-yl)acetyl)piperazin-1-yl)pyridin-3-yl)indolin-2-one (119)
  • Figure US20210147441A1-20210520-C00321
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.41 (s, 1H), 8.40 (d, J=2.4 Hz, 1H), 7.82 (dd, J=8.4, 2.4 Hz, 1H), 7.48-7.42 (m, 6H), 7.94 (d, J=4.8 Hz, 1H), 6.87 (d, J=8.0 Hz, 1H), 4.61 (t, J=7.2 Hz, 1H), 3.81-3.80 (m, 2H), 3.70-3.61 (m, 6H), 3.53-3.44 (m, 4H), 2.61 (s, 3H), 2.42 (s, 3H), 1.63 (s, 3H). LC-MS m/z [M+H]+: 676.5 with a purity of 96%.
  • 2.2.36 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,6,9-tetramethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(2-(2-(3-oxo-3-(4-(5-(2-oxoindolin-5-yl)pyridin-2-yl)piperazin-1-yl)propoxy)ethoxy)ethyl)acetamide (120)
  • Figure US20210147441A1-20210520-C00322
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.40 (s, 1H), 8.37 (d, J=2.4 Hz, 1H), 8.26 (t, J=5.6 Hz, 1H), 7.78 (dd, J=8.4, 2.4 Hz, 1H), 7.49-7.39 (m, 6H), 6.90-6.88 (m, 2H), 4.50 (t, J=7.2 Hz, 1H), 3.66 (t, J=6.4 Hz, 2H), 3.56-3.43 (m, 16H), 3.31-3.21 (m, 4H), 2.65-2.63 (m, 2H), 2.62 (s, 3H), 2.40 (s, 3H), 1.61 (s, 3H). LC-MS m/z [M+H]+: 835.3 with a purity of 99%.
  • 2.2.37 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(2-(2-(2-(2-((5-(1-methyl-2-oxoindolin-5-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethyl)acetamide (121)
  • Figure US20210147441A1-20210520-C00323
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 8.27 (t, J=5.5 Hz, 1H), 8.24 (J=2.4 Hz, 1H), 7.64 (dd, J=8.8, 2.8 Hz, 1H), 7.48-7.40 (m, 6H), 6.99 (d, J=8.8 Hz, 1H), 6.61-6.59 (m, 2H), 4.51 (t, J=4.7 Hz, 1H), 3.56-3.43 (m, 16H), 3.29-3.21 (m, 4H), 3.12 (s, 3H), 2.59 (s, 3H), 2.40 (s, 3H), 1.60 (s, 3H) LC-MS m/z [M+H]+: 798.5 with a purity of 99%.
  • 2.2.38 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(2-oxo-2-(4-(5-(2-oxoindolin-5-yl)pyridin-2-yl)piperazin-1-yl)ethyl)acetamide (122)
  • Figure US20210147441A1-20210520-C00324
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.41 (s, 1H), 8.38 (t, J=2.4 Hz, 2H), 7.80 (dd, J=8.8, 2.4 Hz, 1H), 7.46-7.40 (m, 6H), 6.91 (d, J=8.8 Hz, 1H), 6.86 (d, J=8.0 Hz, 1H), 4.53 (dd, J=8.0, 1.6 Hz, 1H), 4.14-4.02 (m, 2H), 3.57-3.24 (m, 12H), 2.59 (s, 3H), 2.41 (s, 3H), 1.62 (s, 3H). LC-MS m/z [M+H]+: 735.5 with a purity of 99%.
  • 2.2.39 Synthesis of (S)-5-(6-(4-(1-(2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3a][1,4]diazepin-6-yl)acetyl)piperidin-4-yl)piperazin-1-yl)pyridin-3-yl)indolin-2-one (123)
  • Figure US20210147441A1-20210520-C00325
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.40 (s, 1H), 8.36 (d, J=2.4 Hz, 1H), 7.77 (dd, J=8.8, 2.4 Hz, 1H), 7.50-7.39 (m, 6H), 6.92 (d, J=8.4 Hz, 1H), 6.86 (d, J=8.0 Hz, 1H), 4.57 (t, J=8.0 Hz, 1H), 4.41-4.39 (m, 2H), 3.63-3.61 (m, 3H), 3.43-3.37 (m, 8H), 2.87-2.81 (m, 4H), 2.60 (s, 3H), 2.41 (s, 3H), 2.00-1.85 (m, 2H), 1.62 (s, 3H), 1.55-1.45 (m, 2H). LC-MS m/z [M+H]+: 761.5 with a purity of 99%.
  • 2.2.40 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(2-((5-(2-oxoindolin-5-yl)pyridin-2-yl)amino)ethyl)acetamide (124)
  • Figure US20210147441A1-20210520-C00326
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.38 (s, 1H), 8.35 (t, J=2.4 Hz, 1H), 8.22 (d, J=2.0 Hz, 1H), 7.63 (dd, J=8.8, 2.4 Hz, 1H), 7.49-7.34 (m, 6H), 6.84 (d, J=8.0 Hz, 1H), 6.61-6.53 (m, 2H), 4.52 (t, J=7.2 Hz, 1H), 3.50-3.20 (m, 8H), 2.59 (s, 3H), 2.41 (s, 3H), 1.62 (s, 3H). LC-MS m/z [M+H]+: 650.6 with a purity of 98%.
  • 2.2.41 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(1-(5-(2-oxoindolin-5-yl)pyridin-2-yl)piperidin-4-yl)acetamide (125)
  • Figure US20210147441A1-20210520-C00327
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.40 (s, 1H), 8.37 (d, J=2.4 Hz, 1H), 8.20 (t, J=8.0 Hz, 1H), 7.77 (dd, J=9.2, 2.8 Hz, 1H), 7.51-7.39 (m, 6H), 6.93 (d, J=8.8 Hz, 1H), 6.86 (d, J=8.0 Hz, 1H), 4.51 (dd, J=8.4, 2.0 Hz, 1H), 4.25-4.15 (m, 2H), 3.90-3.80 (m, 1H), 3.51 (s, 2H), 3.29-2.99 (m, 4H), 2.59 (s, 3H), 2.41 (s, 3H), 1.90-1.80 (m, 2H), 1.62 (s, 3H), 1.55-1.45 (m, 2H). LC-MS m/z [M+H]+: 690.5 with a purity of 98%.
  • 2.2.42 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(5-((5-(2-oxoindolin-5-yl)pyridin-2-yl)amino)pentyl)acetamide (126)
  • Figure US20210147441A1-20210520-C00328
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.37 (s, 1H), 8.24-8.15 (m, 2H), 7.58 (dd, J=8.8, 2.8 Hz, 1H), 7.48 (d, J=8.8 Hz, 2H), 7.45-7.37 (m, 3H), 7.33 (dd, J=8.0, 1.8 Hz, 1H), 6.83 (d, J=8.1 Hz, 1H), 6.53 (t, J=5.3 Hz, 1H), 6.50 (d, J=8.7 Hz, 1H), 4.51 (dd, J=8.2, 5.9 Hz, 1H), 3.53-3.48 (m, 2H), 3.24-3.02 (m, 6H), 2.59 (s, 3H), 2.39 (s, 3H), 1.60 (s, 3H), 1.59-1.52 (m, 2H), 1.52-1.45 (m, 2H), 1.43-1.35 (m, 2H). LC-MS m/z [M+H]+: 692.6 with a purity of 96%.
  • 2.2.43 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-((1-(5-(2-oxoindolin-5-yl)pyridin-2-yl)piperidin-4-yl)methyl)acetamide (127)
  • Figure US20210147441A1-20210520-C00329
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.40 (s, 1H), 8.92 (d, J=6.9 Hz, 1H), 8.35 (d, J=2.0 Hz, 1H), 7.78 (dd, J=8.6, 2.5 Hz, 1H), 7.78 (dd, J=8.6, 2.5 Hz, 1H), 7.49-7.38 (m, 6H), 6.86 (d, J=8.0 Hz, 1H), 6.51 (d, J=8.6 Hz, 1H), 4.70-4.60 (m, 1H), 4.52 (t, J=7.2 Hz, 1H), 4.32-4.21 (m, 2H), 3.88-3.79 (m, 2H), 3.52 (s, 2H), 3.30-3.21 (m, 2H), 2.59 (s, 3H), 2.41 (s, 3H), 1.62 (s, 3H) LC-MS m/z [M+H]+: 704.6 with a purity of 96%.
  • 2.2.44 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(1-(5-(2-oxoindolin-5-yl)pyridin-2-yl)azetidin-3-yl)acetamide (128)
  • Figure US20210147441A1-20210520-C00330
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.40 (s, 1H), 8.34 (d, J=2.4 Hz, 1H), 8.25 (t, J=5.8 Hz, 1H), 7.76 (d, J=7.6 Hz, 1H), 7.51-7.38 (m, 6H), 6.90 (d, J=8.8 Hz, 1H), 6.86 (d, J=8.0 Hz, 1H), 4.51 (dd, J=8.6, 5.7 Hz, 1H), 4.32 (d, J=12.5 Hz, 2H), 3.51 (s, 2H), 3.23-3.15 (m, 1H), 3.14-2.97 (m, 2H), 2.81 (t, J=12.3 Hz, 2H), 2.59 (s, 3H), 2.41 (s, 3H), 1.62 (s, 3H). LC-MS m/z [M+H]+: 662.6 with a purity of 99%.
  • 2.2.45 Synthesis of 2-((S)-4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(1-(5-(2-oxoindolin-5-yl)pyridin-2-yl)pyrrolidin-3-yl)acetamide (129)
  • Figure US20210147441A1-20210520-C00331
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.39 (s, 1H), 8.57 (d, J=6.6 Hz, 1H), 8.37 (d, J=2.4 Hz, 1H), 7.77 (dd, J=8.8, 2.5 Hz, 1H), 7.44 (bs, 1H), 7.41-7.37 (m, 1H), 7.35-7.31 (m, 4H), 6.86 (d, J=8.0 Hz, 1H), 6.56 (d, J=8.8 Hz, 1H), 4.51 (dd, J=8.9, 5.3 Hz, 1H), 4.44-4.38 (m, 1H), 3.70-3.42 (m, 8H), 3.19-3.10 (m, 2H), 2.59 (s, 3H), 2.41 (s, 3H), 1.62 (s, 3H). LC-MS m/z [M+H]+: 676.6 with a purity of 98%.
  • 2.2.46 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(2-(3-oxo-3-(4-(5-(2-oxoindolin-5-yl)pyridin-2-yl)piperazin-1-yl)propoxy)ethyl)acetamide (130)
  • Figure US20210147441A1-20210520-C00332
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.41 (s, 1H), 8.37 (d, J=2.3 Hz, 1H), 8.26 (t, J=5.3 Hz, 1H), 7.79 (dd, J=8.8, 2.5 Hz, 1H), 7.51-7.38 (m, 6H), 6.93-6.82 (m, 2H), 4.50 (dd, J=8.0, 6.2 Hz, 1H), 3.69 (t, J=6.6 Hz, 2H), 3.62-3.43 (m, 14H), 3.27-3.18 (m, 2H), 2.65 (t, J=6.4 Hz, 2H), 2.59 (s, 3H), 2.40 (s, 3H), 1.61 (s, 3H). LC-MS m/z [M+H]+: 791.5 with a purity of 99%.
  • 2.2.47 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(441445-(2-oxoindolin-5-yl)pyridin-2-yl)amino)-3,6,9,12-tetraoxatetradecyl)oxy)phenyl)acetamide (131)
  • Figure US20210147441A1-20210520-C00333
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.36 (s, 1H), 10.16 (s, 1H), 8.20 (d, J=2.4 Hz, 1H), 7.59 (dd, J=8.4, 2.4 Hz, 1H), 7.53 (d, J=2.0 Hz, 2H), 7.51 (d, J=2.0 Hz, 2H), 7.48-7.38 (m, 3H), 7.33 (dd, J=8.0, 2.0 Hz, 1H), 6.91-6.88 (m, 2H), 6.83 (d, J=8.0, 1H), 6.58-6.54 (m, 2H), 4.58 (t, J=6.2 Hz, 1H), 4.05-4.02 (m, 2H), 3.72-3.71 (m, 2H), 3.57-3.42 (m, 20H), 2.60 (s, 3H), 2.41 (s, 3H), 1.62 (s, 3H). LC-MS m/z [M+H]+: 918.5 with a purity of 97%.
  • 2.2.48 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(2-(2-((5-(2-oxoindolin-5-yl)pyridin-2-yl)oxy)ethoxy)ethyl)acetamide (132)
  • Figure US20210147441A1-20210520-C00334
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.45 (s, 1H), 8.37 (d, J=2.2 Hz, 1H), 8.31 (t, J=5.6 Hz, 1H), 7.92 (dd, J=8.6, 2.6 Hz, 1H), 7.51-7.40 (m, 6H), 6.88 (d, J=8.2 Hz, 2H), 4.51 (dd, J=8.2, 5.9 Hz, 1H), 4.45-4.40 (m, 2H), 3.78 (t, J=4.8 Hz, 2H), 3.56-3.52 (m, 4H), 3.37-3.14 (m, 4H), 2.59 (s, 3H), 2.40 (s, 3H), 1.61 (s, 3H). LC-MS m/z [M+H]+: 695.5 with a purity of 98%.
  • 2.2.49 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(2-(2-((5-(2-oxoindolin-5-yl)pyrimidin-2-yl)amino)ethoxy)ethyl)acetamide (133)
  • Figure US20210147441A1-20210520-C00335
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.42 (s, 1H), 8.52 (s, 2H), 8.31 (t, J=5.5 Hz, 1H), 7.49-7.36 (m, 6H), 7.19 (t, J=5.6 Hz, 1H), 6.86 (d, J=8.0 Hz, 1H), 4.53 (dd, J=8.4, 5.8 Hz, 1H), 3.61-3.56 (m, 2H), 3.53-3.46 (m, 6H), 3.40-3.35 (m, 1H), 3.30-3.17 (m, 3H), 2.59 (s, 3H), 2.38 (s, 3H), 1.60 (s, 3H). LC-MS m/z [M+H]+: 695.5 with a purity of 99%.
  • 2.2.50 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(2-(1-(5-(2-oxoindolin-5-yl)pyridin-2-yl)piperidin-4-yl)ethyl)acetamide (134)
  • Figure US20210147441A1-20210520-C00336
  • 1H NMR (400 MHz, MeOD) δ (ppm): 8.73 (t, J=5.2 Hz, 1H), 8.22 (d, J=2.3 Hz, 1H), 7.90 (dd, J=9.1, 2.4 Hz, 1H), 7.50-7.38 (m, 6H), 7.02 (d, J=9.2 Hz, 1H), 6.96 (d, J=8.1 Hz, 1H), 4.65 (dd, J=8.4, 5.8 Hz, 1H), 4.29-4.19 (m, 2H), 3.59 (bs, 2H), 3.45-3.33 (m, 4H), 3.01-2.90 (m, 2H), 2.69 (s, 3H), 2.44 (s, 3H), 1.89 (d, J=12.5 Hz, 2H), 1.70 (bs, 4H), 1.56 (dd, J=13.5, 6.8 Hz, 2H), 1.36-1.23 (m, 2H). LC-MS m/z [M+H]+: 718.6 with a purity of 96%.
  • 2.2.51 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(2-(2-((3-(2-oxoindolin-5-yl)pyridin-2-yl)amino)ethoxy)ethyl)acetamide (135)
  • Figure US20210147441A1-20210520-C00337
  • 1H NMR (400 MHz, MeOD) δ (ppm): 7.95 (dd, J=5.5, 1.7 Hz, 1H), 7.50-7.34 (m, 5H), 7.28 (bs, 1H), 7.24 (d, J=8.0 Hz, 1H), 6.98 (d, J=8.0 Hz, 1H), 6.73 (dd, J=7.2, 5.4 Hz, 1H), 4.59 (dd, J=8.7, 5.4 Hz, 1H), 3.66 (t, J=5.2 Hz, 2H), 3.61-3.51 (m, 6H), 3.43-3.39 (m, 2H), 3.38-3.34 (m, 1H), 3.23 (dd, J=15.1, 5.4 Hz, 1H), 2.69 (s, 3H), 2.44 (s, 3H), 1.67 (s, 3H). LC-MS m/z [M+H]+: 695.6 with a purity of 98%.
  • 2.2.52 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(1-(3-(2-oxoindolin-5-yl)pyridin-2-yl)piperidin-4-yl)acetamide (136)
  • Figure US20210147441A1-20210520-C00338
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.48 (s, 1H), 8.18-8.10 (m, 2H), 7.53-7.38 (m, 7H), 6.97 (dd, J=7.4, 2.6 Hz, 1H), 6.89 (d, J=8.0 Hz, 1H), 4.49 (dd, J=8.3, 4.5 Hz, 1H), 3.74-3.63 (m, 1H), 3.56 (s, 2H), 3.52-3.39 (m, 3H), 3.28-3.12 (m, 2H), 2.73-2.64 (m, 2H), 2.59 (s, 3H), 2.41 (s, 3H), 1.75-1.69 (m, 1H), 1.61 (s, 3H), 1.49-1.32 (m, 2H). LC-MS m/z [M+H]+: 690.6 with a purity of 98%.
  • 2.2.53 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(1-(3-(2-oxoindolin-5-yl)pyridin-2-yl)piperidin-4-yl)acetamide (137)
  • Figure US20210147441A1-20210520-C00339
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.49-10.34 (m, 1H), 8.15-8.03 (m, 1H), 7.57-7.34 (m, 5H), 7.26-7.12 (m, 2H), 6.92-6.71 (m, 2H), 4.53 (t, J=5.0 Hz, 1H), 3.88-3.35 (m, 8H), 3.28-3.20 (m, 3H), 3.13-2.97 (m, 2H), 2.63-2.57 (m, 3H), 2.46-2.38 (m, 3H), 1.99-1.92 (m, 1H), 1.89-1.71 (m, 3H), 1.68-1.60 (m, 3H). LC-MS m/z [M+H]+: 716.5 with a purity of 99%.
  • 2.2.54 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(6-((3-(2-oxoindolin-5-yl)pyridin-2-yl)amino)spiro[3.3]heptan-2-yl)acetamide (138)
  • Figure US20210147441A1-20210520-C00340
  • 1H NMR (400 MHz, MeOD) δ (ppm): 7.97-7.92 (m, 1H), 7.45-7.37 (m, 4H), 7.33-7.30 (m, 1H), 7.28 (bs, 1H), 7.25-7.21 (m, 1H), 7.03-6.79 (m, 1H), 6.68 (dd, J=7.2, 5.3 Hz, 1H), 4.60 (dd, J=8.9, 5.3 Hz, 1H), 4.36-4.19 (m, 2H), 3.62-3.56 (m, 2H), 3.37 (dd, J=15.0, 9.0 Hz, 1H), 3.27-3.20 (m, 1H), 2.69 (s, 3H), 2.61-2.49 (m, 2H), 2.47-2.39 (m, 4H), 2.37-2.23 (m, 1H), 2.15-1.97 (m, 2H), 1.92-1.81 (m, 2H), 1.72-1.67 (m, 3H). LC-MS m/z [M+H]+: 717.5 with a purity of 99%.
  • 2.2.55 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(4-((3-(2-oxoindolin-5-yl)pyridin-2-yl)amino)butyl)acetamide (139)
  • Figure US20210147441A1-20210520-C00341
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.46 (s, 1H), 8.18 (t, J=5.5 Hz, 1H), 7.98 (dd, J=5.0, 1.8 Hz, 1H), 7.48-7.38 (m, 4H), 7.27-7.14 (m, 3H), 6.89 (d, J=7.9 Hz, 1H), 6.59 (t, J=6.5 Hz, 1H), 4.49 (dd, J=8.1, 6.1 Hz, 1H), 3.49 (bs, 2H), 3.27-3.05 (m, 6H), 2.58 (s, 3H), 2.40 (s, 3H), 1.60 (s, 3H), 1.58-1.50 (m, 2H), 1.50-1.37 (m, 2H). LC-MS m/z [M+H]+: 678.6 with a purity of 97%.
  • 2.2.56 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(4-(2-(2-((3-(2-oxoindolin-5-yl)pyridin-2-yl)amino)ethoxy)ethoxy)phenyl)acetamide (140)
  • Figure US20210147441A1-20210520-C00342
  • 1H NMR (400 MHz, MeOD) δ (ppm): 7.96 (dd, J=5.2, 1.8 Hz, 1H), 7.48-7.42 (m, 4H), 7.41-7.35 (m, 2H), 7.29 (dd, J=7.2, 1.8 Hz, 1H), 7.22 (bs, 1H), 7.21-7.17 (m, 1H), 6.84 (d, J=7.9 Hz, 1H), 6.81-6.75 (m, 2H), 6.68 (dd, J=7.2, 5.2, 1H), 4.73 (dd, J=8.7, 5.5 Hz, 1H), 4.05-3.99 (m, 2H), 3.81-3.75 (m, 2H), 3.74-3.68 (m, 2H), 3.65-3.54 (m, 3H), 3.53-3.43 (m, 3H), 2.71 (s, 3H), 2.44 (s, 3H), 1.70 (s, 3H). LC-MS m/z [M+H]+: 787.5 with a purity of 99%.
  • 2.2.57 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(4-(2-(2-(2-((3-(2-oxoindolin-5-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)phenyl)acetamide (141)
  • Figure US20210147441A1-20210520-C00343
  • 1H NMR (400 MHz, MeOD) δ (ppm): 7.96 (dd, J=5.2, 1.8 Hz, 1H), 7.48-7.42 (m, 4H), 7.41-7.35 (m, 2H), 7.29 (dd, J=7.2, 1.8 Hz, 1H), 7.22 (bs, 1H), 7.21-7.17 (m, 1H), 6.84 (d, J=7.9 Hz, 1H), 6.81-6.75 (m, 2H), 6.68 (dd, J=7.2, 5.2, 1H), 4.73 (dd, J=8.7, 5.5 Hz, 1H), 4.01-3.98 (m, 2H), 3.73-3.70 (m, 2H), 3.65-3.59 (m, 7H), 3.53-3.43 (m, 5H), 2.71 (s, 3H), 2.44 (s, 3H), 1.70 (s, 3H). LC-MS m/z [M+H]+: 787.5 with a purity of 99%.
  • 2.2.58 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(4-(2-(2-(2-(2-((3-(2-oxoindolin-5-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethoxy)phenyl)acetamide (142)
  • Figure US20210147441A1-20210520-C00344
  • 1H NMR (400 MHz, MeOD) δ (ppm): 7.95 (dd, J=5.3, 1.8 Hz, 1H), 7.50-7.42 (m, 4H), 7.41-7.36 (m, 2H), 7.31 (dd, J=7.2, 1.8 Hz, 1H), 7.29-7.26 (m, 1H), 7.25-7.20 (m, 1H), 6.97 (d, J=8.0 Hz, 1H), 6.89-6.84 (m, 2H), 6.68 (dd, J=7.2, 5.3 Hz, 1H), 4.69 (dd, J=8.8, 5.4 Hz, 1H), 4.09-4.02 (m, 2H), 3.80-3.74 (m, 2H), 3.63-3.59 (m, 4H), 3.59-3.54 (m, 8H), 3.54-3.43 (m, 4H), 2.70 (s, 3H), 2.45 (s, 3H), 1.69 (s, 3H). LC-MS m/z [M+H]+: 874.4 with a purity of 99%.
  • 2.2.59 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(4-(2-(2-(2-(2-((4-(2-oxoindolin-5-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethoxy)phenyl)acetamide (143)
  • Figure US20210147441A1-20210520-C00345
  • 1H NMR (400 MHz, MeOD) δ (ppm) 7.91 (d, J=5.6 Hz, 1H), 7.57-7.49 (m, 2H), 7.48-7.41 (m, 4H), 7.41-7.36 (m, 2H), 6.95 (d, J=8.1 Hz, 1H), 6.90-6.82 (m, 4H), 4.70 (dd, J=8.7, 5.6 Hz, 1H), 4.09-4.04 (m, 2H), 3.83-3.78 (m, 2H), 3.72-3.64 (m, 10H), 3.62-3.42 (m, 6H), 2.70 (s, 3H), 2.44 (s, 3H), 1.68 (s, 3H). LC-MS m/z [M+H]+: 874.4 with a purity of 98%.
  • 2.2.60 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(4-(2-(2-(2-(2-((4-(2-oxoindolin-6-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethoxy)phenyl)acetamide (144)
  • Figure US20210147441A1-20210520-C00346
  • 1H NMR (400 MHz, MeOD) δ (ppm) 7.88 (d, J=6.8 Hz, 1H), 7.49-7.36 (m, 7H), 7.35-7.30 (m, 1H), 7.13 (s, 2H), 7.05 (dd, J=7.8, 1.6 Hz, 1H), 6.84-6.79 (m, 2H), 4.80 (dd, J=8.4, 6.2 Hz, 1H), 4.07-4.03 (m, 2H), 3.84-3.79 (m, 2H), 3.79-3.75 (m, 2H), 3.73-3.66 (m, 8H), 3.63-3.57 (m, 3H), 3.57-3.54 (m, 2H), 3.53-3.46 (m, 1H), 2.78 (s, 3H), 2.47 (s, 3H), 1.70 (s, 3H). LC-MS m/z [M+H]+: 874.4 with a purity of 98%.
  • 2.2.61 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(4-(2-(2-(2-(2-((6-morpholino-3-(2-oxoindolin-5-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethoxy)phenyl)acetamide (145)
  • Figure US20210147441A1-20210520-C00347
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm) 10.40 (s, 1H), 10.16 (s, 1H), 7.56-7.39 (m, 6H), 7.18-7.06 (m, 3H), 6.91-6.82 (m, 3H), 6.02 (d, J=8.1 Hz, 1H), 5.37 (t, J=5.1 Hz, 1H), 4.58 (t, J=7.0 Hz, 1H), 4.06-3.98 (m, 2H), 3.73-3.65 (m, 6H), 3.55-3.41 (m, 16H), 3.40-3.32 (m, 4H), 2.60 (s, 3H), 2.42 (s, 3H), 1.63 (s, 3H). LC-MS m/z [M+H]+: 960.2 with a purity of 96%.
  • 2.2.62 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(4-(2-(2-(2-(2-((6-methyl-5-(2-oxoindolin-5-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethoxy)phenyl)acetamide (146)
  • Figure US20210147441A1-20210520-C00348
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.37 (s, 1H), 10.16 (s, 1H), 7.56-7.39 (m, 6H), 7.16 (d, J=8.4 Hz, 1H), 7.10 (s, 1H), 7.05 (d, J=7.9 Hz, 1H), 6.89 (d, J=8.9 Hz, 2H), 6.82 (d, J=7.9 Hz, 1H), 6.40-6.34 (m, 2H), 4.59 (t, J=7.1 Hz, 1H), 4.09-4.00 (m, 2H), 3.77-3.69 (m, 2H), 3.63-3.50 (m, 10H), 3.50-3.38 (m, 6H), 2.60 (s, 3H), 2.42 (s, 3H), 2.24 (s, 3H), 1.62 (s, 3H). LC-MS m/z [M+H]+: 988.2 with a purity of 95%.
  • 2.2.63 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(2-(2-(2-((3-(2-oxoindolin-5-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethyl)acetamide (147)
  • Figure US20210147441A1-20210520-C00349
  • 1H NMR (400 MHz, MeOD) δ (ppm): 7.93 (d, J=5.0 Hz, 1H), 7.50-7.41 (m, 3H), 7.41-7.36 (m, 2H), 7.30 (s, 1H), 7.26 (d, J=8.0 Hz, 1H), 7.00 (d, J=7.9 Hz, 1H), 6.76 (t, J=6.3 Hz, 1H), 4.61 (dd, J=8.6, 5.8 Hz, 1H), 3.67 (t, J=5.0 Hz, 2H), 3.65-3.55 (m, 8H), 3.53 (t, J=5.4 Hz, 2H), 3.45-3.34 (m, 4H), 2.69 (s, 3H), 2.44 (s, 3H), 1.69 (s, 3H). LC-MS m/z [M+H]+: 738.5 with a purity of 99%.
  • 2.2.64 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(4-(2-(2-(2-(2-((4-methyl-5-(2-oxoindolin-5-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethoxy)phenyl)acetamide (148)
  • Figure US20210147441A1-20210520-C00350
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.38 (s, 1H), 10.16 (s, 1H), 7.73 (s, 1H), 7.52 (d, J=9.0 Hz, 2H), 7.48 (d, J=8.6 Hz, 2H), 7.41 (d, J=8.4 Hz, 2H), 7.11 (s, 1H), 7.06 (d, J=8.5 Hz, 1H), 6.89 (d, J=9.0 Hz, 2H), 6.83 (d, J=8.0 Hz, 1H), 6.42-6.35 (m, 2H), 4.59 (t, J=7.1 Hz, 1H), 4.09-3.98 (m, 2H), 3.76-3.68 (m, 2H), 3.61-3.50 (m, 10H), 3.50-3.44 (m, 4H), 3.43-3.39 (m, 2H), 2.60 (s, 3H), 2.42 (s, 3H), 2.09 (s, 3H), 1.63 (s, 3H). LC-MS m/z [M+H]+: 889.2 with a purity of 98%.
  • 2.2.65 Synthesis of tert-butyl (S)-6-((2-(2-(2-(2-(4-(2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3a][1,4]diazepin-6-yl)acetamido)phenoxy)ethoxy)ethoxy)ethoxy)ethyl)amino)-3-(2-oxoindolin-5-yl)picolinate (149)
  • Figure US20210147441A1-20210520-C00351
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.41 (s, 1H), 10.16 (s, 1H), 7.53 (d, J=8.9 Hz, 2H), 7.48 (d, J=8.6 Hz, 2H), 7.45-7.36 (m, 3H), 7.09 (s, 1H), 7.06 (d, J=8.1 Hz, 1H), 6.89 (d, J=8.9 Hz, 2H), 6.82 (d, J=7.9 Hz, 1H), 6.78 (t, J=6.0 Hz, 1H), 6.63 (d, J=8.6 Hz, 1H), 4.58 (t, J=7.0 Hz, 1H), 4.08-4.01 (m, 2H), 3.76-3.70 (m, 2H), 3.63-3.52 (m, 10H), 3.49-3.38 (m, 6H), 2.60 (s, 3H), 2.42 (s, 3H), 1.63 (s, 3H), 1.27 (s, 9H). LC-MS m/z [M+H]+: 975.2 with a purity of 95%.
  • 2.2.66 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(4-(2-(2-(2-(2-((4,6-dimethyl-5-(2-oxoindolin-5-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethoxy)phenyl)acetamide (150)
  • Figure US20210147441A1-20210520-C00352
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.37 (s, 1H), 10.16 (s, 1H), 7.53 (d, J=9.2 Hz, 2H), 7.48 (d, J=8.4 Hz, 2H), 7.42 (d, J=8.4 Hz, 2H), 6.95 (s, 1H), 6.91-6.85 (m, 3H), 6.83 (d, J=7.6 Hz, 1H), 6.22 (s, 1H), 6.16 (t, J=5.6 Hz, 1H), 4.60 (t, J=7.2 Hz, 1H), 4.12-4.00 (m, 2H), 3.76-3.67 (m, 2H), 3.62-3.38 (m, 16H), 2.60 (s, 3H), 2.42 (s, 3H), 2.00 (s, 3H), 1.84 (s, 3H), 1.62 (s, 3H). LC-MS m/z [M+H]+: 903.3 with a purity of 99%.
  • 2.2.67 Synthesis of (S)-3-(2-(2-(2-(4-(2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3a][1,4]diazepin-6-yl)acetamido)phenoxy)ethoxy)ethoxy)ethoxy)-N-(4-methyl-5-(2-oxoindolin-5-yl)pyridin-2-yl)propanamide (151)
  • Figure US20210147441A1-20210520-C00353
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.40 (s, 1H), 10.16 (s, 1H), 9.89 (s, 1H), 7.53-7.40 (m, 8H), 7.12 (s, 1H), 7.08-7.06 (m, 2H), 6.88 (d, J=8.4 Hz, 1H), 6.84 (d, J=8.0 Hz, 1H), 4.58 (t, J=7.2 Hz, 1H), 4.04-4.01 (m, 2H), 3.69-3.67 (m, 2H), 3.54-3.45 (m, 16H), 2.60 (s, 3H), 2.41 (s, 3H), 2.19 (s, 3H), 1.62 (s, 3H). LC-MS m/z [M+H]+: 917.2 with a purity of 98%.
  • 2.2.68 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(4-(2-(2-(2-(2-((4-methyl-3-(2-oxoindolin-5-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethoxy)phenyl)acetamide (152)
  • Figure US20210147441A1-20210520-C00354
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.50 (s, 1H), 10.15 (s, 1H), 7.85 (d, J=5.2 Hz, 1H), 7.52-7.40 (m, 8H), 7.02-6.95 (m, 3H), 6.93 (d, J=7.6 Hz, 2H), 4.58 (t, J=7.2 Hz, 1H), 4.02-4.01 (m, 2H), 3.69-3.67 (m, 2H), 3.58-3.45 (m, 16H), 2.60 (s, 3H), 2.41 (s, 3H), 1.92 (s, 3H), 1.62 (s, 3H). LC-MS m/z [M+H]+: 889.2 with a purity of 99%.
  • 2.2.69 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(4-(2-(2-(2-(2-((6-cyano-5-(2-oxoindolin-5-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethoxy)phenyl)acetamide (153)
  • Figure US20210147441A1-20210520-C00355
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.52 (s, 1H), 10.17 (s, 1H), 8.48 (s, 1H), 7.58-7.50 (m, 3H), 7.48 (d, J=8.4 Hz, 2H), 7.42 (d, J=8.4 Hz, 2H), 7.33-7.21 (m, 3H), 6.94-6.83 (m, 3H), 4.59 (t, J=6.8 Hz, 1H), 4.12-4.01 (m, 2H), 3.71-3.66 (m, 2H), 3.61-3.38 (m, 16H), 2.60 (s, 3H), 2.42 (s, 3H), 1.63 (s, 3H). LC-MS m/z [M+H]+: 900.2 with a purity of 99%.
  • 2.2.69 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(4-(2-(2-(2-(2-((5-(7-fluoro-2-oxoindolin-5-yl)-4-methylpyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethoxy)phenyl)acetamide (154)
  • Figure US20210147441A1-20210520-C00356
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.86 (s, 1H), 10.16 (s, 1H), 7.75 (s, 1H), 7.52 (d, J=8.4 Hz, 2H), 7.48 (d, J=8.0 Hz, 2H), 7.42 (d, J=8.4 Hz, 2H), 7.05-6.95 (m, 2H), 6.89 (d, J=8.0 Hz, 2H), 6.46 (t, J=5.2 Hz, 1H), 6.38 (s, 1H), 4.59 (t, J=7.2 Hz, 1H), 4.11-4.02 (m, 2H), 3.76-3.69 (m, 2H), 3.64-3.36 (m, 16H), 2.60 (s, 3H), 2.42 (s, 3H), 2.10 (s, 3H), 1.63 (s, 3H). LC-MS m/z [M+H]+: 907.2 with a purity of 98%.
  • 2.2.70 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(4-(2-(2-(2-(2-((4-methyl-5-(2′-oxospiro[cyclopropane-1,3′-indolin]-5′-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethoxy)phenyl)acetamide (155)
  • Figure US20210147441A1-20210520-C00357
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.54 (s, 1H), 10.16 (s, 1H), 7.74 (s, 1H), 7.52 (d, J=8.4 Hz, 2H), 7.48 (d, J=8.4 Hz, 2H), 7.42 (d, J=8.4 Hz, 2H), 7.04 (d, J=7.6 Hz, 1H), 6.95-6.86 (m, 4H), 6.41-6.35 (m, 2H), 4.59 (t, J=7.2 Hz, 1H), 4.10-3.99 (m, 2H), 3.79-3.71 (m, 2H), 3.62-3.34 (m, 14H), 2.60 (s, 3H), 2.42 (s, 3H), 2.08 (s, 3H), 1.62 (s, 3H), 1.59-1.52 (m, 2H), 1.48-1.41 (m, 2H). LC-MS m/z [M+H]+: 916.3 with a purity of 98%.
  • 2.2.71 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(4-(2-(2-(2-(2-((4-methyl-5-(2-oxo-2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-5-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethoxy)phenyl)acetamide (156)
  • Figure US20210147441A1-20210520-C00358
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 11.00 (s, 1H), 10.16 (s, 1H), 7.94 (s, 1H), 7.76 (s, 1H), 7.54-7.44 (m, 5H), 7.42 (d, J=8.0 Hz, 2H), 6.89 (d, J=8.4 Hz, 2H), 6.50 (t, J=4.8 Hz, 1H), 6.41 (s, 1H), 4.59 (t, J=6.8 Hz, 1H), 4.12-4.03 (m, 2H), 3.77-3.69 (m, 2H), 3.64-3.58 (m, 12H), 3.57-3.39 (m, 4H), 2.60 (s, 3H), 2.42 (s, 3H), 2.10 (s, 3H), 1.63 (s, 3H). LC-MS m/z [M+H]+: 891.2 with a purity of 99%.
  • 2.2.72 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(4-(2-(2-(2-(2-((5-(6-fluoro-2-oxoindolin-5-yl)-4-methylpyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethoxy)phenyl)acetamide (157)
  • Figure US20210147441A1-20210520-C00359
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.53 (s, 1H), 10.16 (s, 1H), 7.70 (s, 1H), 7.53 (d, J=8.4 Hz, 2H), 7.48 (d, J=8.4 Hz, 2H), 7.42 (d, J=8.4 Hz, 2H), 7.06 (d, J=7.2 Hz, 1H), 6.89 (d, J=8.8 Hz, 2H), 6.68 (d, J=10.0 Hz, 1H), 6.47 (t, J=4.8 Hz, 1H), 6.40 (s, 1H), 4.59 (t, J=6.8 Hz, 1H), 4.10-4.03 (m, 2H), 3.78-3.70 (m, 2H), 3.65-3.34 (m, 16H), 2.60 (s, 3H), 2.42 (s, 3H), 1.98 (s, 3H), 1.63 (s, 3H). LC-MS m/z [M+H]+: 907.2 with a purity of 99%.
  • 2.2.73 Synthesis of (S)—N-(4-(2-(2-(2-(2-((2-amino-5-(2-oxoindolin-5-yl)pyridin-3-yl)oxy)ethoxy)ethoxy)ethoxy)ethoxy)phenyl)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3a][1,4]diazepin-6-yl)acetamide (158)
  • Figure US20210147441A1-20210520-C00360
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.37 (s, 1H), 10.15 (s, 1H), 7.70 (s, 1H), 7.57-7.36 (m, 8H), 7.27 (s, 1H), 6.89 (d, J=8.4 Hz, 2H), 6.83 (d, J=8.4 Hz, 1H), 5.64 (s, 2H), 4.58 (t, J=6.8 Hz, 1H), 4.22-4.17 (m, 2H), 4.08-4.01 (m, 2H), 3.81-3.76 (m, 2H), 3.75-3.69 (m, 2H), 3.62-3.41 (m, 12H), 2.60 (s, 3H), 2.41 (s, 3H), 1.63 (s, 3H). LC-MS m/z [M+H]+: 891.2 with a purity of 99%.
  • 2.2.74 Synthesis of (S)—N-(4-(2-(2-(2-(2-((2-amino-5-(2-oxoindolin-5-yl)pyridin-4-yl)amino)ethoxy)ethoxy)ethoxy)ethoxy)phenyl)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3a][1,4]diazepin-6-yl)acetamide (159)
  • Figure US20210147441A1-20210520-C00361
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.42 (s, 1H), 10.16 (s, 1H), 7.57-7.45 (m, 4H), 7.42 (d, J=8.4 Hz, 2H), 7.34 (s, 1H), 7.11 (s, 1H), 7.08 (d, J=8.0 Hz, 1H), 6.92-6.83 (m, 3H), 5.88-5.69 (m, 3H), 5.13-5.06 (m, 1H), 4.58 (t, J=6.8 Hz, 1H), 4.11-4.00 (m, 2H), 3.74-3.68 (m, 2H), 3.58-3.35 (m, 14H), 3.26-3.13 (m, 2H), 2.60 (s, 3H), 2.41 (s, 3H), 1.63 (s, 3H). LC-MS m/z [M+H]+: 890.2 with a purity of 98%.
  • 2.2.75 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(4-((14-((3-(2-oxoindolin-5-yl)pyridin-2-yl)amino)-3,6,9,12-tetraoxatetradecyl)oxy)phenyl)acetamide (160)
  • Figure US20210147441A1-20210520-C00362
  • 1H NMR (400 MHz, MeOD) δ (ppm): 7.95 (dd, J=5.3, 1.8 Hz, 1H), 7.51-7.46 (m, 2H), 7.45-7.40 (m, 2H), 7.40-7.35 (m, 2H), 7.30 (dd, J=7.2, 1.8 Hz, 1H), 7.28-7.25 (m, 1H), 7.25-7.20 (m, 1H), 6.98 (d, J=8.0 Hz, 1H), 6.92-6.83 (m, 2H), 6.67 (dd, J=7.2, 5.3 Hz, 1H), 4.69 (dd, J=8.8, 5.4 Hz, 1H), 4.11-4.05 (m, 2H), 3.83-3.77 (m, 2H), 3.68-3.58 (m, 7H), 3.57-3.42 (m, 13H), 2.70 (s, 3H), 2.44 (s, 3H), 1.69 (s, 3H). LC-MS m/z [M+H]+: 918.4 with a purity of 99%.
  • 2.2.76 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(4-((5-(2-(2-((6-methyl-5-(2-oxoindolin-5-yl)pyridin-2-yl)amino)ethoxy)ethoxy)pentyl)oxy)phenyl)acetamide (161)
  • Figure US20210147441A1-20210520-C00363
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.37 (s, 1H), 10.14 (s, 1H), 7.55-7.45 (m, 4H), 7.41 (d, J=8.0 Hz, 2H), 7.17 (d, J=8.4 Hz, 1H), 7.11 (s, 1H), 7.06 (d, J=8.4 Hz, 1H), 6.86 (d, J=8.8 Hz, 2H), 6.82 (d, J=8.0 Hz, 1H), 6.42-6.33 (m, 2H), 4.59 (t, J=7.2 Hz, 1H), 3.95-3.86 (m, 2H), 3.69-3.51 (m, 14H), 2.60 (s, 3H), 2.42 (s, 3H), 2.24 (s, 3H), 1.78-1.65 (m, 2H), 1.63 (s, 3H), 1.61-1.52 (m, 2H), 1.51-1.38 (m, 2H). LC-MS m/z [M+H]+: 887.3 with a purity of 98%.
  • 2.2.77 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(4-(2-(2-(2-(2-((4-(morpholine-4-carbonyl)-5-(2-oxoindolin-5-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethoxy)phenyl)acetamide (162)
  • Figure US20210147441A1-20210520-C00364
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.43 (s, 1H), 10.16 (s, 1H), 8.01 (s, 1H), 7.56-7.38 (m, 6H), 7.18-7.07 (m, 2H), 6.93-6.78 (m, 4H), 6.41 (s, 1H), 4.59 (t, J=7.0 Hz, 1H), 4.09-4.01 (m, 2H), 3.75-3.68 (m, 2H), 3.62-3.43 (m, 18H), 3.29-3.21 (m, 2H), 3.16-3.07 (m, 1H), 3.04-2.94 (m, 1H), 2.77-2.68 (m, 1H), 2.60 (s, 3H), 2.54-2.42 (m, 1H), 2.42 (s, 3H), 1.63 (s, 3H). LC-MS m/z [M+H]+: 988.2 with a purity of 95%.
  • 2.2.78 Synthesis of methyl (S)-2-(4-(4-chlorophenyl)-3,9-dimethyl-2-((4-(2-(2-(2-(2-((5-(2-oxoindolin-5-yl)-6-(trifluoromethyl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethoxy)phenyl)carbamoyl)-6H-thieno[3,2-f][1,2,4]triazolo[4,3a][1,4]diazepin-6-yl)acetate (163)
  • Figure US20210147441A1-20210520-C00365
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.52 (s, 1H), 10.15 (s, 1H), 7.52-7.46 (m, 4H), 7.45-7.38 (m, 3H), 7.26 (s, 1H), 7.23 (d, J=8.4 Hz, 1H), 7.02 (d, J=7.2 Hz, 1H), 6.92 (d, J=8.0 Hz, 1H), 6.87 (d, J=8.8 Hz, 2H), 6.02 (t, J=5.2 Hz, 1H), 4.57 (t, J=7.2 Hz, 1H), 4.06-4.01 (m, 2H), 3.70-3.68 (m, 2H), 3.51-3.44 (m, 16H), 2.60 (s, 3H), 2.42 (s, 3H), 1.63 (s, 3H). LC-MS m/z [M+H]+: 943.2 with a purity of 98%.
  • 2.2.79 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(2-(2-(2-(2-((5-(2-oxo-2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-5-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethyl)acetamide (164)
  • Figure US20210147441A1-20210520-C00366
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.98 (s, 1H), 8.28-8.22 (m, 3H), 7.75 (s, 1H), 7.64 (dd, J=8.4, 2.4 Hz, 1H), 7.47 (d, J=8.4 Hz, 2H), 7.41 (d, J=8.4 Hz, 2H), 6.67 (t, J=5.6 Hz, 1H), 6.57 (d, J=8.4 Hz, 1H), 4.50 (dd, J=7.6, 6.0 Hz, 1H), 3.57-3.43 (m, 18H), 3.26-3.17 (m, 2H), 2.59 (s, 3H), 2.40 (s, 3H), 1.61 (s, 3H). LC-MS m/z [M+H]+: 783.5 with a purity of 95%.
  • 2.2.80 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(4-(2-(2-(2-(2-((5-(2-oxoindolin-5-yl)-4-(trifluoromethyl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethoxy)phenyl)acetamide (165)
  • Figure US20210147441A1-20210520-C00367
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.43 (s, 1H), 10.16 (s, 1H), 7.94 (s, 1H), 7.52 (d, J=8.8 Hz, 2H), 7.48 (d, J=8.4 Hz, 2H), 7.41 (d, J=8.4 Hz, 2H), 7.17 (t, J=5.6 Hz, 1H), 7.09 (s, 1H), 7.05 (d, J=8.0 Hz, 1H), 6.92-6.86 (m, 3H), 6.83 (d, J=7.6 Hz, 1H), 4.60 (t, J=7.2 Hz, 1H), 4.11-4.01 (m, 2H), 3.78-3.69 (m, 2H), 3.64-3.42 (m, 16H), 2.60 (s, 3H), 2.42 (s, 3H), 1.63 (s, 3H). LC-MS m/z [M+H]+: 943.2 with a purity of 97%.
  • 2.2.81 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(4-(2-(2-(2-(2-((6-(morpholine-4-carbonyl)-5-(2-oxoindolin-5-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethoxy)phenyl)acetamide (166)
  • Figure US20210147441A1-20210520-C00368
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.42 (s, 1H), 10.16 (s, 1H), 7.52 (d, J=9.0 Hz, 2H), 7.50-7.39 (m, 5H), 7.16 (s, 1H), 7.11 (d, J=8.2 Hz, 1H), 6.89 (d, J=9.0 Hz, 2H), 6.83 (d, J=8.0 Hz, 2H), 6.62 (d, J=8.7 Hz, 1H), 4.58 (t, J=7.1 Hz, 1H), 4.08-4.01 (m, 2H), 3.76-3.69 (m, 2H), 3.61-3.51 (m, 11H), 3.50-3.41 (m, 9H), 3.08-2.94 (m, 4H), 2.60 (s, 3H), 2.42 (s, 3H), 1.63 (s, 3H). LC-MS m/z [M+H]+: 988.2 with a purity of 97%.
  • 2.2.82 Synthesis of (S)-6-((2-(2-(2-(2-(4-(2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3a][1,4]diazepin-6-yl)acetamido)phenoxy)ethoxy)ethoxy)ethoxy)ethyl)amino)-N-isopropyl-3-(2-oxoindolin-5-yl)picolinamide (167)
  • Figure US20210147441A1-20210520-C00369
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.35 (s, 1H), 10.16 (s, 1H), 7.98 (d, J=7.8 Hz, 1H), 7.53 (d, J=8.8 Hz, 2H), 7.48 (d, J=8.5 Hz, 2H), 7.41 (d, J=8.5 Hz, 2H), 7.35 (d, J=8.6 Hz, 1H), 7.14 (s, 1H), 7.09 (d, J=8.0 Hz, 1H), 6.89 (d, J=8.8 Hz, 2H), 6.75 (d, J=7.9 Hz, 1H), 6.69 (t, J=5.5 Hz, 1H), 6.60 (d, J=8.6 Hz, 1H), 4.59 (t, J=7.0 Hz, 1H), 4.08-4.01 (m, 2H), 3.92-3.81 (m, 1H), 3.76-3.69 (m, 2H), 3.62-3.53 (m, 10H), 3.48-3.40 (m, 6H), 2.60 (s, 3H), 2.42 (s, 3H), 1.63 (s, 3H), 1.01 (d, J=6.6 Hz, 6H). LC-MS m/z [M+H]+: 960.2 with a purity of 97%.
  • 2.2.83 Synthesis of (S)-6-((2-(2-(2-(2-(4-(2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3a][1,4]diazepin-6-yl)acetamido)phenoxy)ethoxy)ethoxy)ethoxy)ethyl)amino)-3-(2-oxoindolin-5-yl)-N-phenylpicolinamide (168)
  • Figure US20210147441A1-20210520-C00370
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.35 (s, 1H), 10.28 (s, 1H), 10.16 (s, 1H), 7.61 (d, J=8.0 Hz, 2H), 7.53 (d, J=8.8 Hz, 2H), 7.48 (d, J=8.4 Hz, 2H), 7.44-7.39 (m, 3H), 7.28 (t, J=8.0 Hz, 2H), 7.16 (s, 1H), 7.12 (d, J=8.0 Hz, 1H), 7.04 (t, J=7.6 Hz, 1H), 6.92-6.82 (m, 3H), 6.75 (d, J=8.0 Hz, 1H), 6.69 (d, J=8.8 Hz, 1H), 4.59 (t, J=7.2 Hz, 1H), 4.07-4.01 (m, 2H), 3.75-3.69 (m, 2H), 3.63-3.51 (m, 10H), 3.50-3.40 (m, 6H), 2.60 (s, 3H), 2.42 (s, 3H), 1.63 (s, 3H). LC-MS m/z [M+H]+: 994.57 with a purity of 97%.
  • 2.2.84 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(4-(2-(2-(2-(2-((5-(2-oxo-2,3-dihydro-1H-benzo[d]imidazol-5-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethoxy)phenyl)acetamide (169)
  • Figure US20210147441A1-20210520-C00371
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 10.59 (d, J=13.0 Hz, 2H), 10.17 (s, 1H), 8.19 (d, J=1.5 Hz, 1H), 7.61 (d, J=8.3, 1H), 7.53 (d, J=8.8 Hz, 2H), 7.47 (d, J=8.6 Hz, 2H), 7.41 (d, J=8.4 Hz, 2H), 7.09 (d, J=8.1 Hz, 1H), 7.03 (s, 1H), 6.93 (d, J=8.0 Hz, 1H), 6.89 (d, J=8.9 Hz, 2H), 6.65-6.54 (m, 2H), 4.59 (t, J=7.1 Hz, 1H), 4.08-4.02 (m, 2H), 3.75-3.69 (m, 2H), 3.61-3.52 (m, 10H), 3.50-3.40 (m, 4H), 2.60 (s, 3H), 2.41 (s, 3H), 1.62 (s, 3H). LC-MS m/z [M+H]+: 876.2 with a purity of 98%.
  • 2.2.85 Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(4-(2-(2-(2-(2-((5-(2-oxo-2,3-dihydrobenzo[d]oxazol-6-yl)pyridin-2-yl)amino)ethoxy)ethoxy)ethoxy)ethoxy)phenyl)acetamide (170)
  • Figure US20210147441A1-20210520-C00372
  • 1H NMR (400 MHz, DMSO-d6) δ (ppm): 11.65 (s, 1H), 10.16 (s, 1H), 8.23 (bs, 1H), 7.55-7.42 (m, 9H), 7.35 (d, J=7.6 Hz, 1H), 7.11 (d, J=7.6 Hz, 1H), 6.89-6.87 (m, 3H), 4.59 (t, J=7.0 Hz, 1H), 4.08-4.01 (m, 2H), 3.76-3.69 (m, 2H), 3.62-3.52 (m, 14H), 2.60 (s, 3H), 2.42 (s, 3H), 1.62 (s, 3H). LC-MS m/z [M+H]+: 877.2 with a purity of 99%.
  • Example 3 3.1 Affinity of Ubiquitination Moiety to E3-CEREBLON (CRBN)-Ubiquitin Ligase 3.1a Fluorescence Binding Assay
  • Fluorescence quenching end point measurements were performed in black polystyrene 384-plates on Tecan Safire monochromator reader with the following settings: excitation 280 nm; excitation bandwidth 10.0 nm; emission collection 340 nm; emission bandwidth 20.0 nm; high sensitivity flash mode; integration time 40 μS; delay 0 μm. All measurements were done in duplicates; GraphPad Prism 5.03 was used for data evaluation, curve fitting, plotting and determination of IC50 values.
  • Serial dilutions of each tested ligands were mixed with truncated CRBN (319-427) to a final volume of 25 μL in the assay buffer (20 mM sodium phosphate buffer, pH 6.5, with 150 mM sodium chloride). The final concentration of CRBN in all assay will be 5-10 μM with DMSO level at 4%. A control lanes were prepared with only tested ligands without the addition of CRBN, top up with assay buffer to 25 μL. Plates were incubated for 5 minutes and analyzed using the monochromator plate reader.
  • IC50 is the compound concentration that causes 50% quenching of the desired activity.
  • 3.1b Results
  • The affinity to CRBN is graded as follows:
      • A: 1 μM<IC50<100 μM
      • B: 100 μM<IC50<300 μM
      • C: IC50>30004
  • Compound IC50 μM
    ID Structure (CRBN)
    001
    Figure US20210147441A1-20210520-C00373
    C
    002
    Figure US20210147441A1-20210520-C00374
    B
    003
    Figure US20210147441A1-20210520-C00375
    C
    004
    Figure US20210147441A1-20210520-C00376
    B
    005
    Figure US20210147441A1-20210520-C00377
    B
    006
    Figure US20210147441A1-20210520-C00378
    C
    007
    Figure US20210147441A1-20210520-C00379
    B
    008
    Figure US20210147441A1-20210520-C00380
    C
    009
    Figure US20210147441A1-20210520-C00381
    C
    010
    Figure US20210147441A1-20210520-C00382
    B
    011
    Figure US20210147441A1-20210520-C00383
    B
    012
    Figure US20210147441A1-20210520-C00384
    C
    013
    Figure US20210147441A1-20210520-C00385
    C
    014
    Figure US20210147441A1-20210520-C00386
    B
    015
    Figure US20210147441A1-20210520-C00387
    C
    016
    Figure US20210147441A1-20210520-C00388
    C
    017
    Figure US20210147441A1-20210520-C00389
    C
    018
    Figure US20210147441A1-20210520-C00390
    A
    019
    Figure US20210147441A1-20210520-C00391
    C
    020
    Figure US20210147441A1-20210520-C00392
    C
    021
    Figure US20210147441A1-20210520-C00393
    C
    022
    Figure US20210147441A1-20210520-C00394
    A
    023
    Figure US20210147441A1-20210520-C00395
    A
    024
    Figure US20210147441A1-20210520-C00396
    C
    025
    Figure US20210147441A1-20210520-C00397
    C
    026
    Figure US20210147441A1-20210520-C00398
    C
    027
    Figure US20210147441A1-20210520-C00399
    C
    028
    Figure US20210147441A1-20210520-C00400
    C
    029
    Figure US20210147441A1-20210520-C00401
    C
    030
    Figure US20210147441A1-20210520-C00402
    C
    031
    Figure US20210147441A1-20210520-C00403
    B
    032
    Figure US20210147441A1-20210520-C00404
    B
    033
    Figure US20210147441A1-20210520-C00405
    C
    034
    Figure US20210147441A1-20210520-C00406
    C
    035
    Figure US20210147441A1-20210520-C00407
    C
    036
    Figure US20210147441A1-20210520-C00408
    C
    037
    Figure US20210147441A1-20210520-C00409
    C
    038
    Figure US20210147441A1-20210520-C00410
    C
    039
    Figure US20210147441A1-20210520-C00411
    B
    040
    Figure US20210147441A1-20210520-C00412
    B
    041
    Figure US20210147441A1-20210520-C00413
    C
    042
    Figure US20210147441A1-20210520-C00414
    C
    043
    Figure US20210147441A1-20210520-C00415
    B
    044
    Figure US20210147441A1-20210520-C00416
    B
    045
    Figure US20210147441A1-20210520-C00417
    B
    046
    Figure US20210147441A1-20210520-C00418
    B
    047
    Figure US20210147441A1-20210520-C00419
    B
    048
    Figure US20210147441A1-20210520-C00420
    B
    049
    Figure US20210147441A1-20210520-C00421
    C
    050
    Figure US20210147441A1-20210520-C00422
    A
    051
    Figure US20210147441A1-20210520-C00423
    C
    052
    Figure US20210147441A1-20210520-C00424
    C
    053
    Figure US20210147441A1-20210520-C00425
    A
    054
    Figure US20210147441A1-20210520-C00426
    B
    055
    Figure US20210147441A1-20210520-C00427
    B
    056
    Figure US20210147441A1-20210520-C00428
    B
    057
    Figure US20210147441A1-20210520-C00429
    C
    058
    Figure US20210147441A1-20210520-C00430
    B
    059
    Figure US20210147441A1-20210520-C00431
    B
    060
    Figure US20210147441A1-20210520-C00432
    B
    061
    Figure US20210147441A1-20210520-C00433
    C
    062
    Figure US20210147441A1-20210520-C00434
    C
    063
    Figure US20210147441A1-20210520-C00435
    C
    064
    Figure US20210147441A1-20210520-C00436
    C
    065
    Figure US20210147441A1-20210520-C00437
    066
    Figure US20210147441A1-20210520-C00438
    C
    067
    Figure US20210147441A1-20210520-C00439
    C
    068
    Figure US20210147441A1-20210520-C00440
    B
    069
    Figure US20210147441A1-20210520-C00441
    C
    070
    Figure US20210147441A1-20210520-C00442
    C
    071
    Figure US20210147441A1-20210520-C00443
    B
    072
    Figure US20210147441A1-20210520-C00444
    B
    073
    Figure US20210147441A1-20210520-C00445
    C
    074
    Figure US20210147441A1-20210520-C00446
    B
    075
    Figure US20210147441A1-20210520-C00447
    C
    076
    Figure US20210147441A1-20210520-C00448
    B
    077
    Figure US20210147441A1-20210520-C00449
    C
    078
    Figure US20210147441A1-20210520-C00450
    C
    079
    Figure US20210147441A1-20210520-C00451
    C
    080
    Figure US20210147441A1-20210520-C00452
    C
    081
    Figure US20210147441A1-20210520-C00453
    C
    082
    Figure US20210147441A1-20210520-C00454
    C
    083
    Figure US20210147441A1-20210520-C00455
    C
  • Affinity of Ubiquitination Moiety and Linker to E3-CEREBLON (CRBN)-Ubiquitin Ligase
  • The affinity to CRBN is graded as follows:
  • A: 1 μM<IC50<100 μM B: 100 μM<IC50<300 μM C: IC50>300 μM
  • Compound IC50 μM
    ID Structure (CRBN)
    084
    Figure US20210147441A1-20210520-C00456
    A
    085
    Figure US20210147441A1-20210520-C00457
    B
    086
    Figure US20210147441A1-20210520-C00458
    A
    087
    Figure US20210147441A1-20210520-C00459
    C
    088
    Figure US20210147441A1-20210520-C00460
    B
    089
    Figure US20210147441A1-20210520-C00461
    B
    090
    Figure US20210147441A1-20210520-C00462
    B
    091
    Figure US20210147441A1-20210520-C00463
    A
    092
    Figure US20210147441A1-20210520-C00464
    A
    093
    Figure US20210147441A1-20210520-C00465
    A
    094
    Figure US20210147441A1-20210520-C00466
    B
    095
    Figure US20210147441A1-20210520-C00467
    C
  • Example 4 4.1 NMR Binding Experiments Procedure
  • All the NMR experiments were carried out on a Bruker magnet with proton frequency of 600 MHz or 700 MHz equipped with a cryo-probe. The experiments were performed at 25° C. The 1H-15N HSQC spectrum was collected using a standard pulse from the pulse library (Topspin version 2.1). To test whether a developed CRBN binder interacts with CRBN, titration of the compound to 15N-labeled CRBN was carried out. The 1H-15N HSQC spectra of mixtures in which ligand to CRBN ratios are 0, 0.5, 1.0 and 1.5 were collected and compared. The data were collected using Topspin (ver 2.1) provided with equipment. The data were processed with topspin (ver 2.1), NMRPipe (Delaglio et al. 1995) and visualized using NMRView (Johnson 2004). The truncated CRBN: residues 319-427 was used in the NMR experiments.
  • Compounds 011, 012, 013, 040, 042, 045 show clear binding to CRBN in HSQC titration experiments, see FIG. 1 for results.
  • Example 5 5.1 Anti-Proliferation Assays
  • In cell growth experiments, cells were seeded in 96-well cell culture plates at a density of 3000 of RAMOS cells/well in 100 μL of culture medium. 100 μL of the diluted solution containing the tested compound was added to the appropriate wells of the cell plate. After addition of the tested compound, the cells were incubated at 37° C. in an atmosphere of 5% CO2 for 3 days. CellTiter-Glo (CTG) reagent from the Promega CellTiter-Glo Luminescent Cell Viability Assay kit (#G7572) was added into an OptiPlate 96 (Perkin Elmer, White, Opaque, #6005299) in the dark, incubated for at least 2 hrs, and luminescence signal was read using Tecan Safire II Multi-Mode Plate Reader. The GI50 was calculated by nonlinear regression analysis using GraphPad Prism5 software.
  • GI50 is the concentration for 50% of maximal inhibition of cell proliferation.
    The affinity to Burkitt's lymphoma cell line (RAMOS) is graded as follows:
    D: 1 nM<GI50<100 nM
    E: 100 nM<GI50<1 μM
  • F: GI50>1 μM
  • GI50 μM
    Compound ID Structure (RAMOS)
    096
    Figure US20210147441A1-20210520-C00468
    E
    097
    Figure US20210147441A1-20210520-C00469
    F
    098
    Figure US20210147441A1-20210520-C00470
    D
    099
    Figure US20210147441A1-20210520-C00471
    D
    100
    Figure US20210147441A1-20210520-C00472
    E
    101
    Figure US20210147441A1-20210520-C00473
    E
    102
    Figure US20210147441A1-20210520-C00474
    E
    103
    Figure US20210147441A1-20210520-C00475
    E
    104
    Figure US20210147441A1-20210520-C00476
    D
    105
    Figure US20210147441A1-20210520-C00477
    D
    106
    Figure US20210147441A1-20210520-C00478
    D
    107
    Figure US20210147441A1-20210520-C00479
    D
    108
    Figure US20210147441A1-20210520-C00480
    E
    109
    Figure US20210147441A1-20210520-C00481
    D
    110
    Figure US20210147441A1-20210520-C00482
    F
    111
    Figure US20210147441A1-20210520-C00483
    F
    112
    Figure US20210147441A1-20210520-C00484
    E
    113
    Figure US20210147441A1-20210520-C00485
    E
    114
    Figure US20210147441A1-20210520-C00486
    E
    115
    Figure US20210147441A1-20210520-C00487
    E
    116
    Figure US20210147441A1-20210520-C00488
    D
    117
    Figure US20210147441A1-20210520-C00489
    D
    118
    Figure US20210147441A1-20210520-C00490
    E
    119
    Figure US20210147441A1-20210520-C00491
    E
    120
    Figure US20210147441A1-20210520-C00492
    D
    121
    Figure US20210147441A1-20210520-C00493
    E
    122
    Figure US20210147441A1-20210520-C00494
    D
    123
    Figure US20210147441A1-20210520-C00495
    D
    124
    Figure US20210147441A1-20210520-C00496
    D
    125
    Figure US20210147441A1-20210520-C00497
    D
    126
    Figure US20210147441A1-20210520-C00498
    D
    127
    Figure US20210147441A1-20210520-C00499
    E
    128
    Figure US20210147441A1-20210520-C00500
    E
    129
    Figure US20210147441A1-20210520-C00501
    D
    130
    Figure US20210147441A1-20210520-C00502
    D
    131
    Figure US20210147441A1-20210520-C00503
    D
    132
    Figure US20210147441A1-20210520-C00504
    D
    133
    Figure US20210147441A1-20210520-C00505
    D
    134
    Figure US20210147441A1-20210520-C00506
    D
    135
    Figure US20210147441A1-20210520-C00507
    D
    136
    Figure US20210147441A1-20210520-C00508
    D
    137
    Figure US20210147441A1-20210520-C00509
    E
    138
    Figure US20210147441A1-20210520-C00510
    D
    139
    Figure US20210147441A1-20210520-C00511
    E
    140
    Figure US20210147441A1-20210520-C00512
    E
  • Example 6 6.1 NMR Ternary Complex Experiments
  • All the NMR experiments were carried out on a Bruker magnet with proton frequency of 600 MHz or 700 MHz equipped with a cryo-probe. The experiments were performed at 25° C. the 1H-15N HSQC spectrum was collected using a standard pulse from the pulse library (Topspin version 2.1). To test whether the developed compounds bind to CRBN and BRD4, respectively, the 1H-15N HSQC of 15N—CRBN, 15N-BD2, a mixture of equal molar (0.5 mM) of 15N—CRBN and 15N-BD2 in the absence and presence of a PROTAC (0.5 mM) were collected and compared. In the titration experiment, a mixture of equal molar (0.5 mM) of 15N—CRBN and 15N-BD2 was used. To avoid the hook effect, 1H-15N HSQC spectra of mixture in the absence and presence 0.17, 0.34 and 0.5 mM of compounds were collected and compared. As protein complexes have a higher molecular weight than the free proteins, line broadening of the cross peaks in the 1H-15N HSQC spectrum suggest the formation of ternary complex. The data were collected using Topspin (ver 2.1) provided with equipment. The data were processed with topspin (ver 2.1), NMRPipe (Delaglio et al. 1995) and visualized using NMRView (Johnson 2004). The truncated CRBN: residues 319-427 was used in the NMR experiments. See FIG. 2 for an example of the ternary complex study.
  • The ternary complex formation is graded as follows:
      • G: Ternary complex formed at low concentration of compound (stoichiometry of BD2: CRBN: Compound=1:1:0.3)
      • H: Ternary complex formed at intermediate concentration of compound (stoichiometry of BD2: CRBN: Compound=1:1:0.6)
      • I: Ternary complex formed at high concentration of compound (stoichiometry of BD2: CRBN: Compound=1:1:1)
      • J: Weak or no ternary complex formed at high concentration of compound (stoichiometry of BD2: CRBN: Compound=1:1:1)
  • Com-
    pound
    ID Structure
    098
    Figure US20210147441A1-20210520-C00513
    117
    Figure US20210147441A1-20210520-C00514
    124
    Figure US20210147441A1-20210520-C00515
    135
    Figure US20210147441A1-20210520-C00516
    141
    Figure US20210147441A1-20210520-C00517
    142
    Figure US20210147441A1-20210520-C00518
    143
    Figure US20210147441A1-20210520-C00519
    144
    Figure US20210147441A1-20210520-C00520
    145
    Figure US20210147441A1-20210520-C00521
    146
    Figure US20210147441A1-20210520-C00522
    147
    Figure US20210147441A1-20210520-C00523
    148
    Figure US20210147441A1-20210520-C00524
    149
    Figure US20210147441A1-20210520-C00525
    150
    Figure US20210147441A1-20210520-C00526
    151
    Figure US20210147441A1-20210520-C00527
    152
    Figure US20210147441A1-20210520-C00528
    153
    Figure US20210147441A1-20210520-C00529
    154
    Figure US20210147441A1-20210520-C00530
    155
    Figure US20210147441A1-20210520-C00531
    156
    Figure US20210147441A1-20210520-C00532
    157
    Figure US20210147441A1-20210520-C00533
    158
    Figure US20210147441A1-20210520-C00534
    159
    Figure US20210147441A1-20210520-C00535
    160
    Figure US20210147441A1-20210520-C00536
    161
    Figure US20210147441A1-20210520-C00537
    162
    Figure US20210147441A1-20210520-C00538
    163
    Figure US20210147441A1-20210520-C00539
    164
    Figure US20210147441A1-20210520-C00540
    165
    Figure US20210147441A1-20210520-C00541
    166
    Figure US20210147441A1-20210520-C00542
    167
    Figure US20210147441A1-20210520-C00543
    168
    Figure US20210147441A1-20210520-C00544
    169
    Figure US20210147441A1-20210520-C00545
    170
    Figure US20210147441A1-20210520-C00546
    NMR
    Compound ternary
    ID complex
    098 H
    117 I
    124 H
    135 I
    141 I
    142 I
    143 I
    144 I
    145 I
    146 H
    147 I
    148 G
    149 I
    150 H
    151 G
    152 I
    153 H
    154 G
    155 I
    156 G
    157 G
    158 I
    159 I
    160 J
    161 I
    162 J
    163 J
    164 J
    165 J
    166 J
    167 J
    168 J
    169 J
    170 J
    Figure US20210147441A1-20210520-C00547
  • Example 7 7.1 Western Blot Analysis Procedure
  • Ramos (ATCC, CRL-1596) cells cultured in Roswell Park Memorial Institute (RPMI) 1640 Medium supplemented with 10% Fetal bovine serum and 1% Penicillin-streptomycin at 37° C. in humidified atmosphere with 5% CO2. In 6-well plate, 1.2 million cells were treated with indicated PROTAC compounds at 0.1% final concentration (v/v) of DMSO for desired duration of time. Pelleted cells were lysed in RIPA buffer (1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS in 1×Tris-buffered saline) supplemented with protease inhibitor cocktail, 0.5 U/μL Benzonase (Novagen) and 1 mM MgCl2. Lysates were incubated on ice for 10 minutes followed by 15 minutes' centrifugation at 15000×g at 4° C. Supernatant was collected and subjected to Bradford protein quantification assay. Heat-denatured lysates (50 μg total protein) were loaded on NuPAGE 3-8% Tris-Acetate SDS protein gels. Proteins were transferred to PVDF membrane using iBlot 2 Dry Blotting Device (Thermo Fisher Scientific) at 20V for 13 minutes. Membranes were processed using iBind Flex Western Device (Thermo Fisher Scientific) by following the manufacturer's guideline. Membranes were probed with anti-BRD4 (Cell Signaling, Cat. #13440S), anti-c-Myc (Cell Signaling, Cat. #5605S), actin (Proteintech, Cat. #66009-1-1g) antibodies, and developed with anti-Rabbit IgG, HRP-linked F(ab′)2 fragment (from donkey) (GE Life Sciences, Cat. #NA-9340) or anti-mouse IgG, AP-linked Antibody (Cell Signaling Technologies, Cat. #7056S) secondary antibodies. Membranes were incubated with Amersham ECL Select Western Blotting Detection Reagent (GE life sciences, Cat. #RPN2235) and Immun-Star™ AP Chemiluminescence Kits (Biorad, Cat. #1705018), visualized under FluorChem system (Protein Simple).
  • The compounds were tested against BRD4 and are found to be effective in promoting degradation of BRD4.
  • Table 1 shows % BRD4 degradation induced by select compounds in RAMOS cells using Western Blot analysis. The protocol was run at 4 different inhibitor concentrations: 5 μM, 1 μM, 0.3 μM, 0.1 μM, using neat DMSO as the negative control. The numbers correspond to the compounds selected as examples shown in Table 1. The % BRD4 degradation in western blot analysis is graded as follows:
      • K: Protein degradation >70%
      • L: 40%<protein degradation <70%
      • M: protein degradation <40%
  • TABLE 1
    BRD4 Degradation Results
    Compound # 5 μM 1 μM 0.3 μM 0.1 μM
    148 K L L M
    156 K L M M

Claims (41)

1. A compound of Formula (I) or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof:
Figure US20210147441A1-20210520-C00548
wherein R1 is selected from optionally substituted heterocyclylene, optionally substituted arylene, optionally substituted heteroarylene, optionally substituted aminylacylene, optionally substituted acylaminylene and optionally substituted acylene;
R2 is selected from H, halogen and methyl;
R3 and R4 are independently selected from H and methyl;
R5 is selected from H and methyl;
L is an optionally substituted linker having 2 to 18 atoms in the chain length;
X is a protein binding moiety; and
Z is N or CH.
2. The compound of claim 1, having the formula:
Figure US20210147441A1-20210520-C00549
wherein R6 is H or C1-C6 alkyl, e.g., methyl;
X1, X2 and X3 are independently selected from N and CH, and C-L3, such that when X1 and X3 are N, X2 is C-L3; and
L3 is a linker.
3. The compound of claim 2, wherein X2 is N; and
X1 and X3 are CH.
4. The compound of claim 2, wherein X2 is N;
X1 and X3 are C-L3 or CH; and the pyridyl moiety is attached at the 5-position of the oxindole ring.
5. (canceled)
6. The compound of claim 1, having the formula:
Figure US20210147441A1-20210520-C00550
wherein L4 is a linker; X1, X2 and X3 are independently selected from N and CH, and C-L4, such that when X1 and X3 are N, X2 is C-L4.
7. The compound of claim 1, having the formula:
Figure US20210147441A1-20210520-C00551
wherein L2 is a linker.
8. The compound of claim 1, having the formula:
Figure US20210147441A1-20210520-C00552
wherein L1 is a linker.
9. The compound of preceding claim 1, wherein X is:
Figure US20210147441A1-20210520-C00553
10. The compound of claim 1, wherein X is:
Figure US20210147441A1-20210520-C00554
11. The compound of claim 1, having the formula:
Figure US20210147441A1-20210520-C00555
in which L2 is a linker.
12. The compound of claim 1, having the formula:
Figure US20210147441A1-20210520-C00556
in which L1 is a linker.
13. The compound of claim 1, having the formula:
Figure US20210147441A1-20210520-C00557
in which L5 is a linker.
14. The compound of claim 1, having the formula:
Figure US20210147441A1-20210520-C00558
wherein L5 is a linker.
15. The compound of claim 1, wherein R1 is selected from:
Figure US20210147441A1-20210520-C00559
16. The compound of preceding claim 1, wherein the linker is a member selected from:
Figure US20210147441A1-20210520-C00560
wherein the index m is an integer from 1 to 6; and the index n is an integer from 1 to 18.
17. The compound of claim 1, wherein R1 is located at either a 5′ or 6′ position of the oxindole ring.
18. The compound of claim 1, wherein R1 is selected from optionally substituted phenylene, optionally substituted pyridinylene, optionally substituted pyrazolylene, optionally substituted aminylacylene, optionally substituted acylaminylene.
19. The compound of claim 1, wherein the optional substituent at R1 is selected from optionally substituted heterocyclyl, optionally substituted amino, optionally substituted aminoacyl, optionally substituted acylamino, optionally substituted aryl and optionally substituted heteroaryl.
20. The compound of claim 1, wherein, R1 is optionally substituted heteroarylene and R2 is selected from H, halogen or methyl.
21. The compound of claim 1, wherein the linker is selected from optionally substituted alkylene, optionally substituted heteroalkylene and optionally substituted cycloalkylene.
22. The compound of claim 1, wherein the linker is selected from optionally substituted alkylene, optionally substituted heteroalkylene, optionally substituted cycloalkylene and optionally substituted heterocyclylene, each having 2 to 18 atoms in the chain length, and optionally substituted polyethoxy having 2 to 18 atoms in the chain length.
23. The compound of claim 1, wherein X is selected from bromodomain-containing protein 4 (BRD4) binding moiety, transcriptional enhanced associate domain (TEAD) binding moiety, Polycomb Repressive Complex 2 (PRC2) binding moiety, focal adhesion kinase (FAK) binding moiety, BCR-ABL binding moiety, Hippo pathway protein binding moiety and transcription factor binding moiety.
24. The compound according to claim 1, having a formula according to Table 1.
25. A compound of Formula (XI) or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof:
Figure US20210147441A1-20210520-C00561
wherein R1′ is selected from optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted aminoacyl, optionally substituted acylamino and optionally substituted acyl;
R2 is selected from H, halogen and methyl;
R3 and R4 are independently selected from H and methyl; and
R5 is selected from H and methyl; and
Z is selected from CH, and N,
wherein R1′ is located at either a 5′ or 6′ position of the oxindole ring.
26. The compound of Formula (XI) according to claim 25,
wherein R1′ is selected from optionally substituted phenyl, optionally substituted pyridinyl, optionally substituted pyrazolyl, optionally substituted indolyl, optionally substituted azaindolyl, optionally substituted aminoacyl, optionally substituted acylamino, optionally substituted heterocyclylacyl and optionally substituted piperidinyl.
27. The compound of Formula (XI) according to claim 25, as represented by Formula (XI′) or (XII″):
Figure US20210147441A1-20210520-C00562
28. The compound of Formula (II) according to claim 25, as represented by Formulae (XI′a) or (XI″a):
Figure US20210147441A1-20210520-C00563
wherein R2, R3, R4 and R5 are as defined herein, and
wherein R6 is selected from optionally substituted amino, optionally substituted aminoacyl, and optionally substituted acylamino.
29. The compound of Formulae (XI′a) or (XI″a) according to claim 25,
wherein R6 is optionally substituted spirocycloalkyl.
30. A compound of Formula (XII) or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof:
Figure US20210147441A1-20210520-C00564
wherein R1, R2, R3, R4 and R5 are as defined herein;
wherein R1 is located at either a 5′ or 6′ position of the oxindole ring; and
L is an optionally substituted linker having 2 to 18 atoms in the chain length.
31. A pharmaceutical composition comprising an effective amount of compound of a compound of claim 1 or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof, optionally in combination with a pharmaceutically acceptable carrier, excipient or diluent.
32. A method of inducing degradation of an overexpressed protein in a cell, including a step of contacting a compound of claim 1 with the cell to induce degradation of the overexpressed protein in the cell.
33. A method of treating a disease or condition associated with an overexpressed protein, comprising administering a compound of claim 1 or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof in a patient in need thereof.
34. The method according to claim 32, wherein the overexpressed protein is selected from BRD4, transcriptional enhanced associate domain (TEAD), Polycomb Repressive Complex 2 (PRC2), focal adhesion kinase (FAK), BCR-ABL, Hippo pathway protein and transcription factor.
35. The method according to claim 32, wherein the disease or condition is selected from hyperplasia and cancer (such as multiple myeloma, glioblastoma, uveal melanoma, liposarcoma, hepatocellular carcinoma, midline carcinoma, acute myeloid leukemia, Burkitt lymphoma and prostate cancer) and a protein accumulation disease (such as Alzheimer's disease and amyotrophic lateral sclerosis).
36. A compound of claim 1 or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof for use as a medicament.
37. A compound of claim 1 or a pharmaceutically acceptable salt, solvate, stereoisomer or prodrug thereof for use in the treatment of a disease or condition associated with an overexpressed protein.
38. The compound according to claim 36, wherein the disease or condition is selected from hyperplasia and cancer (such as multiple myeloma, glioblastoma, uveal melanoma, liposarcoma, hepatocellular carcinoma, midline carcinoma, acute myeloid leukemia, Burkitt lymphoma and prostate cancer) and a protein accumulation disease (such as Alzheimer's disease and amyotrophic lateral sclerosis).
39. (canceled)
40. (canceled)
41. A ternary complex comprising a first protein and a second protein interacting with a first moiety and a second moiety, respectively, of the compound of claim 1.
US17/028,574 2019-09-26 2020-09-22 Therapeutic compounds and methods of use thereof Abandoned US20210147441A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/483,731 US11542274B1 (en) 2019-09-26 2021-09-23 Therapeutic compounds and methods of use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SG10201908967P 2019-09-26
SG10201908967P 2019-09-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/483,731 Continuation US11542274B1 (en) 2019-09-26 2021-09-23 Therapeutic compounds and methods of use thereof

Publications (1)

Publication Number Publication Date
US20210147441A1 true US20210147441A1 (en) 2021-05-20

Family

ID=75169157

Family Applications (2)

Application Number Title Priority Date Filing Date
US17/028,574 Abandoned US20210147441A1 (en) 2019-09-26 2020-09-22 Therapeutic compounds and methods of use thereof
US17/483,731 Active US11542274B1 (en) 2019-09-26 2021-09-23 Therapeutic compounds and methods of use thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/483,731 Active US11542274B1 (en) 2019-09-26 2021-09-23 Therapeutic compounds and methods of use thereof

Country Status (5)

Country Link
US (2) US20210147441A1 (en)
EP (1) EP4034526A1 (en)
JP (1) JP2022550091A (en)
CN (1) CN114929670A (en)
WO (1) WO2021061053A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11542274B1 (en) * 2019-09-26 2023-01-03 Agency For Science, Technology And Research (A*Star) Therapeutic compounds and methods of use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118475579A (en) * 2021-11-02 2024-08-09 默克专利股份公司 Heterobifunctional molecules as TEAD inhibitors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11542274B1 (en) * 2019-09-26 2023-01-03 Agency For Science, Technology And Research (A*Star) Therapeutic compounds and methods of use thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2609459T3 (en) * 2012-08-23 2017-04-20 The Institute Of Cancer Research : The Royal Cancer Hospital Condensed heterocyclic compounds and their use
HK1213544A1 (en) * 2012-12-10 2016-07-08 霍夫曼-拉罗奇有限公司 Novel bi-ring phenyl-pyridines/pyrazines for the treatment of cancer
EP2958923A1 (en) * 2013-02-22 2015-12-30 Bayer Pharma Aktiengesellschaft 4-substituted pyrrolo- and pyrazolo-diazepines
US20180228907A1 (en) * 2014-04-14 2018-08-16 Arvinas, Inc. Cereblon ligands and bifunctional compounds comprising the same
AU2018380132B2 (en) * 2017-12-06 2023-11-09 Lin Bioscience, Inc. Tubulin inhibitors
AU2018386223A1 (en) * 2017-12-14 2020-06-04 Dana-Farber Cancer Institute, Inc. Small molecule degraders that recruit DCAFT15
SG11202008705TA (en) * 2018-03-15 2020-10-29 Fujian Haixi Pharmaceuticals Co Ltd Heteroaryl compounds as kinase inhibitor
EP3935050B1 (en) * 2019-03-06 2024-10-02 C4 Therapeutics, Inc. Heterocyclic compounds for medical treatment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11542274B1 (en) * 2019-09-26 2023-01-03 Agency For Science, Technology And Research (A*Star) Therapeutic compounds and methods of use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11542274B1 (en) * 2019-09-26 2023-01-03 Agency For Science, Technology And Research (A*Star) Therapeutic compounds and methods of use thereof

Also Published As

Publication number Publication date
CN114929670A (en) 2022-08-19
EP4034526A1 (en) 2022-08-03
JP2022550091A (en) 2022-11-30
US11542274B1 (en) 2023-01-03
WO2021061053A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
US12251387B2 (en) Substituted quinoxalines and benzo[c][1,2,5]oxadiazoles as DNA-PK inhibitors
US11396512B2 (en) CDK2/4/6 inhibitors
US20220281815A1 (en) Cyclopropyl-amide compounds as dual lsd1/hdac inhibitors
AU2017222958B2 (en) Glycosidase inhibitors
US8748412B2 (en) Phenylalanine derivatives and their use as non-peptide GLP-1 receptor modulators
US10174013B2 (en) Benzimidazole derivatives as kinase inhibitors
US9718818B2 (en) Compounds inhibiting leucine-rich repeat kinase enzyme activity
US10604514B2 (en) 6-(5-membered heteroaryl)isoquinolin-3-yl carboxamides and preparation and use thereof
CN109970743B (en) 5-Chloro-2-difluoromethoxyphenylpyrazolopyrimidine compounds that are JAK inhibitors
US9416126B2 (en) Compounds inhibiting leucine-rich repeat kinase enzyme activity
US11639343B2 (en) Compounds targeting and degrading BCR-ABL protein and its antitumor application
US20220313829A1 (en) Egfr protein degradant and anti-tumor application thereof
US20230010508A1 (en) Compound comprising ezh2 inhibitor and e3 ligase binder and pharmaceutical composition for preventing or treating ezh2-associated disease comprising same as active ingredient
AU2017222964A1 (en) Glycosidase inhibitors
US9809568B2 (en) Compounds inhibiting leucine-rich repeat kinase enzyme activity
US20160009682A1 (en) Compounds inhibiting leucine-rich repeat kinase enzyme activity
US20210292305A1 (en) Cyclic Ureas
US11542274B1 (en) Therapeutic compounds and methods of use thereof
US20190071416A1 (en) Compounds for treatment of cancer and epigenetics
US20170152269A1 (en) Fused bicyclic compounds and their use as cdk inhibitors
US11407768B2 (en) AMPK activators
US20250282771A1 (en) Tetrahydroisoquinoline heterobifunctional bcl-xl degraders
US20240408064A1 (en) Ras inhibitors, compositions and methods of use thereof
US20250263412A1 (en) Non-hydroxamate hdac6 inhibitors and related methods of use
CN116568684A (en) novel compound

Legal Events

Date Code Title Description
AS Assignment

Owner name: AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH (A*STAR), SINGAPORE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUNG, WEI;KELLER, THOMAS HUGO;WANG, WEI LING;AND OTHERS;REEL/FRAME:054143/0646

Effective date: 20200921

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION