US20210112460A1 - Network apparatus - Google Patents

Network apparatus Download PDF

Info

Publication number
US20210112460A1
US20210112460A1 US17/131,705 US202017131705A US2021112460A1 US 20210112460 A1 US20210112460 A1 US 20210112460A1 US 202017131705 A US202017131705 A US 202017131705A US 2021112460 A1 US2021112460 A1 US 2021112460A1
Authority
US
United States
Prior art keywords
base station
slice
network
radio terminal
radio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/131,705
Inventor
Masato Fujishiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to US17/131,705 priority Critical patent/US20210112460A1/en
Assigned to KYOCERA CORPORATION reassignment KYOCERA CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUJISHIRO, MASATO
Publication of US20210112460A1 publication Critical patent/US20210112460A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0257Traffic management, e.g. flow control or congestion control per individual bearer or channel the individual bearer or channel having a maximum bit rate or a bit rate guarantee
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0263Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present disclosure relates to a network apparatus used in a mobile communication system.
  • one core network slice is comprised of a set of logical network functions.
  • a plurality of core network slices share one radio access network.
  • Non Patent Document 1 3GPP contribution “R2-162664”
  • a base station in a network and includes a plurality of network slices.
  • the base station comprises a receiver configured to receive from a core network apparatus, a message including identification information of a network slice, information indicating a quality of service (QoS) requirement of a traffic flow belonging to the network slice, and identification information of the traffic flow, and a controller configured to allocate radio resource to a user equipment based on the message.
  • QoS quality of service
  • a method according to the present disclosure is used in a base station provided in a network including a plurality of network slices.
  • the method comprises receiving from a core network apparatus, a message including identification information of a network slice, information indicating a quality of service (QoS) requirement of a traffic flow belonging to the network slice, and identification information of the traffic flow, and allocating radio resource to a user equipment based on the message.
  • QoS quality of service
  • a communication system comprises a network including a plurality of network slices, a base station provided in the network, and a user equipment.
  • the base station is configured to receive from a core network apparatus, a message including identification information of a network slice, information indicating a quality of service (QoS) requirement of a traffic flow belonging to the network slice, and identification information of the traffic flow.
  • the base station is configured to allocate radio resource to a user equipment based on the message.
  • FIG. 1 is a diagram illustrating a configuration of a mobile communication system.
  • FIG. 2 is a diagram illustrating a protocol stack of a radio interface.
  • FIG. 3 is a diagram illustrating a configuration of a radio terminal.
  • FIG. 4 is a diagram illustrating a configuration of a radio base station.
  • FIG. 5 is a table illustrating information managed by a base station.
  • FIG. 6 is a diagram illustrating a configuration of a U plane (User Plane).
  • FIG. 7 is a diagram illustrating a configuration of a C plane (Control Plane).
  • the mobile communication system according to the embodiment is a 5G mobile communication system based on 3GPP standards.
  • FIG. 1 is a diagram illustrating the configuration of the mobile communication system according to the embodiment. As illustrated in
  • the mobile communication system includes a radio access network (RAN) 10 , a plurality of core network (CN) slices 20 , and a radio terminal 100 .
  • the radio terminal 100 may be referred to as “UE (User Equipment)”.
  • the RAN 10 and the plurality of CN slices 20 configure a network of the 5G mobile communication system.
  • the RAN 10 includes a base station 200 configured to perform radio communication with the radio terminal 100 .
  • the RAN 10 may include a device other than the base station 200 .
  • the base station 200 corresponds to a network apparatus provided in the radio access network.
  • the base station 200 manages one or a plurality of cells, and performs radio communication with the radio terminal 100 having established a connection with a cell of the base station 200 .
  • the base station 200 has a radio resource management (RRM) function, a routing function of user data (hereinafter, simply called “data”), a measurement control function for mobility control and scheduling, and the like.
  • RRM radio resource management
  • data a routing function of user data
  • measurement control function for mobility control and scheduling and the like.
  • the “cell” is used as a term indicating the smallest unit of a radio communication area.
  • the “cell” is also used as a term indicating a function of performing radio communication with the radio terminal 100 .
  • the plurality of CN slices 20 configure a core network configured to provide a service to the radio terminal 100 via the RAN 10 .
  • the plurality of CN slices 20 provide a different service/use case.
  • a service/use case includes, for example, eMBB (enhanced Mobile Broadband, mMTC (massive Machine Type Communication), URLLC (Ultra Reliable and Low Latency Communications), and the like.
  • a CN slice 20 - 1 may provide the eMBB
  • a CN slice 20 - 2 may provide the mMTC
  • a CN slice 20 - 3 may provide the URLLC.
  • the plurality of CN slices 20 share the RAN 10 .
  • the RAN 10 provides each CN slice 20 with a virtual resource reserved for each CN slice 20 .
  • Each CN slice 20 is comprised of a set of logical network functions.
  • a device configured to select and route the CN slice 20 may be provided between the RAN 10 and the plurality of CN slices 20 .
  • the radio terminal 100 is a mobile-type terminal.
  • the radio terminal 100 performs radio communication with a cell (serving cell) of the RAN 10 .
  • the radio terminal 100 is allocated with a resource from the RAN 10 and communicates with at least one CN slice 20 via the RAN 10 .
  • the radio terminal 100 may simultaneously communicate with the plurality of CN slices 20 .
  • FIG. 2 is a diagram illustrating a protocol stack of a radio interface.
  • a radio interface protocol is partitioned into a first layer to a third layer of an OSI reference model, and the first layer is a physical (PHY) layer.
  • the second layer includes an MAC (Medium Access Control) layer, a RLC (Radio Link Control) layer and a PDCP (Packet Data Convergence Protocol) layer.
  • the third layer includes a RRC (Radio Resource Control) layer.
  • encoding, decoding, modulation, demodulation, antenna mapping, antenna demapping, resource mapping and resource demapping are performed.
  • Data and control signals are transmitted between the physical layer of each radio terminal 100 and the physical layer of each base station 200 via a physical channel.
  • the MAC layer In the MAC layer, data prioritization control, a retransmission process according to hybrid ARQ (HARQ), and a random access procedure are performed. Data and control signals are transmitted between the MAC layer of each radio terminal 100 and the MAC layer of each base station 200 via a transport channel.
  • the MAC layer of each base station 200 includes a scheduler. The scheduler determines a transport format (a transport block size and a modulating/encoding method (MCS)) in uplink and downlink, and allocated resource blocks for each radio terminal 100 .
  • MCS modulating/encoding method
  • data is transmitted to the RLC layer at a reception side by using functions of the MAC layer and the physical layer.
  • Data and control signals are transmitted between the RLC layer of each radio terminal 100 and the RLC layer of each base station 200 via a logical channel.
  • header compression In the PDCP layer, header compression, header extension, encryption and decoding are performed.
  • the RRC layer is defined only in a control plane which handles a control signal. Signaling (RRC signaling) for various configurations is transmitted between the RRC layer of each radio terminal 100 and the RRC layer of each base station 200 .
  • RRC signaling Signaling for various configurations is transmitted between the RRC layer of each radio terminal 100 and the RRC layer of each base station 200 .
  • a logical channel, a transport channel and a physical channel are controlled in response to establishment, reestablishment and release of a radio bearer.
  • RRC connection When the RRC of each radio terminal 100 and the RRC of each base station 200 are connected (RRC connection), each radio terminal 100 is in a RRC connected mode and, when this is not a case, each radio terminal 100 is in a RRC idle mode.
  • An NAS layer located above the RRC layer performs session management, mobility management, and the like.
  • FIG. 3 is a diagram illustrating a configuration of the radio terminal 100 .
  • the radio terminal 100 includes a receiver 110 , a transmitter 120 , and a controller 130 .
  • the receiver 110 performs various types of reception under control of the controller 130 .
  • the receiver 110 includes an antenna and a receiver. Further, the receiver converts a radio signal received at the antenna into a baseband signal (received signal) to output to the controller 130 .
  • the transmitter 120 performs various types of transmission under control of the controller 130 .
  • the transmitter 120 includes an antenna and a transmitter.
  • the transmitter converts a baseband signal (transmission signal) outputted from the controller 130 into a radio signal to transmit from the antenna.
  • the controller 130 performs various types of control in the radio terminal 100 .
  • the controller 130 includes a processor and a memory.
  • the memory stores programs executed by the processor and information used for a process performed by the processor.
  • the processor includes a baseband processor and a CPU (Central Processing Unit).
  • the baseband processor modules, demodulates, encodes and decodes baseband signals.
  • the CPU executes the programs stored in the memory to execute various types of processes.
  • the processor may further include a codec which encodes and decodes audio and video signals. The processor executes the above-described various processes and various processes described later.
  • FIG. 4 is a diagram illustrating a configuration of a radio base station 200 .
  • the base station 200 includes a transmitter 210 , a receiver 220 , a controller 230 , and a backhaul communication unit 240 .
  • the transmitter 210 performs various types of transmission under control of the controller 230 .
  • the transmitter 210 includes an antenna and a transmitter.
  • the transmitter converts a baseband signal (transmission signal) outputted from the controller 230 into a radio signal to transmit from the antenna.
  • the receiver 220 performs various types of reception under control of the controller 230 .
  • the receiver 220 includes an antenna and a receiver.
  • the receiver converts a radio signal received at the antenna into a baseband signal (received signal) to output to the controller 230 .
  • the controller 230 performs various types of control in the base station 200 .
  • the controller 230 includes a processor and a memory.
  • the memory stores programs executed by the processor and information used for a process performed by the processor.
  • the processor includes a baseband processor and a CPU.
  • the baseband processor modules demodulates, encodes and decodes baseband signals.
  • the CPU executes the programs stored in the memory to execute various types of processes.
  • the processor executes the above-described various processes and various processes described later.
  • the backhaul communication unit 240 is connected to the plurality of CN slices 20 via a network interface.
  • the backhaul communication unit 240 is used for communication with the CN slice 20 .
  • the backhaul communication unit 240 may be connected to a neighboring base station via a network interface.
  • controller 230 may be arranged in a different unit, and in this case, the unit and the base station 200 are connected by front-haul communication.
  • the base station 200 is provided in the RAN 10 shared by the plurality of CN slices 20 .
  • the base station 200 (controller 230 ) manages a resource allocated to the radio terminal 100 for each CN slice 20 , based on the respective quality of service requirements and/or functions of the plurality of CN slices 20 .
  • FIG. 5 is a table illustrating information managed by the base station 200 (the controller 230 ). At least a part of the information illustrated in FIG. 5 may be provided from the CN slice 20 to the base station 200 . As illustrated in FIG. 5 , an identifier (CN slice ID), a quality of service requirement, a function (group), and a resource are allocated for each CN slice 20 .
  • the quality of service requirement includes a quality of service (QoS) required for the corresponding CN slice 20 .
  • the quality of service requirement may be QoS required for the service/use case provided by the CN slice 20 .
  • the QoS includes a delay, a throughput, a reliability, etc.
  • the quality of service requirement may be identified by QCI (QoS: Class Identifier) being an index value of the QoS.
  • the quality of service requirement may include a use case corresponding to the CN slice 20 .
  • the function (group) is a function (group) required for the corresponding CN slice 20 .
  • This function is a function required for the service/use case provided by the CN slice 20 .
  • the function includes eDRX (extended Discontinues Reception), MBMS (Multimedia Broadcast Multicast Service), D2D (Device to Device), and the like.
  • a function essential for each CN slice 20 may be defined in advance. If the function essential for each CN slice 20 is defined in advance, the radio terminal 100 may notify the RAN 10 (base station 200 ) of which CN slice to support, as Capability. The base station 200 may set the corresponding function to the radio terminal 100 by using an ID of the required CN slice 20 .
  • the resource is a resource allocated by the RAN 10 to the radio terminal 100 and includes any one of the following 1) to 3).
  • the time-frequency resource is a time-frequency resource (group) that can be used when the radio terminal 100 uses the service/use case.
  • the time-frequency resource may be identified by ID of a radio resource pool, ID of a frequency carrier (component carrier), and the like.
  • Bearer composed of plurality of IP (Internet Protocol) flows.
  • the bearer may be a logical communication path established between the radio terminal 100 and the CN slice 20 via the RAN 10 .
  • the bearer carries data of the radio terminal 100 .
  • the bearer may be identified by a bearer ID.
  • Control entity configured to control communication with radio terminal 100 .
  • a control entity is an entity of the C plane, for example, an RRC entity.
  • the RRC entity provides RRC signaling to the radio terminal 100 .
  • the RRC entity may be identified by an RRC entity ID.
  • the base station 200 (controller 230 ) provides the radio terminal 100 with a control signal (signaling) related with a resource managed for each CN slice 20 .
  • the control signal may be the control signal dedicated to each radio terminal (Dedicated Signaling).
  • the control signal may be a control signal (Broadcast Signaling) common to a plurality of radio terminals.
  • the radio terminal 100 performs radio communication with the base station 200 , based on a control signal provided from the base station 200 .
  • the base station 200 provides the control signal accompanying the quality of service requirement (QoS) for each CN slice 20 .
  • QoS quality of service requirement
  • the base station 200 provides the radio terminal 100 with the CN slice ID and information indicating the QCI and/or the use case corresponding to the CN slice ID.
  • the base station 200 provides the control signal accompanying the function for each CN slice 20 .
  • the base station 200 provides the radio terminal 100 with the CN slice ID and eDRX H-SFN (Hyper System Frame Number), a resource pool ID, a component carrier ID, and the like corresponding to the CN slice ID.
  • eDRX H-SFN Hydro System Frame Number
  • the base station 200 may not directly provide the radio terminal 100 with the CN slice ID, but may provide the radio terminal 100 with a bearer ID/RRC entity ID corresponding to the CN slice ID, instead of the CN slice ID.
  • the base station 200 may provide the radio terminal 100 with information indicating a corresponding relationship between the CN slice ID and the bearer ID/RRC entity ID.
  • a common control signal may be composed of a plurality of pieces of broadcast information, the corresponding CN slice IDs may be associated with the plurality of pieces of broadcast information, and the CN slice ID, together with the corresponding broadcast information, may be notified.
  • radio configuration information and access regulation information specific to the CN slice are associated with the corresponding CN slice IDs, respectively.
  • the base station 200 transmits broadcast information 1 for the CN slice 20 - 1 , broadcast information 2 for the CN slice 20 - 2 , broadcast information 3 for the CN slice 20 - 3 , . . . to the radio terminal 100 .
  • the radio terminal 100 can set the broadcast information corresponding to the required CN slice to the radio terminal 100 itself.
  • FIG. 6 is a diagram illustrating a configuration of the U plane according to the embodiment.
  • the base station 200 associates a plurality of bearers with one CN slice 20 and associates a plurality of IP flows with one bearer.
  • the base station 200 groups the plurality of IP flows into one bearer and groups the plurality of bearers into one CN slice 20 .
  • the base station 200 may perform a QoS control for each IP flow and a QoS control for each bearer.
  • the base station 200 may set mapping information indicating a corresponding relationship among the IP flow, the bearer, and the CN slice, to the radio terminal 100 .
  • the base station 200 may provide the radio terminal 100 with a PDCP setting, a RLC setting, and a logical channel (LC) ID, for each IP flow or each bearer.
  • LC logical channel
  • the base station 200 performs a QoS parameter setting (QoS setting) for each bearer, on the radio terminal 100 . That is, the base station 200 performs the QoS setting in bearer units in which a plurality of IP flows are bundled. For example, the base station 200 transmits a control signal including the QoS setting for each bearer, to the radio terminal 100 .
  • the QoS setting may be an LCP (Logical Channel Prioritization) parameter.
  • the base station 200 may simultaneously set a function (eDRX or the like) required for each CN slice 20 .
  • the radio terminal 100 When the IP flow-based QoS and the bundled QoS (bearer-based QoS) are set, the radio terminal 100 (and the base station 200 ) may recognize that at least the bundled QoS is guaranteed. Alternatively, the IP flow-based QoS may be given priority over the bearer base-d QoS. If a plurality of IP flow-based QoSs are set, the radio terminal 100 (and the base station 200 ) may use the IP flow-based QoS with the highest bit rate, as a representative QoS setting, out of the plurality of IP flows, and perform a control so that at least the representative QoS setting is satisfied.
  • FIG. 7 is a diagram illustrating the configuration of the C plane according to the embodiment.
  • the RAN 10 (base station 200 ) includes a sub RRC entity 11 reserved for each CN slice 20 .
  • the RAN 10 may further include a main RRC entity 12 positioned higher than the plurality of sub RRC entities 11 .
  • the main RRC entity 12 manages a plurality of sub RRC entities 11 .
  • a priority may be assigned to each RRC entity (plurality of sub RRC entities 11 and the main RRC entity 12 ).
  • the RAN 10 base station 200
  • the RAN 10 may be able to perform an interruption process on an RRC entity with a lower priority, if performing signaling from the RRC entity with a higher priority to the radio terminal 100 .
  • An inactive duration/active duration may be provided for each RRC entity. The RRC entity suspends an operation during the inactive duration.
  • the main RRC entity 12 performs a overall setting for all the sub RRC entities 11 .
  • Each sub RRC entity 11 performs a setting of a function corresponding to the CN slice 20 and/or an individual setting related with the bearer/IP flow corresponding to the CN slice 20 .
  • the main RRC entity 12 performs at least one of the following settings as a setting of the main RRC entity 12 itself (setting of the entire cell).
  • the main RRC entity 12 may transmit at least one signaling (Dedicated Signaling or Broadcast Signaling) out of the following settings, to the radio terminal 100 .
  • IP flow ID/bearer ID U plane to be handled by each sub RRC entity 11 .
  • Radio resource (radio resource to be handled by each sub RRC entity 11 or radio resource for signaling)
  • Each sub RRC entity 11 performs at least one of the following settings.
  • the main RRC entity 12 may transmit at least one signaling (Dedicated Signaling or Broadcast Signaling) out of the following settings, to the radio terminal 100 . However, at least one of the following settings may be performed by the main RRC entity 12 .
  • an appropriate QoS control can be performed for each CN slice 20 , and the service quality of each CN slice 20 can be guaranteed.
  • the network apparatus according to the present disclosure is the base station 200
  • the network apparatus according to the present disclosure may be a network apparatus (for example, a base station control device) different from the base station 200 .
  • the present disclosure is useful in the field of mobile communication.

Abstract

A base station, method and communication system for a network that includes a plurality of network slices. The base station is configured to receive from a core network apparatus, a message including identification information of a network slice, information indicating a quality of service (QoS) requirement of a traffic flow belonging to the network slice, and identification information of the traffic flow, and allocate radio resource to a user equipment based on the message.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present application is a Continuation Application of U.S. Patent Application No. 16/199,133 filed on Nov. 24, 2018, which is a continuation based on PCT Application No. PCT/JP2017/018621 filed on May 18, 2017, which claims the benefit of Japanese Patent Application No. 2016-105167 (filed on May 26, 2016). The content of which is incorporated by reference herein in their entirety.
  • FIELD
  • The present disclosure relates to a network apparatus used in a mobile communication system.
  • BACKGROUND
  • In recent years, in 3GPP (Third Generation Partnership Project) which is a standardization project of a mobile communication system, there is ongoing research on a technology for the 5th generation (5G) mobile communication system. It is assumed that the 5G system supports a new service and a new use case.
  • In order for a core network to support various services/use cases, a technology has been proposed in which the core network is divided into a plurality of core network slices to realize different services/use cases different depending on each core network slice (for example, see non Patent Document 1). Such a technology is called “network slicing”.
  • Here, one core network slice is comprised of a set of logical network functions. A plurality of core network slices share one radio access network.
  • However, if the “Network slicing” is introduced, a role to be played by the radio access network is unclear.
  • PRIOR ART DOCUMENT Non-Patent Document
  • Non Patent Document 1: 3GPP contribution “R2-162664”
  • SUMMARY
  • A base station according to the present disclosure is provided in a network and includes a plurality of network slices. The base station comprises a receiver configured to receive from a core network apparatus, a message including identification information of a network slice, information indicating a quality of service (QoS) requirement of a traffic flow belonging to the network slice, and identification information of the traffic flow, and a controller configured to allocate radio resource to a user equipment based on the message.
  • A method according to the present disclosure is used in a base station provided in a network including a plurality of network slices. The method comprises receiving from a core network apparatus, a message including identification information of a network slice, information indicating a quality of service (QoS) requirement of a traffic flow belonging to the network slice, and identification information of the traffic flow, and allocating radio resource to a user equipment based on the message.
  • A communication system according to the present disclosure comprises a network including a plurality of network slices, a base station provided in the network, and a user equipment. The base station is configured to receive from a core network apparatus, a message including identification information of a network slice, information indicating a quality of service (QoS) requirement of a traffic flow belonging to the network slice, and identification information of the traffic flow. The base station is configured to allocate radio resource to a user equipment based on the message.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram illustrating a configuration of a mobile communication system.
  • FIG. 2 is a diagram illustrating a protocol stack of a radio interface.
  • FIG. 3 is a diagram illustrating a configuration of a radio terminal.
  • FIG. 4 is a diagram illustrating a configuration of a radio base station.
  • FIG. 5 is a table illustrating information managed by a base station.
  • FIG. 6 is a diagram illustrating a configuration of a U plane (User Plane).
  • FIG. 7 is a diagram illustrating a configuration of a C plane (Control Plane).
  • DESCRIPTION OF THE EMBODIMENT
  • A configuration of a mobile communication system according to an embodiment will be described, below. The mobile communication system according to the embodiment is a 5G mobile communication system based on 3GPP standards.
  • FIG. 1 is a diagram illustrating the configuration of the mobile communication system according to the embodiment. As illustrated in
  • FIG. 1, the mobile communication system according to the embodiment includes a radio access network (RAN) 10, a plurality of core network (CN) slices 20, and a radio terminal 100. The radio terminal 100 may be referred to as “UE (User Equipment)”. The RAN 10 and the plurality of CN slices 20 configure a network of the 5G mobile communication system.
  • The RAN 10 includes a base station 200 configured to perform radio communication with the radio terminal 100. The RAN 10 may include a device other than the base station 200. In the embodiment, the base station 200 corresponds to a network apparatus provided in the radio access network.
  • The base station 200 manages one or a plurality of cells, and performs radio communication with the radio terminal 100 having established a connection with a cell of the base station 200. The base station 200 has a radio resource management (RRM) function, a routing function of user data (hereinafter, simply called “data”), a measurement control function for mobility control and scheduling, and the like. The “cell” is used as a term indicating the smallest unit of a radio communication area. The “cell” is also used as a term indicating a function of performing radio communication with the radio terminal 100.
  • The plurality of CN slices 20 configure a core network configured to provide a service to the radio terminal 100 via the RAN 10. The plurality of CN slices 20 provide a different service/use case. Such a service/use case includes, for example, eMBB (enhanced Mobile Broadband, mMTC (massive Machine Type Communication), URLLC (Ultra Reliable and Low Latency Communications), and the like. In an example of FIG. 1, a CN slice 20-1 may provide the eMBB, a CN slice 20-2 may provide the mMTC, and a CN slice 20-3 may provide the URLLC. Thus, by providing various services/use cases by using the CN slice 20 different depending on each service/use case, complication of the core network can be avoided and an efficient network can be configured.
  • The plurality of CN slices 20 share the RAN 10. In other words, the RAN 10 provides each CN slice 20 with a virtual resource reserved for each CN slice 20. Each CN slice 20 is comprised of a set of logical network functions. A device configured to select and route the CN slice 20 may be provided between the RAN 10 and the plurality of CN slices 20.
  • The radio terminal 100 is a mobile-type terminal. The radio terminal 100 performs radio communication with a cell (serving cell) of the RAN 10. The radio terminal 100 is allocated with a resource from the RAN 10 and communicates with at least one CN slice 20 via the RAN 10. The radio terminal 100 may simultaneously communicate with the plurality of CN slices 20.
  • FIG. 2 is a diagram illustrating a protocol stack of a radio interface. Here, mainly the protocol stack of 3GPP LTE (Long Term Evolution) will be explained. As illustrated in FIG. 2, a radio interface protocol is partitioned into a first layer to a third layer of an OSI reference model, and the first layer is a physical (PHY) layer. The second layer includes an MAC (Medium Access Control) layer, a RLC (Radio Link Control) layer and a PDCP (Packet Data Convergence Protocol) layer. The third layer includes a RRC (Radio Resource Control) layer.
  • In the physical layer, encoding, decoding, modulation, demodulation, antenna mapping, antenna demapping, resource mapping and resource demapping are performed. Data and control signals are transmitted between the physical layer of each radio terminal 100 and the physical layer of each base station 200 via a physical channel.
  • In the MAC layer, data prioritization control, a retransmission process according to hybrid ARQ (HARQ), and a random access procedure are performed. Data and control signals are transmitted between the MAC layer of each radio terminal 100 and the MAC layer of each base station 200 via a transport channel. The MAC layer of each base station 200 includes a scheduler. The scheduler determines a transport format (a transport block size and a modulating/encoding method (MCS)) in uplink and downlink, and allocated resource blocks for each radio terminal 100.
  • In the RLC layer, data is transmitted to the RLC layer at a reception side by using functions of the MAC layer and the physical layer. Data and control signals are transmitted between the RLC layer of each radio terminal 100 and the RLC layer of each base station 200 via a logical channel.
  • In the PDCP layer, header compression, header extension, encryption and decoding are performed.
  • The RRC layer is defined only in a control plane which handles a control signal. Signaling (RRC signaling) for various configurations is transmitted between the RRC layer of each radio terminal 100 and the RRC layer of each base station 200. In the RRC layer, a logical channel, a transport channel and a physical channel are controlled in response to establishment, reestablishment and release of a radio bearer. When the RRC of each radio terminal 100 and the RRC of each base station 200 are connected (RRC connection), each radio terminal 100 is in a RRC connected mode and, when this is not a case, each radio terminal 100 is in a RRC idle mode.
  • An NAS layer located above the RRC layer performs session management, mobility management, and the like.
  • FIG. 3 is a diagram illustrating a configuration of the radio terminal 100. As illustrated in FIG. 3, the radio terminal 100 includes a receiver 110, a transmitter 120, and a controller 130.
  • The receiver 110 performs various types of reception under control of the controller 130. The receiver 110 includes an antenna and a receiver. Further, the receiver converts a radio signal received at the antenna into a baseband signal (received signal) to output to the controller 130.
  • The transmitter 120 performs various types of transmission under control of the controller 130. The transmitter 120 includes an antenna and a transmitter. The transmitter converts a baseband signal (transmission signal) outputted from the controller 130 into a radio signal to transmit from the antenna.
  • The controller 130 performs various types of control in the radio terminal 100. The controller 130 includes a processor and a memory.
  • The memory stores programs executed by the processor and information used for a process performed by the processor. The processor includes a baseband processor and a CPU (Central Processing Unit). The baseband processor modules, demodulates, encodes and decodes baseband signals. The CPU executes the programs stored in the memory to execute various types of processes. The processor may further include a codec which encodes and decodes audio and video signals. The processor executes the above-described various processes and various processes described later.
  • FIG. 4 is a diagram illustrating a configuration of a radio base station 200. As illustrated in FIG. 4, the base station 200 includes a transmitter 210, a receiver 220, a controller 230, and a backhaul communication unit 240.
  • The transmitter 210 performs various types of transmission under control of the controller 230. The transmitter 210 includes an antenna and a transmitter. The transmitter converts a baseband signal (transmission signal) outputted from the controller 230 into a radio signal to transmit from the antenna.
  • The receiver 220 performs various types of reception under control of the controller 230. The receiver 220 includes an antenna and a receiver. The receiver converts a radio signal received at the antenna into a baseband signal (received signal) to output to the controller 230.
  • The controller 230 performs various types of control in the base station 200. The controller 230 includes a processor and a memory. The memory stores programs executed by the processor and information used for a process performed by the processor. The processor includes a baseband processor and a CPU. The baseband processor modules, demodulates, encodes and decodes baseband signals. The CPU executes the programs stored in the memory to execute various types of processes. The processor executes the above-described various processes and various processes described later.
  • The backhaul communication unit 240 is connected to the plurality of CN slices 20 via a network interface. The backhaul communication unit 240 is used for communication with the CN slice 20. The backhaul communication unit 240 may be connected to a neighboring base station via a network interface.
  • Some functions of the controller 230, the transmitter 210, and the receiver 220 may be arranged in a different unit, and in this case, the unit and the base station 200 are connected by front-haul communication.
  • In the embodiment, the base station 200 is provided in the RAN 10 shared by the plurality of CN slices 20. The base station 200 (controller 230) manages a resource allocated to the radio terminal 100 for each CN slice 20, based on the respective quality of service requirements and/or functions of the plurality of CN slices 20.
  • FIG. 5 is a table illustrating information managed by the base station 200 (the controller 230). At least a part of the information illustrated in FIG. 5 may be provided from the CN slice 20 to the base station 200. As illustrated in FIG. 5, an identifier (CN slice ID), a quality of service requirement, a function (group), and a resource are allocated for each CN slice 20.
  • The quality of service requirement includes a quality of service (QoS) required for the corresponding CN slice 20. The quality of service requirement may be QoS required for the service/use case provided by the CN slice 20. The QoS includes a delay, a throughput, a reliability, etc. The quality of service requirement may be identified by QCI (QoS: Class Identifier) being an index value of the QoS. The quality of service requirement may include a use case corresponding to the CN slice 20.
  • The function (group) is a function (group) required for the corresponding CN slice 20. This function is a function required for the service/use case provided by the CN slice 20. For example, the function includes eDRX (extended Discontinues Reception), MBMS (Multimedia Broadcast Multicast Service), D2D (Device to Device), and the like. A function essential for each CN slice 20 may be defined in advance. If the function essential for each CN slice 20 is defined in advance, the radio terminal 100 may notify the RAN 10 (base station 200) of which CN slice to support, as Capability. The base station 200 may set the corresponding function to the radio terminal 100 by using an ID of the required CN slice 20.
  • The resource is a resource allocated by the RAN 10 to the radio terminal 100 and includes any one of the following 1) to 3).
  • 1) Radio resource defined by time and/or frequency. The time-frequency resource is a time-frequency resource (group) that can be used when the radio terminal 100 uses the service/use case. The time-frequency resource may be identified by ID of a radio resource pool, ID of a frequency carrier (component carrier), and the like.
  • 2) Bearer composed of plurality of IP (Internet Protocol) flows. The bearer may be a logical communication path established between the radio terminal 100 and the CN slice 20 via the RAN 10. The bearer carries data of the radio terminal 100. The bearer may be identified by a bearer ID.
  • 3) Control entity configured to control communication with radio terminal 100. A control entity is an entity of the C plane, for example, an RRC entity. The RRC entity provides RRC signaling to the radio terminal 100. The RRC entity may be identified by an RRC entity ID.
  • The base station 200 (controller 230) provides the radio terminal 100 with a control signal (signaling) related with a resource managed for each CN slice 20. The control signal may be the control signal dedicated to each radio terminal (Dedicated Signaling). The control signal may be a control signal (Broadcast Signaling) common to a plurality of radio terminals. The radio terminal 100 performs radio communication with the base station 200, based on a control signal provided from the base station 200.
  • Firstly, the base station 200 provides the control signal accompanying the quality of service requirement (QoS) for each CN slice 20. For example, the base station 200 provides the radio terminal 100 with the CN slice ID and information indicating the QCI and/or the use case corresponding to the CN slice ID.
  • Secondly, the base station 200 provides the control signal accompanying the function for each CN slice 20. For example, the base station 200 provides the radio terminal 100 with the CN slice ID and eDRX H-SFN (Hyper System Frame Number), a resource pool ID, a component carrier ID, and the like corresponding to the CN slice ID.
  • Alternatively, the base station 200 may not directly provide the radio terminal 100 with the CN slice ID, but may provide the radio terminal 100 with a bearer ID/RRC entity ID corresponding to the CN slice ID, instead of the CN slice ID. The base station 200 may provide the radio terminal 100 with information indicating a corresponding relationship between the CN slice ID and the bearer ID/RRC entity ID.
  • A common control signal (Broadcast Signaling) may be composed of a plurality of pieces of broadcast information, the corresponding CN slice IDs may be associated with the plurality of pieces of broadcast information, and the CN slice ID, together with the corresponding broadcast information, may be notified. For example, radio configuration information and access regulation information specific to the CN slice are associated with the corresponding CN slice IDs, respectively. Specifically, the base station 200 transmits broadcast information 1 for the CN slice 20-1, broadcast information 2 for the CN slice 20-2, broadcast information 3 for the CN slice 20-3, . . . to the radio terminal 100. As a result, the radio terminal 100 can set the broadcast information corresponding to the required CN slice to the radio terminal 100 itself.
  • Next, a configuration of the U plane (User Plane) according to the embodiment will be described. FIG. 6 is a diagram illustrating a configuration of the U plane according to the embodiment.
  • As illustrated in FIG. 6, the base station 200 associates a plurality of bearers with one CN slice 20 and associates a plurality of IP flows with one bearer. In other words, the base station 200 groups the plurality of IP flows into one bearer and groups the plurality of bearers into one CN slice 20. The base station 200 may perform a QoS control for each IP flow and a QoS control for each bearer. The base station 200 may set mapping information indicating a corresponding relationship among the IP flow, the bearer, and the CN slice, to the radio terminal 100. The base station 200 may provide the radio terminal 100 with a PDCP setting, a RLC setting, and a logical channel (LC) ID, for each IP flow or each bearer.
  • The base station 200 performs a QoS parameter setting (QoS setting) for each bearer, on the radio terminal 100. That is, the base station 200 performs the QoS setting in bearer units in which a plurality of IP flows are bundled. For example, the base station 200 transmits a control signal including the QoS setting for each bearer, to the radio terminal 100. The QoS setting may be an LCP (Logical Channel Prioritization) parameter. The base station 200 may simultaneously set a function (eDRX or the like) required for each CN slice 20.
  • When the IP flow-based QoS and the bundled QoS (bearer-based QoS) are set, the radio terminal 100 (and the base station 200) may recognize that at least the bundled QoS is guaranteed. Alternatively, the IP flow-based QoS may be given priority over the bearer base-d QoS. If a plurality of IP flow-based QoSs are set, the radio terminal 100 (and the base station 200) may use the IP flow-based QoS with the highest bit rate, as a representative QoS setting, out of the plurality of IP flows, and perform a control so that at least the representative QoS setting is satisfied.
  • Next, s configuration of the C plane (Control Plane) according to the embodiment will be described. FIG. 7 is a diagram illustrating the configuration of the C plane according to the embodiment.
  • As illustrated in FIG. 7, the RAN 10 (base station 200) includes a sub RRC entity 11 reserved for each CN slice 20. The RAN 10 may further include a main RRC entity 12 positioned higher than the plurality of sub RRC entities 11. The main RRC entity 12 manages a plurality of sub RRC entities 11.
  • A priority may be assigned to each RRC entity (plurality of sub RRC entities 11 and the main RRC entity 12). For example, the RAN 10 (base station 200) may be able to perform an interruption process on an RRC entity with a lower priority, if performing signaling from the RRC entity with a higher priority to the radio terminal 100. An inactive duration/active duration may be provided for each RRC entity. The RRC entity suspends an operation during the inactive duration.
  • The main RRC entity 12 performs a overall setting for all the sub RRC entities 11. Each sub RRC entity 11 performs a setting of a function corresponding to the CN slice 20 and/or an individual setting related with the bearer/IP flow corresponding to the CN slice 20.
  • The main RRC entity 12 performs at least one of the following settings as a setting of the main RRC entity 12 itself (setting of the entire cell). The main RRC entity 12 may transmit at least one signaling (Dedicated Signaling or Broadcast Signaling) out of the following settings, to the radio terminal 100.
  • System setting (bandwidth, SFN, cell ID, tracking area code or the like)
  • Related with measurement report
  • Related with cell reselection (serving cell, adjacent cell, different RAT)
  • Related with access control
  • Paging setting
  • Setting of child RRC (sub RRC entity 11)
  • ID of child RRC (sub RRC entity 11)
  • PLMN ID
  • CN slice ID
  • Priority (processing priority)
  • Function (function to be handled by each sub RRC entity 11)
  • IP flow ID/bearer ID (U plane to be handled by each sub RRC entity 11)
  • Radio resource (radio resource to be handled by each sub RRC entity 11 or radio resource for signaling)
  • Each sub RRC entity 11 performs at least one of the following settings. The main RRC entity 12 may transmit at least one signaling (Dedicated Signaling or Broadcast Signaling) out of the following settings, to the radio terminal 100. However, at least one of the following settings may be performed by the main RRC entity 12.
  • Setting for each function (for example, D2D, MBMS or the like)
  • Setting for each IP flow/bearer (PDCP, RLC)
  • MAC setting (LCP, DRX or the like)
  • As described above, according to the embodiment-based base station 200, an appropriate QoS control can be performed for each CN slice 20, and the service quality of each CN slice 20 can be guaranteed.
  • In the above embodiment, an example in which the network apparatus according to the present disclosure is the base station 200 has been described. However, the network apparatus according to the present disclosure may be a network apparatus (for example, a base station control device) different from the base station 200.
  • INDUSTRIAL APPLICABILITY
  • The present disclosure is useful in the field of mobile communication.

Claims (3)

1. A base station provided in a network including a plurality of network slices, the base station comprising:
a receiver configured to receive from a core network apparatus, a message including
identification information of a network slice,
information indicating a quality of service (QoS) requirement of a traffic flow belonging to the network slice, and
identification information of the traffic flow; and
a controller configured to allocate radio resource to a user equipment based on the message.
2. A method used in a base station provided in a network including a plurality of network slices, the method comprising
receiving from a core network apparatus, a message including
identification information of a network slice,
information indicating a quality of service (QoS) requirement of a traffic flow belonging to the network slice, and
identification information of the traffic flow; and
allocating radio resource to a user equipment based on the message.
3. A communication system comprising
a network including a plurality of network slices,
a base station provided in the network, and
a user equipment, wherein
the base station is configured to receive from a core network apparatus, a message including
identification information of a network slice,
information indicating a quality of service (QoS) requirement of a traffic flow belonging to the network slice, and
identification information of the traffic flow; and
the base station is configured to allocate radio resource to a user equipment based on the message.
US17/131,705 2016-05-26 2020-12-22 Network apparatus Abandoned US20210112460A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/131,705 US20210112460A1 (en) 2016-05-26 2020-12-22 Network apparatus

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2016105167 2016-05-26
JP2016-105167 2016-05-26
PCT/JP2017/018621 WO2017204067A1 (en) 2016-05-26 2017-05-18 Network apparatus
US16/199,133 US10904799B2 (en) 2016-05-26 2018-11-24 Base station and method used in a base station
US17/131,705 US20210112460A1 (en) 2016-05-26 2020-12-22 Network apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/199,133 Continuation US10904799B2 (en) 2016-05-26 2018-11-24 Base station and method used in a base station

Publications (1)

Publication Number Publication Date
US20210112460A1 true US20210112460A1 (en) 2021-04-15

Family

ID=60412302

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/199,133 Active US10904799B2 (en) 2016-05-26 2018-11-24 Base station and method used in a base station
US17/131,705 Abandoned US20210112460A1 (en) 2016-05-26 2020-12-22 Network apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/199,133 Active US10904799B2 (en) 2016-05-26 2018-11-24 Base station and method used in a base station

Country Status (4)

Country Link
US (2) US10904799B2 (en)
EP (1) EP3448084B1 (en)
JP (3) JP6480641B2 (en)
WO (1) WO2017204067A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3900464A4 (en) * 2019-02-12 2022-02-23 Samsung Electronics Co., Ltd. Apparatus and method for transmitting signals using fronthaul in communication system
US20220345399A1 (en) * 2019-09-30 2022-10-27 Orange Method for monitoring a data stream associated with a process within a shared network

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6480641B2 (en) 2016-05-26 2019-03-13 京セラ株式会社 Network equipment
CN107659419B (en) * 2016-07-25 2021-01-01 华为技术有限公司 Network slicing method and system
CN108282868B (en) * 2017-01-05 2023-07-18 中兴通讯股份有限公司 Control signaling configuration method and device
US10433177B2 (en) * 2017-12-01 2019-10-01 At&T Intellectual Property I, L.P. Adaptive pairing of a radio access network slice to a core network slice based on device information or service information
CN110167024B (en) * 2018-02-12 2020-12-22 华为技术有限公司 Method and device for reusing network slice example
JP2020205531A (en) * 2019-06-17 2020-12-24 富士通株式会社 Network monitoring device, transmission device, and network monitoring method
JP7332533B2 (en) 2020-05-11 2023-08-23 株式会社東芝 System and method
KR102393322B1 (en) * 2020-07-15 2022-04-29 주식회사 엘지유플러스 Method of Determining and Transferring a Network Slice Identifier in a 5th Generation Core Network

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170079059A1 (en) * 2015-09-11 2017-03-16 Intel IP Corporation Slicing architecture for wireless communication
WO2017074486A1 (en) * 2015-10-28 2017-05-04 Intel IP Corporation Slice-based operation in wireless networks with end-to-end network slicing
US20170201968A1 (en) * 2016-01-13 2017-07-13 Samsung Electronics Co., Ltd Method and apparatus for supporting multiple services in advanced mimo communication systems
US20190045351A1 (en) * 2016-02-05 2019-02-07 Telefonaktiebolaget Lm Ericsson (Publ) Network nodes and methods performed therein for enabling communication in a communication network
US20200305054A1 (en) * 2016-04-01 2020-09-24 Telefonaktiebolaget Lm Ericsson (Publ) Handover in a wireless communication network with network slices
US20210084525A1 (en) * 2018-02-27 2021-03-18 Sony Corporation Terminal device, communication control device, base station, gateway device, control device, method, and recording medium
US20210105702A1 (en) * 2017-04-26 2021-04-08 Beijing Xiaomi Mobile Software Co., Ltd. Network slicing access method and apparatus
US11102828B2 (en) * 2017-12-08 2021-08-24 Comcast Cable Communications, Llc User plane function selection for isolated network slice
US11457500B2 (en) * 2016-05-30 2022-09-27 Huawei Technologies Co., Ltd. Wireless communication method and device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004024596D1 (en) * 2004-07-05 2010-01-21 Ericsson Telefon Ab L M BINDING MECHANISM FOR SERVICE QUALITY MANAGEMENT IN A COMMUNICATION NETWORK
US7860798B2 (en) * 2006-01-20 2010-12-28 Apple Inc. Electronic delivery and management of digital media items
US8218436B2 (en) * 2008-03-21 2012-07-10 Research In Motion Limited Dynamic aggregated maximum bit rate for evolved packet system non-guaranteed bit rate quality of service enforcement and network bandwidth utilization
US9526091B2 (en) * 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
US9722935B2 (en) * 2014-10-16 2017-08-01 Huawei Technologies Canada Co., Ltd. System and method for transmission management in software defined networks
WO2016182580A1 (en) * 2015-05-14 2016-11-17 Nokia Technologies Oy Bearer setup in dual connectivity
BR112017023037A2 (en) * 2015-06-01 2018-07-03 Huawei Tech Co Ltd apparatus and method for virtualized functions in control and data plans.
US10700936B2 (en) * 2015-06-02 2020-06-30 Huawei Technologies Co., Ltd. System and methods for virtual infrastructure management between operator networks
US10862818B2 (en) * 2015-09-23 2020-12-08 Huawei Technologies Co., Ltd. Systems and methods for distributing network resources to network service providers
US10932253B2 (en) * 2016-01-08 2021-02-23 Telefonaktiebolaget Lm Ericsson (Publ) Radio network nodes management system providing dual connectivity
JP6806137B2 (en) * 2016-03-23 2021-01-06 日本電気株式会社 Base station and method
JP2019096918A (en) * 2016-04-05 2019-06-20 シャープ株式会社 Terminal, base station device, mme (mobility management entity) and communication control method
EP3229524B1 (en) * 2016-04-06 2019-07-24 Deutsche Telekom AG Method for controlling radio access resources in a communication network
WO2017195081A1 (en) * 2016-05-10 2017-11-16 Netsia, Inc. System and method for communication between programmable base stations and software-defined radio access network controllers
US10630410B2 (en) * 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
JP6480641B2 (en) 2016-05-26 2019-03-13 京セラ株式会社 Network equipment
WO2018029933A1 (en) * 2016-08-10 2018-02-15 日本電気株式会社 Radio access network node, wireless terminal, core network node, and methods for these
EP3529949B1 (en) * 2016-10-18 2020-12-02 Telefonaktiebolaget LM Ericsson (PUBL) Sla handling in network slices

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170079059A1 (en) * 2015-09-11 2017-03-16 Intel IP Corporation Slicing architecture for wireless communication
WO2017074486A1 (en) * 2015-10-28 2017-05-04 Intel IP Corporation Slice-based operation in wireless networks with end-to-end network slicing
US20170201968A1 (en) * 2016-01-13 2017-07-13 Samsung Electronics Co., Ltd Method and apparatus for supporting multiple services in advanced mimo communication systems
US20190045351A1 (en) * 2016-02-05 2019-02-07 Telefonaktiebolaget Lm Ericsson (Publ) Network nodes and methods performed therein for enabling communication in a communication network
US20200305054A1 (en) * 2016-04-01 2020-09-24 Telefonaktiebolaget Lm Ericsson (Publ) Handover in a wireless communication network with network slices
US11457500B2 (en) * 2016-05-30 2022-09-27 Huawei Technologies Co., Ltd. Wireless communication method and device
US20210105702A1 (en) * 2017-04-26 2021-04-08 Beijing Xiaomi Mobile Software Co., Ltd. Network slicing access method and apparatus
US11102828B2 (en) * 2017-12-08 2021-08-24 Comcast Cable Communications, Llc User plane function selection for isolated network slice
US20210084525A1 (en) * 2018-02-27 2021-03-18 Sony Corporation Terminal device, communication control device, base station, gateway device, control device, method, and recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3900464A4 (en) * 2019-02-12 2022-02-23 Samsung Electronics Co., Ltd. Apparatus and method for transmitting signals using fronthaul in communication system
US20220345399A1 (en) * 2019-09-30 2022-10-27 Orange Method for monitoring a data stream associated with a process within a shared network

Also Published As

Publication number Publication date
JP6480641B2 (en) 2019-03-13
EP3448084A1 (en) 2019-02-27
JP2019134476A (en) 2019-08-08
US20190098535A1 (en) 2019-03-28
JPWO2017204067A1 (en) 2019-02-21
EP3448084A4 (en) 2019-02-27
JP2019092200A (en) 2019-06-13
US10904799B2 (en) 2021-01-26
JP6510156B1 (en) 2019-05-08
WO2017204067A1 (en) 2017-11-30
EP3448084B1 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
US20210112460A1 (en) Network apparatus
JP6506887B2 (en) Wireless terminal and base station
JP6306753B2 (en) Control method, user terminal, processor, and base station
JP6687452B2 (en) Mobile communication system, user terminal, processor, storage medium and program
JP5933807B2 (en) Network device and processor
US9706464B2 (en) Communication control method, user terminal, and processor
JP6132840B2 (en) Communication control method, user terminal, processor, and storage medium
WO2015005316A1 (en) Network device and communication control method
WO2015141728A1 (en) Communication control method and user terminal
JP5905575B2 (en) Communication control method and base station
KR20190131411A (en) Method and apparatus for collecting and reporting cell measurement information in wireless communication system
US20240080939A1 (en) Communication control method and user equipment
US20230091236A1 (en) Communication control method and user equipment
US20230189299A1 (en) Communication control method
US20230188950A1 (en) Communication control method
WO2023013608A1 (en) Communication method
WO2024034569A1 (en) Communication method
WO2023074529A1 (en) Communication method
US10348461B2 (en) Communication apparatus and communication method
JP2015159491A (en) Network selection control method, user terminal and cellular base station

Legal Events

Date Code Title Description
AS Assignment

Owner name: KYOCERA CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUJISHIRO, MASATO;REEL/FRAME:054734/0713

Effective date: 20181024

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION