US20210131187A1 - Rock bit having cuttings channels for flow optimization - Google Patents

Rock bit having cuttings channels for flow optimization Download PDF

Info

Publication number
US20210131187A1
US20210131187A1 US16/633,438 US201816633438A US2021131187A1 US 20210131187 A1 US20210131187 A1 US 20210131187A1 US 201816633438 A US201816633438 A US 201816633438A US 2021131187 A1 US2021131187 A1 US 2021131187A1
Authority
US
United States
Prior art keywords
rock bit
cuttings
trailing
leading
cuttings channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/633,438
Other languages
English (en)
Inventor
Raul ROLDAN SALDES
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sandvik Intellectual Property AB
Original Assignee
Sandvik Intellectual Property AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sandvik Intellectual Property AB filed Critical Sandvik Intellectual Property AB
Priority to US16/633,438 priority Critical patent/US20210131187A1/en
Assigned to SANDVIK INTELLECTUAL PROPERTY AB reassignment SANDVIK INTELLECTUAL PROPERTY AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROLDAN SALDES, Raul
Publication of US20210131187A1 publication Critical patent/US20210131187A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/08Roller bits
    • E21B10/18Roller bits characterised by conduits or nozzles for drilling fluids
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/08Roller bits
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/08Roller bits
    • E21B10/22Roller bits characterised by bearing, lubrication or sealing details
    • E21B10/24Roller bits characterised by bearing, lubrication or sealing details characterised by lubricating details

Definitions

  • the present invention relates to a rock drill bit having a body including a plurality of legs with each leg supporting a roller cone and having a ported boss formed with a nozzle for dispensing a fluid to facilitate evacuation of cuttings.
  • Rotary drills have emerged as an effective tool for specific drilling operations such as the creation of blast holes and geothermal wells.
  • the drill typically comprises a rotary drill bit having three journal legs that mount respective cone-shaped rolling cutters via bearing assemblies that include rollers and balls.
  • the drill bit is attached to one end of a drill string that is driven into the borehole via a rig.
  • the cutting action is achieved by generating axial feed and rotational drive forces that are transmitted to the drill bit via the drill rods coupled end-to-end.
  • Each of the cone-shaped cutters comprise externally mounted hardened cutting buttons positioned at different axial regions for optimised cutting as the drill bit rotates and weight is applied. Accordingly, the rock formation beneath the bit is crushed as the bit is rotated and moves through a formation.
  • the cuttings created by the drilling operation are formed from fine particles which are highly abrasive.
  • a drilling such as air or drill mud, is supplied to the drill bit from the surface through the hollow drill string. The cuttings are carried to the surface suspended in the drilling fluid.
  • grinding and re-grinding of cuttings reduces the penetration rate of the bit and shortens the bit lifetime.
  • the drilling fluid typically air
  • the drilling fluid jets can trap the cuttings at the bottom of the hole or at regions of the bit with the result that the cuttings are re-ground to an abrasive powder before evacuation.
  • Example rotating bits and cutters are described in U.S. Pat. Nos. 6,450,270; 9,260,922; 4,513,829, 7,059,430, 4,848,476; 8,079,427 and 7,302,374.
  • U.S. Pat. No. 9,260,922 discloses an earth boring drill bit having an alternate path to allow cuttings to be ejected or evacuated from the drill bit and up the bore hole.
  • the evacuation hole allows larger sized cuttings to evacuate from the bit without having to be continually ground by the cutters until the cuttings are small enough to follow a path around the edge of the shirttail of the bit and up the borehole.
  • a cuttings restrictor is disposed at the inlet of the evacuation hole. The cuttings restrictor ensures that only cuttings that are sized to move completely through the evacuation hole and exit the drill bit are allowed to enter the evacuation hole.
  • existing drill bits are disadvantageous in that in certain instances cut material is not ejected or evacuated sufficiently from the region of cutting creating which in turn reduces cutting efficiency and leads to accelerated wear problems. Additionally, existing drill bit legs are susceptible to stress concentrations and wear induced fatigue at specific regions that also reduces the bit operational lifetime.
  • a drill bit having a main body provided with a plurality of legs that support respectively roller cones with each leg carrying a ported boss configured with a nozzle.
  • Each nozzle is specifically configured to create a fluid jet relative to a longitudinal axis of the drill bit that is directed radially outward from the longitudinal axis. This has been found to significantly enhance the effectiveness and efficiency of the cleaning of the cutters and/or the bottom of the hole at the cutting zone which in turn leads to a rock bit having an extended operational lifetime. According to simulations and trials of the present invention, an operational bit lifetime extension of up to 20% or even longer may be achieved.
  • a rock bit for blast hole drilling comprising: a body having a coupling formed at an upper end thereof and a plurality of lower legs, each leg having a top base, an upper shoulder, a mid shirttail, a lower bearing shaft, a leading side, a trailing side, and a ported boss; a plurality of roller cones, each roller cone secured to the respective bearing shaft for rotation relative thereto; a row of crushers mounted around each roller cone, wherein: each leading side and each trailing side are recessed relative to the respective shirttail, and each side has a cuttings channel formed therein, and the rock bit further comprising a nozzle disposed in each ported boss, wherein each nozzle is inclined relative to a longitudinal axis of the rock bit by an outward angle.
  • the outward orientation of the nozzles provides more efficient cleaning of both the cutters and also the hole bottom which in turn increases the bit operational lifetime.
  • each leading cuttings channel and the respective trailing cuttings channel are asymmetric.
  • the asymmetric orientation of the respective cuttings channels is configured for controlling the evacuation of cuttings to exit the hole bottom as quickly as possible and to control the wear pattern of the bit by moving the cuttings according to a predetermined flow pathway over the bit body.
  • the outward angle ranges between five and twenty-five degrees, eight to fifteen degrees, ten to thirteen degrees or between eleven to twelve degrees.
  • Such angles have been found through simulation and testing to offer enhanced cutter and hole bottom cleaning and in turn minimise regrinding of already cut rock to avoid the creation of very abrasive fine powders and unnecessary wear of the bit.
  • each leading side is concave and each trailing side is faceted.
  • the faceted milling of the bit body is advantageous to control the wear pattern at the region of the legs by moving the cuttings in a circumferential direction towards the cuttings channel.
  • each leading cuttings channel has a cross-sectional shape of a circular segment
  • each trailing cuttings channel has a fillet
  • a radius of each leading cuttings channel is at least twice a radius of each trailing cuttings channel.
  • each circular segment of the respective leadings cuttings channel may be less than one-quarter of a circle.
  • each leading side further has a first bevel extending from an edge thereof adjacent to the respective shirttail to the respective leading cuttings channel, and each leading side further has a second bevel extending from the respective leading cuttings channel to an edge thereof adjacent to an adjacent other leg.
  • the bevels are advantageous to provide a large radius for cutting evacuation and to control the cuttings flow that in turn provides control of the wear pattern at the bit legs and over the remaining bit body.
  • each trailing cuttings channel further has: a first face extending from an edge of the respective trailing side adjacent to the respective shirttail to the respective fillet, and a second face extending from the fillet to a bevel, each trailing side has the respective bevel extending to either an edge thereof or to the respective ported boss.
  • each first face and the respective second face has an angle therebetween ranging between eighty and one-hundred degrees.
  • each leading cuttings channel has an inlet located at a lower edge of the respective leading side and an outlet located at an upper edge thereof adjacent to the respective base
  • each trailing cuttings channel has an inlet offset from a lower edge of the respective trailing side and an outlet located at an upper edge thereof adjacent to the respective base
  • a longitudinal centerline of each leading cuttings channel is inclined relative to the longitudinal axis of the rock bit, and a longitudinal centerline of each trailing cuttings channel is slightly curved extending from the inlet thereof for a short portion of the length and is then straight along the rest thereof and inclined relative to the longitudinal axis of the rock bit.
  • Such configurations further assist the axially rearward transport of the cuttings away from the hole bottom to avoid regrinding and accelerated wear of the bit body.
  • each leading cuttings channel is inclined relative to the longitudinal axis of the rock bit at an angle ranging between ten and thirty degrees, and the straight portion of each trailing cuttings channel is inclined relative to the longitudinal axis of the rock bit at an angle ranging between two and fifteen degrees.
  • Such configurations further assist the axially rearward transport of the cuttings away from the hole bottom to avoid regrinding and accelerated wear of the bit body.
  • longitudinal centerlines of each leading and the respective trailing cuttings channels converge toward each other from the respective inlets thereof to the respective outlets thereof.
  • each leg has a lubricant reservoir formed therein and a pressure compensator disposed therein.
  • each lubricant reservoir is located adjacent to the respective trailing cuttings channel.
  • a rock bit for blast hole drilling that includes: a body having a coupling formed at an upper end thereof and a plurality of lower legs, each leg having a top base, an upper shoulder, a mid shirttail, a lower bearing shaft, a leading side, a trailing side, and a ported boss; a plurality of roller cones, each roller cone secured to the respective bearing shaft for rotation relative thereto; a row of crushers mounted around each roller cone.
  • each leading cuttings channel and the respective trailing cuttings channel are asymmetric.
  • the asymmetric orientation of the channels is effective for optimized cleaning of the hole bottom and the efficient rearward transport of cuttings to avoid regrinding which in turn reduces the forward penetration rate of the rock bit and reduces the bit operational lifetime via undesirable accelerated wear. It has been found that the cuttings channels being asymmetric in combination with the inclination of the nozzles is particularly effective for efficient cleaning of the hole bottom and the region around the drill bit. This asymmetric orientation further controls the wear pattern by providing the rearward transport of cuttings via controlled flow pathways.
  • each leading side and each trailing side are recessed relative to the respective shirttail.
  • each side has a cuttings channel formed therein.
  • FIGS. 1 and 2A illustrate a rock bit having cuttings channels for flow optimization, according to one embodiment of the present disclosure.
  • FIG. 2B illustrates an orientation of a nozzle of the rock bit.
  • FIG. 3A illustrates a cutting face of the rock bit.
  • FIGS. 3B, 4A, and 4B illustrate the cuttings channels.
  • FIGS. 1 and 2A illustrate a rock bit 1 having cuttings channels 15 , 16 for flow optimization, according to one embodiment of the present disclosure.
  • FIG. 2B illustrates an orientation of a nozzle 8 of the rock bit.
  • FIG. 3A illustrates a cutting face of the rock bit.
  • the rock bit 1 may include a body 2 , a plurality of roller cones 3 a - c , a plurality of crushers 4 a - c , and a backflow valve 14 .
  • the roller cones 3 a - c and crushers 4 a - c may form the lower cutting face of the rock bit 1 .
  • the body 2 may be made by attaching a plurality (one for each roller cone 3 a - c ) of parts 2 a - c , such as forgings, together, such as by welding. Each part 2 a - c may have a portion of an upper coupling 5 and a lower leg 6 . The body 2 may also have a dome 7 formed between the legs 6 . The body 2 and the roller cones 3 a - c may each be made from a metal or alloy, such as steel. The roller cones 3 a - c may be equally spaced around the body, such as three at one hundred twenty degrees.
  • the upper coupling 5 may be a threaded pin for connection to a drill rod (not shown). A bore may be formed through the upper coupling 5 and extend to a plenum 13 formed adjacent to the dome 7 .
  • Each leg 6 may have a top base 6 e, an upper shoulder 6 s, a mid shirttail 6 h, a lower bearing shaft 6 b, a leading side 6 d, a trailing side 6 t, and a ported boss 6 p.
  • Each bearing shaft 6 b may extend from the respective shirttail 6 h in a radially inclined direction toward a center of the rock bit 1 .
  • Each bearing shaft 6 b and the respective roller cone 3 a - c may have one or more pairs of aligned grooves (not shown) and each pair may form a race for receiving a set of roller bearings (not shown) or a journal bearing sleeve (not shown).
  • One or more thrust washers may be disposed between each bearing shaft 6 b and the respective roller cone 3 a - c .
  • the roller or journal bearings and thrust washers may support rotation of each roller cone 3 a - c relative to the respective leg 6 .
  • Each roller cone 3 a - c may be mounted to the respective leg 6 by a plurality of balls 9 received in a race formed by aligned grooves in each roller cone and the respective bearing shaft 6 b.
  • the balls may be fed to each race by a ball passage formed in each leg 6 a - c and retained therein by a respective keeper (not shown) disposed in the ball passage and a respective ball plug closing the ball passage.
  • Each ball plug may be attached or fastened to the respective leg 6 .
  • Each leg 6 may have a lubricant reservoir formed therein and a lubricant passage (not shown) extending from the reservoir to the respective roller or journal bearings and thrust washers.
  • the lubricant may be retained within each leg 6 by one or more seals (not shown) disposed in respective one or more glands (not shown) formed in an inner surface of the respective roller cone 3 a - c , thereby preventing leakage of lubricant into the blast hole (not shown).
  • a pressure compensator 10 may be disposed in each reservoir for regulating lubricant pressure therein to be slightly greater than bottomhole pressure.
  • Each roller cone 3 a - c may have a plurality of lands formed therein, such as a heel land, a gage land, one or more inner lands, and a nose land.
  • a row of gage crushers 4 a may be mounted around each cone 3 a - c at the respective gage land.
  • a row of first inner crushers 4 b may be mounted around each cone 3 at a respective first one of the inner lands.
  • a row of second inner crushers 4 b may be mounted around each cone 3 a - c at a respective second one of the inner lands.
  • One or more nose crushers 4 c may be mounted on each cone 3 a - c at the respective nose land.
  • Each crusher 4 a - c may be an insert mounted in a respective socket formed in the respective roller cone 3 a - c by an interference fit.
  • Each crusher 4 a - c may be made from a cermet, such as a cemented carbide, and may have a cylindrical or conical portion mounted in the respective roller cone 3 a - c and a conical, chisel, or a proprietary shaped portion protruding from a respective land of the respective roller cone.
  • the rows of inner crushers 4 b and nose crushers 4 c may be offset relative to one another to obtain a complete cutting profile.
  • a first row of heel protectors 11 a may be mounted around each roller cone 3 a - c at the respective heel land.
  • a second row of heel protectors 11 a may be mounted around each roller cone 3 a - c between the respective heel land and the respective gage land.
  • Each heel protector 11 a may be an insert mounted in a respective socket formed in the respective roller cone 3 a - c by an interference fit.
  • the shirttail 6 h and the shoulder 6 s of each leg 6 may also be protected from erosion and/or abrasion by respective protectors 11 b mounted therealong.
  • Each leg protector 11 b may be an insert mounted in a respective socket formed in the respective leg portion by an interference fit.
  • Each protector 11 a,b may be made from a cermet, such as a cemented carbide, and may have a cylindrical or conical portion mounted in the respective socket and a dome shaped portion protruding from the respective socket.
  • each crusher 4 a - c and/or protectors 11 a,b may be capped with polycrystalline diamond (PCD).
  • each crusher 4 a - c may be a hardfaced milled tooth.
  • Each ported boss 6 p may be in fluid communication with the plenum 13 via a respective port formed in the upper coupling 5 and may have one of the nozzles 8 fastened therein for discharging for discharging drilling fluid, such as air, into interfaces between the roller cones 3 a - c .
  • Each ported boss 6 p may be located adjacent to the trailing side 6 t of the respective leg 6 .
  • the port of each boss 6 and the respective nozzle 8 therein may be inclined relative to a longitudinal axis of the rock bit 1 by an outward angle 12 such that the stream of drilling fluid discharged by the respective nozzle is aimed toward the interface between adjacent rows of gage crushers 4 a.
  • the outward angle 12 may range between five and twenty-five degrees.
  • Each nozzle 8 may be made from an erosion resistant material, such as a ceramic or cermet, such as a cemented carbide.
  • the backflow valve 14 may be fastened to the body 2 in the bore of the coupling 5 .
  • the backflow valve 14 may include a seat, a valve member, and a biasing member.
  • the biasing member may operate to bias the valve member toward a closed position.
  • the valve member may be moved from the closed position to an open position by injection of the drilling fluid down the bore of the bit body 2 and may close if flow is ceased or may close to block upward flow.
  • FIGS. 3B, 4A, and 4B illustrate the cuttings channels 15 , 16 . While only the part 2 a is shown, the part 2 a may be typical of the other two parts 2 b,c .
  • Each top base 6 e may be a cylindrical segment having an outer base diameter (when considered cumulatively with the other top bases).
  • the outer base diameter may be a minimum outer diameter of the legs 6 .
  • An outer profile of the legs 6 may increase significantly along the shoulders 6 s from the bases 6 e to the shirttails 6 h and then gradually along the shirttails from the shoulders to the bearing shafts 6 b.
  • An outer profile of the legs 6 may also increase significantly from the bases 6 e to nozzle ends of the ported bosses 6 p.
  • leading side 6 d and the trailing side 6 t may be recessed relative to the shirttail 6 h, thereby serving as passages for cuttings transport during blast hole drilling.
  • the trailing side 6 t may also be recessed relative to the ported boss 6 p.
  • the leading side 6 d may be concave and include the leading cuttings channel 15 .
  • the leading side 6 d may further include a first bevel 17 a extending from an edge of the leading side adjacent to the shirttail 6 h to the leading cuttings channel 15 .
  • the leading cuttings channel 15 may have a cross-sectional shape of a circular segment with a radius 15 r. The circular segment may be less than one-quarter of a circle.
  • the leading side 6 d may further include a second bevel 17 b extending from the leading cuttings channel 15 to an edge of the leading side adjacent to the leg 2 c.
  • the leading cuttings channel 15 may have an inlet 15 n located at a lower edge of the leading side 6 d and an outlet 15 o located at an upper edge of the leading side adjacent to the base 6 e.
  • a longitudinal centerline (not shown) of the leading cuttings channel 15 may be inclined relative to the longitudinal axis of the rock bit 1 , such as by an angle ranging between ten and thirty degrees.
  • the trailing side 6 t may be faceted and include the trailing cuttings channel 16 .
  • the trailing cuttings channel 16 may include a first face 16 a, a fillet 16 f, and a second face 16 b .
  • the first face 16 a may extend from an edge of the trailing side 6 t adjacent to the shirttail 6 h to the fillet 16 f.
  • the fillet 16 f may have a radius 16 r.
  • the leading radius 15 r may be greater than the trailing radius 16 r, such as at least twice that of the trailing radius.
  • the second face 16 b may extend from the fillet 16 f to a bevel 18 .
  • the first 16 a and second 16 b faces may be perpendicular or essentially perpendicular, such as having an angle therebetween ranging between eighty and one-hundred degrees.
  • the bevel 18 may extend to either an edge of the trailing side 6 t or to the ported boss 6 p.
  • the longitudinal centerlines of the cuttings channels 15 , 16 may converge toward each other from the inlets 15 n , 16 n thereof to the outlets 15 o , 16 o thereof.
  • the cuttings channels 15 , 16 may be asymmetric.
  • the recessed sides 6 d,t (having the respective cuttings channels 15 , 16 ) and the oriented nozzles 8 may prevent or minimize the regrinding of cuttings, thereby extending the service life of the rock bit 1 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
US16/633,438 2017-07-27 2018-07-03 Rock bit having cuttings channels for flow optimization Abandoned US20210131187A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/633,438 US20210131187A1 (en) 2017-07-27 2018-07-03 Rock bit having cuttings channels for flow optimization

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762537533P 2017-07-27 2017-07-27
US16/633,438 US20210131187A1 (en) 2017-07-27 2018-07-03 Rock bit having cuttings channels for flow optimization
PCT/EP2018/067877 WO2019020325A1 (en) 2017-07-27 2018-07-03 ROCK DRILL BIT HAVING BREAK CHANNELS FOR OPTIMIZATION OF FLOW

Publications (1)

Publication Number Publication Date
US20210131187A1 true US20210131187A1 (en) 2021-05-06

Family

ID=62874882

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/633,438 Abandoned US20210131187A1 (en) 2017-07-27 2018-07-03 Rock bit having cuttings channels for flow optimization

Country Status (8)

Country Link
US (1) US20210131187A1 (zh)
EP (1) EP3658737A1 (zh)
CN (1) CN110998058A (zh)
AU (1) AU2018308567A1 (zh)
CA (1) CA3070648A1 (zh)
CL (1) CL2020000197A1 (zh)
PE (1) PE20200325A1 (zh)
WO (1) WO2019020325A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5029656A (en) * 1989-07-17 1991-07-09 Camco International Inc. Nozzle means for rotary drill bits
US6227314B1 (en) * 1999-04-29 2001-05-08 Baker Hughes, Inc. Inclined leg earth-boring bit
US6446739B1 (en) * 1999-07-19 2002-09-10 Smith International, Inc. Rock drill bit with neck protection
US6688410B1 (en) * 2000-06-07 2004-02-10 Smith International, Inc. Hydro-lifter rock bit with PDC inserts
US20060021800A1 (en) * 2004-07-29 2006-02-02 Beuershausen Christopher C Shirttails for reducing damaging effects of cuttings
US8312942B2 (en) * 2006-09-01 2012-11-20 Halliburton Energy Services, Inc. Roller cone drill bits with improved fluid flow
US10494872B2 (en) * 2013-10-31 2019-12-03 Halliburton Energy Services, Inc. Drill bit arm pocket

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4848476A (en) 1980-03-24 1989-07-18 Reed Tool Company Drill bit having offset roller cutters and improved nozzles
US4513829A (en) 1982-01-08 1985-04-30 Smith International, Inc. Chip relief for rock bits
US4444281A (en) * 1983-03-30 1984-04-24 Reed Rock Bit Company Combination drag and roller cutter drill bit
US4619335A (en) * 1984-08-16 1986-10-28 Mccullough Doyle W Enhanced circulation drill bit
US6116357A (en) * 1996-09-09 2000-09-12 Smith International, Inc. Rock drill bit with back-reaming protection
ZA200005048B (en) 1999-09-24 2002-02-14 Varel International Inc Improved rotary cone bit for cutting removal.
US6527068B1 (en) 2000-08-16 2003-03-04 Smith International, Inc. Roller cone drill bit having non-axisymmetric cutting elements oriented to optimize drilling performance
US20080041633A1 (en) * 2006-08-18 2008-02-21 Atlas Copco Secoroc Llc Earth bit having a screen
US7918292B2 (en) 2008-07-09 2011-04-05 Baker Hughes Incorporated Earth-boring tools having features for affecting cuttings flow
US20130075162A1 (en) * 2011-09-22 2013-03-28 Roger D. Skaggs Roller cone bit
BR112014011743B1 (pt) * 2011-11-15 2020-08-25 Baker Hughes Incorporated broca de perfuração de furação de terreno, método utilizando a mesma e broca de perfuração para a perfuração de um furo de poço em formações de terreno
US9260922B2 (en) 2012-03-29 2016-02-16 Varel International, Ind., L.P. Roller cone drill bit with cuttings evacuator
CN102678050B (zh) * 2012-05-18 2015-10-28 西南石油大学 一种具有冲击切削结构的牙轮复合钻头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5029656A (en) * 1989-07-17 1991-07-09 Camco International Inc. Nozzle means for rotary drill bits
US6227314B1 (en) * 1999-04-29 2001-05-08 Baker Hughes, Inc. Inclined leg earth-boring bit
US6446739B1 (en) * 1999-07-19 2002-09-10 Smith International, Inc. Rock drill bit with neck protection
US6688410B1 (en) * 2000-06-07 2004-02-10 Smith International, Inc. Hydro-lifter rock bit with PDC inserts
US20060021800A1 (en) * 2004-07-29 2006-02-02 Beuershausen Christopher C Shirttails for reducing damaging effects of cuttings
US8312942B2 (en) * 2006-09-01 2012-11-20 Halliburton Energy Services, Inc. Roller cone drill bits with improved fluid flow
US10494872B2 (en) * 2013-10-31 2019-12-03 Halliburton Energy Services, Inc. Drill bit arm pocket

Also Published As

Publication number Publication date
PE20200325A1 (es) 2020-02-13
CL2020000197A1 (es) 2020-07-10
CA3070648A1 (en) 2019-01-31
CN110998058A (zh) 2020-04-10
EP3658737A1 (en) 2020-06-03
WO2019020325A1 (en) 2019-01-31
AU2018308567A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
US7341119B2 (en) Hydro-lifter rock bit with PDC inserts
US6450270B1 (en) Rotary cone bit for cutting removal
US4096917A (en) Earth drilling knobby bit
AU2017213442B2 (en) Durable rock bit for blast hole drilling
US10501997B2 (en) Drill bit with recessed cutting face
US20100132510A1 (en) Two-cone drill bit
US7913778B2 (en) Rock bit with hydraulic configuration
US20210131187A1 (en) Rock bit having cuttings channels for flow optimization
US8079427B2 (en) Methods of forming earth-boring tools having features for affecting cuttings flow
US9260922B2 (en) Roller cone drill bit with cuttings evacuator
GB2461430A (en) Rock bit with hydraulics configuration
US20230133889A1 (en) Particle impact drill bits and associated methods

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION UNDERGOING PREEXAM PROCESSING

AS Assignment

Owner name: SANDVIK INTELLECTUAL PROPERTY AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROLDAN SALDES, RAUL;REEL/FRAME:052375/0040

Effective date: 20200115

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION