US20210125008A1 - Automotive sensor integration module - Google Patents
Automotive sensor integration module Download PDFInfo
- Publication number
- US20210125008A1 US20210125008A1 US16/726,703 US201916726703A US2021125008A1 US 20210125008 A1 US20210125008 A1 US 20210125008A1 US 201916726703 A US201916726703 A US 201916726703A US 2021125008 A1 US2021125008 A1 US 2021125008A1
- Authority
- US
- United States
- Prior art keywords
- data
- output
- contamination
- integration module
- sensors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000010354 integration Effects 0.000 title claims abstract description 94
- 238000001514 detection method Methods 0.000 claims abstract description 91
- 238000011109 contamination Methods 0.000 claims abstract description 85
- 230000007423 decrease Effects 0.000 claims description 17
- 238000003860 storage Methods 0.000 claims description 11
- 238000012545 processing Methods 0.000 abstract description 21
- 230000003287 optical effect Effects 0.000 description 31
- 238000004140 cleaning Methods 0.000 description 27
- 238000004891 communication Methods 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 13
- 230000008901 benefit Effects 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000002366 time-of-flight method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/86—Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
- G01S13/865—Combination of radar systems with lidar systems
-
- G06K9/6288—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
- B60R16/023—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/14—Adaptive cruise control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/86—Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/86—Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
- G01S13/867—Combination of radar systems with cameras
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0221—Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
-
- G06K9/00798—
-
- G06K9/00805—
-
- G06K9/03—
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/80—Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/98—Detection or correction of errors, e.g. by rescanning the pattern or by human intervention; Evaluation of the quality of the acquired patterns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/588—Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0043—Signal treatments, identification of variables or parameters, parameter estimation or state estimation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/02—Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
- B60W50/0205—Diagnosing or detecting failures; Failure detection models
- B60W2050/0215—Sensor drifts or sensor failures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2420/00—Indexing codes relating to the type of sensors based on the principle of their operation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2555/00—Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
- B60W2555/20—Ambient conditions, e.g. wind or rain
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2400/00—Special features of vehicle units
- B60Y2400/30—Sensors
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/26—Pc applications
- G05B2219/2637—Vehicle, car, auto, wheelchair
Definitions
- Exemplary embodiments relate to an automotive sensor integration module.
- ADAS advanced driver assistance system
- the ADAS and the autonomous vehicles require a large number of sensors and electronic devices to identify objects outside a vehicle.
- a camera, a lidar, a radar sensor, etc. are disposed in front of the vehicle, but are disposed at different positions respectively.
- Exemplary embodiments of the present invention provide an automotive sensor integration module in which a plurality of synchronized sensors are arranged.
- An exemplary embodiment of the present invention provides an automotive sensor integration module including a plurality of sensors which differ in at least one of a sensing period or an output data format, and a signal processing unit, which simultaneously outputs, as sensing data, pieces of detection data respectively output from the plurality of sensors on the basis of the sensing period of any one of the plurality of sensors, determines whether each region of an outer cover corresponding to a location of each of the plurality of sensors is contaminated on the basis of the pieces of detection data, and outputs a determination result as contamination data.
- FIG. 1 is a diagram illustrating an outer shape of an autonomous vehicle.
- FIG. 2 is an outside view of an automotive sensor integration module according to an exemplary embodiment of the present invention.
- FIG. 3 is a diagram illustrating a vehicle in which automotive sensor integration modules according to an exemplary embodiment of the present invention are arranged.
- FIG. 4 is a diagram illustrating an automotive sensor integration module according to an exemplary embodiment of the present invention and a cleaning device for cleaning an outer surface of the automotive sensor integration module.
- FIG. 5 is a diagram illustrating a configuration of a vehicle in which an automotive sensor integration module according to an exemplary embodiment of the present invention is arranged.
- FIG. 6 is a diagram illustrating a configuration of an automotive sensor integration module according to an exemplary embodiment of the present invention.
- FIG. 7 is a diagram illustrating a configuration of the signal processing unit of FIG. 3 .
- FIG. 8 is a diagram illustrating a configuration of the contamination identification unit of FIG. 7 .
- each block, unit, and/or module may be implemented by dedicated hardware, or as a combination of dedicated hardware to perform some functions and a processor (e.g., one or more programmed microprocessors and associated circuitry) to perform other functions.
- a processor e.g., one or more programmed microprocessors and associated circuitry
- each block, unit, and/or module of some exemplary embodiments may be physically separated into two or more interacting and discrete blocks, units, and/or modules without departing from the scope of the inventive concepts.
- the blocks, units, and/or modules of some exemplary embodiments may be physically combined into more complex blocks, units, and/or modules without departing from the scope of the inventive concepts.
- FIG. 2 is an outside view of an automotive sensor integration module according to an exemplary embodiment of the present invention.
- An automotive sensor integration module may include a plurality of devices and sensors for detecting objects outside a vehicle to acquire safety information related to vehicle driving.
- the objects may include a lane, another vehicle, a pedestrian, a two-wheeled vehicle, a traffic signal, light, a road, a structure, a speed bump, a geographical feature, an animal, etc.
- the lane may be a driving lane, a lane next to the driving lane, or a lane in which a vehicle is driving in the opposite direction.
- the lane may include left and right lines forming a lane.
- Another vehicle may be a vehicle that is travelling in the vicinity of a host vehicle.
- the other vehicle may be a vehicle within a predetermined distance from the host vehicle.
- the other vehicle may be a vehicle that is located within a predetermined distance from the host vehicle and precedes or follows the host vehicle.
- the pedestrian may be a person in the vicinity of a host vehicle.
- the pedestrian may be a person located within a predetermined distance from the host vehicle.
- the pedestrian may be a person on a sidewalk or the roadway within a predetermined distance from the host vehicle.
- the two-wheeled vehicle may be a vehicle that is located in the vicinity of a host vehicle and moves using two wheels.
- the two-wheeled vehicle may be a vehicle that has two wheels and is located within a predetermined distance from the host vehicle.
- the two-wheeled vehicle may include a motorcycle or a bicycle on a sidewalk, or the roadway within a predetermined distance from the vehicle.
- the traffic signal may include a traffic light, a traffic sign, or a pattern or text drawn on a road surface.
- the light may include light from a lamp in another vehicle, light from a street lamp, or light emitted from the sun.
- the road may include a road surface, a curve, and a slope, such as an upward slope and a downward slope.
- the structure may be an object which is located around the road and fixed onto the ground.
- the structure may include a streetlight, a roadside tree, a building, a power pole, a traffic light, a bridge, etc.
- the geographical feature may include a mountain, a hill, etc.
- the objects may be classified into a moving object and a stationary object.
- the moving object may conceptually include another vehicle, a two-wheeled vehicle, a pedestrian, etc.
- the stationary object may conceptually include a traffic signal, a road, a structure, etc.
- an automotive sensor integration module 100 may include a plurality of different types of sensors and devices.
- the automotive sensor integration module 100 may include at least one sensor and device of the same type.
- the automotive sensor integration module 100 may include an infrared camera 12 , an optical camera 11 , a lidar 14 , and a radar 13 as a sensor to identify an object outside a vehicle.
- the automotive sensor integration module 100 according to an exemplary embodiment of the present invention illustrated in FIG. 2 is exemplarily shown to include an infrared camera 12 , an optical camera 11 , a lidar 14 , and a radar 13 as a sensor in order to identify an object, but is not limited thereto.
- the automotive sensor integration module 100 according to an exemplary embodiment of the present invention illustrated in FIG. 2 shows two infrared cameras 12 , one optical camera 11 , two lidars 14 , and one radar 13 , but the number of each sensor is suggested only for illustrative purposes and is not limited thereto.
- the automotive sensor integration module 100 may include a circuit board 5 , an infrared camera 12 , an optical camera 11 , a radar 13 , and a lidar 14 .
- the automotive sensor integration module 100 may include a circuit board 5 on which an infrared camera 12 , an optical camera 11 , a radar 13 , and a lidar 14 are disposed and mounted.
- the optical camera 11 designed to acquire outside images of a vehicle through light and recognize objects, light, and people around the vehicle may include a mono camera, a stereo camera, an around view monitoring (AVM) camera, and a 360-degree camera.
- the optical camera 11 has advantages of being able to detect colors and accurately classify objects compared to other sensors, but has a disadvantage of being affected by environmental factors, such as darkness, backlight, snow, rain, fog, etc.
- the radar 13 may detect an object on the basis of a time-of-flight (TOF) method or a phase-shift method through electromagnetic waves, and detect the location of a detected object, the distance to the detected object, and the relative speed.
- TOF time-of-flight
- the radar 13 has an advantage of being capable of long distance detection without being affected by environmental factors, such as darkness, snow, rain, fog, etc., but has a disadvantage of failing to detect an object, made of an electromagnetic wave-absorbing material, for example, a steel structure, such as a tunnel or a guardrail, and thus, being unable to classify objects.
- the lidar 14 may detect an object on the basis of a TOF method or a phase-shift method through laser light, and detect the location of a detected object, the distance to the detected object, and the relative speed.
- the lidar 14 has advantages of being less affected by environmental factors such as darkness, snow, rain, fog, etc., efficient in long- and short-distance detection due to high resolution, and objects are able to be simply classified, but has a disadvantage of failing to measure the speed of objects immediately.
- the infrared camera 12 may acquire outside images of a vehicle through infrared rays. In particular, the infrared camera 12 may acquire outside images of the vehicle even in darkness at night.
- the infrared camera 12 has advantages of being capable of long distance detection and being capable of distinguishing living things from objects without being affected by environmental factors such as darkness, snow, rain, fog, etc. but has a disadvantage of being expensive.
- the automotive sensor integration module 100 is configured such that an outer cover 10 is coupled in the direction of the detection area of an optical camera 11 , an infrared camera 12 , a radar 13 , and a lidar 14 , that is, to the front surface of the automotive sensor integration module 100 to thereby protect the optical camera 11 , the infrared camera 12 , the radar 13 , and the lidar 14 from physical shocks.
- the automotive sensor integration module 100 discloses a structure in which a plurality of different sensors are all disposed and mounted on a circuit board 5 .
- the automotive sensor integration module 100 may synchronize and output detection results of a plurality of sensors having different operation cycles, thereby having an advantage of classifying and identifying objects more accurately.
- FIG. 3 is a diagram illustrating a vehicle in which automotive sensor integration modules 100 according to an exemplary embodiment of the present invention are arranged.
- a plurality of automotive sensor integration modules 100 may be arranged in a vehicle to detect objects outside the vehicle.
- FIG. 3 exemplarily illustrates that four automotive sensor integration modules 100 are arranged in a vehicle, but the inventive concepts are not limited thereto. Furthermore, FIG. 3 exemplarily illustrates that automotive sensor integration modules 100 are arranged at right and left front sides of a vehicle to detect right and left objects in front of the vehicle, and automotive sensor integration modules 100 are arranged at right and left rear sides of the vehicle to detect right and left objects in back of the vehicle.
- FIG. 4 is a diagram illustrating an automotive sensor integration module 100 according to an exemplary embodiment of the present invention and a cleaning device for cleaning an outer surface of the automotive sensor integration module 100 .
- the automotive sensor integration module 100 is arranged outside a vehicle to detect objects outside the vehicle as illustrated in FIG. 3 , and thus, it may be difficult to detect objects normally due to adherence of dirt or other foreign matter such as dust, bird droppings, and the like.
- the automotive sensor integration module 100 may be combined with a cleaning device 8 , as illustrated in FIG. 4 .
- a plurality of cleaning devices 8 may be combined with the automotive sensor integration module 100 so that each of the cleaning devices 8 may clean a corresponding region of a portion of an outer cover 10 of the automotive sensor integration module 100 .
- the cleaning device 8 may spray a liquid (for example, water) on the corresponding region to clean the corresponding region, and the cleaning device 8 may include a body 6 and a sprayer 7 including a liquid spray nozzle. Since the sprayer 7 may be moved towards or away from the body 6 , a liquid spray position may be varied according to a position of the sprayer 7 .
- FIG. 4 illustrates an example in which the outer cover 10 of the automotive sensor integration module 100 according to the present invention is divided into nine regions so that six cleaning devices 8 may clean each of the divided regions of the outer cover 10 , but the inventive concepts are not limited to the example of FIG. 4 .
- the cleaning devices 8 combined with the automotive sensor integration module 100 may be configured to clean outer cover regions corresponding to locations in which the sensors are arranged.
- the automotive sensor integration module 100 may provide a cleaning control device with contamination data about the outer cover regions 8 corresponding to the locations in which the sensors are arranged so that the cleaning devices 8 may clean only some stained outer cover regions among all of the outer cover regions of the automotive sensor integration module 100 .
- FIG. 5 is a diagram illustrating a configuration of a vehicle in which an automotive sensor integration module 100 according to an exemplary embodiment of the present invention is arranged.
- the vehicle in which an automotive sensor integration module 100 according to an exemplary embodiment of the present invention is arranged may further include an upper-level control device 200 and a cleaning control device 300 .
- the vehicle may include the automotive sensor integration module 100 , the upper-level control device 200 , and the cleaning control device 300 .
- the automotive sensor integration module 100 may synchronize pieces of detection data obtained from each sensor, and may provide synchronized data as sensing data S_data to the upper-level control device 200 .
- the automotive sensor integration module 100 may generate contamination data PP_data on the basis of the detection data obtained from each sensor, and may provide the generated contamination data PP_data to the cleaning control device 300 .
- the upper-level control device 200 may provide external environment data EC_data to the automotive sensor integration module 100 .
- the external environment data EC_data may include at least one of weather, road condition, temperature, or humidity.
- the automotive sensor integration module 100 may be provided with the external environment data EC_data from a temperature sensor, a humidity sensor, a rain sensor, and a navigation device arranged in a vehicle.
- the upper-level control device 200 may be a separate device for controlling the automotive sensor integration module 100 , or a device included in an automated driving system or advanced driver assistance system (ADAS) to identify objects or control driving of a vehicle.
- ADAS advanced driver assistance system
- the cleaning control device 300 may control operation of the plurality of cleaning devices 10 illustrated in FIG. 4 on the basis of the contamination data PP_data provided from the automotive sensor integration module 100 .
- the contamination data PP_data may include information indicating whether each of outer cover regions respectively corresponding to the locations of the plurality of sensors included in the automotive sensor integration module 100 is contaminated.
- a vehicle network communication technology may include controller area network (CAN) communication, local interconnect network (LIN) communication, Flex-Ray® communication, Ethernet, and the like.
- CAN controller area network
- LIN local interconnect network
- Flex-Ray® communication Ethernet, and the like.
- FIG. 6 is a diagram illustrating a configuration of an automotive sensor integration module 100 according to an exemplary embodiment of the present invention.
- the automotive sensor integration module 100 may include an optical camera 11 , an infrared camera 12 , a radar 13 , a lidar 14 , an interface unit 20 , and a signal processing unit 30 .
- the interface unit 20 and the signal processing unit 30 may be implemented as hardware or software in the circuit board illustrated in FIG. 2 .
- the optical camera 11 may output information detected by medium of light as first detection data C_s.
- the infrared camera 12 may output information detected by medium of infrared light as second detection data IC_s.
- the radar 13 may output information detected by medium of electromagnetic waves as third detection data R_s.
- the lidar 14 may output information detected by medium of laser light as fourth detection data L_s.
- the optical camera 11 , the infrared camera 12 , the radar 13 , and the lidar 14 may have different sensing (operation) periods.
- the optical camera 11 and the infrared camera 12 may have a sensing period of 30 Hz
- the radar 13 may have a sensing period of 20 Hz
- the lidar 14 may have a sensing period of 10 Hz.
- the optical camera 11 and the infrared camera 12 may output the first and second detection data C_s and IC_s every first time (33 ms)
- the radar 13 may output the third detection data R_s every second time (50 ms)
- the lidar 14 may output the fourth detection data L_s every third time (100 ms).
- the detection data C_s, IC_s, R_s, and L_s respectively output from the optical camera 11 , the infrared camera 12 , the radar 13 , and the lidar 14 may have different communication standards.
- the first detection data C_s output from the optical camera 11 may have a format used in low voltage differential signal (LVDS) communication.
- LVDS low voltage differential signal
- the second detection data IC_s output from the infrared camera 12 may have a format used in gigabit multimedia serial link (GMSL) communication.
- the third and fourth detection data R_s and L_s output from the radar 13 and the lidar 14 may have a format used in Ethernet communication.
- the interface unit 20 may convert the first-to-fourth detection data C_s, IC_s, R_s, and L_s having different data formats into one preset data format to provide converted data as conversion data C_data to the signal processing unit 30 .
- the interface unit 20 may convert the formats of the first-to-fourth detection data C_s, IC_s, R_s, and L_s into a data format according to a preset communication technology among vehicle network communication technologies.
- vehicle network communication technologies may include controller area network (CAN) communication, local interconnect network (LIN) communication, Flex-Ray® communication, Ethernet, and the like.
- the interface unit 20 may convert the first-to-fourth detection data C_s, IC_s, R_s, and L_s into data having a format according to Ethernet communication.
- the signal processing unit 30 may receive, as the conversion data C_data, the first-to-fourth detection data C_s, IC_s, R_s, and L_s converted by the interface unit 20 and having the same format.
- the signal processing unit 30 may output the first-to-fourth detection data C_s, IC_s, R_s, and L_s included in the conversion data C_data provided from the interface unit 20 to the upper-level control device 200 as sensing data S_data in synchronization with a preset timing.
- the signal processing unit 30 may output the first-to-fourth detection data C_s, IC_s, R_s, and L_s as the sensing data S_data at the same timing on the basis of an input timing of one of the first-to-fourth detection data C_s, IC_s, R_s, and L_s.
- the signal processing unit 30 may receive and store the first-to-fourth detection data C_s, IC_s, R_s, and L_s, and may output the stored first-to-fourth detection data C_s, IC_s, R_s, and L_s as the sensing data S_data when a preset time has passed after the third detection data R_s was input to the signal processing unit 30 .
- the sensing data S_data may include the first-to-fourth detection data C_s, IC_s, R_s, and L_s obtained from the optical camera 11 , the infrared camera 12 , the radar 13 , and the lidar 14 .
- the signal processing unit 30 may generate the contamination data PP_data on the basis of the external environment data EC_data and the conversion data C_data, and may provide the generated contamination data PP_data to the cleaning control device 300 .
- the signal processing unit 30 may determine, on the basis of the conversion data C_data, whether an outer cover surface corresponding to locations of the optical camera 11 , the infrared camera 12 , the radar 13 , and the lidar 14 is contaminated to generate the contamination data PP_data, and may control an output frequency of the generated contamination data PP_data on the basis of the external environment data EC_data.
- the signal processing unit 30 may output, as the contamination data PP_data, a determination result indicating that dirt or other foreign matter is adhering to the outer cover surface corresponding to a location of a corresponding sensor when a difference between a current data value and a previous data value of each of the first-to-fourth detection data C_s, IC_s, R_s, and L_s output from the optical camera 11 , the infrared camera 12 , the radar 13 , and the lidar 14 exceeds a preset data value.
- the signal processing unit 30 may determine that dirt or other foreign matter is adhering to the outer cover surface of the automotive sensor integration module 100 when a data value of current detection data of each of the sensors 11 to 14 rapidly changes in comparison with previous detection data of each of the sensors 11 to 14 .
- a time difference between previous detection data and current detection data is 33 ms. If a distance to an object corresponding to previous detection data and current detection data output from the radar 13 or the lidar 14 is 10 meters, it may be determined that there is an object which is moving 30 meters per second. However, it is hard to consider such data as detection data generated in a normal situation. Thus, it may be desirable to determine that dirt or other foreign matter has adhered to the outer cover surface under which the radar 13 or the lidar 14 is located.
- the signal processing unit 30 may determine whether an outer cover portion of the automotive sensor integration module 100 corresponding to each of the sensors 11 to 14 is contaminated as described above, and may control the output frequency of a contamination determination result (i.e., the contamination data PP_data) on the basis of the external environment data EC_data.
- a contamination determination result i.e., the contamination data PP_data
- the signal processing unit 30 may increase the output frequency of the contamination determination result in an environment in which dirt or other foreign matter may easily adhere to the outer cover of the automotive sensor integration module 100 , and may decrease the output frequency of the contamination determination result in which dirt or other foreign matter may not easily adhere to the outer cover of the automotive sensor integration module 100 .
- the signal processing unit 30 may output the contamination determination result more frequently when it rains, humidity is high, temperature is so low that frost is generated, or a vehicle is traveling on an unpaved road than when it does not rain, humidity is low, temperature is high, or a vehicle is traveling on a paved road.
- the signal processing unit 30 outputs the contamination data PP_data indicating the contamination determination result more frequently in such an environment than in an otherwise environment to clean the outer cover of the automotive sensor integration module 100 , thereby improving reliability of the sensing data S_data output from the automotive sensor integration module 100 .
- FIG. 7 is a diagram illustrating a configuration of the signal processing unit of FIG. 3 .
- the signal processing unit 30 may include a data transmitting/receiving unit 31 , an output synchronization unit 32 , and a contamination identification unit 33 .
- the data transmitting/receiving unit 31 may include a wired/wireless communication module for transmitting/receiving data to/from the interface unit 20 , the upper-level control device 200 , and the cleaning control device 300 .
- the data transmitting/receiving unit 31 may transmit, to the upper-level control device 200 , the sensing data S_data received from the output synchronization unit 32 .
- the data transmitting/receiving unit 31 may transmit, to the cleaning control device 300 , the contamination data PP_data received from the contamination identification unit 33 .
- the data transmitting/receiving unit 31 may transmit, to the contamination identification unit 33 , the external environment data EC_data received from the upper-level control device 200 .
- the data transmitting/receiving unit 31 may transmit, to the output synchronization unit 32 and the contamination identification unit 33 , the conversion data C_data received from the interface unit 20 .
- the output synchronization unit 32 may generate the sensing data S_data by synchronizing the conversion data C_data provided from the data transmitting/receiving unit 31 , and may provide the generated sensing data to the data transmitting/receiving unit 31 .
- the output synchronization unit 32 may synchronize the first-to-fourth detection data C_s, IC_s, R_s, and L_s on the basis of any one of the first-to-fourth detection data C_s, IC_s, R_s, and L_s included in the conversion data C_data to provide the synchronized data to the data transmitting/receiving unit 31 as the sensing data S_data.
- the output synchronization unit 32 may store each of the first-to-fourth detection data C_s, IC_s, R_s, and L_s included in the conversion data C_data, and may output the stored first-to-fourth detection data C_s, IC_s, R_s, and L_s as the sensing data S_data when a preset time has passed after input of any one of the first-to-fourth detection data C_s, IC_s, R_s, and L_s.
- the contamination identification unit 33 may generate the contamination data PP_data on the basis of the conversion data C_data and the external environment data EC_data provided from the data transmitting/receiving unit 31 , and may provide the generated contamination data PP_data to the data transmitting/receiving unit 31 .
- the contamination identification unit 33 may generate the contamination data PP_data on the basis of the conversion data C_data, and may increase or decrease the output frequency of the contamination data PP_data on the basis of the external environment data EC_data.
- the conversion data C_data includes the first-to-fourth detection data C_s, IC_s, R_s, and L_s obtained from the optical camera 11 , the infrared camera 12 , the radar 13 , and the lidar 14 , and the contamination identification unit 33 generates the contamination data PP_data on the basis of each of the first-to-fourth detection data C_s, IC_s, R_s, and L_s, and thus, the contamination data PP_data may include information indicating whether an outer cover portion corresponding to the location of each sensor is contaminated.
- the contamination identification unit 33 may increase the output frequency of the contamination data PP_data so as to frequently clean the outer cover of the automotive sensor integration module 100 in an environment in which dirt or other foreign matter may easily adhere to the outer cover of the automotive sensor integration module 100 .
- FIG. 8 is a diagram illustrating a configuration of the contamination identification unit of FIG. 7 .
- the contamination identification unit 33 may include first-to-fourth sensor identification units 33 - 1 to 33 - 4 and first-to-fourth output control units 33 - 5 to 33 - 8 .
- the contamination identification unit 33 may further include a sensor information storage unit 33 - 9 .
- the contamination identification unit 33 may determine whether the outer cover of the automotive sensor integration module 100 is contaminated by comparing previous data and current data of each of the first-to-fourth detection data C_s, IC_s, R_s, and L_s included in the conversion data C_data.
- the first sensor identification unit 33 - 1 may generate a first comparison signal C_com by comparing previous data and current data of the first detection data C_s. For example, the first sensor identification unit 33 - 1 may generate the first comparison signal C_com having a first level when a data value difference between previous data and current data of the first detection data C_s exceeds a preset data value. The first sensor identification unit 33 - 1 may generate the first comparison signal C_com having a second level when the data value difference between previous data and current data of the first detection data C_s is less than the preset data value.
- the second sensor identification unit 33 - 2 may generate a second comparison signal IC_com by comparing previous data and current data of the second detection data IC_s. For example, the second sensor identification unit 33 - 2 may generate the second comparison signal IC_com having a first level when the data value difference between previous data and current data of the second detection data IC_s exceeds the preset data value. The second sensor identification unit 33 - 2 may generate the second comparison signal IC_com having a second level when the data value difference between previous data and current data of the second detection data IC_s is less than the preset data value.
- the third sensor identification unit 33 - 3 may generate a third comparison signal R_com by comparing previous data and current data of the third detection data R_s. For example, the third sensor identification unit 33 - 3 may generate the third comparison signal R_com having a first level when the data value difference between previous data and current data of the third detection data R_s exceeds the preset data value. The third sensor identification unit 33 - 3 may generate the third comparison signal R_com having a second level when the data value difference between previous data and current data of the third detection data R_s is less than the preset data value.
- the fourth sensor identification unit 33 - 4 may generate a fourth comparison signal L_com by comparing previous data and current data of the fourth detection data L_s. For example, the fourth sensor identification unit 33 - 4 may generate the fourth comparison signal L_com having a first level when the data value difference between previous data and current data of the fourth detection data L_s exceeds the preset data value. The fourth sensor identification unit 33 - 4 may generate the fourth comparison signal L_com having a second level when the data value difference between previous data and current data of the fourth detection data L_s is less than the preset data value.
- the first level of each of the first-to-fourth comparison signals C_com, IC_com, R_com, and L_com may indicate adherence of dirt or other foreign matter to an outer cover portion corresponding to the location of each corresponding sensor.
- the second level of each of the first-to-fourth comparison signals C_com, IC_com, R_com, and L_com may indicate that there is no dirt or other foreign matter adhering to an outer cover portion corresponding to the location of each corresponding sensor.
- the first level and the second level are different levels, and may be analog levels or may be levels according to at least one digital signal.
- the first-to-fourth sensor identification units 33 - 1 to 33 - 4 may only differ in terms of input/output signal reference names and may perform the same operation.
- the first-to-fourth sensor identification units 33 - 1 to 33 - 4 may have the same configuration. Therefore, the following description of the configuration of the first sensor identification unit 33 - 1 among the first-to-fourth sensor identification units 33 - 1 to 33 - 4 applies to the second to fourth identification units 33 - 2 to 33 - 4 .
- the first sensor identification unit 33 - 1 may include a sensor output storage unit 33 - 1 - 1 and a comparison unit 33 - 1 - 2 .
- the sensor output storage unit 33 - 1 - 1 may receive and store the first detection data C_s, and may output the stored first detection data when the next first detection data C_s is input.
- the sensor output storage unit 33 - 1 - 1 may be implemented as a shift register, and may output stored previous data when current data is input.
- the comparison unit 33 - 1 - 2 may output the first comparison signal C_com having a second level when the data value difference between the output (previous first detection data) from the sensor output storage unit 33 - 1 - 1 and the first detection data C_s (current first detection data) is less than the preset data value.
- the first output control unit 33 - 5 may receive the first comparison signal C_com and the external environment data EC_data, and may output the contamination data PP_data including information PC_s indicating whether the optical camera 11 is contaminated.
- the first output control unit 33 - 5 may output the first comparison signal C_com as the information PC_s indicating whether the optical camera 11 is contaminated, i.e., the contamination data PP_data.
- the first output control unit 33 - 5 may increase or decrease, on the basis of the external environment data EC_data, the output frequency of the contamination data PP_data (PC_s) including information indicating whether the optical camera 11 is contaminated.
- the first output control unit 33 - 5 may further receive camera information C_inf.
- the camera information C_inf may include the location of the optical camera 11 arranged in the automotive sensor integration module 100 . Not only the external environment data EC_data but also the camera information C_inf may increase or decrease the output frequency of the contamination data PP_data (PC_s).
- the second output control unit 33 - 6 may receive the second comparison signal C_com and the external environment data EC_data, and may output the contamination data PP_data (PIC_s) including information PIC_s indicating whether the infrared camera 12 is contaminated.
- PIC_s contamination data
- the second output control unit 33 - 6 may output the second comparison signal IC corn as the information PIC_s indicating whether the infrared camera 12 is contaminated, i.e., the contamination data PP_data.
- the second output control unit 33 - 6 may increase or decrease, on the basis of the external environment data EC_data, the output frequency of the contamination data PP_data (PIC_s) including information indicating whether the infrared camera 12 is contaminated.
- the second output control unit 33 - 6 may further receive infrared camera information IC_inf.
- the infrared camera information IC_inf may include the location of the infrared camera 12 arranged in the automotive sensor integration module 100 . Not only the external environment data EC_data but also the infrared camera information IC_inf may increase or decrease the output frequency of the contamination data PP_data (PIC_s).
- the third output control unit 33 - 7 may receive the third comparison signal R_com and the external environment data EC_data, and may output the contamination data PP_data (PR_s) including information PR_s indicating whether the radar 13 is contaminated.
- the third output control unit 33 - 7 may output the third comparison signal R_com as the information PR_s indicating whether the radar 13 is contaminated, i.e., the contamination data PP_data.
- the third output control unit 33 - 7 may increase or decrease, on the basis of the external environment data EC_data, the output frequency of the contamination data PP_data (PR_s) including information indicating whether the radar 13 is contaminated.
- the third output control unit 33 - 7 may further receive radar information R_inf.
- the radar information R_inf may include the location of the radar 13 arranged in the automotive sensor integration module 100 . Not only the external environment data EC_data but also the radar information R_inf may increase or decrease the output frequency of the contamination data PP_data (PR_s).
- the fourth output control unit 33 - 8 may receive the fourth comparison signal L_com and the external environment data EC_data, and may output the contamination data PP_data (PL_s) including information PL_s indicating whether the lidar 14 is contaminated.
- the fourth output control unit 33 - 8 may output the fourth comparison signal L_com as the information PL_s indicating whether the lidar 14 is contaminated, i.e., the contamination data PP_data.
- the fourth output control unit 33 - 8 may increase or decrease, on the basis of the external environment data EC_data, the output frequency of the contamination data PP_data (PL_s) including information indicating whether the lidar 14 is contaminated.
- the fourth output control unit 33 - 8 may further receive lidar information L_inf.
- the lidar information L_inf may include the location of the lidar 14 arranged in the automotive sensor integration module 100 . Not only the external environment data EC_data but also the lidar information L_inf may increase or decrease the output frequency of the contamination data PP_data (PL_s).
- the sensor information storage unit 33 - 9 may store arrangement locations of the optical camera 11 , the infrared camera 12 , the radar 13 , and the lidar 14 in the automotive sensor integration module 100 .
- the sensor information storage unit 33 - 9 may store a cleaning strength for the outer cover of the automotive sensor integration module 100 according to each arrangement location of the optical camera 11 , the infrared camera 12 , the radar 13 , and the lidar 14 .
- the cleaning strengths for sensors arranged in a lower portion of the automotive sensor integration module 100 may be higher than the cleaning strengths for sensors arranged in an upper portion of the automotive sensor integration module 100 .
- each of the first-to-fourth output control units 33 - 5 to 33 - 8 may add, to the contamination data PP_data (PC_s, PIC_s, PR_s, PL_s), the cleaning strength according to arrangement of each of the sensors.
- each of the first-to-fourth output control units 33 - 5 to 33 - 8 may output each of the first-to-fourth comparison signals C_com, IC_com, R_com, and L_com as the contamination data PP_data (PC_s, PIC_s, PR_s, PL_s).
- the first-to-fourth output control units 33 - 5 to 33 - 8 may increase or decrease the output frequency of each of the contamination data PC_s, PIC_s, PR_s, and PL_s according to the external environment data EC_data.
- the external environment data EC_data may include information about at least one of weather, road condition, temperature, or humidity.
- the first-to-fourth output control units 33 - 5 to 33 - 8 may increase the output frequency of the contamination data PP_data (PC_s, PIC_s, PR_s, PL_s).
- the first-to-fourth output control units 33 - 5 to 33 - 8 may decrease the output frequency of the contamination data PP_data (PC_s, PIC_s, PR_s, PL_s).
- each of the first-to-fourth output control units 33 - 5 to 33 - 8 may increase or decrease the frequency of each of the contamination data PP_data (PC_s, PIC_s, PR_s, PL_s) according to the location of each of the optical camera 11 , the infrared camera 12 , the radar 13 , and the lidar 14 arranged in the automotive sensor integration module 100 .
- the output frequency of the contamination data PP_data (PC_s, PIC_s) output from the first and second output control units 33 - 5 and 33 - 6 may be lower than the output frequency of the contamination data PP_data (PR_s, PL_s) output from the third and fourth output control units 33 - 6 and 33 - 7 .
- the automotive sensor integration module 100 may determine whether each of outer cover regions corresponding to the locations of the optical camera 11 , the infrared camera 12 , the radar 13 , and the lidar 14 included in the automotive sensor integration module 100 is contaminated, and may provide a determination result to the cleaning control device 300 , and thus the reliability of determination of an object positioned outside a vehicle may be improved.
- the automotive sensor integration module 100 may increase or decrease the output frequency of contamination data related to whether each of the outer cover regions is contaminated according to an external environment and the arrangement locations of the optical camera 11 , the infrared camera 12 , the radar 13 , and the lidar 14 , and thus the reliability of determination of an object positioned outside a vehicle may be further improved.
- the automotive sensor integration module has improved performance of detecting objects outside a vehicle since a plurality of sensors are synchronously operated.
- the automotive sensor integration module has improved performance of detecting objects outside a vehicle since a plurality of sensors can be cleaned individually by determining whether each of the sensors is contaminated.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Automation & Control Theory (AREA)
- Computer Networks & Wireless Communication (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Databases & Information Systems (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Quality & Reliability (AREA)
- Mathematical Physics (AREA)
- Human Computer Interaction (AREA)
- Electromagnetism (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
- This application claims priority from and the benefit of Korean Patent Application No. 10-2019-0133129, filed on Oct. 24, 2019, which is hereby incorporated by reference for all purposes as if set forth herein.
- Exemplary embodiments relate to an automotive sensor integration module.
- As technology becomes more advanced, various sensors, electronic devices, and the like are also provided in a vehicle for user convenience. In particular, research regarding an advanced driver assistance system (ADAS) has been actively conducted for users' driving convenience. Furthermore, the development of autonomous vehicles is actively under way.
- The ADAS and the autonomous vehicles require a large number of sensors and electronic devices to identify objects outside a vehicle.
- Referring to
FIG. 1 , in order to detect objects in front of a vehicle, a camera, a lidar, a radar sensor, etc. are disposed in front of the vehicle, but are disposed at different positions respectively. - Although objects should be identified on the basis of detection results detected by sensors at the same timing in order to improve performance in detecting objects, it is not easy to synchronize object detection sensors because the sensors are disposed at different positions. Furthermore, when there is dirt or other foreign matter on outer cover surfaces of the sensors, it is difficult for each of the sensors to output a detection result for normal object discrimination.
- The above information disclosed in this Background section is only for enhancement of understanding of the background of the invention and, therefore, it may contain information that does not constitute prior art.
- Exemplary embodiments of the present invention provide an automotive sensor integration module in which a plurality of synchronized sensors are arranged.
- The inventive concepts are not limited to the above-mentioned exemplary embodiments, and other aspects and advantages of the present invention, which are not mentioned, will be understood through the following description, and will become apparent from the embodiments of the present invention. Furthermore, it will be understood that aspects and advantages of the present invention can be achieved by the means set forth in the claims and combinations thereof.
- An exemplary embodiment of the present invention provides an automotive sensor integration module including a plurality of sensors which differ in at least one of a sensing period or an output data format, and a signal processing unit, which simultaneously outputs, as sensing data, pieces of detection data respectively output from the plurality of sensors on the basis of the sensing period of any one of the plurality of sensors, determines whether each region of an outer cover corresponding to a location of each of the plurality of sensors is contaminated on the basis of the pieces of detection data, and outputs a determination result as contamination data.
- It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
- The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and together with the description serve to explain the principles of the invention.
-
FIG. 1 is a diagram illustrating an outer shape of an autonomous vehicle. -
FIG. 2 is an outside view of an automotive sensor integration module according to an exemplary embodiment of the present invention. -
FIG. 3 is a diagram illustrating a vehicle in which automotive sensor integration modules according to an exemplary embodiment of the present invention are arranged. -
FIG. 4 is a diagram illustrating an automotive sensor integration module according to an exemplary embodiment of the present invention and a cleaning device for cleaning an outer surface of the automotive sensor integration module. -
FIG. 5 is a diagram illustrating a configuration of a vehicle in which an automotive sensor integration module according to an exemplary embodiment of the present invention is arranged. -
FIG. 6 is a diagram illustrating a configuration of an automotive sensor integration module according to an exemplary embodiment of the present invention. -
FIG. 7 is a diagram illustrating a configuration of the signal processing unit ofFIG. 3 . -
FIG. 8 is a diagram illustrating a configuration of the contamination identification unit ofFIG. 7 . - Various advantages and features of the present invention and methods accomplishing thereof will become apparent from the following description of embodiments with reference to the accompanying drawings. However, the present invention is not be limited to the embodiments set forth herein but may be implemented in many different forms. The present embodiments may be provided so that the disclosure of the present invention will be complete, and will fully convey the scope of the invention to those skilled in the art and therefore the present invention will be defined within the scope of claims. Like reference numerals throughout the description denote like elements.
- Unless defined otherwise, it is to be understood that all the terms (including technical and scientific terms) used in the specification has the same meaning as those that are understood by those who skilled in the art. Further, the terms defined by the dictionary generally used should not be ideally or excessively formally defined unless clearly defined specifically. It will be understood that for purposes of this disclosure, “at least one of X, Y, and Z” can be construed as X only, Y only, Z only, or any combination of two or more items X, Y, and Z (e.g., XYZ, XYY, YZ, ZZ). Unless particularly described to the contrary, the term “comprise”, “configure”, “have”, or the like, which are described herein, will be understood to imply the inclusion of the stated components, and therefore should be construed as including other components, and not the exclusion of any other elements.
- As is customary in the field, some exemplary embodiments are described and illustrated in the accompanying drawings in terms of functional blocks, units, and/or modules. Those skilled in the art will appreciate that these blocks, units, and/or modules are physically implemented by electronic (or optical) circuits, such as logic circuits, discrete components, microprocessors, hard-wired circuits, memory elements, wiring connections, and the like, which may be formed using semiconductor-based fabrication techniques or other manufacturing technologies. In the case of the blocks, units, and/or modules being implemented by microprocessors or other similar hardware, they may be programmed and controlled using software (e.g., microcode) to perform various functions discussed herein and may optionally be driven by firmware and/or software. It is also contemplated that each block, unit, and/or module may be implemented by dedicated hardware, or as a combination of dedicated hardware to perform some functions and a processor (e.g., one or more programmed microprocessors and associated circuitry) to perform other functions. Also, each block, unit, and/or module of some exemplary embodiments may be physically separated into two or more interacting and discrete blocks, units, and/or modules without departing from the scope of the inventive concepts. Further, the blocks, units, and/or modules of some exemplary embodiments may be physically combined into more complex blocks, units, and/or modules without departing from the scope of the inventive concepts.
- Hereinafter, exemplary embodiments of the present invention will be described in more detail with reference to the accompanying drawings.
-
FIG. 2 is an outside view of an automotive sensor integration module according to an exemplary embodiment of the present invention. - An automotive sensor integration module according to an exemplary embodiment of the present invention may include a plurality of devices and sensors for detecting objects outside a vehicle to acquire safety information related to vehicle driving. In this case, the objects may include a lane, another vehicle, a pedestrian, a two-wheeled vehicle, a traffic signal, light, a road, a structure, a speed bump, a geographical feature, an animal, etc.
- The lane may be a driving lane, a lane next to the driving lane, or a lane in which a vehicle is driving in the opposite direction. The lane may include left and right lines forming a lane.
- Another vehicle may be a vehicle that is travelling in the vicinity of a host vehicle. The other vehicle may be a vehicle within a predetermined distance from the host vehicle. For example, the other vehicle may be a vehicle that is located within a predetermined distance from the host vehicle and precedes or follows the host vehicle.
- The pedestrian may be a person in the vicinity of a host vehicle. The pedestrian may be a person located within a predetermined distance from the host vehicle. For example, the pedestrian may be a person on a sidewalk or the roadway within a predetermined distance from the host vehicle.
- The two-wheeled vehicle may be a vehicle that is located in the vicinity of a host vehicle and moves using two wheels. The two-wheeled vehicle may be a vehicle that has two wheels and is located within a predetermined distance from the host vehicle. For example, the two-wheeled vehicle may include a motorcycle or a bicycle on a sidewalk, or the roadway within a predetermined distance from the vehicle.
- The traffic signal may include a traffic light, a traffic sign, or a pattern or text drawn on a road surface.
- The light may include light from a lamp in another vehicle, light from a street lamp, or light emitted from the sun.
- The road may include a road surface, a curve, and a slope, such as an upward slope and a downward slope.
- The structure may be an object which is located around the road and fixed onto the ground. For example, the structure may include a streetlight, a roadside tree, a building, a power pole, a traffic light, a bridge, etc.
- The geographical feature may include a mountain, a hill, etc.
- Meanwhile, the objects may be classified into a moving object and a stationary object. For example, the moving object may conceptually include another vehicle, a two-wheeled vehicle, a pedestrian, etc., while the stationary object may conceptually include a traffic signal, a road, a structure, etc.
- As such, it may be desirable to use various sensors and devices to accurately identify various objects around a vehicle.
- In order to accurately identify objects outside a vehicle, an automotive
sensor integration module 100 according to an exemplary embodiment of the present invention may include a plurality of different types of sensors and devices. In addition, the automotivesensor integration module 100 according to an exemplary embodiment of the present invention may include at least one sensor and device of the same type. - Referring to
FIG. 2 , the automotivesensor integration module 100 according to an exemplary embodiment of the present invention may include aninfrared camera 12, anoptical camera 11, alidar 14, and aradar 13 as a sensor to identify an object outside a vehicle. The automotivesensor integration module 100 according to an exemplary embodiment of the present invention illustrated inFIG. 2 is exemplarily shown to include aninfrared camera 12, anoptical camera 11, alidar 14, and aradar 13 as a sensor in order to identify an object, but is not limited thereto. In addition, the automotivesensor integration module 100 according to an exemplary embodiment of the present invention illustrated inFIG. 2 shows twoinfrared cameras 12, oneoptical camera 11, twolidars 14, and oneradar 13, but the number of each sensor is suggested only for illustrative purposes and is not limited thereto. - Referring to
FIG. 2 , the automotivesensor integration module 100 according to an exemplary embodiment of the present invention may include acircuit board 5, aninfrared camera 12, anoptical camera 11, aradar 13, and alidar 14. For example, the automotivesensor integration module 100 according to an exemplary embodiment of the present invention may include acircuit board 5 on which aninfrared camera 12, anoptical camera 11, aradar 13, and alidar 14 are disposed and mounted. - The
optical camera 11 designed to acquire outside images of a vehicle through light and recognize objects, light, and people around the vehicle may include a mono camera, a stereo camera, an around view monitoring (AVM) camera, and a 360-degree camera. Theoptical camera 11 has advantages of being able to detect colors and accurately classify objects compared to other sensors, but has a disadvantage of being affected by environmental factors, such as darkness, backlight, snow, rain, fog, etc. - The
radar 13 may detect an object on the basis of a time-of-flight (TOF) method or a phase-shift method through electromagnetic waves, and detect the location of a detected object, the distance to the detected object, and the relative speed. Theradar 13 has an advantage of being capable of long distance detection without being affected by environmental factors, such as darkness, snow, rain, fog, etc., but has a disadvantage of failing to detect an object, made of an electromagnetic wave-absorbing material, for example, a steel structure, such as a tunnel or a guardrail, and thus, being unable to classify objects. - The
lidar 14 may detect an object on the basis of a TOF method or a phase-shift method through laser light, and detect the location of a detected object, the distance to the detected object, and the relative speed. Thelidar 14 has advantages of being less affected by environmental factors such as darkness, snow, rain, fog, etc., efficient in long- and short-distance detection due to high resolution, and objects are able to be simply classified, but has a disadvantage of failing to measure the speed of objects immediately. - The
infrared camera 12 may acquire outside images of a vehicle through infrared rays. In particular, theinfrared camera 12 may acquire outside images of the vehicle even in darkness at night. Theinfrared camera 12 has advantages of being capable of long distance detection and being capable of distinguishing living things from objects without being affected by environmental factors such as darkness, snow, rain, fog, etc. but has a disadvantage of being expensive. - The automotive
sensor integration module 100 according to an exemplary embodiment of the present invention is configured such that anouter cover 10 is coupled in the direction of the detection area of anoptical camera 11, aninfrared camera 12, aradar 13, and alidar 14, that is, to the front surface of the automotivesensor integration module 100 to thereby protect theoptical camera 11, theinfrared camera 12, theradar 13, and thelidar 14 from physical shocks. - As such, in order to accurately classify and identify external objects around a vehicle regardless of environmental factors, the advantages and disadvantages of each sensor must be combined. Therefore, the automotive
sensor integration module 100 according to an exemplary embodiment of the present invention discloses a structure in which a plurality of different sensors are all disposed and mounted on acircuit board 5. In addition, the automotivesensor integration module 100 according to an exemplary embodiment of the present invention may synchronize and output detection results of a plurality of sensors having different operation cycles, thereby having an advantage of classifying and identifying objects more accurately. -
FIG. 3 is a diagram illustrating a vehicle in which automotivesensor integration modules 100 according to an exemplary embodiment of the present invention are arranged. - Referring to
FIG. 3 , a plurality of automotivesensor integration modules 100 according to an exemplary embodiment of the present invention may be arranged in a vehicle to detect objects outside the vehicle. -
FIG. 3 exemplarily illustrates that four automotivesensor integration modules 100 are arranged in a vehicle, but the inventive concepts are not limited thereto. Furthermore,FIG. 3 exemplarily illustrates that automotivesensor integration modules 100 are arranged at right and left front sides of a vehicle to detect right and left objects in front of the vehicle, and automotivesensor integration modules 100 are arranged at right and left rear sides of the vehicle to detect right and left objects in back of the vehicle. -
FIG. 4 is a diagram illustrating an automotivesensor integration module 100 according to an exemplary embodiment of the present invention and a cleaning device for cleaning an outer surface of the automotivesensor integration module 100. - The automotive
sensor integration module 100 according to an exemplary embodiment of the present invention is arranged outside a vehicle to detect objects outside the vehicle as illustrated inFIG. 3 , and thus, it may be difficult to detect objects normally due to adherence of dirt or other foreign matter such as dust, bird droppings, and the like. - Therefore, the automotive
sensor integration module 100 according to the present invention may be combined with acleaning device 8, as illustrated inFIG. 4 . A plurality ofcleaning devices 8 may be combined with the automotivesensor integration module 100 so that each of thecleaning devices 8 may clean a corresponding region of a portion of anouter cover 10 of the automotivesensor integration module 100. Here, thecleaning device 8 may spray a liquid (for example, water) on the corresponding region to clean the corresponding region, and thecleaning device 8 may include abody 6 and asprayer 7 including a liquid spray nozzle. Since thesprayer 7 may be moved towards or away from thebody 6, a liquid spray position may be varied according to a position of thesprayer 7. -
FIG. 4 illustrates an example in which theouter cover 10 of the automotivesensor integration module 100 according to the present invention is divided into nine regions so that sixcleaning devices 8 may clean each of the divided regions of theouter cover 10, but the inventive concepts are not limited to the example ofFIG. 4 . - Since the automotive
sensor integration module 100 according to the present invention includes a plurality of sensors, thecleaning devices 8 combined with the automotivesensor integration module 100 may be configured to clean outer cover regions corresponding to locations in which the sensors are arranged. - Therefore, the automotive
sensor integration module 100 according to the present invention may provide a cleaning control device with contamination data about theouter cover regions 8 corresponding to the locations in which the sensors are arranged so that thecleaning devices 8 may clean only some stained outer cover regions among all of the outer cover regions of the automotivesensor integration module 100. -
FIG. 5 is a diagram illustrating a configuration of a vehicle in which an automotivesensor integration module 100 according to an exemplary embodiment of the present invention is arranged. - The vehicle in which an automotive
sensor integration module 100 according to an exemplary embodiment of the present invention is arranged may further include an upper-level control device 200 and acleaning control device 300. - Referring to
FIG. 5 , the vehicle may include the automotivesensor integration module 100, the upper-level control device 200, and thecleaning control device 300. - The automotive
sensor integration module 100 may synchronize pieces of detection data obtained from each sensor, and may provide synchronized data as sensing data S_data to the upper-level control device 200. The automotivesensor integration module 100 may generate contamination data PP_data on the basis of the detection data obtained from each sensor, and may provide the generated contamination data PP_data to thecleaning control device 300. - The upper-
level control device 200 may provide external environment data EC_data to the automotivesensor integration module 100. The external environment data EC_data may include at least one of weather, road condition, temperature, or humidity. - Although the automotive
sensor integration module 100 according to an exemplary embodiment of the present invention is described as being provided with the external environment data EC_data from the upper-level control device 200, the automotivesensor integration module 100 may be provided with the external environment data EC_data from a temperature sensor, a humidity sensor, a rain sensor, and a navigation device arranged in a vehicle. - The upper-
level control device 200 may be a separate device for controlling the automotivesensor integration module 100, or a device included in an automated driving system or advanced driver assistance system (ADAS) to identify objects or control driving of a vehicle. - The
cleaning control device 300 may control operation of the plurality ofcleaning devices 10 illustrated inFIG. 4 on the basis of the contamination data PP_data provided from the automotivesensor integration module 100. Here, the contamination data PP_data may include information indicating whether each of outer cover regions respectively corresponding to the locations of the plurality of sensors included in the automotivesensor integration module 100 is contaminated. - Here, the automotive
sensor integration module 100, the upper-level control device 200, and thecleaning control device 300 may be connected by vehicle network communication. A vehicle network communication technology may include controller area network (CAN) communication, local interconnect network (LIN) communication, Flex-Ray® communication, Ethernet, and the like. -
FIG. 6 is a diagram illustrating a configuration of an automotivesensor integration module 100 according to an exemplary embodiment of the present invention. - Referring to
FIG. 6 , the automotivesensor integration module 100 according to an embodiment of the present invention may include anoptical camera 11, aninfrared camera 12, aradar 13, alidar 14, aninterface unit 20, and asignal processing unit 30. Here, theinterface unit 20 and thesignal processing unit 30 may be implemented as hardware or software in the circuit board illustrated inFIG. 2 . - The
optical camera 11 may output information detected by medium of light as first detection data C_s. - The
infrared camera 12 may output information detected by medium of infrared light as second detection data IC_s. - The
radar 13 may output information detected by medium of electromagnetic waves as third detection data R_s. - The
lidar 14 may output information detected by medium of laser light as fourth detection data L_s. - Here, the
optical camera 11, theinfrared camera 12, theradar 13, and thelidar 14 may have different sensing (operation) periods. For example, theoptical camera 11 and theinfrared camera 12 may have a sensing period of 30 Hz, theradar 13 may have a sensing period of 20 Hz, and thelidar 14 may have a sensing period of 10 Hz. - Therefore, the
optical camera 11 and theinfrared camera 12 may output the first and second detection data C_s and IC_s every first time (33 ms), theradar 13 may output the third detection data R_s every second time (50 ms), and thelidar 14 may output the fourth detection data L_s every third time (100 ms). - Furthermore, the detection data C_s, IC_s, R_s, and L_s respectively output from the
optical camera 11, theinfrared camera 12, theradar 13, and thelidar 14 may have different communication standards. For example, the first detection data C_s output from theoptical camera 11 may have a format used in low voltage differential signal (LVDS) communication. - The second detection data IC_s output from the
infrared camera 12 may have a format used in gigabit multimedia serial link (GMSL) communication. The third and fourth detection data R_s and L_s output from theradar 13 and thelidar 14, respectively, may have a format used in Ethernet communication. - The
interface unit 20 may convert the first-to-fourth detection data C_s, IC_s, R_s, and L_s having different data formats into one preset data format to provide converted data as conversion data C_data to thesignal processing unit 30. - The
interface unit 20 may convert the formats of the first-to-fourth detection data C_s, IC_s, R_s, and L_s into a data format according to a preset communication technology among vehicle network communication technologies. Here, the vehicle network communication technologies may include controller area network (CAN) communication, local interconnect network (LIN) communication, Flex-Ray® communication, Ethernet, and the like. For example, theinterface unit 20 may convert the first-to-fourth detection data C_s, IC_s, R_s, and L_s into data having a format according to Ethernet communication. - The
signal processing unit 30 may receive, as the conversion data C_data, the first-to-fourth detection data C_s, IC_s, R_s, and L_s converted by theinterface unit 20 and having the same format. Thesignal processing unit 30 may output the first-to-fourth detection data C_s, IC_s, R_s, and L_s included in the conversion data C_data provided from theinterface unit 20 to the upper-level control device 200 as sensing data S_data in synchronization with a preset timing. - For example, the
signal processing unit 30 may output the first-to-fourth detection data C_s, IC_s, R_s, and L_s as the sensing data S_data at the same timing on the basis of an input timing of one of the first-to-fourth detection data C_s, IC_s, R_s, and L_s. - In more detail, the
signal processing unit 30 may receive and store the first-to-fourth detection data C_s, IC_s, R_s, and L_s, and may output the stored first-to-fourth detection data C_s, IC_s, R_s, and L_s as the sensing data S_data when a preset time has passed after the third detection data R_s was input to thesignal processing unit 30. Here, the sensing data S_data may include the first-to-fourth detection data C_s, IC_s, R_s, and L_s obtained from theoptical camera 11, theinfrared camera 12, theradar 13, and thelidar 14. - Furthermore, the
signal processing unit 30 may generate the contamination data PP_data on the basis of the external environment data EC_data and the conversion data C_data, and may provide the generated contamination data PP_data to thecleaning control device 300. - For example, the
signal processing unit 30 may determine, on the basis of the conversion data C_data, whether an outer cover surface corresponding to locations of theoptical camera 11, theinfrared camera 12, theradar 13, and thelidar 14 is contaminated to generate the contamination data PP_data, and may control an output frequency of the generated contamination data PP_data on the basis of the external environment data EC_data. - In more detail, the
signal processing unit 30 may output, as the contamination data PP_data, a determination result indicating that dirt or other foreign matter is adhering to the outer cover surface corresponding to a location of a corresponding sensor when a difference between a current data value and a previous data value of each of the first-to-fourth detection data C_s, IC_s, R_s, and L_s output from theoptical camera 11, theinfrared camera 12, theradar 13, and thelidar 14 exceeds a preset data value. - That is, the
signal processing unit 30 may determine that dirt or other foreign matter is adhering to the outer cover surface of the automotivesensor integration module 100 when a data value of current detection data of each of thesensors 11 to 14 rapidly changes in comparison with previous detection data of each of thesensors 11 to 14. - For example, since the sensing period of the
radar 13 and thelidar 14 is 30 Hz, a time difference between previous detection data and current detection data is 33 ms. If a distance to an object corresponding to previous detection data and current detection data output from theradar 13 or thelidar 14 is 10 meters, it may be determined that there is an object which is moving 30 meters per second. However, it is hard to consider such data as detection data generated in a normal situation. Thus, it may be desirable to determine that dirt or other foreign matter has adhered to the outer cover surface under which theradar 13 or thelidar 14 is located. - The
signal processing unit 30 may determine whether an outer cover portion of the automotivesensor integration module 100 corresponding to each of thesensors 11 to 14 is contaminated as described above, and may control the output frequency of a contamination determination result (i.e., the contamination data PP_data) on the basis of the external environment data EC_data. - For example, the
signal processing unit 30 may increase the output frequency of the contamination determination result in an environment in which dirt or other foreign matter may easily adhere to the outer cover of the automotivesensor integration module 100, and may decrease the output frequency of the contamination determination result in which dirt or other foreign matter may not easily adhere to the outer cover of the automotivesensor integration module 100. - In more detail, the
signal processing unit 30 may output the contamination determination result more frequently when it rains, humidity is high, temperature is so low that frost is generated, or a vehicle is traveling on an unpaved road than when it does not rain, humidity is low, temperature is high, or a vehicle is traveling on a paved road. - For example, since dirt or other foreign matter easily adheres to the outer cover of the automotive
sensor integration module 100 when it rains, humidity is high, or a vehicle is traveling on an unpaved road, and frost is easily generated in the automotivesensor integration module 100 when temperature is low, thesignal processing unit 30 outputs the contamination data PP_data indicating the contamination determination result more frequently in such an environment than in an otherwise environment to clean the outer cover of the automotivesensor integration module 100, thereby improving reliability of the sensing data S_data output from the automotivesensor integration module 100. -
FIG. 7 is a diagram illustrating a configuration of the signal processing unit ofFIG. 3 . - Referring to
FIG. 7 , thesignal processing unit 30 may include a data transmitting/receivingunit 31, anoutput synchronization unit 32, and acontamination identification unit 33. - The data transmitting/receiving
unit 31 may include a wired/wireless communication module for transmitting/receiving data to/from theinterface unit 20, the upper-level control device 200, and thecleaning control device 300. - The data transmitting/receiving
unit 31 may transmit, to the upper-level control device 200, the sensing data S_data received from theoutput synchronization unit 32. The data transmitting/receivingunit 31 may transmit, to thecleaning control device 300, the contamination data PP_data received from thecontamination identification unit 33. - The data transmitting/receiving
unit 31 may transmit, to thecontamination identification unit 33, the external environment data EC_data received from the upper-level control device 200. The data transmitting/receivingunit 31 may transmit, to theoutput synchronization unit 32 and thecontamination identification unit 33, the conversion data C_data received from theinterface unit 20. - The
output synchronization unit 32 may generate the sensing data S_data by synchronizing the conversion data C_data provided from the data transmitting/receivingunit 31, and may provide the generated sensing data to the data transmitting/receivingunit 31. For example, theoutput synchronization unit 32 may synchronize the first-to-fourth detection data C_s, IC_s, R_s, and L_s on the basis of any one of the first-to-fourth detection data C_s, IC_s, R_s, and L_s included in the conversion data C_data to provide the synchronized data to the data transmitting/receivingunit 31 as the sensing data S_data. - In more detail, the
output synchronization unit 32 may store each of the first-to-fourth detection data C_s, IC_s, R_s, and L_s included in the conversion data C_data, and may output the stored first-to-fourth detection data C_s, IC_s, R_s, and L_s as the sensing data S_data when a preset time has passed after input of any one of the first-to-fourth detection data C_s, IC_s, R_s, and L_s. - The
contamination identification unit 33 may generate the contamination data PP_data on the basis of the conversion data C_data and the external environment data EC_data provided from the data transmitting/receivingunit 31, and may provide the generated contamination data PP_data to the data transmitting/receivingunit 31. For example, thecontamination identification unit 33 may generate the contamination data PP_data on the basis of the conversion data C_data, and may increase or decrease the output frequency of the contamination data PP_data on the basis of the external environment data EC_data. - Here, the conversion data C_data includes the first-to-fourth detection data C_s, IC_s, R_s, and L_s obtained from the
optical camera 11, theinfrared camera 12, theradar 13, and thelidar 14, and thecontamination identification unit 33 generates the contamination data PP_data on the basis of each of the first-to-fourth detection data C_s, IC_s, R_s, and L_s, and thus, the contamination data PP_data may include information indicating whether an outer cover portion corresponding to the location of each sensor is contaminated. - Furthermore, since the external environment data EC_data includes weather, temperature, humidity, and road conditions, the
contamination identification unit 33 may increase the output frequency of the contamination data PP_data so as to frequently clean the outer cover of the automotivesensor integration module 100 in an environment in which dirt or other foreign matter may easily adhere to the outer cover of the automotivesensor integration module 100. -
FIG. 8 is a diagram illustrating a configuration of the contamination identification unit ofFIG. 7 . - As illustrated in
FIG. 8 , thecontamination identification unit 33 may include first-to-fourth sensor identification units 33-1 to 33-4 and first-to-fourth output control units 33-5 to 33-8. Here, thecontamination identification unit 33 may further include a sensor information storage unit 33-9. - As described above, the
contamination identification unit 33 may determine whether the outer cover of the automotivesensor integration module 100 is contaminated by comparing previous data and current data of each of the first-to-fourth detection data C_s, IC_s, R_s, and L_s included in the conversion data C_data. - The first sensor identification unit 33-1 may generate a first comparison signal C_com by comparing previous data and current data of the first detection data C_s. For example, the first sensor identification unit 33-1 may generate the first comparison signal C_com having a first level when a data value difference between previous data and current data of the first detection data C_s exceeds a preset data value. The first sensor identification unit 33-1 may generate the first comparison signal C_com having a second level when the data value difference between previous data and current data of the first detection data C_s is less than the preset data value.
- The second sensor identification unit 33-2 may generate a second comparison signal IC_com by comparing previous data and current data of the second detection data IC_s. For example, the second sensor identification unit 33-2 may generate the second comparison signal IC_com having a first level when the data value difference between previous data and current data of the second detection data IC_s exceeds the preset data value. The second sensor identification unit 33-2 may generate the second comparison signal IC_com having a second level when the data value difference between previous data and current data of the second detection data IC_s is less than the preset data value.
- The third sensor identification unit 33-3 may generate a third comparison signal R_com by comparing previous data and current data of the third detection data R_s. For example, the third sensor identification unit 33-3 may generate the third comparison signal R_com having a first level when the data value difference between previous data and current data of the third detection data R_s exceeds the preset data value. The third sensor identification unit 33-3 may generate the third comparison signal R_com having a second level when the data value difference between previous data and current data of the third detection data R_s is less than the preset data value.
- The fourth sensor identification unit 33-4 may generate a fourth comparison signal L_com by comparing previous data and current data of the fourth detection data L_s. For example, the fourth sensor identification unit 33-4 may generate the fourth comparison signal L_com having a first level when the data value difference between previous data and current data of the fourth detection data L_s exceeds the preset data value. The fourth sensor identification unit 33-4 may generate the fourth comparison signal L_com having a second level when the data value difference between previous data and current data of the fourth detection data L_s is less than the preset data value.
- Here, the first level of each of the first-to-fourth comparison signals C_com, IC_com, R_com, and L_com may indicate adherence of dirt or other foreign matter to an outer cover portion corresponding to the location of each corresponding sensor. The second level of each of the first-to-fourth comparison signals C_com, IC_com, R_com, and L_com may indicate that there is no dirt or other foreign matter adhering to an outer cover portion corresponding to the location of each corresponding sensor. The first level and the second level are different levels, and may be analog levels or may be levels according to at least one digital signal.
- As described above, the first-to-fourth sensor identification units 33-1 to 33-4 may only differ in terms of input/output signal reference names and may perform the same operation. Thus, the first-to-fourth sensor identification units 33-1 to 33-4 may have the same configuration. Therefore, the following description of the configuration of the first sensor identification unit 33-1 among the first-to-fourth sensor identification units 33-1 to 33-4 applies to the second to fourth identification units 33-2 to 33-4.
- The first sensor identification unit 33-1 may include a sensor output storage unit 33-1-1 and a comparison unit 33-1-2.
- The sensor output storage unit 33-1-1 may receive and store the first detection data C_s, and may output the stored first detection data when the next first detection data C_s is input. For example, the sensor output storage unit 33-1-1 may be implemented as a shift register, and may output stored previous data when current data is input.
- The comparison unit 33-1-2 may receive an output from the sensor output storage unit 33-1-1 and the first detection data C_s to compare data values thereof, and may output a comparison result as the first comparison signal C_com. For example, the comparison unit 33-1-2 may output the first comparison signal C_com having a first level when a data value difference between the output (previous first detection data) from the sensor output storage unit 33-1-1 and the first detection data C_s (current first detection data) exceeds a preset data value.
- The comparison unit 33-1-2 may output the first comparison signal C_com having a second level when the data value difference between the output (previous first detection data) from the sensor output storage unit 33-1-1 and the first detection data C_s (current first detection data) is less than the preset data value.
- The first output control unit 33-5 may receive the first comparison signal C_com and the external environment data EC_data, and may output the contamination data PP_data including information PC_s indicating whether the
optical camera 11 is contaminated. - For example, the first output control unit 33-5 may output the first comparison signal C_com as the information PC_s indicating whether the
optical camera 11 is contaminated, i.e., the contamination data PP_data. Here, the first output control unit 33-5 may increase or decrease, on the basis of the external environment data EC_data, the output frequency of the contamination data PP_data (PC_s) including information indicating whether theoptical camera 11 is contaminated. - Furthermore, the first output control unit 33-5 may further receive camera information C_inf. The camera information C_inf may include the location of the
optical camera 11 arranged in the automotivesensor integration module 100. Not only the external environment data EC_data but also the camera information C_inf may increase or decrease the output frequency of the contamination data PP_data (PC_s). - The second output control unit 33-6 may receive the second comparison signal C_com and the external environment data EC_data, and may output the contamination data PP_data (PIC_s) including information PIC_s indicating whether the
infrared camera 12 is contaminated. - For example, the second output control unit 33-6 may output the second comparison signal IC corn as the information PIC_s indicating whether the
infrared camera 12 is contaminated, i.e., the contamination data PP_data. Here, the second output control unit 33-6 may increase or decrease, on the basis of the external environment data EC_data, the output frequency of the contamination data PP_data (PIC_s) including information indicating whether theinfrared camera 12 is contaminated. - Furthermore, the second output control unit 33-6 may further receive infrared camera information IC_inf. The infrared camera information IC_inf may include the location of the
infrared camera 12 arranged in the automotivesensor integration module 100. Not only the external environment data EC_data but also the infrared camera information IC_inf may increase or decrease the output frequency of the contamination data PP_data (PIC_s). - The third output control unit 33-7 may receive the third comparison signal R_com and the external environment data EC_data, and may output the contamination data PP_data (PR_s) including information PR_s indicating whether the
radar 13 is contaminated. - For example, the third output control unit 33-7 may output the third comparison signal R_com as the information PR_s indicating whether the
radar 13 is contaminated, i.e., the contamination data PP_data. Here, the third output control unit 33-7 may increase or decrease, on the basis of the external environment data EC_data, the output frequency of the contamination data PP_data (PR_s) including information indicating whether theradar 13 is contaminated. - Furthermore, the third output control unit 33-7 may further receive radar information R_inf. The radar information R_inf may include the location of the
radar 13 arranged in the automotivesensor integration module 100. Not only the external environment data EC_data but also the radar information R_inf may increase or decrease the output frequency of the contamination data PP_data (PR_s). - The fourth output control unit 33-8 may receive the fourth comparison signal L_com and the external environment data EC_data, and may output the contamination data PP_data (PL_s) including information PL_s indicating whether the
lidar 14 is contaminated. - For example, the fourth output control unit 33-8 may output the fourth comparison signal L_com as the information PL_s indicating whether the
lidar 14 is contaminated, i.e., the contamination data PP_data. Here, the fourth output control unit 33-8 may increase or decrease, on the basis of the external environment data EC_data, the output frequency of the contamination data PP_data (PL_s) including information indicating whether thelidar 14 is contaminated. - Furthermore, the fourth output control unit 33-8 may further receive lidar information L_inf. The lidar information L_inf may include the location of the
lidar 14 arranged in the automotivesensor integration module 100. Not only the external environment data EC_data but also the lidar information L_inf may increase or decrease the output frequency of the contamination data PP_data (PL_s). - The sensor information storage unit 33-9 may store arrangement locations of the
optical camera 11, theinfrared camera 12, theradar 13, and thelidar 14 in the automotivesensor integration module 100. - Furthermore, the sensor information storage unit 33-9 may store a cleaning strength for the outer cover of the automotive
sensor integration module 100 according to each arrangement location of theoptical camera 11, theinfrared camera 12, theradar 13, and thelidar 14. The cleaning strengths for sensors arranged in a lower portion of the automotivesensor integration module 100 may be higher than the cleaning strengths for sensors arranged in an upper portion of the automotivesensor integration module 100. Here, when outputting the contamination data PP_data (PC_s, PIC_s, PR_s, PL_s), each of the first-to-fourth output control units 33-5 to 33-8 may add, to the contamination data PP_data (PC_s, PIC_s, PR_s, PL_s), the cleaning strength according to arrangement of each of the sensors. - In brief, each of the first-to-fourth output control units 33-5 to 33-8 may output each of the first-to-fourth comparison signals C_com, IC_com, R_com, and L_com as the contamination data PP_data (PC_s, PIC_s, PR_s, PL_s). Here, the first-to-fourth output control units 33-5 to 33-8 may increase or decrease the output frequency of each of the contamination data PC_s, PIC_s, PR_s, and PL_s according to the external environment data EC_data.
- As described above, the external environment data EC_data may include information about at least one of weather, road condition, temperature, or humidity.
- When the weather, the road condition under which a vehicle is traveling, the temperature, or the humidity is determined to allow dirt or other foreign matter to easily adhere to the outer cover of the automotive
sensor integration module 100, the first-to-fourth output control units 33-5 to 33-8 may increase the output frequency of the contamination data PP_data (PC_s, PIC_s, PR_s, PL_s). On the contrary, when the weather, the road condition under which a vehicle is traveling, the temperature, or the humidity is determined not to allow dirt or other foreign matter to easily adhere to the outer cover of the automotivesensor integration module 100, the first-to-fourth output control units 33-5 to 33-8 may decrease the output frequency of the contamination data PP_data (PC_s, PIC_s, PR_s, PL_s). - In addition, each of the first-to-fourth output control units 33-5 to 33-8 may increase or decrease the frequency of each of the contamination data PP_data (PC_s, PIC_s, PR_s, PL_s) according to the location of each of the
optical camera 11, theinfrared camera 12, theradar 13, and thelidar 14 arranged in the automotivesensor integration module 100. - For example, in the case where the
optical camera 11 and theinfrared camera 12 are arranged at higher positions than theradar 13 and thelidar 14, the output frequency of the contamination data PP_data (PC_s, PIC_s) output from the first and second output control units 33-5 and 33-6 may be lower than the output frequency of the contamination data PP_data (PR_s, PL_s) output from the third and fourth output control units 33-6 and 33-7. - As described above, the automotive
sensor integration module 100 according to the present invention may determine whether each of outer cover regions corresponding to the locations of theoptical camera 11, theinfrared camera 12, theradar 13, and thelidar 14 included in the automotivesensor integration module 100 is contaminated, and may provide a determination result to thecleaning control device 300, and thus the reliability of determination of an object positioned outside a vehicle may be improved. - Furthermore, the automotive
sensor integration module 100 according to the present invention may increase or decrease the output frequency of contamination data related to whether each of the outer cover regions is contaminated according to an external environment and the arrangement locations of theoptical camera 11, theinfrared camera 12, theradar 13, and thelidar 14, and thus the reliability of determination of an object positioned outside a vehicle may be further improved. - The automotive sensor integration module according to an exemplary embodiment of the present invention has improved performance of detecting objects outside a vehicle since a plurality of sensors are synchronously operated.
- Furthermore, the automotive sensor integration module according to an exemplary embodiment of the present invention has improved performance of detecting objects outside a vehicle since a plurality of sensors can be cleaned individually by determining whether each of the sensors is contaminated.
- Although the present invention has been described with reference to the drawings exemplified as above, the present invention is not limited to the embodiments and drawings disclosed herein, and it would be obvious that various modifications may be made by those skilled in the art within the scope of the technical spirit of the present invention. Furthermore, it is apparent that, although the effects brought about by the configuration of the present invention are not clearly mentioned while describing the embodiments of the present invention, any effect, which can be predicted from the configuration, can also be acknowledged.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/940,642 US11774578B2 (en) | 2019-10-24 | 2022-09-08 | Automotive sensor integration module |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190133129A KR102588554B1 (en) | 2019-10-24 | 2019-10-24 | Automotive sensor integration module |
KR10-2019-0133129 | 2019-10-24 | ||
KR1020190133129 | 2019-10-24 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/940,642 Continuation US11774578B2 (en) | 2019-10-24 | 2022-09-08 | Automotive sensor integration module |
Publications (2)
Publication Number | Publication Date |
---|---|
US20210125008A1 true US20210125008A1 (en) | 2021-04-29 |
US11443150B2 US11443150B2 (en) | 2022-09-13 |
Family
ID=75585921
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/726,703 Active 2040-11-29 US11443150B2 (en) | 2019-10-24 | 2019-12-24 | Automotive sensor integration module |
US17/940,642 Active US11774578B2 (en) | 2019-10-24 | 2022-09-08 | Automotive sensor integration module |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/940,642 Active US11774578B2 (en) | 2019-10-24 | 2022-09-08 | Automotive sensor integration module |
Country Status (2)
Country | Link |
---|---|
US (2) | US11443150B2 (en) |
KR (1) | KR102588554B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102588554B1 (en) * | 2019-10-24 | 2023-10-12 | 현대모비스 주식회사 | Automotive sensor integration module |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001211449A (en) * | 2000-01-27 | 2001-08-03 | Honda Motor Co Ltd | Image recognition device for vehicle |
JP2008060874A (en) * | 2006-08-31 | 2008-03-13 | Hitachi Ltd | On-vehicle camera and stain detector for on-vehicle camera |
KR100999971B1 (en) * | 2008-09-30 | 2010-12-09 | 주식회사 한터기술 | System and its method for cruise line control of automatic driving vehicles |
US10699305B2 (en) * | 2016-11-21 | 2020-06-30 | Nio Usa, Inc. | Smart refill assistant for electric vehicles |
DE102017200544A1 (en) * | 2017-01-13 | 2018-07-19 | Siemens Schweiz Ag | Determination of a lead time for the replacement of an optical smoke detector depending on its contamination |
KR102355671B1 (en) * | 2017-07-13 | 2022-01-26 | 현대자동차주식회사 | Vehicle and method for controlling thereof |
FR3086767B1 (en) * | 2018-09-27 | 2020-10-23 | Valeo Systemes Dessuyage | PROTECTION KIT FOR AN OPTICAL SENSOR OF A DRIVING ASSISTANCE SYSTEM FOR MOTOR VEHICLES INCLUDING A HEATING ELEMENT |
KR102588554B1 (en) * | 2019-10-24 | 2023-10-12 | 현대모비스 주식회사 | Automotive sensor integration module |
DE102020207777A1 (en) * | 2020-06-23 | 2021-12-23 | Deere & Company | Agricultural tractor with a system for detecting following road users |
-
2019
- 2019-10-24 KR KR1020190133129A patent/KR102588554B1/en active IP Right Grant
- 2019-12-24 US US16/726,703 patent/US11443150B2/en active Active
-
2022
- 2022-09-08 US US17/940,642 patent/US11774578B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
KR20210048888A (en) | 2021-05-04 |
US11443150B2 (en) | 2022-09-13 |
US20230004764A1 (en) | 2023-01-05 |
US11774578B2 (en) | 2023-10-03 |
KR102588554B1 (en) | 2023-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11851085B2 (en) | Navigation and mapping based on detected arrow orientation | |
US10696227B2 (en) | Determining a road surface characteristic | |
CN111351494B (en) | Navigation system and computer readable medium | |
EP2549457B1 (en) | Vehicle-mounting vehicle-surroundings recognition apparatus and vehicle-mounting vehicle-surroundings recognition system | |
US11774578B2 (en) | Automotive sensor integration module | |
US11494598B2 (en) | Automotive sensor integration module | |
JP6488913B2 (en) | Vehicle position determination device and vehicle position determination method | |
JP2017009553A (en) | Vehicle location determination device and vehicle location determination method | |
US11782153B2 (en) | Automotive sensor integration module | |
US11397439B1 (en) | System for tuning parameters of a thermal sensor to improve object detection | |
US11768918B2 (en) | Automotive sensor integration module | |
US20210123777A1 (en) | Automotive sensor integration module | |
US11392134B1 (en) | System for tuning parameters of a thermal sensor based on a region of interest | |
US12019152B2 (en) | Automotive sensor integration module | |
JP6500606B2 (en) | Vehicle position determination device and vehicle position determination method | |
US11827236B2 (en) | Automotive sensor integration module and system using the same | |
CN118816923A (en) | Sparse map for autonomous vehicle navigation | |
CN118816924A (en) | Sparse map for autonomous vehicle navigation | |
CN118816852A (en) | Sparse map for autonomous vehicle navigation | |
CN118816908A (en) | Sparse map for autonomous vehicle navigation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HYUNDAI MOBIS CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, YOUNG SHIN;KIM, WON GYUM;KIM, KYUNG RIN;AND OTHERS;REEL/FRAME:051363/0766 Effective date: 20191216 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |