US20210128706A1 - Vaccine composition - Google Patents
Vaccine composition Download PDFInfo
- Publication number
- US20210128706A1 US20210128706A1 US17/015,905 US202017015905A US2021128706A1 US 20210128706 A1 US20210128706 A1 US 20210128706A1 US 202017015905 A US202017015905 A US 202017015905A US 2021128706 A1 US2021128706 A1 US 2021128706A1
- Authority
- US
- United States
- Prior art keywords
- virus
- seq
- maraba
- protein
- amino acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229960005486 vaccine Drugs 0.000 title description 24
- 241000700605 Viruses Species 0.000 claims abstract description 221
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 163
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 155
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 124
- 230000000890 antigenic effect Effects 0.000 claims abstract description 63
- 239000000427 antigen Substances 0.000 claims abstract description 60
- 108091007433 antigens Proteins 0.000 claims abstract description 58
- 102000036639 antigens Human genes 0.000 claims abstract description 58
- 201000011510 cancer Diseases 0.000 claims abstract description 35
- 241000124008 Mammalia Species 0.000 claims abstract description 29
- 230000036039 immunity Effects 0.000 claims abstract description 11
- 239000002773 nucleotide Substances 0.000 claims description 51
- 125000003729 nucleotide group Chemical group 0.000 claims description 51
- 230000002441 reversible effect Effects 0.000 claims description 44
- 230000000295 complement effect Effects 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 23
- 230000000174 oncolytic effect Effects 0.000 claims description 16
- 230000001225 therapeutic effect Effects 0.000 claims description 13
- 206010008342 Cervix carcinoma Diseases 0.000 claims description 4
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 claims description 4
- 201000010881 cervical cancer Diseases 0.000 claims description 4
- 125000003275 alpha amino acid group Chemical group 0.000 claims 11
- 102000039446 nucleic acids Human genes 0.000 claims 4
- 108020004707 nucleic acids Proteins 0.000 claims 4
- 150000007523 nucleic acids Chemical class 0.000 claims 4
- 241000711970 Vesiculovirus Species 0.000 claims 1
- 230000028993 immune response Effects 0.000 abstract description 60
- 241000701806 Human papillomavirus Species 0.000 abstract description 31
- 108020001507 fusion proteins Proteins 0.000 abstract description 17
- 102000037865 fusion proteins Human genes 0.000 abstract description 16
- 210000001550 testis Anatomy 0.000 abstract description 14
- 101000628547 Homo sapiens Metalloreductase STEAP1 Proteins 0.000 abstract description 11
- 101710145634 Antigen 1 Proteins 0.000 abstract description 10
- 101001005719 Homo sapiens Melanoma-associated antigen 3 Proteins 0.000 abstract description 9
- 102000054725 human STEAP1 Human genes 0.000 abstract description 9
- 230000001939 inductive effect Effects 0.000 abstract description 7
- 102100025082 Melanoma-associated antigen 3 Human genes 0.000 abstract description 2
- 239000013598 vector Substances 0.000 description 99
- 108700019146 Transgenes Proteins 0.000 description 86
- 150000001413 amino acids Chemical group 0.000 description 40
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 39
- 241001465754 Metazoa Species 0.000 description 37
- 230000037452 priming Effects 0.000 description 37
- 108090000765 processed proteins & peptides Proteins 0.000 description 35
- 210000001744 T-lymphocyte Anatomy 0.000 description 33
- 241000713666 Lentivirus Species 0.000 description 32
- 210000004027 cell Anatomy 0.000 description 29
- 241000699670 Mus sp. Species 0.000 description 27
- 241001493065 dsRNA viruses Species 0.000 description 27
- 230000005867 T cell response Effects 0.000 description 25
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 25
- 239000013612 plasmid Substances 0.000 description 22
- 210000004369 blood Anatomy 0.000 description 21
- 239000008280 blood Substances 0.000 description 21
- 102000004196 processed proteins & peptides Human genes 0.000 description 21
- 230000004044 response Effects 0.000 description 21
- 230000004083 survival effect Effects 0.000 description 18
- 108020004705 Codon Proteins 0.000 description 17
- 102100031413 L-dopachrome tautomerase Human genes 0.000 description 17
- 241001372913 Maraba virus Species 0.000 description 17
- 241000711975 Vesicular stomatitis virus Species 0.000 description 17
- 108010051081 dopachrome isomerase Proteins 0.000 description 17
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 15
- 108020004414 DNA Proteins 0.000 description 15
- 229960004397 cyclophosphamide Drugs 0.000 description 15
- 241000701161 unidentified adenovirus Species 0.000 description 15
- 102100037850 Interferon gamma Human genes 0.000 description 14
- 108010074328 Interferon-gamma Proteins 0.000 description 14
- 238000000684 flow cytometry Methods 0.000 description 14
- 238000002255 vaccination Methods 0.000 description 14
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 13
- 229940038426 oncolytic vaccine Drugs 0.000 description 13
- 230000000638 stimulation Effects 0.000 description 13
- 108091036414 Polyinosinic:polycytidylic acid Proteins 0.000 description 12
- 239000011543 agarose gel Substances 0.000 description 12
- 238000010367 cloning Methods 0.000 description 12
- 229940115272 polyinosinic:polycytidylic acid Drugs 0.000 description 12
- 201000001441 melanoma Diseases 0.000 description 11
- 241001529936 Murinae Species 0.000 description 10
- 241000288906 Primates Species 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 10
- 102000004127 Cytokines Human genes 0.000 description 9
- 108090000695 Cytokines Proteins 0.000 description 9
- 108091028043 Nucleic acid sequence Proteins 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 108010050904 Interferons Proteins 0.000 description 8
- 102000014150 Interferons Human genes 0.000 description 8
- 108050005093 Placenta-specific protein 1 Proteins 0.000 description 8
- 239000002671 adjuvant Substances 0.000 description 8
- 230000003321 amplification Effects 0.000 description 8
- 229940079322 interferon Drugs 0.000 description 8
- 238000003199 nucleic acid amplification method Methods 0.000 description 8
- 244000309459 oncolytic virus Species 0.000 description 8
- 238000000746 purification Methods 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- 241000699666 Mus <mouse, genus> Species 0.000 description 7
- 102000014721 Placenta-specific protein 1 Human genes 0.000 description 7
- 108700005077 Viral Genes Proteins 0.000 description 7
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 7
- 230000004927 fusion Effects 0.000 description 7
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- 230000010076 replication Effects 0.000 description 7
- 238000010186 staining Methods 0.000 description 7
- 230000004936 stimulating effect Effects 0.000 description 7
- 230000003612 virological effect Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 102000045750 human MAGEA3 Human genes 0.000 description 6
- 230000001976 improved effect Effects 0.000 description 6
- 230000003834 intracellular effect Effects 0.000 description 6
- 238000010172 mouse model Methods 0.000 description 6
- 230000003389 potentiating effect Effects 0.000 description 6
- 231100000419 toxicity Toxicity 0.000 description 6
- 230000001988 toxicity Effects 0.000 description 6
- 108010031111 EBV-encoded nuclear antigen 1 Proteins 0.000 description 5
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 5
- 230000030741 antigen processing and presentation Effects 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 230000002950 deficient Effects 0.000 description 5
- 230000002163 immunogen Effects 0.000 description 5
- 229960002725 isoflurane Drugs 0.000 description 5
- 210000004962 mammalian cell Anatomy 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 108091033319 polynucleotide Proteins 0.000 description 5
- 102000040430 polynucleotide Human genes 0.000 description 5
- 239000002157 polynucleotide Substances 0.000 description 5
- 239000013603 viral vector Substances 0.000 description 5
- 102000012410 DNA Ligases Human genes 0.000 description 4
- 108010061982 DNA Ligases Proteins 0.000 description 4
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 4
- 206010050017 Lung cancer metastatic Diseases 0.000 description 4
- 108050008953 Melanoma-associated antigen Proteins 0.000 description 4
- 102000000440 Melanoma-associated antigen Human genes 0.000 description 4
- 102100026181 Placenta-specific protein 1 Human genes 0.000 description 4
- 230000002238 attenuated effect Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000012217 deletion Methods 0.000 description 4
- 230000030609 dephosphorylation Effects 0.000 description 4
- 238000006209 dephosphorylation reaction Methods 0.000 description 4
- 210000003743 erythrocyte Anatomy 0.000 description 4
- 229960002897 heparin Drugs 0.000 description 4
- 229920000669 heparin Polymers 0.000 description 4
- 210000000548 hind-foot Anatomy 0.000 description 4
- 210000001165 lymph node Anatomy 0.000 description 4
- 239000012139 lysis buffer Substances 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 229940023867 prime-boost vaccine Drugs 0.000 description 4
- 238000010242 retro-orbital bleeding Methods 0.000 description 4
- 230000003248 secreting effect Effects 0.000 description 4
- 210000004988 splenocyte Anatomy 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 238000001890 transfection Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 210000004881 tumor cell Anatomy 0.000 description 4
- 210000003171 tumor-infiltrating lymphocyte Anatomy 0.000 description 4
- 241000282693 Cercopithecidae Species 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 101000691463 Homo sapiens Placenta-specific protein 1 Proteins 0.000 description 3
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 3
- 241000341655 Human papillomavirus type 16 Species 0.000 description 3
- 101150062031 L gene Proteins 0.000 description 3
- 206010027458 Metastases to lung Diseases 0.000 description 3
- 230000005809 anti-tumor immunity Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 238000002649 immunization Methods 0.000 description 3
- 230000003053 immunization Effects 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 238000011275 oncology therapy Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000037432 silent mutation Effects 0.000 description 3
- 210000000952 spleen Anatomy 0.000 description 3
- 229960004854 viral vaccine Drugs 0.000 description 3
- 241000710929 Alphavirus Species 0.000 description 2
- 208000003174 Brain Neoplasms Diseases 0.000 description 2
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 2
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 description 2
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 2
- 102100036981 Interferon regulatory factor 1 Human genes 0.000 description 2
- 241000282553 Macaca Species 0.000 description 2
- 108010067902 Peptide Library Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 241000700618 Vaccinia virus Species 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- 229940022399 cancer vaccine Drugs 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 229940127089 cytotoxic agent Drugs 0.000 description 2
- 238000002716 delivery method Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 210000002443 helper t lymphocyte Anatomy 0.000 description 2
- 230000005847 immunogenicity Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 239000007927 intramuscular injection Substances 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 231100000590 oncogenic Toxicity 0.000 description 2
- 230000002246 oncogenic effect Effects 0.000 description 2
- 108091008819 oncoproteins Proteins 0.000 description 2
- 102000027450 oncoproteins Human genes 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000013605 shuttle vector Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 230000002381 testicular Effects 0.000 description 2
- 231100000041 toxicology testing Toxicity 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- SSOORFWOBGFTHL-OTEJMHTDSA-N (4S)-5-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[2-[(2S)-2-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-5-carbamimidamido-1-[[(2S)-5-carbamimidamido-1-[[(1S)-4-carbamimidamido-1-carboxybutyl]amino]-1-oxopentan-2-yl]amino]-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxohexan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]carbamoyl]pyrrolidin-1-yl]-2-oxoethyl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-[[(2S)-2-[[(2S)-2-[[(2S)-2,6-diaminohexanoyl]amino]-3-methylbutanoyl]amino]propanoyl]amino]-5-oxopentanoic acid Chemical compound CC[C@H](C)[C@H](NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H]1CCCN1C(=O)CNC(=O)[C@H](Cc1c[nH]c2ccccc12)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](Cc1c[nH]cn1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@@H](N)CCCCN)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O SSOORFWOBGFTHL-OTEJMHTDSA-N 0.000 description 1
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 101150059079 EBNA1 gene Proteins 0.000 description 1
- 208000006168 Ewing Sarcoma Diseases 0.000 description 1
- 108091006027 G proteins Proteins 0.000 description 1
- 102000030782 GTP binding Human genes 0.000 description 1
- 108091000058 GTP-Binding Proteins 0.000 description 1
- 241000204888 Geobacter sp. Species 0.000 description 1
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Natural products NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 101000924345 Homo sapiens Ankyrin repeat domain-containing protein 36B Proteins 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 102100026720 Interferon beta Human genes 0.000 description 1
- 108090000467 Interferon-beta Proteins 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- 101710085938 Matrix protein Proteins 0.000 description 1
- 101710204288 Melanoma-associated antigen 3 Proteins 0.000 description 1
- 101710127721 Membrane protein Proteins 0.000 description 1
- 102100026712 Metalloreductase STEAP1 Human genes 0.000 description 1
- 206010027480 Metastatic malignant melanoma Diseases 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 101710132594 Protein E6 Proteins 0.000 description 1
- 101710132595 Protein E7 Proteins 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 241000710961 Semliki Forest virus Species 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000004721 adaptive immunity Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000006023 anti-tumor response Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- KQNZDYYTLMIZCT-KQPMLPITSA-N brefeldin A Chemical compound O[C@@H]1\C=C\C(=O)O[C@@H](C)CCC\C=C\[C@@H]2C[C@H](O)C[C@H]21 KQNZDYYTLMIZCT-KQPMLPITSA-N 0.000 description 1
- JUMGSHROWPPKFX-UHFFFAOYSA-N brefeldin-A Natural products CC1CCCC=CC2(C)CC(O)CC2(C)C(O)C=CC(=O)O1 JUMGSHROWPPKFX-UHFFFAOYSA-N 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 238000009566 cancer vaccine Methods 0.000 description 1
- 230000007969 cellular immunity Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000001461 cytolytic effect Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 210000003162 effector t lymphocyte Anatomy 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000002998 immunogenetic effect Effects 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 238000010212 intracellular staining Methods 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 208000021039 metastatic melanoma Diseases 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 101150025733 pub2 gene Proteins 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000009097 single-agent therapy Methods 0.000 description 1
- 230000003393 splenic effect Effects 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012385 systemic delivery Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 230000005924 vaccine-induced immune response Effects 0.000 description 1
- 210000003501 vero cell Anatomy 0.000 description 1
- 230000001018 virulence Effects 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/76—Viruses; Subviral particles; Bacteriophages
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/76—Viruses; Subviral particles; Bacteriophages
- A61K35/766—Rhabdovirus, e.g. vesicular stomatitis virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
- A61K39/001184—Cancer testis antigens, e.g. SSX, BAGE, GAGE or SAGE
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
- A61K39/001184—Cancer testis antigens, e.g. SSX, BAGE, GAGE or SAGE
- A61K39/001186—MAGE
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4748—Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/525—Virus
- A61K2039/5254—Virus avirulent or attenuated
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/525—Virus
- A61K2039/5256—Virus expressing foreign proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/545—Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55561—CpG containing adjuvants; Oligonucleotide containing adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/57—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
- A61K2039/572—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/58—Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation
- A61K2039/585—Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation wherein the target is cancer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2300/00—Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/50—Fusion polypeptide containing protease site
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/10011—Adenoviridae
- C12N2710/10311—Mastadenovirus, e.g. human or simian adenoviruses
- C12N2710/10341—Use of virus, viral particle or viral elements as a vector
- C12N2710/10343—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16211—Lymphocryptovirus, e.g. human herpesvirus 4, Epstein-Barr Virus
- C12N2710/16234—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/20011—Papillomaviridae
- C12N2710/20034—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/15011—Lentivirus, not HIV, e.g. FIV, SIV
- C12N2740/15041—Use of virus, viral particle or viral elements as a vector
- C12N2740/15043—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/20011—Rhabdoviridae
- C12N2760/20211—Vesiculovirus, e.g. vesicular stomatitis Indiana virus
- C12N2760/20223—Virus like particles [VLP]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/20011—Rhabdoviridae
- C12N2760/20211—Vesiculovirus, e.g. vesicular stomatitis Indiana virus
- C12N2760/20232—Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/20011—Rhabdoviridae
- C12N2760/20211—Vesiculovirus, e.g. vesicular stomatitis Indiana virus
- C12N2760/20241—Use of virus, viral particle or viral elements as a vector
- C12N2760/20242—Use of virus, viral particle or viral elements as a vector virus or viral particle as vehicle, e.g. encapsulating small organic molecule
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/20011—Rhabdoviridae
- C12N2760/20211—Vesiculovirus, e.g. vesicular stomatitis Indiana virus
- C12N2760/20241—Use of virus, viral particle or viral elements as a vector
- C12N2760/20243—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
Definitions
- the present disclosure relates to oncolytic viruses for inducing an immune response.
- Oncolytic viruses specifically infect, replicate in and kill malignant cells, leaving normal tissues unaffected.
- OVs Oncolytic viruses
- Several OVs have reached advanced stages of clinical evaluation for the treatment of various neoplasms (Russell S J. et al., (2012) Nat Biotechnol 30:658-670). Once approved, such viral agents could substitute or combine with standard cancer therapies and allow for reduced toxicity and improved therapeutic efficacy.
- VSV vesicular stomatitis virus
- Stojdl D F. et al. (2000) Nat Med 6:821-825; Stojdl D F. et al., (2003) Cancer Cell 4:263-275
- other rhabdoviruses displaying oncolytic activity have been described recently (Brun J. et al., (2010) Mol Ther 18: 1440-1449; Mahoney DJ. et al., (2011) Cancer Cell 20:443-456).
- the non-VSV Maraba virus showed the broadest oncotropism in vitro (WO 2009/016433).
- a mutant Maraba virus with improved tumor selectivity and reduced virulence in normal cells was engineered.
- the attenuated strain is a double mutant strain containing both G protein (Q242R) and M protein (L123W) mutations.
- this attenuated strain called MG1 or Maraba MG1
- OV-induced anti-tumor immunity Various strategies have been developed to improve OV-induced anti-tumor immunity (Pol J. et al., (2012) Virus Adaptation and Treatment 4:1-21). Some groups have genetically engineered OV expressing immunomostimulatory cytokines. A herpes simplex and a vaccinia virus expressing Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) have respectively reached phase III and IIB of the clinical evaluation for cancer therapy while a VSV expressing IFN- ⁇ has just entered phase I.
- GM-CSF Granulocyte-Macrophage Colony-Stimulating Factor
- Another strategy defined as an oncolytic vaccine, consists of expressing a tumor antigen from the OV (Russell S J. et al., (2012) Nat Biotechnol 30:658-670). Previously, it has been demonstrated that VSV could also be used as a cancer vaccine vector (Bridle BW. et al., (2010) Mol Ther 184:4269-4275).
- a VSV-human dopachrome tautomerase (hDCT) oncolytic vaccine When applied in a heterologous prime-boost setting to treat a murine melanoma model, a VSV-human dopachrome tautomerase (hDCT) oncolytic vaccine not only induced an increased tumor-specific immunity to DCT but also a concomitant reduction in antiviral adaptive immunity.
- hDCT VSV-human dopachrome tautomerase
- VSV was shown to be effective using hDCT as a tumor associated antigen, there is no way to predict what tumor associated antigens will be effective in a heterologous prime-boost setting.
- a vaccine vector that can be used to activate the patient's immune system to kill tumor cells with reduced toxicity to normal tissues, for example by activating antibodies and/or lymphocytes against a tumor associated antigen on the tumor. It is desirable if such a vaccine vector displays both oncolytic activity and an ability to boost adaptive cell immunity.
- the authors of the present disclosure have surprisingly determined that MAGEA3, Human Papilloma Virus E6/E7 fusion protein, human Six-Transmembrane Epithelial Antigen of the Prostate protein, and Cancer Testis Antigen 1, are all able to be used in a heterologous prime-boost setting to induce an immune response in a mammal. These results are unexpected and not predictable since not all tumor associated antigens are able to induce an immune response via a heterologous prime-boost. For example, the authors of the present disclosure also determined that Placenta-specific protein 1 (PLAC-1) and Epstein-Barr Nuclear Antigen 1 were unable to stimulate an immune response via a heterologous prime-boost.
- PLAC-1 Placenta-specific protein 1
- Epstein-Barr Nuclear Antigen 1 were unable to stimulate an immune response via a heterologous prime-boost.
- kits for use in inducing an immune response in a mammal includes: a first virus that expresses a protein comprising an amino acid sequence of SEQ ID NO: 1, or a variant thereof, as an antigenic protein and that is formulated to generate an immunity to the protein or variant thereof in the mammal.
- the kit also includes a Maraba MG1 virus encoding a protein comprising an amino acid sequence SEQ ID NO: 1, or a variant thereof, as an antigenic protein, the Maraba MG1 virus formulated to induce the immune response in the mammal; the first virus being immunologically distinct from the Maraba MG1 virus.
- the antigenic protein expressed by the first virus and the antigenic protein expressed by the Maraba MG1 virus may be identical.
- the first virus, the Maraba MG1 virus, or both, may be formulated for administration as isolated viruses.
- the Maraba MG1 virus may include a reverse complement and RNA version of a transgene comprising a nucleotide sequence of SEQ ID NO: 2.
- the Maraba MG1 virus may include a reverse complement and RNA version of a codon optimized transgene comprising a nucleotide sequence of SEQ ID NO: 3.
- the first virus may include a transgene comprising a nucleotide sequence of SEQ ID NO: 2 or 3, or may include a reverse complement and RNA version of a transgene comprising a nucleotide sequence of SEQ ID NO: 2 or 3, depending on whether the first virus is a positive sense RNA virus, a DNA virus, or a negative sense RNA virus.
- the two viruses may be capable of expressing different variants of the protein that comprises the sequence of SEQ ID NO: 1.
- the variant of the protein comprising an amino acid sequence of SEQ ID NO: 1 that is expressed by the first virus, the Maraba MG1 virus, or both, may include at least one tumor associated epitope selected from the group consisting of: FLWGPRALV (SEQ ID NO: 27), KVAELVHFL (SEQ ID NO: 28), EGDCAPEEK (SEQ ID NO: 35), KKLLTQHFVQENYLEY (SEQ ID NO: 36), and RKVAELVHFLLLKYR (SEQ ID NO: 37), and be at least 70% identical to SEQ ID NO: 1.
- the variant will be at least 80% identical to SEQ ID NO: 1. More preferably, the variant will be at least 90% identical to SEQ ID NO: 1. Even more preferably, the variant will be at least 95% identical to SEQ ID NO: 1.
- the variant of the protein comprising an amino acid sequence of SEQ ID NO: 1 that is expressed by the first virus, the Maraba MG1 virus, or both, may have an amino acid sequence of SEQ ID NO: 4.
- the nucleotide sequence that encodes the variant may include a nucleotide sequence of SEQ ID NO: 5.
- the Maraba MG1 virus may include a reverse complement and RNA version of a nucleotide sequence of SEQ ID NO: 5.
- the first virus may include a transgene comprising a nucleotide sequence of SEQ ID NO: 5, or may include a reverse complement and RNA version of a transgene comprising a nucleotide sequence of SEQ ID NO: 5, depending on whether the first virus is a positive sense RNA virus, a DNA virus, or a negative sense RNA virus.
- the first virus is a negative sense RNA virus
- one of either the Maraba MG1 virus or the first virus may include a reverse complement and RNA version of a nucleotide sequence of SEQ ID NO: 2 or 3, and the other of the Maraba MG1 virus and the first virus may include a reverse complement and RNA version of SEQ ID NO: 5.
- the Maraba MG1 virus may include a reverse complement and RNA version of a nucleotide sequence of SEQ ID NO: 2 or 3, and the first virus may include a nucleotide sequence of SEQ ID NO: 5.
- the Maraba MG1 virus may include a reverse complement and RNA version of a nucleotide sequence of SEQ ID NO: 5
- the first virus may include a nucleotide sequence of SEQ ID NO: 2 or 3.
- One of either the Maraba MG1 virus or the first virus may be capable of expressing a protein that comprises the sequence of SEQ ID NO: 1 or 4, and the other of the Maraba MG1 virus and the first virus may be capable of expressing a protein that comprises the other sequence.
- the first virus may be an adenovirus.
- an isolated Maraba MG1 viral particle having a genome that encodes a protein comprising an amino acid sequence of SEQ ID NO: 1, or a variant thereof.
- the variant of the protein comprising an amino acid sequence of SEQ ID NO: 1 may have an amino acid sequence of SEQ ID NO: 4.
- the genome may include a reverse complement and RNA version of a nucleotide sequence of SEQ ID NO: 2 or 3.
- the genome may include a reverse complement and RNA version of a nucleotide sequence of SEQ ID NO: 5.
- the genome may include a reverse complement and RNA version of a nucleotide sequence of SEQ ID NO: 6.
- kits for use in inducing an immune response in a mammal includes: a first virus that expresses a protein comprising an amino acid sequence of SEQ ID NO: 7, or a variant thereof, as an antigenic protein and that is formulated to generate an immunity to the protein or variant thereof in the mammal.
- the kit also includes a Maraba MG1 virus encoding a protein comprising an amino acid sequence of SEQ ID NO: 7, or a variant thereof, as an antigenic protein, the Maraba MG1 virus formulated to induce the immune response in the mammal; the first virus being immunologically distinct from the Maraba MG1 virus.
- the antigenic protein expressed by the first virus and the antigenic protein expressed by the Maraba MG1 virus may be identical.
- the first virus, the Maraba MG1 virus, or both, may be formulated for administration as isolated viruses.
- the Maraba MG1 virus, the first virus, or both may include a reverse complement and RNA version of a codon optimized transgene comprising a nucleotide sequence of SEQ ID NO: 8.
- the first virus is a DNA virus or a positive sense RNA virus, the first virus may include a codon optimized transgene comprising a nucleotide sequence of SEQ ID NO: 8.
- the variant of the protein comprising an amino acid sequence of SEQ ID NO: 7 that is expressed by the first virus, the Maraba MG1 virus, or both, may include at least one tumor associated epitope and be at least 70% identical to SEQ ID NO: 7.
- the variant will be at least 80% identical to SEQ ID NO: 7. More preferably, the variant will be at least 90% identical to SEQ ID NO: 7. Even more preferably, the variant will be at least 95% identical to SEQ ID NO: 7.
- One of either the Maraba MG1 virus or the first virus may be capable of expressing a protein that comprises the sequence of SEQ ID NO: 7, and the other of the Maraba MG1 virus and the first virus may be capable of expressing a variant of a protein that comprises the sequence of SEQ ID NO: 7.
- the two viruses may be capable of expressing different variants of the protein that comprises the sequence of SEQ ID NO: 7.
- the first virus may be a lentivirus.
- an isolated Maraba MG1 viral particle having a genome that encodes a protein comprising an amino acid sequence of SEQ ID NO: 7, or a variant thereof.
- the genome may include a reverse complement and RNA version of a nucleotide sequence of SEQ ID NO: 8.
- the genome may include a nucleotide sequence that is the reverse complement and RNA version of SEQ ID NO: 9.
- kits for use in inducing an immune response in a mammal includes: a first virus that expresses a protein comprising an amino acid sequence of SEQ ID NO: 10, or a variant thereof, as an antigenic protein and that is formulated to generate an immunity to the protein or variant thereof in the mammal.
- the kit also includes a Maraba MG1 virus encoding a protein comprising an amino acid sequence of SEQ ID NO: 10, or a variant thereof, as an antigenic protein, the Maraba MG1 virus formulated to induce the immune response in the mammal; the first virus being immunologically distinct from the Maraba MG1 virus.
- the antigenic protein expressed by the first virus and the antigenic protein expressed by the Maraba MG 1 virus may be identical.
- the first virus, the Maraba MG1 virus, or both, may be formulated for administration as isolated viruses.
- the Maraba MG1 virus, the first virus, or both may include a reverse complement and RNA version of a codon optimized transgene comprising a nucleotide sequence of SEQ ID NO: 11.
- the first virus is a DNA virus or a positive sense RNA virus, the first virus may include a codon optimized transgene comprising a nucleotide sequence of SEQ ID NO: 11.
- the variant of the protein comprising an amino acid sequence of SEQ ID NO: 10 that is expressed by the first virus, the Maraba MG1 virus, or both, may include at least one tumor associated epitope and be at least 70% identical to SEQ ID NO: 10.
- the variant will be at least 80% identical to SEQ ID NO: 10. More preferably, the variant will be at least 90% identical to SEQ ID NO: 10. Even more preferably, the variant will be at least 30 95% identical to SEQ ID NO: 10.
- One of either the Maraba MG1 virus or the first virus may be capable of expressing a protein that comprises the sequence of SEQ ID NO: 10, and the other of the Maraba MG1 virus and the first virus may be capable of expressing a variant of a protein that comprises the sequence of SEQ ID NO: 10.
- the two viruses may be capable of expressing different variants of the protein that comprises the sequence of SEQ ID NO: 10.
- the first virus may be a lentivirus.
- an isolated Maraba MG1 viral particle having a genome that encodes a protein comprising an amino acid sequence of SEQ ID NO: 10, or a variant thereof.
- the genome may include a reverse complement and RNA version of a nucleotide sequence of SEQ ID NO: 11.
- the genome may include a nucleotide sequence that is the reverse complement and RNA version of SEQ ID NO: 12.
- kits for use in inducing an immune response in a mammal includes: a first virus that expresses a protein comprising an amino acid sequence of SEQ ID NO: 13, or a variant thereof, as an antigenic protein and that is formulated to generate an immunity to the protein or variant thereof in the mammal.
- the kit also includes a Maraba MG1 virus encoding a protein comprising an amino acid sequence of SEQ ID NO: 13, or a variant thereof, as an antigenic protein, the Maraba MG1 virus formulated to induce the immune response in the mammal; the first virus being immunologically distinct from the Maraba MG1 virus.
- the antigenic protein expressed by the first virus and the antigenic protein expressed by the Maraba MG1 virus may be identical.
- the first virus, the Maraba MG1 virus, or both, may be formulated for administration as isolated viruses.
- the Maraba MG1 virus, the first virus, or both may include a reverse complement and RNA version of a codon optimized transgene comprising a nucleotide sequence of SEQ ID NO: 14. If the first virus is a DNA virus or a positive sense RNA virus, the first virus may include a codon optimized transgene comprising a nucleotide sequence of SEQ ID NO: 14.
- the variant of the protein comprising an amino acid sequence of SEQ ID NO: 13 that is expressed by the first virus, the Maraba MG1 virus, or both, may include at least one tumor associated epitope and be at least 70% identical to SEQ ID NO: 13.
- the variant will be at least 80% identical to SEQ ID NO: 13. More preferably, the variant will be at least 90% identical to SEQ ID NO: 13. Even more preferably, the variant will be at least 95% identical to SEQ ID NO: 13.
- One of either the Maraba MG1 virus or the first virus may be capable of expressing a protein that comprises the sequence of SEQ ID NO: 13, and the other of the Maraba MG1 virus and the first virus may be capable of expressing a variant of a protein that comprises the sequence of SEQ ID NO: 13.
- the two viruses may be capable of expressing different variants of the protein that comprises the sequence of SEQ ID NO: 13.
- the first virus may be a lentivirus.
- an isolated Maraba MG1 viral particle having a genome that encodes a protein comprising an amino acid sequence of SEQ ID NO: 13, or a variant thereof.
- the genome may include a reverse complement and RNA version of a nucleotide sequence of SEQ ID NO: 14.
- the genome may include a nucleotide sequence that is the reverse complement and RNA version of SEQ ID NO: 15.
- FIG. 1A shows the CD8 + or CD4 + T-cell responses in tumor-bearing mice administered with MG1-hDCT.
- FIG. 1B shows the therapeutic efficacy of MG1-hDCT administered as a priming vector only in a metastatic lung cancer mouse model.
- FIG. 2 shows the comparison of the immune response of a prime-boost vaccination in C57/BI6 mice with Ad-hDCT as the priming vector and either Maraba MG1-hDCT or VSV-hDCT as the boosting vector.
- FIG. 3 shows the T-cell response in a metastatic lung cancer mouse model following Ad-empty or Ad-hDCT, as the priming vector only or following prime-boost vaccination with Ad-hDCT, as the priming vector and either Maraba MG1 GFP or Maraba MG1-hDCT, as the boosting vector.
- FIG. 4 shows the survival plot in a metastatic lung cancer mouse model following Ad-empty or Ad-hDCT, as the priming vector only or following prime-boost vaccination with Ad-hDCT, as the priming vector and either Maraba MG1 GFP or Maraba MG1-hDCT, as the boosting vector.
- FIG. 5 shows the survival plot in a metastatic brain cancer mouse model following Ad-empty or Ad-hDCT, as the priming vector only or following prime-boost vaccination with Ad-hDCT, as the priming vector and Maraba MG1-hDCT, as the boosting vector.
- FIG. 6 is a diagram of the priming vector Ad-MAGEA3, the boosting vector Maraba MG1-MAGEA3 and the prime-boost strategy utilized in a primate toxicity/immunogenicity study.
- FIG. 7 shows the average T-cell response in primates given Ad-MAGEA3 as the priming vector and a high or low dose of MG1-MAGEA3 as the boosting vector.
- the T-cell responses were determined after 5, 13 and 84 days following the boosting vector.
- FIG. 8 shows the T-cell responses in individual primates given Ad-MAGEA3 as the priming vector and MG1-MAGEA3 as the boosting vector after 5 days following the boosting vector.
- the T-cell responses were stratified in relation to the MAGEA3 peptide pool used to stimulate the response.
- FIG. 9 shows the survival plot in a metastatic lung cancer mouse model following Ad-hDCT versus Ad-hDCT plus Cyclophosphamide, as the priming vector only or following prime-boost vaccination with Ad-hDCT versus Ad-hDCT plus Cyclophosphamide, as the priming vector and VSV-hDCT, as the boosting vector.
- the present disclosure provides a kit for use in inducing an immune response in a mammal.
- the kit includes a first virus that expresses MAGEA3, a Human Papilloma Virus E6/E7 fusion protein, human Six-Transmembrane Epithelial Antigen of the Prostate protein, or Cancer Testis Antigen 1, or a variant thereof, as an antigen and that is formulated to generate an immunity to the antigen in the mammal.
- the kit also includes a Maraba MG1 virus encoding the same antigen, or a variant of the same antigen, the Maraba MG1 virus formulated to induce the immune response in the mammal.
- the first virus is immunologically distinct from the Maraba MG1 virus so that it may act as the “prime” in a heterologous prime-boost vaccination.
- Prime:boost immunizations can be given with unmatched vaccine delivery methods while using the same antigen, in a ‘heterologous’ prime-boost format; or with matched vaccine delivery methods, in a ‘homologous’ prime-boost.
- Heterologous prime-boost methods are preferable when using vectored vaccine platforms as homologous vaccination would lead to boosting of responses to both the vector and the transgene in the secondary response.
- a heterologous system focuses the secondary response (that is, the boosted response) on the antigen as responses against the first and the second vector are primary responses, and are therefore much less robust.
- the first virus and the Maraba MG1 virus are used in a heterologous prime-boost format.
- the antigenic proteins listed above are self-antigens already tolerized by the immune system through a tightly controlled process of negative selection in the thymus (Kruisbeek A M and Amsen D, (1996) Curr Opin Immunol 8:233-244; Stockinger B (1999) Adv Immunol 71:229-265) or peripheral tolerization.
- the major challenge with developing vaccines to these antigenic proteins, and any other self-antigens, is to induce a strong immune response directed selectively against cancer cells.
- MAGEA3 Melanoma antigen, family A,3 is a “cancer testis antigen”.
- the MAGE family of genes encoding tumor specific antigens is discussed in De Plaen et al., Immunogenetics 40:360-369 (1994), MAGEA3 is expressed in a wide variety of tumors including melanoma, colorectal and lung.
- This protein was used by the authors of the present disclosure as the antigenic protein in both the first virus and the Maraba MG 1 virus. The authors also used a variant of the MAGEA3 protein as the antigenic protein in both the first virus and the Maraba MG 1 virus.
- HPV Human Papilloma Virus
- HPV Human Papilloma Virus
- IIPV types 16 and 18 are the cause of 75% of cervical cancer (Walboomers J M (1999) J Pathol 189:12-19).
- the authors of the present disclosure used a fusion protein of the E6/E7 oncoproteins of HPV types 16 and 18 as the antigenic protein.
- the fusion protein was expressed using a nucleotide sequence coexpressing HPV type 16/18 E6/E7 as a fusion protein, which was mutated to remove oncogenic potential.
- the fusion protein was used by the authors of the present disclosure as the antigenic protein in both the first virus and the Maraba MG1 virus.
- huSTEAP Six-Transmembrane Epithelial Antigen of the Prostate
- huSTEAP Six-Transmembrane Epithelial Antigen of the Prostate
- the STEAP gene encodes a protein with six potential membrane-spanning regions flanked by hydrophilic amino- and carboxyl-terminal domains. This protein was used by the authors of the present disclosure as the antigenic protein in both the first virus and the Maraba MG1 virus.
- Cancer Testis Antigen 1 is a cancer/testis antigen expressed in normal adult tissues, such as testis and ovary, and in various cancers (Nicholaou T et al., (2006) Immunol Cell Biel 84:303-317). Cancer testis antigens are a unique family of antigens, which have restricted expression to testicular germ cells in a normal adult but are aberrantly expressed on a variety of solid tumors, including soft tissue sarcomas, melanoma and epithelial cancers. This protein was used by the authors of the present disclosure as the antigenic protein in both the first virus and the Maraba MG 1 virus.
- Epstein-Barr Nuclear Antigen 1 (EBDNA1, SEQ ID NO: 16, encoded by SEQ ID NO: 17) was unable to generate a similar immune response.
- EBDNA1 is a multifunctional viral protein associated with Epstein-Barr virus (EBV) (Sibille H et al., (2003) Proc Natl Acad Sci 100:10989-10994) and consistently expressed in EBV-associated tumors (Young L S et al., (2004) Nature Reviews—Cancer 4:757-768).
- EBNA1 has a glycine-alanine repeat sequence that separates the protein into amino- and carboxy-terminal domains (Young LS (2004) Nature Reviews—Cancer 4:757-768). This sequence also seems to stabilize the protein, preventing proteasomal breakdown, as well as impairing antigen processing and MHC class I-restricted antigen presentation. This thereby inhibits the CDB-restricted cytotoxic T cell response against virus-infected cells (Levitskaya J et al., (1995) Nature 375:685-688).
- Placenta-specific protein 1 (PLAC-1) is another example of a tumor associated antigenic protein that was unable to generate an immune response in a heterologous prime-boost vaccine.
- a “variant” of a tumor associated antigenic protein refers to a protein that (a) includes at least one tumor associated antigenic epitope from the tumor associated antigenic protein and (b) is at least 70% identical to the tumor associated antigenic protein.
- the variant will be at least 80% identical to the tumor associated antigenic protein. More preferably, the variant will be at least 90% identical to the tumor associated antigenic protein. Even more preferably, the variant will be at least 95% identical to the tumor associated antigenic protein.
- Variants with higher sequence identities have increased likelihood that the epitopes are presented in a similar 3-dimensional manner to the wild type antigenic proteins.
- a tumor associated antigenic epitope may be identified by breaking up the whole antigenic protein into overlapping series of peptides, or by generating libraries of random peptides, and looking for T cell responses by stimulating PBMCs or splenocytes from animals vaccinated with the protein target using the peptide pools. Pools having a response identify that peptide as a potential antigenic epitope. This approach is discussed by Morris, GE in Encyclopedia of Life Sciences, 2007, page 1-3 (doi:10.1002/9780470015902.a0002624.pub2).
- a variant of the MAGEA3 protein may be, for example, an antigenic protein that includes at least one tumor associated antigenic epitope selected from the group consisting of: EVDPIGHLY (SEQ ID NO: 26), FLWGPRALV (SEQ ID NO: 27), KVAELVHFL (SEQ ID NO: 28), TFPDLESEF (SEQ ID NO: 29), VAELVHFLL (SEQ ID NO: 30), MEVDPIGHLY (SEQ ID NO: 31), REPVTKAEML (SEQ ID NO: 32), AELVHFLLL (SEQ ID NO: 33), WQYFFPVIF (SEQ ID NO: 34), EGDCAPEEK (SEQ ID NO: 35), KKLLTQHFVQENYLEY (SEQ ID NO: 36), RKVAELVHFLLLKYR (SEQ ID NO: 37), ACYEFLWGPRALVETS (SEQ ID NO: 38), VIFS
- variants of a tumor associated antigenic protein may include proteins that include at least one antigenic epitope selected from the group consisting of: FLWGPRALV (SEQ ID NO: 27), KVAELVHFL (SEQ ID NO: 28), EGDCAPEEK (SEQ ID NO: 35), KKLLTQHFVQENYLEY (SEQ ID NO: 36), and RKVAELVHFLLLKYR (SEQ ID NO: 37) and that is at least 70% identical to the MAGEA3 protein.
- FLWGPRALV SEQ ID NO: 27
- KVAELVHFL SEQ ID NO: 28
- EGDCAPEEK SEQ ID NO: 35
- KKLLTQHFVQENYLEY SEQ ID NO: 36
- RKVAELVHFLLLKYR SEQ ID NO: 37
- the antigen expressed by the first virus does not need to have exactly the same sequence as the antigen expressed by the Maraba MG1 virus.
- the antigen expressed by Maraba MG1 must only induce an overlapping immune response to the antigen expressed by the first virus.
- the first virus may express the MAGEA3 and the Maraba MG virus may express a MAGEA3 variant, or vice versa. Since both MAGEA3 and the variant of MAGEA3 induce overlapping immune responses (as they both include at least one identical tumor associated antigenic sequence), the first virus acts as the prime and the Maraba MG1 virus acts as the boost. It is sufficient that the immune response generated in the mammal to the first antigen results in an immune response primarily to the MAGEA3 or MAGEA3 variant when the Maraba MG1 virus is administered.
- the kit may additionally include an immune-potentiating compound, such as cyclophosphamide (CPA), that increases the prime immune response to the tumor associated antigenic protein generated in the mammal by administrating the first virus.
- CPA cyclophosphamide
- Cyclophosphamide is a chemotherapeutic agent that may lead to enhanced immune responses against the tumor associated antigenic protein.
- CPA administered prior to the priming vector significantly increased survival, while CPA administered prior to the boosting vector did not.
- the therapeutic approach disclosed herein combines: (1) a viral vaccine, and (2) Maraba MG1 virus as an oncolytic viral vaccine, both expressing MAGEA3, Human Papilloma Virus E6/E7 fusion protein, human Six-Transmembrane Epithelial Antigen of the Prostate protein, or Cancer Testis Antigen 1, or a variant thereof.
- Boosting with the oncolytic vaccine may lead to both tumor debulking by the oncolytic virus and a large increase in the number of tumor-specific CTL (cytotoxic T-lymphocytes) in animals primed by the viral vaccine.
- this methodology actually generates larger anti-tumor responses in tumor-bearing, as compared to tumor-free, animals since the replication of oncolytic virus is amplified in the tumor-bearing animals, which leads to an increase in the number of antigen-specific Tumor Infiltrating Lymphocytes (TILs), when compared to the replication of oncolytic virus in the tumor-free animals and the associated number of antigen-specific Tumor Infiltrating Lymphocytes (TILs).
- TILs Tumor Infiltrating Lymphocytes
- the expression products of these genes are processed into peptides, which, in turn, are expressed on cell surfaces. This can lead to lysis of the tumor cells by specific CTLs.
- the T cell response to foreign antigens includes both cytolytic T lymphocytes and helper T lymphocytes.
- CD8 + cytotoxic or cytolytic T cells are T cells which, when activated, lyse cells that present the appropriate antigen presented by HLA class I molecules.
- CD4 + T helper cells are T cells which secrete cytokines to stimulate macrophages and antigen-producing B cells which present the appropriate antigen by HLA class II molecules on their surface.
- the protein “MAGEA3” may be also referred to as “MAGE-A3” and stands for melanoma-associated antigen 3.
- the antigenic MAGEA3 protein according to the present disclosure is a protein that includes the amino acid sequence of SEQ ID NO: 1. This amino acid sequence may be encoded by the nucleotide sequence of SEQ ID NO: 2. Alternatively, the amino acid sequence may be encoded by a codon optimized transgene that includes the nucleotide sequence of SEQ ID NO: 3.
- a negative sense RNA virus that expresses the protein of SEQ ID NO: 1 may include a reverse complement and RNA version of a polynucleotide of SEQ ID NO: 2 or 3.
- a positive sense RNA virus or a DNA virus that expresses the protein of SEQ ID NO: 1 may include a sequence that is SEQ ID NO: 2 or 3.
- an antigenic MAGEA3 variant protein is a protein that includes the amino acid sequence of SEQ ID NO: 4. This amino acid sequence may be encoded by the nucleotide sequence of SEQ ID NO: 5.
- a negative sense RNA virus that expresses the protein of SEQ ID NO: 4 may include an RNA polynucleotide which includes a sequence that is a reverse complement and RNA version of SEQ ID NO: 5.
- a DNA virus or RNA virus that expresses the protein of SEQ ID NO: 4 may include a sequence that is SEQ ID NO: 5.
- RNA virus is a Maraba virus that includes the reverse complement and RNA version of SEQ ID NO: 6.
- the antigenic protein “E6/E7 fusion protein” or “Human Papilloma Virus E6/E7 fusion protein” is a protein that includes the amino acid sequence of SEQ ID NO: 7. This amino acid sequence may be encoded by the nucleotide sequence of SEQ ID NO: 8.
- a negative sense RNA virus that expresses the protein of SEQ ID NO: 7 may include a reverse complement and RNA version of a polynucleotide of SEQ ID NO: 8.
- a DNA virus or a positive sense RNA virus that expresses the protein of SEQ ID NO: 7 may include a polynucleotide of SEQ ID NO: 8.
- One example of such a negative sense RNA virus is a Maraba virus that includes the reverse complement and RNA version of SEQ ID NO: 9.
- the protein “huSTEAP” or “human Six-Transmembrane Epithelial Antigen of the Prostate protein” is a protein that includes the amino acid sequence of SEQ ID NO: 10. This amino acid sequence may be encoded by the nucleotide sequence of SEQ ID NO: 11.
- a negative sense RNA virus that expresses the protein of SEQ ID NO: 10 may include a reverse complement and RNA version of a polynucleotide of SEQ ID NO: 11.
- a DNA virus or RNA virus that expresses the protein of SEQ ID NO: 10 may include a sequence that is SEQ ID NO: 11.
- One example of such a negative sense RNA virus is a Maraba virus that includes the reverse complement and RNA version of SEQ ID NO: 12.
- the protein “NYESO1” or “human Cancer Testis Antigen 1” is a protein that includes the amino acid sequence of SEQ ID NO: 13. This amino acid sequence may be encoded by the nucleotide sequence of SEQ ID NO: 14.
- a negative sense RNA virus that expresses the protein of SEQ ID NO: 13 may include a reverse complement and RNA version of a polynucleotide of SEQ ID NO: 14.
- a DNA virus or RNA virus that expresses the protein of SEQ ID NO: 13 may include a sequence that is SEQ ID NO: 14.
- One example of such a negative sense RNA virus is a Maraba virus that includes the reverse complement and RNA version of SEQ ID NO: 15.
- cancer refers to humans as well as non-human mammals.
- cancer is used herein to encompass any cancer that expresses the tumor associated antigenic protein (that is: MAGEA3, Human Papilloma Virus E6/E7 fusion protein, human Six-Transmembrane Epithelial Antigen of the Prostate protein, or Cancer Testis Antigen 1) used in the viruses of interest.
- tumor associated antigenic protein that is: MAGEA3, Human Papilloma Virus E6/E7 fusion protein, human Six-Transmembrane Epithelial Antigen of the Prostate protein, or Cancer Testis Antigen
- cancer when considering MAGEA3 as an antigenic protein, encompasses any cancer that expresses MAGEA3 as an antigen. Examples of such a cancer include, but are not limited to, melanoma, non-small cell lung cancer, head and neck cancer, colorectal cancer, and bladder cancer.
- cancer encompasses any cancer that expresses E6 and E7 proteins as antigenic proteins. Examples of such a cancer include, but are not limited to, cervical cancer.
- the first virus, the Maraba MG1 virus, or both may be independently administered to the mammal intravenously, intramuscularly, intraperitoneally, or intranasally. Following administration of the viruses, an immune response is generated by the mammal within an immune response interval, e.g. within about 4 days, and extending for months, years, or potentially life.
- the first virus may be any virus that induces an immune response to the tumor associated antigenic protein or variant thereof after the first virus is administered to the patient.
- Viruses that may be used according to the present disclosure include, for example: adenovirus (Ad), poxvirus, retrovirus, and alpha virus.
- Ad adenovirus
- poxvirus vaccinia virus.
- retrovirus lentivirus.
- alpha virus semliki forest virus.
- vaccination using the first virus and the Maraba MG1 virus may be conducted using well-established techniques.
- the amount of virus required to generate an immune response will vary with a number of factors, including, for example, the selected antigen, the viral vector used to deliver the antigen, and the mammal to be treated, e.g. species, age, size, etc.
- intramuscular administration of at least about 10 7 PFU of Adenoviral vector to a mouse is sufficient to generate an immune response.
- a corresponding amount would be sufficient for administration to a human to generate an immune response.
- Maraba MG1 virus encoding the tumor associated antigenic protein or a variant thereof is administered in an amount suitable for oncolytic viral therapy within a suitable immune response interval.
- a suitable immune response interval may be, for example, at least about 24 hours, preferably at least about 2-4 days or longer, e.g. at least about 1 week, or at least about 2 weeks.
- the amount of Maraba MG1 virus suitable for oncolytic viral therapy will vary with the mammal to be treated, as will be appreciated by one of skill in the art. For example, 10 8 PFU of Maraba MG1 virus encoding MAGEA3 administered IV to a mouse is sufficient for oncolytic therapy. A corresponding amount would be sufficient for use in a human.
- Maraba MG1 virus encoding tumor associated antigenic protein or a variant thereof may be prepared by incorporating a reverse complement of a transgene encoding the tumor associated antigenic protein or a variant thereof into the Maraba MG1 virus using standard recombinant technology.
- the reverse complement of the transgene may be incorporated into the genome of the Marama MG1 virus, or alternatively, may be incorporated into the virus using a plasmid incorporating the transgene.
- the transgene encoding the tumor may be a codon optimized transgene.
- the oncolytic Maraba MG1 is a potent oncolytic vaccine platform. While unable to prime detectable responses against a melanoma-associated antigen, Maraba MG1-vaccine displayed the ability to boost preexisting tumor-specific CD4 + and CD8 + T-cell immunity. When applied to the treatment of syngeneic murine melanoma tumor models, Maraba-MG1-mediated recall immunization resulted in an extension of the median survival with complete remission in more than 20% of the animals treated.
- the authors of the present disclosure also determined that proteins having the sequence SEQ ID NOs: 7, 10, or 13 could be used to stimulate an immune response in a patient using a heterologous prime boost with Maraba MG1.
- the authors of the present disclosure determined that administration of a first virus expressing EBDNA-1 protein or Placenta-specific protein 1 (PLAC-1) followed by administration of Maraba-MG1 expressing EBDNA-1 protein or PLAC-1, respectively, was unable to stimulate an immune response.
- Example 1 MG1-hDCT is a Weak Priming Vector but a Potent Boosting Vector
- Ad-empty and Ad-hDCT are replication-deficient adenoviruses (E1/E3-deletion) based on the human serotype 5 (Lane C. et al., (2004) Cancer Research 64:1509-1514; Ng P. et al., (2001) Mol Ther 3:809-815).
- the replication-deficient adenovirus vector was engineered to express the hDCT transgene, which encodes the full length human melanoma associated antigen DCT (dopachrome tautomerase) while Ad-empty has no transgene.
- Ad-hDCT The resulting adenovirus vector is termed “Ad-hDCT”.
- the MG1 variant of Maraba virus was engineered to express the human form of the melanoma-associated antigen hDCT transgene.
- the resulting MG1 virus vector is termed “MG1-hDCT” or “Maraba MG1-hDCT”.
- Other virus vectors are named using a similar convention.
- VSV-hDCT derives from the wild-type Indiana strain of the VSV (Bridle BW. et al. (2009) 17:1814-1821; Lawson N D. et al., (1995) Proc Natl Acad Sci USA 92:4477-4481).
- MG1-GFP Green Flourescent Protein used as a control non-immunogenic transgene insertion
- MG1-hDCT derive from the attenuated strain MG1 of Maraba virus.
- DCT (and GFP) expression from the virus was confirmed by western blot of lysates from infected Vero cells cultured in alpha-MEM containing 10% FBS, 2 mM L-glutamine, 100 U/ml penicillin, and 1 00 mg/ml streptomycin (all from Invitrogen, Grand Island, N.Y.).
- MG1-hDCT administered as a monotherapy was evaluated initially.
- C57BI/6 mice (8-10 weeks old at study initiation) were injected i.v. with 2.5 ⁇ 10 5 B16-F10 cells (murine melanoma cells expressing the murine DCT antigen) in 200 ⁇ l saline water.
- the oncolytic vaccine was injected systemically 5 or 14 days later and T-cell responses against the melanoma antigen DCT were measured in the blood at day 19.
- the virus was administered systemically at a high dose (10 9 pfu i.v in 200 ⁇ l PBS).
- T-cell responses were measured by isolating PBMCs or splenocytes and stimulating them with the SVYDFFVWL (SEQ ID NO: 45) (SVY) or KFFHRTCKCTGNFA (SEQ ID NO: 46), (KFF) peptides corresponding to the MHC-I or MHC-II restricted immunodominant epitopes of DCT, respectively.
- Responding T-cells were detected after intracellular cytokine staining (ICS) for IFN- ⁇ by flow cytometry.
- ICS cytokine staining
- MG1-hDCT was unable to prime DCT-specific CD8 + or CD4 + T-cell responses in tumor-bearing mice ( FIG. 1A ).
- Administered alone, the MG1-hDCT vaccine did not improve tumor outcome. Indeed, mice treated 14 days post-tumor challenge reached endpoint in a similar timeframe as untreated mice: after 20 days for the Ad-empty control group versus 21 days for the Ad-empty+MG1-hDCT group ( FIG. 1B ).
- survival was not extended even when mice were treated with MG1-hDCT as early as 5 days after tumor engraftment (MG1-hDCT group, FIG. 1B ).
- Adenoviral vectors were used as priming vectors and administered intramuscularly (i.m.) at a total dose of 2 ⁇ 10 8 pfu (1 ⁇ 10 8 pfu in 50 ⁇ l PBS per thigh). For adenovirus injection, mice were anesthetized in a sealed chamber containing 5% inhalation isoflurane.
- Ad-hDCT Ad-hDCT
- MG1-hDCT was evaluated as a booster of pre-existing DCT-specific responses.
- Maraba virus various routes of administration were evaluated. An oncolytic dose of 1 ⁇ 10 9 pfu of virus was administered that is well tolerated in this mouse strain and an interval of 12 days post-Ad priming was selected as this was the longest interval that would be feasible in the tumor model.
- this dose of MG1-Maraba-hDCT was administered by intravenous (i.v.), intranasal (i.n.) and intramuscular (i.m.) routes, the i.v.
- Maraba MG1-hDCT is a more potent boosting vector than VSV-hDCT
- C57/B16 mice were primed with Ad-hDCT (Ad-BHG was included as a control vector lacking a transgene) and then boosted with an intravenous dose of either VSV-hDCT or Maraba-hDCT 14 days later.
- Immune analysis of CD8 + T cell responses were measured in peripheral blood at day 5 post-boosting vector. At an equivalent dose the response induced by Maraba vaccination was 3-8 fold as large as the VSV-induced responses ( FIG. 2 ).
- MG 1-hDCT administered as a boosting vector was subsequently investigated.
- Ad-hDCT immunization allowed a 10-day extension of the median survival compared to untreated mice: 31 days for Ad-hDCT treatment versus 20.5 days for Ad-empty group ( FIG. 4 ).
- Ad-hDCT treatment followed by MG1 Maraba-GFP oncolytic treatment did not improve survival (27.5 days median survival for Ad-hDCT+MG1-GFP group, FIG. 4 ).
- boosting anti-tumor immunity with the Maraba MG1-DCT vaccine dramatically improved tumor outcome with a 20-day extension of the median survival compared to Ad-hDCT primed only animals (51 days for Ad-hDCT+MG1-hDCT group, FIG. 4 ).
- the oncolytic MG1-hDCT booster treatment resulted in 23.3% long-term survival ( FIG. 4 ).
- each T-cell compartment was selectively depleted (data not shown).
- Depletion of the CD8 + T-cell population at the time of the boost abrogated the therapeutic benefit of MG1-hDCT administration.
- CD4 + T-cells depletion appeared not to affect significantly the therapeutic efficacy indicating that Maraba immune boosting of CD8 + T cells is CD4 + -independent. While the critical role of CD8 + T-cells in controlling tumor growth is admitted, these results show that boosting tumor-specific CD8 + T-cells with Maraba vaccine is a potent way of improving cancer therapy.
- Example 3 Failure of Vaccine Strategy to Induce an Anti-mPLAC1 T Cell Response
- Maraba MG1 and VSV were able to act as boosting vectors using hDCT as a tumor associated antigen, not all tumor associated antigens can be used in a heterologous prime-boost vaccine strategy.
- the authors of the present disclosure tested a heterologous prime-boost vaccine strategy using huAd5-mPLAC1 as the priming vector and VSV-mPLAC1 as the boosting vector.
- PLAC1 is a recently described tumor associated antigen expressed in the placenta but has also been reported in several tumor cell lines and in tumors of patients breast, lung, liver, gastric and colorectal cancers (Silva, W A et al., (2007) Cancer Immun 7:18).
- Ad-mPLAC1 is a replication-deficient adenoviruses (E1/E3-deletion) based on the human serotype 5 (Lane C. et al., (2004) Cancer Research 64:1509-1514; Ng P. et al., (2001) Mol Ther 3:809-815).
- the replication-deficient adenovirus vector was engineered to express the mPLAC1 transgene, which encodes the full length murine antigen PLAC1 (placenta-specific 1), the resulting adenovirus vector is termed “Ad-mPLAC1” or “huAd5-mPLAC1”.
- VSV virus was engineered to express the human form of the melanoma-associated antigen mPLAC1 transgene.
- the resulting VSV-virus vector is termed “VSVmPLAC1”.
- Recombinant VSV was generated by transgene insertion between the G and L viral genes.
- VSV-mPLAC1 derives from the wild-type Indiana strain of the VSV (Bridle B W. Et al. (2009) 17:1814-1821; Lawson N D. et al., (1995) Proc Natl Acad Sci USA 92:4477-4481).
- mice were primed with Ad-mPLAC1 (2 ⁇ 10 9 PFU IM injection) and then boosted with a single i.v.dose.of VSV-mPLAC1 (2 ⁇ 10 9 PFU) 14 days later.
- T-cell responses were measured by isolating splenocytes and stimulating them with individual 15 mmer peptides form an overlapping PLAC1 peptide library for a total of 6 hours with golgi plug added 1 hour into the stimulation. Following stimulation the splenocytes were stained for CD4, CD8 and IFN ⁇ and analyzed on FACSCanto and FlowJo. Responding T-cells were detected after intracellular cytokine staining (ICS) for IFN- ⁇ by flow cytometry. None of the mPLAC1 peptides were able to stimulate IFN- ⁇ production in either CD8 or CD4 T cells.
- ICS cytokine staining
- Example 4 Construction of Oncolytic Vaccine Vectors with MAGEA3 or a Variant Thereof
- Ad-MAGEA3 is a replication-deficient adenovirus (E1/E3-deletion) based on the human serotype 5 (Lane C. et al., (2004) Cancer Research 64:1509-1514; Ng P. et al., (2001) Mol Ther 3:809-815) containing the full-length human MAGEA3 gene.
- Maraba MG1-hMAGEA3 has been developed and contains the codon-optimized full length human MAGEA3 gene inserted between the G and L viral genes of the MG1 double mutant of Maraba virus (Brun J. et al., (2010) Mol Ther 18:1440-1449).
- the MAGEA3 sequence (NCBI Gene ID: 4102 www.ncbi.nlm.nih.gov/gene/4102) was codon optimized for expression in mammalian cells and then synthesized with a FLAG tag on 3′ end and with Mlul restriction sites on both 3′ and 5′ ends. This sequence was ligated into the shuttle vector pMRB-MG1/pNF at its Mlul site (between G and L genes) which contains part of the Maraba-MG1 genome from the beginning of G to the end of L genes, flanked by Kpnl and Nhel sites, respectively.
- a full length human MAGEA3 protein expressed by the adenovirus may include the amino acid sequence of SEQ ID NO: 1.
- the adenovirus may include a nucleotide sequence of SEQ ID NO: 2.
- the amino acid sequence may be encoded by a codon optimized transgene that includes the nucleotide sequence of SEQ ID NO: 3.
- the adenovirus may include the codon-optimized nucleotide sequence of SEQ ID NO: 3.
- the Maraba MG1 virus may include a reverse complement and RNA version of a nucleotide sequence of SEQ ID NO: 2.
- the amino acid sequence may be encoded by a codon optimized transgene that includes the nucleotide sequence of SEQ ID NO: 3.
- the Maraba MG1 virus may include the reverse complement and RNA version of the codon-optimized nucleotide sequence of SEQ ID NO: 3.
- MAGEA3 is a protein that includes the amino acid sequence of SEQ ID NO: 4. This amino acid sequence may be encoded by the nucleotide sequence of SEQ ID NO: 5.
- the adenovirus may include a nucleotide sequence of SEQ ID NO: 5.
- the Maraba MG1 virus may include a reverse complement and RNA version of a nucleotide sequence of SEQ ID NO: 5.
- a negative sense RNA virus such as a Maraba virus, that expresses the protein of SEQ ID NO: 4 may include an RNA polynucleotide which includes a sequence that is a reverse complement and RNA version of SEQ ID NO: 6.
- Healthy cynomolgous monkeys were used in a study designed to collect toxicity and immunogenicity data for developing the potential MG1-MAGEA3 oncolytic vaccine for human use.
- the use of the cynomolgous monkeys maximizes the likelihood of identifying responses that are quantitatively and qualitatively similar to those expected in humans.
- primates Prior to study start primates were acclimated for 4-6 weeks from the time of animal arrival until the time of vascular access port implantation surgery. After a minimum of 2-3 weeks following surgery, animals were vaccinated with a non-replicating adenovirus Ad-MAGEA3 priming vector, injected in each leg, 0.5 ml per dose totaling 1 ⁇ 10 10 pfu by slow IM injection.
- Ad-MAGEA3/MG1-MAGEA3 prime boost study Ad-MAGEA3 prime occurred at either 2 weeks ( ⁇ 14 days) or 4 weeks ( ⁇ 28 days) prior to MG1-MAGEA3 boost. Therefore Ad-MAGEA3 administration occurred on Day ⁇ 14 or on Day ⁇ 28 and MG1-MAGEA3 boost on Days 0 and 3.
- the rationale for Ad-MAGEA3 dosage level comes from the literature, and from previous experiments demonstrating that a dose of 1 ⁇ 10 10 pfu in Macaques (and humans) is a safe dose with no observed toxicities (Bett et al. Vaccine, 2010).
- MG1-MAGEA3 virus was injected i.v.
- MG1-MAGEA3 virus was injected i.v. at either a low dose 1 ⁇ 10 10 or a high dose 1 ⁇ 10 11 at experiment days 0 and 3, (28 and 31 days after the Ad-MAGEA3).
- Boosting Virus was infused in 30 mL of sterile buffered saline (pH 7.5) over 30 minutes through the vascular access port.
- the rationale for MG 1-MAGEA3 low dosage level comes from pre-clinical studies that demonstrate that the murine maximum tolerable dose is 1 ⁇ 10 9 .
- PBMCs Peripheral Blood Mononuclear Cells
- FIG. 7 shows the average CD8 + T-cell immune responses of monkeys given high and low dose MG1-MAGEA3 as a boosting vector following an Ad-MAGEA3 prime.
- MG1-MAGEA3 In the low dose MG1-MAGEA3 animals there is a significant increase in CD8 + T-cell response 5 days following the boost, which drops off over time while in the high dose MG1-MAGEA3 animals there is a similar significant increase in CD8 + T-cell response 5 days following the boost, which is sustained at a higher level over time.
- FIG. 8 shows that all of the animals in the study exhibited a significant increase in CD8 + T-cell response 5 days following the boost with MG1-MAGEA3 irrespective of high or low dose.
- Example 6 Construction and Immune Testing of Lentiviral Priming Vectors and Oncolytic Vaccine Vectors Expressing Human Papilloma Virus E6/E7 Fusion Protein
- the resulting fusion protein has a flexible glycine linker plus AAY sequence (which serves as a proteasomal cleavage site to ensure that each antigen is proteolytically degraded to the peptides normally generated for antigen presentation).
- This codon-optimized fusion nucleotide sequence gives rise to a 527 amino acid HPV16/18 E6/E7 fusion protein (SEQ ID NO: 7).
- Lentiviruses expressing Human Papilloma Virus E6/E7 fusion transgene were made using the pDY.EG.WS lentivirus vector.
- the modified HPV transgene was PCR amplified using primers containing the EcoRI restriction site (forward primer ACTGGAATTCATGCATCAGAAGCGAACTGC, SEQ ID NO: 18) and the BamHI restriction site (reverse primer ACTGGGATCCTCACTGCTGGGAGGCACAC, SEQ ID NO: 19).
- the HPV transgene PCR product was agarose gel purified.
- the pDY.EG.WS lentivirus vector was cut at the EcoRI and BamHI sites to remove eGFP, was agarose gel purified, and was subjected to dephosphorylation using CIAP (Invitrogen Catalogue 18009-019). The cut vector was then subjected to additional agarose gel purification. The HPV transgene PCR product was then ligated into the EcoRI/BamHI cut vector using T4 DNA ligase (Invitrogen). The ligation reaction was subjected to a transformation using competent cells, and plasmid DNA from positive colonies was subjected to mini-prep amplification.
- the pDY.EG.WS lentivirus vector expressing the modified HPV transgene was then subjected to maxi-prep amplification.
- the lentivirus expressing Human Papilloma Virus E6/E7 fusion transgene were rescued on 293T cells after transfection of 6.4 ⁇ g of each of three plasmids: the pDY.EG.WS lentivirus vector expressing the modified HPV transgene, the packaging pCMV-8.84 plasmid, and the envelope pMD2G plasmid.
- Virus supernatants were pooled, and filtered through a 0.45 ⁇ M filter and centrifuged for 120 minutes at 50,000 ⁇ g at 16° C.
- the lentivirus expressing Human Papilloma Virus E6/E7 fusion transgene was resuspended in PBS, and stored at ⁇ 80° C.
- Maraba MG1 was engineered to contain a Papilloma Virus E6/E7 fusion transgene inserted between the G and L viral genes of the MG1 double mutant of Maraba virus (Brun J. et al., (2010) Mol Ther 18:1440-1449).
- the transgene sequence (SEQ ID NO: 8) was codon optimized for expression in mammalian cells.
- the resulting Maraba MG1 containing the HPV E6/E7 is designated, generally, “Maraba-MG1-HPV E6/E7”.
- a modified Maraba MG1 backbone was used to facilitate cloning.
- a silent mutation was introduced into the L gene of the Maraba MG1 genome backbone to remove one of the Mlul sites.
- the second Mlul site was replaced with a BsiWI site at the cloning region between G and L.
- the HPV E6/E7 fused transgene sequence was ligated into the modified Maraba MG1 genome backbone at its Mlul site and BsiWI site (at cloning region between G and L)
- the Maraba-MG1-HPV E6/E7 was then rescued (as previously described in Brun et al., (2010) Mol Ther 18:1440-1449), plaque purified once, and subjected to opti-prep purification.).
- the Maraba-MG1-HPV E6/E7 has a genomic sequence that is the reverse complement and RNA version of SEQ ID NO: 9.
- animals were immunized by administration of the priming vector (lentivirus-HPV E6/E7+poly I:C as an adjuvant) at day 0 and by administration of 1e9 PFU of the boosting vector (Maraba-MG1-HPV E6/E7) at day 14.
- Control animals were prime-boosted with viral vectors encoding GFP instead of the HPV E6/E7 transgene as a control non-immunogenic transgene insertion. Analysis of the prime response was conducted at day 14 and of the boost response at day 19.
- Each lentivirus-HPVE6/E7 preparation was made with 250 ug poly I:C added as an adjuvant to the priming virus and then split between 5 animals for each virus.
- mice were anesthetized with isoflurane and 30 uL of lentivirus-HPV E6/E7/poly I:C was injected into each hind foot pad. The remaining virus was injected subcutaneously near the left inguinal lymph node. 14 days after prime, blood was collected and analyzed by flow cytometry. Mice were then boosted with 1 ⁇ 10 9 PFU MG1-HPV E6/E7 intravenously. 5 days following the boost, blood was drawn and immune responses were assessed by flow cytometry.
- PBMCs were analyzed for immune responses to the tumor antigens.
- PBMCs were either incubated in the absence of peptide or stimulated with 2 ug/mL peptides (RAHYNIVTF) (SEQ ID NO: 47) for a total of 5 hours with golgi plug added 1 hour into the stimulation.
- RAHYNIVTF 2 ug/mL peptides
- Example 7 Construction and Immune Testing of Lentiviral Priming Vectors and Oncolytic Vaccine Vectors Expressing Cancer Testis Antigen 1
- the NYESO1 transgene is full-length wild-type sequence (SEQ ID NO: 14) codon-optimized for expression in human and mouse to give rise to a 180 amino acid protein (SEQ ID NO: 13).
- Lentiviruses expressing Cancer Testis Antigen 1 transgene were made using the pDY.EG.WS lentivirus vector.
- the NYESO1 transgene was PCR amplified using primers containing the BamHI restriction site (forward primer ACTGGGATCCATGCAGGCCGAGGGCAGAG, SEQ ID NO: 20) and the BamHI restriction site (reverse primer ACTGGGATCCTCATCTTCTCTGGCCGCTGG, SEQ ID NO: 21).
- the NYESO1 transgene PCR product was agarose gel purified.
- the pDY.EG.WS lentivirus vector was cut at the BamHI site to remove eGFP, was agarose gel purified, and was subjected to dephosphorylation using CIAP (Invitrogen Catalogue 18009-019). The cut vector was then subjected to additional agarose gel purification. The NYESO1 transgene PCR product was then ligated into the BamHI cut vector using T4 DNA ligase (Invitrogen). The ligation reaction was subjected to a transformation using competent cells, and plasmid DNA from positive colonies was subjected to mini-prep amplification.
- the pDY.EG.WS lentivirus vector expressing the modified HPV transgene was then subjected to maxi-prep amplification.
- the lentivirus expressing NYESO1 transgene were rescued on 293T cells after transfection of 6.4 ⁇ g of each of three plasmids: the pDY.EG.WS lentivirus vector expressing the NYESO1 transgene, the packaging pCMV-8.84 plasmid, and the envelope pMD2G plasmid.
- Virus supernatants were pooled, and filtered through a 0.45 ⁇ M filter and centrifuged for 120 minutes at 50,000 ⁇ g at 16° C.
- the lentivirus expressing NYESO1 transgene was resuspended in PBS, and stored at ⁇ 80° C.
- Maraba MG1 was engineered to contain Cancer Testis Antigen 1 transgene inserted between the G and L viral genes of the MG1 double mutant of Maraba virus (Brun J. et al., (2010) Mol Ther 18:1440-1449). The transgene sequence was codon optimized for expression in mammalian cells. The resulting Maraba MG1 containing the NYESO1 protein is designated as “Maraba-MG1-NYESO1” or “MG1-NYESO1”.
- the NYESO1 transgene was ligated into the shuttle vector pMRB-MG1/pNF at its Mlul site (between G and L genes) which contains part of the Maraba-MG1 genome from the beginning of G to the end of L genes, flanked by Kpnl and Nhel sites, respectively.
- the entire region from Kpnl to Nhel, now containing the NYESO1 transgene inserted between G and L was then removed from pMRB-MG1/pNF and ligated back into the pMRB-MG1 genomic plasmid using Kpnl and Nhel sites.
- the Maraba-MG1-NYESO1 was then rescued (as previously described Brun J. et al., (2010) Mol Ther 18: 1440-1449).
- the Maraba-MG1-NYESO1 was plaque purified 3 times, and purified via sucrose cushion purification.
- the Maraba-MG1-NYESO1 virus has a genomic sequence that is the reverse complement and RNA version of S
- animals were immunized by administration of the priming vector (lentivirus-NYESO1+poly I:C as an adjuvant) at day 0 and by administration of 1e9 PFU of the boosting vector (Maraba-MG1-NYESO1) at day 14.
- Control animals were prime-boosted with viral vectors encoding GFP instead of the NYESO1 transgene as a control non-immunogenic transgene insertion. Analysis of the prime response was conducted at day 14 and day 19.
- Each lentivirus-NYESO1 preparation was made with 250 ug poly I:C added as an adjuvant to the priming virus and then split between 5 animals for each virus.
- mice were anesthetized with isoflurane and 30 uL of lentivirus-NYESO1/poly I:C was injected into each hind foot pad. The remaining virus was injected subcutaneously near the left inguinal lymph node. 14 days after prime, blood was collected and analyzed by flow cytometry. Mice were then boosted with 1 ⁇ 10 9 PFU MG1-NYESO1 intravenously. Five days following the boost, blood was drawn and immune responses were assessed by flow cytometry.
- PBMCs were analyzed for immune responses to the tumor antigens.
- PBMCs were either incubated in the absence of peptide or stimulated with 2 ug/mL peptides (RGPESRLL) (SEQ ID NO: 48) for a total of 5 hours with golgi plug added 1 hour into the stimulation.
- RGPESRLL 2 ug/mL peptides
- Example 8 Construction and Immune Testing of Lentiviral Priming Vectors and Oncolytic Vaccine Vectors Expressing Human Six-Transmembrane Epithelial Antigen of the Prostate Protein
- the huSTEAP transgene is full-length wild-type sequence (SEQ ID NO: 11) codon-optimized for expression in human and mouse to give rise to a 341 amino acid protein (SEQ ID NO: 10).
- Lentiviruses expressing human Six-Transmembrane Epithelial Antigen of the Prostate protein were made using the pDY.EG.WS lentivirus vector.
- the huSTEAP transgene was PCR amplified using primers containing the EcoRI restriction site (forward primer ACTGGAATTCATGGAATCACGGAAGGACATC, SEQ ID NO: 22) and the BamHI restriction site (reverse primer ACTGGGATCCTTAAAGCTTCAGCTGGCTACAG, SEQ ID NO: 23).
- the huSTEAP transgene PCR product was agarose gel purified.
- the pDY.EG.WS lentivirus vector was cut at the EcoRI/BamHI site to remove eGFP, was agarose gel purified, and was subjected to dephosphorylation using CIAP (Invitrogen Catalogue 18009-019). The cut vector was then subjected to additional agarose gel purification. The huSTEAP transgene PCR product was then ligated into the EcoRI/BamHI cut vector using T4 DNA ligase (Invitrogen). The ligation reaction was subjected to a transformation using competent cells, and plasmid DNA from positive colonies was subjected to mini-prep amplification.
- the pDY.EG.WS lentivirus vector expressing the modified huSTEAP transgene was then subjected to maxi-prep amplification.
- the lentivirus expressing huSTEAP transgene were rescued on 293T cells after transfection of 6.4 ⁇ g of each of three plasmids: the pDY.EG.WS lentivirus vector expressing the huSTEAP transgene, the packaging pCMV-8.84 plasmid, and the envelope pMD2G plasmid.
- Virus supernatants were pooled, and filtered through a 0.45 ⁇ M filter and centrifuged for 120 minutes at 50,000 ⁇ g at 16° C.
- the lentivirus expressing huSTEAP transgene was resuspended in PBS, and stored at ⁇ 80° C.
- Maraba MG1 was engineered to contain human Six-Transmembrane Epithelial Antigen of the Prostate transgene inserted between the G and L viral genes of the MG1 double mutant of Maraba virus (Brun J. et al., (2010) Mol Ther 18:1440-1449). The transgene sequence was codon optimized for expression in mammalian cells. The resulting Maraba MG1 containing the huSTEAP protein is designated as “Maraba-MG1-huSTEAP” or “MG1-huSTEAP”. A modified Maraba MG1 backbone was used to facilitate cloning. A silent mutation was introduced into the L gene of the Maraba MG1 genome backbone to remove one of the Mlul sites.
- the second Mlul site was replaced with a BsiWI site at the cloning region between G and L.
- These modifications to the Maraba MG1 genome backbone allowed for a more direct cloning system than that described in the Brun et al. paper as it avoids using the shuttle plasmid pMRB-MG1/pNF.
- the huSTEAP transgene sequence was ligated into the modified Maraba MG1 genome backbone at its Mlul and BsiWI site (at cloning region between G and L).
- the Maraba-MG1-huSTEAP was then rescued (as previously described in Brun J. et al., (2010) Mol Ther 18:1440-1449), plaque purified once, and subjected to opti-prep purification.
- the Maraba-MG1-huSTEAP has a genomic sequence that is the reverse complement and RNA version of SEQ ID NO: 12.
- animals were immunized by administration of the priming vector (lentivirus-huSTEAP+poly I:C as an adjuvant) at day 0 and by administration of 1e9 PFU of the boosting vector (Maraba-MG1-huSTEAP) at day 14.
- Control animals were prime-boosted with viral vectors encoding GFP instead of the huSTEAP transgene as a control non-immunogenic transgene insertion. Analysis of the prime response was conducted at day 14 and day 19.
- Each lentivirus-huSTEAP preparation was made with 250 ug poly I:C added as an adjuvant to the priming virus and then split between 5 animals for each virus.
- mice were anesthetized with isoflurane and 30 uL of lentivirus-huSTEAP/poly I:C was injected into each hind foot pad. The remaining virus was injected subcutaneously near the left inguinal lymph node. 14 days after prime, blood was collected and analyzed by flow cytometry. Mice were then boosted with lx10 9 PFU MG1-huSTEAP intravenously. Five days following the boost, blood was drawn and immune responses were assessed by flow cytometry.
- PBMCs were either incubated in the absence of peptide or stimulated with peptides for a total of 5 hours with golgi plug added 1 hour into the stimulation.
- PBMCs were either incubated in the absence of peptide or stimulated with 2 ug/mL peptides (RSRYKLL) (SEQ ID NO: 49) for a total of 5 hours with golgi plug added 1 hour into the stimulation.
- RSRYKLL 2 ug/mL peptides
- PBMCs were stained for CD4, CD8 and IFN ⁇ and analyzed on FACSCanto and FlowJo.
- Responding T-cells were detected after intracellular cytokine staining (ICS) for IFN- ⁇ by flow cytometry.
- Values from unstimulated PBMCs were considered background and subtracted from values obtained from stimulated PBMCs.
- Data 20 represents mean+/ ⁇ SEM.
- Table 3 it is demonstrated that the huSTEAP peptides were able to stimulate IFN- ⁇ production in CD8 cells indicating the existence of an immune response.
- the EBDNA1 transgene is a partial nucleotide sequence of full-length wild-type EBDNA1 (www.ncbi.nlm.nih.gov/protein/Q1HVF7.1) with the Glycine-Alanine generating repetitive sequence deleted (which separates the protein into amino- and carboxy-terminal domains). This sequence seems to stabilize the protein, preventing proteasomal breakdown, as well as impairing antigen processing and MHC class I-restricted antigen presentation (Levitskaya Jet al., (1995) Nature 375:685-688).
- the truncated EBDNA1 nucleotide sequence (SEQ ID NO: 17) was codon-optimized for expression in human and mouse to give rise to a 238 amino acid protein (SEQ ID NO: 16).
- Lentiviruses expressing Epstein-Barr Nuclear Antigen 1 protein were made using the pDY.EG.WS lentivirus vector.
- the modified EBDNA1 transgene was PCR amplified using primers containing the EcoRI restriction site (forward primer ACTGGAATTCATGCCAGTCGGCCAGGCTG, SEQ ID NO: 24) and the BamHI restriction site (reverse primer ACTGGGATCCTTATTCCTGCCCCTCTTCTCC, SEQ ID NO: 25).
- the EBDNA1 transgene PCR product was agarose gel purified.
- the pDY.EG.WS lentivirus vector was cut at the EcoRI and BamHI sites to remove eGFP, was agarose gel purified, and was subjected to dephosphorylation using CIAP (Invitrogen Catalogue 18009-019). The cut vector was then subjected to additional agarose gel purification. The EBDNA1 transgene PCR product was then ligated into the EcoRI/BamHI cut vector using T4 DNA ligase (Invitrogen). The ligation reaction was subjected to a transformation using competent cells, and plasmid DNA from positive colonies was subjected to mini-prep amplification.
- the pDY.EG.WS lentivirus vector expressing the EBDNA1 transgene was then subjected to maxi-prep amplification.
- the lentivirus expressing EBDNA1 transgene was rescued on 293T cells after transfection of 6.4 ⁇ g of each of three plasmids: the pDY.EG.WS lentivirus vector expressing the EBDNA1 transgene, the packaging pCMV-8.84 plasmid, and the envelope pMD2G plasmid.
- Virus supernatants were pooled, and filtered through a 0.45 ⁇ M filter and centrifuged for 120 minutes at 50,000 ⁇ g at 16° C.
- the lentivirus expressing EBDNA1 transgene was resuspended in PBS, and stored at ⁇ 80° C.
- Maraba MG1 was engineered to contain Epstein-Barr Nuclear Antigen 1 transgene inserted between the G and L viral genes of the MG1 double mutant of Maraba virus (Brun J. et al., (2010) Mol Ther 18: 1440-1449). The transgene sequence was codon optimized for expression in mammalian cells. The resulting Maraba MG1 containing the EBVDNA1 protein is designated as “Maraba-MG1-EBVDNA1” or “MG1-EDVDNA1”. A modified Maraba MG1 backbone was used to facilitate cloning. A silent mutation was introduced into the L gene of the Maraba MG1 genome backbone to remove one of the Mlul sites.
- the second Mlul site was replaced with a BsiWI site at the cloning region between G and L.
- These modifications to the Maraba MG1 genome backbone allowed for a more direct cloning system than that described in the Brun et al. paper as it avoids using the shuttle plasmid pMRB-MG1/pNF.
- the EBDNA1 transgene sequence was ligated into the modified Maraba MG1 genome backbone at its Mlul and BsiWI site (at cloning region between G and L).
- the Maraba-MG1-EBDNA1 transgene was then rescued (as previously described in Brun J. et al., (2010) Mol Ther 18:1440-1449), plaque purified once, and subjected to opti-prep purification.
- animals were immunized by administration of the priming vector (lentivirus-EBDNA1+poly I:C as an adjuvant) at day 0 and by administration of 1e9 PFU of the boosting vector (Maraba-MG1-EBDNA1) at day 14.
- Control animals were prime-boosted with viral vectors encoding GFP instead of the TM transgene as a control non-immunogenic transgene insertion.
- Analysis of the prime response was conducted at day 14 and day 19.
- Each lentivirus-EBDNA1 preparation was made with 250 ug poly I:C added as an adjuvant to the priming virus and then split between 5 animals for each virus.
- mice were anesthetized with isoflurane and 30 uL of lentivirus-EBDNA1/poly I:C was injected into each hind foot pad. The remaining virus was injected subcutaneously near the left inguinal lymph node. 14 days after prime, blood was collected and analyzed by flow cytometry. Mice were then boosted with 1 ⁇ 10 9 PFU MG1-EBVDNA1 intravenously. Five days following the boost, blood was drawn and immune responses were assessed by flow cytometry.
- PBMCs were analyzed for immune responses to the tumor antigens.
- PBMCs were either incubated in the absence of peptide or stimulated with 2 ug/mL peptides (VYGGSKTSL) (SEQ ID NO: 50) for a total of 5 hours with golgi 30 plug added 1 hour into the stimulation.
- VYGGSKTSL 2 ug/mL peptides
- golgi 30 plug added 1 hour into the stimulation.
- the PBMCs were stained for CD4, CD8 and IFN ⁇ and analyzed on FACSCanto and FlowJo.
- Cyclophosphamide is a chemotherapeutic agent used to treat various types of cancer. High doses of this drug are required for effective chemotherapy. High doses of CPA are thought to lead to immunosuppression while low doses of the drug can lead to enhanced immune responses against a variety of antigens. Surprisingly, in the heterologous prime-boost strategy of the current disclosure, CPA only results in an increase in immune response when administered prior to the priming of the immune system by the first virus.
- mice In order to generate lung metastases, C57BI/6 mice (8-10 weeks old at study initiation) were injected with 2.5 ⁇ 10 5 B16-F10 cells (murine melanoma cells expressing the murine DCT antigen) in 200 ⁇ l saline water i.v. at day 0.
- B16-F10 cells murine melanoma cells expressing the murine DCT antigen
- mice received an Ad-hDCT priming vaccine (2 ⁇ 10 8 pfu in 200 ⁇ l PBS i.v.) and this was followed 14 days later by a single i.v. dose of VSV-hDCT (2 ⁇ 10 9 pfu in 200 ⁇ l PBS i.v.) as an oncolytic booster vaccine.
- mice either received vehicle or CPA (1 mg/20 g mouse, i.p.) at day ( ⁇ 1) prior to the prime and/or day 13 prior to the boost.
- CPA given prior to the priming vector significantly increases survival while CPA administered prior to the boosting vector does not extend survival (data not shown).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Immunology (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Organic Chemistry (AREA)
- Virology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Oncology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
Abstract
There is described a kit for use in inducing an immune response in a mammal, the kit includes: a first virus that expresses MAGEA3, Human Papilloma Virus E6/E7 fusion protein, human Six-Transmembrane Epithelial Antigen of the Prostate protein, or Cancer Testis Antigen 1, or a variant thereof as an antigenic protein and that is formulated to generate an immunity to the protein or variant thereof in the mammal. The kit also includes a Maraba MG1 virus encoding the same antigen, or a variant of the same antigen. The Maraba MG1 virus is formulated to induce the immune response in the mammal. The first virus is immunologically distinct from the Maraba MG1 virus.
Description
- This application is a continuation of U.S. patent application Ser. No. 16/735,470, filed Jan. 6, 2020, now abandoned, which is a continuation of U.S. patent application Ser. No. 16/249,616, filed Jan. 16, 2019, now U.S. Pat. No. 10,646,557, which is a continuation of U.S. patent application Ser. No. 14/769,035, filed Aug. 19, 2015, now U.S. Pat. No. 10,363,293, which is a U.S. National Stage of International Patent Application No. PCT/CA2014/050118, filed Feb. 20, 2014, which claims the benefit of U.S. Provisional Patent Application No. 61/767,776, filed Feb. 21, 2013, the content of each of which is incorporated by reference herein in its entirety.
- This application incorporates by reference in its entirety the Computer Readable Form of a Sequence Listing in ASCII text format submitted via EFS-Web. The Sequence Listing text file submitted via EFS-Web is entitled “14596-060-999_SEQ_LISTING.txt,” was created on Dec. 9, 2020 and is 102,079 bytes in size.
- The present disclosure relates to oncolytic viruses for inducing an immune response.
- Oncolytic viruses (OVs) specifically infect, replicate in and kill malignant cells, leaving normal tissues unaffected. Several OVs have reached advanced stages of clinical evaluation for the treatment of various neoplasms (Russell S J. et al., (2012) Nat Biotechnol 30:658-670). Once approved, such viral agents could substitute or combine with standard cancer therapies and allow for reduced toxicity and improved therapeutic efficacy.
- In addition to the vesicular stomatitis virus (VSV) (Stojdl D F. et al., (2000) Nat Med 6:821-825; Stojdl D F. et al., (2003) Cancer Cell 4:263-275), other rhabdoviruses displaying oncolytic activity have been described recently (Brun J. et al., (2010) Mol Ther 18: 1440-1449; Mahoney DJ. et al., (2011) Cancer Cell 20:443-456). Among them, the non-VSV Maraba virus showed the broadest oncotropism in vitro (WO 2009/016433). A mutant Maraba virus with improved tumor selectivity and reduced virulence in normal cells was engineered. The attenuated strain is a double mutant strain containing both G protein (Q242R) and M protein (L123W) mutations. In vivo, this attenuated strain, called MG1 or Maraba MG1, demonstrated potent anti-tumor activity in xenograft and syngeneic tumor models in mice, with superior therapeutic efficacy than the attenuated VSV, VSV.6M51 (WO 2011/070440).
- Data accumulated over the past several years has revealed that anti-tumor efficacy of oncolytic viruses not only depends on their direct oncolysis but may also depend on their ability to stimulate anti-tumor immunity (Bridle S W. et al., (2010) Mol Ther 184:4269-4275). This immune-mediated tumor control seems to play a critical role in the overall efficacy of OV therapy. Indeed, tumor-specific adaptive immune cells can patrol the tissues and destroy tumor cells that have been missed by the OV. Moreover, their memory compartment can prevent tumor recurrence.
- Various strategies have been developed to improve OV-induced anti-tumor immunity (Pol J. et al., (2012) Virus Adaptation and Treatment 4:1-21). Some groups have genetically engineered OV expressing immunomostimulatory cytokines. A herpes simplex and a vaccinia virus expressing Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) have respectively reached phase III and IIB of the clinical evaluation for cancer therapy while a VSV expressing IFN-β has just entered phase I.
- Another strategy, defined as an oncolytic vaccine, consists of expressing a tumor antigen from the OV (Russell S J. et al., (2012) Nat Biotechnol 30:658-670). Previously, it has been demonstrated that VSV could also be used as a cancer vaccine vector (Bridle BW. et al., (2010) Mol Ther 184:4269-4275). When applied in a heterologous prime-boost setting to treat a murine melanoma model, a VSV-human dopachrome tautomerase (hDCT) oncolytic vaccine not only induced an increased tumor-specific immunity to DCT but also a concomitant reduction in antiviral adaptive immunity. As a result, the therapeutic efficacy was dramatically improved with an increase of both median and tong term survivals (WO 2010/105347). Although VSV was shown to be effective using hDCT as a tumor associated antigen, there is no way to predict what tumor associated antigens will be effective in a heterologous prime-boost setting.
- It is desirable to provide a vaccine vector that can be used to activate the patient's immune system to kill tumor cells with reduced toxicity to normal tissues, for example by activating antibodies and/or lymphocytes against a tumor associated antigen on the tumor. It is desirable if such a vaccine vector displays both oncolytic activity and an ability to boost adaptive cell immunity.
- The following summary is intended to introduce the reader to one or more inventions described herein but not to define any one of them.
- It is an object of the present disclosure to obviate or mitigate at least one disadvantage of previous anti-cancer vaccines.
- The authors of the present disclosure have surprisingly determined that MAGEA3, Human Papilloma Virus E6/E7 fusion protein, human Six-Transmembrane Epithelial Antigen of the Prostate protein, and Cancer Testis Antigen 1, are all able to be used in a heterologous prime-boost setting to induce an immune response in a mammal. These results are unexpected and not predictable since not all tumor associated antigens are able to induce an immune response via a heterologous prime-boost. For example, the authors of the present disclosure also determined that Placenta-specific protein 1 (PLAC-1) and Epstein-Barr Nuclear Antigen 1 were unable to stimulate an immune response via a heterologous prime-boost.
- In a first aspect, there is provided a kit for use in inducing an immune response in a mammal. The kit includes: a first virus that expresses a protein comprising an amino acid sequence of SEQ ID NO: 1, or a variant thereof, as an antigenic protein and that is formulated to generate an immunity to the protein or variant thereof in the mammal. The kit also includes a Maraba MG1 virus encoding a protein comprising an amino acid sequence SEQ ID NO: 1, or a variant thereof, as an antigenic protein, the Maraba MG1 virus formulated to induce the immune response in the mammal; the first virus being immunologically distinct from the Maraba MG1 virus. The antigenic protein expressed by the first virus and the antigenic protein expressed by the Maraba MG1 virus may be identical.
- The first virus, the Maraba MG1 virus, or both, may be formulated for administration as isolated viruses.
- The Maraba MG1 virus may include a reverse complement and RNA version of a transgene comprising a nucleotide sequence of SEQ ID NO: 2. The Maraba MG1 virus may include a reverse complement and RNA version of a codon optimized transgene comprising a nucleotide sequence of SEQ ID NO: 3.
- The first virus may include a transgene comprising a nucleotide sequence of SEQ ID NO: 2 or 3, or may include a reverse complement and RNA version of a transgene comprising a nucleotide sequence of SEQ ID NO: 2 or 3, depending on whether the first virus is a positive sense RNA virus, a DNA virus, or a negative sense RNA virus.
- The two viruses may be capable of expressing different variants of the protein that comprises the sequence of SEQ ID NO: 1. The variant of the protein comprising an amino acid sequence of SEQ ID NO: 1 that is expressed by the first virus, the Maraba MG1 virus, or both, may include at least one tumor associated epitope selected from the group consisting of: FLWGPRALV (SEQ ID NO: 27), KVAELVHFL (SEQ ID NO: 28), EGDCAPEEK (SEQ ID NO: 35), KKLLTQHFVQENYLEY (SEQ ID NO: 36), and RKVAELVHFLLLKYR (SEQ ID NO: 37), and be at least 70% identical to SEQ ID NO: 1. Preferably, the variant will be at least 80% identical to SEQ ID NO: 1. More preferably, the variant will be at least 90% identical to SEQ ID NO: 1. Even more preferably, the variant will be at least 95% identical to SEQ ID NO: 1.
- The variant of the protein comprising an amino acid sequence of SEQ ID NO: 1 that is expressed by the first virus, the Maraba MG1 virus, or both, may have an amino acid sequence of SEQ ID NO: 4. The nucleotide sequence that encodes the variant may include a nucleotide sequence of SEQ ID NO: 5.
- The Maraba MG1 virus may include a reverse complement and RNA version of a nucleotide sequence of SEQ ID NO: 5. The first virus may include a transgene comprising a nucleotide sequence of SEQ ID NO: 5, or may include a reverse complement and RNA version of a transgene comprising a nucleotide sequence of SEQ ID NO: 5, depending on whether the first virus is a positive sense RNA virus, a DNA virus, or a negative sense RNA virus.
- If the first virus is a negative sense RNA virus, one of either the Maraba MG1 virus or the first virus may include a reverse complement and RNA version of a nucleotide sequence of SEQ ID NO: 2 or 3, and the other of the Maraba MG1 virus and the first virus may include a reverse complement and RNA version of SEQ ID NO: 5.
- If the first virus is a positive sense RNA virus or a DNA virus, the Maraba MG1 virus may include a reverse complement and RNA version of a nucleotide sequence of SEQ ID NO: 2 or 3, and the first virus may include a nucleotide sequence of SEQ ID NO: 5. Alternatively, the Maraba MG1 virus may include a reverse complement and RNA version of a nucleotide sequence of SEQ ID NO: 5, and the first virus may include a nucleotide sequence of SEQ ID NO: 2 or 3.
- One of either the Maraba MG1 virus or the first virus may be capable of expressing a protein that comprises the sequence of SEQ ID NO: 1 or 4, and the other of the Maraba MG1 virus and the first virus may be capable of expressing a protein that comprises the other sequence.
- The first virus may be an adenovirus.
- According to another aspect, there is provided an isolated Maraba MG1 viral particle having a genome that encodes a protein comprising an amino acid sequence of SEQ ID NO: 1, or a variant thereof.
- The variant of the protein comprising an amino acid sequence of SEQ ID NO: 1 may have an amino acid sequence of SEQ ID NO: 4.
- The genome may include a reverse complement and RNA version of a nucleotide sequence of SEQ ID NO: 2 or 3.
- The genome may include a reverse complement and RNA version of a nucleotide sequence of SEQ ID NO: 5.
- The genome may include a reverse complement and RNA version of a nucleotide sequence of SEQ ID NO: 6.
- In another aspect, there is provided a kit for use in inducing an immune response in a mammal. The kit includes: a first virus that expresses a protein comprising an amino acid sequence of SEQ ID NO: 7, or a variant thereof, as an antigenic protein and that is formulated to generate an immunity to the protein or variant thereof in the mammal. The kit also includes a Maraba MG1 virus encoding a protein comprising an amino acid sequence of SEQ ID NO: 7, or a variant thereof, as an antigenic protein, the Maraba MG1 virus formulated to induce the immune response in the mammal; the first virus being immunologically distinct from the Maraba MG1 virus. The antigenic protein expressed by the first virus and the antigenic protein expressed by the Maraba MG1 virus may be identical.
- The first virus, the Maraba MG1 virus, or both, may be formulated for administration as isolated viruses.
- If the first virus is a negative sense RNA virus, the Maraba MG1 virus, the first virus, or both may include a reverse complement and RNA version of a codon optimized transgene comprising a nucleotide sequence of SEQ ID NO: 8. If the first virus is a DNA virus or a positive sense RNA virus, the first virus may include a codon optimized transgene comprising a nucleotide sequence of SEQ ID NO: 8.
- The variant of the protein comprising an amino acid sequence of SEQ ID NO: 7 that is expressed by the first virus, the Maraba MG1 virus, or both, may include at least one tumor associated epitope and be at least 70% identical to SEQ ID NO: 7. Preferably, the variant will be at least 80% identical to SEQ ID NO: 7. More preferably, the variant will be at least 90% identical to SEQ ID NO: 7. Even more preferably, the variant will be at least 95% identical to SEQ ID NO: 7.
- One of either the Maraba MG1 virus or the first virus may be capable of expressing a protein that comprises the sequence of SEQ ID NO: 7, and the other of the Maraba MG1 virus and the first virus may be capable of expressing a variant of a protein that comprises the sequence of SEQ ID NO: 7. The two viruses may be capable of expressing different variants of the protein that comprises the sequence of SEQ ID NO: 7.
- The first virus may be a lentivirus.
- According to another aspect, there is provided an isolated Maraba MG1 viral particle having a genome that encodes a protein comprising an amino acid sequence of SEQ ID NO: 7, or a variant thereof.
- The genome may include a reverse complement and RNA version of a nucleotide sequence of SEQ ID NO: 8.
- The genome may include a nucleotide sequence that is the reverse complement and RNA version of SEQ ID NO: 9.
- In another aspect, there is provided a kit for use in inducing an immune response in a mammal. The kit includes: a first virus that expresses a protein comprising an amino acid sequence of SEQ ID NO: 10, or a variant thereof, as an antigenic protein and that is formulated to generate an immunity to the protein or variant thereof in the mammal. The kit also includes a Maraba MG1 virus encoding a protein comprising an amino acid sequence of SEQ ID NO: 10, or a variant thereof, as an antigenic protein, the Maraba MG1 virus formulated to induce the immune response in the mammal; the first virus being immunologically distinct from the Maraba MG1 virus. The antigenic protein expressed by the first virus and the antigenic protein expressed by the
Maraba MG 1 virus may be identical. - The first virus, the Maraba MG1 virus, or both, may be formulated for administration as isolated viruses.
- If the first virus is a negative sense RNA virus, the Maraba MG1 virus, the first virus, or both may include a reverse complement and RNA version of a codon optimized transgene comprising a nucleotide sequence of SEQ ID NO: 11. If the first virus is a DNA virus or a positive sense RNA virus, the first virus may include a codon optimized transgene comprising a nucleotide sequence of SEQ ID NO: 11.
- The variant of the protein comprising an amino acid sequence of SEQ ID NO: 10 that is expressed by the first virus, the Maraba MG1 virus, or both, may include at least one tumor associated epitope and be at least 70% identical to SEQ ID NO: 10. Preferably, the variant will be at least 80% identical to SEQ ID NO: 10. More preferably, the variant will be at least 90% identical to SEQ ID NO: 10. Even more preferably, the variant will be at least 30 95% identical to SEQ ID NO: 10.
- One of either the Maraba MG1 virus or the first virus may be capable of expressing a protein that comprises the sequence of SEQ ID NO: 10, and the other of the Maraba MG1 virus and the first virus may be capable of expressing a variant of a protein that comprises the sequence of SEQ ID NO: 10. The two viruses may be capable of expressing different variants of the protein that comprises the sequence of SEQ ID NO: 10.
- The first virus may be a lentivirus.
- According to another aspect, there is provided an isolated Maraba MG1 viral particle having a genome that encodes a protein comprising an amino acid sequence of SEQ ID NO: 10, or a variant thereof.
- The genome may include a reverse complement and RNA version of a nucleotide sequence of SEQ ID NO: 11.
- The genome may include a nucleotide sequence that is the reverse complement and RNA version of SEQ ID NO: 12.
- In another aspect, there is provided a kit for use in inducing an immune response in a mammal. The kit includes: a first virus that expresses a protein comprising an amino acid sequence of SEQ ID NO: 13, or a variant thereof, as an antigenic protein and that is formulated to generate an immunity to the protein or variant thereof in the mammal. The kit also includes a Maraba MG1 virus encoding a protein comprising an amino acid sequence of SEQ ID NO: 13, or a variant thereof, as an antigenic protein, the Maraba MG1 virus formulated to induce the immune response in the mammal; the first virus being immunologically distinct from the Maraba MG1 virus. The antigenic protein expressed by the first virus and the antigenic protein expressed by the Maraba MG1 virus may be identical.
- The first virus, the Maraba MG1 virus, or both, may be formulated for administration as isolated viruses.
- If the first virus is a negative sense RNA virus, the Maraba MG1 virus, the first virus, or both may include a reverse complement and RNA version of a codon optimized transgene comprising a nucleotide sequence of SEQ ID NO: 14. If the first virus is a DNA virus or a positive sense RNA virus, the first virus may include a codon optimized transgene comprising a nucleotide sequence of SEQ ID NO: 14.
- The variant of the protein comprising an amino acid sequence of SEQ ID NO: 13 that is expressed by the first virus, the Maraba MG1 virus, or both, may include at least one tumor associated epitope and be at least 70% identical to SEQ ID NO: 13. Preferably, the variant will be at least 80% identical to SEQ ID NO: 13. More preferably, the variant will be at least 90% identical to SEQ ID NO: 13. Even more preferably, the variant will be at least 95% identical to SEQ ID NO: 13.
- One of either the Maraba MG1 virus or the first virus may be capable of expressing a protein that comprises the sequence of SEQ ID NO: 13, and the other of the Maraba MG1 virus and the first virus may be capable of expressing a variant of a protein that comprises the sequence of SEQ ID NO: 13. The two viruses may be capable of expressing different variants of the protein that comprises the sequence of SEQ ID NO: 13.
- The first virus may be a lentivirus.
- According to another aspect, there is provided an isolated Maraba MG1 viral particle having a genome that encodes a protein comprising an amino acid sequence of SEQ ID NO: 13, or a variant thereof.
- The genome may include a reverse complement and RNA version of a nucleotide sequence of SEQ ID NO: 14.
- The genome may include a nucleotide sequence that is the reverse complement and RNA version of SEQ ID NO: 15.
- Other aspects and features of the present disclosure will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments in conjunction with the accompanying figures.
- Embodiments of the present disclosure will now be described, by way of example only, with reference to the attached Figures.
-
FIG. 1A shows the CD8+ or CD4+ T-cell responses in tumor-bearing mice administered with MG1-hDCT. -
FIG. 1B shows the therapeutic efficacy of MG1-hDCT administered as a priming vector only in a metastatic lung cancer mouse model. -
FIG. 2 shows the comparison of the immune response of a prime-boost vaccination in C57/BI6 mice with Ad-hDCT as the priming vector and either Maraba MG1-hDCT or VSV-hDCT as the boosting vector. -
FIG. 3 shows the T-cell response in a metastatic lung cancer mouse model following Ad-empty or Ad-hDCT, as the priming vector only or following prime-boost vaccination with Ad-hDCT, as the priming vector and either Maraba MG1 GFP or Maraba MG1-hDCT, as the boosting vector. -
FIG. 4 shows the survival plot in a metastatic lung cancer mouse model following Ad-empty or Ad-hDCT, as the priming vector only or following prime-boost vaccination with Ad-hDCT, as the priming vector and either Maraba MG1 GFP or Maraba MG1-hDCT, as the boosting vector. -
FIG. 5 shows the survival plot in a metastatic brain cancer mouse model following Ad-empty or Ad-hDCT, as the priming vector only or following prime-boost vaccination with Ad-hDCT, as the priming vector and Maraba MG1-hDCT, as the boosting vector. -
FIG. 6 is a diagram of the priming vector Ad-MAGEA3, the boosting vector Maraba MG1-MAGEA3 and the prime-boost strategy utilized in a primate toxicity/immunogenicity study. -
FIG. 7 shows the average T-cell response in primates given Ad-MAGEA3 as the priming vector and a high or low dose of MG1-MAGEA3 as the boosting vector. The T-cell responses were determined after 5, 13 and 84 days following the boosting vector. -
FIG. 8 shows the T-cell responses in individual primates given Ad-MAGEA3 as the priming vector and MG1-MAGEA3 as the boosting vector after 5 days following the boosting vector. The T-cell responses were stratified in relation to the MAGEA3 peptide pool used to stimulate the response. -
FIG. 9 shows the survival plot in a metastatic lung cancer mouse model following Ad-hDCT versus Ad-hDCT plus Cyclophosphamide, as the priming vector only or following prime-boost vaccination with Ad-hDCT versus Ad-hDCT plus Cyclophosphamide, as the priming vector and VSV-hDCT, as the boosting vector. - The present disclosure provides a kit for use in inducing an immune response in a mammal. The kit includes a first virus that expresses MAGEA3, a Human Papilloma Virus E6/E7 fusion protein, human Six-Transmembrane Epithelial Antigen of the Prostate protein, or
Cancer Testis Antigen 1, or a variant thereof, as an antigen and that is formulated to generate an immunity to the antigen in the mammal. The kit also includes a Maraba MG1 virus encoding the same antigen, or a variant of the same antigen, the Maraba MG1 virus formulated to induce the immune response in the mammal. The first virus is immunologically distinct from the Maraba MG1 virus so that it may act as the “prime” in a heterologous prime-boost vaccination. - Prime:boost immunizations can be given with unmatched vaccine delivery methods while using the same antigen, in a ‘heterologous’ prime-boost format; or with matched vaccine delivery methods, in a ‘homologous’ prime-boost. Heterologous prime-boost methods are preferable when using vectored vaccine platforms as homologous vaccination would lead to boosting of responses to both the vector and the transgene in the secondary response. In contrast, a heterologous system focuses the secondary response (that is, the boosted response) on the antigen as responses against the first and the second vector are primary responses, and are therefore much less robust.
- In the present disclosure, the first virus and the Maraba MG1 virus are used in a heterologous prime-boost format.
- The antigenic proteins listed above are self-antigens already tolerized by the immune system through a tightly controlled process of negative selection in the thymus (Kruisbeek A M and Amsen D, (1996) Curr Opin Immunol 8:233-244; Stockinger B (1999) Adv Immunol 71:229-265) or peripheral tolerization. The major challenge with developing vaccines to these antigenic proteins, and any other self-antigens, is to induce a strong immune response directed selectively against cancer cells. Although a number of tumor associated antigenic peptides have been discovered, the authors of the present disclosure have determined that is impossible to predict which tumor associated antigenic peptides can be successfully used to develop vaccines.
- Melanoma antigen, family A,3 (MAGEA3) is a “cancer testis antigen”. The MAGE family of genes encoding tumor specific antigens is discussed in De Plaen et al., Immunogenetics 40:360-369 (1994), MAGEA3 is expressed in a wide variety of tumors including melanoma, colorectal and lung. This protein was used by the authors of the present disclosure as the antigenic protein in both the first virus and the
Maraba MG 1 virus. The authors also used a variant of the MAGEA3 protein as the antigenic protein in both the first virus and theMaraba MG 1 virus. - Human Papilloma Virus (HPV) oncoproteins E6/E7 are constitutively expressed in cervical cancer (Zur Hausen, H (1996) Biochem Biophys Acta 1288:F55-F78). Furthermore, IIPV types 16 and 18 are the cause of 75% of cervical cancer (Walboomers J M (1999) J Pathol 189:12-19). The authors of the present disclosure used a fusion protein of the E6/E7 oncoproteins of HPV types 16 and 18 as the antigenic protein. The fusion protein was expressed using a nucleotide sequence coexpressing HPV type 16/18 E6/E7 as a fusion protein, which was mutated to remove oncogenic potential. The fusion protein was used by the authors of the present disclosure as the antigenic protein in both the first virus and the Maraba MG1 virus.
- Six-Transmembrane Epithelial Antigen of the Prostate (huSTEAP) is a recently identified protein shown to be overexpressed in prostate cancer and up-regulated in multiple cancer cell lines, including pancreas, colon, breast, testicular, cervical, bladder, ovarian, acute lymphocytic leukemia and Ewing sarcoma (Hubert R S et al., (1999) Proc Natl Acad Sci 96:14523-14528). The STEAP gene encodes a protein with six potential membrane-spanning regions flanked by hydrophilic amino- and carboxyl-terminal domains. This protein was used by the authors of the present disclosure as the antigenic protein in both the first virus and the Maraba MG1 virus.
- Cancer Testis Antigen 1 (NYESO1) is a cancer/testis antigen expressed in normal adult tissues, such as testis and ovary, and in various cancers (Nicholaou T et al., (2006) Immunol Cell Biel 84:303-317). Cancer testis antigens are a unique family of antigens, which have restricted expression to testicular germ cells in a normal adult but are aberrantly expressed on a variety of solid tumors, including soft tissue sarcomas, melanoma and epithelial cancers. This protein was used by the authors of the present disclosure as the antigenic protein in both the first virus and the
Maraba MG 1 virus. - In contrast to the successful use of the MAGEA3, HPV E6/E7 fusion, the huSTEAP, and the NYESO1 proteins as antigenic proteins in a heterologous prime-boost vaccine, the authors of the present disclosure determined that Epstein-Barr Nuclear Antigen 1 (EBDNA1, SEQ ID NO: 16, encoded by SEQ ID NO: 17) was unable to generate a similar immune response. EBDNA1 is a multifunctional viral protein associated with Epstein-Barr virus (EBV) (Sibille H et al., (2003) Proc Natl Acad Sci 100:10989-10994) and consistently expressed in EBV-associated tumors (Young L S et al., (2004) Nature Reviews—Cancer 4:757-768). EBNA1 has a glycine-alanine repeat sequence that separates the protein into amino- and carboxy-terminal domains (Young LS (2004) Nature Reviews—Cancer 4:757-768). This sequence also seems to stabilize the protein, preventing proteasomal breakdown, as well as impairing antigen processing and MHC class I-restricted antigen presentation. This thereby inhibits the CDB-restricted cytotoxic T cell response against virus-infected cells (Levitskaya J et al., (1995) Nature 375:685-688).
- Placenta-specific protein 1 (PLAC-1) is another example of a tumor associated antigenic protein that was unable to generate an immune response in a heterologous prime-boost vaccine.
- In the context of the present disclosure, a “variant” of a tumor associated antigenic protein refers to a protein that (a) includes at least one tumor associated antigenic epitope from the tumor associated antigenic protein and (b) is at least 70% identical to the tumor associated antigenic protein. Preferably, the variant will be at least 80% identical to the tumor associated antigenic protein. More preferably, the variant will be at least 90% identical to the tumor associated antigenic protein. Even more preferably, the variant will be at least 95% identical to the tumor associated antigenic protein. Variants with higher sequence identities have increased likelihood that the epitopes are presented in a similar 3-dimensional manner to the wild type antigenic proteins.
- Generally, a tumor associated antigenic epitope may be identified by breaking up the whole antigenic protein into overlapping series of peptides, or by generating libraries of random peptides, and looking for T cell responses by stimulating PBMCs or splenocytes from animals vaccinated with the protein target using the peptide pools. Pools having a response identify that peptide as a potential antigenic epitope. This approach is discussed by Morris, GE in Encyclopedia of Life Sciences, 2007, page 1-3 (doi:10.1002/9780470015902.a0002624.pub2).
- A database summarizing well accepted antigenic epitopes is provided by Van der Bruggen P, Stroobant V, Vigneron N, Van den Eynde Bin “Database of T cell-defined human tumor antigens: the 2013 update.” Cancer Immun 2013 13:15 and at www.cancerimmunity.org/peptide/.
- Tumor associated antigenic epitopes have been already identified for MAGEA3. Accordingly, a variant of the MAGEA3 protein may be, for example, an antigenic protein that includes at least one tumor associated antigenic epitope selected from the group consisting of: EVDPIGHLY (SEQ ID NO: 26), FLWGPRALV (SEQ ID NO: 27), KVAELVHFL (SEQ ID NO: 28), TFPDLESEF (SEQ ID NO: 29), VAELVHFLL (SEQ ID NO: 30), MEVDPIGHLY (SEQ ID NO: 31), REPVTKAEML (SEQ ID NO: 32), AELVHFLLL (SEQ ID NO: 33), WQYFFPVIF (SEQ ID NO: 34), EGDCAPEEK (SEQ ID NO: 35), KKLLTQHFVQENYLEY (SEQ ID NO: 36), RKVAELVHFLLLKYR (SEQ ID NO: 37), ACYEFLWGPRALVETS (SEQ ID NO: 38), VIFSKASSSLQL (SEQ ID NO: 39), VFGIELMEVDPIGHL (SEQ ID NO: 40), GDNQIMPKAGLLIIV (SEQ ID NO: 41), TSYVKVLHHMVKISG (SEQ ID NO: 42), RKVAELVHFLLLKYRA (SEQ ID NO: 43), and FLLLKYRAREPVTKAE (SEQ ID NO: 44); and that is at least 70% identical to the MAGEA3 protein.
- It may be desirable for variants of a tumor associated antigenic protein to include only antigenic epitopes that have high allelic frequencies, such as frequencies greater than 40% of the population. Accordingly, preferred examples of variants of MAGEA3 may include proteins that include at least one antigenic epitope selected from the group consisting of: FLWGPRALV (SEQ ID NO: 27), KVAELVHFL (SEQ ID NO: 28), EGDCAPEEK (SEQ ID NO: 35), KKLLTQHFVQENYLEY (SEQ ID NO: 36), and RKVAELVHFLLLKYR (SEQ ID NO: 37) and that is at least 70% identical to the MAGEA3 protein.
- The antigen expressed by the first virus does not need to have exactly the same sequence as the antigen expressed by the Maraba MG1 virus. The antigen expressed by Maraba MG1 must only induce an overlapping immune response to the antigen expressed by the first virus. For example, the first virus may express the MAGEA3 and the Maraba MG virus may express a MAGEA3 variant, or vice versa. Since both MAGEA3 and the variant of MAGEA3 induce overlapping immune responses (as they both include at least one identical tumor associated antigenic sequence), the first virus acts as the prime and the Maraba MG1 virus acts as the boost. It is sufficient that the immune response generated in the mammal to the first antigen results in an immune response primarily to the MAGEA3 or MAGEA3 variant when the Maraba MG1 virus is administered.
- In the context of the present disclosure, it should be understood that all discussions of, and references to, a ‘protein expressed by a virus’ more exactly refer to a protein expressed by a cell infected with the virus since viruses do not themselves have the capability to express proteins. Similarly, all discussions of, and references to, a ‘virus that expresses a protein’ or ‘virus capable of expressing a protein’ more exactly refer to a virus that includes the genetic information necessary for the protein to be expressed by a cell infected with the virus.
- The kit may additionally include an immune-potentiating compound, such as cyclophosphamide (CPA), that increases the prime immune response to the tumor associated antigenic protein generated in the mammal by administrating the first virus. Cyclophosphamide is a chemotherapeutic agent that may lead to enhanced immune responses against the tumor associated antigenic protein. In a synergistic murine melanoma 25 tumor model, CPA administered prior to the priming vector significantly increased survival, while CPA administered prior to the boosting vector did not.
- The therapeutic approach disclosed herein combines: (1) a viral vaccine, and (2) Maraba MG1 virus as an oncolytic viral vaccine, both expressing MAGEA3, Human Papilloma Virus E6/E7 fusion protein, human Six-Transmembrane Epithelial Antigen of the Prostate protein, or
Cancer Testis Antigen 1, or a variant thereof. Boosting with the oncolytic vaccine may lead to both tumor debulking by the oncolytic virus and a large increase in the number of tumor-specific CTL (cytotoxic T-lymphocytes) in animals primed by the viral vaccine. Paradoxically, this methodology actually generates larger anti-tumor responses in tumor-bearing, as compared to tumor-free, animals since the replication of oncolytic virus is amplified in the tumor-bearing animals, which leads to an increase in the number of antigen-specific Tumor Infiltrating Lymphocytes (TILs), when compared to the replication of oncolytic virus in the tumor-free animals and the associated number of antigen-specific Tumor Infiltrating Lymphocytes (TILs). - The expression products of these genes are processed into peptides, which, in turn, are expressed on cell surfaces. This can lead to lysis of the tumor cells by specific CTLs. The T cell response to foreign antigens includes both cytolytic T lymphocytes and helper T lymphocytes. CD8+ cytotoxic or cytolytic T cells (CTLs) are T cells which, when activated, lyse cells that present the appropriate antigen presented by HLA class I molecules. CD4+ T helper cells are T cells which secrete cytokines to stimulate macrophages and antigen-producing B cells which present the appropriate antigen by HLA class II molecules on their surface.
- The protein “MAGEA3” may be also referred to as “MAGE-A3” and stands for melanoma-associated
antigen 3. The antigenic MAGEA3 protein according to the present disclosure is a protein that includes the amino acid sequence of SEQ ID NO: 1. This amino acid sequence may be encoded by the nucleotide sequence of SEQ ID NO: 2. Alternatively, the amino acid sequence may be encoded by a codon optimized transgene that includes the nucleotide sequence of SEQ ID NO: 3. A negative sense RNA virus that expresses the protein of SEQ ID NO: 1 may include a reverse complement and RNA version of a polynucleotide of SEQ ID NO: 2 or 3. A positive sense RNA virus or a DNA virus that expresses the protein of SEQ ID NO: 1 may include a sequence that is SEQ ID NO: 2 or 3. - An example of an antigenic MAGEA3 variant protein according to the present disclosure is a protein that includes the amino acid sequence of SEQ ID NO: 4. This amino acid sequence may be encoded by the nucleotide sequence of SEQ ID NO: 5. A negative sense RNA virus that expresses the protein of SEQ ID NO: 4 may include an RNA polynucleotide which includes a sequence that is a reverse complement and RNA version of SEQ ID NO: 5. A DNA virus or RNA virus that expresses the protein of SEQ ID NO: 4 may include a sequence that is SEQ ID NO: 5.
- One example of such a negative sense RNA virus is a Maraba virus that includes the reverse complement and RNA version of SEQ ID NO: 6.
- The antigenic protein “E6/E7 fusion protein” or “Human Papilloma Virus E6/E7 fusion protein” according to the present disclosure is a protein that includes the amino acid sequence of SEQ ID NO: 7. This amino acid sequence may be encoded by the nucleotide sequence of SEQ ID NO: 8. A negative sense RNA virus that expresses the protein of SEQ ID NO: 7 may include a reverse complement and RNA version of a polynucleotide of SEQ ID NO: 8. A DNA virus or a positive sense RNA virus that expresses the protein of SEQ ID NO: 7 may include a polynucleotide of SEQ ID NO: 8. One example of such a negative sense RNA virus is a Maraba virus that includes the reverse complement and RNA version of SEQ ID NO: 9.
- The protein “huSTEAP” or “human Six-Transmembrane Epithelial Antigen of the Prostate protein” according to the present disclosure is a protein that includes the amino acid sequence of SEQ ID NO: 10. This amino acid sequence may be encoded by the nucleotide sequence of SEQ ID NO: 11. A negative sense RNA virus that expresses the protein of SEQ ID NO: 10 may include a reverse complement and RNA version of a polynucleotide of SEQ ID NO: 11. A DNA virus or RNA virus that expresses the protein of SEQ ID NO: 10 may include a sequence that is SEQ ID NO: 11. One example of such a negative sense RNA virus is a Maraba virus that includes the reverse complement and RNA version of SEQ ID NO: 12.
- The protein “NYESO1” or “human
Cancer Testis Antigen 1” according to the present disclosure is a protein that includes the amino acid sequence of SEQ ID NO: 13. This amino acid sequence may be encoded by the nucleotide sequence of SEQ ID NO: 14. A negative sense RNA virus that expresses the protein of SEQ ID NO: 13 may include a reverse complement and RNA version of a polynucleotide of SEQ ID NO: 14. A DNA virus or RNA virus that expresses the protein of SEQ ID NO: 13 may include a sequence that is SEQ ID NO: 14. One example of such a negative sense RNA virus is a Maraba virus that includes the reverse complement and RNA version of SEQ ID NO: 15. - The above noted sequences are shown in Appendix A.
- The term “mammal” refers to humans as well as non-human mammals. The term “cancer” is used herein to encompass any cancer that expresses the tumor associated antigenic protein (that is: MAGEA3, Human Papilloma Virus E6/E7 fusion protein, human Six-Transmembrane Epithelial Antigen of the Prostate protein, or Cancer Testis Antigen 1) used in the viruses of interest.
- For example, when considering MAGEA3 as an antigenic protein, the term “cancer” encompasses any cancer that expresses MAGEA3 as an antigen. Examples of such a cancer include, but are not limited to, melanoma, non-small cell lung cancer, head and neck cancer, colorectal cancer, and bladder cancer.
- When considering E6/E7 fusion protein as an antigenic protein, the term “cancer” encompasses any cancer that expresses E6 and E7 proteins as antigenic proteins. Examples of such a cancer include, but are not limited to, cervical cancer.
- The first virus, the Maraba MG1 virus, or both may be independently administered to the mammal intravenously, intramuscularly, intraperitoneally, or intranasally. Following administration of the viruses, an immune response is generated by the mammal within an immune response interval, e.g. within about 4 days, and extending for months, years, or potentially life.
- The first virus may be any virus that induces an immune response to the tumor associated antigenic protein or variant thereof after the first virus is administered to the patient. Viruses that may be used according to the present disclosure include, for example: adenovirus (Ad), poxvirus, retrovirus, and alpha virus. An example of a poxvirus is vaccinia virus. An example of a retrovirus is lentivirus. An example of an alpha virus is semliki forest virus.
- To establish an immune response to the tumor associated antigenic protein or variant thereof, vaccination using the first virus and the Maraba MG1 virus may be conducted using well-established techniques. As one of skill in the art will appreciate, the amount of virus required to generate an immune response will vary with a number of factors, including, for example, the selected antigen, the viral vector used to deliver the antigen, and the mammal to be treated, e.g. species, age, size, etc. In this regard, for example, intramuscular administration of at least about 107 PFU of Adenoviral vector to a mouse is sufficient to generate an immune response. A corresponding amount would be sufficient for administration to a human to generate an immune response.
- Once an immune response has been generated in the mammal by administration of the first virus, Maraba MG1 virus encoding the tumor associated antigenic protein or a variant thereof is administered in an amount suitable for oncolytic viral therapy within a suitable immune response interval. A suitable immune response interval may be, for example, at least about 24 hours, preferably at least about 2-4 days or longer, e.g. at least about 1 week, or at least about 2 weeks. The amount of Maraba MG1 virus suitable for oncolytic viral therapy will vary with the mammal to be treated, as will be appreciated by one of skill in the art. For example, 108 PFU of Maraba MG1 virus encoding MAGEA3 administered IV to a mouse is sufficient for oncolytic therapy. A corresponding amount would be sufficient for use in a human.
- Maraba MG1 virus encoding tumor associated antigenic protein or a variant thereof may be prepared by incorporating a reverse complement of a transgene encoding the tumor associated antigenic protein or a variant thereof into the Maraba MG1 virus using standard recombinant technology. For example, the reverse complement of the transgene may be incorporated into the genome of the Marama MG1 virus, or alternatively, may be incorporated into the virus using a plasmid incorporating the transgene. The transgene encoding the tumor may be a codon optimized transgene.
- The oncolytic Maraba MG1 is a potent oncolytic vaccine platform. While unable to prime detectable responses against a melanoma-associated antigen, Maraba MG1-vaccine displayed the ability to boost preexisting tumor-specific CD4+ and CD8+ T-cell immunity. When applied to the treatment of syngeneic murine melanoma tumor models, Maraba-MG1-mediated recall immunization resulted in an extension of the median survival with complete remission in more than 20% of the animals treated.
- In a primate toxicity study heterologous prime-boost vaccination with an Ad-MAGEA3 prime followed by a Maraba-MG1-MAGEA3 boost resulted in T-cell responses that were comparable to those obtained in syngeneic murine tumor models demonstrating that in an outbred primate population the prime-boost oncolytic vaccine strategy gives immune responses comparable to animal models where tumors can be engrafted and a dramatic extension of survival is attained.
- The authors of the present disclosure also determined that proteins having the sequence SEQ ID NOs: 7, 10, or 13 could be used to stimulate an immune response in a patient using a heterologous prime boost with Maraba MG1. In contrast, the authors of the present disclosure determined that administration of a first virus expressing EBDNA-1 protein or Placenta-specific protein 1 (PLAC-1) followed by administration of Maraba-MG1 expressing EBDNA-1 protein or PLAC-1, respectively, was unable to stimulate an immune response.
- Ad-empty and Ad-hDCT are replication-deficient adenoviruses (E1/E3-deletion) based on the human serotype 5 (Lane C. et al., (2004) Cancer Research 64:1509-1514; Ng P. et al., (2001) Mol Ther 3:809-815). The replication-deficient adenovirus vector was engineered to express the hDCT transgene, which encodes the full length human melanoma associated antigen DCT (dopachrome tautomerase) while Ad-empty has no transgene. The resulting adenovirus vector is termed “Ad-hDCT”.
- The MG1 variant of Maraba virus was engineered to express the human form of the melanoma-associated antigen hDCT transgene. The resulting MG1 virus vector is termed “MG1-hDCT” or “Maraba MG1-hDCT”. Other virus vectors are named using a similar convention.
- Recombinant Maraba and VSV were generated by transgene insertion between the G and L viral genes. VSV-hDCT derives from the wild-type Indiana strain of the VSV (Bridle BW. et al. (2009) 17:1814-1821; Lawson N D. et al., (1995) Proc Natl Acad Sci USA 92:4477-4481). MG1-GFP (Green Flourescent Protein used as a control non-immunogenic transgene insertion) and MG1-hDCT derive from the attenuated strain MG1 of Maraba virus. Prior to in vivo studies, DCT (and GFP) expression from the virus was confirmed by western blot of lysates from infected Vero cells cultured in alpha-MEM containing 10% FBS, 2 mM L-glutamine, 100 U/ml penicillin, and 1 00 mg/ml streptomycin (all from Invitrogen, Grand Island, N.Y.).
- The therapeutic efficacy of MG1-hDCT administered as a monotherapy was evaluated initially. In order to generate lung metastases, C57BI/6 mice (8-10 weeks old at study initiation) were injected i.v. with 2.5×105 B16-F10 cells (murine melanoma cells expressing the murine DCT antigen) in 200 μl saline water. The oncolytic vaccine was injected systemically 5 or 14 days later and T-cell responses against the melanoma antigen DCT were measured in the blood at
day 19. The virus was administered systemically at a high dose (109 pfu i.v in 200 μl PBS). T-cell responses were measured by isolating PBMCs or splenocytes and stimulating them with the SVYDFFVWL (SEQ ID NO: 45) (SVY) or KFFHRTCKCTGNFA (SEQ ID NO: 46), (KFF) peptides corresponding to the MHC-I or MHC-II restricted immunodominant epitopes of DCT, respectively. Responding T-cells were detected after intracellular cytokine staining (ICS) for IFN-γ by flow cytometry. - As shown in
FIGS. 1A and 1B , MG1-hDCT was unable to prime DCT-specific CD8+ or CD4+ T-cell responses in tumor-bearing mice (FIG. 1A ). Administered alone, the MG1-hDCT vaccine did not improve tumor outcome. Indeed, mice treated 14 days post-tumor challenge reached endpoint in a similar timeframe as untreated mice: after 20 days for the Ad-empty control group versus 21 days for the Ad-empty+MG1-hDCT group (FIG. 1B ). Moreover, survival was not extended even when mice were treated with MG1-hDCT as early as 5 days after tumor engraftment (MG1-hDCT group,FIG. 1B ). In conclusion, not only did MG1-hDCT fail to induce anti-DCT immunity but its oncolytic activity offered no therapeutic benefit. These results demonstrate that MG1-hDCT is unable to prime significant T-cell responses against the tumor antigen DCT and is thus a weak priming vector. - It was previously reported that an oncolytic VSV vector serves as a potent booster of pre-existing immunity (Bridle BW. et al., (2010) Mol Ther 184:4269-4275; WO 2010/105347). In the present disclosure, the ability of Maraba MG1 virus to serve as a booster vaccine was examined. Adenoviral vectors were used as priming vectors and administered intramuscularly (i.m.) at a total dose of 2×108 pfu (1×108 pfu in 50 μl PBS per thigh). For adenovirus injection, mice were anesthetized in a sealed chamber containing 5% inhalation isoflurane. Using Ad-hDCT as a priming vector, MG1-hDCT was evaluated as a booster of pre-existing DCT-specific responses. To evaluate Maraba virus as a boosting vector, various routes of administration were evaluated. An oncolytic dose of 1×109 pfu of virus was administered that is well tolerated in this mouse strain and an interval of 12 days post-Ad priming was selected as this was the longest interval that would be feasible in the tumor model. When this dose of MG1-Maraba-hDCT was administered by intravenous (i.v.), intranasal (i.n.) and intramuscular (i.m.) routes, the i.v. route proved to be far superior as measured by ICS for IFN-γ in peripheral CD8+ T-cells: 28.33%±3.82 by i.v. versus 4.73%±1.52 i.n. versus 13.84%±1.88 i.m. The responses were measured at
day 5 post-Maraba administration coinciding with the peak of the MG1-hDCT-mediated boost response. In the intravenously boosted animals a significant proportion of DCT-specific CD8+ T-cells was also measured in the spleen with a 3-fold increase in mice administered with both vaccine vectors compared to animals primed only: 3.45%±0.45 in Ad-hDCT group versus 11.02%±2.14 in the Ad-hDCT+MG1-hDCT immunized animals (p=0.0085″). While Ad-hDCT was unable to induce a detectable DCT-specific CD4+ T-cell population in the blood and a barely detectable population in the spleen, the MG1 Maraba-hDCT booster was able to generate clear systemic CD4+ T-cell response but only when administered i.v. (0.30%±0.11). The response was also detectable in the spleen with 0.14%±0.03 of splenic CD4+ T-cells reacting to DCT KFF peptide exposure. Similar to VSV, maximal immune boosting by MG1 Maraba virus is achieved by i.v. administration. In conclusion, systemic delivery of a Maraba-vectored vaccine at a dose of 109 pfu appeared to allow for efficient boosting of both antigen-specific CD8+ and CD4+ T-cell populations. For this reason, this route and dose were used for Maraba MG1 administration in subsequent in vivo experiments. - To show that Maraba MG1-hDCT is a more potent boosting vector than VSV-hDCT, C57/B16 mice were primed with Ad-hDCT (Ad-BHG was included as a control vector lacking a transgene) and then boosted with an intravenous dose of either VSV-hDCT or Maraba-
hDCT 14 days later. Immune analysis of CD8+ T cell responses were measured in peripheral blood atday 5 post-boosting vector. At an equivalent dose the response induced by Maraba vaccination was 3-8 fold as large as the VSV-induced responses (FIG. 2 ). - The therapeutic efficacy of MG 1-hDCT administered as a boosting vector was subsequently investigated. Five days following B16-F10 engraftment to generate lung metastases in animals, animals received an Ad-hDCT priming vaccine and this was followed 9 days later by a single i.v. dose of MG1 Maraba-hDCT as an oncolytic booster vaccine. Ad-hDCT prime-MG1-hDCT boost vaccination generated a very strong DCT-specific CD8+ T-cell response (mean % IFN-γ+ CD8+ T-cells=27.54±2.17,
FIG. 3 ) that was 14 times higher than in non-boosted mice (1.95%±0.29 in Ad-hDCT group and 1.91%±0.59 in Ad-hDCT+MG1-GFP group,FIG. 3 ). Similarly, DCT-specific CD4+ T-cell responses were measured in MG1-hDCT boosted animals while rarely detected in primed only mice (mean % IFN-γ+CD4+ T-cells=0.25%±0.06 in Ad-hDCT+MG1-hDCT group versus <0.05% in Ad-hDCT and Ad-hDCT+MG1-GFP groups,FIG. 3 ). - Looking at treatment outcome, Ad-hDCT immunization allowed a 10-day extension of the median survival compared to untreated mice: 31 days for Ad-hDCT treatment versus 20.5 days for Ad-empty group (
FIG. 4 ). Ad-hDCT treatment followed by MG1 Maraba-GFP oncolytic treatment did not improve survival (27.5 days median survival for Ad-hDCT+MG1-GFP group,FIG. 4 ). However, boosting anti-tumor immunity with the Maraba MG1-DCT vaccine dramatically improved tumor outcome with a 20-day extension of the median survival compared to Ad-hDCT primed only animals (51 days for Ad-hDCT+MG1-hDCT group,FIG. 4 ). More importantly, the oncolytic MG1-hDCT booster treatment resulted in 23.3% long-term survival (FIG. 4 ). - In order to characterize the respective contribution of tumor-specific CD4+ and CD8+ T-cell responses in the therapeutic efficacy, each T-cell compartment was selectively depleted (data not shown). Depletion of the CD8+ T-cell population at the time of the boost abrogated the therapeutic benefit of MG1-hDCT administration. On the contrary, CD4+ T-cells depletion appeared not to affect significantly the therapeutic efficacy indicating that Maraba immune boosting of CD8+ T cells is CD4+-independent. While the critical role of CD8+ T-cells in controlling tumor growth is admitted, these results show that boosting tumor-specific CD8+ T-cells with Maraba vaccine is a potent way of improving cancer therapy.
- Finally, the efficacy of the prime-boost strategy involving Maraba vaccine was also evaluated in a very challenging intracranial B16-F10 model of metastatic melanoma brain cancer. Ad-hDCT-mediated immunotherapy significantly improved survival of melanoma brain met-bearing mice with a median extended from 15 days for Ad-empty controls to 25.5 days for the Ad-hDCT group (
FIG. 5 ). As previously reported, such therapeutic efficacy demonstrates the ability of the tumor-specific effector T-cells raised to cross the blood-brain barrier and infiltrate the tumor bed (Bridle BW. et al., (2010) Mol Ther 184:4269-4275). The additional administration of a Maraba MG1-hDCT oncolytic booster further improved tumor outcome with a median survival reaching 42 days together with cures observed in 21.4% of treated animals (Ad-hDCT+MG1-hDCT group,FIG. 5 ). - Although Maraba MG1 and VSV were able to act as boosting vectors using hDCT as a tumor associated antigen, not all tumor associated antigens can be used in a heterologous prime-boost vaccine strategy. The authors of the present disclosure tested a heterologous prime-boost vaccine strategy using huAd5-mPLAC1 as the priming vector and VSV-mPLAC1 as the boosting vector.
- PLAC1 is a recently described tumor associated antigen expressed in the placenta but has also been reported in several tumor cell lines and in tumors of patients breast, lung, liver, gastric and colorectal cancers (Silva, W A et al., (2007) Cancer Immun 7:18).
- Ad-mPLAC1 is a replication-deficient adenoviruses (E1/E3-deletion) based on the human serotype 5 (Lane C. et al., (2004) Cancer Research 64:1509-1514; Ng P. et al., (2001) Mol Ther 3:809-815). The replication-deficient adenovirus vector was engineered to express the mPLAC1 transgene, which encodes the full length murine antigen PLAC1 (placenta-specific 1), the resulting adenovirus vector is termed “Ad-mPLAC1” or “huAd5-mPLAC1”.
- VSV virus was engineered to express the human form of the melanoma-associated antigen mPLAC1 transgene. The resulting VSV-virus vector is termed “VSVmPLAC1”. Recombinant VSV was generated by transgene insertion between the G and L viral genes. VSV-mPLAC1 derives from the wild-type Indiana strain of the VSV (Bridle B W. Et al. (2009) 17:1814-1821; Lawson N D. et al., (1995) Proc Natl Acad Sci USA 92:4477-4481).
- C57BI/6 mice were primed with Ad-mPLAC1 (2×109 PFU IM injection) and then boosted with a single i.v.dose.of VSV-mPLAC1 (2×109 PFU) 14 days later. T-cell responses were measured by isolating splenocytes and stimulating them with individual 15 mmer peptides form an overlapping PLAC1 peptide library for a total of 6 hours with golgi plug added 1 hour into the stimulation. Following stimulation the splenocytes were stained for CD4, CD8 and IFNγ and analyzed on FACSCanto and FlowJo. Responding T-cells were detected after intracellular cytokine staining (ICS) for IFN-γ by flow cytometry. None of the mPLAC1 peptides were able to stimulate IFN-γ production in either CD8 or CD4 T cells.
- Ad-MAGEA3 is a replication-deficient adenovirus (E1/E3-deletion) based on the human serotype 5 (Lane C. et al., (2004) Cancer Research 64:1509-1514; Ng P. et al., (2001) Mol Ther 3:809-815) containing the full-length human MAGEA3 gene. Maraba MG1-hMAGEA3 has been developed and contains the codon-optimized full length human MAGEA3 gene inserted between the G and L viral genes of the MG1 double mutant of Maraba virus (Brun J. et al., (2010) Mol Ther 18:1440-1449). The MAGEA3 sequence (NCBI Gene ID: 4102 www.ncbi.nlm.nih.gov/gene/4102) was codon optimized for expression in mammalian cells and then synthesized with a FLAG tag on 3′ end and with Mlul restriction sites on both 3′ and 5′ ends. This sequence was ligated into the shuttle vector pMRB-MG1/pNF at its Mlul site (between G and L genes) which contains part of the Maraba-MG1 genome from the beginning of G to the end of L genes, flanked by Kpnl and Nhel sites, respectively. The entire region from Kpnl to Nhel, now containing MAGEA3 Flag between G and L was then removed from pMRB-MG1/pNF and ligated back into the pMRB-MG1 genomic plasmid using Kpnl and Nhel sites. Maraba-MG1-MAGEA3 Flag was then rescued and plaque purified. This is illustrated in
FIG. 6 . - A full length human MAGEA3 protein expressed by the adenovirus may include the amino acid sequence of SEQ ID NO: 1. The adenovirus may include a nucleotide sequence of SEQ ID NO: 2. Alternatively, the amino acid sequence may be encoded by a codon optimized transgene that includes the nucleotide sequence of SEQ ID NO: 3. Accordingly, the adenovirus may include the codon-optimized nucleotide sequence of SEQ ID NO: 3.
- The Maraba MG1 virus may include a reverse complement and RNA version of a nucleotide sequence of SEQ ID NO: 2. Alternatively, the amino acid sequence may be encoded by a codon optimized transgene that includes the nucleotide sequence of SEQ ID NO: 3. Accordingly, the Maraba MG1 virus may include the reverse complement and RNA version of the codon-optimized nucleotide sequence of SEQ ID NO: 3.
- One variant of MAGEA3 is a protein that includes the amino acid sequence of SEQ ID NO: 4. This amino acid sequence may be encoded by the nucleotide sequence of SEQ ID NO: 5. The adenovirus may include a nucleotide sequence of SEQ ID NO: 5. The Maraba MG1 virus may include a reverse complement and RNA version of a nucleotide sequence of SEQ ID NO: 5.
- A negative sense RNA virus, such as a Maraba virus, that expresses the protein of SEQ ID NO: 4 may include an RNA polynucleotide which includes a sequence that is a reverse complement and RNA version of SEQ ID NO: 6.
- Healthy cynomolgous monkeys were used in a study designed to collect toxicity and immunogenicity data for developing the potential MG1-MAGEA3 oncolytic vaccine for human use. The use of the cynomolgous monkeys maximizes the likelihood of identifying responses that are quantitatively and qualitatively similar to those expected in humans. Prior to study start primates were acclimated for 4-6 weeks from the time of animal arrival until the time of vascular access port implantation surgery. After a minimum of 2-3 weeks following surgery, animals were vaccinated with a non-replicating adenovirus Ad-MAGEA3 priming vector, injected in each leg, 0.5 ml per dose totaling 1×1010 pfu by slow IM injection. For the Ad-MAGEA3/MG1-MAGEA3 prime boost study, Ad-MAGEA3 prime occurred at either 2 weeks (−14 days) or 4 weeks (−28 days) prior to MG1-MAGEA3 boost. Therefore Ad-MAGEA3 administration occurred on Day −14 or on Day −28 and MG1-MAGEA3 boost on
Days low dose 1×1010 or ahigh dose 1×1011 atexperiment days 0 and 3 (14 and 17 days after Ad-MAGEA3). For animals in the 4 week boosted group, MG1-MAGEA3 virus was injected i.v. at either alow dose 1×1010 or ahigh dose 1×1011 atexperiment days experiment Days experiment Days - To assess immune responses in the primates to the heterologous prime-boost vaccination with Ad-MAGEA3/MG1-MAGEA3, Peripheral Blood Mononuclear Cells (PBMCs) were incubated for 4 hours (last 3 hours in presence of Brefeldin A) with a pool of 10 hMAGE-A3 peptides for T-cell (re-) stimulation (or left unstimulated for evaluation of the background). Peptides were from an overlapping peptide library covering the whole hMAGE-A3 antigen from N to C-termini in 87 peptides (15-mer each). After stimulation, T-cells were stained with fluorescent anti-CD8 and anti-CD4 antibodies for 25 minutes. After this surface staining, cells were permeabilized and fixed with BD Cytofix/Cytoperm for 20 minutes. Then, hMAGE-A3-specific T-cells were detected by looking at cytokine expression by intracellular staining with fluorescent anti-IFNγ and anti-TNFα antibodies for 25 minutes. Cell analysis was performed on BD Canto flow cytometer.
-
FIG. 7 shows the average CD8+ T-cell immune responses of monkeys given high and low dose MG1-MAGEA3 as a boosting vector following an Ad-MAGEA3 prime. In the low dose MG1-MAGEA3 animals there is a significant increase in CD8+ T-cell response 5 days following the boost, which drops off over time while in the high dose MG1-MAGEA3 animals there is a similar significant increase in CD8+ T-cell response 5 days following the boost, which is sustained at a higher level over time.FIG. 8 shows that all of the animals in the study exhibited a significant increase in CD8+ T-cell response 5 days following the boost with MG1-MAGEA3 irrespective of high or low dose. These peak T-cell responses in Primates demonstrate that in an outbred population the prime-boost oncolytic vaccine strategy gives immune responses comparable to animal models where tumors can be engrafted and a dramatic extension of survival is attained. - The HPV transgene is a fusion of HPV serotype 16 full-length wild-type E6 (gi/4927720/gb/AAD33252.1/AF125673_1 E6 Human papillomavirus type 16) and E7 (gi/4927721/gb/AAD33253.1/AF125673_2 E7 Human papillomavirus type 16) sequences and HPV serotype 18 full-length wild-type E6 (gi/137758/sp/P06463.1/VE6_HPV18 RecName: Full=Protein E6) and E7 (gi/137792/sp/P06788.2/VE7 HPV18 RecName: Full=Protein E7) sequences with deletions in all 4 nucleotide sequences to remove zinc fingers required for Rb or p53 binding (removing oncogenic potential of the proteins). The resulting fusion protein has a flexible glycine linker plus AAY sequence (which serves as a proteasomal cleavage site to ensure that each antigen is proteolytically degraded to the peptides normally generated for antigen presentation). This codon-optimized fusion nucleotide sequence gives rise to a 527 amino acid HPV16/18 E6/E7 fusion protein (SEQ ID NO: 7).
- Lentiviruses expressing Human Papilloma Virus E6/E7 fusion transgene were made using the pDY.EG.WS lentivirus vector. The modified HPV transgene was PCR amplified using primers containing the EcoRI restriction site (forward primer ACTGGAATTCATGCATCAGAAGCGAACTGC, SEQ ID NO: 18) and the BamHI restriction site (reverse primer ACTGGGATCCTCACTGCTGGGAGGCACAC, SEQ ID NO: 19). The HPV transgene PCR product was agarose gel purified. The pDY.EG.WS lentivirus vector was cut at the EcoRI and BamHI sites to remove eGFP, was agarose gel purified, and was subjected to dephosphorylation using CIAP (Invitrogen Catalogue 18009-019). The cut vector was then subjected to additional agarose gel purification. The HPV transgene PCR product was then ligated into the EcoRI/BamHI cut vector using T4 DNA ligase (Invitrogen). The ligation reaction was subjected to a transformation using competent cells, and plasmid DNA from positive colonies was subjected to mini-prep amplification. The pDY.EG.WS lentivirus vector expressing the modified HPV transgene was then subjected to maxi-prep amplification. The lentivirus expressing Human Papilloma Virus E6/E7 fusion transgene were rescued on 293T cells after transfection of 6.4 μg of each of three plasmids: the pDY.EG.WS lentivirus vector expressing the modified HPV transgene, the packaging pCMV-8.84 plasmid, and the envelope pMD2G plasmid. Virus supernatants were pooled, and filtered through a 0.45 μM filter and centrifuged for 120 minutes at 50,000×g at 16° C. The lentivirus expressing Human Papilloma Virus E6/E7 fusion transgene was resuspended in PBS, and stored at −80° C.
- Maraba MG1 was engineered to contain a Papilloma Virus E6/E7 fusion transgene inserted between the G and L viral genes of the MG1 double mutant of Maraba virus (Brun J. et al., (2010) Mol Ther 18:1440-1449). The transgene sequence (SEQ ID NO: 8) was codon optimized for expression in mammalian cells. The resulting Maraba MG1 containing the HPV E6/E7 is designated, generally, “Maraba-MG1-HPV E6/E7”. A modified Maraba MG1 backbone was used to facilitate cloning. A silent mutation was introduced into the L gene of the Maraba MG1 genome backbone to remove one of the Mlul sites. The second Mlul site was replaced with a BsiWI site at the cloning region between G and L. These modifications to the Maraba MG1 genome backbone allowed for a more direct cloning system than that described in the Brun et al. paper as it avoids using the shuttle plasmid pMRB-MG1/pNF. The HPV E6/E7 fused transgene sequence was ligated into the modified Maraba MG1 genome backbone at its Mlul site and BsiWI site (at cloning region between G and L) The Maraba-MG1-HPV E6/E7 was then rescued (as previously described in Brun et al., (2010) Mol Ther 18:1440-1449), plaque purified once, and subjected to opti-prep purification.). The Maraba-MG1-HPV E6/E7 has a genomic sequence that is the reverse complement and RNA version of SEQ ID NO: 9.
- Generally, animals were immunized by administration of the priming vector (lentivirus-HPV E6/E7+poly I:C as an adjuvant) at
day 0 and by administration of 1e9 PFU of the boosting vector (Maraba-MG1-HPV E6/E7) atday 14. Control animals were prime-boosted with viral vectors encoding GFP instead of the HPV E6/E7 transgene as a control non-immunogenic transgene insertion. Analysis of the prime response was conducted atday 14 and of the boost response atday 19. Each lentivirus-HPVE6/E7 preparation was made with 250 ug poly I:C added as an adjuvant to the priming virus and then split between 5 animals for each virus. Mice were anesthetized with isoflurane and 30 uL of lentivirus-HPV E6/E7/poly I:C was injected into each hind foot pad. The remaining virus was injected subcutaneously near the left inguinal lymph node. 14 days after prime, blood was collected and analyzed by flow cytometry. Mice were then boosted with 1×109 PFU MG1-HPV E6/E7 intravenously. 5 days following the boost, blood was drawn and immune responses were assessed by flow cytometry. - Immune analysis was performed as follows: Blood was collected via retro-orbital bleeding using heparinzied capillary tube and blood was collected into heparin. Red blood cells were then lysed using ACK lysis buffer and the resulting PBMCs were analyzed for immune responses to the tumor antigens. PBMCs were either incubated in the absence of peptide or stimulated with 2 ug/mL peptides (RAHYNIVTF) (SEQ ID NO: 47) for a total of 5 hours with golgi plug added 1 hour into the stimulation. Following stimulation the PBMCs were stained for CD4, CD8 and IFNγ and analyzed on FACSCanto and FlowJo. Responding T-cells were detected after intracellular cytokine staining (ICS) for IFN-γ by flow cytometry. Values from unstimulated PBMCs were considered background and subtracted from values obtained from stimulated PBMCs. Data represents mean+/−SEM. In Table 1 it is demonstrated that the HPV E6/E7 peptides were able to stimulate IFN-γ production in CD8 cells indicating the existence of an immune response.
-
TABLE 1 IMMUNE RESPONSE to HPV E6/E7 PRIME-BOOST Percentage of CD8 T Cells Secreting Interferon (IFN) γ Immune Group Stimulatory Control Group Lentivirus-HPV E6/E7 Prime Peptide Lentivirus-GFP Prime MG1-HPV E6/E7 Boost Epitope MG1-GFP Boost (N = 5) RAHYNIVTF 0.0033 ± 0.0033 0.03 ± 0.025 0.036 ± 0.012 5.9 ± 2.7 (SEQ ID NO: 47) (after prime) (after boost) (after prime) (after boost) - The NYESO1 transgene is full-length wild-type sequence (SEQ ID NO: 14) codon-optimized for expression in human and mouse to give rise to a 180 amino acid protein (SEQ ID NO: 13).
- Lentiviruses expressing
Cancer Testis Antigen 1 transgene were made using the pDY.EG.WS lentivirus vector. The NYESO1 transgene was PCR amplified using primers containing the BamHI restriction site (forward primer ACTGGGATCCATGCAGGCCGAGGGCAGAG, SEQ ID NO: 20) and the BamHI restriction site (reverse primer ACTGGGATCCTCATCTTCTCTGGCCGCTGG, SEQ ID NO: 21). The NYESO1 transgene PCR product was agarose gel purified. The pDY.EG.WS lentivirus vector was cut at the BamHI site to remove eGFP, was agarose gel purified, and was subjected to dephosphorylation using CIAP (Invitrogen Catalogue 18009-019). The cut vector was then subjected to additional agarose gel purification. The NYESO1 transgene PCR product was then ligated into the BamHI cut vector using T4 DNA ligase (Invitrogen). The ligation reaction was subjected to a transformation using competent cells, and plasmid DNA from positive colonies was subjected to mini-prep amplification. The pDY.EG.WS lentivirus vector expressing the modified HPV transgene was then subjected to maxi-prep amplification. The lentivirus expressing NYESO1 transgene were rescued on 293T cells after transfection of 6.4 μg of each of three plasmids: the pDY.EG.WS lentivirus vector expressing the NYESO1 transgene, the packaging pCMV-8.84 plasmid, and the envelope pMD2G plasmid. Virus supernatants were pooled, and filtered through a 0.45 μM filter and centrifuged for 120 minutes at 50,000×g at 16° C. The lentivirus expressing NYESO1 transgene was resuspended in PBS, and stored at −80° C. - Maraba MG1 was engineered to contain
Cancer Testis Antigen 1 transgene inserted between the G and L viral genes of the MG1 double mutant of Maraba virus (Brun J. et al., (2010) Mol Ther 18:1440-1449). The transgene sequence was codon optimized for expression in mammalian cells. The resulting Maraba MG1 containing the NYESO1 protein is designated as “Maraba-MG1-NYESO1” or “MG1-NYESO1”. - The NYESO1 transgene was ligated into the shuttle vector pMRB-MG1/pNF at its Mlul site (between G and L genes) which contains part of the Maraba-MG1 genome from the beginning of G to the end of L genes, flanked by Kpnl and Nhel sites, respectively. The entire region from Kpnl to Nhel, now containing the NYESO1 transgene inserted between G and L was then removed from pMRB-MG1/pNF and ligated back into the pMRB-MG1 genomic plasmid using Kpnl and Nhel sites. The Maraba-MG1-NYESO1 was then rescued (as previously described Brun J. et al., (2010) Mol Ther 18: 1440-1449). The Maraba-MG1-NYESO1 was plaque purified 3 times, and purified via sucrose cushion purification. The Maraba-MG1-NYESO1 virus has a genomic sequence that is the reverse complement and RNA version of SEQ ID NO: 15.
- Generally, animals were immunized by administration of the priming vector (lentivirus-NYESO1+poly I:C as an adjuvant) at
day 0 and by administration of 1e9 PFU of the boosting vector (Maraba-MG1-NYESO1) atday 14. Control animals were prime-boosted with viral vectors encoding GFP instead of the NYESO1 transgene as a control non-immunogenic transgene insertion. Analysis of the prime response was conducted atday 14 andday 19. Each lentivirus-NYESO1 preparation was made with 250 ug poly I:C added as an adjuvant to the priming virus and then split between 5 animals for each virus. Mice were anesthetized with isoflurane and 30 uL of lentivirus-NYESO1/poly I:C was injected into each hind foot pad. The remaining virus was injected subcutaneously near the left inguinal lymph node. 14 days after prime, blood was collected and analyzed by flow cytometry. Mice were then boosted with 1×109 PFU MG1-NYESO1 intravenously. Five days following the boost, blood was drawn and immune responses were assessed by flow cytometry. - Immune analysis was performed as follows: Blood was collected via retro-orbital bleeding using heparinzied capillary tube and blood was collected into heparin. Red blood cells were then lysed using ACK lysis buffer and the resulting PBMCs were analyzed for immune responses to the tumor antigens. PBMCs were either incubated in the absence of peptide or stimulated with 2 ug/mL peptides (RGPESRLL) (SEQ ID NO: 48) for a total of 5 hours with golgi plug added 1 hour into the stimulation. Following stimulation the PBMCs were stained for CD4, CD8 and IFNγ and analyzed on FACSCanto and FlowJo. Responding T-cells were detected after intracellular cytokine staining (ICS) for IFN-γ by flow cytometry. Values from unstimulated PBMCs were considered background and subtracted from values obtained from stimulated PBMCs. Data represents mean+/−SEM. In Table 2 it is demonstrated that the NYESO1 peptides were able to stimulate IFN-γ production in CD8 cells indicating the existence of an immune response.
-
TABLE 2 IMMUNE RESPONSE to NYESO1 PRIME-BOOST Percentage of CD8 T Cells Secreting Interferon (IFN) γ Immune Group Stimulatory Control Group Lentivirus-NYESO1 Prime Peptide Lentivirus-GFP Prime MG1-NYESO1 Boost Epitope MG1-GFP Boost (N = 5) RGPESRLL 0 ± 0 0.013 ± 0.0088 0.027 ± 0.015 12.33 (SEQ ID NO: 48) (after prime) (after boost) (after prime) (after boost) - The huSTEAP transgene is full-length wild-type sequence (SEQ ID NO: 11) codon-optimized for expression in human and mouse to give rise to a 341 amino acid protein (SEQ ID NO: 10).
- Lentiviruses expressing human Six-Transmembrane Epithelial Antigen of the Prostate protein were made using the pDY.EG.WS lentivirus vector. The huSTEAP transgene was PCR amplified using primers containing the EcoRI restriction site (forward primer ACTGGAATTCATGGAATCACGGAAGGACATC, SEQ ID NO: 22) and the BamHI restriction site (reverse primer ACTGGGATCCTTAAAGCTTCAGCTGGCTACAG, SEQ ID NO: 23). The huSTEAP transgene PCR product was agarose gel purified. The pDY.EG.WS lentivirus vector was cut at the EcoRI/BamHI site to remove eGFP, was agarose gel purified, and was subjected to dephosphorylation using CIAP (Invitrogen Catalogue 18009-019). The cut vector was then subjected to additional agarose gel purification. The huSTEAP transgene PCR product was then ligated into the EcoRI/BamHI cut vector using T4 DNA ligase (Invitrogen). The ligation reaction was subjected to a transformation using competent cells, and plasmid DNA from positive colonies was subjected to mini-prep amplification. The pDY.EG.WS lentivirus vector expressing the modified huSTEAP transgene was then subjected to maxi-prep amplification. The lentivirus expressing huSTEAP transgene were rescued on 293T cells after transfection of 6.4 μg of each of three plasmids: the pDY.EG.WS lentivirus vector expressing the huSTEAP transgene, the packaging pCMV-8.84 plasmid, and the envelope pMD2G plasmid. Virus supernatants were pooled, and filtered through a 0.45 μM filter and centrifuged for 120 minutes at 50,000×g at 16° C. The lentivirus expressing huSTEAP transgene was resuspended in PBS, and stored at −80° C.
- Maraba MG1 was engineered to contain human Six-Transmembrane Epithelial Antigen of the Prostate transgene inserted between the G and L viral genes of the MG1 double mutant of Maraba virus (Brun J. et al., (2010) Mol Ther 18:1440-1449). The transgene sequence was codon optimized for expression in mammalian cells. The resulting Maraba MG1 containing the huSTEAP protein is designated as “Maraba-MG1-huSTEAP” or “MG1-huSTEAP”. A modified Maraba MG1 backbone was used to facilitate cloning. A silent mutation was introduced into the L gene of the Maraba MG1 genome backbone to remove one of the Mlul sites. The second Mlul site was replaced with a BsiWI site at the cloning region between G and L. These modifications to the Maraba MG1 genome backbone allowed for a more direct cloning system than that described in the Brun et al. paper as it avoids using the shuttle plasmid pMRB-MG1/pNF. The huSTEAP transgene sequence was ligated into the modified Maraba MG1 genome backbone at its Mlul and BsiWI site (at cloning region between G and L). The Maraba-MG1-huSTEAP was then rescued (as previously described in Brun J. et al., (2010) Mol Ther 18:1440-1449), plaque purified once, and subjected to opti-prep purification. The Maraba-MG1-huSTEAP has a genomic sequence that is the reverse complement and RNA version of SEQ ID NO: 12.
- Generally, animals were immunized by administration of the priming vector (lentivirus-huSTEAP+poly I:C as an adjuvant) at
day 0 and by administration of 1e9 PFU of the boosting vector (Maraba-MG1-huSTEAP) atday 14. Control animals were prime-boosted with viral vectors encoding GFP instead of the huSTEAP transgene as a control non-immunogenic transgene insertion. Analysis of the prime response was conducted atday 14 andday 19. Each lentivirus-huSTEAP preparation was made with 250 ug poly I:C added as an adjuvant to the priming virus and then split between 5 animals for each virus. Mice were anesthetized with isoflurane and 30 uL of lentivirus-huSTEAP/poly I:C was injected into each hind foot pad. The remaining virus was injected subcutaneously near the left inguinal lymph node. 14 days after prime, blood was collected and analyzed by flow cytometry. Mice were then boosted with lx109 PFU MG1-huSTEAP intravenously. Five days following the boost, blood was drawn and immune responses were assessed by flow cytometry. - Immune analysis was performed as follows: Blood was collected via retro-orbital bleeding using heparinzied capillary tube and blood was collected into heparin. Red blood cells were then lysed using ACK lysis buffer and the resulting PBMCs were analyzed for immune responses to the tumor antigens. PBMCs were either incubated in the absence of peptide or stimulated with peptides for a total of 5 hours with golgi plug added 1 hour into the stimulation. PBMCs were either incubated in the absence of peptide or stimulated with 2 ug/mL peptides (RSRYKLL) (SEQ ID NO: 49) for a total of 5 hours with golgi plug added 1 hour into the stimulation. Following stimulation the PBMCs were stained for CD4, CD8 and IFNγ and analyzed on FACSCanto and FlowJo. Responding T-cells were detected after intracellular cytokine staining (ICS) for IFN-γ by flow cytometry. Values from unstimulated PBMCs were considered background and subtracted from values obtained from stimulated PBMCs.
Data 20 represents mean+/−SEM. In Table 3 it is demonstrated that the huSTEAP peptides were able to stimulate IFN-γ production in CD8 cells indicating the existence of an immune response. -
TABLE 3 IMMUNE RESPONSE to huSTEAP PRIME-BOOST Percentage of CD8 T Cells Secreting Interferon (IFN) γ Immune Group Stimulatory Control Group Lentivirus-huSTEAP Prime Peptide Lentivirus-GFP Prime MG1- huSTEAP Boost Epitope MG1-GFP Boost (N = 5) RSYRYKLL 0.0033 ± 0.0033 0.0033 ± 0.0033 0.008 ± 0.0508 0.0406 ± 0.11 (SEQ ID NO: (after prime) (after boost) (after prime) (after boost) 49) - The EBDNA1 transgene is a partial nucleotide sequence of full-length wild-type EBDNA1 (www.ncbi.nlm.nih.gov/protein/Q1HVF7.1) with the Glycine-Alanine generating repetitive sequence deleted (which separates the protein into amino- and carboxy-terminal domains). This sequence seems to stabilize the protein, preventing proteasomal breakdown, as well as impairing antigen processing and MHC class I-restricted antigen presentation (Levitskaya Jet al., (1995) Nature 375:685-688). The truncated EBDNA1 nucleotide sequence (SEQ ID NO: 17) was codon-optimized for expression in human and mouse to give rise to a 238 amino acid protein (SEQ ID NO: 16).
- Lentiviruses expressing Epstein-
Barr Nuclear Antigen 1 protein were made using the pDY.EG.WS lentivirus vector. The modified EBDNA1 transgene was PCR amplified using primers containing the EcoRI restriction site (forward primer ACTGGAATTCATGCCAGTCGGCCAGGCTG, SEQ ID NO: 24) and the BamHI restriction site (reverse primer ACTGGGATCCTTATTCCTGCCCCTCTTCTCC, SEQ ID NO: 25). The EBDNA1 transgene PCR product was agarose gel purified. The pDY.EG.WS lentivirus vector was cut at the EcoRI and BamHI sites to remove eGFP, was agarose gel purified, and was subjected to dephosphorylation using CIAP (Invitrogen Catalogue 18009-019). The cut vector was then subjected to additional agarose gel purification. The EBDNA1 transgene PCR product was then ligated into the EcoRI/BamHI cut vector using T4 DNA ligase (Invitrogen). The ligation reaction was subjected to a transformation using competent cells, and plasmid DNA from positive colonies was subjected to mini-prep amplification. The pDY.EG.WS lentivirus vector expressing the EBDNA1 transgene was then subjected to maxi-prep amplification. The lentivirus expressing EBDNA1 transgene was rescued on 293T cells after transfection of 6.4 μg of each of three plasmids: the pDY.EG.WS lentivirus vector expressing the EBDNA1 transgene, the packaging pCMV-8.84 plasmid, and the envelope pMD2G plasmid. Virus supernatants were pooled, and filtered through a 0.45 μM filter and centrifuged for 120 minutes at 50,000×g at 16° C. The lentivirus expressing EBDNA1 transgene was resuspended in PBS, and stored at −80° C. - Maraba MG1 was engineered to contain Epstein-
Barr Nuclear Antigen 1 transgene inserted between the G and L viral genes of the MG1 double mutant of Maraba virus (Brun J. et al., (2010) Mol Ther 18: 1440-1449). The transgene sequence was codon optimized for expression in mammalian cells. The resulting Maraba MG1 containing the EBVDNA1 protein is designated as “Maraba-MG1-EBVDNA1” or “MG1-EDVDNA1”. A modified Maraba MG1 backbone was used to facilitate cloning. A silent mutation was introduced into the L gene of the Maraba MG1 genome backbone to remove one of the Mlul sites. The second Mlul site was replaced with a BsiWI site at the cloning region between G and L. These modifications to the Maraba MG1 genome backbone allowed for a more direct cloning system than that described in the Brun et al. paper as it avoids using the shuttle plasmid pMRB-MG1/pNF. The EBDNA1 transgene sequence was ligated into the modified Maraba MG1 genome backbone at its Mlul and BsiWI site (at cloning region between G and L). The Maraba-MG1-EBDNA1 transgene was then rescued (as previously described in Brun J. et al., (2010) Mol Ther 18:1440-1449), plaque purified once, and subjected to opti-prep purification. - Generally, animals were immunized by administration of the priming vector (lentivirus-EBDNA1+poly I:C as an adjuvant) at
day 0 and by administration of 1e9 PFU of the boosting vector (Maraba-MG1-EBDNA1) atday 14. Control animals were prime-boosted with viral vectors encoding GFP instead of the TM transgene as a control non-immunogenic transgene insertion. Analysis of the prime response was conducted atday 14 andday 19. Each lentivirus-EBDNA1 preparation was made with 250 ug poly I:C added as an adjuvant to the priming virus and then split between 5 animals for each virus. Mice were anesthetized with isoflurane and 30 uL of lentivirus-EBDNA1/poly I:C was injected into each hind foot pad. The remaining virus was injected subcutaneously near the left inguinal lymph node. 14 days after prime, blood was collected and analyzed by flow cytometry. Mice were then boosted with 1×109 PFU MG1-EBVDNA1 intravenously. Five days following the boost, blood was drawn and immune responses were assessed by flow cytometry. - Immune analysis was performed as follows: Blood was collected via retro-orbital bleeding using heparinzied capillary tube and blood was collected into heparin. Red blood cells were then lysed using ACK lysis buffer and the resulting PBMCs were analyzed for immune responses to the tumor antigens. PBMCs were either incubated in the absence of peptide or stimulated with 2 ug/mL peptides (VYGGSKTSL) (SEQ ID NO: 50) for a total of 5 hours with
golgi 30 plug added 1 hour into the stimulation. Following stimulation the PBMCs were stained for CD4, CD8 and IFNγ and analyzed on FACSCanto and FlowJo. Responding T-cells were detected after intracellular cytokine staining (ICS) for IFN-γ by flow cytometry. Values from unstimulated PBMCs were considered background and subtracted from values obtained from stimulated PBMCs. Data represents mean+/−SEM. The EBVDNA1 peptides were unable to stimulate IFN-γ production in either CD8 T cells indicating a lack of an immune response, as shown in Table 4. -
TABLE 4 IMMUNE RESPONSE to EBVDNA1 PRIME-BOOST Percentage of CD8 T Cells Secreting Interferon (IFN) γ Immune Group Stimulatory Control Group Lentivirus- EBVDNA1Prime Peptide Lentivirus-GFP Prime MG1- EBVDNA1 Boost Epitope MG1-GFP Boost (N = 5) VYGGSKTSL 0.055 ± 0.015 0.01 ± 0.0058 0.008 ± 0.0049 0.09 ± 0.05 (SEQ ID NO: 50) (after prime) (after boost) (after prime) (after boost) - Cyclophosphamide (CPA) is a chemotherapeutic agent used to treat various types of cancer. High doses of this drug are required for effective chemotherapy. High doses of CPA are thought to lead to immunosuppression while low doses of the drug can lead to enhanced immune responses against a variety of antigens. Surprisingly, in the heterologous prime-boost strategy of the current disclosure, CPA only results in an increase in immune response when administered prior to the priming of the immune system by the first virus.
- In order to generate lung metastases, C57BI/6 mice (8-10 weeks old at study initiation) were injected with 2.5×105 B16-F10 cells (murine melanoma cells expressing the murine DCT antigen) in 200 μl saline water i.v. at
day 0. Five days following B16-F10 engraftment, mice received an Ad-hDCT priming vaccine (2×108 pfu in 200 μl PBS i.v.) and this was followed 14 days later by a single i.v. dose of VSV-hDCT (2×109 pfu in 200 μl PBS i.v.) as an oncolytic booster vaccine. Additionally, mice either received vehicle or CPA (1 mg/20 g mouse, i.p.) at day (−1) prior to the prime and/orday 13 prior to the boost. InFIG. 9 it can be seen that CPA given prior to the priming vector significantly increases survival while CPA administered prior to the boosting vector does not extend survival (data not shown). - In the preceding description, for purposes of explanation, numerous details are set forth in order to provide a thorough understanding of the examples. The above-described examples are intended to be exemplary only. Alterations, modifications and variations can be effected to the particular examples by those of skill in the art without departing from the scope, which is defined solely by the claims appended hereto.
-
APPENDIX A Protein and Nucleotide Sequences Protein sequence of full length, wild type, human MAGEA3 (SEQ ID NO: 1): MPLEQRSQHCKPEEGLEARGEALGLVGAQAPATEEQEAASSSSTLVEVTLGEVPAAESP DPPQSPQGASSLPTTMNYPLWSQSYEDSSNQEEEGPSTFPDLESEFQAALSRKVAELVHF LLLKYRAREPVTKAEMLGSVVGNWQYFFPVIFSKASSSLQLVFGIELMEVDPIGHLYIFA TCLGLSYDGLLGDNQIMPKAGLLIIVLAIIAREGDCAPEEKIWEELSVLEVFEGREDSILG DPKKLLTQHFVQENYLEYRQVPGSDPACYEFLWGPRALVETSYVKVLHHMVKISGGPH ISYPPLHEWVLREGEE* DNA sequence encoding full length, wild type, human MAGEA3 (SEQ ID NO: 2): ATGCCTCTTGAGCAGAGGAGTCAGCACTGCAAGCCTGAAGAAGGCCTTGAGGCCCG AGGAGAGGCCCTGGGCCTGGTGGGTGCGCAGGCTCCTGCTACTGAGGAGCAGGAGG CTGCCTCCTCCTCTTCTACTCTAGTTGAAGTCACCCTGGGGGAGGTGCCTGCTGCCG AGTCACCAGATCCTCCCCAGAGTCCTCAGGGAGCCTCCAGCCTCCCCACTACCATGA ACTACCCTCTCTGGAGCCAATCCTATGAGGACTCCAGCAACCAAGAAGAGGAGGGG CCAAGCACCTTCCCTGACCTGGAGTCCGAGTTCCAAGCAGCACTCAGTAGGAAGGT GGCCGAGTTGGTTCATTTTCTGCTCCTCAAGTATCGAGCCAGGGAGCCGGTCACAAA GGCAGAAATGCTGGGGAGTGTCGTCGGAAATTGGCAGTATTTCTTTCCTGTGATCTT CAGCAAAGCTTCCAGTTCCTTGCAGCTGGTCTTTGGCATCGAGCTGATGGAAGTGGA CCCCATCGGCCACTTGTACATCTTTGCCACCTGCCTGGGCCTCTCCTACGATGGCCTG CTGGGTGACAATCAGATCATGCCCAAGGCAGGCCTCCTGATAATCGTCCTGGCCATA ATCGCAAGAGAGGGCGACTGTGCCCCTGAGGAGAAAATCTGGGAGGAGCTGAGTGT GTTAGAGGTGTTTGAGGGGAGGGAAGACAGTATCTTGGGGGATCCCAAGAAGCTGC TCACCCAACATTTCGTGCAGGAAAACTACCTGGAGTACCGGCAGGTCCCCGGCAGT GATCCTGCATGTTATGAATTCCTGTGGGGTCCAAGGGCCCTCGTTGAAACCAGCTAT GTGAAAGTCCTGCACCATATGGTAAAGATCAGTGGAGGACCTCACATTTCCTACCCA CCCCTGCATGAGTGGGTTTTGAGAGAGGGGGAAGAGTGA Codon optimized DNA sequence encoding full length, wild type, human MAGEA3 protein (SEQ ID NO: 3): ATGCCCCTGGAGCAGCGGTCTCAGCATTGCAAGCCAGAGGAGGGCCTCGAGGCGAG GGGCGAGGCCCTCGGCTTGGTGGGGGCGCAGGCTCCTGCAACCGAGGAGCAAGAGG CCGCATCCAGTTCCTCTACCCTGGTTGAGGTGACCTTGGGTGAGGTGCCCGCCGCGG AGAGCCCCGACCCGCCTCAAAGCCCCCAGGGTGCCAGCTCCCTGCCCACAACAATG AACTACCCACTCTGGAGTCAGTCTTACGAGGACAGTAGTAACCAAGAGGAGGAGGG ACCCTCCACATTCCCAGACCTGGAGTCTGAATTCCAGGCAGCATTGTCTAGAAAAGT GGCCGAATTGGTGCACTTCCTGCTGCTGAAGTATCGCGCCCGCGAGCCAGTCACAAA AGCTGAAATGCTGGGTTCTGTCGTGGGAAATTGGCAGTACTTCTTCCCCGTGATCTT CAGTAAAGCGTCCAGCTCCTTGCAGCTGGTCTTTGGTATCGAGCTGATGGAGGTGGA TCCCATCGGCCATCTGTATATCTTTGCCACATGCCTGGGCCTGAGCTACGATGGCCT GCTGGGCGACAACCAGATCATGCCAAAAGCTGGCCTGCTGATCATCGTTCTGGCTAT CATCGCTAGAGAAGGAGATTGCGCCCCTGAAGAAAAGATCTGGGAGGAACTGAGCG TCCTGGAAGTCTTTGAGGGTCGTGAAGACAGCATTCTCGGGGATCCCAAGAAGCTGC TGACCCAGCACTTCGTGCAGGAGAACTATCTGGAGTACCGCCAGGTTCCCGGCAGC GACCCCGCTTGCTACGAGTTCCTGTGGGGCCCCAGGGCCCTGGTCGAGACATCCTAC GTGAAGGTCCTGCACCATATGGTTAAAATCAGCGGCGGCCCCCATATCTCTTATCCG CCGCTCCACGAGTGGGTGCTCCGGGAGGGAGAGGAG Protein sequence of a variant of full length, wild type, human MAGEA3 (SEQ ID NO: 4): MPLEQRSQHCKPEEGLEARGEALGLVGAQAPATEEQEAASSSSTLVEVTLGEVPAAESP DPPQSPQGASSLPTTMNYPLWSQSYEDSSNQEEEGPSTFPDLESEFQAALSRKVAELVHF LLLKYRAREPVTKAEMLGSVVGNWQYFFPVIFSKASSSLQLVFGIELMEVDPIGHLYIFA TCLGLSYDGLLGDNQIMPKAGLLIIVLAIIAREGDCAPEEKIWEELSVLEVFEGREDSILG DPKKLLTQHFVQENYLEYRQVPGSDPACYEFLWGPRALVETSYVKVLHHMVKISGGPH ISYPPLHEWVLREGEEDYKDDDDK* DNA sequence encoding a variant of full length, wild type, human MAGEA3 (SEQ ID NO: 5): ATGCCCCTGGAACAGCGGAGCCAGCACTGCAAGCCCGAGGAAGGCCTGGAAGCCA GAGGCGAAGCCCTGGGACTGGTGGGAGCCCAGGCCCCTGCCACAGAAGAACAGGA AGCCGCCAGCAGCAGCTCCACCCTGGTGGAAGTGACCCTGGGCGAAGTGCCTGCCG CCGAGAGCCCTGATCCCCCTCAGTCTCCTCAGGGCGCCAGCAGCCTGCCCACCACCA TGAACTACCCCCTGTGGTCCCAGAGCTACGAGGACAGCAGCAACCAGGAAGAGGAA GGCCCCAGCACCTTCCCCGACCTGGAAAGCGAGTTCCAGGCCGCCCTGAGCCGGAA GGTGGCAGAGCTGGTGCACTTCCTGCTGCTGAAGTACAGAGCCCGCGAGCCCGTGA CCAAGGCCGAGATGCTGGGCAGCGTGGTGGGAAACTGGCAGTACTTCTTCCCCGTG ATCTTCTCCAAGGCCAGCAGCTCCCTGCAGCTGGTGTTCGGCATCGAGCTGATGGAA GTGGACCCCATCGGCCACCTGTACATCTTCGCCACCTGTCTGGGCCTGAGCTACGAC GGCCTGCTGGGCGACAACCAGATCATGCCCAAGGCCGGCCTGCTGATCATCGTGCT GGCCATCATTGCCCGCGAGGGCGACTGCGCCCCTGAGGAAAAGATCTGGGAGGAAC TGAGCGTGCTGGAAGTGTTCGAGGGCAGAGAGGACAGCATCCTGGGCGACCCCAAG AAGCTGCTGACCCAGCACTTCGTGCAGGAAAACTACCTGGAATACCGCCAGGTGCC CGGCAGCGACCCCGCCTGTTACGAGTTCCTGTGGGGCCCCAGGGCTCTGGTGGAAA CCAGCTACGTGAAGGTGCTGCACCACATGGTGAAAATCAGCGGCGGACCCCACATC AGCTACCCCCCACTGCACGAGTGGGTGCTGAGAGAGGGCGAAGAGGACTACAAGG ACGACGACGACAAATGA Protein sequence of HPV E6/E7 fusion protein (SEQ ID NO: 7): MHQKRTAMFQDPQERPRKLPQLCTELQTTIHDIILECVYCKQQLLRREVYDFAFRDLCIV YRDGNPYAVDKLKFYSKISEYRHYCYSVYGTTLEQQYNKPLCDLLIRINQKPLCPEEKQ RHLDKKQRFHNIRGRWTGRCMSCCRSSRTRRETQLGGGGGAAYMARFEDPTRRPYKLP DLCTELNTSLQDIEITCVYCKTVLELTEVFEFAFKDLFVVYRDSIPHAAHKIDFYSRIRELR HYSDSVYGDTLEKLTNTGLYNLLIRLRQKPLNPAEKLRHLNEKRRFHNIAGHYRGQCHS CCNRARQERLQRRRETQVGGGGGAAYMHGDTPTLHEYMLDLQPETTDLYQLNDSSEE EDEIDGPAGQAEPDRAHYNIVTFCCKCDSTLRLCVQSTHVDIRTLEDLLMGTLGIVPICSQ KPGGGGGAAYMHGPKATLQDIVLHLEPQNEIPVDLLQLSDSEEENDEIDGVNHQHLPAR RAEPQRHTMLCMCCKCEARIKLVVESSADDLRAFQQLFLNTLSFVPWCASQQ* DNA sequence of HPV E6/E7 fusion protein (SEQ ID NO: 8): ATGCATCAGAAGCGAACTGCTATGTTTCAGGACCCTCAGGAGCGGCCACGCAAACT GCCTCAGCTGTGCACCGAACTGCAGACAACTATCCACGACATCATTCTGGAATGCGT GTACTGTAAGCAGCAGCTGCTGAGGAGAGAGGTCTATGACTTCGCTTTTCGCGATCT GTGCATCGTGTACCGAGACGGAAACCCATATGCAGTCGATAAGCTGAAGTTCTACA GCAAGATCTCCGAATACAGGCATTACTGTTACAGCGTGTACGGGACCACACTGGAG CAGCAGTATAACAAGCCCCTGTGCGACCTGCTGATCAGAATTAATCAGAAGCCCCT GTGCCCTGAGGAAAAACAGAGGCACCTGGATAAGAAACAGAGATTTCATAACATCC GAGGACGATGGACCGGGCGGTGCATGTCCTGCTGTAGAAGCTCCCGGACTCGACGA GAGACCCAGCTGGGCGGAGGAGGAGGAGCAGCTTACATGGCACGATTCGAGGACC CTACCCGAAGGCCATATAAGCTGCCCGACCTGTGCACAGAACTGAATACTTCTCTGC AGGACATCGAGATTACATGCGTGTACTGTAAAACCGTCCTGGAGCTGACAGAAGTG TTCGAGTTTGCTTTCAAGGACCTGTTTGTGGTCTACCGGGATTCAATCCCTCACGCAG CCCATAAAATCGACTTCTACAGCAGGATCAGGGAACTGCGCCACTACTCCGACAGC GTGTACGGGGATACACTGGAGAAGCTGACAAACACTGGCCTGTACAATCTGCTGAT CCGACTGCGACAGAAGCCACTGAACCCAGCCGAAAAACTGAGACACCTGAACGAG AAGAGACGGTTTCACAATATTGCAGGCCATTATAGGGGACAGTGCCATAGTTGCTGT AATCGAGCCAGGCAGGAAAGACTGCAGCGCCGAAGGGAGACTCAAGTCGGCGGAG GAGGAGGAGCTGCATACATGCACGGCGACACCCCCACACTGCATGAATATATGCTG GATCTGCAGCCTGAGACTACCGACCTGTACCAGCTGAACGATTCTAGTGAGGAAGA GGACGAAATCGACGGACCAGCAGGACAGGCAGAGCCTGACCGGGCCCACTATAAT ATTGTGACATTCTGCTGTAAGTGCGATTCTACTCTGCGGCTGTGCGTGCAGAGTACT CATGTCGACATCCGCACCCTGGAGGATCTGCTGATGGGGACTCTGGGCATCGTCCCA ATTTGTAGCCAGAAACCAGGCGGCGGCGGCGGAGCAGCTTACATGCACGGACCCAA GGCTACCCTGCAGGACATCGTGCTGCATCTGGAACCTCAGAATGAGATTCCAGTCGA CCTGCTGCAGCTGAGTGATTCAGAAGAGGAAAACGACGAGATCGACGGCGTGAATC ACCAGCATCTGCCTGCTAGACGGGCAGAGCCACAGCGACACACAATGCTGTGCATG TGCTGTAAGTGTGAAGCCAGGATCAAGCTGGTGGTCGAGTCAAGCGCCGACGATCT GCGCGCCTTCCAGCAGCTGTTCCTGAATACTCTGTCATTTGTCCCTTGGTGTGCCTCC CAGCAGTGA Protein sequence of huSTEAP protein (SEQ ID NO: 10): MESRKDITNQEELWKMKPRRNLEEDDYLHKDTGETSMLKRPVLLHLHQTAHADEFDCP SELQHTQELFPQWHLPIKIAAIIASLTFLYTLLREVIHPLATSHQQYFYKIPILVINKVLPMV SITLLALVYLPGVIAAIVQLHNGTKYKKFPHWLDKWMLTRKQFGLLSFFFAVLHAIYSLS YPMRRSYRYKLLNWAYQQVQQNKEDAWIEHDVWRMEIYVSLGIVGLAILALLAVTSIP SVSDSLTWREFHYIQSKLGIVSLLLGTIHALIFAWNKWIDIKQFVWYTPPTFMIAVFLPIV VLIFKSILFLPCLRKKILKIRHGWEDVTKINKTEICSQLKL* DNA sequence of huSTEAP protein (SEQ ID NO: 11): ATGGAATCACGGAAGGACATCACTAATCAGGAGGAACTGTGGAAAATGAAGCCAA GAAGGAATCTGGAAGAGGACGACTATCTGCACAAGGACACCGGCGAAACAAGTAT GCTGAAACGACCAGTGCTGCTGCACCTGCATCAGACTGCTCACGCAGACGAGTTTG ATTGCCCCTCTGAACTGCAGCACACCCAGGAGCTGTTCCCACAGTGGCATCTGCCCA TCAAGATTGCCGCTATCATTGCTTCACTGACATTTCTGTACACTCTGCTGAGAGAAGT GATCCACCCCCTGGCCACCAGCCATCAGCAGTACTTCTATAAGATCCCTATCCTGGT CATCAACAAGGTCCTGCCAATGGTGAGCATCACACTGCTGGCCCTGGTCTACCTGCC TGGAGTGATCGCAGCCATTGTCCAGCTGCACAATGGGACAAAGTATAAGAAATTTC CACATTGGCTGGATAAGTGGATGCTGACTAGGAAACAGTTCGGACTGCTGTCCTTCT TTTTCGCCGTGCTGCACGCTATCTACAGCCTGTCCTATCCCATGAGGAGGAGCTACC GGTATAAGCTGCTGAACTGGGCTTACCAGCAGGTGCAGCAGAACAAGGAGGACGCA TGGATTGAACATGACGTGTGGCGCATGGAAATCTACGTGAGCCTGGGCATTGTCGG ACTGGCCATCCTGGCTCTGCTGGCAGTGACCAGTATCCCTTCTGTCAGTGACTCACT GACATGGAGAGAGTTTCACTACATTCAGAGCAAGCTGGGGATCGTGTCCCTGCTGCT GGGCACCATCCATGCACTGATTTTTGCCTGGAACAAGTGGATCGATATCAAGCAGTT CGTGTGGTATACTCCCCCTACCTTTATGATTGCCGTCTTCCTGCCCATCGTGGTCCTG ATCTTCAAGTCCATCCTGTTCCTGCCTTGTCTGCGGAAGAAAATCCTGAAAATTCGG CACGGATGGGAGGATGTCACCAAAATCAATAAGACTGAAATCTGTAGCCAGCTGAA GCTTTAA Protein sequence of NYESO1 MAR protein (SEQ ID NO: 13): MQAEGRGTGGSTGDADGPGGPGIPDGPGGNAGGPGEAGATGGRGPRGAGAARASGPG GGAPRGPHGGAASGLNGCCRCGARGPESRLLEFYLAMPFATPMEAELARRSLAQDAPP LPVPGVLLKEFTVSGNILTIRLTAADHRQLQLSISSCLQQLSLLMWITQCFLPVFLAQPPS GQRR* DNA sequence of NYESO1 MAR (SEQ ID NO: 14): ATGCAGGCCGAGGGCAGAGGCACAGGCGGATCTACAGGCGACGCCGATGGCCCTG GCGGCCCTGGAATTCCTGACGGACCTGGCGGCAATGCCGGCGGACCCGGAGAAGCT GGCGCCACAGGCGGAAGAGGACCTAGAGGCGCTGGCGCCGCTAGAGCTTCTGGACC AGGCGGAGGCGCCCCTAGAGGACCTCATGGCGGAGCCGCCTCCGGCCTGAACGGCT GTTGCAGATGTGGAGCCAGAGGCCCCGAGAGCCGGCTGCTGGAATTCTACCTGGCC ATGCCCTTCGCCACCCCCATGGAAGCCGAGCTGGCCAGACGGTCCCTGGCCCAGGA TGCTCCTCCTCTGCCTGTGCCCGGCGTGCTGCTGAAAGAATTCACCGTGTCCGGCAA CATCCTGACCATCCGGCTGACTGCCGCCGACCACAGACAGCTCCAGCTGTCTATCAG CTCCTGCCTGCAGCAGCTGAGCCTGCTGATGTGGATCACCCAGTGCTTTCTGCCCGT GTTCCTGGCTCAGCCCCCCAGCGGCCAGAGAAGATGA Protein sequence of EBDNA1 (SEQ ID NO: 16): MPVGQADYFEYHQEGGPDGEPDMPPGAIEQGPADDPGEGPSTGPRGQGDGGRRKKGG WFGKHRGQGGSNQKFENIADGLRTLLARCHVERTTDEGTWVAGVFVYGGSKTSLYNL RRGISLAIPQCRLTPLSRLPFGMAPGPGPQPGPLRESIVCYFIVFLQTHIFAEGLKDAIKDL VMPKPAPTCNIKATVCSFDDGVDLPPWFPPMVEGAAAEGDDGDDGDDGDEGGDGDEG EEGQE* DNA sequence of EBDNA1 (SEQ ID NO: 17): ATGCCAGTCGGCCAGGCTGATTACTTTGAATACCACCAGGAGGGGGGACCAGACGG AGAACCAGACATGCCACCAGGAGCCATTGAACAGGGACCAGCAGACGATCCTGGA GAGGGACCATCAACTGGACCCCGAGGACAGGGGGACGGCGGAAGGAGAAAGAAAG GGGGATGGTTCGGAAAGCACCGAGGACAGGGAGGGAGCAACCAGAAATTTGAAAA TATCGCTGACGGCCTGCGAACACTGCTGGCAAGGTGCCATGTGGAGAGAACCACAG ATGAAGGCACATGGGTCGCCGGAGTGTTCGTCTACGGCGGAAGCAAGACTTCCCTG TATAACCTGCGGCGCGGCATCTCTCTGGCCATTCCACAGTGCCGGCTGACCCCTCTG AGTCGCCTGCCATTCGGGATGGCTCCTGGACCAGGACCACAGCCTGGACCACTGAG GGAGTCCATCGTGTGCTACTTCATTGTCTTTCTGCAGACACACATCTTTGCCGAAGGC CTGAAGGACGCCATCAAGGACCTGGTCATGCCCAAGCCTGCACCAACTTGCAATAT CAAGGCCACCGTGTGCAGTTTCGACGATGGCGTGGACCTGCCCCCTTGGTTTCCACC TATGGTGGAGGGAGCCGCTGCAGAAGGGGACGATGGCGATGACGGGGACGATGGG GATGAAGGCGGGGACGGCGATGAGGGAGAAGAGGGGCAGGAATAA
Claims (18)
1. A method of treating cancer in a mammal said cancer being a tumour expressing an HPV protein, said method comprising:
a) administering a first virus comprising a nucleic acid capable of expressing a protein comprising an HPV tumour associated antigen, wherein said first virus is capable of generating immunity to said HPV tumour associated antigen;
b) administering a second virus, said second virus being a Vesiculovirus, said second virus comprising a nucleic acid capable of expressing a HPV tumour associated antigen, wherein said second virus is capable of providing a therapeutic oncolytic effect in said mammal;
wherein said first virus is immunologically distinct and physically; and
wherein either (i) the HPV tumour associated antigen comprises an amino acid sequence that is at least 80% identical to SEQ ID NO. 7; or (ii) the second virus is Maraba MG1.
2. The method of claim 1 , wherein said second virus is Maraba MG1.
3. The method of claim 2 , wherein the HPV tumour associated antigen expressed by said nucleic acid in at least the first or second virus comprises an amino acid sequence that is at least 80% identical to SEQ ID NO: 7.
4. The method of claim 3 , wherein the amino acid sequence is at least 90% identical to SEQ ID NO: 7.
5. The method of claim 4 , wherein the amino acid sequence comprises SEQ ID NO: 7.
6. The method of claim 4 , wherein the amino acid sequence consists of SEQ ID NO: 7.
7. The method of claim 5 , wherein the amino acid sequence is encoded by the nucleotide sequence of SEQ ID NO: 8.
8. The method according to claim 5 , wherein the Maraba MG1 genome comprises a reverse complement and RNA version of a nucleotide sequence of SEQ ID NO: 9.
9. The method of claim 1 , wherein the HPV tumour associated antigen expressed by said nucleic acid in at least the first or second virus that comprises an amino acid sequence that is at least 80% identical to SEQ ID NO: 7.
10. The method of claim 8 , wherein the amino acid sequence is at least 90% identical to SEQ ID NO: 7.
11. The method of claim 9 , wherein the amino acid sequence comprises SEQ ID NO: 7.
12. The method of claim 10 , wherein the amino acid sequence consists of SEQ ID NO: 7.
13. The method of claim 11 , wherein the amino acid sequence is encoded by the nucleotide sequence of SEQ ID NO: 8.
14. The method according to claim 1 , wherein said first virus is administered intramuscularly and said second virus is administered intravenously.
15. The method according to claim 1 , wherein said first and second virus both express the same HPV tumour associated antigen.
16. The method of claim 14 , wherein the HPV tumour associated antigen comprises SEQ ID NO: 7.
17. The method of claim 1 , wherein the cancer expresses HPV E6 or E7 proteins as antigenic proteins.
18. The method of claim 1 , wherein the cancer is cervical cancer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/015,905 US20210128706A1 (en) | 2013-02-21 | 2020-09-09 | Vaccine composition |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361767776P | 2013-02-21 | 2013-02-21 | |
PCT/CA2014/050118 WO2014127478A1 (en) | 2013-02-21 | 2014-02-20 | Vaccine composition |
US201514769035A | 2015-08-19 | 2015-08-19 | |
US16/249,616 US10646557B2 (en) | 2013-02-21 | 2019-01-16 | Vaccine composition |
US202016735470A | 2020-01-06 | 2020-01-06 | |
US17/015,905 US20210128706A1 (en) | 2013-02-21 | 2020-09-09 | Vaccine composition |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US202016735470A Continuation | 2013-02-21 | 2020-01-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210128706A1 true US20210128706A1 (en) | 2021-05-06 |
Family
ID=51390448
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/769,035 Active US10363293B2 (en) | 2013-02-21 | 2014-02-20 | Vaccine composition |
US16/249,610 Active US10660947B2 (en) | 2013-02-21 | 2019-01-16 | Vaccine composition |
US16/249,616 Active US10646557B2 (en) | 2013-02-21 | 2019-01-16 | Vaccine composition |
US17/015,905 Abandoned US20210128706A1 (en) | 2013-02-21 | 2020-09-09 | Vaccine composition |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/769,035 Active US10363293B2 (en) | 2013-02-21 | 2014-02-20 | Vaccine composition |
US16/249,610 Active US10660947B2 (en) | 2013-02-21 | 2019-01-16 | Vaccine composition |
US16/249,616 Active US10646557B2 (en) | 2013-02-21 | 2019-01-16 | Vaccine composition |
Country Status (11)
Country | Link |
---|---|
US (4) | US10363293B2 (en) |
EP (2) | EP2958994B1 (en) |
JP (2) | JP2016513115A (en) |
CN (1) | CN105658790A (en) |
AU (2) | AU2014221143B2 (en) |
CA (1) | CA2901501C (en) |
ES (1) | ES2741147T3 (en) |
IL (2) | IL240723B (en) |
MX (2) | MX2015010783A (en) |
RU (2) | RU2019107976A (en) |
WO (1) | WO2014127478A1 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2010329551B2 (en) | 2009-12-10 | 2016-02-11 | Turnstone Limited Partnership | Oncolytic rhabdovirus |
WO2012167382A1 (en) | 2011-06-08 | 2012-12-13 | Children's Hospital Of Eastern Ontario Research Institute Inc. | Compositions and methods for glioblastoma treatment |
CN105658790A (en) | 2013-02-21 | 2016-06-08 | 东安大略研究所儿童医院有限公司 | Vaccine composition |
WO2015048744A2 (en) | 2013-09-30 | 2015-04-02 | Moderna Therapeutics, Inc. | Polynucleotides encoding immune modulating polypeptides |
JP2018531290A (en) | 2015-10-22 | 2018-10-25 | モデルナティーエックス, インコーポレイテッド | Sexually transmitted disease vaccine |
WO2017120670A1 (en) * | 2016-01-11 | 2017-07-20 | Brian Lichty | Oncolytic virus and checkpoint inhibitor combination therapy |
JP2019514988A (en) * | 2016-05-09 | 2019-06-06 | ターンストーン リミテッド パートナーシップ | Combination prime: boost therapy |
EP3458576A4 (en) * | 2016-05-19 | 2020-03-25 | Turnstone Limited Partnership | Pseudotyped oncolytic rhabdoviruses and their use in combination therapy |
JP6949468B2 (en) * | 2016-10-17 | 2021-10-13 | ルプレヒト−カールス−ウニベルジテート ハイデルベルク | Measles virus encoding tumor antigen |
WO2019075579A1 (en) * | 2017-10-20 | 2019-04-25 | Atherton Matthew John | Combination prime:boost therapy |
CN108440669B (en) * | 2018-02-09 | 2021-08-06 | 焦顺昌 | Fusion protein, recombinant virus vaccine for treating non-small cell lung cancer and preparation method |
EP3755369A4 (en) * | 2018-02-22 | 2022-01-19 | Turnstone Limited Partnership | Oncolytic viruses as adjuvants |
US20220160800A1 (en) * | 2019-03-20 | 2022-05-26 | Turnstone Biologics Inc. | Methods for inducing an immune response against neoantigens |
WO2020186355A1 (en) * | 2019-03-20 | 2020-09-24 | Turnstone Biologics Inc. | Sequential heterologous boost oncolytic viral mmunotherapy |
WO2021041518A2 (en) * | 2019-08-27 | 2021-03-04 | Turnstone Biologics Corp. | Methods for inducing an immune response against neoantigens |
WO2022170219A1 (en) | 2021-02-05 | 2022-08-11 | Iovance Biotherapeutics, Inc. | Adjuvant therapy for cancer |
Family Cites Families (145)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4554101A (en) | 1981-01-09 | 1985-11-19 | New York Blood Center, Inc. | Identification and preparation of epitopes on antigens and allergens on the basis of hydrophilicity |
NL8200523A (en) | 1982-02-11 | 1983-09-01 | Univ Leiden | METHOD FOR TRANSFORMING IN VITRO PLANT PROTOPLASTS WITH PLASMIDE DNA. |
US4879236A (en) | 1984-05-16 | 1989-11-07 | The Texas A&M University System | Method for producing a recombinant baculovirus expression vector |
US4957858A (en) | 1986-04-16 | 1990-09-18 | The Salk Instute For Biological Studies | Replicative RNA reporter systems |
US4883750A (en) | 1984-12-13 | 1989-11-28 | Applied Biosystems, Inc. | Detection of specific sequences in nucleic acids |
US4683195A (en) | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
US4683202A (en) | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
US4946773A (en) | 1985-12-23 | 1990-08-07 | President And Fellows Of Harvard College | Detection of base pair mismatches using RNAase A |
ATE88761T1 (en) | 1986-01-10 | 1993-05-15 | Amoco Corp | COMPETITIVE HOMOGENEOUS TEST. |
US4800159A (en) | 1986-02-07 | 1989-01-24 | Cetus Corporation | Process for amplifying, detecting, and/or cloning nucleic acid sequences |
AU622104B2 (en) | 1987-03-11 | 1992-04-02 | Sangtec Molecular Diagnostics Ab | Method of assaying of nucleic acids, a reagent combination and kit therefore |
IL86724A (en) | 1987-06-19 | 1995-01-24 | Siska Diagnostics Inc | Method and kits for the amplification and detection of nucleic acid sequences |
US5824311A (en) | 1987-11-30 | 1998-10-20 | Trustees Of The University Of Pennsylvania | Treatment of tumors with monoclonal antibodies against oncogene antigens |
CA1323293C (en) | 1987-12-11 | 1993-10-19 | Keith C. Backman | Assay using template-dependent nucleic acid probe reorganization |
JP2846018B2 (en) | 1988-01-21 | 1999-01-13 | ジェネンテク,インコーポレイテッド | Amplification and detection of nucleic acid sequences |
US4952500A (en) | 1988-02-01 | 1990-08-28 | University Of Georgia Research Foundation, Inc. | Cloning systems for Rhodococcus and related bacteria |
CA1340807C (en) | 1988-02-24 | 1999-11-02 | Lawrence T. Malek | Nucleic acid amplification process |
DE68911648T2 (en) | 1988-03-24 | 1994-06-23 | Univ Iowa Res Found | CATALYTIC HYBRIDIZING SYSTEMS FOR DETECTING NUCLEIC ACID SEQUENCES BASED ON THEIR ACTIVITY AS COFACTORS IN CATALYTIC REACTIONS IN WHICH A COMPLEMENTARY, MARKED NUCLEIC ACID SAMPLE IS SPLIT. |
US5932413A (en) | 1988-04-01 | 1999-08-03 | Celebuski; Joseph Eugene | DNA probe assay using neutrally charged probe strands |
US5858652A (en) | 1988-08-30 | 1999-01-12 | Abbott Laboratories | Detection and amplification of target nucleic acid sequences |
US4932207A (en) | 1988-12-28 | 1990-06-12 | Sundstrand Corporation | Segmented seal plate for a turbine engine |
US5856092A (en) | 1989-02-13 | 1999-01-05 | Geneco Pty Ltd | Detection of a nucleic acid sequence or a change therein |
US5703055A (en) | 1989-03-21 | 1997-12-30 | Wisconsin Alumni Research Foundation | Generation of antibodies through lipid mediated DNA delivery |
US5284760A (en) | 1989-04-03 | 1994-02-08 | Feinstone Stephen M | Techniques for producing site-directed mutagenesis of cloned DNA |
US5925525A (en) | 1989-06-07 | 1999-07-20 | Affymetrix, Inc. | Method of identifying nucleotide differences |
US5302523A (en) | 1989-06-21 | 1994-04-12 | Zeneca Limited | Transformation of plant cells |
US7705215B1 (en) | 1990-04-17 | 2010-04-27 | Dekalb Genetics Corporation | Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof |
US5550318A (en) | 1990-04-17 | 1996-08-27 | Dekalb Genetics Corporation | Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof |
US5322783A (en) | 1989-10-17 | 1994-06-21 | Pioneer Hi-Bred International, Inc. | Soybean transformation by microparticle bombardment |
JP2968585B2 (en) | 1989-12-22 | 1999-10-25 | エフ.ホフマン ― ラ ロシュ アーゲー | High temperature reverse transcriptase |
US5484956A (en) | 1990-01-22 | 1996-01-16 | Dekalb Genetics Corporation | Fertile transgenic Zea mays plant comprising heterologous DNA encoding Bacillus thuringiensis endotoxin |
US5149797A (en) | 1990-02-15 | 1992-09-22 | The Worcester Foundation For Experimental Biology | Method of site-specific alteration of rna and production of encoded polypeptides |
US5220007A (en) | 1990-02-15 | 1993-06-15 | The Worcester Foundation For Experimental Biology | Method of site-specific alteration of RNA and production of encoded polypeptides |
US5466468A (en) | 1990-04-03 | 1995-11-14 | Ciba-Geigy Corporation | Parenterally administrable liposome formulation comprising synthetic lipids |
EP0527809B1 (en) | 1990-04-05 | 1995-08-16 | CREA, Roberto | Walk-through mutagenesis |
US5843233A (en) | 1990-07-16 | 1998-12-01 | Novellus Systems, Inc. | Exclusion guard and gas-based substrate protection for chemical vapor deposition apparatus |
US5849481A (en) | 1990-07-27 | 1998-12-15 | Chiron Corporation | Nucleic acid hybridization assays employing large comb-type branched polynucleotides |
US5645987A (en) | 1990-09-21 | 1997-07-08 | Amgen Inc. | Enzymatic synthesis of oligonucleotides |
US5384253A (en) | 1990-12-28 | 1995-01-24 | Dekalb Genetics Corporation | Genetic transformation of maize cells by electroporation of cells pretreated with pectin degrading enzymes |
US5399363A (en) | 1991-01-25 | 1995-03-21 | Eastman Kodak Company | Surface modified anticancer nanoparticles |
WO1993004169A1 (en) | 1991-08-20 | 1993-03-04 | Genpharm International, Inc. | Gene targeting in animal cells using isogenic dna constructs |
US5846717A (en) | 1996-01-24 | 1998-12-08 | Third Wave Technologies, Inc. | Detection of nucleic acid sequences by invader-directed cleavage |
US5610042A (en) | 1991-10-07 | 1997-03-11 | Ciba-Geigy Corporation | Methods for stable transformation of wheat |
US5849486A (en) | 1993-11-01 | 1998-12-15 | Nanogen, Inc. | Methods for hybridization analysis utilizing electrically controlled hybridization |
US5846708A (en) | 1991-11-19 | 1998-12-08 | Massachusetts Institiute Of Technology | Optical and electrical methods and apparatus for molecule detection |
CA2126438C (en) | 1991-12-24 | 2003-12-02 | Jac A. Nickoloff | Site-directed mutagenesis of dna |
EP0672181B1 (en) | 1992-04-01 | 2003-11-05 | The Johns Hopkins University School Of Medicine | Methods of detecting mammalian nucleic acids isolated from stool specimen and reagents therefor |
US5843640A (en) | 1992-06-19 | 1998-12-01 | Northwestern University | Method of simultaneously detecting amplified nucleic acid sequences and cellular antigens in cells |
US5591616A (en) | 1992-07-07 | 1997-01-07 | Japan Tobacco, Inc. | Method for transforming monocotyledons |
US5702932A (en) | 1992-07-20 | 1997-12-30 | University Of Florida | Microinjection methods to transform arthropods with exogenous DNA |
WO1994002620A2 (en) | 1992-07-27 | 1994-02-03 | Pioneer Hi-Bred International, Inc. | An improved method of agrobacterium-mediated transformation of cultured soybean cells |
DE4228457A1 (en) | 1992-08-27 | 1994-04-28 | Beiersdorf Ag | Production of heterodimeric PDGF-AB using a bicistronic vector system in mammalian cells |
US5389514A (en) | 1992-08-28 | 1995-02-14 | Fox Chase Cancer Center | Method for specifically altering the nucleotide sequence of RNA |
US5861244A (en) | 1992-10-29 | 1999-01-19 | Profile Diagnostic Sciences, Inc. | Genetic sequence assay using DNA triple strand formation |
GB9222888D0 (en) | 1992-10-30 | 1992-12-16 | British Tech Group | Tomography |
US5843225A (en) | 1993-02-03 | 1998-12-01 | Semiconductor Energy Laboratory Co., Ltd. | Process for fabricating semiconductor and process for fabricating semiconductor device |
US5801029A (en) | 1993-02-16 | 1998-09-01 | Onyx Pharmaceuticals, Inc. | Cytopathic viruses for therapy and prophylaxis of neoplasia |
US5801005A (en) | 1993-03-17 | 1998-09-01 | University Of Washington | Immune reactivity to HER-2/neu protein for diagnosis of malignancies in which the HER-2/neu oncogene is associated |
US5658751A (en) | 1993-04-13 | 1997-08-19 | Molecular Probes, Inc. | Substituted unsymmetrical cyanine dyes with selected permeability |
US5279721A (en) | 1993-04-22 | 1994-01-18 | Peter Schmid | Apparatus and method for an automated electrophoresis system |
GB9311386D0 (en) | 1993-06-02 | 1993-07-21 | Pna Diagnostics As | Nucleic acid analogue assay procedures |
US5846709A (en) | 1993-06-15 | 1998-12-08 | Imclone Systems Incorporated | Chemical process for amplifying and detecting nucleic acid sequences |
US5543158A (en) | 1993-07-23 | 1996-08-06 | Massachusetts Institute Of Technology | Biodegradable injectable nanoparticles |
FR2708288B1 (en) | 1993-07-26 | 1995-09-01 | Bio Merieux | Method for amplification of nucleic acids by transcription using displacement, reagents and necessary for the implementation of this method. |
US5925517A (en) | 1993-11-12 | 1999-07-20 | The Public Health Research Institute Of The City Of New York, Inc. | Detectably labeled dual conformation oligonucleotide probes, assays and kits |
GB2284208A (en) | 1993-11-25 | 1995-05-31 | Pna Diagnostics As | Nucleic acid analogues with a chelating functionality for metal ions |
DE69432919T2 (en) | 1993-12-28 | 2004-05-27 | Tanabe Seiyaku Co., Ltd. | Methods for the detection of specific polynucleotides |
US5928905A (en) | 1995-04-18 | 1999-07-27 | Glaxo Group Limited | End-complementary polymerase reaction |
US5585461A (en) * | 1994-03-24 | 1996-12-17 | Ludwig Institute For Cancer Research | Isolated, MAGE-3 derived peptides which complex with HLA-A2 molecules and uses thereof |
US5851770A (en) | 1994-04-25 | 1998-12-22 | Variagenics, Inc. | Detection of mismatches by resolvase cleavage using a magnetic bead support |
AU707391B2 (en) | 1994-05-28 | 1999-07-08 | Tepnel Medical Limited | Producing copies of nucleic acids |
US5656610A (en) | 1994-06-21 | 1997-08-12 | University Of Southern California | Producing a protein in a mammal by injection of a DNA-sequence into the tongue |
US5942391A (en) | 1994-06-22 | 1999-08-24 | Mount Sinai School Of Medicine | Nucleic acid amplification method: ramification-extension amplification method (RAM) |
FR2722208B1 (en) | 1994-07-05 | 1996-10-04 | Inst Nat Sante Rech Med | NEW INTERNAL RIBOSOME ENTRY SITE, VECTOR CONTAINING SAME AND THERAPEUTIC USE |
US5849483A (en) | 1994-07-28 | 1998-12-15 | Ig Laboratories, Inc. | High throughput screening method for sequences or genetic alterations in nucleic acids |
EP0777749B1 (en) | 1994-08-19 | 2002-10-30 | PE Corporation (NY) | Coupled amplification and ligation method |
GB9506466D0 (en) | 1994-08-26 | 1995-05-17 | Prolifix Ltd | Cell cycle regulated repressor and dna element |
US5599668A (en) | 1994-09-22 | 1997-02-04 | Abbott Laboratories | Light scattering optical waveguide method for detecting specific binding events |
US5871986A (en) | 1994-09-23 | 1999-02-16 | The General Hospital Corporation | Use of a baculovirus to express and exogenous gene in a mammalian cell |
EP0709466B1 (en) | 1994-10-28 | 2006-09-27 | Gen-Probe Incorporated | Compositions and methods for the simultaneous detection and quantification of multiple specific nucleic acid sequences |
US5736524A (en) | 1994-11-14 | 1998-04-07 | Merck & Co.,. Inc. | Polynucleotide tuberculosis vaccine |
US5935825A (en) | 1994-11-18 | 1999-08-10 | Shimadzu Corporation | Process and reagent for amplifying nucleic acid sequences |
US5599302A (en) | 1995-01-09 | 1997-02-04 | Medi-Ject Corporation | Medical injection system and method, gas spring thereof and launching device using gas spring |
US5866337A (en) | 1995-03-24 | 1999-02-02 | The Trustees Of Columbia University In The City Of New York | Method to detect mutations in a nucleic acid using a hybridization-ligation procedure |
IE80468B1 (en) | 1995-04-04 | 1998-07-29 | Elan Corp Plc | Controlled release biodegradable nanoparticles containing insulin |
US5843650A (en) | 1995-05-01 | 1998-12-01 | Segev; David | Nucleic acid detection and amplification by chemical linkage of oligonucleotides |
US5929227A (en) | 1995-07-12 | 1999-07-27 | The Regents Of The University Of California | Dimeric fluorescent energy transfer dyes comprising asymmetric cyanine azole-indolenine chromophores |
US5916779A (en) | 1995-09-21 | 1999-06-29 | Becton, Dickinson And Company | Strand displacement amplification of RNA targets |
US5866331A (en) | 1995-10-20 | 1999-02-02 | University Of Massachusetts | Single molecule detection by in situ hybridization |
US5780448A (en) | 1995-11-07 | 1998-07-14 | Ottawa Civic Hospital Loeb Research | DNA-based vaccination of fish |
US5789166A (en) | 1995-12-08 | 1998-08-04 | Stratagene | Circular site-directed mutagenesis |
US5612473A (en) | 1996-01-16 | 1997-03-18 | Gull Laboratories | Methods, kits and solutions for preparing sample material for nucleic acid amplification |
US5851772A (en) | 1996-01-29 | 1998-12-22 | University Of Chicago | Microchip method for the enrichment of specific DNA sequences |
US5928906A (en) | 1996-05-09 | 1999-07-27 | Sequenom, Inc. | Process for direct sequencing during template amplification |
US5739169A (en) | 1996-05-31 | 1998-04-14 | Procept, Incorporated | Aromatic compounds for inhibiting immune response |
US5912124A (en) | 1996-06-14 | 1999-06-15 | Sarnoff Corporation | Padlock probe detection |
US5939291A (en) | 1996-06-14 | 1999-08-17 | Sarnoff Corporation | Microfluidic method for nucleic acid amplification |
US5853990A (en) | 1996-07-26 | 1998-12-29 | Edward E. Winger | Real time homogeneous nucleotide assay |
US5945100A (en) | 1996-07-31 | 1999-08-31 | Fbp Corporation | Tumor delivery vehicles |
CA2744096C (en) | 1996-07-31 | 2013-07-30 | Laboratory Corporation Of America Holdings | Biomarkers and targets for diagnosis, prognosis and management of prostate disease |
US5928870A (en) | 1997-06-16 | 1999-07-27 | Exact Laboratories, Inc. | Methods for the detection of loss of heterozygosity |
US5849546A (en) | 1996-09-13 | 1998-12-15 | Epicentre Technologies Corporation | Methods for using mutant RNA polymerases with reduced discrimination between non-canonical and canonical nucleoside triphosphates |
US5981274A (en) | 1996-09-18 | 1999-11-09 | Tyrrell; D. Lorne J. | Recombinant hepatitis virus vectors |
US5853992A (en) | 1996-10-04 | 1998-12-29 | The Regents Of The University Of California | Cyanine dyes with high-absorbance cross section as donor chromophores in energy transfer labels |
US5853993A (en) | 1996-10-21 | 1998-12-29 | Hewlett-Packard Company | Signal enhancement method and kit |
US5900481A (en) | 1996-11-06 | 1999-05-04 | Sequenom, Inc. | Bead linkers for immobilizing nucleic acids to solid supports |
US5905024A (en) | 1996-12-17 | 1999-05-18 | University Of Chicago | Method for performing site-specific affinity fractionation for use in DNA sequencing |
US5846225A (en) | 1997-02-19 | 1998-12-08 | Cornell Research Foundation, Inc. | Gene transfer therapy delivery device and method |
US5846729A (en) | 1997-02-27 | 1998-12-08 | Lorne Park Research, Inc. | Assaying nucleotides in solution using a fluorescent intensity quenching effect |
US5849497A (en) | 1997-04-03 | 1998-12-15 | The Research Foundation Of State University Of New York | Specific inhibition of the polymerase chain reaction using a non-extendable oligonucleotide blocker |
US5846726A (en) | 1997-05-13 | 1998-12-08 | Becton, Dickinson And Company | Detection of nucleic acids by fluorescence quenching |
US5928869A (en) | 1997-05-30 | 1999-07-27 | Becton, Dickinson And Company | Detection of nucleic acids by fluorescence quenching |
US5919626A (en) | 1997-06-06 | 1999-07-06 | Orchid Bio Computer, Inc. | Attachment of unmodified nucleic acids to silanized solid phase surfaces |
US5866366A (en) | 1997-07-01 | 1999-02-02 | Smithkline Beecham Corporation | gidB |
US6565831B1 (en) | 1999-02-24 | 2003-05-20 | Oncolytics Biotech Inc. | Methods for preventing reovirus recognition for the treatment of cellular proliferative disorders |
US5916776A (en) | 1997-08-27 | 1999-06-29 | Sarnoff Corporation | Amplification method for a polynucleotide |
US5965535A (en) * | 1997-09-12 | 1999-10-12 | Ludwig Institute For Cancer Research | Mage-3 peptides presented by HLA class II molecules |
US5935791A (en) | 1997-09-23 | 1999-08-10 | Becton, Dickinson And Company | Detection of nucleic acids by fluorescence quenching |
US5994624A (en) | 1997-10-20 | 1999-11-30 | Cotton Incorporated | In planta method for the production of transgenic plants |
US5932451A (en) | 1997-11-19 | 1999-08-03 | Incyte Pharmaceuticals, Inc. | Method for unbiased mRNA amplification |
US8147822B1 (en) | 1999-09-17 | 2012-04-03 | Wellstat Biologics Corporation | Oncolytic virus |
DE60026554T2 (en) | 1999-09-17 | 2006-09-28 | Wellstat Biologics Corp. | ONCOLYTIC VESICULAR STOMATITIS VIRUS |
RU2301260C2 (en) | 2000-09-22 | 2007-06-20 | Вирэкссис Корпорейшн | Viral vectors with condition-dependent replication and their using |
IL152420A0 (en) | 2001-02-23 | 2003-05-29 | Novartis Ag | Novel oncolytic adenoviral vectors |
WO2003008537A2 (en) * | 2001-04-06 | 2003-01-30 | Mannkind Corporation | Epitope sequences |
WO2003009812A2 (en) | 2001-07-25 | 2003-02-06 | New York University | Use of glycosylceramides as adjuvants for vaccines against infections and cancer |
GB0226722D0 (en) | 2002-11-15 | 2002-12-24 | Glaxo Group Ltd | Vaccine |
EP1797113B1 (en) | 2004-09-27 | 2014-11-26 | GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES | Optimized vaccines to provide protection against ebola and other viruses |
GB2421025A (en) | 2004-12-09 | 2006-06-14 | Oxxon Therapeutics Ltd | HSV vaccination vectors |
CA2621127C (en) | 2005-08-31 | 2014-02-25 | Oncolytics Biotech Inc. | Treatment with an oncolytic virus and an immunostimulant for in vivo enhancement of immune system recognition of neoplasms |
US8926993B2 (en) | 2006-07-17 | 2015-01-06 | Aduro Biotech | Methods and compositions using Listeria for enhancing immunogenicity by prime boost |
WO2008009115A1 (en) | 2006-07-18 | 2008-01-24 | Ottawa Health Research Institute | Disparate suicide carrier cells for tumor targeting of promiscuous oncolytic viruses |
CA2658584A1 (en) | 2006-07-27 | 2008-01-31 | Ottawa Health Research Institute | Staged immune-response modulation in oncolytic therapy |
CN105769931B (en) | 2006-09-15 | 2021-04-27 | 渥太华医院研究机构 | Oncolytic rhabdovirus |
CN1962911A (en) | 2006-12-15 | 2007-05-16 | 西部金属材料股份有限公司 | Process for preparing molybdenum alloy TZM by powder metallurgy |
WO2008140621A2 (en) | 2006-12-21 | 2008-11-20 | Mount Sinai School Of Medicine Of New York University | Transgenic oncolytic viruses and uses thereof |
AR065075A1 (en) | 2007-05-15 | 2009-05-13 | Transgene Sa | VECTORS FOR MULTIPLE EXPRESSION OF GENES |
US7608256B2 (en) | 2007-09-12 | 2009-10-27 | Aeras Global Tb Vaccine Foundation | Methods to increase transgene expression from bacterial-based delivery systems by co-expressing suppressors of the eukaryotic type I interferon response |
DE102008050860A1 (en) | 2008-10-08 | 2010-04-15 | Dorothee Von Laer | LCMV-GP-VSV pseudotype vectors and tumor infiltrating virus producer cells for the therapy of tumors |
CA2748180C (en) | 2008-12-22 | 2017-06-20 | Oncos Therapeutics Oy | Oncolytic adenoviral vectors and methods and uses related thereto |
CN102448487B (en) | 2009-03-16 | 2016-03-16 | 麦克马斯特大学 | Method of vaccination |
CA2760310A1 (en) * | 2009-04-28 | 2010-11-11 | The Johns Hopkins University | Compositions and methods for enhancing antigen-specific immune responses |
AU2010329551B2 (en) | 2009-12-10 | 2016-02-11 | Turnstone Limited Partnership | Oncolytic rhabdovirus |
US20150307559A1 (en) | 2012-12-12 | 2015-10-29 | Children's Hospital Of Eastern Ontario Research Intitute Inc. | Compositions and methods for the treatment of brain cancers |
CN105658790A (en) | 2013-02-21 | 2016-06-08 | 东安大略研究所儿童医院有限公司 | Vaccine composition |
-
2014
- 2014-02-20 CN CN201480020723.6A patent/CN105658790A/en active Pending
- 2014-02-20 RU RU2019107976A patent/RU2019107976A/en unknown
- 2014-02-20 MX MX2015010783A patent/MX2015010783A/en active IP Right Grant
- 2014-02-20 US US14/769,035 patent/US10363293B2/en active Active
- 2014-02-20 JP JP2015558314A patent/JP2016513115A/en active Pending
- 2014-02-20 ES ES14754562T patent/ES2741147T3/en active Active
- 2014-02-20 CA CA2901501A patent/CA2901501C/en active Active
- 2014-02-20 EP EP14754562.8A patent/EP2958994B1/en active Active
- 2014-02-20 RU RU2015135890A patent/RU2684211C2/en active
- 2014-02-20 AU AU2014221143A patent/AU2014221143B2/en active Active
- 2014-02-20 WO PCT/CA2014/050118 patent/WO2014127478A1/en active Application Filing
- 2014-02-20 EP EP19176806.8A patent/EP3622965A1/en active Pending
-
2015
- 2015-08-20 IL IL240723A patent/IL240723B/en active IP Right Grant
- 2015-08-20 MX MX2020012144A patent/MX2020012144A/en unknown
-
2019
- 2019-01-16 US US16/249,610 patent/US10660947B2/en active Active
- 2019-01-16 US US16/249,616 patent/US10646557B2/en active Active
- 2019-03-08 JP JP2019042811A patent/JP6688535B2/en active Active
- 2019-04-10 AU AU2019202515A patent/AU2019202515B2/en active Active
-
2020
- 2020-09-09 US US17/015,905 patent/US20210128706A1/en not_active Abandoned
- 2020-12-13 IL IL279395A patent/IL279395B2/en unknown
Also Published As
Publication number | Publication date |
---|---|
US10646557B2 (en) | 2020-05-12 |
US20190255160A1 (en) | 2019-08-22 |
AU2019202515A1 (en) | 2019-05-02 |
AU2019202515B2 (en) | 2022-03-10 |
RU2015135890A (en) | 2017-03-27 |
ES2741147T3 (en) | 2020-02-10 |
US10363293B2 (en) | 2019-07-30 |
EP2958994B1 (en) | 2019-05-29 |
US20190240301A1 (en) | 2019-08-08 |
IL240723A0 (en) | 2015-10-29 |
EP2958994A4 (en) | 2016-11-23 |
JP2016513115A (en) | 2016-05-12 |
MX2020012144A (en) | 2021-03-09 |
JP6688535B2 (en) | 2020-04-28 |
US10660947B2 (en) | 2020-05-26 |
IL279395B2 (en) | 2023-06-01 |
CN105658790A (en) | 2016-06-08 |
IL279395A (en) | 2021-01-31 |
AU2014221143A1 (en) | 2015-10-01 |
JP2019131566A (en) | 2019-08-08 |
MX2015010783A (en) | 2016-06-21 |
RU2684211C2 (en) | 2019-04-04 |
IL240723B (en) | 2021-05-31 |
RU2019107976A (en) | 2019-08-23 |
CA2901501C (en) | 2023-03-07 |
EP2958994A1 (en) | 2015-12-30 |
WO2014127478A1 (en) | 2014-08-28 |
AU2014221143B2 (en) | 2019-02-07 |
EP3622965A1 (en) | 2020-03-18 |
US20160106820A1 (en) | 2016-04-21 |
CA2901501A1 (en) | 2014-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210128706A1 (en) | Vaccine composition | |
US10925946B2 (en) | Vaccination methods | |
JP2015506704A (en) | Adenovirus expressing tumor-associated heterologous antigen | |
WO2003031602A1 (en) | The oncolytic microorganisms expressing hsp and uses thereof | |
US20190151437A1 (en) | Combination prime: boost therapy | |
KR20240124919A (en) | Lentiviral vector for expression of human papillomavirus antigen and its implementation in the treatment of HPV-induced cancer | |
US20230059344A1 (en) | Medical Uses of 4-1BBL Adjuvanted Recombinant Modified Vaccinia Virus Ankara (MVA) | |
WO2024197451A1 (en) | Homologous and heterologous therapeutic vaccination strategies for cancer treatment | |
CN118354790A (en) | Lentiviral vectors for expression of Human Papilloma Virus (HPV) antigens and their use in the treatment of HPV-induced cancers | |
WO2024023135A1 (en) | Lentiviral vectors for expression of human papillomavirus (hpv) antigens and its implementation in the treatment of hpv induced cancers | |
WO2023034828A1 (en) | Novel epstein barr virus immunotherapies | |
Lee et al. | Oncolytic vaccinia virus expressing 4-1BBL inhibits tumor growth by increasing CD8+ T cells in B16F10 tumor model | |
WO2019113703A1 (en) | Combination prime:boost therapy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |