US20210111624A1 - Charge pump circuit and power supplying method having dynamic voltage adjusting mechanism of the same - Google Patents

Charge pump circuit and power supplying method having dynamic voltage adjusting mechanism of the same Download PDF

Info

Publication number
US20210111624A1
US20210111624A1 US16/887,119 US202016887119A US2021111624A1 US 20210111624 A1 US20210111624 A1 US 20210111624A1 US 202016887119 A US202016887119 A US 202016887119A US 2021111624 A1 US2021111624 A1 US 2021111624A1
Authority
US
United States
Prior art keywords
switch
flying
coupled
power
flying capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/887,119
Other versions
US10978946B1 (en
Inventor
Chih-Kang CHIEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Realtek Semiconductor Corp
Original Assignee
Realtek Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Realtek Semiconductor Corp filed Critical Realtek Semiconductor Corp
Assigned to REALTEK SEMICONDUCTOR CORPORATION reassignment REALTEK SEMICONDUCTOR CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHIEN, CHIH-KANG
Application granted granted Critical
Publication of US10978946B1 publication Critical patent/US10978946B1/en
Publication of US20210111624A1 publication Critical patent/US20210111624A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • H02M3/073Charge pumps of the Schenkel-type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • H02M3/071Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps adapted to generate a negative voltage output from a positive voltage source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/009Converters characterised by their input or output configuration having two or more independently controlled outputs

Definitions

  • the present disclosure relates to a charge pump circuit and a power supplying method having dynamic voltage adjusting mechanism of the same.
  • Charge pump circuits are widely used in the driving circuit of electronic products.
  • the charge pump circuits use capacitors to perform voltage conversion to further generate the required output supply voltages.
  • Headphones are devices that often utilize charge pump circuits to drive the circuits.
  • an object of the present disclosure is to provide a charge pump circuit and a power supplying method having dynamic voltage adjusting mechanism of the same.
  • the present disclosure provides a charge pump circuit that includes a power-receiving terminal, a ground terminal, a positive output terminal, a negative output terminal, a first energy storage capacitor, a second energy storage capacitor, a first flying capacitor, a second flying capacitor and a pump unit circuit.
  • the power-receiving terminal is configured to receive a power voltage.
  • the positive output terminal is configured to output a positive output voltage.
  • the negative output terminal is configured to output a negative output voltage.
  • the first energy storage capacitor is electrically coupled between the positive output terminal and the ground terminal.
  • the second energy storage capacitor is electrically coupled between the negative output terminal the ground terminal.
  • the pump unit circuit is configured to, under a double power voltage power supplying mode, control the first flying capacitor and the second flying capacitor to form a first connection relation with the power-receiving terminal, the ground terminal, the positive output terminal and the negative output terminal within a first operation time period, and form a second connection relation within a second operation time period.
  • the pump unit circuit operates in the first operation time period and the second operation time period in an interlaced manner, such that the positive output terminal and the negative output terminal respectively output the positive output voltage and the negative output voltage, each having a voltage value that is a double of that of the power voltage.
  • the present disclosure also provides a power supplying method having a dynamic voltage adjusting mechanism used in a charge pump circuit.
  • the power supplying method includes the steps outlined below.
  • a power voltage is received by a power-receiving terminal, such that a positive output terminal outputs a positive output voltage and a negative output terminal outputs a negative output voltage.
  • a first energy storage capacitor is electrically coupled between the positive output terminal and a ground terminal and a second energy storage capacitor is electrically coupled between the negative output terminal the ground terminal.
  • a pump unit circuit Under a double power voltage power supplying mode, a pump unit circuit is used to control a first flying capacitor and a second flying capacitor to form a first connection relation with the power-receiving terminal, the ground terminal, the positive output terminal and the negative output terminal within a first operation time period, and form a second connection relation within a second operation time period.
  • the pump unit circuit Under the double power voltage power supplying mode, the pump unit circuit is operated in the first operation time period and the second operation time period in an interlaced manner, such that the positive output terminal and the negative output terminal respectively output the positive output voltage and the negative output voltage that each has a voltage value that is two times of that of the power voltage.
  • FIG. 1 illustrates a block diagram of a charge pump circuit according to an embodiment of the present disclosure.
  • FIG. 2 illustrates a timing diagram of the first clock signal and the second clock signal according to an embodiment of the present disclosure.
  • FIG. 3A and FIG. 3B illustrate diagrams of the pump unit circuit according to an embodiment of the present disclosure.
  • FIG. 4 illustrates a diagram of the first equivalent circuit of the charge pump circuit operated according to the operation phase of the first clock signal within a first operation time period and under the double power voltage power supplying mode, according to an embodiment of the present disclosure.
  • FIG. 5 illustrates a diagram of the second equivalent circuit of the charge pump circuit operated according to the operation phase of the second clock signal within a second operation time period and under the double power voltage power supplying mode, according to an embodiment of the present disclosure.
  • FIG. 6 illustrates a diagram of an amplifier circuit and a load according to an embodiment of the present disclosure.
  • FIG. 7 illustrates a flow chart of a power supplying method according to an embodiment of the present disclosure.
  • An aspect of the present disclosure is to provide a charge pump circuit and a power supplying method having dynamic voltage adjusting mechanism of the same to dynamically adjust an output voltage according to different driving requirements to be able to drive a high impedance load and save power at the same time.
  • FIG. 1 illustrates a block diagram of a charge pump circuit 100 according to an embodiment of the present disclosure.
  • the charge pump circuit 100 includes a power-receiving terminal N 0 , a ground terminal GND, a positive output terminal N 1 , a negative output terminal N 2 , a first energy storage capacitor Cp 1 , a second energy storage capacitor Cp 2 , a first flying capacitor Cf 1 , a second flying capacitor Cf 2 and a pump unit circuit 120 .
  • the charge pump circuit 100 is configured to, according to a first clock signal CK 1 and a second clock signal CK 2 , control the pump unit circuit 120 to adjust a connection relation of circuit components and various circuit nodes thereof.
  • the circuit components include the first energy storage capacitor Cp 1 , the second energy storage capacitor Cp 2 , the first flying capacitor Cf 1 , and the second flying capacitor Cf 2 .
  • the circuit nodes include the power-receiving terminal N 0 , the ground terminal GND, the positive output terminal N 1 and the negative output terminal N 2 . Accordingly, a power voltage VDD inputted to the charge pump circuit 100 is converted to a positive output voltage VPP and a negative output voltage VEE having different levels under different power supplying modes.
  • FIG. 2 illustrates a timing diagram of the first clock signal CK 1 and the second clock signal CK 2 according to an embodiment of the present disclosure. As illustrated in FIG. 2 , an operation phase PH 1 of the first clock signal CK 1 and an operation phase PH 2 of the second clock signal CK 2 are not overlapped. The circuit paths in the circuit that are not supposed to be coupled together under different operation phases can be prevented from being coupled together.
  • the charge pump circuit 100 has four power supplying modes. Under the four power supplying modes, the charge pump circuit 100 has different power conversion rates. More specifically, under four power supplying modes, the charge pump circuit 100 respectively generates four different amounts of amplified output voltages (i.e. the voltage differences between the positive output voltage VPP and the negative output voltage VEE).
  • the output voltage can be 4 times of the power voltage VDD ( ⁇ 2 VDD), 2 times of the power voltage VDD ( ⁇ VDD), 1 time of the power voltage VDD ( ⁇ 1 ⁇ 2 VDD), and 2 ⁇ 3 times of the power voltage VDD ( ⁇ 1 ⁇ 3 VDD).
  • Different power supplying modes of the charge pump circuit 100 can be selected according to the power required by a subsequent circuit (the target circuit that the charge pump circuit 100 supplies power to).
  • the four power supplying modes are named respectively as a double power voltage power supplying mode, a power voltage power supplying mode, a half power voltage power supplying mode and a one-third power voltage power supplying mode.
  • the configuration of the charge pump circuit 100 is further described in detail.
  • the power-receiving terminal N 0 is electrically coupled to a power source of the system to receive the power voltage VDD therefrom.
  • the ground terminal GND is electrically coupled to a ground level of the system.
  • the first energy storage capacitor Cp 1 is coupled between the positive output terminal N 1 and the ground terminal GND.
  • the second energy storage capacitor Cp 2 is coupled between the negative output terminal N 2 and the ground terminal GND.
  • the pump unit circuit 120 is coupled to the power-receiving terminal N 0 , the ground terminal GND, the positive output terminal N 1 , the negative output terminal N 2 , the first flying capacitor Cf 1 and the second flying capacitor Cf 2 .
  • the pump unit circuit 120 operates according to the selected power supplying mode, and uses the first clock signal CK 1 and the second clock signal CK 2 to control the electrical connection relation among different components and nodes. Accordingly, the inputted power voltage VDD is converted to the positive output voltage VPP and the negative output voltage VEE having the voltage values corresponding to the selected power supplying mode.
  • the positive output terminal N 1 outputs the positive output voltage VPP according to the conversion of the power voltage VDD performed by the charge pump circuit 100 .
  • the negative output terminal N 2 outputs the negative output voltage VEE according to the conversion of the power voltage VDD performed by the charge pump circuit 100 .
  • the positive output voltage VPP and the negative output voltage VEE are used as the power supplied to the subsequently circuit for operation.
  • the first energy storage capacitor Cp 1 and the second energy storage capacitor Cp 2 can also serve as voltage stabilizing capacitors for the positive output voltage VPP and the negative output voltage VEE.
  • the first clock signal CK 1 and the second clock signal CK 2 can be generated by a signal generation circuit 140 . Since the configuration and the operation of the signal generation circuit 140 can be understood by those skilled in the art, the detail thereof is not described herein.
  • FIG. 3A and FIG. 3B illustrate diagrams of the pump unit circuit 120 according to an embodiment of the present disclosure.
  • the pump unit circuit 120 includes a plurality of switches S 1 -S 12 .
  • the label CK represents one of the first clock signal CK 1 and the second clock signal CK 2 .
  • the pump unit circuit 120 may further include a multiplexer circuit 122 .
  • the multiplexer circuit 122 is coupled to every one of the switches S 1 -S 12 . Further, the multiplexer circuit 122 is coupled to the signal generation circuit 140 .
  • the multiplexer circuit 122 When the charge pump circuit 100 is in operation, the multiplexer circuit 122 respectively transmits the first clock signal CK 1 and the second clock signal CK 2 to the switches according to the power supplying mode that the pump unit circuit 120 operates. In some embodiments, the first clock signal CK 1 or the second clock signal CK 2 is transmitted to one control terminal of at least one of the switches In some embodiments, the multiplexer circuit 122 may include a multiplexer 122 a and a multiplexer 122 b.
  • the input terminal of the multiplexer 122 a is coupled to the signal generation circuit 140 , and the output terminals are coupled to one or more than one switches (e.g. the switches S 1 , S 2 , S 3 , S 4 , S 8 , S 10 , S 11 or S 12 ).
  • the multiplexer 122 a further transmits the first clock signal CK 1 from the input terminal to at least one output terminal according to the selected power supplying mode.
  • the input terminal of the multiplexer 122 b is coupled to the signal generation circuit 140 , and the output terminals are coupled to one or more than one switches (e.g. the switches S 1 , S 2 , S 5 , S 6 , S 7 , S 9 , S 10 or S 11 ).
  • the multiplexer 122 b further transmits the second clock signal CK 2 from the input terminal to at least one output terminal according to the selected power supplying mode.
  • the pump unit circuit 120 may further include an amplitude detector 124 coupled to the multiplexer circuit 122 and further electrically coupled to an input terminal or an output terminal of the subsequent circuit.
  • the power terminal of the subsequent circuit is coupled to the positive output terminal N 1 and the negative output terminal N 2 .
  • the positive output voltage VPP and the negative output voltage VEE supply power to the subsequent circuit or drive the input signal of the subsequent circuit.
  • the amplitude detector 124 determines the power supplying mode operated by the pump unit circuit 120 (charge pump circuit 100 ). The amplitude detector 124 further generates corresponding control signals Cm 1 and Cm 2 to the multiplexer 122 a and the multiplexer 122 b. The formation of the conducted paths therein can be controlled accordingly to connect the input terminal and the output terminals.
  • the switches include the first switch Si to the twelfth switch S 12 .
  • the first switch S 1 is electrically coupled between the power-receiving terminal N 0 and the anode of the first flying capacitor Cf 1 (node N 3 ).
  • the second switch S 2 is electrically coupled between the positive output terminal N 1 and the anode of the first flying capacitor Cf 1 (node N 3 ).
  • the third switch S 3 is electrically coupled between the positive output terminal N 1 and the anode of the second flying capacitor Cf 2 (node N 5 ).
  • the fourth switch S 4 is electrically coupled between the positive output terminal N 1 and the cathode of the first flying capacitor Cf 1 (node N 4 ).
  • the fifth switch S 5 is electrically coupled between the ground terminal GND and the anode of the second flying capacitor Cf 2 (node N 5 ).
  • the sixth switch S 6 is electrically coupled between the negative output terminal N 2 and the cathode of the first flying capacitor Cf 1 (node N 4 ). In other words, the sixth switch S 6 is electrically coupled to the negative output terminal N 2 and the cathode of the first flying capacitor Cf 1 (node N 4 ).
  • the seventh switch S 7 is electrically coupled between negative output terminal (node N 2 ) and the cathode of the second flying capacitor Cf 2 (node N 6 ).
  • the eighth switch S 8 is electrically coupled between the ground terminal GND and the cathode of the second flying capacitor Cf 2 (node N 6 ).
  • the ninth switch S 9 is electrically coupled between the ground terminal GND and the anode of the first flying capacitor Cf 1 (node N 3 ).
  • the tenth switch S 10 is electrically coupled between the power-receiving terminal N 0 and the positive output terminal N 1 .
  • the eleventh switch S 11 is electrically coupled between the ground terminal GND and the cathode of the first flying capacitor Cf 1 (node N 4 ).
  • the twelfth switch S 12 is electrically coupled between the power-receiving terminal N 0 and the cathode of the first flying capacitor Cf 1 (node N 4 ).
  • each of switches from the first switch S 1 to the twelfth switch S 12 , can be implemented by a power switch.
  • the double power voltage power supplying mode, the power voltage power supplying mode, the half power voltage power supplying mode, and the one-third power voltage power supplying mode can respectively be a highest power supplying mode, a high power supplying mode, a medium power supplying mode, and a low power supplying mode.
  • the amplitude detector 124 controls the multiplexer 122 a of the multiplexer circuit 122 , to transmit the first clock signal CK 1 to the control terminals of the switches S 2 , S 3 , S 8 and S 12 . Further, the amplitude detector 124 controls the multiplexer 122 b of the multiplexer circuit 122 , to transmit the second clock signal CK 2 to the control terminals of the switches S 1 , S 5 , S 7 and S 11 .
  • the control terminals of the switches S 4 , S 6 and S 9 -S 10 do not receive any control signal, such that the switches S 4 , S 6 and S 9 -S 10 turn off to become open circuits.
  • the switches S 1 -S 3 , S 5 , S 7 -S 8 and S 11 -S 12 are in operation.
  • the switches S 4 , S 6 and S 9 -S 10 are not in operation.
  • FIG. 4 illustrates a diagram of the first equivalent circuit of the charge pump circuit 100 operated according to the operation phase PH 1 of the first clock signal CK 1 within a first operation time period and under the double power voltage power supplying mode, according to an embodiment of the present disclosure.
  • the first flying capacitor Cf 1 is coupled between the power-receiving terminal N 0 and the positive output terminal N 1 in a reverse manner
  • the second flying capacitor Cf 2 and the first energy storage capacitor Cf 1 are coupled in parallel between the positive output terminal N 1 and the ground terminal GND in a forward manner
  • the anode of the first flying capacitor Cf 1 (node N 3 ) is coupled to the positive output terminal N 1 .
  • the cathode of the first flying capacitor Cf 1 (node N 4 ) is coupled to the power-receiving terminal N 0 .
  • the anode of the second flying capacitor Cf 2 (node N 5 ) is coupled to the positive output terminal N 1 .
  • the cathode of the second flying capacitor Cf 2 (node N 6 ) is coupled to the ground terminal GND.
  • the second energy storage capacitor Cp 2 is the only internal component that the negative output terminal N 2 is directly coupled to.
  • each of the cross voltage Vcf 2 of the second flying capacitor Cf 2 and the cross voltage of the first energy storage capacitor Cp 1 is equal to the terminal voltage of the positive output terminal N 1 (i.e., positive output voltage VPP). Further, the terminal voltage of the positive output terminal N 1 (i.e. positive output voltage VPP) is the sum of the cross voltage Vcf 1 of the first flying capacitor Cf 1 and the power voltage VDD.
  • the second energy storage capacitor Cp 2 is floating between the negative output terminal N 2 and the ground terminal GND.
  • VPP Vcf 1 +VDD (equation 1)
  • FIG. 5 illustrates a diagram of the second equivalent circuit of the charge pump circuit 100 operated according to the operation phase PH 2 of the second clock signal CK 2 within a second operation time period and under the double power voltage power supplying mode, according to an embodiment of the present disclosure.
  • the first flying capacitor Cf 1 is coupled between the power-receiving terminal N 0 and the ground terminal GND in a forward manner
  • the second flying capacitor Cf 2 is coupled between the negative output terminal N 2 and the ground terminal GND in a reverse manner
  • the anode of the first flying capacitor Cf 1 (node N 3 ) is coupled to the power-receiving terminal N 0 .
  • the cathode of the first flying capacitor Cf 1 (node N 4 ) is coupled to the ground terminal GND.
  • the anode of the second flying capacitor Cf 2 (node N 5 ) is coupled to the ground terminal GND.
  • the cathode of the second flying capacitor Cf 2 (node N 6 ) is coupled to the negative output terminal N 2 .
  • the cross voltage of the second flying capacitor Cf 2 is reversely applied to the second energy storage capacitor Cp 2 (i.e., the negative output voltage VEE).
  • the cross voltage of the first flying capacitor Cf 1 is the power voltage VDD.
  • Vcf1 VDD (equation 3)
  • VEE ⁇ Vcf2 (equation 4)
  • the positive output voltage VPP generated at the positive output terminal N 1 is 2 times of the power voltage, i.e., 2 VDD.
  • the negative output terminal N 2 generated at the negative output voltage VEE is ⁇ 2 times of the power voltage, i.e.. ⁇ 2 VDD.
  • the pump unit circuit 120 operates in the first operation time period and the second operation time period in an interlaced manner, in response to the first clock signal and the second clock signal.
  • the amplitude detector 124 controls the multiplexer 122 a of the multiplexer circuit 122 , to transmit the first clock signal CK 1 to the control terminals of the switches S 1 , S 3 , S 8 , S 10 and S 11 . Further, the amplitude detector 124 controls the multiplexer 122 b of the multiplexer circuit 122 , to transmit the second clock signal CK 2 to the control terminals of the switches S 5 , S 6 , S 7 , S 9 and S 10 . The control terminals of the switches S 2 , S 4 and S 12 do not receive any control signal such that the switches S 2 and S 4 turn off to become open circuits.
  • the positive output voltage VPP generated at the positive output terminal N 1 is 1 time of power voltage, i.e., VDD.
  • the negative output voltage VEE generated at the negative output terminal N 2 is ⁇ 1 time of power voltage, i.e., ⁇ VDD.
  • the amplitude detector 124 controls the multiplexer 122 a of the multiplexer circuit 122 , to transmit the first clock signal CK 1 to the control terminals of the switches S 1 , S 3 , S 4 and S 8 . Further, the amplitude detector 124 controls the multiplexer 122 b of the multiplexer circuit 122 , to transmit the second clock signal CK 2 to the control terminals of the switches S 5 , S 6 , S 7 and S 9 .
  • the control terminals of the switches S 2 , S 10 , S 11 and S 12 do not receive any control signal such that the switches S 2 , S 10 , S 11 and S 12 turn off to become open circuits.
  • the positive output voltage VPP generated at the positive output terminal N 1 is 1 ⁇ 2 times of power voltage, i.e., VDD/2.
  • the negative output voltage VEE generated at the negative output terminal N 2 is ⁇ 1 ⁇ 2 time of power voltage, i.e., ⁇ VDD/2.
  • the amplitude detector 124 controls the multiplexer 122 a of the multiplexer circuit 122 , to transmit the first clock signal CK 1 to the control terminals of the switches S 1 , S 3 , S 4 and S 8 . Further, the amplitude detector 124 controls the multiplexer 122 b of the multiplexer circuit 122 , to transmit the second clock signal CK 2 to the control terminals of the switches S 2 , S 5 , S 6 and S 7 .
  • the control terminals of the switches S 9 , S 10 , S 11 and S 12 do not receive any control signal such that the switches S 9 , S 10 , S 11 and S 12 turn off to become open circuits.
  • the positive output voltage VPP generated at the positive output terminal N 1 is 1 ⁇ 3 times of power voltage, i.e., VDD/3.
  • the negative output voltage VEE generated at the negative output terminal N 2 is ⁇ 1 ⁇ 3 time of power voltage, i.e., ⁇ VDD/3.
  • FIG. 6 illustrates a diagram of an amplifier circuit 600 and a load 610 according to an embodiment of the present disclosure.
  • the charge pump circuit 100 in FIG. 1 can be used in a driving apparatus that includes the charge pump circuit 100 and the amplifier circuit 600 .
  • the subsequent circuit described above is the amplifier circuit 600 .
  • the amplifier circuit 600 mainly includes an amplifier AMP having multiple input terminals, an output terminal and two power terminals. The output terminals are coupled to the load 610 .
  • the load 610 can be the headphone.
  • the positive output terminal N 1 and the negative output terminal N 2 of the charge pump circuit 100 are respectively coupled to the two power terminals of the amplifier AMP.
  • the positive output voltage VPP and the negative output voltage VEE generated at the positive output terminal N 1 and the negative output terminal N 2 are applied to the two power terminals of the amplifier AMP, serving as the power for the operation of the amplifier AMP.
  • the amplifier circuit 600 operates to transmit the received input signal Vin through two resistors to the input terminal of the amplifier AMP.
  • the amplifier AMP processes the received signal to generate an output signal Vout and transmits the output signal Vout to the load 610 through the output terminal.
  • the amplitude detector 124 of the charge pump circuit 100 can be electrically coupled to the input terminal and/or the output terminals of the amplifier AMP to detect the input signal Vin and/or the output signal Vout of the amplifier AMP. Take the input signal Vin as an example, the amplitude detector 124 is electrically coupled to the input terminal of the amplifier AMP to detect the amplitude of the input signal Vin.
  • the amplitude detector 124 controls the pump unit circuit 120 to be operated under the one-third power voltage power supplying mode.
  • the positive output voltage VPP and the negative output voltage VEE that respective are +1 ⁇ 3 times and ⁇ 1 ⁇ 3 times of the power voltage VDD are applied to the power terminals of the amplifier AMP.
  • the amplitude detector 124 When the amplitude detector 124 detects that the amplitude of the input signal Vin is larger than the first threshold value and is smaller than or equal to a second threshold, the amplitude detector 124 controls the pump unit circuit 120 to be operated under the half power voltage power supplying mode.
  • the positive output voltage VPP and the negative output voltage VEE that respective are +1 ⁇ 2 times and ⁇ 1 ⁇ 2 times of the power voltage VDD are applied to the power terminals of the amplifier AMP.
  • the amplitude detector 124 When the amplitude detector 124 detects that the amplitude of the input signal Vin is larger than the second threshold value and is smaller than or equal to a third threshold, the amplitude detector 124 controls the pump unit circuit 120 to be operated under the power voltage power supplying mode.
  • the positive output voltage VPP and the negative output voltage VEE that respective are +1 time and ⁇ 1 time of the power voltage VDD are applied to the power terminals of the amplifier AMP.
  • the amplitude detector 124 When the amplitude detector 124 detects that the amplitude of the input signal Vin is larger than the third threshold, the amplitude detector 124 controls the pump unit circuit 120 to be operated under the double power voltage power supplying mode.
  • the positive output voltage VPP and the negative output voltage VEE that respective are +2 time and ⁇ 2 time of the power voltage VDD are applied to the power terminals of the amplifier AMP.
  • the amount of the positive output voltage VPP and the negative output voltage VEE can be dynamically adjusted according to the amount of the input signal Vin.
  • the configuration having two clock signals (the first clock signal and the second clock signal having non-overlapped operation phase), two flying capacitors (the first flying capacitor and the second flying capacitor), two energy storage capacitors (the first energy storage capacitor and the second energy storage capacitor), and a plurality of switches are used as an example, the configuration of the charge pump circuit is not limited thereto.
  • FIG. 7 illustrates a flow chart of a power supplying method 700 according to an embodiment of the present disclosure.
  • the present disclosure further provides a power supplying method 700 that can be used in such as, but not limited to the charge pump circuit 100 100 in FIG. 1 .
  • a power supplying method 700 that can be used in such as, but not limited to the charge pump circuit 100 100 in FIG. 1 .
  • an embodiment of the power supplying method 700 includes the following steps.
  • step S 710 the power voltage VDD is received by the power-receiving terminal N 0 , such that the positive output terminal N 1 generates the positive output voltage VPP, and that the negative output terminal N 2 generates the negative output voltage VEE.
  • step S 720 the first energy storage capacitor Cp 1 is electrically coupled between the positive output terminal N 1 and the ground terminal GND.
  • the second energy storage capacitor Cp 2 is electrically coupled between the negative output terminal N 2 and the ground terminal GND.
  • step S 730 under the double power voltage power supplying mode, the pump unit circuit 120 controls the first flying capacitor Cf 1 and the second flying capacitor Cf 2 to form the first connection relation with the power-receiving terminal N 0 , the ground terminal GND, the positive output terminal N 1 and the negative output terminal N 2 within the first operation time period, and form the second connection relation within the second operation time period.
  • the pump unit circuit 120 controls the first flying cathode of the first flying capacitor Cf 1 to be electrically coupled to the power-receiving terminal N 0 . Also, the pump unit circuit 120 controls the second flying cathode of the second flying capacitor Cf 2 to be electrically coupled to the ground terminal GND. The pump unit circuit 120 further controls the first flying anode of the first flying capacitor Cf 1 and the second flying anode of the second flying capacitor Cf 2 to be electrically coupled to the positive output terminal N 1 .
  • the pump unit circuit 120 controls the first flying cathode of the first flying capacitor Cf 1 and the second flying anode of the second flying capacitor Cf 2 to be electrically coupled to ground terminal GND. Also, the pump unit circuit 120 controls the first flying anode of the first flying capacitor Cf 1 to be electrically coupled to positive output terminal N 1 . The pump unit circuit 120 further controls the second flying cathode of the second flying capacitor Cf 2 to be electrically coupled to negative output terminal N 2 .
  • step S 740 under the double power voltage power supplying mode, the pump unit circuit 120 operates in the first operation time period and the second operation time period in an interlaced manner, such that the positive output terminal N 1 and the negative output terminal N 2 respectively output the positive output voltage VPP and the negative output voltage VEE, each having a voltage value that is a double of that of the power voltage VDD.
  • the charge pump circuit and power supplying method of the present disclosure can dynamically adjust the output voltage according to different output driving requirements to be able to drive a high impedance load and save power at the same time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

The present disclosure provides a charge pump circuit. The power receiving terminal receives a power voltage. The first energy storage capacitor is coupled between the positive output terminal and the ground terminal. The second energy storage capacitor is coupled between the negative output terminal and the ground terminal. The charge pump circuit controls the first and the second flying capacitors to have a first and a second connection relation with the power-receiving, the ground and the positive and the negative output terminals respectively within a first and a second operation time in a double voltage power supplying mode. The charge pump circuit is operated in the first and the second operation time in an interlaced manner, such that the positive and the negative output terminals respectively output a positive and a negative output voltages each having a voltage value that is a double of that of the power voltage.

Description

    BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The present disclosure relates to a charge pump circuit and a power supplying method having dynamic voltage adjusting mechanism of the same.
  • 2. Description of Related Art
  • Charge pump circuits are widely used in the driving circuit of electronic products. The charge pump circuits use capacitors to perform voltage conversion to further generate the required output supply voltages. Headphones are devices that often utilize charge pump circuits to drive the circuits.
  • In recent years, the demand of Hi-Fi audio increases, and the formats of the headphones become diverse. When a full scale output voltage (FSOV) of some headphone amplifier output formats is used to drive a low impedance headphone, the volume is acceptable. However, when the FSOV of these formats is used to drive a high impedance headphone, the volume is not enough. If a higher FSOV is used in order to fulfill the requirement of the volume of high impedance headphones, the power can not be saved at the same time. The main reason is that the FSOV is restricted by the power voltage of the charge pump. A lower power voltage is able to save power but is not able to support sufficient volume for high impedance headphones. On the contrary, a higher power voltage is able to support sufficient volume for high impedance headphones but is not able to save power.
  • As a result, if a power supply that can use a lower power voltage to generate positive and negative output voltages each having an absolute value higher than the power voltage, the performance of power dissipation and the efficiency of the charge pump circuits can be greatly improved.
  • SUMMARY OF THE INVENTION
  • In consideration of the problem of the prior art, an object of the present disclosure is to provide a charge pump circuit and a power supplying method having dynamic voltage adjusting mechanism of the same.
  • The present disclosure provides a charge pump circuit that includes a power-receiving terminal, a ground terminal, a positive output terminal, a negative output terminal, a first energy storage capacitor, a second energy storage capacitor, a first flying capacitor, a second flying capacitor and a pump unit circuit. The power-receiving terminal is configured to receive a power voltage. The positive output terminal is configured to output a positive output voltage. The negative output terminal is configured to output a negative output voltage. The first energy storage capacitor is electrically coupled between the positive output terminal and the ground terminal. The second energy storage capacitor is electrically coupled between the negative output terminal the ground terminal. The pump unit circuit is configured to, under a double power voltage power supplying mode, control the first flying capacitor and the second flying capacitor to form a first connection relation with the power-receiving terminal, the ground terminal, the positive output terminal and the negative output terminal within a first operation time period, and form a second connection relation within a second operation time period. Under the double power voltage power supplying mode, the pump unit circuit operates in the first operation time period and the second operation time period in an interlaced manner, such that the positive output terminal and the negative output terminal respectively output the positive output voltage and the negative output voltage, each having a voltage value that is a double of that of the power voltage.
  • The present disclosure also provides a power supplying method having a dynamic voltage adjusting mechanism used in a charge pump circuit. The power supplying method includes the steps outlined below. A power voltage is received by a power-receiving terminal, such that a positive output terminal outputs a positive output voltage and a negative output terminal outputs a negative output voltage. A first energy storage capacitor is electrically coupled between the positive output terminal and a ground terminal and a second energy storage capacitor is electrically coupled between the negative output terminal the ground terminal. Under a double power voltage power supplying mode, a pump unit circuit is used to control a first flying capacitor and a second flying capacitor to form a first connection relation with the power-receiving terminal, the ground terminal, the positive output terminal and the negative output terminal within a first operation time period, and form a second connection relation within a second operation time period. Under the double power voltage power supplying mode, the pump unit circuit is operated in the first operation time period and the second operation time period in an interlaced manner, such that the positive output terminal and the negative output terminal respectively output the positive output voltage and the negative output voltage that each has a voltage value that is two times of that of the power voltage.
  • These and other objectives of the present disclosure will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiments that are illustrated in the various figures and drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a block diagram of a charge pump circuit according to an embodiment of the present disclosure.
  • FIG. 2 illustrates a timing diagram of the first clock signal and the second clock signal according to an embodiment of the present disclosure.
  • FIG. 3A and FIG. 3B illustrate diagrams of the pump unit circuit according to an embodiment of the present disclosure.
  • FIG. 4 illustrates a diagram of the first equivalent circuit of the charge pump circuit operated according to the operation phase of the first clock signal within a first operation time period and under the double power voltage power supplying mode, according to an embodiment of the present disclosure.
  • FIG. 5 illustrates a diagram of the second equivalent circuit of the charge pump circuit operated according to the operation phase of the second clock signal within a second operation time period and under the double power voltage power supplying mode, according to an embodiment of the present disclosure.
  • FIG. 6 illustrates a diagram of an amplifier circuit and a load according to an embodiment of the present disclosure.
  • FIG. 7 illustrates a flow chart of a power supplying method according to an embodiment of the present disclosure.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • An aspect of the present disclosure is to provide a charge pump circuit and a power supplying method having dynamic voltage adjusting mechanism of the same to dynamically adjust an output voltage according to different driving requirements to be able to drive a high impedance load and save power at the same time.
  • Reference is now made to FIG. 1. FIG. 1 illustrates a block diagram of a charge pump circuit 100 according to an embodiment of the present disclosure. The charge pump circuit 100 includes a power-receiving terminal N0, a ground terminal GND, a positive output terminal N1, a negative output terminal N2, a first energy storage capacitor Cp1, a second energy storage capacitor Cp2, a first flying capacitor Cf1, a second flying capacitor Cf2 and a pump unit circuit 120.
  • In an embodiment, the charge pump circuit 100 is configured to, according to a first clock signal CK1 and a second clock signal CK2, control the pump unit circuit 120 to adjust a connection relation of circuit components and various circuit nodes thereof. The circuit components include the first energy storage capacitor Cp1, the second energy storage capacitor Cp2, the first flying capacitor Cf1, and the second flying capacitor Cf2. The circuit nodes include the power-receiving terminal N0, the ground terminal GND, the positive output terminal N1 and the negative output terminal N2. Accordingly, a power voltage VDD inputted to the charge pump circuit 100 is converted to a positive output voltage VPP and a negative output voltage VEE having different levels under different power supplying modes.
  • Reference is now made to FIG. 2. FIG. 2 illustrates a timing diagram of the first clock signal CK1 and the second clock signal CK2 according to an embodiment of the present disclosure. As illustrated in FIG. 2, an operation phase PH1 of the first clock signal CK1 and an operation phase PH2 of the second clock signal CK2 are not overlapped. The circuit paths in the circuit that are not supposed to be coupled together under different operation phases can be prevented from being coupled together.
  • In an embodiment, the charge pump circuit 100 has four power supplying modes. Under the four power supplying modes, the charge pump circuit 100 has different power conversion rates. More specifically, under four power supplying modes, the charge pump circuit 100 respectively generates four different amounts of amplified output voltages (i.e. the voltage differences between the positive output voltage VPP and the negative output voltage VEE). For example, the output voltage can be 4 times of the power voltage VDD (±2 VDD), 2 times of the power voltage VDD (±VDD), 1 time of the power voltage VDD (±½ VDD), and ⅔ times of the power voltage VDD (±⅓ VDD). Different power supplying modes of the charge pump circuit 100 can be selected according to the power required by a subsequent circuit (the target circuit that the charge pump circuit 100 supplies power to).
  • In order to give a clear description, the four power supplying modes are named respectively as a double power voltage power supplying mode, a power voltage power supplying mode, a half power voltage power supplying mode and a one-third power voltage power supplying mode.
  • The configuration of the charge pump circuit 100 is further described in detail.
  • The power-receiving terminal N0 is electrically coupled to a power source of the system to receive the power voltage VDD therefrom. The ground terminal GND is electrically coupled to a ground level of the system.
  • The first energy storage capacitor Cp1 is coupled between the positive output terminal N1 and the ground terminal GND. The second energy storage capacitor Cp2 is coupled between the negative output terminal N2 and the ground terminal GND.
  • The pump unit circuit 120 is coupled to the power-receiving terminal N0, the ground terminal GND, the positive output terminal N1, the negative output terminal N2, the first flying capacitor Cf1 and the second flying capacitor Cf2.
  • The pump unit circuit 120 operates according to the selected power supplying mode, and uses the first clock signal CK1 and the second clock signal CK2 to control the electrical connection relation among different components and nodes. Accordingly, the inputted power voltage VDD is converted to the positive output voltage VPP and the negative output voltage VEE having the voltage values corresponding to the selected power supplying mode.
  • More specifically, after the electrical connection relation is determined, the positive output terminal N1 outputs the positive output voltage VPP according to the conversion of the power voltage VDD performed by the charge pump circuit 100. The negative output terminal N2 outputs the negative output voltage VEE according to the conversion of the power voltage VDD performed by the charge pump circuit 100. The positive output voltage VPP and the negative output voltage VEE are used as the power supplied to the subsequently circuit for operation. The first energy storage capacitor Cp1 and the second energy storage capacitor Cp2 can also serve as voltage stabilizing capacitors for the positive output voltage VPP and the negative output voltage VEE.
  • The first clock signal CK1 and the second clock signal CK2 can be generated by a signal generation circuit 140. Since the configuration and the operation of the signal generation circuit 140 can be understood by those skilled in the art, the detail thereof is not described herein.
  • Reference is now made to FIG. 3A and FIG. 3B. FIG. 3A and FIG. 3B illustrate diagrams of the pump unit circuit 120 according to an embodiment of the present disclosure.
  • As illustrated in FIG. 3A, the pump unit circuit 120 includes a plurality of switches S1-S12. In FIG. 3A, the label CK represents one of the first clock signal CK1 and the second clock signal CK2.
  • As illustrated in FIG. 3B, the pump unit circuit 120 may further include a multiplexer circuit 122. The multiplexer circuit 122 is coupled to every one of the switches S1-S12. Further, the multiplexer circuit 122 is coupled to the signal generation circuit 140.
  • When the charge pump circuit 100 is in operation, the multiplexer circuit 122 respectively transmits the first clock signal CK1 and the second clock signal CK2 to the switches according to the power supplying mode that the pump unit circuit 120 operates. In some embodiments, the first clock signal CK1 or the second clock signal CK2 is transmitted to one control terminal of at least one of the switches In some embodiments, the multiplexer circuit 122 may include a multiplexer 122 a and a multiplexer 122 b.
  • The input terminal of the multiplexer 122 a is coupled to the signal generation circuit 140, and the output terminals are coupled to one or more than one switches (e.g. the switches S1, S2, S3, S4, S8, S10, S11 or S12). The multiplexer 122 a further transmits the first clock signal CK1 from the input terminal to at least one output terminal according to the selected power supplying mode.
  • The input terminal of the multiplexer 122 b is coupled to the signal generation circuit 140, and the output terminals are coupled to one or more than one switches (e.g. the switches S1, S2, S5, S6, S7, S9, S10 or S11). The multiplexer 122 b further transmits the second clock signal CK2 from the input terminal to at least one output terminal according to the selected power supplying mode.
  • In some embodiments, the pump unit circuit 120 may further include an amplitude detector 124 coupled to the multiplexer circuit 122 and further electrically coupled to an input terminal or an output terminal of the subsequent circuit. The power terminal of the subsequent circuit is coupled to the positive output terminal N1 and the negative output terminal N2. The positive output voltage VPP and the negative output voltage VEE supply power to the subsequent circuit or drive the input signal of the subsequent circuit.
  • According to the signal amplitude of an input signal or an output signal of the subsequent circuit within a predetermined time period, the amplitude detector 124 determines the power supplying mode operated by the pump unit circuit 120 (charge pump circuit 100). The amplitude detector 124 further generates corresponding control signals Cm1 and Cm2 to the multiplexer 122 a and the multiplexer 122 b. The formation of the conducted paths therein can be controlled accordingly to connect the input terminal and the output terminals.
  • In the example illustrated in FIG. 3A, the switches include the first switch Si to the twelfth switch S12.
  • The first switch S1 is electrically coupled between the power-receiving terminal N0 and the anode of the first flying capacitor Cf1 (node N3). The second switch S2 is electrically coupled between the positive output terminal N1 and the anode of the first flying capacitor Cf1 (node N3). The third switch S3 is electrically coupled between the positive output terminal N1 and the anode of the second flying capacitor Cf2 (node N5). The fourth switch S4 is electrically coupled between the positive output terminal N1 and the cathode of the first flying capacitor Cf1 (node N4). The fifth switch S5 is electrically coupled between the ground terminal GND and the anode of the second flying capacitor Cf2 (node N5). The sixth switch S6 is electrically coupled between the negative output terminal N2 and the cathode of the first flying capacitor Cf1 (node N4). In other words, the sixth switch S6 is electrically coupled to the negative output terminal N2 and the cathode of the first flying capacitor Cf1 (node N4). The seventh switch S7 is electrically coupled between negative output terminal (node N2) and the cathode of the second flying capacitor Cf2 (node N6). The eighth switch S8 is electrically coupled between the ground terminal GND and the cathode of the second flying capacitor Cf2 (node N6). The ninth switch S9 is electrically coupled between the ground terminal GND and the anode of the first flying capacitor Cf1 (node N3). The tenth switch S10 is electrically coupled between the power-receiving terminal N0 and the positive output terminal N1. The eleventh switch S11 is electrically coupled between the ground terminal GND and the cathode of the first flying capacitor Cf1 (node N4). The twelfth switch S12 is electrically coupled between the power-receiving terminal N0 and the cathode of the first flying capacitor Cf1 (node N4).
  • In some embodiments, each of switches, from the first switch S1 to the twelfth switch S12, can be implemented by a power switch.
  • In some embodiments, the double power voltage power supplying mode, the power voltage power supplying mode, the half power voltage power supplying mode, and the one-third power voltage power supplying mode can respectively be a highest power supplying mode, a high power supplying mode, a medium power supplying mode, and a low power supplying mode.
  • Under the double power voltage power supplying mode, the amplitude detector 124 controls the multiplexer 122 a of the multiplexer circuit 122, to transmit the first clock signal CK1 to the control terminals of the switches S2, S3, S8 and S12. Further, the amplitude detector 124 controls the multiplexer 122 b of the multiplexer circuit 122, to transmit the second clock signal CK2 to the control terminals of the switches S1, S5, S7 and S11. The control terminals of the switches S4, S6 and S9-S10 do not receive any control signal, such that the switches S4, S6 and S9-S10 turn off to become open circuits. More specifically, under the double power voltage power supplying mode, the switches S1-S3, S5, S7-S8 and S11-S12 are in operation. The switches S4, S6 and S9-S10 are not in operation.
  • As a result, the switches S2, S3, S8 and S12 are turned on in response to the operation phase PH1 of the first clock signal CK1 to form a first equivalent circuit. Reference is now made to FIG. 4. FIG. 4 illustrates a diagram of the first equivalent circuit of the charge pump circuit 100 operated according to the operation phase PH1 of the first clock signal CK1 within a first operation time period and under the double power voltage power supplying mode, according to an embodiment of the present disclosure.
  • Corresponding to the operation phase PH1 of the first clock signal CK1, the first flying capacitor Cf1 is coupled between the power-receiving terminal N0 and the positive output terminal N1 in a reverse manner The second flying capacitor Cf2 and the first energy storage capacitor Cf1 are coupled in parallel between the positive output terminal N1 and the ground terminal GND in a forward manner In other words, the anode of the first flying capacitor Cf1 (node N3) is coupled to the positive output terminal N1. The cathode of the first flying capacitor Cf1 (node N4) is coupled to the power-receiving terminal N0. The anode of the second flying capacitor Cf2 (node N5) is coupled to the positive output terminal N1. The cathode of the second flying capacitor Cf2 (node N6) is coupled to the ground terminal GND. Under such a condition, the second energy storage capacitor Cp2 is the only internal component that the negative output terminal N2 is directly coupled to.
  • In the first equivalent circuit under the double power voltage power supplying mode, each of the cross voltage Vcf2 of the second flying capacitor Cf2 and the cross voltage of the first energy storage capacitor Cp1, is equal to the terminal voltage of the positive output terminal N1 (i.e., positive output voltage VPP). Further, the terminal voltage of the positive output terminal N1 (i.e. positive output voltage VPP) is the sum of the cross voltage Vcf1 of the first flying capacitor Cf1 and the power voltage VDD. The second energy storage capacitor Cp2 is floating between the negative output terminal N2 and the ground terminal GND.
  • Accordingly, equation 1 and equation 2 can be obtained.

  • VPP=Vcf1+VDD   (equation 1)

  • Vcf2=VPP   (equation 2)
  • Further, the switches S1, S5, S7 and S11 are turned on in response to the operation phase PH2 of the second clock signal CK2 to form a second equivalent circuit. Reference is now made to FIG. 5. FIG. 5 illustrates a diagram of the second equivalent circuit of the charge pump circuit 100 operated according to the operation phase PH2 of the second clock signal CK2 within a second operation time period and under the double power voltage power supplying mode, according to an embodiment of the present disclosure.
  • Corresponding to the operation phase PH2 of the second clock signal CK2, the first flying capacitor Cf1 is coupled between the power-receiving terminal N0 and the ground terminal GND in a forward manner The second flying capacitor Cf2 is coupled between the negative output terminal N2 and the ground terminal GND in a reverse manner In other words, the anode of the first flying capacitor Cf1 (node N3) is coupled to the power-receiving terminal N0. The cathode of the first flying capacitor Cf1 (node N4) is coupled to the ground terminal GND. The anode of the second flying capacitor Cf2 (node N5) is coupled to the ground terminal GND. The cathode of the second flying capacitor Cf2 (node N6) is coupled to the negative output terminal N2.
  • In the second equivalent circuit under the double power voltage power supplying mode, the cross voltage of the second flying capacitor Cf2 is reversely applied to the second energy storage capacitor Cp2 (i.e., the negative output voltage VEE). The cross voltage of the first flying capacitor Cf1 is the power voltage VDD.
  • As a result, equation 3 and equation 4 can be obtained.

  • Vcf1=VDD   (equation 3)

  • VEE=−Vcf2   (equation 4)
  • According to equation 1 to equation 4, under the double power voltage power supplying mode, the positive output voltage VPP generated at the positive output terminal N1 is 2 times of the power voltage, i.e., 2 VDD. The negative output terminal N2 generated at the negative output voltage VEE is −2 times of the power voltage, i.e.. −2 VDD.
  • In addition, when the charge pump circuit 100 supplies power under the double power voltage power supplying mode, the pump unit circuit 120 operates in the first operation time period and the second operation time period in an interlaced manner, in response to the first clock signal and the second clock signal. As a result, the power-receiving terminal N0, the ground terminal GND, the positive output terminal N1, the negative output terminal N2, the anode of the first flying capacitor Cf1 (node N3), the cathode of the first flying capacitor Cf1 (node N4), the anode of the second flying capacitor Cf2 (node N5) and the cathode of the second flying capacitor Cf2 (node N6) together form an electrical connection relation, and the electrical connection relation switches between the first equivalent circuit and the second equivalent circuit in an interlaced manner.
  • Similarly, under the power voltage power supplying mode, the amplitude detector 124 controls the multiplexer 122 a of the multiplexer circuit 122, to transmit the first clock signal CK1 to the control terminals of the switches S1, S3, S8, S10 and S11. Further, the amplitude detector 124 controls the multiplexer 122 b of the multiplexer circuit 122, to transmit the second clock signal CK2 to the control terminals of the switches S5, S6, S7, S9 and S10. The control terminals of the switches S2, S4 and S12 do not receive any control signal such that the switches S2 and S4 turn off to become open circuits.
  • Under such a condition, the positive output voltage VPP generated at the positive output terminal N1 is 1 time of power voltage, i.e., VDD. The negative output voltage VEE generated at the negative output terminal N2 is −1 time of power voltage, i.e., −VDD.
  • Under the half power voltage power supplying mode, the amplitude detector 124 controls the multiplexer 122 a of the multiplexer circuit 122, to transmit the first clock signal CK1 to the control terminals of the switches S1, S3, S4 and S8. Further, the amplitude detector 124 controls the multiplexer 122 b of the multiplexer circuit 122, to transmit the second clock signal CK2 to the control terminals of the switches S5, S6, S7 and S9. The control terminals of the switches S2, S10, S11 and S12 do not receive any control signal such that the switches S2, S10, S11 and S12 turn off to become open circuits. Under such a condition, the positive output voltage VPP generated at the positive output terminal N1 is ½ times of power voltage, i.e., VDD/2. The negative output voltage VEE generated at the negative output terminal N2 is −½ time of power voltage, i.e., −VDD/2.
  • Under the one-third power voltage power supplying mode, the amplitude detector 124 controls the multiplexer 122 a of the multiplexer circuit 122, to transmit the first clock signal CK1 to the control terminals of the switches S1, S3, S4 and S8. Further, the amplitude detector 124 controls the multiplexer 122 b of the multiplexer circuit 122, to transmit the second clock signal CK2 to the control terminals of the switches S2, S5, S6 and S7. The control terminals of the switches S9, S10, S11 and S12 do not receive any control signal such that the switches S9, S10, S11 and S12 turn off to become open circuits. Under such a condition, the positive output voltage VPP generated at the positive output terminal N1 is ⅓ times of power voltage, i.e., VDD/3. The negative output voltage VEE generated at the negative output terminal N2 is −⅓ time of power voltage, i.e., −VDD/3.
  • Reference is now made to FIG. 6. FIG. 6 illustrates a diagram of an amplifier circuit 600 and a load 610 according to an embodiment of the present disclosure.
  • In an embodiment, the charge pump circuit 100 in FIG. 1 can be used in a driving apparatus that includes the charge pump circuit 100 and the amplifier circuit 600. As a result, the subsequent circuit described above is the amplifier circuit 600. The amplifier circuit 600 mainly includes an amplifier AMP having multiple input terminals, an output terminal and two power terminals. The output terminals are coupled to the load 610. Take the headphone driving apparatus as an example, the load 610 can be the headphone.
  • The positive output terminal N1 and the negative output terminal N2 of the charge pump circuit 100 are respectively coupled to the two power terminals of the amplifier AMP. The positive output voltage VPP and the negative output voltage VEE generated at the positive output terminal N1 and the negative output terminal N2 are applied to the two power terminals of the amplifier AMP, serving as the power for the operation of the amplifier AMP.
  • By using the power supplied by the charge pump circuit 100, the amplifier circuit 600 operates to transmit the received input signal Vin through two resistors to the input terminal of the amplifier AMP. The amplifier AMP processes the received signal to generate an output signal Vout and transmits the output signal Vout to the load 610 through the output terminal. The amplitude detector 124 of the charge pump circuit 100 can be electrically coupled to the input terminal and/or the output terminals of the amplifier AMP to detect the input signal Vin and/or the output signal Vout of the amplifier AMP. Take the input signal Vin as an example, the amplitude detector 124 is electrically coupled to the input terminal of the amplifier AMP to detect the amplitude of the input signal Vin.
  • Within a predetermined time period, when the amplitude detector 124 detects that the amplitude of the input signal Vin is smaller than or equal to a first threshold value, the amplitude detector 124 controls the pump unit circuit 120 to be operated under the one-third power voltage power supplying mode. The positive output voltage VPP and the negative output voltage VEE that respective are +⅓ times and −⅓ times of the power voltage VDD are applied to the power terminals of the amplifier AMP.
  • When the amplitude detector 124 detects that the amplitude of the input signal Vin is larger than the first threshold value and is smaller than or equal to a second threshold, the amplitude detector 124 controls the pump unit circuit 120 to be operated under the half power voltage power supplying mode. The positive output voltage VPP and the negative output voltage VEE that respective are +½ times and −½ times of the power voltage VDD are applied to the power terminals of the amplifier AMP.
  • When the amplitude detector 124 detects that the amplitude of the input signal Vin is larger than the second threshold value and is smaller than or equal to a third threshold, the amplitude detector 124 controls the pump unit circuit 120 to be operated under the power voltage power supplying mode. The positive output voltage VPP and the negative output voltage VEE that respective are +1 time and −1 time of the power voltage VDD are applied to the power terminals of the amplifier AMP.
  • When the amplitude detector 124 detects that the amplitude of the input signal Vin is larger than the third threshold, the amplitude detector 124 controls the pump unit circuit 120 to be operated under the double power voltage power supplying mode. The positive output voltage VPP and the negative output voltage VEE that respective are +2 time and −2 time of the power voltage VDD are applied to the power terminals of the amplifier AMP.
  • Accordingly, the amount of the positive output voltage VPP and the negative output voltage VEE can be dynamically adjusted according to the amount of the input signal Vin.
  • It is appreciated that though the configuration having two clock signals (the first clock signal and the second clock signal having non-overlapped operation phase), two flying capacitors (the first flying capacitor and the second flying capacitor), two energy storage capacitors (the first energy storage capacitor and the second energy storage capacitor), and a plurality of switches are used as an example, the configuration of the charge pump circuit is not limited thereto.
  • Reference is now made to FIG. 7. FIG. 7 illustrates a flow chart of a power supplying method 700 according to an embodiment of the present disclosure.
  • In addition to the device described above, the present disclosure further provides a power supplying method 700 that can be used in such as, but not limited to the charge pump circuit 100 100 in FIG. 1. As illustrated in FIG. 7, an embodiment of the power supplying method 700 includes the following steps.
  • In step S710, the power voltage VDD is received by the power-receiving terminal N0, such that the positive output terminal N1 generates the positive output voltage VPP, and that the negative output terminal N2 generates the negative output voltage VEE.
  • In step S720, the first energy storage capacitor Cp1 is electrically coupled between the positive output terminal N1 and the ground terminal GND. The second energy storage capacitor Cp2 is electrically coupled between the negative output terminal N2 and the ground terminal GND.
  • In step S730, under the double power voltage power supplying mode, the pump unit circuit 120 controls the first flying capacitor Cf1 and the second flying capacitor Cf2 to form the first connection relation with the power-receiving terminal N0, the ground terminal GND, the positive output terminal N1 and the negative output terminal N2 within the first operation time period, and form the second connection relation within the second operation time period.
  • More specifically, under the double power voltage power supplying mode and within the first operation time period, the pump unit circuit 120 controls the first flying cathode of the first flying capacitor Cf1 to be electrically coupled to the power-receiving terminal N0. Also, the pump unit circuit 120 controls the second flying cathode of the second flying capacitor Cf2 to be electrically coupled to the ground terminal GND. The pump unit circuit 120 further controls the first flying anode of the first flying capacitor Cf1 and the second flying anode of the second flying capacitor Cf2 to be electrically coupled to the positive output terminal N1.
  • Moreover, under the double power voltage power supplying mode and within the second operation time period, the pump unit circuit 120 controls the first flying cathode of the first flying capacitor Cf1 and the second flying anode of the second flying capacitor Cf2 to be electrically coupled to ground terminal GND. Also, the pump unit circuit 120 controls the first flying anode of the first flying capacitor Cf1 to be electrically coupled to positive output terminal N1. The pump unit circuit 120 further controls the second flying cathode of the second flying capacitor Cf2 to be electrically coupled to negative output terminal N2.
  • In step S740, under the double power voltage power supplying mode, the pump unit circuit 120 operates in the first operation time period and the second operation time period in an interlaced manner, such that the positive output terminal N1 and the negative output terminal N2 respectively output the positive output voltage VPP and the negative output voltage VEE, each having a voltage value that is a double of that of the power voltage VDD.
  • It is appreciated that the embodiments described above are merely an example. In other embodiments, it should be appreciated that many modifications and changes may be made by those of ordinary skill in the art without departing, from the spirit of the disclosure.
  • In summary, the charge pump circuit and power supplying method of the present disclosure can dynamically adjust the output voltage according to different output driving requirements to be able to drive a high impedance load and save power at the same time.
  • The aforementioned descriptions represent merely the preferred embodiments of the present disclosure, without any intention to limit the scope of the present disclosure thereto. Various equivalent changes, alterations, or modifications based on the claims of present disclosure are all consequently viewed as being embraced by the scope of the present disclosure.

Claims (16)

What is claimed is:
1. A charge pump circuit, comprising:
a power-receiving terminal, configured to receive a power voltage;
a ground terminal;
a positive output terminal, configured to output a positive output voltage;
a negative output terminal, configured to output a negative output voltage;
a first energy storage capacitor, electrically coupled between the positive output terminal and the ground terminal;
a second energy storage capacitor, electrically coupled between the negative output terminal the ground terminal;
a first flying capacitor and a second flying capacitor; and
a pump unit circuit, configured to, under a double power voltage power supplying mode, control the first flying capacitor and the second flying capacitor to form a first connection relation with the power-receiving terminal, the ground terminal, the positive output terminal and the negative output terminal within a first operation time period, and form a second connection relation within a second operation time period;
wherein under the double power voltage power supplying mode, the pump unit circuit operates in the first operation time period and the second operation time period in an interlaced manner, such that the positive output terminal and the negative output terminal respectively output the positive output voltage and the negative output voltage, each having a voltage value that is a double of that of the power voltage.
2. The charge pump circuit of claim 1, wherein in the first operation time period, the pump unit circuit controls a first flying cathode of the first flying capacitor to be electrically coupled to the power-receiving terminal, controls a second flying cathode of the second flying capacitor to be electrically coupled to the ground terminal, and controls a first flying anode of the first flying capacitor and a second flying anode of the second flying capacitor to be electrically coupled to the positive output terminal; and
in the second operation time period, the pump unit circuit controls the first flying cathode of the first flying capacitor and the second flying anode of the second flying capacitor to be electrically coupled to the ground terminal, controls the first flying anode of the first flying capacitor to be electrically coupled to the power-receiving terminal, and controls the second flying cathode of the second flying capacitor to be electrically coupled to the negative output terminal.
3. The charge pump circuit of claim 1, wherein the pump unit circuit controls a plurality of switches according to a first clock signal and a second clock signal having non-overlapped operation phases in the first operation time period and the second operation time period, and the switches comprise:
a first switch, coupled between the power-receiving terminal and the first flying anode of the first flying capacitor;
a second switch, coupled between the positive output terminal and the first flying anode of the first flying capacitor;
a third switch, coupled between the positive output terminal and the second flying anode of the second flying capacitor;
a fourth switch, coupled between the ground terminal and the second flying anode of the second flying capacitor;
a fifth switch, coupled between the negative output terminal and the second flying cathode of the second flying capacitor;
a sixth switch, coupled between the ground terminal and the second flying cathode of the second flying capacitor;
a seventh switch, coupled between the ground terminal and the first flying cathode of the first flying capacitor; and
a eighth switch, coupled between the power-receiving terminal and the first flying cathode of the first flying capacitor.
4. The charge pump circuit of claim 3, wherein under the double power voltage power supplying mode, the second switch, the third switch, the sixth switch and the eighth switch turn on in response to the operation phase of the first clock signal, and the first switch, the fourth switch, the fifth switch and the seventh switch turn on in response to the operation phase of the second clock signal.
5. The charge pump circuit of claim 1, wherein the pump unit circuit controls a plurality of switches according to a first clock signal and a second clock signal having non-overlapped operation phases in the first operation time period and the second operation time period, and the switches comprise:
a first switch, coupled between the power-receiving terminal and the first flying anode of the first flying capacitor;
a second switch, coupled between the positive output terminal and the first flying anode of the first flying capacitor;
a third switch, coupled between the positive output terminal and the second flying anode of the second flying capacitor;
a fourth switch, coupled between the positive output terminal and the first flying cathode of the first flying capacitor;
a fifth switch, coupled between the ground terminal and the second flying anode of the second flying capacitor;
a sixth switch, coupled between the negative output terminal and the first flying cathode of the first flying capacitor;
a seventh switch, coupled between the negative output terminal and the second flying cathode of the second flying capacitor;
a eighth switch, coupled between the ground terminal and the second flying cathode of the second flying capacitor;
a ninth switch, coupled between the ground terminal and the first flying anode of the first flying capacitor;
a tenth switch, coupled between the power-receiving terminal and the positive output terminal;
an eleventh switch, coupled between the ground terminal and the first flying cathode of the first flying capacitor; and
a twelfth switch, coupled between the power-receiving terminal and the first flying cathode of the first flying capacitor.
6. The charge pump circuit of claim 5, wherein under the double power voltage power supplying mode, the second switch, the third switch, the eighth switch and the twelfth switch turn on in response to the operation phase of the first clock signal, and the first switch, the fifth switch, the seventh switch and the eleventh switch turn on in response to the operation phase of the second clock signal.
7. The charge pump circuit of claim 5, wherein under a power voltage power supplying mode, the first switch, the third switch, the eighth switch, the tenth switch and the eleventh switch turn on in response to the operation phase of the first clock signal, and the fifth switch, the sixth switch, the seventh switch, the ninth switch and the tenth switch turn on in response to the operation phase of the second clock signal;
under a half power voltage power supplying mode, the first switch, the third switch, the fourth switch and the eighth switch turn on in response to the operation phase of the first clock signal, and the fifth switch, the sixth switch, the seventh switch and the ninth switch turn on in response to the operation phase of the second clock signal; and
under a one-third power voltage power supplying mode, the first switch, the third switch, the fourth switch and the eighth switch turn on in response to the operation phase of the first clock signal, and the second switch, the fifth switch, the sixth switch and the seventh switch turn on in response to the operation phase of the second clock signal.
8. The charge pump circuit of claim 1, further comprising:
an amplitude detector, configured to detect an amplitude of either an input signal or an output signal of a subsequent circuit having a power supplied by the positive output voltage and the negative output voltage, and select a power supplying mode of the pump unit circuit accordingly;
wherein when the amplitude is smaller than or equal to a first threshold value, the amplitude detector selects a one-third power voltage power supplying mode;
when the amplitude is larger than the first threshold value and is smaller than or equal to a second threshold value, the amplitude detector selects a half power voltage power supplying mode;
when the amplitude is larger than the second threshold value and is smaller than or equal to a third threshold value, the amplitude detector selects a power voltage power supplying mode; and
when the amplitude is larger than the third threshold value, the amplitude detector selects the double power voltage power supplying mode.
9. A power supplying method having a dynamic voltage adjusting mechanism used in a charge pump circuit, comprising:
receiving a power voltage by a power-receiving terminal, such that a positive output terminal outputs a positive output voltage, and that a negative output terminal outputs a negative output voltage;
electrically coupling a first energy storage capacitor between the positive output terminal and a ground terminal, and electrically coupling a second energy storage capacitor between the negative output terminal the ground terminal;
under a double power voltage power supplying mode, using a pump unit circuit to control a first flying capacitor and a second flying capacitor to form a first connection relation with the power-receiving terminal, the ground terminal, the positive output terminal and the negative output terminal within a first operation time period, and to form a second connection relation within a second operation time period; and
under the double power voltage power supplying mode, operating the pump unit circuit in the first operation time period and the second operation time period in an interlaced manner, such that the positive output terminal and the negative output terminal respectively output the positive output voltage and the negative output voltage, each having a voltage value that is a double of that of the power voltage.
10. The power supplying method of claim 9, further comprising:
in the first operation time period, using the pump unit circuit to control a first flying cathode of the first flying capacitor to be electrically coupled to the power-receiving terminal, control a second flying cathode of the second flying capacitor to be electrically coupled to the ground terminal, and control a first flying anode of the first flying capacitor and a second flying anode of the second flying capacitor to be electrically coupled to the positive output terminal; and
in the second operation time period, using the pump unit circuit to control the first flying cathode of the first flying capacitor and the second flying anode of the second flying capacitor to be electrically coupled to the ground terminal, control the first flying anode of the first flying capacitor to be electrically coupled to the power-receiving terminal, and control the second flying cathode of the second flying capacitor to be electrically coupled to the negative output terminal.
11. The power supplying method of claim 9, wherein the pump unit circuit controls a plurality of switches according to a first clock signal and a second clock signal having non-overlapped operation phases in the first operation time period and the second operation time period, and the switches comprise:
a first switch, coupled between the power-receiving terminal and the first flying anode of the first flying capacitor;
a second switch, coupled between the positive output terminal and the first flying anode of the first flying capacitor;
a third switch, coupled between the positive output terminal and the second flying anode of the second flying capacitor;
a fourth switch, coupled between the ground terminal and the second flying anode of the second flying capacitor;
a fifth switch, coupled between the negative output terminal and the second flying cathode of the second flying capacitor;
a sixth switch, coupled between the ground terminal and the second flying cathode of the second flying capacitor;
a seventh switch, coupled between the ground terminal and the first flying cathode of the first flying capacitor; and
a eighth switch, coupled between the power-receiving terminal and the first flying cathode of the first flying capacitor.
12. The power supplying method of claim 11, wherein under the double power voltage power supplying mode, the power supplying method further comprises:
turning on the second switch, the third switch, the sixth switch and the eighth switch in response to the operation phase of the first clock signal; and
turning on the first switch, the fourth switch, the fifth switch and the seventh switch in response to the operation phase of the second clock signal.
13. The power supplying method of claim 9, wherein the pump unit circuit controls a plurality of switches according to a first clock signal and a second clock signal having non-overlapped operation phases in the first operation time period and the second operation time period, and the switches comprise:
a first switch, coupled between the power-receiving terminal and the first flying anode of the first flying capacitor;
a second switch, coupled between the positive output terminal and the first flying anode of the first flying capacitor;
a third switch, coupled between the positive output terminal and the second flying anode of the second flying capacitor;
a fourth switch, coupled between the positive output terminal and the first flying cathode of the first flying capacitor;
a fifth switch, coupled between the ground terminal and the second flying anode of the second flying capacitor;
a sixth switch, coupled between the negative output terminal and the first flying cathode of the first flying capacitor;
a seventh switch, coupled between the negative output terminal and the second flying cathode of the second flying capacitor;
a eighth switch, coupled between the ground terminal and the second flying cathode of the second flying capacitor;
a ninth switch, coupled between the ground terminal and the first flying anode of the first flying capacitor;
a tenth switch, coupled between the power-receiving terminal and the positive output terminal;
an eleventh switch, coupled between the ground terminal and the first flying cathode of the first flying capacitor; and
a twelfth switch, coupled between the power-receiving terminal and the first flying cathode of the first flying capacitor.
14. The power supplying method of claim 13, wherein under the double power voltage power supplying mode, the power supplying method further comprises:
turning on the second switch, the third switch, the eighth switch and the twelfth switch in response to the operation phase of the first clock signal; and
turning on the first switch, the fifth switch, the seventh switch and the eleventh switch in response to the operation phase of the second clock signal.
15. The charge pump circuit of claim 13, further comprising:
under a power voltage power supplying mode, turning on the first switch, the third switch, the eighth switch, the tenth switch and the eleventh switch in response to the operation phase of the first clock signal, and turning on the fifth switch, the sixth switch, the seventh switch, the ninth switch and the tenth switch in response to the operation phase of the second clock signal;
under a half power voltage power supplying mode, turning on the first switch, the third switch, the fourth switch and the eighth switch in response to the operation phase of the first clock signal, and turning on the fifth switch, the sixth switch, the seventh switch and the ninth switch in response to the operation phase of the second clock signal; and
under a one-third power voltage power supplying mode, turning on the first switch, the third switch, the fourth switch and the eighth switch in response to the operation phase of the first clock signal, and turning on the second switch, the fifth switch, the sixth switch and the seventh switch in response to the operation phase of the second clock signal.
16. The charge pump circuit of claim 9, further comprising:
by an amplitude detector, detecting an amplitude of either an input signal or an output signal of a subsequent circuit having a power supplied by the positive output voltage and the negative output voltage, and selecting a power supplying mode of the pump unit circuit accordingly;
when the amplitude is smaller than a first threshold value, selecting a one-third power voltage power supplying mode;
when the amplitude is larger than the first threshold value and is smaller than a second threshold value, selecting a half power voltage power supplying mode;
when the amplitude is larger than the second threshold value and is smaller than a third threshold value, selecting a power voltage power supplying mode; and
when the amplitude is larger than the third threshold value, selecting the double power voltage power supplying mode.
US16/887,119 2019-10-14 2020-05-29 Charge pump circuit and power supplying method having dynamic voltage adjusting mechanism of the same Active US10978946B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW108136928 2019-10-14
TW108136928A TWI698077B (en) 2019-10-14 2019-10-14 Charge pump circuit and power-supply method having dynamic voltage adjusting mechanism of the same

Publications (2)

Publication Number Publication Date
US10978946B1 US10978946B1 (en) 2021-04-13
US20210111624A1 true US20210111624A1 (en) 2021-04-15

Family

ID=72602054

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/887,119 Active US10978946B1 (en) 2019-10-14 2020-05-29 Charge pump circuit and power supplying method having dynamic voltage adjusting mechanism of the same

Country Status (2)

Country Link
US (1) US10978946B1 (en)
TW (1) TWI698077B (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI293828B (en) 2005-04-28 2008-02-21 Novatek Microelectronics Corp Charge pump
GB2444985B (en) * 2006-12-22 2011-09-14 Wolfson Microelectronics Plc Charge pump circuit and methods of operation thereof
US9954436B2 (en) * 2010-09-29 2018-04-24 Qorvo Us, Inc. Single μC-buckboost converter with multiple regulated supply outputs
TWI445295B (en) * 2011-12-23 2014-07-11 Realtek Semiconductor Corp Charge pump circuit and method thereof
TWI486929B (en) * 2013-05-13 2015-06-01 Sitronix Technology Corp Can produce self-voltage or negative voltage switching circuit
TWI523389B (en) * 2013-08-16 2016-02-21 Sitronix Technology Corp A power supply circuit with a complex charge pump
KR102547951B1 (en) * 2016-09-20 2023-06-26 삼성전자주식회사 Reconfigurable Bipolar Output Charge Pump Circuit and Integrated Circuit including the same
US10110121B2 (en) * 2016-10-19 2018-10-23 Fortemedia, Inc. Charge pump with a rapid-discharge path
US10236768B2 (en) * 2017-05-19 2019-03-19 Globalfoundaries Inc. Switched-capacitor charge pump with reduced diode threshold voltage and on state resistance

Also Published As

Publication number Publication date
US10978946B1 (en) 2021-04-13
TWI698077B (en) 2020-07-01
TW202116002A (en) 2021-04-16

Similar Documents

Publication Publication Date Title
US8710911B2 (en) Charge pump circuit and power-supply method for dynamically adjusting output voltage
JP5599431B2 (en) Charge pump circuit and operation method thereof
US8310313B2 (en) Highly efficient class-G amplifier and control method thereof
US7864970B2 (en) Voltage supply circuit and microphone unit
KR20110073354A (en) Power amplifying circuit, dc-dc converter, peak holding circuit, and output voltage control circuit including the peak holding circuit
US7705483B2 (en) DC-DC converter control circuit, DC-DC converter, power supply unit, and DC-DC converter control method
KR20180094206A (en) Dc-dc converter and display device having the same
US9225251B2 (en) Duty cycle control method, power supply system and power converter using the same
US9231470B2 (en) Control circuit, time calculating unit, and operating method for control circuit
WO2012063494A1 (en) Charge pump circuit, method for controlling same, and semiconductor integrated circuit
TW201701097A (en) Power supplier, power supply system, and voltage adjustment method
US20150076914A1 (en) Power conversion system and electronic device using same
US10978946B1 (en) Charge pump circuit and power supplying method having dynamic voltage adjusting mechanism of the same
US20110084949A1 (en) Power converters and e-paper devices using the same
CN112803778A (en) Power module and power system
CN111211749B (en) Power amplifying device and audio device
US20080079486A1 (en) Amplifier circuit with multiple power supplies
US9071200B2 (en) Power module for envelope tracking
JP2014039109A (en) Power amplifier and transmitter
TW202046591A (en) Power load-sharing system
KR20230125219A (en) Method for input current regulation and active-power filter with input voltage feedforward and output load feedforward
US7368982B2 (en) Balanced output circuit and electronic apparatus utilizing the same
US8433040B2 (en) Telephone switchboard and electronic device for providing power to load having different resistance values at different operation modes
CN112769327B (en) Charge pump circuit and power supply method for dynamically adjusting voltage thereof
CN219960389U (en) Power supply control circuit and power supply circuit

Legal Events

Date Code Title Description
AS Assignment

Owner name: REALTEK SEMICONDUCTOR CORPORATION, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHIEN, CHIH-KANG;REEL/FRAME:052785/0500

Effective date: 20200526

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE