US20210101992A1 - Cd83 binding proteins and uses thereof - Google Patents

Cd83 binding proteins and uses thereof Download PDF

Info

Publication number
US20210101992A1
US20210101992A1 US17/103,208 US202017103208A US2021101992A1 US 20210101992 A1 US20210101992 A1 US 20210101992A1 US 202017103208 A US202017103208 A US 202017103208A US 2021101992 A1 US2021101992 A1 US 2021101992A1
Authority
US
United States
Prior art keywords
seq
amino acid
light chain
cdr1
cdr2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/103,208
Inventor
Joanne L. Casey
Andrew M. Coley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kira Biotech Pty Ltd
Original Assignee
Kira Biotech Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2014904236A external-priority patent/AU2014904236A0/en
Application filed by Kira Biotech Pty Ltd filed Critical Kira Biotech Pty Ltd
Priority to US17/103,208 priority Critical patent/US20210101992A1/en
Publication of US20210101992A1 publication Critical patent/US20210101992A1/en
Assigned to DENDROCYTE BIOTECH PTY LTD reassignment DENDROCYTE BIOTECH PTY LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CASEY, Joanne L, COLEY, Andrew M
Assigned to Kira Biotech Pty Limited reassignment Kira Biotech Pty Limited ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DENDROCYTE BIOTECH PTY LTD
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2896Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/515Complete light chain, i.e. VL + CL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Definitions

  • the present disclosure relates to proteins that bind to CD83 and uses thereof, for example, in therapy, prophylaxis, diagnosis, or prognosis.
  • CD83 is a 45 kDa, type-I membrane glycoprotein belonging to the immunoglobulin superfamily. CD83 is a cell surface marker predominantly expressed on mature dendritic cells (DCs). CD83 is minimally expressed on immature blood DC (BDC) and monocyte derived DC (MoDC). Due to its preferential expression on mature DCs, CD83 is an attractive target for immunotherapy.
  • DCs dendritic cells
  • BDC immature blood DC
  • MoDC monocyte derived DC Due to its preferential expression on mature DCs, CD83 is an attractive target for immunotherapy.
  • DCs link the innate and cognate (adaptive) immune systems. Innate immunity is the primary driver of non-specific immune activation in response to foreign agents. Immature DCs specialize in the internalisation of antigens and are distributed throughout peripheral tissues allowing for continuous antigenic surveillance. Termed professional antigen presenting cells (APCs) for their capability to drive primary T cell responses, DCs only require minimal quantities of antigen to initiate immune activation.
  • APCs professional antigen presenting cells
  • Immature DCs are attuned to a variety of signals from infectious and foreign material, which trigger differentiation and maturation (also known as activation) of the DCs. Whilst mature DCs are capable of antigen capture, this activation process reduces the capacity of these cells to internalize antigen, instead up-regulating cytokine release, activation marker expression and processing of antigen for major histocompatibility complex (MHC) presentation.
  • MHC major histocompatibility complex
  • Mature DCs loaded with processed antigen can efficiently recruit T cells, B cells, granulocytes, natural killer (NK) cells, monocytes and other cells of the innate immune system to amplify the response to antigen.
  • the molecules which become expressed upon DC differentiation and activation aid in linking innate and adaptive immunity.
  • Mature DCs up-regulate the expression of chemokine receptors and adhesion molecules such as CD54, facilitating DC migration to lymph nodes for increased interaction with lymphocytes.
  • Expression of co-stimulatory molecules, such as CD80 and CD86 provides the requisite co-stimulatory signals for T cell activation and the initiation of an antigen-specific immune response.
  • Ligation of CD40 enhances the expression of co-stimulatory molecules and induces the release of IL-12 to facilitate T cell activation; differentiated T cells then orchestrate the complex interactions of the adaptive immune response.
  • DCs exert control over immune responses
  • activated DCs can be viewed as a target for intervention across a number of immunological diseases including malignancy and autoimmune diseases.
  • the present disclosure is based on the inventors' production of a human antibody (1F7 mAb) that binds specifically to CD83.
  • 1F7 mAb was derived from a phage display library of human Fab sequences; the obtained Fab phage clone reformatted as an IgG1 mAb.
  • the inventors performed affinity maturation of the light chain to improve the affinity of the 1F7 mAb for CD83. Eleven new 1F7 Fab variants with distinct light chain variable region (V L ) sequences and enhanced binding properties relative to the wild type Fab were obtained.
  • the affinity matured antibodies included substitutions in the framework (FR) and complementarity determining regions (CDRs) of the V L . The effect of these substitutions was not predictable.
  • the present disclosure is broadly directed to a CD83 binding protein comprising an antigen binding domain which specifically binds to CD83.
  • the present disclosure provides a CD83 binding protein comprising an antigen binding domain which specifically binds to CD83, wherein the binding protein comprises a heavy chain variable region (V H ) which comprises a sequence which is at least 90% identical to the amino acid sequence shown in SEQ ID NO:2.
  • the heavy chain variable region (V H ) comprises a sequence which is at least 90% identical to the frame work regions of the amino acid sequence shown in SEQ ID NO:2.
  • the present disclosure additionally or alternatively provides a CD83 binding protein comprising an antigen binding domain which specifically binds to CD83, wherein the binding protein comprises a heavy chain variable region (V H ) which comprises three complementarity determining regions (CDRs) of the amino acid sequence shown in SEQ ID NO:2.
  • V H heavy chain variable region
  • CDRs complementarity determining regions
  • the V H CDR1 comprises amino acids 31 to 35 of SEQ ID NO:2
  • the V H CDR2 comprises amino acids 50 to 59 of SEQ ID NO:2
  • the V H CDR3 comprises amino acids 99 to 106 of SEQ ID NO:2.
  • the V H CDR1 comprises the amino acid sequence shown in SEQ ID NO:3
  • the V H CDR2 comprises the amino acid sequence shown in SEQ ID NO:4
  • the V H CDR3 comprises the amino acid sequence shown in SEQ ID NO:5.
  • the present disclosure additionally or alternatively provides a CD83 binding protein comprising an antigen binding domain which specifically binds to CD83, wherein the binding protein comprises a light chain variable region (V L ) which comprises:
  • CDRs three complementarity determining regions
  • the light chain variable region (V L ) comprises a sequence which is at least 90% identical to the frame work regions of any one of the amino acid sequences shown in SEQ ID NOs: 6 to 17.
  • the V L CDR1 comprises amino acids 24 to 34 of any one of SEQ ID NOs: 6 to 17; the V L CDR2 comprises amino acids 50 to 56 of any one of SEQ ID NOs: 6 to 17; and the V L CDR3 comprises amino acids 89 to 97 of any one of SEQ ID NOs: 6 to 17.
  • the V L CDR1 comprises the amino acid sequence shown in SEQ ID NO:18
  • the V L CDR2 comprises the amino acid sequence shown in SEQ ID NO:21
  • the V L CDR3 comprises the amino acid sequence shown in SEQ ID NO:24.
  • the amino acid sequence of V L CDR1 comprises a Glutamine (Q) or Serine (S) or Arginine (R) at position 1 and/or Aspartic acid (D) or Serine (S) at position 3 and/or Serine (S) or Threonine (T) at position 4 and/or Serine (S) or Leucine (L) at position 5 and/or Alanine (A) or Asparagine (N) at position 6 and/or Glycine or no residue at position 8 and/or Threonine (T) or Asparagine (N) or Serine (S) or no residue at position 9 and/or Asparagine (N) or Tyrosine (Y) at position 10 and/or Valine (V) or Proline (P) or Threonine (T) or Tyrosine (Y) at position 11 and/or Valine (V) or Aspartic acid (D) at position 12 and/or Asparagine (N) or Phenylalanine (F) at position 13.
  • Q Glut
  • the amino acid sequence of V L CDR2 comprises a Serine (S) or Glycine (G) or Threonine (T) at position 1 and/or Asparagine (N) or Threonine (T) or Lysine (K) at position 2 and/or Isoleucine (I) or Aspartic Acid (D) or Asparagine (N) at position 3 and/or Asparagine (N) or Glutamine (Q) at position 4.
  • the amino acid sequence of V L CDR3 comprises a Alanine (A) or Asparagine (N) at position 1 and/or Serine (S) or Alanine (A) or Valine (V) at position 2 and/or Arginine (R) or Tryptophan (W) at position 3 and/or Serine (S) or Aspartic acid (D) or Glycine (G) at position 5 and/or Serine (S) or Glycine (G) at position 6 and/or Leucine (L) or no residue at position 7 and/or Glycine (G) or Serine (S) or Alanine (A) or Asparagine (N) at position 8 and/or Asparagine (N) or Glycine (G) at position 9 and/or Histidine (H) or Lysine (L) or Glycine (G) or no residue at position 10 and/or Tryptophan (W) or Tyrosine (Y) or Valine (V) at position 11 and/or Valine (V) or Isoleu
  • the V L CDR1 comprises the amino acid sequence shown in SEQ ID NO:19
  • the V L CDR2 comprises the amino acid sequence shown in SEQ ID NO:22
  • the V L CDR3 comprises the amino acid sequence shown in SEQ ID NO:25.
  • the amino acid sequence of V L CDR1 comprises a Lysine (K) or Arginine (R) at position 1 and/or Serine (S) or Asparagine (N) at position 3 and/or Valine (V) or Isoleucine (I) or Leucine (L) at position 7 and/or Aspartic Acid (D) or Histidine (H) at position 8 and/or Alanine (A) or Aspartic Acid (D) at position 10 and/or Asparagine (N) or Lysine (K) at position 12 and/or Methionine (M) or Threonine (T) at position 13 and/or Phenylalanine (F) or Tyrosine (Y) at position 14 and/or Aspartic Acid (D) or Histidine (H) or Asparagine (N) or Tyrosine (Y) at position 16.
  • the amino acid sequence of V L CDR2 comprises a Lysine (K) or Glutamic Acid (E) at position 1 and/or Aspartic Acid (D) or Phenylalanine (F) at position 6.
  • the amino acid sequence of V L CDR3 comprises Glycine (G) or Alanine (A) or Serine (S) at position 3 and/or Threonine (T) or Leucine (L) at position 4 and/or Glutamine (Q) or Histidine (H) at position 5 and/or Tryptophan (W) or Proline (P) or no residue at position 6 and/or Proline (P) or Threonine (T) or Leucine (L) at position 7 and/or Arginine (R) or Tryptophan (W) at position 8.
  • the V L CDR1 comprises the amino acid sequence shown in SEQ ID NO:20
  • the V L CDR2 comprises the amino acid sequence shown in SEQ ID NO:23
  • the V L CDR3 comprises the amino acid sequence shown in SEQ ID NO:26.
  • the amino acid sequence of V L CDR1 comprises Arginine (R) or Glutamine (Q) at position 1 and/or Aspartic Acid (D) or Serine (S) at position 5 and/or Isoleucine (I) or Leucine (L) at position 6 and/or Serine (S) or Isoleucine (I) at position 7 and/or Asparagine (N) or Serine (S) at position 8.
  • the amino acid sequence of V L CDR2 comprises Aspartic Acid (D) or Alanine (A) at position 1 and/or Asparagine (N) or Isoleucine (I) at position 4 and/or Glutamic Acid (E) or Glutamine (Q) at position 6.
  • the amino acid sequence of V L CDR3 comprises Glutamine (Q) or Histidine (H) at position 2 and/or Aspartic Acid (D) or Tyrosine (Y) at position 4 and/or Phenylalanine (F) or Tryptophan (W) at position 6.
  • the V H and the V L are in a single polypeptide chain.
  • the CD83 binding protein is:
  • V L and V H are in separate polypeptide chains.
  • CD83 binding protein is:
  • a CD83 binding protein of the disclosure comprises an antigen binding domain that competitively inhibits the binding of an antibody to CD83, the antibody comprising a heavy chain sequence as shown in SEQ ID NO:1 and a light chain sequence as shown in SEQ ID NO:31.
  • Exemplary CD83 binding proteins of the present disclosure comprise a V H of the disclosure and a chimeric, de-immunized, humanized, human, synhumanized or primatized light chain or V L .
  • the CD83 binding protein is an antibody.
  • the antibody may comprise:
  • the antibody depletes cells to which it binds, for example, immune cells such as antigen presenting cells (APC) (e.g., dendritic cells (DCs)) and/or lymphocytes (e.g., T cells).
  • APC antigen presenting cells
  • DCs dendritic cells
  • T cells lymphocytes
  • exemplary CD83 binding proteins are capable of depleting cells to which they bind without being conjugated to a toxic compound.
  • the CD83 binding protein is capable of inducing an effector function, for example, an effector function that results in killing a cell to which antibody binds.
  • effector functions include ADCC, antibody-dependent cell-mediated phagocytosis (ADCP) and/or complement-dependent cytotoxicity (CDC).
  • the CD83 binding protein is capable of inducing ADCC.
  • the CD83 binding protein comprises an antibody Fc region capable of inducing an effector function.
  • the effector function is Fe-mediated effector function.
  • the Fe region is an IgG1 Fc region.
  • the CD83 binding protein is capable of inducing a similar (e.g., not significantly different or within about 10%) or the same level of effector function as a wild-type human IgG1 region.
  • the CD83 binding protein is capable of inducing an enhanced level of effector function.
  • the level of effector function induced by the CD83 binding protein is enhanced relative to that of the CD83 binding protein when it comprises a wild-type IgG1 Fe region.
  • a CD83 binding protein of the present disclosure is a naked antibody or antigen binding fragment thereof.
  • a CD83 binding protein of the present disclosure is a full length antibody.
  • a CD83 binding protein of the present disclosure binds to CD83 with an equilibrium dissociation constant (K D ) of 5 ⁇ 10 ⁇ 7 M or less, such as 4.5 ⁇ 10 ⁇ 7 M or less, such as 4 ⁇ 10 ⁇ 7 M or less, such as 3.5 ⁇ 10 ⁇ 7 M or less, such as 3 ⁇ 10 ⁇ 7 M or less, such as 2.5 ⁇ 10 ⁇ 7 M or less, such as 2 ⁇ 10 ⁇ 7 M or less, such as 1.5 ⁇ 10 ⁇ 7 M or less, such as 1 ⁇ 10 ⁇ 7 M or less, such as 9.5 ⁇ 10 ⁇ 8 M or less, such as 9 ⁇ 10 ⁇ 8 M or less, such as 8.5 ⁇ 10 ⁇ 8 M or less, such as 8 ⁇ 10 ⁇ 8 M or less, such as 7.5 ⁇ 10 ⁇ 8 M or less, such as 7 ⁇ 10 ⁇ 8 M or less, such as 6.5 ⁇ 10 ⁇ 8 M or less, such as 6 ⁇ 10 ⁇ 8 M or less, 5.5 ⁇ 10 ⁇ 8 M or less, such as 5
  • a CD83 binding protein of the present disclosure binds to CD83 with a K D of between about 5.5 ⁇ 10 ⁇ 8 M to about 5 ⁇ 10 ⁇ 8 M, for example, 5.1 ⁇ 10 ⁇ 8 M.
  • the K D is between about 3 ⁇ 10 ⁇ 8 M and about 2 ⁇ 10 ⁇ 8 M, for example, is about 2.6 ⁇ 10 ⁇ 8 M.
  • the K D is between about 1.5 ⁇ 10 ⁇ 8 M and about 9.5 ⁇ 10 ⁇ 9 M, for example, is about 1 ⁇ 10 ⁇ 9 M.
  • a CD83 binding protein of the present disclosure binds to CD83 with an on rate (K A ) of 5 ⁇ 10 6 M ⁇ 1 s ⁇ 1 or less, such as 4.5 ⁇ 10 6 M ⁇ 1 s ⁇ 1 or less, such as 4 ⁇ 10 6 M ⁇ 1 s ⁇ 1 or less, such as 3.5 ⁇ 10 6 M ⁇ 1 s ⁇ 1 or less, such as 3 ⁇ 10 6 M ⁇ 1 s ⁇ 1 or less, such as 2.5 ⁇ 10 6 M ⁇ 1 s ⁇ 1 or less, such as 2 ⁇ 10 6 M ⁇ 1 s ⁇ 1 or less, such as 1.5 ⁇ 10 6 M ⁇ 1 s ⁇ 1 or less, such as 1 ⁇ 10 6 M ⁇ 1 s ⁇ 1 or less, such as 9.5 ⁇ 10 5 M ⁇ 1 s ⁇ 1 or less, such as 9 ⁇ 10 5 M ⁇ 1 s ⁇ 1 or less, such as 8.5 ⁇ 10 5 M ⁇ 1 s ⁇ 1 or less, such as 8 ⁇ 10 5 M
  • a CD83 binding protein of the present disclosure binds to CD83 with a K A of about 3 ⁇ 10 5 M ⁇ 1 s ⁇ 1 or less.
  • the K A is between about 1.5 ⁇ 10 5 M ⁇ 1 s ⁇ 1 and about 2 ⁇ 10 5 M ⁇ 1 s ⁇ 1 , for example, is about 1.8 ⁇ 10 5 M ⁇ 1 s ⁇ 1 .
  • the K A is between about 2 ⁇ 10 5 M ⁇ 1 s ⁇ 1 and about 3 ⁇ 10 5 M ⁇ 1 s ⁇ 1 , for example, is about 2.6 ⁇ 10 5 M ⁇ 1 s ⁇ 1 .
  • a CD83 binding protein of the present disclosure dissociates from CD83 with an off rate of (K off ) of 5 ⁇ 10 ⁇ 2 s ⁇ 1 or less, such as 4.5 ⁇ 10 ⁇ 2 s ⁇ 1 or less, such as 4 ⁇ 10 ⁇ 2 s ⁇ 1 or less, such as 3.5 ⁇ 10 ⁇ 2 s ⁇ 1 or less, such as 3 ⁇ 10 ⁇ 2 s ⁇ 1 or less, such as 2.5 ⁇ 10 ⁇ 2 s ⁇ 1 or less, such as 2 ⁇ 10 ⁇ 2 s ⁇ 1 or less, such as 1.5 ⁇ 10 ⁇ 2 s ⁇ 1 or less, such as 1 ⁇ 10 ⁇ 2 s ⁇ 1 or less, such as 9.5 ⁇ 10 ⁇ 3 s ⁇ 1 or less, such as 9 ⁇ 10 ⁇ 3 s ⁇ 1 or less, such as 8.5 ⁇ 10 ⁇ 3 s ⁇ 1 or less, such as 8 ⁇ 10 3 s ⁇ 1 or less, such as 7.5 ⁇ 10 ⁇ 3 s ⁇ 1 or less
  • a CD83 binding protein of the present disclosure dissociates from CD83 with a K off of about 8 ⁇ 10 ⁇ 3 s ⁇ 1 or less.
  • the K off is between about 6 ⁇ 10 ⁇ 3 s ⁇ 1 and about 7 ⁇ 10 ⁇ 3 s ⁇ 1 , for example, is about 6.4 ⁇ 10 ⁇ 3 s ⁇ 1 .
  • the K off is between about 1 ⁇ 10 ⁇ 3 s ⁇ 1 and about 2 ⁇ 10 ⁇ 3 s ⁇ 1 , for example, is about 1.7 ⁇ 10 ⁇ 3 s ⁇ 1 .
  • the disclosure also includes fragments, variants and derivatives of the antibody of the disclosure.
  • the disclosure provides a pharmaceutical composition
  • a pharmaceutical composition comprising a CD83 binding protein according to the present disclosure and a suitable carrier, for example, a pharmaceutically acceptable carrier, diluent or excipient.
  • the present disclosure also provides an isolated or recombinant nucleic acid encoding a CD83 binding protein of the present disclosure.
  • nucleic acids are discussed in the context of encoding CD83 binding proteins of the disclosure and are to be taken to apply mutatis mutandis to the present example of the disclosure.
  • the nucleic acid of the disclosure comprises a nucleotide sequence as shown in any one of SEQ ID NOs: 30 or 32 to 43.
  • the present disclosure also provides a nucleic acid capable of hybridizing to a nucleic acid of the disclosure under moderate or high stringency hybridization conditions.
  • the disclosure also includes fragments, homologs and derivatives of an isolated nucleic acid of the disclosure.
  • the present disclosure also provides a genetic construct comprising an isolated or recombinant nucleic acid of the disclosure and one or more additional nucleotide sequences, such as a promoter operably linked to the nucleic acid.
  • the genetic construct is an expression construct comprising an expression vector and an isolated or recombinant nucleic acid of the disclosure, wherein said isolated or recombinant nucleic acid is operably linked to one or more regulatory nucleic acids in said expression vector.
  • the genetic construct of the disclosure comprises a nucleic acid encoding a polypeptide (e.g., comprising a V H ) operably linked to a promoter and a nucleic acid encoding another polypeptide (e.g., comprising a V L ) operably linked to a promoter.
  • the genetic construct is a dicistronic genetic construct, for example, comprising the following operably linked components in 5′ to 3′ order:
  • the first polypeptide comprises a V H and the second polypeptide comprises a V L
  • the first polypeptide comprises a V L and the second polypeptide comprises a V H .
  • the present disclosure also contemplates separate genetic constructs one of which encodes a first polypeptide (e.g., comprising a V H ) and another of which encodes a second polypeptide (e.g., comprising a V L ).
  • a composition comprising:
  • a first genetic construct comprising a nucleic acid encoding a polypeptide (e.g., comprising a V H ) operably linked to a promoter;
  • a second genetic construct comprising a nucleic acid encoding a polypeptide (e.g., comprising a V L ) operably linked to a promoter.
  • the disclosure also provides a cell comprising a genetic construct according to the present disclosure.
  • the present disclosure provides an isolated cell expressing a CD83 binding protein of the disclosure or a recombinant cell genetically-modified to express the CD83 binding protein of the invention.
  • the cell comprises the genetic construct of the disclosure or:
  • a first genetic construct comprising a nucleic acid encoding a polypeptide (e.g., comprising a V H ) operably linked to a promoter;
  • a second genetic construct comprising a nucleic acid encoding a polypeptide (e.g., comprising a V L ) operably linked to a promoter, wherein the first and second polypeptides form an antibody or an antigen binding fragment of the present disclosure.
  • a polypeptide e.g., comprising a V L
  • the genetic construct can be integrated into the cell or remain episomal.
  • Examples of cells of the present disclosure include bacterial cells, yeast cells, insect cells or mammalian cells.
  • the present disclosure additionally provides a method for producing a CD83 binding protein of the disclosure, the method comprising maintaining the genetic construct(s) of the disclosure under conditions sufficient for the CD83 binding protein to be produced.
  • the method for producing a CD83 binding protein of the disclosure comprises culturing the cell of the disclosure under conditions sufficient for the CD83 binding protein to be produced and, optionally, secreted.
  • the method for producing a CD83 binding protein of the disclosure additionally comprises isolating the CD83 binding protein.
  • the present disclosure additionally provides a method of producing a recombinant a CD83 binding protein, the method including the steps of:
  • a method for producing a CD83 binding protein of the disclosure additionally comprises formulating the CD83 binding protein with a pharmaceutically acceptable carrier.
  • the present disclosure also provides a method of therapeutic or prophylactic treatment of a disease or condition in a subject, the method including the step of administering the CD83 binding protein of the disclosure to the subject to thereby treat or prevent the disease or condition.
  • the subject is a mammal.
  • the mammal is a human.
  • the mammal is in need of treatment or prophylaxis.
  • the mammal in need suffers from the disease or condition.
  • the mammal in need is at risk of developing the disease or condition or a relapse thereof.
  • the present disclosure also provides for use of a CD83 binding protein of the disclosure or a composition of the disclosure in medicine.
  • the present disclosure additionally or alternatively provides for use of a CD83 binding protein of the disclosure in the manufacture of a medicament for the treatment of a disease or condition in a subject.
  • the present disclosure also provides a CD83 binding protein of the disclosure for use in the treatment of a disease or condition in a subject.
  • the disease or condition is a CD83 mediated disease or condition.
  • the disease or condition is an autoimmune disease or condition, or an inflammatory disease or condition.
  • the disease or condition is myasthemia gravis, multiple sclerosis, vasculitis, chronic inflammatory bowel diseases such as Morbus Crohn or colitis ulcerosa, HLA B27-associated autoimmune disorders such as Morbus Bechterew, and systemic lupus erythematosis, skin diseases such as psoriasis, rheumatoid arthritis, and insulin-dependent diabetes mellitus in a subject.
  • the condition is graft versus host disease.
  • the disease or condition is caused by the dysfunction or undesired function of the immune system or a cellular response involving antigen presenting cells (APC) (e.g., dendritic cells (DCs)) and/or lymphocytes (e.g., T cells) in a subject, the method comprising administering a CD83 binding protein or composition of the disclosure to the subject.
  • APC antigen presenting cells
  • DCs dendritic cells
  • T cells e.g., T cells
  • the disease or condition is rejection of a cell, tissue or organ graft.
  • the disease or condition is rejection of a stem cell graft, for example, an hematopoietic stem cell transplantation (HSCT) or an umbilical cord blood transplantation (UCBT) or an endothelial progenitor cell transplant.
  • HSCT hematopoietic stem cell transplantation
  • UBT umbilical cord blood transplantation
  • endothelial progenitor cell transplant occurs as a result of graft versus host disease or host versus graft disease.
  • the HSCT may be derived from, for example, the bone marrow directly or from the peripheral blood following mobilization of cells from the bone marrow (e.g. by administration of G-CSF) or directly from donor umbilical cord blood.
  • the method comprises administering an effective amount of the CD83 binding protein, such as a therapeutically effective amount of the CD83 binding protein to the donor and/or recipient.
  • the graft may be contacted with an effective amount of the CD83 binding protein ex vivo or in vivo prior to or after being transplanted.
  • the present disclosure also provides a method for down-regulating the immunoactivity of an allogeneic graft, the method comprising contacting the graft with a CD83 binding protein or a composition of the disclosure.
  • the allogeneic graft is a hematopoietic stem cell graft.
  • the graft is contacted with a CD83 binding protein or a composition of the disclosure ex vivo.
  • the recipient of the graft is administered a CD83 binding protein or a composition of the disclosure prior to and/or simultaneously with and/or following transplant of the graft.
  • FIG. 1 is a graphical representation of the high reactivity of hFab's from the phage display library to recombinant CD83-His as analysed by ELISA. Analysis was performed in duplicate; error bars represent ranges of individual values.
  • the control antigen is an irrelevant antigen of the Fc portion of human IgG.
  • FIG. 2 is a graphical representation of the reactivity and specificity of purified hFab clone 1F7.
  • FIG. 3 is a graphical representation of the cell surface binding specificity of 1F7 hFab to KMH2 cells expressing CD83.
  • FIG. 4 is a graphical representation of the protein sequences of V L chain shuffled clones after 4 rounds of stringent selection on CD83-His antigen. The differences in CDRs and framework regions 2 and 3 of the clones are show in bold font.
  • FIG. 5 is a graphical representation of enrichment of higher affinity clones by light chain shuffling as determined by ELISA. Enrichment in the binding to CD83-His was observed after 2 rounds of panning with further increases in binding in round 3 and 4. Analysis was performed in duplicate; error bars indicate ranges of individual values.
  • CD83 is a single-pass type I membrane protein and member of the immunoglobulin superfamily. Three human transcript variants encoding different isoforms have been found.
  • the amino acid sequences of the human CD83 (hCD83) isoforms are shown in SEQ ID NO:44 (NP_004224.1; isoform a), SEQ ID NO:45 (NP_001035370.1; isoform b) and SEQ ID NO:46 (NP_001238830.1; isoform c).
  • the amino acid sequence of human CD83 comprises an amino acid sequence as shown in SEQ ID NO:44, 45, or 46.
  • CD83 binding proteins of the disclosure bind to or bind specifically to hCD83, including recombinant forms thereof (rhCD83).
  • isolated protein or “isolated polypeptide” is intended to mean a protein or polypeptide that by virtue of its origin or source of derivation is not associated with naturally-associated components that accompany it in its native state; is substantially free of other proteins from the same source.
  • a protein may be rendered substantially free of naturally associated components or substantially purified by isolation, using protein purification techniques known in the art.
  • substantially purified is meant the protein is substantially free of contaminating agents, for example, at least about 70% or 75% or 80% or 85% or 90% or 95% or 96% or 97% or 98% or 99% free of contaminating agents.
  • recombinant shall be understood to mean the product of artificial genetic recombination. Accordingly, in the context of a recombinant protein comprising an antigen binding domain, this term does not encompass an antibody naturally-occurring within a subject's body that is the product of natural recombination that occurs during B cell maturation. However, if such an antibody is isolated, it is to be considered an isolated protein comprising an antigen binding domain. Similarly, if nucleic acid encoding the protein is isolated and expressed using recombinant means, the resulting protein is a recombinant protein comprising an antigen binding domain. A recombinant protein also encompasses a protein expressed by artificial recombinant means when it is within a cell, tissue or subject, for example, in which it is expressed.
  • CD83 binding protein shall be taken to include a single polypeptide chain (i.e., a series of contiguous amino acids linked by peptide bonds), or a series of polypeptide chains covalently or non-covalently linked to one another (i.e., a polypeptide complex or protein) capable of binding to CD83 in the manner described and/or claimed herein.
  • the series of polypeptide chains can be covalently linked using a suitable chemical or a disulphide bond.
  • non-covalent bonds include hydrogen bonds, ionic bonds, Van der Waals forces, and hydrophobic interactions.
  • polypeptide or “polypeptide chain” will be understood from the foregoing paragraph to mean a series of contiguous amino acids linked by peptide bonds.
  • the term “antigen binding domain” shall be taken to mean a region of an antibody that is capable of specifically binding to an antigen, that is, a V H or a V L or an Fv comprising both a V H and a V L .
  • the antigen binding domain need not be in the context of an entire antibody, for example, it can be in isolation (e.g., a domain antibody) or in another form (e.g., scFv).
  • the term “antibody” includes a protein capable of specifically binding to one or a few closely related antigens (e.g., CD83) by virtue of an antigen binding domain contained within a Fv.
  • This term includes four chain antibodies (e.g., two light (L) chains and two heavy (H) chains), recombinant or modified antibodies (e.g., chimeric antibodies, humanized antibodies, human antibodies, CDR-grafted antibodies, primatized antibodies, de-immunized antibodies, synhumanized antibodies, half-antibodies, bispecific antibodies).
  • An antibody generally comprises constant domains, which can be arranged into a constant region or constant fragment or fragment crystallizable (Fc).
  • Exemplary forms of antibodies comprise a four-chain structure as their basic unit.
  • Full-length antibodies comprise two heavy chains ( ⁇ 50 to 70 kDa each) covalently linked and two light chains ( ⁇ 23 kDa each).
  • a light chain generally comprises a variable region (if present) and a constant domain and in mammals is either a ⁇ light chain or a ⁇ light chain.
  • a heavy chain generally comprises a variable region and one or two constant domain(s) linked by a hinge region to additional constant domain(s).
  • Heavy chains of mammals are of one of the following types ⁇ , ⁇ , ⁇ , ⁇ , or ⁇ .
  • Each light chain is also covalently linked to one of the heavy chains. For example, the two heavy chains and the heavy and light chains are held together by inter-chain disulfide bonds and by non-covalent interactions.
  • the number of inter-chain disulfide bonds can vary among different types of antibodies.
  • Each chain has an N-terminal variable region (V H or V L wherein each are ⁇ 110 amino acids in length) and one or more constant domains at the C-terminus.
  • the constant domain of the light chain (CL which is ⁇ 110 amino acids in length) is aligned with and disulfide bonded to the first constant domain of the heavy chain (C H 1 which is 330 to 440 amino acids in length).
  • the light chain variable region is aligned with the variable region of the heavy chain.
  • the antibody heavy chain can comprise 2 or more additional C H domains (such as, C H 2, C H 3 and the like) and can comprise a hinge region between the C H 1 and C H 2 constant domains.
  • Antibodies can be of any type (e.g., IgG, IgE, IgM, IgD, IgA, and IgY), class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass.
  • the antibody is a murine (mouse or rat) antibody or a primate (such as, human) antibody.
  • the antibody is humanized, synhumanized, chimeric, CDR-grafted or deimmunized.
  • naked antibody refers to an antibody that is not conjugated to another compound, for example, a toxic compound or radiolabel.
  • variable region refers to the portions of the light and/or heavy chains of an antibody as defined herein that is capable of specifically binding to an antigen and, includes amino acid sequences of complementarity determining regions (CDRs), that is, CDR, CDR2, and CDR3, and framework regions (FRs).
  • CDRs complementarity determining regions
  • FRs framework regions
  • the variable region comprises three or four FRs (e.g., FR1, FR2, FR3 and optionally FR4) together with three CDRs.
  • V H refers to the variable region of the heavy chain.
  • V L refers to the variable region of the light chain.
  • CDRs complementarity determining regions
  • CDR1, CDR2, and CDR3 refers to the amino acid residues of an antibody variable region the presence of which are major contributors to specific antigen binding.
  • Each variable region domain typically has three CDR regions identified as CDR1, CDR2 and CDR3.
  • the amino acid positions assigned to CDRs and FRs are defined according to Kabat Sequences of Proteins of Immunological Interest, National Institutes of Health, Bethesda, Md., 1987 and 1991 (also referred to herein as “the Kabat numbering system”).
  • the amino acid positions assigned to CDRs and FRs are defined according to the Enhanced Chothia Numbering Scheme (http://www.bioinfo.org.uk/mdex.html). According to the numbering system of Kabat, V 1 FRs and CDRs are positioned as follows: residues 1 to 30 (FR1), 31 to 35 (CDR1), 36 to 49 (FR2), 50 to 65 (CDR2), 66 to 94 (FR3), 95 to 102 (CDR3) and 103 to 113 (FR4).
  • V L FRs and CDRs are positioned as follows: residues 1 to 23 (FR1), 24 to 34 (CDR1), 35 to 49 (FR2), 50 to 56 (CDR2), 57 to 88 (FR3), 89 to 97 (CDR3) and 98 to 107 (FR4).
  • the present disclosure is not limited to FRs and CDRs as defined by the Kabat numbering system, but includes all numbering systems, including the canonical numbering system or of Chothia and Lesk J. Mol. Biol. 196: 901-917, 1987; Chothia et al., Nature 342: 877-883, 1989; and/or Al-Lazikani et al., J. Mol. Biol.
  • the CDRs are defined according to the Kabat numbering system.
  • heavy chain CDR2 according to the Kabat numbering system does not comprise the five C-terminal amino acids listed herein or any one or more of those amino acids are substituted with another naturally-occurring amino acid.
  • light chain CDR1 does not comprise the four N-terminal amino acids listed herein or any one or more of those amino acids are substituted with another naturally-occurring amino acid.
  • Padlan et al., FASEB J., 9: 133-139, 1995 established that the five C-terminal amino acids of heavy chain CDR2 and/or the four N-terminal amino acids of light chain CDR1 are not generally involved in antigen binding.
  • FRs Framework regions
  • the term “Fv” shall be taken to mean any protein, whether comprised of multiple polypeptides or a single polypeptide, in which a V L and a V H associate and form a complex having an antigen binding domain that is capable of specifically binding to an antigen.
  • the V H and the V L which form the antigen binding domain can be in a single polypeptide chain or in different polypeptide chains.
  • a Fv of the disclosure (as well as any protein of the disclosure) may have multiple antigen binding domains which may or may not bind the same antigen. This term shall be understood to encompass fragments directly derived from an antibody as well as proteins corresponding to such a fragment produced using recombinant means.
  • the V H is not linked to a heavy chain constant domain (C H ) 1 and/or the V L is not linked to a light chain constant domain (C).
  • exemplary Fv containing polypeptides or proteins include a Fab fragment, a Fab′ fragment, a F(ab′) fragment, a scFv, a diabody, a triabody, a tetrabody or higher order complex, or any of the foregoing linked to a constant region or domain thereof, for example, C H 2 or C H 3 domain, for example, a minibody.
  • a “Fab fragment” consists of a monovalent antigen-binding fragment of an immunoglobulin, and can be produced by digestion of a whole antibody with the enzyme papain, to yield a fragment consisting of an intact light chain and a portion of a heavy chain or can be produced using recombinant means.
  • a “Fab′ fragment” of an antibody can be obtained by treating a whole antibody with pepsin, followed by reduction, to yield a molecule consisting of an intact light chain and a portion of a heavy chain comprising a V H and a single constant domain. Two Fab′ fragments are obtained per antibody treated in this manner. A Fab′ fragment can also be produced by recombinant means.
  • a “F(ab′) 2 fragment” of an antibody consists of a dimer of two Fab′ fragments held together by two disulfide bonds, and is obtained by treating a whole antibody molecule with the enzyme pepsin, without subsequent reduction.
  • a “Fab 2 ” fragment is a recombinant fragment comprising two Fab fragments linked using, for example, a leucine zipper or a C H 3 domain.
  • a “single chain Fv” or “scFv” is a recombinant molecule containing the variable region fragment (Fv) of an antibody in which the variable region of the light chain and the variable region of the heavy chain are covalently linked by a suitable, flexible polypeptide linker.
  • the term “binds” in reference to the interaction of a CD83 binding protein or an antigen binding domain thereof with an antigen means that the interaction is dependent upon the presence of a particular structure (e.g., an antigenic determinant or epitope) on the antigen.
  • a particular structure e.g., an antigenic determinant or epitope
  • an antibody recognizes and binds to a specific protein structure rather than to proteins generally. If an antibody binds to epitope “A”, the presence of a molecule containing epitope “A” (or free, unlabeled “A”), in a reaction containing labeled “A” and the antibody, will reduce the amount of labeled “A” bound to the antibody.
  • the term “specifically binds” or “binds specifically” shall be taken to mean that a protein of the disclosure reacts or associates more frequently, more rapidly, with greater duration and/or with greater affinity with a particular antigen or cell expressing same than it does with alternative antigens or cells.
  • a protein that specifically binds to an antigen binds that antigen with greater affinity, avidity, more readily, and/or with greater duration than it binds to other antigens.
  • a protein binds to CD83 (e.g., hCD83) with materially greater affinity than it does to other immunoglobulin superfamily ligands or to antigens commonly recognized by polyreactive natural antibodies (i.e., by naturally occurring antibodies known to bind a variety of antigens naturally found in humans). It is also understood by reading this definition that, for example, a protein that specifically binds to a first antigen may or may not specifically bind to a second antigen. As such, “specific binding” does not necessarily require exclusive binding or non-detectable binding of another antigen, this is meant by the term “selective binding”.
  • “specific binding” of a CD83 binding protein of the disclosure to an antigen means that the protein binds to the antigen with an equilibrium constant (K D ) of 100 nM or less, such as 50 nM or less, for example, 20 nM or less, such as, 15 nM or less or 10 nM or less or 5 nM or less or 1 nM or less or 500 pM or less or 400 pM or less or 300 pM or less or 200 pM or less or 100 pM or less.
  • K D equilibrium constant
  • epitope (syn. “antigenic determinant”) shall be understood to mean a region of CD83 to which a protein comprising an antigen binding domain of an antibody binds. This term is not necessarily limited to the specific residues or structure to which the protein makes contact. For example, this term includes the region spanning amino acids contacted by the protein and/or at least 5 to or 2 to 5 or 1 to 3 amino acids outside of this region.
  • the epitope is a linear series amino acids.
  • An epitope may also comprise a series of discontinuous amino acids that are positioned close to one another when CD83 is folded, that is, a “conformational epitope”.
  • epitope is not limited to peptides or polypeptides.
  • the term “epitope” includes chemically active surface groupings of molecules such as sugar side chains, phosphoryl side chains, or sulfonyl side chains, and, in certain examples, may have specific three dimensional structural characteristics, and/or specific charge characteristics.
  • An epitope or peptide or polypeptide comprising same can be administered to an animal to generate antibodies against the epitope.
  • a CD83 binding protein of the disclosure reduces or prevents binding of a recited antibody to CD83, for example, to hCD83. This may be due to the protein (or antigen binding domain) binding to the same or an overlapping epitope as the antibody. It will be apparent from the foregoing that the protein need not completely inhibit binding of the antibody, rather it need only reduce binding by a statistically significant amount, for example, by at least about 10% or 20% or 30% or 40% or 50% or 60% or 70% or 80% or 90% or 95%. Methods for determining competitive inhibition of binding are known in the art and/or described herein. For example, the antibody is exposed to CD83 either in the presence or absence of the protein.
  • the protein is considered to competitively inhibit binding of the antibody.
  • the competitive inhibition of binding is caused by the antigen binding domain of the protein on CD83 overlapping with the antigen binding domain of the antibody.
  • “Overlapping” in the context of two epitopes means that two epitopes share a sufficient number of amino acid residues to permit a binding protein of the disclosure that binds to one epitope to competitively inhibit the binding of a recited antibody to CD83 that binds to the other epitope.
  • the “overlapping” epitopes share at least 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 amino acids.
  • a “CD83 associated condition or disease” refers to any condition or disease that is caused by or associated with CD83 or a cell expressing CD83. The skilled artisan will be readily able to determine such conditions or diseases based on the disclosure herein and/or by performing an assay to diagnose a CD83 associated condition or disease. In this regard, in some examples the condition or disease is an inflammatory condition or disease, or an autoimmune condition or disease. A description of exemplary conditions and diseases is included herein.
  • the terms “preventing”, “prevent” or “prevention” include administering a protein of the disclosure to thereby stop or hinder the development of at least one symptom of a condition or disease. This term also encompasses treatment of a subject in remission to prevent or hinder relapse. For example, a subject suffering from relapsing-remitting multiple sclerosis is treated during remission to thereby prevent a relapse.
  • treating include administering a protein described herein to thereby reduce or eliminate at least one symptom of a specified condition or disease.
  • the term “subject” shall be taken to mean any animal, such as, a mammal.
  • the mammal is a human or non-human primate.
  • the mammal is a human.
  • sample should be understood as a reference to any sample derived from a subject such as, but not limited to, a body fluid (e.g., blood or blood fraction such as serum or plasma, tears, urine, synovial fluid or cerebrospinal fluid), cellular material (e.g. tissue aspirate), tissue biopsy specimens or surgical specimens.
  • a body fluid e.g., blood or blood fraction such as serum or plasma, tears, urine, synovial fluid or cerebrospinal fluid
  • cellular material e.g. tissue aspirate
  • tissue biopsy specimens or surgical specimens e.g., tissue biopsy specimens or surgical specimens.
  • sample is any one or more of serum, plasma, PBMCs, or a buffy coat fraction.
  • diagnosis includes any primary diagnosis of a clinical state or diagnosis of recurrent disease.
  • Prognosis refers to the likely outcome or course of a disease, including the chance of recovery or recurrence or the outcome of treatment.
  • expression construct is to be taken in its broadest context and includes a nucleic acid comprising one or more promoter sequences operably linked with one or more nucleic acids as described herein.
  • an expression vector refers to a nucleic acid comprising an expression construct that is additionally capable of maintaining and or replicating nucleic acid in an expressible format.
  • an expression vector may comprise a plasmid, bacteriophage, phagemid, cosmid, virus sub-genomic or genomic fragment. Selection of appropriate vectors is within the knowledge of those having skill in the art.
  • promoter is to be taken in its broadest context and includes the transcriptional regulatory sequences of a genomic gene, including the TATA box or initiator element, which is required for accurate transcription initiation, with or without additional regulatory elements (e.g., upstream activating sequences, transcription factor binding sites, enhancers and silencers) that alter expression of a nucleic acid, for example, in response to a developmental and/or external stimulus, or in a tissue specific manner.
  • promoter is also used to describe a recombinant, synthetic or fusion nucleic acid, or derivative which confers, activates or enhances the expression of a nucleic acid to which it is operably linked.
  • Exemplary promoters can contain additional copies of one or more specific regulatory elements to further enhance expression and/or alter the spatial expression and/or temporal expression of said nucleic acid.
  • operably linked to means positioning a promoter relative to a nucleic acid such that expression of the nucleic acid is controlled by the promoter.
  • a promoter can be operably linked to numerous nucleic acids, for example, through an internal ribosome entry site.
  • the present disclosure also encompasses screening of libraries of antibodies or proteins comprising antigen binding domains thereof (e.g., comprising variable regions thereof) to identify a CD83 binding protein of the disclosure.
  • a library comprising a V H of the disclosure and a plurality of V L regions can be screened to identify a CD83 binding protein of the disclosure.
  • libraries contemplated by this disclosure include na ⁇ ve libraries (from unchallenged subjects), immunized libraries (from subjects immunized with an antigen) or synthetic libraries.
  • Nucleic acid encoding antibodies or regions thereof are cloned by conventional techniques (e.g., as disclosed in Sambrook and Russell, eds, Molecular Cloning: A Laboratory Manual, 3rd Ed, vols. 1-3, Cold Spring Harbor Laboratory Press, 2001) and used to encode and display proteins using a method known in the art.
  • Other techniques for producing libraries of proteins are described in, for example in U.S. Pat. No. 6,300,064 (e.g., a HuCAL library of Morphosys AG), U.S. Pat. Nos. 5,885,793, 6,204,023, 6,291,158, or U.S. Pat. No. 6,248,516.
  • the CD83 binding proteins according to the disclosure may be soluble secreted proteins or may be presented as a fusion protein on the surface of a cell, or particle (e.g., a phage or other virus, a ribosome or a spore).
  • a display library format are known in the art.
  • the library is an in vitro display library (e.g., a ribosome display library, a covalent display library or a mRNA display library, e.g., as described in U.S. Pat. No. 7,270,969).
  • the display library is a phage display library wherein proteins comprising antigen binding domains of antibodies are expressed on phage, for example, as described in U.S. Pat. Nos.
  • phage display methods are known in the art and are contemplated by the present disclosure.
  • methods of cell display are contemplated by the disclosure, for example, bacterial display libraries, for example, as described in U.S. Pat. No. 5,516,637; yeast display libraries, for example, as described in U.S. Pat. No. 6,423,538; or a mammalian display library.
  • a display library of the present disclosure is screened using affinity purification, for example, as described in Scopes (In: Protein purification: principles and practice, Third Edition, Springer Verlag, 1994).
  • Methods of affinity purification typically involve contacting proteins comprising antigen binding domains displayed by the library with a target antigen (e.g., CD83) and, following washing, eluting those domains that remain bound to the antigen.
  • a target antigen e.g., CD83
  • variable regions or scFvs identified by screening are readily modified into a complete antibody, if desired.
  • Exemplary methods for modifying or reformatting variable regions or scFvs into a complete antibody are described, for example, in Jones et al., J. Immunol. Methods 354: 85-90, 2010; or Jostock et al., J. Immunol. Methods, 289: 65-80, 2004.
  • standard cloning methods are used, e.g., as described in Ausubel et al., (In: Current Protocols in Molecular Biology. Wiley Interscience, ISBN 047 150338, 1987), and/or (Sambrook et al., (In: Molecular Cloning: Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, New York, Third Edition 2001).
  • the present disclosure provides a method of producing or isolating a CD83 binding protein of the disclosure by screening a display library, for example, a phage display library, for example, as described in U.S. Pat. No. 6,300,064 and/or U.S. Pat. No. 5,885,793.
  • a display library for example, a phage display library
  • the present inventors have isolated scFvs by biopanning a human scFv immunoglobulin gene library by three rounds of selection against recombinant extracellular domain of human CD83.
  • a CD83 binding protein of the invention can be cloned and expressed and optionally reformatted as, for example, an IgG1 antibody using known methods in the art.
  • the present disclosure provides a method of producing a CD83 binding protein, the method comprising:
  • a CD83 binding protein preparation is screened.
  • a CD83 preparation may be made by, for example, immunizing an animal with a CD83 antigen so as to produce antibodies that react with the extracellular domain of CD83.
  • a CD83 binding protein library is screened.
  • the library may be a phage library, for example, a Fab phage library.
  • the method comprises producing a population of phage particles displaying at their surface a population of binding molecules having a range of binding specificities for a target CD83 epitope or antigen.
  • phage particles comprise a phagemid genome comprising a nucleic acid encoding the binding protein. This nucleic acid can be isolated, cloned and expressed in a recombinant system to produce the CD83 binding protein of the invention.
  • the CD83 binding proteins of the present disclosure may be CDR grafted proteins which include CDRs from an antibody from a non-human species (e.g., mouse or rat or non-human primate) grafted onto or inserted into FRs from a human antibody or which include CDRs from an antibody from one type of antibody (e.g., one type of human antibody) grafted onto or inserted into FRs from another type of antibody (e.g., another type of human antibody).
  • This term also encompasses a composite protein comprising, for example, one or more CDR grafted variable regions and one or more, for example, human variable regions, chimeric variable regions, synhumanized variable regions, or primatized variable regions.
  • the CD83 binding proteins of the present disclosure may be humanized proteins.
  • humanized protein shall be understood to refer to a protein comprising a human-like variable region, which includes CDRs from an antibody from a human species (e.g., mouse or rat or non-human primate) grafted onto or inserted into FRs from a non-human antibody (this type of antibody is also referred to as a “CDR-grafted antibody”).
  • Humanized proteins also include proteins in which one or more residues of the human protein are modified by one or more amino acid substitutions and/or one or more FR residues of the human protein are replaced by corresponding non-human residues. Humanized proteins may also comprise residues which are found in neither the human antibody or in the non-human antibody. Any additional regions of the protein (e.g., Fc region) are generally human.
  • Humanization can be performed using a method known in the art, for example, as described in U.S. Pat. Nos. 5,225,539, 6,054,297, 7,566,771, or U.S. Pat. No. 5,585,089.
  • the term “humanized protein” also encompasses a super-humanized protein, for example, as described in U.S. Pat. No. 7,732,578. This term also encompasses a composite protein comprising, for example, one or more humanized variable regions and one or more, for example, human variable regions, chimeric variable regions, synhumanized variable regions or primatized variable regions.
  • a humanized CD83 binding protein comprises the regions between 27d and 34, 50 and 55, and 89 and 96 in a light chain sequence disclosed herein; and 31 and 35b, 50 and 58, and 95 and 101 in a heavy chain sequence disclosed herein (numbering according to the Kabat numbering system).
  • Padlan et al., FASEB J., 9: 133-139, 1995 presents evidence that these regions are those most likely to bind or contact antigen.
  • the CD83 binding proteins of the present disclosure may be human proteins.
  • human protein refers to proteins having variable and, optionally, constant antibody regions found in humans, for example, in the human germline or somatic cells or from libraries produced using such regions.
  • the “human” antibodies can include amino acid residues not encoded by human sequences, for example, mutations introduced by random or site directed mutations in vitro (in particular mutations which involve conservative substitutions or mutations in a small number of residues of the protein, for example, in 1, 2, 3, 4 or 5 of the residues of the protein).
  • human antibodies do not necessarily need to be generated as a result of an immune response of a human, rather, they can be generated using recombinant means (e.g., screening a phage display library) and/or by a transgenic animal (e.g., a mouse) comprising nucleic acid encoding human antibody constant and/or variable regions and/or using guided selection (e.g., as described in U.S. Pat. No. 5,565,332). This term also encompasses affinity matured forms of such antibodies.
  • a human protein will also be considered to include a protein comprising FRs from a human antibody or FRs comprising sequences from a consensus sequence of human FRs and in which one or more of the CDRs are random or semi-random, for example, as described in U.S. Pat. No. 6,300,064 and/or U.S. Pat. No. 6,248,516.
  • Exemplary human CD83 binding proteins are antibodies comprising the following pairs of variable regions:
  • the V L sequence lacks the c-terminal lysine residue.
  • the C-terminal lysine of the V L sequence of a CD83 binding protein of the disclosure may be removed, for example, during production or purification of the CD83 binding protein, or by recombinant engineering the nucleic acid encoding the V L of the CD83 binding protein.
  • CD83 binding proteins may comprise populations with all C-terminal lysine residues of the V L removed, populations with no C-terminal lysine residues of the V L removed, or populations having a mixture of proteins with and without the V L C-terminal lysine residue.
  • the protein populations may additionally comprise proteins having two V L S in which the C-terminal lysine residue is removed in one of the V L S.
  • a composition of proteins may comprise the same or a similar mix of protein populations with or without the V L C-terminal lysine residue.
  • the V H is linked to a heavy chain constant region, for example, an IgG1 heavy chain constant region.
  • the heavy chain constant region lacks the c-terminal lysine residue.
  • the V L is linked to a light chain constant region.
  • the CD83 binding proteins of the present disclosure may be synhumanized proteins.
  • the term “synhumanized protein” refers to a protein prepared by a method described in US20080095767.
  • a synhumanized CD83 binding protein includes a variable region of an antibody, wherein the variable region comprises FRs from a New World primate antibody variable region and CDRs from a non-New World primate antibody variable region.
  • a synhumanized CD83 binding protein includes a variable region of an antibody, wherein the variable region comprises FRs from a New World primate antibody variable region and CDRs from a mouse or rat antibody.
  • the synhumanized CD83 binding protein is a CD83 binding antibody in which one or both of the variable regions are synhumanized.
  • This term also encompasses a composite protein comprising, for example, one or more synhumanized variable regions and one or more, for example, human variable regions or humanized variable regions or chimeric variable regions.
  • the CD83 binding proteins of the present disclosure may be primatized proteins.
  • a “primatized protein” comprises variable region(s) from an antibody generated following immunization of a non-human primate (e.g., a cynomolgus macaque).
  • the variable regions of the non-human primate antibody are linked to human constant regions to produce a primatized antibody.
  • Exemplary methods for producing primatized antibodies are described in U.S. Pat. No. 6,113,898.
  • This term also encompasses a composite protein comprising, for example, one or more primatized variable regions and one or more, for example, human variable regions or humanized variable regions or chimeric variable regions.
  • a CD83 binding protein of the disclosure is a chimeric protein.
  • chimeric proteins refers to proteins in which an antigen binding domain is from a particular species (e.g., murine, such as mouse or rat) or belonging to a particular antibody class or subclass, while the remainder of the protein is from a protein derived from another species (such as, for example, human or non-human primate) or belonging to another antibody class or subclass.
  • a chimeric protein is a chimeric antibody comprising a V H and/or a V L from a non-human antibody (e.g., a murine antibody) and the remaining regions of the antibody are from a human antibody.
  • chimeric proteins are known in the art, and may be achieved by standard means (as described, e.g., in U.S. Pat. Nos. 6,331,415; 5,807,715; 4,816,567 and 4,816,397).
  • This term also encompasses a composite protein comprising, for example, one or more chimeric variable regions and one or more, e.g., human variable regions or humanized variable regions or chimeric variable regions.
  • the present disclosure also contemplates a deimmunized CD83 binding protein, for example, as described in WO2000/34317 and US20070292416.
  • De-immunized antibodies and proteins have one or more epitopes, for example, B cell epitopes or T cell epitopes removed (i.e., mutated) to thereby reduce the likelihood that a subject will raise an immune response against the antibody or protein.
  • a CD83-binding protein of the disclosure is analyzed to identify one or more B or T cell epitopes and one or more amino acid residues within the epitope is mutated to thereby reduce the immunogenicity of the CD83 binding protein.
  • a “composite” protein comprises one form of V H (e.g., human) and another form of V L (e.g., humanized).
  • V H e.g., human
  • V L e.g., humanized
  • the present disclosure also contemplates other CD83 binding proteins comprising a variable region or antigen binding domain of an antibody, such as:
  • a single-domain antibody which is a single polypeptide chain comprising all or a portion of the V H or a V L of an antibody, for example, as described in U.S. Pat. No. 6,248,516);
  • heteroconjugate proteins for example, as described in U.S. Pat. No. 4,676,980;
  • the present disclosure encompasses CD83 binding proteins comprising an antigen binding domain of an antibody and a constant region or Fc or a domain thereof, for example, C H 2 and/or C H 3 domain.
  • Suitable constant regions and/or domains will be apparent to the skilled artisan and/or the sequences of such polypeptides are readily available from publicly available databases. Kabat et al. also provide description of some suitable constant regions/domains.
  • Constant regions and/or domains thereof are useful for providing biological activities such as, dimerization, extended serum half-life (e.g., by binding to FcRn), antibody-dependent cell cytotoxicity (ADCC), complement dependent cytotoxicity (CDC), antibody-dependent cell phagocytosis (ADCP).
  • ADCC antibody-dependent cell cytotoxicity
  • CDC complement dependent cytotoxicity
  • ADCP antibody-dependent cell phagocytosis
  • CD83 binding proteins comprising mutant constant regions or domains, for example, as described in U.S. Pat. No. 7,217,797; U.S. Pat. No. 7,217,798; or US20090041770 (having increased half-life) or U.S. Pat. No. 7,355,008 (increased ADCC).
  • CD83 binding proteins may comprise populations with all C-terminal lysine residues of the heavy chain constant region removed, populations with no C-terminal lysine residues of the heavy chain constant region removed, or populations having a mixture of proteins with and without the heavy chain constant region C-terminal lysine residue.
  • the protein populations may additionally comprise proteins having two heavy chain constant regions in which the heavy chain constant region C-terminal lysine residue is removed in one of the heavy chain constant regions.
  • a composition of proteins may comprise the same or a similar mix of protein populations with or without the heavy chain constant region C-terminal lysine residue.
  • a CD83 binding protein of the present disclosure may induce effector function or enhanced effector function.
  • effector functions refer to those biological activities mediated by cells or proteins that bind to the Fc region (a native sequence Fc region or amino acid sequence variant Fc region) of an antibody that result in killing of a cell.
  • effector functions induced by antibodies include: complement dependent cytotoxicity (CDC); antibody-dependent-cell-mediated cytotoxicity (ADCC); antibody-dependent-cell-phagocytosis (ADCP); and B-cell activation.
  • ADCC antibody-dependent-cell-mediated cytotoxicity
  • effector cells e.g., natural killer (“NK”) cells, neutrophils and macrophages
  • NK natural killer
  • NK neutrophils and macrophages
  • an in vitro ADCC assay may be performed.
  • useful effector cells for such assays include peripheral blood mononuclear cells (“PBMC”) and NK cells.
  • a CD83 binding protein of the present disclosure binds to CD83 on the surface of a cell in such a manner that it is capable of inducing an effector function, such as, ADCC and/or CDC.
  • the CD83 binding protein remains bound to the CD83 on the surface of the cell for a time sufficient to induce an effector function, such as ADCC and/or CDC.
  • a CD83 binding protein of the present disclosure is capable of inducing enhanced effector function, for example, by virtue of a modified Fc region or by virtue of comprising a region capable of binding to an immune effector cell.
  • the level of effector function is increased compared to the level induced by a human IgG1 or IgG4 Fc region.
  • Enhancing effector function induced by a CD83 binding protein of the disclosure may result in enhanced therapeutic or prophylactic effects, for example, by killing or depleting cells causing a condition, for example, antigen presenting cells (APC) (e.g., dendritic cells (DCs)) and/or lymphocytes (e.g., T cells) that modulate aberrant or unwanted immune responses in, for example, inflammatory and/or autoimmune conditions or diseases.
  • APC antigen presenting cells
  • DCs dendritic cells
  • T cells lymphocytes
  • enhancing effector function prevents allogeneic stimulation of T cells, by for example, killing or depleting CD83+ cells that stimulate allogeneic T cells.
  • the Fc region of a CD83 binding protein of the disclosure is modified to increase the level of effector function it is capable of inducing compared to the Fc region without the modification.
  • modifications can be at the amino acid level and/or the secondary structural level and/or the tertiary structural level and/or to the glycosylation of the Fc region.
  • effector function may be manifested in any of a number of ways, for example as a greater level of effect, a more sustained effect or a faster rate of effect.
  • the Fc region comprises one or more amino acid modifications that increase its ability to induce enhanced effector function.
  • the Fc region binds with greater affinity to one or more Fc ⁇ Rs, such as Fc ⁇ RIII.
  • the Fc region comprise at least one amino acid substitution at a position selected from the group consisting of: 230, 233, 234, 235, 239, 240, 243, 264, 266, 272, 274, 275, 276, 278, 302, 318, 324, 325, 326, 328, 330, 332, and 335, numbered according to the EU index of Kabat.
  • the Fe region comprises the following amino acid substitutions S239D/I332E, numbered according to the EU index of Kabat.
  • This Fc region has about 14 fold increase in affinity for Fc ⁇ RIIIa compared to a wild-type Fc region and about 3.3 increased ability to induce ADCC compared to a wild-type Fc region.
  • the Fc region comprises the following amino acid substitutions S239D/A330L/I332E, numbered according to the EU index of Kabat.
  • This Fc region has about 138 fold increase in affinity for Fc ⁇ RIIIa compared to a wild-type Fc region and about 323 fold increased ability to induce ADCC compared to a wild-type Fc region.
  • the level of ADCC activity is assessed using a 51 Cr release assay, an europium release assay or a 35 S release assay.
  • cells expressing CD83 are cultured with one or more of the recited compounds for a time and under conditions sufficient for the compound to be taken up by the cell.
  • the cells can be cultured with 35 S-labeled methionine and/or cysteine for a time sufficient for the labeled amino acids to be incorporated into newly synthesized proteins.
  • Cells are then cultured in the presence or absence of the protein and in the presence of immune effector cells, for example, PBMCs and/or NK cells.
  • ACTITM nonradioactive cytotoxicity assay for flow cytometry CellTechnology, Inc. CA, USA
  • CytoTox 96® non-radioactive cytotoxicity assay Promega, WI, USA
  • effector function of a CD83 binding protein is assessed by determining its affinity for one or more Fc ⁇ Rs, for example, as described in U.S. Pat. No. 7,317,091.
  • C1q binding assays may also be carried out to confirm that the CD83 binding protein is able to bind C1q and may induce CDC.
  • a CDC assay may be performed (see, e.g., Gazzano-Santoro et al., J. Immunol. Methods 202:163, 1996).
  • the CD83 binding protein comprises one or more amino acid substitutions that increase the half-life of the protein.
  • the CD83 binding protein comprises a constant region comprising one or more amino acid substitutions that increase the affinity of the constant region for the neonatal Fc region (FcRn).
  • the constant region has increased affinity for FcRn at lower pH, for example, about pH 6.0, to facilitate Fc/FcRn binding in an endosome.
  • the constant region has increased affinity for FcRn at about pH 6 compared to its affinity at about pH 7.4, which facilitates the re-release of Fe into blood following cellular recycling.
  • Exemplary amino acid substitutions include T250Q and/or M428L or T252A, T254S and T266F or M252Y, S254T and T256E or H433K and N434F according to the EU numbering system. Additional or alternative amino acid substitutions are described, for example, in US20070135620 or U.S. Pat. No. 7,083,784.
  • the present disclosure also provides a CD83 binding protein or a nucleic acid encoding same having at least 80% identity to a sequence disclosed herein.
  • a CD83 binding protein or nucleic acid of the disclosure comprises sequence at least about 80% or 81% or 82% or 83% or 84% or 85% or 90% or 95% or 96% or 97% or 98% or 99% identical to a sequence disclosed herein, wherein the protein specifically binds to CD83.
  • the CD83 binding protein comprises a CDR (e.g., three CDRs) at least about 30% or 35% or 40% or 45% or 50% or 55% or 60% or 65% or 70% or 75% or 80% or 85% or 90% or 95% or 97% or 98% or 99% identical to CDR(s) of a V H or V L as described herein according to any example, wherein the protein is capable of specifically binding to CD83.
  • the inventors have produced numerous antibodies having diverse sequences within their CDRs. Methods for determining binding of a protein CD83 are described herein.
  • the inventors have identified a group of CD83 binding proteins sharing at least about 60% identity in their light chain CDR1, such as, for example, with at least about 65% or 70% or 75% or 80% or 85% or 90% or 95% or 96% or 97% or 98% or 99% identity in their light chain CDR1 according to the Kabat numbering system.
  • the inventors have also identified a group of CD83 binding proteins sharing 70% identity in their light chain CDR2, such as, for example, with at least about 75% or 80% or 85% or 90% or 95% or 96% or 97% or 98% or 99% identity in their light chain CDR2 according to the Kabat numbering system.
  • the inventors have also identified a group of CD83 binding proteins sharing 30% identity in their light chain CDR3, such as, for example, with at least about 35% or 40% or 45% or 50% or 55% or 60% or 65% or 70% or 75% or 80% or 85% or 90% or 95% or 96% or 97% or 98% or 99% identity in their light chain CDR3 according to the Kabat numbering system.
  • a CD83 binding protein of the disclosure can comprise a CDR1 having at least about 70% identity to a light chain CDR sequence disclosed herein.
  • a nucleic acid of the disclosure comprises a sequence at least about 80% or 85% or 90% or 95% or 97% or 98% or 99% identical to a sequence disclosed herein and encoding a CD83 binding protein which is capable of specifically binding to CD83.
  • the present disclosure also encompasses nucleic acids encoding a CD83 binding protein of the disclosure, which differs from a sequence exemplified herein as a result of degeneracy of the genetic code.
  • the query sequence is at least 50 residues in length, and the GAP analysis aligns the two sequences over a region of at least 50 residues. For example, the query sequence is at least 100 residues in length and the GAP analysis aligns the two sequences over a region of at least 100 residues. For example, the two sequences are aligned over their entire length.
  • nucleic acid that hybridizes under stringent hybridization conditions to a nucleic acid encoding a CD83 binding protein described herein, for example, nucleic acid encoding a V H or V L of antibody hFab4.1, hFab4.1, hFab4.3, hFab4.4, hFab4.4, hFab4.5, hFab4.7, hFab4.8, hFab4.9, hFab4.10, hFab4.12, hFab4.18.
  • a “moderate stringency” is defined herein as being a hybridization and/or washing carried out in 2 ⁇ SSC buffer, 0.1% (w/v) SDS at a temperature in the range 45° C. to 65° C., or equivalent conditions.
  • a “high stringency” is defined herein as being a hybridization and/or wash carried out in 0.1 ⁇ SSC buffer, 0.1% (w/v) SDS, or lower salt concentration, and at a temperature of at least 65° C., or equivalent conditions.
  • Reference herein to a particular level of stringency encompasses equivalent conditions using wash/hybridization solutions other than SSC known to those skilled in the art.
  • methods for calculating the temperature at which the strands of a double stranded nucleic acid will dissociate also known as melting temperature, or Tm
  • a temperature that is similar to (e.g., within 5° C. or within 10° C.) or equal to the Tm of a nucleic acid is considered to be high stringency.
  • Medium stringency is to be considered to be within 10° C. to 20° C. or 10° C. to 15° C. of the calculated Tm of the nucleic acid.
  • the present disclosure also contemplates mutant forms of a CD83 binding protein of the disclosure comprising one or more conservative amino acid substitutions compared to a sequence set forth herein.
  • the CD83 binding protein comprises 10 or fewer, for example, 9 or 8 or 7 or 6 or 5 or 4 or 3 or 2 or 1 conservative amino acid substitutions.
  • a “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain and/or hydropathicity and/or hydrophilicity.
  • Families of amino acid residues having similar side chains have been defined in the art, including basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), ⁇ -branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine).
  • basic side chains e.g., lysine, arginine, histidine
  • acidic side chains e.g., aspartic
  • Hydropathic indices are described, for example, in Kyte and Doolittle J. Mol. Biol., 157: 105-132, 1982 and hydrophylic indices are described in, for example, U.S. Pat. No. 4,554,101.
  • the present disclosure also contemplates non-conservative amino acid changes.
  • non-conservative amino acid changes are substitutions of charged amino acids with another charged amino acid and with neutral or positively charged amino acids.
  • the CD83 binding protein comprises 10 or fewer, for example, 9 or 8 or 7 or 6 or 5 or 4 or 3 or 2 or 1 non-conservative amino acid substitutions.
  • the mutation(s) occur within a FR of an antigen binding domain of a CD83 binding protein of the disclosure. In another example, the mutation(s) occur within a CDR of a CD83 binding protein of the disclosure.
  • Exemplary methods for producing mutant forms of a CD83 binding protein include:
  • Exemplary methods for determining biological activity of the mutant CD83 binding proteins of the disclosure will be apparent to the skilled artisan and/or described herein, for example, antigen binding.
  • methods for determining antigen binding, competitive inhibition of binding, affinity, association, dissociation and therapeutic efficacy are described herein.
  • a nucleic acid encoding a CD83 binding protein of the disclosure and/or one or more polypeptides thereof is introduced into an expression construct, such that it is operably linked to a promoter to thereby facilitate its expression.
  • Methods for producing expression constructs for example, cloning into expression constructs/vectors are known in the art and/or described in Ausubel et al., (In: Current Protocols in Molecular Biology. Wiley Interscience, ISBN 047 150338, 1987), and (Sambrook et al., (In: Molecular Cloning: Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, New York, Third Edition 2001) and U.S. Pat. No. 7,270,969.
  • the CD83 binding protein of the disclosure is expressed in a bacterial cell.
  • Typical promoters suitable for expression in bacterial cells such as, for example, a bacterial cell selected from the group comprising E. coli, Staphylococcus sp., Corynebacterium sp., Salmonella sp., Bacillus sp., and Pseudomonas sp., include, but are not limited to a promoter such as lacz, Ipp, a temperature-sensitive L or R promoters, T7, T3, SP6 or semi-artificial promoters such as the IPTG-inducible tac promoter or lacUV5 promoter.
  • the CD83 binding protein is expressed in a yeast cell.
  • Typical promoters suitable for expression in yeast cells such as, Pichia pastoris, Saccharomyces cerevisiae and S. pombe , include, but are not limited to, promoters from the following genes ADH1, GAL1, GAL4, CUP1, PHO5, nmt, RPR1, or TEF1.
  • the CD83 binding protein is expressed in an insect cell.
  • Typical promoters suitable for expression in insect cells, or in insects include, but are not limited to, the OPEI2 promoter, the insect actin promoter isolated from Bombyx muri , the Drosophila sp. dsh promoter (Marsh et al., Hum. Mol. Genet. 9: 13-25, 2000).
  • a CD83 binding protein of the disclosure can also be expressed in plant cells.
  • Promoters for expressing peptides in plant cells include, but are not limited to, the Hordeum vulgare amylase gene promoter, the cauliflower mosaic virus 35S promoter, the nopaline synthase (NOS) gene promoter, and the auxin inducible plant promoters P1 and P2.
  • a CD83 binding protein of the disclosure is expressed in a mammalian cell or in a mammal.
  • Typical promoters suitable for expression in a mammalian cell include, for example a promoter selected from the group consisting of, retroviral LTR elements, the SV40 early promoter, the SV40 late promoter, the CMV IE (cytomegalovirus immediate early) promoter, the EF1 promoter (from human elongation factor 1), the EM7 promoter, the UbC promoter (from human ubiquitin C).
  • useful mammalian host cell lines include monkey kidney CV1 line transformed by SV40 (COS-7); human embryonic kidney line (HEK-293 cells); baby hamster kidney cells (BHK); Chinese hamster ovary cells (CHO); African green monkey kidney cells (VERO-76); or myeloma cells (e.g., NS/0 cells).
  • COS-7 monkey kidney CV1 line transformed by SV40
  • HEK-293 cells human embryonic kidney line
  • BHK baby hamster kidney cells
  • Chinese hamster ovary cells CHO
  • African green monkey kidney cells VERO-76
  • myeloma cells e.g., NS/0 cells.
  • Exemplary cells used for expressing a CD83 binding protein of the disclosure are CHO cells, myeloma cells or HEK cells.
  • the cell may further comprise one or more genetic mutations and/or deletions that facilitate expression of a modified antibody.
  • expression constructs/vectors include, for example, enhancers, transcriptional terminators, polyadenylation sequences, nucleic acids encoding selectable or detectable markers and origins of replication.
  • an expression construct is a bicistronic expression construct.
  • bicistronic is meant a single nucleic acid molecule that is capable of encoding two distinct polypeptides from different regions of the nucleic acid, for example, a single nucleic acid capable of encoding a V H containing polypeptide and a V L containing polypeptide as distinct polypeptides.
  • the regions encoding each distinct polypeptide are separated by an internal ribosome entry site (IRES) and the region 5′ of the IRES does not comprise a transcription termination sequence.
  • IRESs are described, for example, in US20090247455.
  • a suitable expression construct Following production of a suitable expression construct, it is introduced into a suitable cell using any method known in the art.
  • Exemplary methods include microinjection, transfection mediated by DEAE-dextran, transfection mediated by liposomes such as by using lipofectamine (Gibco, MD, USA) and/or cellfectin (Gibco, MD, USA), PEG-mediated DNA uptake, electroporation and microparticle bombardment such as by using DNA-coated tungsten or gold particles (Agracetus Inc., WI, USA) amongst others.
  • the cells used to produce the CD83 binding proteins of this disclosure are then cultured under conditions known in the art to produce the CD83 binding protein of the disclosure.
  • Cell free expression systems are also contemplated by the present disclosure, for example, the TNT T7 and TNT T3 systems (Promega), the pEXP1-DEST and pEXP2-DEST vectors (Invitrogen).
  • a CD83 binding protein of the disclosure is purified using a method known in the art. Such purification provides the protein of the disclosure substantially free of nonspecific protein, acids, lipids, carbohydrates, and the like. In one example, the protein will be in a preparation wherein more than about 90% (e.g., 95%, 98% or 99%) of the protein in the preparation is a CD83 binding protein of the disclosure.
  • Standard methods of peptide purification are employed to obtain an isolated CD83 binding protein of the disclosure, including but not limited to various high-pressure (or performance) liquid chromatography (HPLC) and non-HPLC polypeptide isolation protocols, such as size exclusion chromatography, ion exchange chromatography, hydrophobic interaction chromatography, mixed mode chromatography, phase separation methods, electrophoretic separations, precipitation methods, salting in/out methods, immunochromatography, and/or other methods.
  • HPLC high-pressure liquid chromatography
  • non-HPLC polypeptide isolation protocols such as size exclusion chromatography, ion exchange chromatography, hydrophobic interaction chromatography, mixed mode chromatography, phase separation methods, electrophoretic separations, precipitation methods, salting in/out methods, immunochromatography, and/or other methods.
  • affinity purification is useful for isolating a fusion protein comprising a label.
  • Methods for isolating a protein using affinity chromatography are known in the art and described, for example, in Scopes (In: Protein purification: principles and practice, Third Edition, Springer Verlag, 1994).
  • an antibody or compound that binds to the label in the case of a polyhistidine tag this may be, for example, nickel-NTA
  • a sample comprising a protein is then contacted to the immobilized antibody or compound for a time and under conditions sufficient for binding to occur. Following washing to remove any unbound or non-specifically bound protein, the protein is eluted.
  • protein A or protein G or modified forms thereof can be used for affinity purification.
  • Protein A is useful for isolating purified proteins comprising a human ⁇ 1, ⁇ 2, or ⁇ 4 heavy chain Fe region.
  • Protein G is recommended for all mouse Fc isotypes and for human ⁇ 3.
  • a CD83 binding protein of the present disclosure is conjugated to a compound.
  • the compound is selected from the group consisting of a radioisotope, a detectable label, a therapeutic compound, a colloid, a toxin, a nucleic acid, a peptide, a protein, a compound that increases the half-life of the CD83 binding protein in a subject and mixtures thereof.
  • the other compound can be directly or indirectly bound to the CD83 binding protein (e.g., can comprise a linker in the case of indirect binding).
  • examples of compounds include, a radioisotope (e.g., iodine-131, yttrium-90 or indium-111), a detectable label (e.g., a fluorophore or a fluorescent nanocrystal), a therapeutic compound (e.g., a chemotherapeutic or an anti-inflammatory), a colloid (e.g., gold), a toxin (e.g., ricin or tetanus toxoid), a nucleic acid, a peptide (e.g., a serum albumin binding peptide), a protein (e.g., a protein comprising an antigen binding domain of an antibody or serum albumin), a compound that increases the half-life of the CD83 binding protein in a subject (e.g., polyethylene glycol or other water soluble poly
  • CD83 binding proteins of the present disclosure are readily screened for biological activity, for example, as described below.
  • assay is an antigen binding assay, for example, as described in Scopes (In: Protein purification: principles and practice, Third Edition, Springer Verlag, 1994).
  • Such a method generally involves labeling the CD83 binding protein and contacting it with immobilized antigen. Following washing to remove non-specific bound protein, the amount of label and, as a consequence, bound protein is detected.
  • the CD83 binding protein can be immobilized and the antigen labeled.
  • Panning-type assays for example, as described or exemplified herein can also be used.
  • surface plasmon resonance assays can be used.
  • a binding assay is performed with peptide comprising an epitope of CD83.
  • CD83 binding proteins that bind to a specific region of CD83 are selected.
  • CD83 binding proteins of the present disclosure can also be assessed for therapeutic efficacy in an animal model of a condition, for example, a CD83 mediated condition.
  • the CD83 binding protein is administered to a model of inflammatory bowel disease or colitis (e.g., dextran sodium sulphate (DSS)-induced colitis or CD45Rb adoptive transfer model of colitis (e.g., Kanai et al., Inflamm. Bowel Dis. 12: 89-99, 2006).
  • DSS dextran sodium sulphate
  • CD45Rb adoptive transfer model of colitis
  • a CD83 binding protein is administered to a model of multiple sclerosis, for example, EAE models in which a mouse or rat is immunized with a myelin sheath protein or peptide derived therefrom (e.g., MOG, MBP or PLP) and an immune response is generated against the protein thereby inducing a model of multiple sclerosis.
  • EAE models are reviewed in, for example Tsunoda and Fujinami, J. Neuropathol. Exp. Neurol. 55: 673-686, 1996.
  • the CD83 binding protein can also or alternatively be tested in a model of arthritis, for example, a SKG strain of mouse (Sakaguchi et al., Nature 426: 454-460, 1995), rat type II collagen arthritis model, mouse type II collagen arthritis model or antigen induced arthritis models (Bendele J. Musculoskel. Neuron. Interact. 1: 377-385, 2001) and/or a model of inflammatory airway disease (for example, OVA challenge or cockroach antigen challenge).
  • a model of arthritis for example, a SKG strain of mouse (Sakaguchi et al., Nature 426: 454-460, 1995), rat type II collagen arthritis model, mouse type II collagen arthritis model or antigen induced arthritis models (Bendele J. Musculoskel. Neuron. Interact. 1: 377-385, 2001) and/or a model of inflammatory airway disease (for example, OVA challenge or cockroach antigen challenge).
  • a model of arthritis for example, a SKG
  • the therapeutic efficacy of a CD83 binding protein of the present disclosure can also or alternatively be assessed in a model of graft-versus-host-response, for example, in which splenocytes from one animal are injected into a allogeneic animal (e.g., a MHC or HLA unmatched animal).
  • a human peripheral blood mononuclear cells PBMCs
  • PBMCs peripheral blood mononuclear cells
  • Treatment with a CD83 binding protein of the disclosure can be administered to mice, by, for example, intraperitoneal injection on the day of PBMC transplant (day 0) and mice scored for clinical manifestations of GVDH.
  • the antibody of the disclosure is conjugated to a detectable label, for example, a fluorescent label or a radioactive label.
  • the labeled antibody and the test CD83 binding protein are then mixed and contacted with CD83 or a peptide comprising an epitope thereof.
  • the level of labeled antibody is then determined and compared to the level determined when the labeled antibody is contacted with the CD83 or the peptide comprising an epitope thereof in the absence of the CD83 binding protein. If the level of labeled antibody is reduced in the presence of the CD83 binding protein compared to the absence of the CD83 binding protein, the CD83 binding protein competitively inhibits binding of the antibody.
  • the CD83 binding protein is conjugated to a different label than the antibody. This permits detection of the level of binding of the CD83 binding protein to CD83 or epitope bearing peptide.
  • the CD83 binding protein is permitted to bind to CD83 or a peptide comprising an epitope thereof prior to contacting the CD83 or peptide with an antibody described herein.
  • a reduction in the amount of bound antibody in the presence of the CD83 binding protein compared to in the absence of the CD83 binding protein indicates that the CD83 binding protein competitively inhibits binding of the antibody to CD83.
  • a reciprocal assay can also be performed using labeled CD83 binding protein and first allowing the antibody to bind to CD83 or the peptide. In this case, a reduced amount of labeled CD83 binding protein bound to CD83 or the peptide in the presence of the antibody compared to in the absence of antibody indicates that the CD83 binding protein competitively inhibits binding of the antibody to CD83.
  • the epitope bound by a protein described herein is mapped.
  • Epitope mapping methods will be apparent to the skilled artisan. For example, a series of overlapping peptides spanning the CD83 sequence or a region thereof comprising an epitope of interest, for example, peptides comprising 10 to 15 amino acids are produced. The CD83 binding protein is then contacted to each peptide or a combination thereof and the peptide(s) to which it binds determined. This permits determination of peptide(s) comprising the epitope to which the CD83 binding protein binds. If multiple non-contiguous peptides are bound by the protein, the protein may bind a conformational epitope.
  • amino acid residues within CD83 are mutated, for example, by alanine scanning mutagenesis, and mutations that reduce or prevent protein binding are determined. Any mutation that reduces or prevents binding of the CD83 binding protein is likely to be within the epitope bound by the protein.
  • a further method involves binding CD83 or a region thereof to an immobilized CD83 binding protein of the present disclosure and digesting the resulting complex with proteases. Peptide that remains bound to the immobilized protein are then isolated and analyzed, for example, using mass spectrometry, to determine their sequence.
  • a further method involves converting hydrogens in CD83 or a region thereof to deuterium atoms and binding the resulting protein to an immobilized CD83 binding protein of the present disclosure.
  • the deuterium atoms are then converted back to hydrogen, the CD83 or region thereof isolated, digested with enzymes and analyzed, for example, using mass spectrometry to identify those regions comprising deuterium, which would have been protected from conversion to hydrogen by the binding of a CD83 binding protein described herein.
  • CD83 binding proteins encompassed by the present disclosure have an improved half-life, for example, are modified to extend their half-life compared to CD83 binding proteins that are unmodified. Methods for determining a CD83 binding protein with an improved half-life will be apparent to the skilled person. For example, the ability of a CD83 binding protein to bind to a neonatal Fe receptor (FcRn) is assessed. In this regard, increased binding affinity for FcRn increased the serum half-life of the CD83 binding protein (see for example, Kim et al., Eur. J. Immunol., 24: 2429, 1994).
  • the half-life of a CD83 binding protein of the disclosure can also be measured by pharmacokinetic studies, for example, according to the method described by Kim et al, Eur. J. of Immunol. 24: 542, 1994. According to this method, radiolabeled CD83 binding protein is injected intravenously into mice and its plasma concentration is periodically measured as a function of time, for example at 3 minutes to 72 hours after the injection.
  • the clearance curve thus obtained should be biphasic, that is, an alpha phase and beta phase.
  • the clearance rate in beta-phase is calculated and compared with that of the wild type or unmodified CD83 binding protein.
  • Stability of a CD83 binding protein of the disclosure can be assessed by any of a variety of assays.
  • the CD83 binding protein is exposed to a condition, for example, heat or acid or stored for a period of time (e.g., 1 month) at room temperature. Aggregation of the CD83 binding protein can then be assessed by determining turbidity (with an increase in turbidity following exposure to the condition indicating instability), size exclusion chromatography, non-reducing gel electrophoresis or a binding or neutralization study described herein.
  • the CD83 binding protein of the present disclosure or nucleic acid encoding same or cell expressing same is useful for parenteral, topical, oral, or local administration, aerosol administration, or transdermal administration, for prophylactic or for therapeutic treatment.
  • Formulation of a CD83 binding protein or nucleic acid encoding same or cell expressing same to be administered will vary according to the route of administration and formulation (e.g., solution, emulsion, capsule) selected.
  • An appropriate pharmaceutical composition comprising CD83 binding protein or nucleic acid encoding same or cell expressing same to be administered can be prepared in a physiologically acceptable carrier.
  • a mixture of CD83 binding proteins can also be used.
  • suitable carriers include, for example, aqueous or alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media.
  • Parenteral vehicles can include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's or fixed oils.
  • aqueous carriers include water, buffered water, buffered saline, polyols (e.g., glycerol, propylene glycol, liquid polyethylene glycol), dextrose solution and glycine.
  • Intravenous vehicles can include various additives, preservatives, or fluid, nutrient or electrolyte replenishers (See, generally, Remington's Pharmaceutical Science, 16th Edition, Mack, Ed. 1980).
  • the compositions can optionally contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents and toxicity adjusting agents, for example, sodium acetate, sodium chloride, potassium chloride, calcium chloride and sodium lactate.
  • the CD83 binding protein of this disclosure can be lyophilized for storage and reconstituted in a suitable carrier prior to use according to art-known lyophilization and reconstitution techniques.
  • the optimum concentration of the active ingredient(s) in the chosen medium can be determined empirically, according to procedures well known to the skilled artisan, and will depend on the ultimate pharmaceutical formulation desired.
  • the dosage ranges for the administration of the CD83 binding protein of the disclosure are those large enough to produce the desired effect.
  • the composition comprises a therapeutically or prophylactically effective amount of the CD83 binding protein or nucleic acid encoding same or cell expressing same.
  • the term “effective amount” shall be taken to mean a sufficient quantity of the CD83 binding protein, nucleic acid, or cells to induce/increase or inhibit/reduce/prevent CD83 activity in a subject.
  • the skilled artisan will be aware that such an amount will vary depending on, for example, the CD83 binding protein, nucleic acid, or cells and/or the particular subject and/or the type or severity of a condition being treated. Accordingly, this term is not to be construed to limit the disclosure to a specific quantity, for example, weight or number of CD83 binding proteins, nucleic acids, or cells.
  • the term “therapeutically effective amount” shall be taken to mean a sufficient quantity of CD83 binding protein, nucleic acid, or cells to reduce or inhibit one or more symptoms of a condition.
  • prophylactically effective amount shall be taken to mean a sufficient quantity of CD83 binding protein, nucleic acid or cells to prevent or inhibit or delay the onset of one or more detectable symptoms of a condition.
  • the dosage should not be so large as to cause adverse side effects, such as hyper viscosity syndromes, pulmonary edema, congestive heart failure, and the like. Generally, the dosage will vary with the age, condition, sex and extent of the disease in the patient and can be determined by one of skill in the art. The dosage can be adjusted by the individual physician in the event of any complication. Dosage can vary from about 0.1 mg/kg to about 300 mg/kg, for example, from about 0.2 mg/kg to about 200 mg/kg, such as, from about 0.5 mg/kg to about 20 mg/kg, in one or more dose administrations daily, for one or several days.
  • the CD83 binding protein is administered subcutaneously or intravenously.
  • the CD83 binding protein or other active ingredient is administered at an initial (or loading) dose which is higher than subsequent (maintenance doses).
  • the binding molecule is administered at an initial dose of between about 1 mg/kg to about 30 mg/kg.
  • the binding molecule is then administered at a maintenance dose of between about 0.0001 mg/kg to about 1 mg/kg.
  • the maintenance doses may be administered every 7 to 35 days, such as, every 14 or 21 or 28 days.
  • a dose escalation regime in which a CD83 binding protein or other active ingredient is initially administered at a lower dose than used in subsequent doses. This dosage regime is useful in the case of subject's initially suffering adverse events
  • multiple doses in a week may be administered.
  • increasing doses may be administered.
  • CD83 binding proteins of the present disclosure can be administered to an individual by an appropriate route, either alone or in combination with (before, simultaneous with, or after) another drug or agent.
  • the CD83 binding protein of the present disclosure can also be used in combination with proteins, for example, a TNF antagonist, an anti-IL-12/23 antibody, an anti-inflammatory, a corticosteroid, methotrexate or a painkiller.
  • the CD83 binding protein of the present disclosure can be used as separately administered compositions given in conjunction with antibiotics and/or antimicrobial agents.
  • the CD83 binding proteins of the present disclosure may be introduced into a subject by administering an expression construct of the disclosure or a cell expressing a CD83 binding protein of the disclosure.
  • a variety of methods can be used for introducing a nucleic acid encoding the antibody into a target cell in vivo.
  • the naked nucleic acid may be injected at the target site, may be encapsulated into liposomes, or may be introduced by way of a viral vector.
  • the following assays can be performed with a CD83 binding protein of the disclosure, for example, a CD83 binding protein conjugated to a detectable label as discussed herein. Detection of CD83 with an assay described herein is useful for diagnosing or prognosing a condition.
  • An immunoassay is an exemplary assay format for diagnosing a condition in a subject or detecting CD83 in a sample.
  • the present disclosure contemplates any form of immunoassay, including Western blotting, enzyme-linked immunosorbent assay (ELISA), fluorescence-linked immunosorbent assay (FLISA), competition assay, radioimmunoassay, lateral flow immunoassay, flow-through immunoassay, electrochemiluminescent assay, nephelometric-based assays, turbidometric-based assay, and fluorescence activated cell sorting (FACS)-based assays.
  • ELISA enzyme-linked immunosorbent assay
  • FLISA fluorescence-linked immunosorbent assay
  • competition assay radioimmunoassay
  • lateral flow immunoassay lateral flow immunoassay
  • flow-through immunoassay electrochemiluminescent assay
  • nephelometric-based assays nephe
  • One form of a suitable immunoassay is, for example, an ELISA or FLISA.
  • such an assay involves immobilizing a CD83 binding protein of the disclosure onto a solid matrix, such as, for example a polystyrene or polycarbonate microwell or dipstick, a membrane, or a glass support (e.g., a glass slide).
  • a test sample is then brought into direct contact with the CD83 binding protein and CD83 in the sample is bound or captured.
  • a protein that binds to CD83 at a distinct epitope is brought into direct contact with the captured CD83.
  • This detector protein is generally labeled with a detectable reporter molecule, such as, for example, an enzyme (e.g.
  • HRP horseradish peroxidase
  • AP alkaline phosphatase
  • ⁇ -galactosidase a second labeled protein that binds to the detector protein.
  • the detectable reporter molecule is detected by the addition of a substrate in the case of an ELISA, such as, for example, hydrogen peroxide, TMB, or toluidine, or 5-bromo-4-chloro-3-indol-beta-D-galactopyranoside (x-gal).
  • the immobilized (capture) protein and the detector protein may be used in the opposite manner.
  • the level of the antigen in the sample is then determined using a standard curve that has been produced using known quantities of the marker or by comparison to a control sample.
  • the assays described above are readily modified to use chemiluminescence or electrochemiluminescence as the basis for detection.
  • an immunosorbent method based on the description supra using a radiolabel for detection, or a gold label (e.g., colloidal gold) for detection, or a liposome, for example, encapsulating NAD+ for detection or an acridinium linked immunosorbent assay.
  • a radiolabel for detection or a gold label (e.g., colloidal gold) for detection
  • a liposome for example, encapsulating NAD+ for detection or an acridinium linked immunosorbent assay.
  • the level of CD83 is determined using a surface plasmon resonance detector (e.g., BIAcoreTM, GE Healthcare, Piscataway, N.J.), a flow through device, for example, as described in U.S. Pat. No. 7,205,159, a micro- or nano-immunoassay device (e.g., as described in US20030124619), a lateral flow device (e.g., as described in US20040228761 or US20040265926), a fluorescence polarization immunoassay (FPIA e.g., as described in U.S. Pat. No. 4,593,089 or 4,751,190), or an immunoturbidimetric assay (e.g., as described in U.S. Pat. No. 5,571,728 or 6,248,597).
  • a surface plasmon resonance detector e.g., BIAcoreTM, GE Healthcare, Piscataway, N.J.
  • a flow through device for example
  • the CD83 binding proteins of the disclosure can be used for the treatment, prevention, diagnosis or prophylaxis of a CD83 associated condition or disease.
  • Exemplary conditions or disease that can be treated, prevented, diagnosed, or prognosed by performing a method of the disclosure include inflammatory or autoimmune conditions or diseases.
  • Exemplary conditions and diseases include allergies, asthma, graft rejection, autoimmune conditions such as myasthemia gravis, multiple sclerosis, vasculitis, cronic inflammatory bowel diseases such as Morbus Crohn or colitis ulcerosa, HLA B27-associated autoimmunopathis such as Morbus Bechterew, and systemic lupus erythematosis, skin diseases such as psoriasis, rheumatoid arthritis, insulin-dependent diabetes mellitus and AIDS.
  • autoimmune conditions such as myasthemia gravis, multiple sclerosis, vasculitis, cronic inflammatory bowel diseases such as Morbus Crohn or colitis ulcerosa, HLA B27-associated autoimmunopathis such as Morbus Bechterew, and systemic lupus erythematosis
  • skin diseases such as psoriasis, rheumatoid arthritis, insulin-dependent diabetes mellitus and AIDS.
  • the CD83 binding protein of the disclosure depletes immune cells such as antigen presenting cells (APC) (e.g., dendritic cells (DCs)) and/or lymphocytes (e.g., T cells) to modulate aberrant or unwanted immune responses in, for example, inflammatory and/or autoimmune conditions or diseases.
  • APC antigen presenting cells
  • DCs dendritic cells
  • T cells lymphocytes
  • the CD83 binding protein is an antibody which specifically binds to the surface of an APC and/or lymphocyte and depletes the APC and/or lymphocyte via antibody dependent mediated cytotoxicity (ADCC).
  • ADCC is mediated by natural killer (NK) cells.
  • the CD83 binding protein of the disclosure bind to and deplete CD83 expressing tumors and/or cancer cells.
  • the disclosure also provides a method for treating a CD83 expressing tumor or cancer, the method comprising administering a CD83 binding protein of the disclosure or composition comprising same.
  • Exemplary CD83 expressing cancers/tumors include, lung cancer, breast cancer, colon cancer, colorectal cancer, melanoma and hematopoietic cancers, such as lymphomas and leukemias.
  • the CD83 binding proteins of the disclosure can be used to deplete immune cells such as APCs and/or lymphocytes to modulate immune responses associated with for, example, rejection of a graft by, for example, graft versus host disease or host versus graft disease.
  • the graft is an organ or tissue or cell graft.
  • the graft is an allograft.
  • the graft is an autologic graft.
  • the graft is a hematopoietic stem cell graft.
  • Graft versus host disease may result where an immunocompetant graft, for example, an allogeneic hematopoietic stem cell graft, is administered with viable and functional immune cells to a recipient, for example, an histo-incompatible recipient, and the immune cells present in the graft, for example, T cells, attack tissues of the transplant recipient.
  • Graft versus host disease may be chronic or acute and the present disclosure contemplate treating chronic graft versus host disease or acute graft versus host disease.
  • Acute graft versus host disease is generally accepted as occurring within the first 3 months after a transplant.
  • Common acute symptoms include:
  • Host versus graft disease may result where antigens derived from the allogenic graft are presented by either donor or recipient APCs to immune cells of the recipient, for example, T cells, which are in turn activated to become effector immune cells, for example, cytotoxic T lymphoctyes (CTLs) that then attack the transplant.
  • T cells for example, T cells
  • CTLs cytotoxic T lymphoctyes
  • An “allogeneic graft” is a graft from a genetically non-identical donor (e.g., histo-incompatible donor) of the same species.
  • the present disclosure contemplates treatment of (or prevention of) rejection of any form of graft, including any form of stem cell or progenitor cell, such as endothelial progenitor cells, mesenchymal stem cells, etc.
  • HSCT Hematopoietic Stem Cell Transplantation
  • hematopoietic stem cell transplantation is a graft comprising multipotent hematopoietic stem cells which can be derived, for example, from bone marrow, umbilical cord blood or peripheral blood.
  • the transplant may include some non-stem cells, for example, APCs including DCs and/or lymphocytes.
  • Hematopoietic stem cells can self-renew and differentiate to give rise to all the blood cell types including myeloid (monocytes and macrophages, neutrophils, basophils, eosinophils, dendritic cells), erythroid (erythrocytes), megakaryocytic (platelets) and lymphoid lineages (T-cells, B-cells, NK-cells).
  • myeloid monocytes and macrophages
  • neutrophils neutrophils
  • basophils basophils
  • eosinophils dendritic cells
  • erythroid erythrocytes
  • megakaryocytic platelets
  • lymphoid lineages T-cells, B-cells, NK-cells.
  • a Lin ⁇ , CD34+, CD38 ⁇ , CD90+, CD45RA ⁇ human cell is a hematopoietic stem cell.
  • expression of CD34 is used to identify hematopoietic stem cells in peripheral blood isolated from human donors.
  • the stem cells can be used for the treatment of failure or dysfunction of normal blood cell production and maturation, hematopoietic malignancy, autoimmune disease, liver disease, or immunodeficiency (by reason of for example, irradiation, chemotherapy or infection with a pathogen).
  • the stem cells may be expanded or differentiated ex vivo prior to administration to a subject.
  • Allogeneic hematopoietic stem-cell transplantation may be used to treat one or more of the following conditions: acute myeloid leukemia, acute lymphoblastic leukemia, chronic myeloid leukemia, chronic lymphocytic leukemia, myeloproliferative disorders, myelodysplastic syndromes, multiple myeloma, non-Hodgkin lymphoma, Hodgkin disease, aplastic anemia, pure red cell aplasia, paroxysmal nocturnal hemoglobinuria, Fanconi anemia, Thalassemia major, sickle cell anemia, Severe combined immunodeficiency (SCID), Wiskott-Aldrich syndrome, hemophagocytic lymphohistiocytosis (HLH), inborn errors of metabolism (e.g., mucopolysaccharidosis, Gaucher disease, metachromatic leukodystrophies and adrenoleukodystrophies).
  • SCID Severe combined immunodefic
  • the present disclosure additionally comprises a kit comprising one or more of the following:
  • the kit can additionally comprise a detection means, for example, linked to a CD83 binding protein of the disclosure.
  • the kit can additionally comprise a pharmaceutically acceptable carrier.
  • kit of the disclosure is packaged with instructions for use in a method described herein according to any example.
  • the present disclosure includes the following non-limiting Examples.
  • the phage display library was prepared in the phagemid vector pCES1 essentially as described (de Haard et al., J. Biol. Chem, 1999). The final phage library was titrated to >10 12 /ml.
  • the ectodomain of human CD83 was cloned into a vector containing a 6 ⁇ Histidine tag (HIS) for mammalian cell expression (Munster et al., Int. Immunol., 2004; Dudziak et al., J. Immunol., 2005).
  • HIS Histidine tag
  • CD83-His (10 ⁇ g/ml) was incubated overnight in a Maxisorp microtiter plate, washed three times with PBS, tapped dry and blocked with PBS containing 5% milk powder for 2 hours at room temperature.
  • the phage display library was pre-incubated with PBS/milk powder for 15 minutes. The coated, blocked wells were washed in PBS and the phage display library incubated for 1-2 hours.
  • a stationary culture of log phase TG1 cells were re-infected with phage for 30 minutes at 37° C.
  • the culture was rescued by addition of 10 13 helper phage for 30 minutes at 37° C.
  • the re-infected rescued culture was amplified by addition of 2YT/Carb/Kan, incubated overnight at 37° C., centrifuged (8000 rpm; 10 minutes) and supernatant removed for PEG precipitation.
  • PEG solution was added, mixed and incubated on ice at 4° C. for 2 hours. The mixture was centrifuged (10,000 rpm; 30 minutes) and the phage pellet resuspended in 1 ml of PBS.
  • Phage pools were incubated with log-phase TG1 cells and plated onto 2YT/Carb/2% Glu solid media (2YTmedia containing 15 g bactoagar). Single colonies were picked and used to inoculate 2YT/Carb/2% Glu media, and incubated shaking overnight at 37° C. Overnight cultures were used to inoculate 2YT/Carb media and cultures were grown to log-phase, allowed to settle and phage rescued by addition of helper phage. Rescued phage preparations were used to inoculate fresh 2YT/Carb/Kan cultures and incubated 37° C. overnight in a shaking incubator. Phage was harvested by centrifugation and PEG precipitation. Pellets were resuspended in PBS.
  • Binding of individual phage clones was determined by an ELISA assay. Wells of a maxisorp microtitre plate were coated with CD83-His, 9E10 (anti-Myc tag) and a control antigen, for 1 hour, then washed with PBS. Wells were blocked with PBS containing 5% milk powder for 2 hours, washed twice with PBS and phage preparations incubated for 1 hour on the plate shaker. The plate was washed with PBST and goat anti-human kappa chain antibody conjugated to horse radish peroxidise (HRP; Bethyl labs, US) at 0.25 ⁇ g/ml in PBST added for 1 hour shaking.
  • HRP horse radish peroxidise
  • the plate was washed five times with PBST and once with PBS.
  • the ELISA was developed by addition of 3,3′,5,5′-Tetramethylbenzidine (TMB, Pierce) and the reaction stopped by addition of 2M H 2 SO 4 . Absorbance readings were measured at 450 nM (Spectromax).
  • V H heavy chain
  • V L kappa light chain
  • Fab's were transformed into TG1 cells for protein expression.
  • 2YT/Carb/2% Glu media was inoculated and cultured in a shaking incubator overnight at 37° C. until late log phase (OD600 approx 0.9-1.0).
  • 1 mM Isopropyl thiogalactose (IPTG) and fresh antibiotic were added and incubation continued overnight in a shaking incubator at 30° C.
  • the cultures were centrifuged (8000 rpm; 10 minutes) and supernatant removed.
  • Pellets were resuspended in cold periplasmic extraction buffer (0.1M Tris, 20% sucrose, 1 mM EDTA pH8) containing a complete protease inhibitor cocktail (Roche) for 30 minutes on ice.
  • the extract was centrifuged (15,000 rpm; 15 minutes) and supernatant filtered.
  • Periplasmic extracts were purified using Ni-NTA agarose (Qiagen) affinity chromatography via the 6 ⁇ Histidine tag at the C-terminus of the hFab.
  • Periplasmic extracts were dialysed into PBS then diluted in PBS with 0.5M sodium chloride (PBS/NaCl) and incubated with pre-washed resin for 1-2 hours or overnight at 4° C. on a rotator. The mixture was poured into an empty column and allowed to flow through. The column was eluted in a competitive step-wise manner by adding increasing concentrations of Imidazole (20 mM, 50 mM and 250 mM).
  • hFab 1F7 The reactivity of purified hFab 1F7 to CD83 was analysed by ELISA. Dilutions of the hFab were allowed to react with CD83-His and the binding curve is shown in FIG. 2A . To further analyse the specificity of hFab 1F7 an ELISA was performed ( FIG. 2B ), the binding data shows that hFab 1F7 is highly specific binding only to CD83-His and CD83-Fc and is not reactive with the other control antigens.
  • Pre-mixing hFab 1F7 with the secondary FITC anti-human antibody allowed crosslinking of the hFab which resulted in a high fluorescence level shown in FIG. 3 (nil blocking trace) by a shift to the right compared with the no hFab filled trace.
  • Affinity maturation of Fabs was performed by the process of light chain shuffling essentially as described (Marks et al., Nature Biotech. 1992).
  • the V H chain library was sequentially digested with SfiI and NotI restriction enzymes and replaced by 1F7V H clone.
  • Affinity maturation was measured by surface Plasmon resonance (SPR) using the ProteOn XPR36TM instrument (BioRad). Individual channels of a GLC chip were coupled with the CD83-His ligand at 3 ⁇ g/ml in 0.1M sodium acetate buffer pH 4.5 using amine coupling according to the manufacturer's instructions. Five dilutions of analyte hFab were prepared in PBS containing 0.005% Tween20 (running buffer) and allowed to flow over the coupled CD83 at 30 sec/min flow rate for 300 seconds to evaluate the “on rate” (ka). This was followed by flow with the running buffer for 600 seconds to evaluate the “off rate” (kd).
  • SPR surface Plasmon resonance
  • the light chain shuffling process for affinity maturation was successful as the affinity constants of a mutant clone was shown to be approximately 25-fold higher than for the wildtype non-matured Fab 1F7.
  • the affinity matured hFab V L and V H genes were sub-cloned into the plasmids pFUSEss-CHIg-hG1, pFUSEss-CHIg-hG4 and pFUSE2ss-CLIg-hk (InvivoGen) for generation of whole human IgG1 and IgG4 antibodies. Fragments were PCR amplified using primers designed to introduce relevant restriction sites into the N′ and C′ terminal ends of the variable heavy (V H ) or variable light (V L ) chains.
  • Example primers for reformatting the V H chain were: pFUSE V H 4.4 For 5′-GAATTCGGAGGTCCAGCTGGTACAG-3′ and pFUSE V H 4.4 Rev 5′-GCTAGCGCTTGAGACGGTGACCGTGG-3′, and for reformatting the light chain: pFUSE V L 4.4 For 5′-GAATTCAGATGTTGTGATGACTCAGTCTCCAC-3′ and pFUSE V L 4.4 Rev 5′-CGTACGTTTGATTTCCACCTTGGTCCCTTGG-3′.
  • Plasmids and PCR products were digested and ligated as previously described. Ligation products were transformed into chemically competent DH5a cells by standard heat shock method.
  • V H cloning low salt LB agar (10 g Tryptone, 5 g Yeast extract, 5 g sodium chloride, 15 g bactoagar) with Zeocin resistance (25 ⁇ g/ml) was used for plating transformed colonies and for V L low salt LB agar with Blasticidin S resistance at 10 ⁇ g/ml.

Abstract

The present invention provides an isolated or recombinant CD83 binding protein comprising an antigen binding domain, wherein the antigen binding domain binds specifically to CD83 or a cell expressing CD83.

Description

    FIELD
  • The present disclosure relates to proteins that bind to CD83 and uses thereof, for example, in therapy, prophylaxis, diagnosis, or prognosis.
  • BACKGROUND CD83
  • CD83 is a 45 kDa, type-I membrane glycoprotein belonging to the immunoglobulin superfamily. CD83 is a cell surface marker predominantly expressed on mature dendritic cells (DCs). CD83 is minimally expressed on immature blood DC (BDC) and monocyte derived DC (MoDC). Due to its preferential expression on mature DCs, CD83 is an attractive target for immunotherapy.
  • Dendritic Cells and the Control of Innate and Adaptive Immune Responses
  • DCs link the innate and cognate (adaptive) immune systems. Innate immunity is the primary driver of non-specific immune activation in response to foreign agents. Immature DCs specialize in the internalisation of antigens and are distributed throughout peripheral tissues allowing for continuous antigenic surveillance. Termed professional antigen presenting cells (APCs) for their capability to drive primary T cell responses, DCs only require minimal quantities of antigen to initiate immune activation.
  • Immature DCs are attuned to a variety of signals from infectious and foreign material, which trigger differentiation and maturation (also known as activation) of the DCs. Whilst mature DCs are capable of antigen capture, this activation process reduces the capacity of these cells to internalize antigen, instead up-regulating cytokine release, activation marker expression and processing of antigen for major histocompatibility complex (MHC) presentation. Mature DCs loaded with processed antigen can efficiently recruit T cells, B cells, granulocytes, natural killer (NK) cells, monocytes and other cells of the innate immune system to amplify the response to antigen.
  • The molecules which become expressed upon DC differentiation and activation aid in linking innate and adaptive immunity. Mature DCs up-regulate the expression of chemokine receptors and adhesion molecules such as CD54, facilitating DC migration to lymph nodes for increased interaction with lymphocytes. Expression of co-stimulatory molecules, such as CD80 and CD86, provides the requisite co-stimulatory signals for T cell activation and the initiation of an antigen-specific immune response. Ligation of CD40 enhances the expression of co-stimulatory molecules and induces the release of IL-12 to facilitate T cell activation; differentiated T cells then orchestrate the complex interactions of the adaptive immune response.
  • Since DCs exert control over immune responses, activated DCs can be viewed as a target for intervention across a number of immunological diseases including malignancy and autoimmune diseases.
  • It will be apparent to the skilled person from the foregoing that compounds that target DCs may modulate the immune response. Accordingly, compounds that bind DCs are desirable, for example, for their therapeutic, prophylactic, diagnostic and prognostic uses.
  • SUMMARY
  • The present disclosure is based on the inventors' production of a human antibody (1F7 mAb) that binds specifically to CD83. 1F7 mAb was derived from a phage display library of human Fab sequences; the obtained Fab phage clone reformatted as an IgG1 mAb.
  • To improve the therapeutic efficacy of the 1F7 mAb, the inventors performed affinity maturation of the light chain to improve the affinity of the 1F7 mAb for CD83. Eleven new 1F7 Fab variants with distinct light chain variable region (VL) sequences and enhanced binding properties relative to the wild type Fab were obtained. The affinity matured antibodies included substitutions in the framework (FR) and complementarity determining regions (CDRs) of the VL. The effect of these substitutions was not predictable.
  • The present disclosure is broadly directed to a CD83 binding protein comprising an antigen binding domain which specifically binds to CD83.
  • In one example, the present disclosure provides a CD83 binding protein comprising an antigen binding domain which specifically binds to CD83, wherein the binding protein comprises a heavy chain variable region (VH) which comprises a sequence which is at least 90% identical to the amino acid sequence shown in SEQ ID NO:2. In one example, the heavy chain variable region (VH) comprises a sequence which is at least 90% identical to the frame work regions of the amino acid sequence shown in SEQ ID NO:2.
  • The present disclosure additionally or alternatively provides a CD83 binding protein comprising an antigen binding domain which specifically binds to CD83, wherein the binding protein comprises a heavy chain variable region (VH) which comprises three complementarity determining regions (CDRs) of the amino acid sequence shown in SEQ ID NO:2.
  • In one example, the VH CDR1 comprises amino acids 31 to 35 of SEQ ID NO:2, the VH CDR2 comprises amino acids 50 to 59 of SEQ ID NO:2 and the VH CDR3 comprises amino acids 99 to 106 of SEQ ID NO:2.
  • In one example, the VH CDR1 comprises the amino acid sequence shown in SEQ ID NO:3, the VH CDR2 comprises the amino acid sequence shown in SEQ ID NO:4 and the VH CDR3 comprises the amino acid sequence shown in SEQ ID NO:5.
  • The present disclosure additionally or alternatively provides a CD83 binding protein comprising an antigen binding domain which specifically binds to CD83, wherein the binding protein comprises a light chain variable region (VL) which comprises:
  • (i) a sequence which is at least 90% identical to any one of the amino acid sequences shown in SEQ ID NOs:6 to 17; or
  • (ii) three complementarity determining regions (CDRs) of any one of the amino acid sequences shown in SEQ ID NOs: 6 to 17; or
  • (iii) a sequence as shown in SEQ ID NO:27 or SEQ ID NO:28 or SEQ ID NO:29; or
  • (iv) three CDRs, wherein the amino acid sequence of CDR1, CDR2, or CDR3 is a consensus sequence shown in SEQ ID NOs:18 to 26.
  • In one example, the light chain variable region (VL) comprises a sequence which is at least 90% identical to the frame work regions of any one of the amino acid sequences shown in SEQ ID NOs: 6 to 17.
  • In one example, the VL CDR1 comprises amino acids 24 to 34 of any one of SEQ ID NOs: 6 to 17; the VL CDR2 comprises amino acids 50 to 56 of any one of SEQ ID NOs: 6 to 17; and the VL CDR3 comprises amino acids 89 to 97 of any one of SEQ ID NOs: 6 to 17.
  • In one example, the VL CDR1 comprises the amino acid sequence shown in SEQ ID NO:18, the VL CDR2 comprises the amino acid sequence shown in SEQ ID NO:21 and the VL CDR3 comprises the amino acid sequence shown in SEQ ID NO:24.
  • In one example, the amino acid sequence of VL CDR1 comprises a Glutamine (Q) or Serine (S) or Arginine (R) at position 1 and/or Aspartic acid (D) or Serine (S) at position 3 and/or Serine (S) or Threonine (T) at position 4 and/or Serine (S) or Leucine (L) at position 5 and/or Alanine (A) or Asparagine (N) at position 6 and/or Glycine or no residue at position 8 and/or Threonine (T) or Asparagine (N) or Serine (S) or no residue at position 9 and/or Asparagine (N) or Tyrosine (Y) at position 10 and/or Valine (V) or Proline (P) or Threonine (T) or Tyrosine (Y) at position 11 and/or Valine (V) or Aspartic acid (D) at position 12 and/or Asparagine (N) or Phenylalanine (F) at position 13.
  • In one example, the amino acid sequence of VL CDR2 comprises a Serine (S) or Glycine (G) or Threonine (T) at position 1 and/or Asparagine (N) or Threonine (T) or Lysine (K) at position 2 and/or Isoleucine (I) or Aspartic Acid (D) or Asparagine (N) at position 3 and/or Asparagine (N) or Glutamine (Q) at position 4.
  • In one example, the amino acid sequence of VL CDR3 comprises a Alanine (A) or Asparagine (N) at position 1 and/or Serine (S) or Alanine (A) or Valine (V) at position 2 and/or Arginine (R) or Tryptophan (W) at position 3 and/or Serine (S) or Aspartic acid (D) or Glycine (G) at position 5 and/or Serine (S) or Glycine (G) at position 6 and/or Leucine (L) or no residue at position 7 and/or Glycine (G) or Serine (S) or Alanine (A) or Asparagine (N) at position 8 and/or Asparagine (N) or Glycine (G) at position 9 and/or Histidine (H) or Lysine (L) or Glycine (G) or no residue at position 10 and/or Tryptophan (W) or Tyrosine (Y) or Valine (V) at position 11 and/or Valine (V) or Isoleucine (I) at position 12.
  • In one example, the VL CDR1 comprises the amino acid sequence shown in SEQ ID NO:19, the VL CDR2 comprises the amino acid sequence shown in SEQ ID NO:22 and the VL CDR3 comprises the amino acid sequence shown in SEQ ID NO:25.
  • In one example, the amino acid sequence of VL CDR1 comprises a Lysine (K) or Arginine (R) at position 1 and/or Serine (S) or Asparagine (N) at position 3 and/or Valine (V) or Isoleucine (I) or Leucine (L) at position 7 and/or Aspartic Acid (D) or Histidine (H) at position 8 and/or Alanine (A) or Aspartic Acid (D) at position 10 and/or Asparagine (N) or Lysine (K) at position 12 and/or Methionine (M) or Threonine (T) at position 13 and/or Phenylalanine (F) or Tyrosine (Y) at position 14 and/or Aspartic Acid (D) or Histidine (H) or Asparagine (N) or Tyrosine (Y) at position 16.
  • In one example, the amino acid sequence of VL CDR2 comprises a Lysine (K) or Glutamic Acid (E) at position 1 and/or Aspartic Acid (D) or Phenylalanine (F) at position 6.
  • In one example, the amino acid sequence of VL CDR3 comprises Glycine (G) or Alanine (A) or Serine (S) at position 3 and/or Threonine (T) or Leucine (L) at position 4 and/or Glutamine (Q) or Histidine (H) at position 5 and/or Tryptophan (W) or Proline (P) or no residue at position 6 and/or Proline (P) or Threonine (T) or Leucine (L) at position 7 and/or Arginine (R) or Tryptophan (W) at position 8.
  • In one example, the VL CDR1 comprises the amino acid sequence shown in SEQ ID NO:20, the VL CDR2 comprises the amino acid sequence shown in SEQ ID NO:23 and the VL CDR3 comprises the amino acid sequence shown in SEQ ID NO:26.
  • In one example, the amino acid sequence of VL CDR1 comprises Arginine (R) or Glutamine (Q) at position 1 and/or Aspartic Acid (D) or Serine (S) at position 5 and/or Isoleucine (I) or Leucine (L) at position 6 and/or Serine (S) or Isoleucine (I) at position 7 and/or Asparagine (N) or Serine (S) at position 8.
  • In one example, the amino acid sequence of VL CDR2 comprises Aspartic Acid (D) or Alanine (A) at position 1 and/or Asparagine (N) or Isoleucine (I) at position 4 and/or Glutamic Acid (E) or Glutamine (Q) at position 6.
  • In one example, the amino acid sequence of VL CDR3 comprises Glutamine (Q) or Histidine (H) at position 2 and/or Aspartic Acid (D) or Tyrosine (Y) at position 4 and/or Phenylalanine (F) or Tryptophan (W) at position 6.
  • In one example, the VH and the VL are in a single polypeptide chain. For example, the CD83 binding protein is:
  • (i) a single chain Fv fragment (scFv); or
  • (ii) a dimeric scFv (di-scFv); or
  • (iii) (i) or (ii) linked to a Fc or a heavy chain constant domain (CH) 2 and/or C H3; or
  • (iv) (i) or (ii) linked to a protein that binds to an immune effector cell.
  • In another example, the VL and VH are in separate polypeptide chains. For example, the CD83 binding protein is:
  • (i) a diabody; or
  • (ii) a triabody; or
  • (iii) a tetrabody; or
  • (iv) a Fab; or
  • (v) a F(ab′)2; or
  • (vi) a Fv; or
  • (vii) one of (i) to (vi) linked to a Fe or a C H2 and/or C H3; or
  • (viii) one of (i) to (vi) linked to a protein that binds to an immune effector cell.
  • In one example, a CD83 binding protein of the disclosure comprises an antigen binding domain that competitively inhibits the binding of an antibody to CD83, the antibody comprising a heavy chain sequence as shown in SEQ ID NO:1 and a light chain sequence as shown in SEQ ID NO:31.
  • Exemplary CD83 binding proteins of the present disclosure comprise a VH of the disclosure and a chimeric, de-immunized, humanized, human, synhumanized or primatized light chain or VL.
  • In an exemplary form of the present disclosure, the CD83 binding protein is an antibody. The antibody may comprise:
  • (i) a VH sequence as shown in SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:6; or
  • (ii) a VH sequence as shown in SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:7; or
  • (iii) a VH sequence as shown in SEQ ID NO:2 and a V1 sequence as shown in SEQ ID NO:8; or
  • (iv) a VH sequence as shown in SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:9; or
  • (v) a VH sequence as shown in SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:10; or
  • (vi) a VH sequence as shown in SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:11; or
  • (vi) a VH sequence as shown in SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:12; or
  • (vii) a VH sequence as shown in SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:13; or
  • (viii) a VH sequence as shown in SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:14; or
  • (ix) a VH sequence as shown in SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:15; or
  • (x) a VH sequence as shown in SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:16; or
  • (xi) a VH sequence as shown in SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:17.
  • In one example, the antibody depletes cells to which it binds, for example, immune cells such as antigen presenting cells (APC) (e.g., dendritic cells (DCs)) and/or lymphocytes (e.g., T cells).
  • As will be apparent to the skilled artisan from the disclosure herein, exemplary CD83 binding proteins are capable of depleting cells to which they bind without being conjugated to a toxic compound.
  • In one example, the CD83 binding protein is capable of inducing an effector function, for example, an effector function that results in killing a cell to which antibody binds. Exemplary effector functions include ADCC, antibody-dependent cell-mediated phagocytosis (ADCP) and/or complement-dependent cytotoxicity (CDC).
  • In one example, the CD83 binding protein is capable of inducing ADCC.
  • In one example, the CD83 binding protein comprises an antibody Fc region capable of inducing an effector function. For example, the effector function is Fe-mediated effector function. In one example, the Fe region is an IgG1 Fc region.
  • In one example, the CD83 binding protein is capable of inducing a similar (e.g., not significantly different or within about 10%) or the same level of effector function as a wild-type human IgG1 region.
  • In one example, the CD83 binding protein is capable of inducing an enhanced level of effector function.
  • In one example, the level of effector function induced by the CD83 binding protein is enhanced relative to that of the CD83 binding protein when it comprises a wild-type IgG1 Fe region.
  • In one example, a CD83 binding protein of the present disclosure is a naked antibody or antigen binding fragment thereof.
  • In one example, a CD83 binding protein of the present disclosure is a full length antibody.
  • In one example, a CD83 binding protein of the present disclosure binds to CD83 with an equilibrium dissociation constant (KD) of 5×10−7 M or less, such as 4.5×10−7 M or less, such as 4×10−7 M or less, such as 3.5×10−7 M or less, such as 3×10−7 M or less, such as 2.5×10−7 M or less, such as 2×10−7 M or less, such as 1.5×10−7 M or less, such as 1×10−7 M or less, such as 9.5×10−8 M or less, such as 9×10−8 M or less, such as 8.5×10−8 M or less, such as 8×10−8 M or less, such as 7.5×10−8 M or less, such as 7×10−8 M or less, such as 6.5×10−8 M or less, such as 6×10−8 M or less, 5.5×10−8 M or less, such as 5×10−8 M or less, such as 4.5×10−8 M or less, such as 4×10−8 M or less, such as 3.5×10−8 M or less, such as 3×10−8 M or less, such as 2.5×10−8 M or less, such as 2×10−8 M or less, such as 1.5×10−8 M or less, such as 1×10−8 M or less, such as 9.5×10−9 M or less, such as 9×10−9 M or less, such as 8.5×10−9 M or less, such as 8×10−9 M or less, such as 7.5×10−9 M or less, such as 7×10−9 M or less, such as 6.5×10−9 M or less, such as 6×10−9 M or less, such as 5.5×10−9 M or less, such as 5×10−9 M.
  • In one example, a CD83 binding protein of the present disclosure binds to CD83 with a KD of between about 5.5×10−8 M to about 5×10−8 M, for example, 5.1×10−8 M. In one example, the KD is between about 3×10−8 M and about 2×10−8 M, for example, is about 2.6×10−8 M. In one example, the KD is between about 1.5×10−8 M and about 9.5×10−9 M, for example, is about 1×10−9 M.
  • In one example, a CD83 binding protein of the present disclosure binds to CD83 with an on rate (KA) of 5×106 M−1s−1 or less, such as 4.5×106 M−1s−1 or less, such as 4×106 M−1s−1 or less, such as 3.5×106 M−1s−1 or less, such as 3×106 M−1s−1 or less, such as 2.5×106 M−1s−1 or less, such as 2×106 M−1s−1 or less, such as 1.5×106 M−1s−1 or less, such as 1×106 M−1s−1 or less, such as 9.5×105 M−1s−1 or less, such as 9×105 M−1s−1 or less, such as 8.5×105 M−1s−1 or less, such as 8×105 M−1s−1 or less, such as 7.5×105 M−1s−1 or less, such as 7×105 M−1s−1 or less, such as 6.5×105 M−1s−1 or less, such as 6×105 M−1s−1 or less, such as 5.5×105 M−1s−1 or less, such as 5×105 M−1s−1 or less, such as 4.5×105 M−1s−1 or less, such as 4×105 M−1s−1 or less, such as 3.5×105 M−1s−1 or less, such as 3×105 M−1s−1 or less, such as 2.5×105 M−1s−1 or less, such as 2×105 M−1s−1 or less, such as 1.5×105 M−1s−1 or less, such as 1×105 M−1s−1.
  • In one example, a CD83 binding protein of the present disclosure binds to CD83 with a KA of about 3×105 M−1s−1 or less. In one example, the KA is between about 1.5×105 M−1s−1 and about 2×105 M−1s−1, for example, is about 1.8×105 M−1s−1. In one example, the KA is between about 2×105 M−1s−1 and about 3×105 M−1s−1, for example, is about 2.6×105 M−1s−1.
  • In one example, a CD83 binding protein of the present disclosure dissociates from CD83 with an off rate of (Koff) of 5×10−2 s−1 or less, such as 4.5×10−2 s−1 or less, such as 4×10−2 s−1 or less, such as 3.5×10−2 s−1 or less, such as 3×10−2 s−1 or less, such as 2.5×10−2 s−1 or less, such as 2×10−2 s−1 or less, such as 1.5×10−2 s−1 or less, such as 1×10−2 s−1 or less, such as 9.5×10−3 s−1 or less, such as 9×10−3 s−1 or less, such as 8.5×10−3 s−1 or less, such as 8×103 s−1 or less, such as 7.5×10−3 s−1 or less, such as 7×10−3 s−1 or less, such as 6.5×10−3 s−1 or less, such as 6×10−3 s−1 or less, such as 5.5×10−3 s−1 or less, such as 5×10−3 s−1 or less, such as 4.5×10−3 s−1 or less, such as 4×10−3 s−1 or less, such as 3.5×10−3 s−1 or less, such as 3×10−3 s−1 or less, such as 2.5×10−3 s−1 or less, such as 2×10−3 s−1 or less, such as 1.5×10−3 s−1 or less, such as 1×10−3 s−1 or less, such as 9.5×10−4 s−1 or less, such as 9×10−4 s−1 or less, such as 8.5×10−4 s−1 or less, such as 8×10−4 s−1 or less.
  • In one example, a CD83 binding protein of the present disclosure dissociates from CD83 with a Koff of about 8×10−3 s−1 or less. In one example, the Koff is between about 6×10−3 s−1 and about 7×10−3 s−1, for example, is about 6.4×10−3 s−1. In one example, the Koff is between about 1×10−3 s−1 and about 2×10−3 s−1, for example, is about 1.7×10−3 s−1.
  • The disclosure also includes fragments, variants and derivatives of the antibody of the disclosure.
  • In one example, the disclosure provides a pharmaceutical composition comprising a CD83 binding protein according to the present disclosure and a suitable carrier, for example, a pharmaceutically acceptable carrier, diluent or excipient.
  • The present disclosure also provides an isolated or recombinant nucleic acid encoding a CD83 binding protein of the present disclosure.
  • Exemplary sequences of nucleic acids are discussed in the context of encoding CD83 binding proteins of the disclosure and are to be taken to apply mutatis mutandis to the present example of the disclosure.
  • In one example, the nucleic acid of the disclosure comprises a nucleotide sequence as shown in any one of SEQ ID NOs: 30 or 32 to 43.
  • The present disclosure also provides a nucleic acid capable of hybridizing to a nucleic acid of the disclosure under moderate or high stringency hybridization conditions.
  • The disclosure also includes fragments, homologs and derivatives of an isolated nucleic acid of the disclosure.
  • The present disclosure also provides a genetic construct comprising an isolated or recombinant nucleic acid of the disclosure and one or more additional nucleotide sequences, such as a promoter operably linked to the nucleic acid.
  • In one example, the genetic construct is an expression construct comprising an expression vector and an isolated or recombinant nucleic acid of the disclosure, wherein said isolated or recombinant nucleic acid is operably linked to one or more regulatory nucleic acids in said expression vector.
  • In one example, the genetic construct of the disclosure comprises a nucleic acid encoding a polypeptide (e.g., comprising a VH) operably linked to a promoter and a nucleic acid encoding another polypeptide (e.g., comprising a VL) operably linked to a promoter.
  • In another example, the genetic construct is a dicistronic genetic construct, for example, comprising the following operably linked components in 5′ to 3′ order:
  • (i) a promoter;
  • (ii) a nucleic acid encoding a first polypeptide;
  • (iii) an internal ribosome entry site; and
  • (iv) a nucleic acid encoding a second polypeptide.
  • For example, the first polypeptide comprises a VH and the second polypeptide comprises a VL, or the first polypeptide comprises a VL and the second polypeptide comprises a VH.
  • The present disclosure also contemplates separate genetic constructs one of which encodes a first polypeptide (e.g., comprising a VH) and another of which encodes a second polypeptide (e.g., comprising a VL). For example, the present disclosure also provides a composition comprising:
  • (i) a first genetic construct comprising a nucleic acid encoding a polypeptide (e.g., comprising a VH) operably linked to a promoter; and
  • (ii) a second genetic construct comprising a nucleic acid encoding a polypeptide (e.g., comprising a VL) operably linked to a promoter.
  • The disclosure also provides a cell comprising a genetic construct according to the present disclosure.
  • In one example, the present disclosure provides an isolated cell expressing a CD83 binding protein of the disclosure or a recombinant cell genetically-modified to express the CD83 binding protein of the invention.
  • In one example, the cell comprises the genetic construct of the disclosure or:
  • (i) a first genetic construct comprising a nucleic acid encoding a polypeptide (e.g., comprising a VH) operably linked to a promoter; and
  • (ii) a second genetic construct comprising a nucleic acid encoding a polypeptide (e.g., comprising a VL) operably linked to a promoter, wherein the first and second polypeptides form an antibody or an antigen binding fragment of the present disclosure.
  • The genetic construct can be integrated into the cell or remain episomal.
  • Examples of cells of the present disclosure include bacterial cells, yeast cells, insect cells or mammalian cells.
  • The present disclosure additionally provides a method for producing a CD83 binding protein of the disclosure, the method comprising maintaining the genetic construct(s) of the disclosure under conditions sufficient for the CD83 binding protein to be produced.
  • In one example, the method for producing a CD83 binding protein of the disclosure comprises culturing the cell of the disclosure under conditions sufficient for the CD83 binding protein to be produced and, optionally, secreted.
  • In one example, the method for producing a CD83 binding protein of the disclosure additionally comprises isolating the CD83 binding protein.
  • The present disclosure additionally provides a method of producing a recombinant a CD83 binding protein, the method including the steps of:
  • (i) culturing a cell containing an expression vector according to the disclosure such that the recombinant immunoglobulin or antibody is expressed in said host cell; and
  • (ii) isolating the recombinant CD83 binding protein.
  • In one example, a method for producing a CD83 binding protein of the disclosure additionally comprises formulating the CD83 binding protein with a pharmaceutically acceptable carrier.
  • The present disclosure also provides a method of therapeutic or prophylactic treatment of a disease or condition in a subject, the method including the step of administering the CD83 binding protein of the disclosure to the subject to thereby treat or prevent the disease or condition.
  • In one example, the subject is a mammal.
  • In one example, the mammal is a human.
  • In one example, the mammal is in need of treatment or prophylaxis.
  • In one example, the mammal in need suffers from the disease or condition.
  • In one example, the mammal in need is at risk of developing the disease or condition or a relapse thereof.
  • The present disclosure also provides for use of a CD83 binding protein of the disclosure or a composition of the disclosure in medicine.
  • The present disclosure additionally or alternatively provides for use of a CD83 binding protein of the disclosure in the manufacture of a medicament for the treatment of a disease or condition in a subject.
  • The present disclosure also provides a CD83 binding protein of the disclosure for use in the treatment of a disease or condition in a subject.
  • In one example, the disease or condition is a CD83 mediated disease or condition.
  • In one example, the disease or condition is an autoimmune disease or condition, or an inflammatory disease or condition. For example, the disease or condition is myasthemia gravis, multiple sclerosis, vasculitis, chronic inflammatory bowel diseases such as Morbus Crohn or colitis ulcerosa, HLA B27-associated autoimmune disorders such as Morbus Bechterew, and systemic lupus erythematosis, skin diseases such as psoriasis, rheumatoid arthritis, and insulin-dependent diabetes mellitus in a subject.
  • In one example, the condition is graft versus host disease.
  • In one example, the disease or condition is caused by the dysfunction or undesired function of the immune system or a cellular response involving antigen presenting cells (APC) (e.g., dendritic cells (DCs)) and/or lymphocytes (e.g., T cells) in a subject, the method comprising administering a CD83 binding protein or composition of the disclosure to the subject.
  • In another example, the disease or condition is rejection of a cell, tissue or organ graft.
  • In another example, the disease or condition is rejection of a stem cell graft, for example, an hematopoietic stem cell transplantation (HSCT) or an umbilical cord blood transplantation (UCBT) or an endothelial progenitor cell transplant. For example, rejection of the stem cell transplant occurs as a result of graft versus host disease or host versus graft disease. The HSCT may be derived from, for example, the bone marrow directly or from the peripheral blood following mobilization of cells from the bone marrow (e.g. by administration of G-CSF) or directly from donor umbilical cord blood.
  • In one example, the method comprises administering an effective amount of the CD83 binding protein, such as a therapeutically effective amount of the CD83 binding protein to the donor and/or recipient. The graft may be contacted with an effective amount of the CD83 binding protein ex vivo or in vivo prior to or after being transplanted.
  • The present disclosure also provides a method for down-regulating the immunoactivity of an allogeneic graft, the method comprising contacting the graft with a CD83 binding protein or a composition of the disclosure.
  • In one example, the allogeneic graft is a hematopoietic stem cell graft.
  • In one example, the graft is contacted with a CD83 binding protein or a composition of the disclosure ex vivo.
  • In another or additional example, the recipient of the graft is administered a CD83 binding protein or a composition of the disclosure prior to and/or simultaneously with and/or following transplant of the graft.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a graphical representation of the high reactivity of hFab's from the phage display library to recombinant CD83-His as analysed by ELISA. Analysis was performed in duplicate; error bars represent ranges of individual values. The control antigen is an irrelevant antigen of the Fc portion of human IgG.
  • FIG. 2 is a graphical representation of the reactivity and specificity of purified hFab clone 1F7. A. Purified 1F7 bound specifically in a dose dependent manner to CD83-His, detected with anti-kappa-HRP antibody. B. 1F7 binds specifically to hCD83 ectodomain (Fc and His tagged) and does not recognise mouse CD83 and does react non-specifically to 5 other antigens analysed.
  • FIG. 3 is a graphical representation of the cell surface binding specificity of 1F7 hFab to KMH2 cells expressing CD83. A. 1F7 Fab pre-mixed with anti-human F(ab′)2 resulted a shift in fluorescence to the right analysed by FACS. Addition of mCD83 and hCD83-His and hCD83-Fc blocked fluorescence by 95%. B. Titration of hFab 1F7 (100, 25, 5, 1 μg/ml) with a 2:1 molar ratio of anti-human F(ab′)2 showed a high level of fluorescence indicating binding of hFab to cell-surface CD83, which reduced in a dose-dependent manner.
  • FIG. 4 is a graphical representation of the protein sequences of VL chain shuffled clones after 4 rounds of stringent selection on CD83-His antigen. The differences in CDRs and framework regions 2 and 3 of the clones are show in bold font.
  • FIG. 5 is a graphical representation of enrichment of higher affinity clones by light chain shuffling as determined by ELISA. Enrichment in the binding to CD83-His was observed after 2 rounds of panning with further increases in binding in round 3 and 4. Analysis was performed in duplicate; error bars indicate ranges of individual values.
  • SEQUENCE LISTING
    • SEQ ID NO: 1 amino acid sequence of IF7 heavy chain
    • SEQ ID NO: 2 heavy chain VH amino acid sequence
    • SEQ ID NO: 3 heavy chain VH CDR1 amino acid sequence
    • SEQ ID NO: 4 heavy chain VH CDR2 amino acid sequence
    • SEQ ID NO: 5 heavy chain VH CDR3 amino acid sequence
    • SEQ ID NO: 6 light chain VL amino acid sequence of IF7
    • SEQ ID NO: 7 light chain VL amino acid sequence of hFab4.1
    • SEQ ID NO: 8 light chain VL amino acid sequence of hFab4.2
    • SEQ ID NO: 9 light chain VL amino acid sequence of hFab4.3
    • SEQ ID NO: 10 light chain VL amino acid sequence of hFab4.4
    • SEQ ID NO: 11 light chain VL amino acid sequence of hFab4.5
    • SEQ ID NO: 12 light chain VL amino acid sequence of hFab4.7
    • SEQ ID NO: 13 light chain VL amino acid sequence of hFab4.8
    • SEQ ID NO: 14 light chain VL amino acid sequence of hFab4.9
    • SEQ ID NO: 15 light chain VL amino acid sequence of hFab4.10
    • SEQ ID NO: 16 light chain VL amino acid sequence of hFab4.12
    • SEQ ID NO: 17 light chain VL amino acid sequence of hFab4.18
    • SEQ ID NO: 18 light chain VL CDR1 amino acid consensus sequence of IF7, hFab4.1, hFab4.10 and hFab4.12
    • SEQ ID NO: 19 light chain VL CDR1 amino acid consensus sequence of hFab4.2; hFab4.3; hFab4.4; hFab4.5; hFab4.6; hFab4.7 and hFab4.18
    • SEQ ID NO: 20 light chain VL CDR1 amino acid consensus sequence of hFab4.8 and hFab4.9
    • SEQ ID NO: 21 light chain VL CDR2 amino acid consensus sequence of IF7, hFab4.1, hFab4.10 and hFab4.12
    • SEQ ID NO: 22 light chain VL CDR2 amino acid consensus sequence of hFab4.2; hFab4.3; hFab4.4; hFab4.5; hFab4.6; hFab4.7 and hFab4.18
    • SEQ ID NO: 23 light chain VL CDR2 amino acid consensus sequence of hFab4.8 and hFab4.9
    • SEQ ID NO: 24 light chain VL CDR3 amino acid consensus sequence of 1F7, hFab4.1, hFab4.10 and hFab4.12
    • SEQ ID NO: 25 light chain VL CDR3 amino acid consensus sequence of hFab4.2; hFab4.3; hFab4.4; hFab4.5; hFab4.6; hFab4.7 and hFab4.18
    • SEQ ID NO: 26 light chain VL CDR3 amino acid consensus sequence of hFab4.8 and hFab4.9
    • SEQ ID NO: 27 VL amino acid consensus sequence of IF7, hFab4.1, hFab4.10 and hFab4.12
    • SEQ ID NO: 28 VL amino acid consensus sequence of hFab4.2; hFab4.3; hFab4.4; hFab4.5; hFab4.6; hFab4.7 and hFab4.18
    • SEQ ID NO: 29 VL amino acid consensus sequence of hFab4.8 and hFab4.9
    • SEQ ID NO: 30 heavy chain VH nucleotide sequence
    • SEQ ID NO: 31 amino acid sequence of IF7 light chain
    • SEQ ID NO: 32 nucleotide sequence of IF7 light chain
    • SEQ ID NO: 33 nucleotide sequence of hFab4.1 light chain
    • SEQ ID NO: 34 nucleotide sequence of hFab4.2 light chain
    • SEQ ID NO: 35 nucleotide sequence of hFab4.3 light chain
    • SEQ ID NO: 36 nucleotide sequence of hFab4.4 light chain
    • SEQ ID NO: 37 nucleotide sequence of hFab4.5 light chain
    • SEQ ID NO: 38 nucleotide sequence of hFab4.7 light chain
    • SEQ ID NO: 39 nucleotide sequence of hFab4.8 light chain
    • SEQ ID NO: 40 nucleotide sequence of hFab4.9 light chain
    • SEQ ID NO: 41 nucleotide sequence of hFab4.10 light chain
    • SEQ ID NO: 42 nucleotide sequence of hFab4.12 light chain
    • SEQ ID NO: 43 nucleotide sequence of hFab4.18 light chain
    • SEQ ID NO: 44 amino acid sequence of human CD83 isoform a
    • SEQ ID NO: 45 amino acid sequence of human CD83 isoform b
    • SEQ ID NO: 46 amino acid sequence of human CD83 isoform c
    DETAILED DESCRIPTION General
  • Throughout this specification, unless specifically stated otherwise or the context requires otherwise, reference to a single step, composition of matter, group of steps or group of compositions of matter shall be taken to encompass one and a plurality (i.e. one or more) of those steps, compositions of matter, groups of steps or groups of compositions of matter. Thus, as used herein, the singular forms “a”, “an” and “the” include plural aspects unless the context clearly dictates otherwise. For example, reference to “a” includes a single as well as two or more; reference to “an” includes a single as well as two or more; reference to “the” includes a single as well as two or more and so forth.
  • Each example of the present disclosure described herein is to be applied mutatis mutandis to each and every other example unless specifically stated otherwise.
  • Those skilled in the art will appreciate that the disclosure herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the disclosure includes all such variations and modifications. The disclosure also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations or any two or more of said steps or features.
  • The present disclosure is not to be limited in scope by the specific examples described herein, which are intended for the purpose of exemplification only. Functionally-equivalent products, compositions and methods are clearly within the scope of the disclosure, as described herein.
  • The present disclosure is performed without undue experimentation using, unless otherwise indicated, conventional techniques of molecular biology, microbiology, virology, recombinant DNA technology, peptide synthesis in solution, solid phase peptide synthesis, and immunology. Such procedures are described, for example, in Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, New York, Second Edition (1989), whole of Vols I, II, and III; Benny K. C. Lo, Antibody Engineering: Methods and Protocols, (2004) Humana Press, Vol. 248; DNA Cloning: A Practical Approach, Vols. I and II (D. N. Glover, ed., 1985), IRL Press, Oxford, whole of text; Oligonucleotide Synthesis: A Practical Approach (M. J. Gait, ed, 1984) IRL Press, Oxford, whole of text, and particularly the papers therein by Gait, pp 1-22; Atkinson et al., pp 35-81; Sproat et al., pp 83-115; and Wu et al., pp 135-151; Nucleic Acid Hybridization: A Practical Approach (B. D. Hames & S. J. Higgins, eds., 1985) IRL Press, Oxford, whole of text; Immobilized Cells and Enzymes: A Practical Approach (1986) IRL Press, Oxford, whole of text; Perbal, B., A Practical Guide to Molecular Cloning (1984); Methods In Enzymology (S. Colowick and N. Kaplan, eds., Academic Press, Inc.), whole of series; J. F. Ramalho Ortigao, “The Chemistry of Peptide Synthesis” In: Knowledge database of Access to Virtual Laboratory website (Interactiva, Germany); Sakakibara Biochem. Biophys. Res. Commun. 73: 336-342, 1976; Merrifield J. Am. Chem. Soc. 85: 2149-2154, 1963; Barany and Merrifield (1979) in The Peptides (Gross, E. and Meienhofer, J. eds.), vol. 2, pp. 1-284, Academic Press, New York. 12. Wunsch, E., ed. (1974) Synthese von Peptiden in Houben-Weyls Metoden der Organischen Chemie (Minler, E., ed.), vol. 15, 4th edn., Parts 1 and 2, Thieme, Stuttgart; Bodanszky, M. (1984) Principles of Peptide Synthesis, Springer-Verlag, Heidelberg; Bodanszky, M. & Bodanszky, A. (1984) The Practice of Peptide Synthesis, Springer-Verlag, Heidelberg; Bodanszky Int. J. Peptide Protein Res. 25: 449-474, 1985; Handbook of Experimental Immunology, Vols. I-IV (D. M. Weir and C. C. Blackwell, eds., 1986, Blackwell Scientific Publications); and Animal Cell Culture: Practical Approach, 3rd edn (John R. W. Masters, ed., 2000), ISBN 0199637970, whole of text.
  • The term “and/or”, e.g., “X and/or Y” shall be understood to mean either “X and Y” or “X or Y” and shall be taken to provide explicit support for both meanings or for either meaning.
  • Throughout this specification the word “comprise”, or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.
  • Selected Definitions
  • CD83 is a single-pass type I membrane protein and member of the immunoglobulin superfamily. Three human transcript variants encoding different isoforms have been found. For the purposes of nomenclature and not limitation, the amino acid sequences of the human CD83 (hCD83) isoforms are shown in SEQ ID NO:44 (NP_004224.1; isoform a), SEQ ID NO:45 (NP_001035370.1; isoform b) and SEQ ID NO:46 (NP_001238830.1; isoform c). Accordingly, in one example, the amino acid sequence of human CD83 comprises an amino acid sequence as shown in SEQ ID NO:44, 45, or 46. Homologs of CD83 can be found in Pan troglodytes (XP_518248.2), Macaca mulatta (XP_001093591.1), Canis lupus familiaris (XP_852647.1), Bos Taurus (NP_001040055.1), Mus musculus (NP_033986.1), Rattus norvegicus (NP_001101880.1) and Gallus gallus (XP_418929.1). Exemplary CD83 binding proteins of the disclosure bind to or bind specifically to hCD83, including recombinant forms thereof (rhCD83).
  • The term “isolated protein” or “isolated polypeptide” is intended to mean a protein or polypeptide that by virtue of its origin or source of derivation is not associated with naturally-associated components that accompany it in its native state; is substantially free of other proteins from the same source. A protein may be rendered substantially free of naturally associated components or substantially purified by isolation, using protein purification techniques known in the art. By “substantially purified” is meant the protein is substantially free of contaminating agents, for example, at least about 70% or 75% or 80% or 85% or 90% or 95% or 96% or 97% or 98% or 99% free of contaminating agents.
  • The term “recombinant” shall be understood to mean the product of artificial genetic recombination. Accordingly, in the context of a recombinant protein comprising an antigen binding domain, this term does not encompass an antibody naturally-occurring within a subject's body that is the product of natural recombination that occurs during B cell maturation. However, if such an antibody is isolated, it is to be considered an isolated protein comprising an antigen binding domain. Similarly, if nucleic acid encoding the protein is isolated and expressed using recombinant means, the resulting protein is a recombinant protein comprising an antigen binding domain. A recombinant protein also encompasses a protein expressed by artificial recombinant means when it is within a cell, tissue or subject, for example, in which it is expressed.
  • The term “CD83 binding protein” shall be taken to include a single polypeptide chain (i.e., a series of contiguous amino acids linked by peptide bonds), or a series of polypeptide chains covalently or non-covalently linked to one another (i.e., a polypeptide complex or protein) capable of binding to CD83 in the manner described and/or claimed herein. For example, the series of polypeptide chains can be covalently linked using a suitable chemical or a disulphide bond. Examples of non-covalent bonds include hydrogen bonds, ionic bonds, Van der Waals forces, and hydrophobic interactions.
  • The term “polypeptide” or “polypeptide chain” will be understood from the foregoing paragraph to mean a series of contiguous amino acids linked by peptide bonds.
  • As used herein, the term “antigen binding domain” shall be taken to mean a region of an antibody that is capable of specifically binding to an antigen, that is, a VH or a VL or an Fv comprising both a VH and a VL. The antigen binding domain need not be in the context of an entire antibody, for example, it can be in isolation (e.g., a domain antibody) or in another form (e.g., scFv).
  • For the purposes for the present disclosure, the term “antibody” includes a protein capable of specifically binding to one or a few closely related antigens (e.g., CD83) by virtue of an antigen binding domain contained within a Fv. This term includes four chain antibodies (e.g., two light (L) chains and two heavy (H) chains), recombinant or modified antibodies (e.g., chimeric antibodies, humanized antibodies, human antibodies, CDR-grafted antibodies, primatized antibodies, de-immunized antibodies, synhumanized antibodies, half-antibodies, bispecific antibodies). An antibody generally comprises constant domains, which can be arranged into a constant region or constant fragment or fragment crystallizable (Fc). Exemplary forms of antibodies comprise a four-chain structure as their basic unit. Full-length antibodies comprise two heavy chains (˜50 to 70 kDa each) covalently linked and two light chains (˜23 kDa each). A light chain generally comprises a variable region (if present) and a constant domain and in mammals is either a κ light chain or a λ light chain. A heavy chain generally comprises a variable region and one or two constant domain(s) linked by a hinge region to additional constant domain(s). Heavy chains of mammals are of one of the following types α, δ, ε, γ, or μ. Each light chain is also covalently linked to one of the heavy chains. For example, the two heavy chains and the heavy and light chains are held together by inter-chain disulfide bonds and by non-covalent interactions. The number of inter-chain disulfide bonds can vary among different types of antibodies. Each chain has an N-terminal variable region (VH or VL wherein each are ˜110 amino acids in length) and one or more constant domains at the C-terminus. The constant domain of the light chain (CL which is ˜110 amino acids in length) is aligned with and disulfide bonded to the first constant domain of the heavy chain (C H1 which is 330 to 440 amino acids in length). The light chain variable region is aligned with the variable region of the heavy chain. The antibody heavy chain can comprise 2 or more additional CH domains (such as, C H2, C H3 and the like) and can comprise a hinge region between the C H1 and C H2 constant domains. Antibodies can be of any type (e.g., IgG, IgE, IgM, IgD, IgA, and IgY), class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass. In one example, the antibody is a murine (mouse or rat) antibody or a primate (such as, human) antibody. In one example, the antibody is humanized, synhumanized, chimeric, CDR-grafted or deimmunized.
  • The term “naked antibody” refers to an antibody that is not conjugated to another compound, for example, a toxic compound or radiolabel.
  • As used herein, “variable region” refers to the portions of the light and/or heavy chains of an antibody as defined herein that is capable of specifically binding to an antigen and, includes amino acid sequences of complementarity determining regions (CDRs), that is, CDR, CDR2, and CDR3, and framework regions (FRs). For example, the variable region comprises three or four FRs (e.g., FR1, FR2, FR3 and optionally FR4) together with three CDRs. VH refers to the variable region of the heavy chain. VL refers to the variable region of the light chain.
  • As used herein, the term “complementarity determining regions” (syn. CDRs, i.e., CDR1, CDR2, and CDR3) refers to the amino acid residues of an antibody variable region the presence of which are major contributors to specific antigen binding. Each variable region domain (VH or VL) typically has three CDR regions identified as CDR1, CDR2 and CDR3. In one example, the amino acid positions assigned to CDRs and FRs are defined according to Kabat Sequences of Proteins of Immunological Interest, National Institutes of Health, Bethesda, Md., 1987 and 1991 (also referred to herein as “the Kabat numbering system”). In another example, the amino acid positions assigned to CDRs and FRs are defined according to the Enhanced Chothia Numbering Scheme (http://www.bioinfo.org.uk/mdex.html). According to the numbering system of Kabat, V1 FRs and CDRs are positioned as follows: residues 1 to 30 (FR1), 31 to 35 (CDR1), 36 to 49 (FR2), 50 to 65 (CDR2), 66 to 94 (FR3), 95 to 102 (CDR3) and 103 to 113 (FR4). According to the numbering system of Kabat, VL FRs and CDRs are positioned as follows: residues 1 to 23 (FR1), 24 to 34 (CDR1), 35 to 49 (FR2), 50 to 56 (CDR2), 57 to 88 (FR3), 89 to 97 (CDR3) and 98 to 107 (FR4). The present disclosure is not limited to FRs and CDRs as defined by the Kabat numbering system, but includes all numbering systems, including the canonical numbering system or of Chothia and Lesk J. Mol. Biol. 196: 901-917, 1987; Chothia et al., Nature 342: 877-883, 1989; and/or Al-Lazikani et al., J. Mol. Biol. 273: 927-948, 1997; the numbering system of Honnegher and PlQkthun J. Mol. Biol. 309: 657-670, 2001; or the IMGT system discussed in Giudicelli et al., Nucleic Acids Res. 25: 206-211 1997. In one example, the CDRs are defined according to the Kabat numbering system. Optionally, heavy chain CDR2 according to the Kabat numbering system does not comprise the five C-terminal amino acids listed herein or any one or more of those amino acids are substituted with another naturally-occurring amino acid. In an additional, or alternative, option, light chain CDR1 does not comprise the four N-terminal amino acids listed herein or any one or more of those amino acids are substituted with another naturally-occurring amino acid. In this regard, Padlan et al., FASEB J., 9: 133-139, 1995 established that the five C-terminal amino acids of heavy chain CDR2 and/or the four N-terminal amino acids of light chain CDR1 are not generally involved in antigen binding.
  • “Framework regions” (FRs) are those variable region residues other than the CDR residues.
  • As used herein, the term “Fv” shall be taken to mean any protein, whether comprised of multiple polypeptides or a single polypeptide, in which a VL and a VH associate and form a complex having an antigen binding domain that is capable of specifically binding to an antigen. The VH and the VL which form the antigen binding domain can be in a single polypeptide chain or in different polypeptide chains. Furthermore, a Fv of the disclosure (as well as any protein of the disclosure) may have multiple antigen binding domains which may or may not bind the same antigen. This term shall be understood to encompass fragments directly derived from an antibody as well as proteins corresponding to such a fragment produced using recombinant means. In some examples, the VH is not linked to a heavy chain constant domain (CH) 1 and/or the VL is not linked to a light chain constant domain (C). Exemplary Fv containing polypeptides or proteins include a Fab fragment, a Fab′ fragment, a F(ab′) fragment, a scFv, a diabody, a triabody, a tetrabody or higher order complex, or any of the foregoing linked to a constant region or domain thereof, for example, C H2 or C H3 domain, for example, a minibody.
  • A “Fab fragment” consists of a monovalent antigen-binding fragment of an immunoglobulin, and can be produced by digestion of a whole antibody with the enzyme papain, to yield a fragment consisting of an intact light chain and a portion of a heavy chain or can be produced using recombinant means.
  • A “Fab′ fragment” of an antibody can be obtained by treating a whole antibody with pepsin, followed by reduction, to yield a molecule consisting of an intact light chain and a portion of a heavy chain comprising a VH and a single constant domain. Two Fab′ fragments are obtained per antibody treated in this manner. A Fab′ fragment can also be produced by recombinant means.
  • A “F(ab′)2 fragment” of an antibody consists of a dimer of two Fab′ fragments held together by two disulfide bonds, and is obtained by treating a whole antibody molecule with the enzyme pepsin, without subsequent reduction.
  • A “Fab2” fragment is a recombinant fragment comprising two Fab fragments linked using, for example, a leucine zipper or a C H3 domain.
  • A “single chain Fv” or “scFv” is a recombinant molecule containing the variable region fragment (Fv) of an antibody in which the variable region of the light chain and the variable region of the heavy chain are covalently linked by a suitable, flexible polypeptide linker.
  • As used herein, the term “binds” in reference to the interaction of a CD83 binding protein or an antigen binding domain thereof with an antigen means that the interaction is dependent upon the presence of a particular structure (e.g., an antigenic determinant or epitope) on the antigen. For example, an antibody recognizes and binds to a specific protein structure rather than to proteins generally. If an antibody binds to epitope “A”, the presence of a molecule containing epitope “A” (or free, unlabeled “A”), in a reaction containing labeled “A” and the antibody, will reduce the amount of labeled “A” bound to the antibody.
  • As used herein, the term “specifically binds” or “binds specifically” shall be taken to mean that a protein of the disclosure reacts or associates more frequently, more rapidly, with greater duration and/or with greater affinity with a particular antigen or cell expressing same than it does with alternative antigens or cells. For example, a protein that specifically binds to an antigen binds that antigen with greater affinity, avidity, more readily, and/or with greater duration than it binds to other antigens. For example, a protein binds to CD83 (e.g., hCD83) with materially greater affinity than it does to other immunoglobulin superfamily ligands or to antigens commonly recognized by polyreactive natural antibodies (i.e., by naturally occurring antibodies known to bind a variety of antigens naturally found in humans). It is also understood by reading this definition that, for example, a protein that specifically binds to a first antigen may or may not specifically bind to a second antigen. As such, “specific binding” does not necessarily require exclusive binding or non-detectable binding of another antigen, this is meant by the term “selective binding”. In one example, “specific binding” of a CD83 binding protein of the disclosure to an antigen, means that the protein binds to the antigen with an equilibrium constant (KD) of 100 nM or less, such as 50 nM or less, for example, 20 nM or less, such as, 15 nM or less or 10 nM or less or 5 nM or less or 1 nM or less or 500 pM or less or 400 pM or less or 300 pM or less or 200 pM or less or 100 pM or less.
  • As used herein, the term “epitope” (syn. “antigenic determinant”) shall be understood to mean a region of CD83 to which a protein comprising an antigen binding domain of an antibody binds. This term is not necessarily limited to the specific residues or structure to which the protein makes contact. For example, this term includes the region spanning amino acids contacted by the protein and/or at least 5 to or 2 to 5 or 1 to 3 amino acids outside of this region. In some examples, the epitope is a linear series amino acids. An epitope may also comprise a series of discontinuous amino acids that are positioned close to one another when CD83 is folded, that is, a “conformational epitope”. The skilled artisan will also be aware that the term “epitope” is not limited to peptides or polypeptides. For example, the term “epitope” includes chemically active surface groupings of molecules such as sugar side chains, phosphoryl side chains, or sulfonyl side chains, and, in certain examples, may have specific three dimensional structural characteristics, and/or specific charge characteristics. An epitope or peptide or polypeptide comprising same can be administered to an animal to generate antibodies against the epitope.
  • The term “competitively inhibits” shall be understood to mean that a CD83 binding protein of the disclosure reduces or prevents binding of a recited antibody to CD83, for example, to hCD83. This may be due to the protein (or antigen binding domain) binding to the same or an overlapping epitope as the antibody. It will be apparent from the foregoing that the protein need not completely inhibit binding of the antibody, rather it need only reduce binding by a statistically significant amount, for example, by at least about 10% or 20% or 30% or 40% or 50% or 60% or 70% or 80% or 90% or 95%. Methods for determining competitive inhibition of binding are known in the art and/or described herein. For example, the antibody is exposed to CD83 either in the presence or absence of the protein. If less antibody binds in the presence of the protein than in the absence of the protein, the protein is considered to competitively inhibit binding of the antibody. In one example, the competitive inhibition of binding is caused by the antigen binding domain of the protein on CD83 overlapping with the antigen binding domain of the antibody.
  • “Overlapping” in the context of two epitopes means that two epitopes share a sufficient number of amino acid residues to permit a binding protein of the disclosure that binds to one epitope to competitively inhibit the binding of a recited antibody to CD83 that binds to the other epitope. For example, the “overlapping” epitopes share at least 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 amino acids.
  • As used herein, a “CD83 associated condition or disease” refers to any condition or disease that is caused by or associated with CD83 or a cell expressing CD83. The skilled artisan will be readily able to determine such conditions or diseases based on the disclosure herein and/or by performing an assay to diagnose a CD83 associated condition or disease. In this regard, in some examples the condition or disease is an inflammatory condition or disease, or an autoimmune condition or disease. A description of exemplary conditions and diseases is included herein.
  • As used herein, the terms “preventing”, “prevent” or “prevention” include administering a protein of the disclosure to thereby stop or hinder the development of at least one symptom of a condition or disease. This term also encompasses treatment of a subject in remission to prevent or hinder relapse. For example, a subject suffering from relapsing-remitting multiple sclerosis is treated during remission to thereby prevent a relapse.
  • As used herein, the terms “treating”, “treat” or “treatment” include administering a protein described herein to thereby reduce or eliminate at least one symptom of a specified condition or disease.
  • As used herein, the term “subject” shall be taken to mean any animal, such as, a mammal. In one example, the mammal is a human or non-human primate. In one example, the mammal is a human.
  • Reference herein to a “sample” should be understood as a reference to any sample derived from a subject such as, but not limited to, a body fluid (e.g., blood or blood fraction such as serum or plasma, tears, urine, synovial fluid or cerebrospinal fluid), cellular material (e.g. tissue aspirate), tissue biopsy specimens or surgical specimens. In some examples, the “sample” is any one or more of serum, plasma, PBMCs, or a buffy coat fraction.
  • As used herein, the term “diagnosis”, and variants thereof such as, but not limited to, “diagnose”, “diagnosed” or “diagnosing” includes any primary diagnosis of a clinical state or diagnosis of recurrent disease.
  • “Prognosis”, “prognosing” and variants thereof as used herein refer to the likely outcome or course of a disease, including the chance of recovery or recurrence or the outcome of treatment.
  • The term “expression construct” is to be taken in its broadest context and includes a nucleic acid comprising one or more promoter sequences operably linked with one or more nucleic acids as described herein.
  • The term “expression vector” refers to a nucleic acid comprising an expression construct that is additionally capable of maintaining and or replicating nucleic acid in an expressible format. For example, an expression vector may comprise a plasmid, bacteriophage, phagemid, cosmid, virus sub-genomic or genomic fragment. Selection of appropriate vectors is within the knowledge of those having skill in the art.
  • As used herein, the term “promoter” is to be taken in its broadest context and includes the transcriptional regulatory sequences of a genomic gene, including the TATA box or initiator element, which is required for accurate transcription initiation, with or without additional regulatory elements (e.g., upstream activating sequences, transcription factor binding sites, enhancers and silencers) that alter expression of a nucleic acid, for example, in response to a developmental and/or external stimulus, or in a tissue specific manner. In the present context, the term “promoter” is also used to describe a recombinant, synthetic or fusion nucleic acid, or derivative which confers, activates or enhances the expression of a nucleic acid to which it is operably linked.
  • Exemplary promoters can contain additional copies of one or more specific regulatory elements to further enhance expression and/or alter the spatial expression and/or temporal expression of said nucleic acid.
  • As used herein, the term “operably linked to” means positioning a promoter relative to a nucleic acid such that expression of the nucleic acid is controlled by the promoter. A promoter can be operably linked to numerous nucleic acids, for example, through an internal ribosome entry site.
  • Proteins Comprising Antigen Binding Domains Antibodies Library-Based Methods
  • The present disclosure also encompasses screening of libraries of antibodies or proteins comprising antigen binding domains thereof (e.g., comprising variable regions thereof) to identify a CD83 binding protein of the disclosure. For example, a library comprising a VH of the disclosure and a plurality of VL regions can be screened to identify a CD83 binding protein of the disclosure.
  • Examples of libraries contemplated by this disclosure include naïve libraries (from unchallenged subjects), immunized libraries (from subjects immunized with an antigen) or synthetic libraries. Nucleic acid encoding antibodies or regions thereof (e.g., variable regions) are cloned by conventional techniques (e.g., as disclosed in Sambrook and Russell, eds, Molecular Cloning: A Laboratory Manual, 3rd Ed, vols. 1-3, Cold Spring Harbor Laboratory Press, 2001) and used to encode and display proteins using a method known in the art. Other techniques for producing libraries of proteins are described in, for example in U.S. Pat. No. 6,300,064 (e.g., a HuCAL library of Morphosys AG), U.S. Pat. Nos. 5,885,793, 6,204,023, 6,291,158, or U.S. Pat. No. 6,248,516.
  • The CD83 binding proteins according to the disclosure may be soluble secreted proteins or may be presented as a fusion protein on the surface of a cell, or particle (e.g., a phage or other virus, a ribosome or a spore). Various display library formats are known in the art. For example, the library is an in vitro display library (e.g., a ribosome display library, a covalent display library or a mRNA display library, e.g., as described in U.S. Pat. No. 7,270,969). In yet another example, the display library is a phage display library wherein proteins comprising antigen binding domains of antibodies are expressed on phage, for example, as described in U.S. Pat. Nos. 6,300,064, 5,885,793, 6,204,023, 6,291,158, or U.S. Pat. No. 6,248,516. Other phage display methods are known in the art and are contemplated by the present disclosure. Similarly, methods of cell display are contemplated by the disclosure, for example, bacterial display libraries, for example, as described in U.S. Pat. No. 5,516,637; yeast display libraries, for example, as described in U.S. Pat. No. 6,423,538; or a mammalian display library.
  • Methods for screening display libraries are known in the art. In one example, a display library of the present disclosure is screened using affinity purification, for example, as described in Scopes (In: Protein purification: principles and practice, Third Edition, Springer Verlag, 1994). Methods of affinity purification typically involve contacting proteins comprising antigen binding domains displayed by the library with a target antigen (e.g., CD83) and, following washing, eluting those domains that remain bound to the antigen.
  • Any variable regions or scFvs identified by screening are readily modified into a complete antibody, if desired. Exemplary methods for modifying or reformatting variable regions or scFvs into a complete antibody are described, for example, in Jones et al., J. Immunol. Methods 354: 85-90, 2010; or Jostock et al., J. Immunol. Methods, 289: 65-80, 2004. Alternatively, or additionally, standard cloning methods are used, e.g., as described in Ausubel et al., (In: Current Protocols in Molecular Biology. Wiley Interscience, ISBN 047 150338, 1987), and/or (Sambrook et al., (In: Molecular Cloning: Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, New York, Third Edition 2001).
  • In one example, the present disclosure provides a method of producing or isolating a CD83 binding protein of the disclosure by screening a display library, for example, a phage display library, for example, as described in U.S. Pat. No. 6,300,064 and/or U.S. Pat. No. 5,885,793. For example, the present inventors have isolated scFvs by biopanning a human scFv immunoglobulin gene library by three rounds of selection against recombinant extracellular domain of human CD83. Once isolated, a CD83 binding protein of the invention can be cloned and expressed and optionally reformatted as, for example, an IgG1 antibody using known methods in the art.
  • In one example, the present disclosure provides a method of producing a CD83 binding protein, the method comprising:
  • (i) screening a CD83 binding protein preparation or library for a binding protein that binds to the extracellular domain of CD83, for example, the extracellular domain of recombinant human CD83; and
  • (ii) isolating a CD83 binding protein having a desired binding affinity for the extracellular domain of CD83.
  • In one example, a CD83 binding protein preparation is screened. A CD83 preparation may be made by, for example, immunizing an animal with a CD83 antigen so as to produce antibodies that react with the extracellular domain of CD83.
  • In another example, a CD83 binding protein library is screened. The library may be a phage library, for example, a Fab phage library.
  • In one example, the method comprises producing a population of phage particles displaying at their surface a population of binding molecules having a range of binding specificities for a target CD83 epitope or antigen. Such phage particles comprise a phagemid genome comprising a nucleic acid encoding the binding protein. This nucleic acid can be isolated, cloned and expressed in a recombinant system to produce the CD83 binding protein of the invention.
  • Deimmunized, Chimeric, Humanized, Synhumanized, Primatized, Human and Composite CD83 Binding Proteins
  • The CD83 binding proteins of the present disclosure may be CDR grafted proteins which include CDRs from an antibody from a non-human species (e.g., mouse or rat or non-human primate) grafted onto or inserted into FRs from a human antibody or which include CDRs from an antibody from one type of antibody (e.g., one type of human antibody) grafted onto or inserted into FRs from another type of antibody (e.g., another type of human antibody). This term also encompasses a composite protein comprising, for example, one or more CDR grafted variable regions and one or more, for example, human variable regions, chimeric variable regions, synhumanized variable regions, or primatized variable regions.
  • The CD83 binding proteins of the present disclosure may be humanized proteins.
  • The term “humanized protein” shall be understood to refer to a protein comprising a human-like variable region, which includes CDRs from an antibody from a human species (e.g., mouse or rat or non-human primate) grafted onto or inserted into FRs from a non-human antibody (this type of antibody is also referred to as a “CDR-grafted antibody”). Humanized proteins also include proteins in which one or more residues of the human protein are modified by one or more amino acid substitutions and/or one or more FR residues of the human protein are replaced by corresponding non-human residues. Humanized proteins may also comprise residues which are found in neither the human antibody or in the non-human antibody. Any additional regions of the protein (e.g., Fc region) are generally human. Humanization can be performed using a method known in the art, for example, as described in U.S. Pat. Nos. 5,225,539, 6,054,297, 7,566,771, or U.S. Pat. No. 5,585,089. The term “humanized protein” also encompasses a super-humanized protein, for example, as described in U.S. Pat. No. 7,732,578. This term also encompasses a composite protein comprising, for example, one or more humanized variable regions and one or more, for example, human variable regions, chimeric variable regions, synhumanized variable regions or primatized variable regions.
  • In one example, a humanized CD83 binding protein comprises the regions between 27d and 34, 50 and 55, and 89 and 96 in a light chain sequence disclosed herein; and 31 and 35b, 50 and 58, and 95 and 101 in a heavy chain sequence disclosed herein (numbering according to the Kabat numbering system). In this regard, Padlan et al., FASEB J., 9: 133-139, 1995 presents evidence that these regions are those most likely to bind or contact antigen.
  • The CD83 binding proteins of the present disclosure may be human proteins. The term “human protein” as used herein refers to proteins having variable and, optionally, constant antibody regions found in humans, for example, in the human germline or somatic cells or from libraries produced using such regions. The “human” antibodies can include amino acid residues not encoded by human sequences, for example, mutations introduced by random or site directed mutations in vitro (in particular mutations which involve conservative substitutions or mutations in a small number of residues of the protein, for example, in 1, 2, 3, 4 or 5 of the residues of the protein). These “human antibodies” do not necessarily need to be generated as a result of an immune response of a human, rather, they can be generated using recombinant means (e.g., screening a phage display library) and/or by a transgenic animal (e.g., a mouse) comprising nucleic acid encoding human antibody constant and/or variable regions and/or using guided selection (e.g., as described in U.S. Pat. No. 5,565,332). This term also encompasses affinity matured forms of such antibodies. For the purposes of the present disclosure, a human protein will also be considered to include a protein comprising FRs from a human antibody or FRs comprising sequences from a consensus sequence of human FRs and in which one or more of the CDRs are random or semi-random, for example, as described in U.S. Pat. No. 6,300,064 and/or U.S. Pat. No. 6,248,516.
  • Exemplary human CD83 binding proteins are antibodies comprising the following pairs of variable regions:
  • (i) a VH sequence as shown in SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:6; or
  • (ii) a VH sequence as shown in SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:7; or
  • (iii) a VH sequence as shown in SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:8; or
  • (iv) a VH sequence as shown in SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:9; or
  • (v) a VH sequence as shown in SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:10; or
  • (vi) a VH sequence as shown in SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:11; or
  • (vi) a VH sequence as shown in SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:12; or
  • (vii) a VH sequence as shown in SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:13; or
  • (viii) a VH sequence as shown in SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:14; or
  • (ix) a VH sequence as shown in SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:15; or
  • (x) a VH sequence as shown in SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:16; or
  • (xi) a VH sequence as shown in SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:17.
  • In one example, the VL sequence lacks the c-terminal lysine residue. The C-terminal lysine of the VL sequence of a CD83 binding protein of the disclosure may be removed, for example, during production or purification of the CD83 binding protein, or by recombinant engineering the nucleic acid encoding the VL of the CD83 binding protein. Accordingly, CD83 binding proteins may comprise populations with all C-terminal lysine residues of the VL removed, populations with no C-terminal lysine residues of the VL removed, or populations having a mixture of proteins with and without the VL C-terminal lysine residue. In some examples, the protein populations may additionally comprise proteins having two VLS in which the C-terminal lysine residue is removed in one of the VLS. Similarly, a composition of proteins may comprise the same or a similar mix of protein populations with or without the VL C-terminal lysine residue.
  • Optionally, the VH is linked to a heavy chain constant region, for example, an IgG1 heavy chain constant region. In one example, the heavy chain constant region lacks the c-terminal lysine residue.
  • Optionally, the VL is linked to a light chain constant region.
  • The CD83 binding proteins of the present disclosure may be synhumanized proteins. The term “synhumanized protein” refers to a protein prepared by a method described in US20080095767. A synhumanized CD83 binding protein includes a variable region of an antibody, wherein the variable region comprises FRs from a New World primate antibody variable region and CDRs from a non-New World primate antibody variable region. For example, a synhumanized CD83 binding protein includes a variable region of an antibody, wherein the variable region comprises FRs from a New World primate antibody variable region and CDRs from a mouse or rat antibody. In one example, the synhumanized CD83 binding protein is a CD83 binding antibody in which one or both of the variable regions are synhumanized. This term also encompasses a composite protein comprising, for example, one or more synhumanized variable regions and one or more, for example, human variable regions or humanized variable regions or chimeric variable regions.
  • The CD83 binding proteins of the present disclosure may be primatized proteins. A “primatized protein” comprises variable region(s) from an antibody generated following immunization of a non-human primate (e.g., a cynomolgus macaque). Optionally, the variable regions of the non-human primate antibody are linked to human constant regions to produce a primatized antibody. Exemplary methods for producing primatized antibodies are described in U.S. Pat. No. 6,113,898. This term also encompasses a composite protein comprising, for example, one or more primatized variable regions and one or more, for example, human variable regions or humanized variable regions or chimeric variable regions.
  • In one example, a CD83 binding protein of the disclosure is a chimeric protein. The term “chimeric proteins” refers to proteins in which an antigen binding domain is from a particular species (e.g., murine, such as mouse or rat) or belonging to a particular antibody class or subclass, while the remainder of the protein is from a protein derived from another species (such as, for example, human or non-human primate) or belonging to another antibody class or subclass. In one example, a chimeric protein is a chimeric antibody comprising a VH and/or a VL from a non-human antibody (e.g., a murine antibody) and the remaining regions of the antibody are from a human antibody. The production of such chimeric proteins is known in the art, and may be achieved by standard means (as described, e.g., in U.S. Pat. Nos. 6,331,415; 5,807,715; 4,816,567 and 4,816,397). This term also encompasses a composite protein comprising, for example, one or more chimeric variable regions and one or more, e.g., human variable regions or humanized variable regions or chimeric variable regions.
  • The present disclosure also contemplates a deimmunized CD83 binding protein, for example, as described in WO2000/34317 and US20070292416. De-immunized antibodies and proteins have one or more epitopes, for example, B cell epitopes or T cell epitopes removed (i.e., mutated) to thereby reduce the likelihood that a subject will raise an immune response against the antibody or protein. For example, a CD83-binding protein of the disclosure is analyzed to identify one or more B or T cell epitopes and one or more amino acid residues within the epitope is mutated to thereby reduce the immunogenicity of the CD83 binding protein.
  • It will be apparent to the skilled artisan from the foregoing disclosure that a “composite” protein comprises one form of VH (e.g., human) and another form of VL(e.g., humanized). The present disclosure explicitly encompasses all combinations of forms of VH and VL.
  • Other CD83 Binding Proteins Comprising an Antigen Binding Domain
  • The present disclosure also contemplates other CD83 binding proteins comprising a variable region or antigen binding domain of an antibody, such as:
  • (i) a single-domain antibody, which is a single polypeptide chain comprising all or a portion of the VH or a VL of an antibody, for example, as described in U.S. Pat. No. 6,248,516);
  • (ii) diabodies, triabodies and tetrabodies, for example, as described in U.S. Pat. No. 5,844,094 and/or US2008152586;
  • (iii) scFvs, for example, as described in U.S. Pat. No. 5,260,203;
  • (iv) minibodies, for example, as described in U.S. Pat. No. 5,837,821;
  • (v) “key and hole” bispecific proteins, for example, as described in U.S. Pat. No. 5,731,168;
  • (vi) heteroconjugate proteins, for example, as described in U.S. Pat. No. 4,676,980;
  • (vii) heteroconjugate proteins produced using a chemical cross-linker, for example, as described in U.S. Pat. No. 4,676,980;
  • (viii) Fab′-SH fragments, for example, as described in Shalaby et al., J. Exp. Med., 175: 217-225, 1992; or
  • (ix) Fab3, for example, as described in EP19930302894.
  • Constant Domain Fusions
  • The present disclosure encompasses CD83 binding proteins comprising an antigen binding domain of an antibody and a constant region or Fc or a domain thereof, for example, C H2 and/or C H3 domain. Suitable constant regions and/or domains will be apparent to the skilled artisan and/or the sequences of such polypeptides are readily available from publicly available databases. Kabat et al. also provide description of some suitable constant regions/domains.
  • Constant regions and/or domains thereof are useful for providing biological activities such as, dimerization, extended serum half-life (e.g., by binding to FcRn), antibody-dependent cell cytotoxicity (ADCC), complement dependent cytotoxicity (CDC), antibody-dependent cell phagocytosis (ADCP).
  • The present disclosure also contemplates CD83 binding proteins comprising mutant constant regions or domains, for example, as described in U.S. Pat. No. 7,217,797; U.S. Pat. No. 7,217,798; or US20090041770 (having increased half-life) or U.S. Pat. No. 7,355,008 (increased ADCC).
  • The C-terminal lysine of the heavy chain constant region of a CD83 binding protein of the disclosure comprising a constant region or Fe may be removed, for example, during production or purification of the CD83 binding protein, or by recombinantly engineering the nucleic acid encoding a heavy chain of the CD83 binding protein. Accordingly, CD83 binding proteins may comprise populations with all C-terminal lysine residues of the heavy chain constant region removed, populations with no C-terminal lysine residues of the heavy chain constant region removed, or populations having a mixture of proteins with and without the heavy chain constant region C-terminal lysine residue. In some examples, the protein populations may additionally comprise proteins having two heavy chain constant regions in which the heavy chain constant region C-terminal lysine residue is removed in one of the heavy chain constant regions. Similarly, a composition of proteins may comprise the same or a similar mix of protein populations with or without the heavy chain constant region C-terminal lysine residue.
  • Enhancing Effector Function
  • In one example, a CD83 binding protein of the present disclosure may induce effector function or enhanced effector function.
  • In the context of the present disclosure, “effector functions” refer to those biological activities mediated by cells or proteins that bind to the Fc region (a native sequence Fc region or amino acid sequence variant Fc region) of an antibody that result in killing of a cell. Examples of effector functions induced by antibodies include: complement dependent cytotoxicity (CDC); antibody-dependent-cell-mediated cytotoxicity (ADCC); antibody-dependent-cell-phagocytosis (ADCP); and B-cell activation.
  • “Antibody-dependent-cell-mediated cytotoxicity” or “ADCC” refers to lysis of antibody coated target cells by effector cells (e.g., natural killer (“NK”) cells, neutrophils and macrophages) having Fc receptors that recognize the Fc region of the bound antibody. To assess ADCC activity of a molecule of interest, an in vitro ADCC assay may be performed. Useful effector cells for such assays include peripheral blood mononuclear cells (“PBMC”) and NK cells.
  • In one example, a CD83 binding protein of the present disclosure binds to CD83 on the surface of a cell in such a manner that it is capable of inducing an effector function, such as, ADCC and/or CDC.
  • For example, the CD83 binding protein remains bound to the CD83 on the surface of the cell for a time sufficient to induce an effector function, such as ADCC and/or CDC.
  • In one example, a CD83 binding protein of the present disclosure is capable of inducing enhanced effector function, for example, by virtue of a modified Fc region or by virtue of comprising a region capable of binding to an immune effector cell. For example, the level of effector function is increased compared to the level induced by a human IgG1 or IgG4 Fc region. Enhancing effector function induced by a CD83 binding protein of the disclosure may result in enhanced therapeutic or prophylactic effects, for example, by killing or depleting cells causing a condition, for example, antigen presenting cells (APC) (e.g., dendritic cells (DCs)) and/or lymphocytes (e.g., T cells) that modulate aberrant or unwanted immune responses in, for example, inflammatory and/or autoimmune conditions or diseases. In one example, enhancing effector function prevents allogeneic stimulation of T cells, by for example, killing or depleting CD83+ cells that stimulate allogeneic T cells.
  • In one example, the Fc region of a CD83 binding protein of the disclosure is modified to increase the level of effector function it is capable of inducing compared to the Fc region without the modification. Such modifications can be at the amino acid level and/or the secondary structural level and/or the tertiary structural level and/or to the glycosylation of the Fc region.
  • The skilled addressee will appreciate that greater effector function may be manifested in any of a number of ways, for example as a greater level of effect, a more sustained effect or a faster rate of effect.
  • In one example, the Fc region comprises one or more amino acid modifications that increase its ability to induce enhanced effector function. In one example, the Fc region binds with greater affinity to one or more FcγRs, such as FcγRIII. In one example, the Fc region comprise at least one amino acid substitution at a position selected from the group consisting of: 230, 233, 234, 235, 239, 240, 243, 264, 266, 272, 274, 275, 276, 278, 302, 318, 324, 325, 326, 328, 330, 332, and 335, numbered according to the EU index of Kabat. In one example, the Fe region comprises the following amino acid substitutions S239D/I332E, numbered according to the EU index of Kabat. This Fc region has about 14 fold increase in affinity for FcγRIIIa compared to a wild-type Fc region and about 3.3 increased ability to induce ADCC compared to a wild-type Fc region. In one example, the Fc region comprises the following amino acid substitutions S239D/A330L/I332E, numbered according to the EU index of Kabat. This Fc region has about 138 fold increase in affinity for FcγRIIIa compared to a wild-type Fc region and about 323 fold increased ability to induce ADCC compared to a wild-type Fc region.
  • Additional amino acid substitutions that increase ability of a Fc region to induce effector function are known in the art and/or described, for example, in U.S. Pat. No. 6,737,056 or 7,317,091.
  • Methods for determining effector function are known in the art. In one example, the level of ADCC activity is assessed using a 51Cr release assay, an europium release assay or a 35S release assay. In each of these assays, cells expressing CD83 are cultured with one or more of the recited compounds for a time and under conditions sufficient for the compound to be taken up by the cell. In the case of a 35S release assay, the cells can be cultured with 35S-labeled methionine and/or cysteine for a time sufficient for the labeled amino acids to be incorporated into newly synthesized proteins. Cells are then cultured in the presence or absence of the protein and in the presence of immune effector cells, for example, PBMCs and/or NK cells. The amount of 51Cr, europium and/or 35S in cell culture medium is then detected, and an increase in the presence of the protein compared to in the absence of immunoglobulin indicates that the binding molecule/agent has effector function. Exemplary publications disclosing assays for assessing the level of ADCC induced by an immunoglobulin include Hellstrom et al. Proc. Natl Acad. Sci. USA 83: 7059-7063, 1986 and Bruggemann et al., J. Exp. Med. 166: 1351-1361, 1987.
  • Other assays for assessing the level of ADCC induced by an immunoglobulin include ACTI™ nonradioactive cytotoxicity assay for flow cytometry (CellTechnology, Inc. CA, USA) or CytoTox 96® non-radioactive cytotoxicity assay (Promega, WI, USA).
  • Alternatively, or additionally, effector function of a CD83 binding protein is assessed by determining its affinity for one or more FcγRs, for example, as described in U.S. Pat. No. 7,317,091.
  • C1q binding assays may also be carried out to confirm that the CD83 binding protein is able to bind C1q and may induce CDC. To assess complement activation, a CDC assay may be performed (see, e.g., Gazzano-Santoro et al., J. Immunol. Methods 202:163, 1996).
  • In another example, the CD83 binding protein comprises one or more amino acid substitutions that increase the half-life of the protein. For example, the CD83 binding protein comprises a constant region comprising one or more amino acid substitutions that increase the affinity of the constant region for the neonatal Fc region (FcRn). For example, the constant region has increased affinity for FcRn at lower pH, for example, about pH 6.0, to facilitate Fc/FcRn binding in an endosome. In one example, the constant region has increased affinity for FcRn at about pH 6 compared to its affinity at about pH 7.4, which facilitates the re-release of Fe into blood following cellular recycling. These amino acid substitutions are useful for extending the half life of a CD83 binding protein, by reducing clearance from the blood.
  • Exemplary amino acid substitutions include T250Q and/or M428L or T252A, T254S and T266F or M252Y, S254T and T256E or H433K and N434F according to the EU numbering system. Additional or alternative amino acid substitutions are described, for example, in US20070135620 or U.S. Pat. No. 7,083,784.
  • Mutant CD83 Binding Proteins
  • The present disclosure also provides a CD83 binding protein or a nucleic acid encoding same having at least 80% identity to a sequence disclosed herein. In one example, a CD83 binding protein or nucleic acid of the disclosure comprises sequence at least about 80% or 81% or 82% or 83% or 84% or 85% or 90% or 95% or 96% or 97% or 98% or 99% identical to a sequence disclosed herein, wherein the protein specifically binds to CD83.
  • Alternatively, or additionally, the CD83 binding protein comprises a CDR (e.g., three CDRs) at least about 30% or 35% or 40% or 45% or 50% or 55% or 60% or 65% or 70% or 75% or 80% or 85% or 90% or 95% or 97% or 98% or 99% identical to CDR(s) of a VH or VL as described herein according to any example, wherein the protein is capable of specifically binding to CD83. In this regard, the inventors have produced numerous antibodies having diverse sequences within their CDRs. Methods for determining binding of a protein CD83 are described herein.
  • For example, the inventors have identified a group of CD83 binding proteins sharing at least about 60% identity in their light chain CDR1, such as, for example, with at least about 65% or 70% or 75% or 80% or 85% or 90% or 95% or 96% or 97% or 98% or 99% identity in their light chain CDR1 according to the Kabat numbering system.
  • The inventors have also identified a group of CD83 binding proteins sharing 70% identity in their light chain CDR2, such as, for example, with at least about 75% or 80% or 85% or 90% or 95% or 96% or 97% or 98% or 99% identity in their light chain CDR2 according to the Kabat numbering system.
  • The inventors have also identified a group of CD83 binding proteins sharing 30% identity in their light chain CDR3, such as, for example, with at least about 35% or 40% or 45% or 50% or 55% or 60% or 65% or 70% or 75% or 80% or 85% or 90% or 95% or 96% or 97% or 98% or 99% identity in their light chain CDR3 according to the Kabat numbering system.
  • As discussed herein, the four N-terminal amino acids of a light chain CDR1 can be deleted or any one or more of those amino acids can be substituted with another naturally-occurring amino acid (Padlan et al., FASEB J., 9: 133-139, 1995). Thus, a CD83 binding protein of the disclosure can comprise a CDR1 having at least about 70% identity to a light chain CDR sequence disclosed herein.
  • In another example, a nucleic acid of the disclosure comprises a sequence at least about 80% or 85% or 90% or 95% or 97% or 98% or 99% identical to a sequence disclosed herein and encoding a CD83 binding protein which is capable of specifically binding to CD83. The present disclosure also encompasses nucleic acids encoding a CD83 binding protein of the disclosure, which differs from a sequence exemplified herein as a result of degeneracy of the genetic code.
  • The % identity of a nucleic acid or polypeptide is determined by GAP (Needleman and Wunsch. Mol. Biol. 48, 443-453, 1970) analysis (GCG program) with a gap creation penalty=5, and a gap extension penalty=0.3. The query sequence is at least 50 residues in length, and the GAP analysis aligns the two sequences over a region of at least 50 residues. For example, the query sequence is at least 100 residues in length and the GAP analysis aligns the two sequences over a region of at least 100 residues. For example, the two sequences are aligned over their entire length.
  • As discussed above, the present disclosure also contemplates a nucleic acid that hybridizes under stringent hybridization conditions to a nucleic acid encoding a CD83 binding protein described herein, for example, nucleic acid encoding a VH or VL of antibody hFab4.1, hFab4.1, hFab4.3, hFab4.4, hFab4.4, hFab4.5, hFab4.7, hFab4.8, hFab4.9, hFab4.10, hFab4.12, hFab4.18. A “moderate stringency” is defined herein as being a hybridization and/or washing carried out in 2×SSC buffer, 0.1% (w/v) SDS at a temperature in the range 45° C. to 65° C., or equivalent conditions. A “high stringency” is defined herein as being a hybridization and/or wash carried out in 0.1×SSC buffer, 0.1% (w/v) SDS, or lower salt concentration, and at a temperature of at least 65° C., or equivalent conditions. Reference herein to a particular level of stringency encompasses equivalent conditions using wash/hybridization solutions other than SSC known to those skilled in the art. For example, methods for calculating the temperature at which the strands of a double stranded nucleic acid will dissociate (also known as melting temperature, or Tm) are known in the art. A temperature that is similar to (e.g., within 5° C. or within 10° C.) or equal to the Tm of a nucleic acid is considered to be high stringency. Medium stringency is to be considered to be within 10° C. to 20° C. or 10° C. to 15° C. of the calculated Tm of the nucleic acid.
  • The present disclosure also contemplates mutant forms of a CD83 binding protein of the disclosure comprising one or more conservative amino acid substitutions compared to a sequence set forth herein. In some examples, the CD83 binding protein comprises 10 or fewer, for example, 9 or 8 or 7 or 6 or 5 or 4 or 3 or 2 or 1 conservative amino acid substitutions. A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain and/or hydropathicity and/or hydrophilicity.
  • Families of amino acid residues having similar side chains have been defined in the art, including basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), β-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Hydropathic indices are described, for example, in Kyte and Doolittle J. Mol. Biol., 157: 105-132, 1982 and hydrophylic indices are described in, for example, U.S. Pat. No. 4,554,101.
  • The present disclosure also contemplates non-conservative amino acid changes. For example, of particular interest are substitutions of charged amino acids with another charged amino acid and with neutral or positively charged amino acids. In some examples, the CD83 binding protein comprises 10 or fewer, for example, 9 or 8 or 7 or 6 or 5 or 4 or 3 or 2 or 1 non-conservative amino acid substitutions.
  • In one example, the mutation(s) occur within a FR of an antigen binding domain of a CD83 binding protein of the disclosure. In another example, the mutation(s) occur within a CDR of a CD83 binding protein of the disclosure.
  • Exemplary methods for producing mutant forms of a CD83 binding protein include:
      • mutagenesis of DNA (Thie et al., Methods Mol. Biol. 525: 309-322, 2009) or RNA (Kopsidas et al., Immunol. Lett. 107:163-168, 2006; Kopsidas et al. BMC Biotechnology, 7: 18, 2007; and WO1999/058661);
      • introducing a nucleic acid encoding the polypeptide into a mutator cell, for example, XL-1Red, XL-mutS and XL-mutS-Kanr bacterial cells (Stratagene);
      • DNA shuffling, for example, as disclosed in Stemmer, Nature 370: 389-91, 1994; and
      • site directed mutagenesis, for example, as described in Dieffenbach (ed) and Dveksler (ed) (In: PCR Primer: A Laboratory Manual, Cold Spring Harbor Laboratories, N Y, 1995).
  • Exemplary methods for determining biological activity of the mutant CD83 binding proteins of the disclosure will be apparent to the skilled artisan and/or described herein, for example, antigen binding. For example, methods for determining antigen binding, competitive inhibition of binding, affinity, association, dissociation and therapeutic efficacy are described herein.
  • Methods for Producing Proteins Recombinant Expression
  • As discussed herein, a nucleic acid encoding a CD83 binding protein of the disclosure and/or one or more polypeptides thereof is introduced into an expression construct, such that it is operably linked to a promoter to thereby facilitate its expression. Methods for producing expression constructs, for example, cloning into expression constructs/vectors are known in the art and/or described in Ausubel et al., (In: Current Protocols in Molecular Biology. Wiley Interscience, ISBN 047 150338, 1987), and (Sambrook et al., (In: Molecular Cloning: Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, New York, Third Edition 2001) and U.S. Pat. No. 7,270,969.
  • In one example, the CD83 binding protein of the disclosure is expressed in a bacterial cell. Typical promoters suitable for expression in bacterial cells such as, for example, a bacterial cell selected from the group comprising E. coli, Staphylococcus sp., Corynebacterium sp., Salmonella sp., Bacillus sp., and Pseudomonas sp., include, but are not limited to a promoter such as lacz, Ipp, a temperature-sensitive L or R promoters, T7, T3, SP6 or semi-artificial promoters such as the IPTG-inducible tac promoter or lacUV5 promoter.
  • In another example, the CD83 binding protein is expressed in a yeast cell. Typical promoters suitable for expression in yeast cells such as, Pichia pastoris, Saccharomyces cerevisiae and S. pombe, include, but are not limited to, promoters from the following genes ADH1, GAL1, GAL4, CUP1, PHO5, nmt, RPR1, or TEF1.
  • In a further example, the CD83 binding protein is expressed in an insect cell. Typical promoters suitable for expression in insect cells, or in insects, include, but are not limited to, the OPEI2 promoter, the insect actin promoter isolated from Bombyx muri, the Drosophila sp. dsh promoter (Marsh et al., Hum. Mol. Genet. 9: 13-25, 2000).
  • A CD83 binding protein of the disclosure can also be expressed in plant cells. Promoters for expressing peptides in plant cells are known in the art, and include, but are not limited to, the Hordeum vulgare amylase gene promoter, the cauliflower mosaic virus 35S promoter, the nopaline synthase (NOS) gene promoter, and the auxin inducible plant promoters P1 and P2.
  • In one example, a CD83 binding protein of the disclosure is expressed in a mammalian cell or in a mammal. Typical promoters suitable for expression in a mammalian cell include, for example a promoter selected from the group consisting of, retroviral LTR elements, the SV40 early promoter, the SV40 late promoter, the CMV IE (cytomegalovirus immediate early) promoter, the EF1 promoter (from human elongation factor 1), the EM7 promoter, the UbC promoter (from human ubiquitin C). Examples of useful mammalian host cell lines include monkey kidney CV1 line transformed by SV40 (COS-7); human embryonic kidney line (HEK-293 cells); baby hamster kidney cells (BHK); Chinese hamster ovary cells (CHO); African green monkey kidney cells (VERO-76); or myeloma cells (e.g., NS/0 cells).
  • Exemplary cells used for expressing a CD83 binding protein of the disclosure are CHO cells, myeloma cells or HEK cells. The cell may further comprise one or more genetic mutations and/or deletions that facilitate expression of a modified antibody.
  • Other elements of expression constructs/vectors are known in the art and include, for example, enhancers, transcriptional terminators, polyadenylation sequences, nucleic acids encoding selectable or detectable markers and origins of replication.
  • In one example, an expression construct is a bicistronic expression construct. By “bicistronic” is meant a single nucleic acid molecule that is capable of encoding two distinct polypeptides from different regions of the nucleic acid, for example, a single nucleic acid capable of encoding a VH containing polypeptide and a VL containing polypeptide as distinct polypeptides. Generally, the regions encoding each distinct polypeptide are separated by an internal ribosome entry site (IRES) and the region 5′ of the IRES does not comprise a transcription termination sequence. Exemplary IRESs are described, for example, in US20090247455.
  • Following production of a suitable expression construct, it is introduced into a suitable cell using any method known in the art. Exemplary methods include microinjection, transfection mediated by DEAE-dextran, transfection mediated by liposomes such as by using lipofectamine (Gibco, MD, USA) and/or cellfectin (Gibco, MD, USA), PEG-mediated DNA uptake, electroporation and microparticle bombardment such as by using DNA-coated tungsten or gold particles (Agracetus Inc., WI, USA) amongst others.
  • The cells used to produce the CD83 binding proteins of this disclosure are then cultured under conditions known in the art to produce the CD83 binding protein of the disclosure.
  • Cell free expression systems are also contemplated by the present disclosure, for example, the TNT T7 and TNT T3 systems (Promega), the pEXP1-DEST and pEXP2-DEST vectors (Invitrogen).
  • Protein Purification
  • Following production/expression, a CD83 binding protein of the disclosure is purified using a method known in the art. Such purification provides the protein of the disclosure substantially free of nonspecific protein, acids, lipids, carbohydrates, and the like. In one example, the protein will be in a preparation wherein more than about 90% (e.g., 95%, 98% or 99%) of the protein in the preparation is a CD83 binding protein of the disclosure.
  • Standard methods of peptide purification are employed to obtain an isolated CD83 binding protein of the disclosure, including but not limited to various high-pressure (or performance) liquid chromatography (HPLC) and non-HPLC polypeptide isolation protocols, such as size exclusion chromatography, ion exchange chromatography, hydrophobic interaction chromatography, mixed mode chromatography, phase separation methods, electrophoretic separations, precipitation methods, salting in/out methods, immunochromatography, and/or other methods.
  • In one example, affinity purification is useful for isolating a fusion protein comprising a label. Methods for isolating a protein using affinity chromatography are known in the art and described, for example, in Scopes (In: Protein purification: principles and practice, Third Edition, Springer Verlag, 1994). For example, an antibody or compound that binds to the label (in the case of a polyhistidine tag this may be, for example, nickel-NTA) is immobilized on a solid support. A sample comprising a protein is then contacted to the immobilized antibody or compound for a time and under conditions sufficient for binding to occur. Following washing to remove any unbound or non-specifically bound protein, the protein is eluted.
  • In the case of a CD83 binding protein comprising a Fc region of an antibody, protein A or protein G or modified forms thereof can be used for affinity purification. Protein A is useful for isolating purified proteins comprising a human γ1, γ2, or γ4 heavy chain Fe region. Protein G is recommended for all mouse Fc isotypes and for human γ3.
  • Conjugates
  • In one example, a CD83 binding protein of the present disclosure is conjugated to a compound. For example, the compound is selected from the group consisting of a radioisotope, a detectable label, a therapeutic compound, a colloid, a toxin, a nucleic acid, a peptide, a protein, a compound that increases the half-life of the CD83 binding protein in a subject and mixtures thereof.
  • The other compound can be directly or indirectly bound to the CD83 binding protein (e.g., can comprise a linker in the case of indirect binding). Examples of compounds include, a radioisotope (e.g., iodine-131, yttrium-90 or indium-111), a detectable label (e.g., a fluorophore or a fluorescent nanocrystal), a therapeutic compound (e.g., a chemotherapeutic or an anti-inflammatory), a colloid (e.g., gold), a toxin (e.g., ricin or tetanus toxoid), a nucleic acid, a peptide (e.g., a serum albumin binding peptide), a protein (e.g., a protein comprising an antigen binding domain of an antibody or serum albumin), a compound that increases the half-life of the CD83 binding protein in a subject (e.g., polyethylene glycol or other water soluble polymer having this activity) and mixtures thereof. Exemplary compounds that can be conjugated to a CD83 binding protein of the disclosure and methods for such conjugation are known in the art and described, for example, in WO2010/059821.
  • Some exemplary compounds that can be conjugated to a CD83 binding protein of the present disclosure are listed in Table 2.
  • TABLE 2
    Compounds useful in conjugation.
    Group Detail
    Radioisotopes 123I, 125I, 130I, 133I, 135I, 47Sc, 72As, 72Sc, 90Y, 88Y,
    (either directly 97Ru, 100Pd, 101mRh,101mRh, 119Sb, 128Ba, 197Hg, 211At,
    or indirectly) 212Bi, 153Sm, 169Eu, 212Pb, 109Pd, 111In, 67Gu, 68Gu,
    67Cu, 75Br, 76Br, 77Br, 99mTc, 11C, 13N, 15O, 18I, 188Rc,
    203Pb, 64Cu, 105Rh, 198Au, 199Ag or 177Lu
    Half-life Polyethylene glycol
    extenders Glycerol
    Glucose
    Fluorescent Phycoerythrin (PE)
    probes Allophycocyanin (APC)
    Alexa Fluor 488
    Cy5.5
    Biologics fluorescent proteins such as Renilla luciferase, GFP
    immune modulators, such as cytokines
    toxins
    an immunoglobulin or antibody or antibody variable
    region
    half life extenders such as albumin or antibody variable
    regions or peptides that bind to albumin
    Chemother- Taxol
    apeutics 5-FU
    Doxorubicin
    Idarubicin
  • Screening Assays CD83 binding proteins of the present disclosure are readily screened for biological activity, for example, as described below.
  • Binding Assays
  • One form of assay is an antigen binding assay, for example, as described in Scopes (In: Protein purification: principles and practice, Third Edition, Springer Verlag, 1994). Such a method generally involves labeling the CD83 binding protein and contacting it with immobilized antigen. Following washing to remove non-specific bound protein, the amount of label and, as a consequence, bound protein is detected. Of course, the CD83 binding protein can be immobilized and the antigen labeled. Panning-type assays, for example, as described or exemplified herein can also be used. Alternatively, or additionally, surface plasmon resonance assays can be used.
  • In one example, a binding assay is performed with peptide comprising an epitope of CD83. In this way, CD83 binding proteins that bind to a specific region of CD83 are selected.
  • In Vivo Assays
  • CD83 binding proteins of the present disclosure can also be assessed for therapeutic efficacy in an animal model of a condition, for example, a CD83 mediated condition. For example, the CD83 binding protein is administered to a model of inflammatory bowel disease or colitis (e.g., dextran sodium sulphate (DSS)-induced colitis or CD45Rb adoptive transfer model of colitis (e.g., Kanai et al., Inflamm. Bowel Dis. 12: 89-99, 2006). In another example, a CD83 binding protein is administered to a model of multiple sclerosis, for example, EAE models in which a mouse or rat is immunized with a myelin sheath protein or peptide derived therefrom (e.g., MOG, MBP or PLP) and an immune response is generated against the protein thereby inducing a model of multiple sclerosis. Exemplary EAE models are reviewed in, for example Tsunoda and Fujinami, J. Neuropathol. Exp. Neurol. 55: 673-686, 1996. The CD83 binding protein can also or alternatively be tested in a model of arthritis, for example, a SKG strain of mouse (Sakaguchi et al., Nature 426: 454-460, 1995), rat type II collagen arthritis model, mouse type II collagen arthritis model or antigen induced arthritis models (Bendele J. Musculoskel. Neuron. Interact. 1: 377-385, 2001) and/or a model of inflammatory airway disease (for example, OVA challenge or cockroach antigen challenge).
  • The therapeutic efficacy of a CD83 binding protein of the present disclosure can also or alternatively be assessed in a model of graft-versus-host-response, for example, in which splenocytes from one animal are injected into a allogeneic animal (e.g., a MHC or HLA unmatched animal). In one example, human peripheral blood mononuclear cells (PBMCs) are transplanted into a xenogeneic SCID mouse model via, for example, intraperitoneal injection after sub lethal total body irradiation inducing a fatal human CD4+ T cell mediated graft versus host response that requires human DCs. Treatment with a CD83 binding protein of the disclosure can be administered to mice, by, for example, intraperitoneal injection on the day of PBMC transplant (day 0) and mice scored for clinical manifestations of GVDH.
  • Competitive Binding Assays
  • Assays for determining a CD83 binding protein that competitively inhibits binding of an antibody of the disclosure will be apparent to the skilled artisan. For example, the antibody of the disclosure is conjugated to a detectable label, for example, a fluorescent label or a radioactive label. The labeled antibody and the test CD83 binding protein are then mixed and contacted with CD83 or a peptide comprising an epitope thereof. The level of labeled antibody is then determined and compared to the level determined when the labeled antibody is contacted with the CD83 or the peptide comprising an epitope thereof in the absence of the CD83 binding protein. If the level of labeled antibody is reduced in the presence of the CD83 binding protein compared to the absence of the CD83 binding protein, the CD83 binding protein competitively inhibits binding of the antibody.
  • Optionally, the CD83 binding protein is conjugated to a different label than the antibody. This permits detection of the level of binding of the CD83 binding protein to CD83 or epitope bearing peptide.
  • In another example, the CD83 binding protein is permitted to bind to CD83 or a peptide comprising an epitope thereof prior to contacting the CD83 or peptide with an antibody described herein. A reduction in the amount of bound antibody in the presence of the CD83 binding protein compared to in the absence of the CD83 binding protein indicates that the CD83 binding protein competitively inhibits binding of the antibody to CD83. A reciprocal assay can also be performed using labeled CD83 binding protein and first allowing the antibody to bind to CD83 or the peptide. In this case, a reduced amount of labeled CD83 binding protein bound to CD83 or the peptide in the presence of the antibody compared to in the absence of antibody indicates that the CD83 binding protein competitively inhibits binding of the antibody to CD83.
  • Epitope Mapping Assays
  • In another example, the epitope bound by a protein described herein is mapped. Epitope mapping methods will be apparent to the skilled artisan. For example, a series of overlapping peptides spanning the CD83 sequence or a region thereof comprising an epitope of interest, for example, peptides comprising 10 to 15 amino acids are produced. The CD83 binding protein is then contacted to each peptide or a combination thereof and the peptide(s) to which it binds determined. This permits determination of peptide(s) comprising the epitope to which the CD83 binding protein binds. If multiple non-contiguous peptides are bound by the protein, the protein may bind a conformational epitope.
  • Alternatively, or in addition, amino acid residues within CD83 are mutated, for example, by alanine scanning mutagenesis, and mutations that reduce or prevent protein binding are determined. Any mutation that reduces or prevents binding of the CD83 binding protein is likely to be within the epitope bound by the protein.
  • A further method involves binding CD83 or a region thereof to an immobilized CD83 binding protein of the present disclosure and digesting the resulting complex with proteases. Peptide that remains bound to the immobilized protein are then isolated and analyzed, for example, using mass spectrometry, to determine their sequence.
  • A further method involves converting hydrogens in CD83 or a region thereof to deuterium atoms and binding the resulting protein to an immobilized CD83 binding protein of the present disclosure. The deuterium atoms are then converted back to hydrogen, the CD83 or region thereof isolated, digested with enzymes and analyzed, for example, using mass spectrometry to identify those regions comprising deuterium, which would have been protected from conversion to hydrogen by the binding of a CD83 binding protein described herein.
  • Half Life Assays
  • Some CD83 binding proteins encompassed by the present disclosure have an improved half-life, for example, are modified to extend their half-life compared to CD83 binding proteins that are unmodified. Methods for determining a CD83 binding protein with an improved half-life will be apparent to the skilled person. For example, the ability of a CD83 binding protein to bind to a neonatal Fe receptor (FcRn) is assessed. In this regard, increased binding affinity for FcRn increased the serum half-life of the CD83 binding protein (see for example, Kim et al., Eur. J. Immunol., 24: 2429, 1994).
  • The half-life of a CD83 binding protein of the disclosure can also be measured by pharmacokinetic studies, for example, according to the method described by Kim et al, Eur. J. of Immunol. 24: 542, 1994. According to this method, radiolabeled CD83 binding protein is injected intravenously into mice and its plasma concentration is periodically measured as a function of time, for example at 3 minutes to 72 hours after the injection. The clearance curve thus obtained should be biphasic, that is, an alpha phase and beta phase. For the determination of the in vivo half-life of the CD83 binding protein, the clearance rate in beta-phase is calculated and compared with that of the wild type or unmodified CD83 binding protein.
  • Stability Assays
  • Stability of a CD83 binding protein of the disclosure can be assessed by any of a variety of assays. For example, the CD83 binding protein is exposed to a condition, for example, heat or acid or stored for a period of time (e.g., 1 month) at room temperature. Aggregation of the CD83 binding protein can then be assessed by determining turbidity (with an increase in turbidity following exposure to the condition indicating instability), size exclusion chromatography, non-reducing gel electrophoresis or a binding or neutralization study described herein.
  • Pharmaceutical Compositions and Methods of Treatment
  • The CD83 binding protein of the present disclosure or nucleic acid encoding same or cell expressing same (syn. active ingredient) is useful for parenteral, topical, oral, or local administration, aerosol administration, or transdermal administration, for prophylactic or for therapeutic treatment.
  • Formulation of a CD83 binding protein or nucleic acid encoding same or cell expressing same to be administered will vary according to the route of administration and formulation (e.g., solution, emulsion, capsule) selected. An appropriate pharmaceutical composition comprising CD83 binding protein or nucleic acid encoding same or cell expressing same to be administered can be prepared in a physiologically acceptable carrier. A mixture of CD83 binding proteins can also be used. For solutions or emulsions, suitable carriers include, for example, aqueous or alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Parenteral vehicles can include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's or fixed oils. A variety of appropriate aqueous carriers are known to the skilled artisan, including water, buffered water, buffered saline, polyols (e.g., glycerol, propylene glycol, liquid polyethylene glycol), dextrose solution and glycine. Intravenous vehicles can include various additives, preservatives, or fluid, nutrient or electrolyte replenishers (See, generally, Remington's Pharmaceutical Science, 16th Edition, Mack, Ed. 1980). The compositions can optionally contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents and toxicity adjusting agents, for example, sodium acetate, sodium chloride, potassium chloride, calcium chloride and sodium lactate. The CD83 binding protein of this disclosure can be lyophilized for storage and reconstituted in a suitable carrier prior to use according to art-known lyophilization and reconstitution techniques.
  • The optimum concentration of the active ingredient(s) in the chosen medium can be determined empirically, according to procedures well known to the skilled artisan, and will depend on the ultimate pharmaceutical formulation desired.
  • The dosage ranges for the administration of the CD83 binding protein of the disclosure are those large enough to produce the desired effect. For example, the composition comprises a therapeutically or prophylactically effective amount of the CD83 binding protein or nucleic acid encoding same or cell expressing same.
  • As used herein, the term “effective amount” shall be taken to mean a sufficient quantity of the CD83 binding protein, nucleic acid, or cells to induce/increase or inhibit/reduce/prevent CD83 activity in a subject. The skilled artisan will be aware that such an amount will vary depending on, for example, the CD83 binding protein, nucleic acid, or cells and/or the particular subject and/or the type or severity of a condition being treated. Accordingly, this term is not to be construed to limit the disclosure to a specific quantity, for example, weight or number of CD83 binding proteins, nucleic acids, or cells.
  • As used herein, the term “therapeutically effective amount” shall be taken to mean a sufficient quantity of CD83 binding protein, nucleic acid, or cells to reduce or inhibit one or more symptoms of a condition.
  • As used herein, the term “prophylactically effective amount” shall be taken to mean a sufficient quantity of CD83 binding protein, nucleic acid or cells to prevent or inhibit or delay the onset of one or more detectable symptoms of a condition.
  • The dosage should not be so large as to cause adverse side effects, such as hyper viscosity syndromes, pulmonary edema, congestive heart failure, and the like. Generally, the dosage will vary with the age, condition, sex and extent of the disease in the patient and can be determined by one of skill in the art. The dosage can be adjusted by the individual physician in the event of any complication. Dosage can vary from about 0.1 mg/kg to about 300 mg/kg, for example, from about 0.2 mg/kg to about 200 mg/kg, such as, from about 0.5 mg/kg to about 20 mg/kg, in one or more dose administrations daily, for one or several days.
  • In one example, the CD83 binding protein is administered subcutaneously or intravenously.
  • In some examples, the CD83 binding protein or other active ingredient is administered at an initial (or loading) dose which is higher than subsequent (maintenance doses). For example, the binding molecule is administered at an initial dose of between about 1 mg/kg to about 30 mg/kg. The binding molecule is then administered at a maintenance dose of between about 0.0001 mg/kg to about 1 mg/kg. The maintenance doses may be administered every 7 to 35 days, such as, every 14 or 21 or 28 days.
  • In some examples, a dose escalation regime is used, in which a CD83 binding protein or other active ingredient is initially administered at a lower dose than used in subsequent doses. This dosage regime is useful in the case of subject's initially suffering adverse events
  • In the case of a subject that is not adequately responding to treatment, multiple doses in a week may be administered. Alternatively, or in addition, increasing doses may be administered.
  • One or more CD83 binding proteins of the present disclosure can be administered to an individual by an appropriate route, either alone or in combination with (before, simultaneous with, or after) another drug or agent. For example, the CD83 binding protein of the present disclosure can also be used in combination with proteins, for example, a TNF antagonist, an anti-IL-12/23 antibody, an anti-inflammatory, a corticosteroid, methotrexate or a painkiller. The CD83 binding protein of the present disclosure can be used as separately administered compositions given in conjunction with antibiotics and/or antimicrobial agents.
  • It will be appreciated by those skilled in the art that the CD83 binding proteins of the present disclosure may be introduced into a subject by administering an expression construct of the disclosure or a cell expressing a CD83 binding protein of the disclosure. A variety of methods can be used for introducing a nucleic acid encoding the antibody into a target cell in vivo. For example, the naked nucleic acid may be injected at the target site, may be encapsulated into liposomes, or may be introduced by way of a viral vector.
  • CD83 Detection Assays
  • The following assays can be performed with a CD83 binding protein of the disclosure, for example, a CD83 binding protein conjugated to a detectable label as discussed herein. Detection of CD83 with an assay described herein is useful for diagnosing or prognosing a condition.
  • An immunoassay is an exemplary assay format for diagnosing a condition in a subject or detecting CD83 in a sample. The present disclosure contemplates any form of immunoassay, including Western blotting, enzyme-linked immunosorbent assay (ELISA), fluorescence-linked immunosorbent assay (FLISA), competition assay, radioimmunoassay, lateral flow immunoassay, flow-through immunoassay, electrochemiluminescent assay, nephelometric-based assays, turbidometric-based assay, and fluorescence activated cell sorting (FACS)-based assays.
  • One form of a suitable immunoassay is, for example, an ELISA or FLISA.
  • In one form, such an assay involves immobilizing a CD83 binding protein of the disclosure onto a solid matrix, such as, for example a polystyrene or polycarbonate microwell or dipstick, a membrane, or a glass support (e.g., a glass slide). A test sample is then brought into direct contact with the CD83 binding protein and CD83 in the sample is bound or captured. Following washing to remove any unbound protein in the sample, a protein that binds to CD83 at a distinct epitope is brought into direct contact with the captured CD83. This detector protein is generally labeled with a detectable reporter molecule, such as, for example, an enzyme (e.g. horseradish peroxidase (HRP)), alkaline phosphatase (AP) or β-galactosidase) in the case of an ELISA or a fluorophore in the case of a FLISA. Alternatively, a second labeled protein can be used that binds to the detector protein. Following washing to remove any unbound protein the detectable reporter molecule is detected by the addition of a substrate in the case of an ELISA, such as, for example, hydrogen peroxide, TMB, or toluidine, or 5-bromo-4-chloro-3-indol-beta-D-galactopyranoside (x-gal). Of course, the immobilized (capture) protein and the detector protein may be used in the opposite manner.
  • The level of the antigen in the sample is then determined using a standard curve that has been produced using known quantities of the marker or by comparison to a control sample.
  • The assays described above are readily modified to use chemiluminescence or electrochemiluminescence as the basis for detection.
  • As will be apparent to the skilled artisan, other detection methods based on an immunosorbent assay are useful in the performance of the present disclosure. For example, an immunosorbent method based on the description supra using a radiolabel for detection, or a gold label (e.g., colloidal gold) for detection, or a liposome, for example, encapsulating NAD+ for detection or an acridinium linked immunosorbent assay.
  • In some examples of the disclosure, the level of CD83 is determined using a surface plasmon resonance detector (e.g., BIAcore™, GE Healthcare, Piscataway, N.J.), a flow through device, for example, as described in U.S. Pat. No. 7,205,159, a micro- or nano-immunoassay device (e.g., as described in US20030124619), a lateral flow device (e.g., as described in US20040228761 or US20040265926), a fluorescence polarization immunoassay (FPIA e.g., as described in U.S. Pat. No. 4,593,089 or 4,751,190), or an immunoturbidimetric assay (e.g., as described in U.S. Pat. No. 5,571,728 or 6,248,597).
  • Conditions or Disease
  • The CD83 binding proteins of the disclosure can be used for the treatment, prevention, diagnosis or prophylaxis of a CD83 associated condition or disease.
  • Exemplary conditions or disease that can be treated, prevented, diagnosed, or prognosed by performing a method of the disclosure include inflammatory or autoimmune conditions or diseases.
  • Exemplary conditions and diseases include allergies, asthma, graft rejection, autoimmune conditions such as myasthemia gravis, multiple sclerosis, vasculitis, cronic inflammatory bowel diseases such as Morbus Crohn or colitis ulcerosa, HLA B27-associated autoimmunopathis such as Morbus Bechterew, and systemic lupus erythematosis, skin diseases such as psoriasis, rheumatoid arthritis, insulin-dependent diabetes mellitus and AIDS.
  • In one example, the CD83 binding protein of the disclosure depletes immune cells such as antigen presenting cells (APC) (e.g., dendritic cells (DCs)) and/or lymphocytes (e.g., T cells) to modulate aberrant or unwanted immune responses in, for example, inflammatory and/or autoimmune conditions or diseases. In one example, the CD83 binding protein is an antibody which specifically binds to the surface of an APC and/or lymphocyte and depletes the APC and/or lymphocyte via antibody dependent mediated cytotoxicity (ADCC). In one example, ADCC is mediated by natural killer (NK) cells.
  • In one example, the CD83 binding protein of the disclosure bind to and deplete CD83 expressing tumors and/or cancer cells. Thus, the disclosure also provides a method for treating a CD83 expressing tumor or cancer, the method comprising administering a CD83 binding protein of the disclosure or composition comprising same. Exemplary CD83 expressing cancers/tumors include, lung cancer, breast cancer, colon cancer, colorectal cancer, melanoma and hematopoietic cancers, such as lymphomas and leukemias.
  • Graft Rejection
  • In one example, the CD83 binding proteins of the disclosure can be used to deplete immune cells such as APCs and/or lymphocytes to modulate immune responses associated with for, example, rejection of a graft by, for example, graft versus host disease or host versus graft disease. In one example, the graft is an organ or tissue or cell graft. In one example, the graft is an allograft. In one example, the graft is an autologic graft.
  • In one example, the graft is a hematopoietic stem cell graft.
  • Graft versus host disease may result where an immunocompetant graft, for example, an allogeneic hematopoietic stem cell graft, is administered with viable and functional immune cells to a recipient, for example, an histo-incompatible recipient, and the immune cells present in the graft, for example, T cells, attack tissues of the transplant recipient. Graft versus host disease may be chronic or acute and the present disclosure contemplate treating chronic graft versus host disease or acute graft versus host disease.
  • Acute graft versus host disease is generally accepted as occurring within the first 3 months after a transplant. Common acute symptoms include:
      • Abdominal pain or cramps, nausea, vomiting, and diarrhea;
      • Dry or irritated eyes;
      • Jaundice (yellow coloring of the skin or eyes); and/or
      • Skin rash, itching, redness on areas of the skin
        Chronic graft versus host disease is generally recognized as occurring more than 3 months after a transplant. Chronic symptoms may include:
      • Dry eyes or vision changes;
      • Dry mouth, white patches inside the mouth, and sensitivity to spicy foods;
      • Fatigue, muscle weakness, and chronic pain;
      • Skin rash with raised, discolored areas, as well as skin tightening or thickening;
      • Shortness of breath; and/or
      • Weight loss
  • Host versus graft disease may result where antigens derived from the allogenic graft are presented by either donor or recipient APCs to immune cells of the recipient, for example, T cells, which are in turn activated to become effector immune cells, for example, cytotoxic T lymphoctyes (CTLs) that then attack the transplant.
  • An “allogeneic graft” is a graft from a genetically non-identical donor (e.g., histo-incompatible donor) of the same species.
  • The present disclosure contemplates treatment of (or prevention of) rejection of any form of graft, including any form of stem cell or progenitor cell, such as endothelial progenitor cells, mesenchymal stem cells, etc.
  • Hematopoietic Stem Cell Transplantation (HSCT)
  • A “hematopoietic stem cell transplantation (HSCT)” is a graft comprising multipotent hematopoietic stem cells which can be derived, for example, from bone marrow, umbilical cord blood or peripheral blood. The transplant may include some non-stem cells, for example, APCs including DCs and/or lymphocytes.
  • “Hematopoietic stem cells” can self-renew and differentiate to give rise to all the blood cell types including myeloid (monocytes and macrophages, neutrophils, basophils, eosinophils, dendritic cells), erythroid (erythrocytes), megakaryocytic (platelets) and lymphoid lineages (T-cells, B-cells, NK-cells). Throughout differentiation, the hematopoietic stem cell first loses its self-renewal capacity, then loses lineage potential step by step as it commits to becoming a mature effector cell. Typically a Lin−, CD34+, CD38−, CD90+, CD45RA− human cell is a hematopoietic stem cell. In one example, expression of CD34 is used to identify hematopoietic stem cells in peripheral blood isolated from human donors.
  • HSCT can be used in the treatment of diseases and conditions which require stem cell transplants. For example, the stem cells can be used for the treatment of failure or dysfunction of normal blood cell production and maturation, hematopoietic malignancy, autoimmune disease, liver disease, or immunodeficiency (by reason of for example, irradiation, chemotherapy or infection with a pathogen).
  • The stem cells may be expanded or differentiated ex vivo prior to administration to a subject.
  • Allogeneic hematopoietic stem-cell transplantation may be used to treat one or more of the following conditions: acute myeloid leukemia, acute lymphoblastic leukemia, chronic myeloid leukemia, chronic lymphocytic leukemia, myeloproliferative disorders, myelodysplastic syndromes, multiple myeloma, non-Hodgkin lymphoma, Hodgkin disease, aplastic anemia, pure red cell aplasia, paroxysmal nocturnal hemoglobinuria, Fanconi anemia, Thalassemia major, sickle cell anemia, Severe combined immunodeficiency (SCID), Wiskott-Aldrich syndrome, hemophagocytic lymphohistiocytosis (HLH), inborn errors of metabolism (e.g., mucopolysaccharidosis, Gaucher disease, metachromatic leukodystrophies and adrenoleukodystrophies).
  • Kits
  • The present disclosure additionally comprises a kit comprising one or more of the following:
  • (i) a CD83 binding protein of the disclosure or expression construct(s) encoding same;
    (ii) a cell of the disclosure; or
    (iii) a pharmaceutical composition of the disclosure.
  • In the case of a kit for detecting CD83, the kit can additionally comprise a detection means, for example, linked to a CD83 binding protein of the disclosure. In the case of a kit for therapeutic/prophylactic use, the kit can additionally comprise a pharmaceutically acceptable carrier.
  • Optionally a kit of the disclosure is packaged with instructions for use in a method described herein according to any example.
  • The present disclosure includes the following non-limiting Examples.
  • EXAMPLES Example 1 Isolation of Human Fab's Specific for hCD83-his 1.1 Phage Display Library
  • The phage display library was prepared in the phagemid vector pCES1 essentially as described (de Haard et al., J. Biol. Chem, 1999). The final phage library was titrated to >1012/ml.
  • 1.2 Selection of Human Fab's from the Phage Display Library
  • The ectodomain of human CD83 was cloned into a vector containing a 6× Histidine tag (HIS) for mammalian cell expression (Munster et al., Int. Immunol., 2004; Dudziak et al., J. Immunol., 2005).
  • CD83-His (10 μg/ml) was incubated overnight in a Maxisorp microtiter plate, washed three times with PBS, tapped dry and blocked with PBS containing 5% milk powder for 2 hours at room temperature. The phage display library was pre-incubated with PBS/milk powder for 15 minutes. The coated, blocked wells were washed in PBS and the phage display library incubated for 1-2 hours.
  • Unbound Fab's were removed by washing four times with PBS. Bound Fab's were eluted by addition of 1 ml 0.1M Glycine pH2.2 for 10 minutes and eluted phage was equilibrated with 1.5M Tris.
  • A stationary culture of log phase TG1 cells were re-infected with phage for 30 minutes at 37° C. The culture was rescued by addition of 1013 helper phage for 30 minutes at 37° C. The re-infected rescued culture was amplified by addition of 2YT/Carb/Kan, incubated overnight at 37° C., centrifuged (8000 rpm; 10 minutes) and supernatant removed for PEG precipitation. PEG solution was added, mixed and incubated on ice at 4° C. for 2 hours. The mixture was centrifuged (10,000 rpm; 30 minutes) and the phage pellet resuspended in 1 ml of PBS. Multiple rounds of panning were performed and the amount of CD83 antigen for subsequent rounds was reduced to 5 μg/ml. The washing stringency was increased per round (six PBS containing 0.1% Tween20 (PBST) washes for round 2; ten in round 3; 15 in round 4) to isolate higher affinity Fab's specific for CD83 from the phage display library.
  • An increased number of bound phage was detected after the fourth round of panning (FIG. 1) with low binding to a non-specific antigen, indicating clones in round four have a high reactivity to hCD83-His.
  • Example 2 Identification of Monoclonal hFab's Specific for CD83-his 2.1 Single Clone ELISA
  • Phage pools were incubated with log-phase TG1 cells and plated onto 2YT/Carb/2% Glu solid media (2YTmedia containing 15 g bactoagar). Single colonies were picked and used to inoculate 2YT/Carb/2% Glu media, and incubated shaking overnight at 37° C. Overnight cultures were used to inoculate 2YT/Carb media and cultures were grown to log-phase, allowed to settle and phage rescued by addition of helper phage. Rescued phage preparations were used to inoculate fresh 2YT/Carb/Kan cultures and incubated 37° C. overnight in a shaking incubator. Phage was harvested by centrifugation and PEG precipitation. Pellets were resuspended in PBS.
  • Binding of individual phage clones was determined by an ELISA assay. Wells of a maxisorp microtitre plate were coated with CD83-His, 9E10 (anti-Myc tag) and a control antigen, for 1 hour, then washed with PBS. Wells were blocked with PBS containing 5% milk powder for 2 hours, washed twice with PBS and phage preparations incubated for 1 hour on the plate shaker. The plate was washed with PBST and goat anti-human kappa chain antibody conjugated to horse radish peroxidise (HRP; Bethyl labs, US) at 0.25 μg/ml in PBST added for 1 hour shaking. The plate was washed five times with PBST and once with PBS. The ELISA was developed by addition of 3,3′,5,5′-Tetramethylbenzidine (TMB, Pierce) and the reaction stopped by addition of 2M H2SO4. Absorbance readings were measured at 450 nM (Spectromax).
  • Single clones were found to be highly reactive to both CD83-His and CD83-Fc and did not react with an irrelevant Fe-tagged antigen.
  • 2.2 DNA Sequencing
  • Variable regions for both the heavy chain (VH) and kappa light chain (VL) were PCR amplified using primers against the 5′ and 3′ framework regions of each chain. PCR products were purified using Qiagen PCR clean up kit.
  • DNA sequencing revealed clone 1F7 was the dominant clone selected. A further 3 clones with different sequences were isolated, but these had lower binding when compared with 1F7 to CD83-His.
  • Example 3 Analysis of Clone hFab 1F7
  • 3.1 Sub-Cloning to pGC E. coli Expression Vector
  • Cultures were incubated overnight in a shaking incubator (37° C.) in LB/Carb (LB: 10 g Tryptone, 5 g Yeats extract, 10 g Sodium chloride pH 7.5) and DNA isolated using a Qiagen Miniprep kit. DNA was digested with AfIII and Not, purified using a Qiagen gel extraction kit, ligated with the E. coli expression vector pGC and transformed into chemically competent E. coli XL1blue cells according manufacturers protocol (Stratagene). Cells were pelleted and plated on 2YT/Carb/2% Glu plates. Colonies were PCR amplified, DNA extracted using a Qiagen Miniprep kit and sequence verified.
  • 3.2 Expression of hFab Clones
  • Fab's were transformed into TG1 cells for protein expression. 2YT/Carb/2% Glu media was inoculated and cultured in a shaking incubator overnight at 37° C. until late log phase (OD600 approx 0.9-1.0). 1 mM Isopropyl thiogalactose (IPTG) and fresh antibiotic were added and incubation continued overnight in a shaking incubator at 30° C. The cultures were centrifuged (8000 rpm; 10 minutes) and supernatant removed. Pellets were resuspended in cold periplasmic extraction buffer (0.1M Tris, 20% sucrose, 1 mM EDTA pH8) containing a complete protease inhibitor cocktail (Roche) for 30 minutes on ice. The extract was centrifuged (15,000 rpm; 15 minutes) and supernatant filtered.
  • 3.3 Purification of hFab's
  • a) Affinity Purification Using Ni-NTA
  • Periplasmic extracts were purified using Ni-NTA agarose (Qiagen) affinity chromatography via the 6× Histidine tag at the C-terminus of the hFab. Periplasmic extracts were dialysed into PBS then diluted in PBS with 0.5M sodium chloride (PBS/NaCl) and incubated with pre-washed resin for 1-2 hours or overnight at 4° C. on a rotator. The mixture was poured into an empty column and allowed to flow through. The column was eluted in a competitive step-wise manner by adding increasing concentrations of Imidazole (20 mM, 50 mM and 250 mM). The column was washed with 30-50 mls PBS/NaCl containing 20 mM Imidazole, followed by 50 mM Imidazole and finally 250 mM Imidazole. All fractions were collected and analysed by SDS PAGE. Fractions containing purified hFab were dialysed into PBS with 3 buffer changes and concentrated using a Centricon concentrator 10 kDa cut-off (Millipore).
  • b) Gel Filtration of hFab's
  • Gel filtration chromatography was performed on hFab's using an FPLC 200 ml Superose S-200HR (GE) column run in PBS at 0.4 ml/minute on an Agilent FPLC. Fractions were collected and analysed for purity on SDS PAGE. Fractions containing pure hFab were pooled and concentrated.
  • Correct folding and purity of the VH and VL chains was verified by SDS PAGE gel and the identity of the hFab was determined by western blot by detecting the kappa light chain, and the heavy chain via the His tag and the myc tag at the expected hFab molecular weight.
  • The reactivity of purified hFab 1F7 to CD83 was analysed by ELISA. Dilutions of the hFab were allowed to react with CD83-His and the binding curve is shown in FIG. 2A. To further analyse the specificity of hFab 1F7 an ELISA was performed (FIG. 2B), the binding data shows that hFab 1F7 is highly specific binding only to CD83-His and CD83-Fc and is not reactive with the other control antigens.
  • 3.4 Cell Surface Binding Analysis of 1F7 hFab
  • Cell surface CD83 binding specificity of 1F7 hFab an assay was determined by measuring binding and competitive blocking with soluble CD83. 1F7 Fab was pre-mixed with secondary antibody FITC conjugated goat anti-human IgG, F(ab′)2 specific (Jacksons Immunoresearch labs) to obtain a 2:1 molar ratio. The mixture was incubated on ice for 30 mins.
  • Pre-mixing hFab 1F7 with the secondary FITC anti-human antibody allowed crosslinking of the hFab which resulted in a high fluorescence level shown in FIG. 3 (nil blocking trace) by a shift to the right compared with the no hFab filled trace.
  • A 5 fold molar excess of soluble hCD83-Fc or hCD83-His relative to Fab was added for 30 mins on ice. KMH2 cells (Hock et al., Int. Immunol. 2001) were pelleted (1000 g; 2 mins), and added to the Fab/secondary IgG/soluble CD83 mix and incubated for 30 mins on ice. The reactions were washed twice and re-pelleted. The cell pellets were resuspended and the binding analysed by FACS.
  • When hCD83-Fc or hCD83-His was incubated with the cells/antibody mix this blocked the fluorescence signal by up to 95%. Mouse CD83 blocked the fluorescence signal slightly resulting in intermediate quenching and a slight shift in the trace to the left. The soluble CD83 competes for antibody binding and quenches the fluorescence indicating highly specific binding for CD83 (FIG. 3). The controls omitted the 1F7 Fab and as a result the trace showed background levels of fluorescence indicating little non-specific binding.
  • Example 4 Affinity Maturation of Clone hFab 1F7
  • Affinity maturation of Fabs was performed by the process of light chain shuffling essentially as described (Marks et al., Nature Biotech. 1992). The VH chain library was sequentially digested with SfiI and NotI restriction enzymes and replaced by 1F7VH clone.
  • Titration of the light chain shuffled library resulted in a final library size of >1×107. The library was expanded to 103/ml for panning and 4 rounds of selection on CD83-His were performed to isolate higher affinity clones. Individual clones from round 4 were DNA sequenced (FIG. 4). Phages from rounds 2-4 reacted strongly to CD83-His and CD83-Fc by ELISA (FIG. 5) with no cross-reactivity to no-antigen wells.
  • All clones showed higher relative binding when compared directly to the native clone 1F7. Eleven clones were sub-cloned into the E. coli expression vector pGC. Eight clones were expressed as hFab's in the E. coli periplasm and analysed for binding to CD83-Fc. Several clones showed superior levels of binding when compared with wild type 1F7.
  • Normalising the levels of expressed protein i.e. correcting for equivalent levels of binding to 9E10 and corresponding reactivity to CD83 was performed. The highest three hFab binders 4.4, 4.8 and 4.5 were expressed and purified to high purity using Ni-NTA affinity and gel filtration chromatography as previously described.
  • Affinity maturation was measured by surface Plasmon resonance (SPR) using the ProteOn XPR36™ instrument (BioRad). Individual channels of a GLC chip were coupled with the CD83-His ligand at 3 μg/ml in 0.1M sodium acetate buffer pH 4.5 using amine coupling according to the manufacturer's instructions. Five dilutions of analyte hFab were prepared in PBS containing 0.005% Tween20 (running buffer) and allowed to flow over the coupled CD83 at 30 sec/min flow rate for 300 seconds to evaluate the “on rate” (ka). This was followed by flow with the running buffer for 600 seconds to evaluate the “off rate” (kd). This process was repeated until the analyte dilution series allowed a good kinetic fit using the Langmuir statistical model for analysing the ka and kd, where the affinity constant (KD) is the kd/ka. The best fit data was analysed using the ProteOn software measured by Chi2, where the lowest value is the best fit of the model to the SPR binding curves.
  • The light chain shuffling process for affinity maturation was successful as the affinity constants of a mutant clone was shown to be approximately 25-fold higher than for the wildtype non-matured Fab 1F7.
  • Example 5 Reformatting hFab Clones to IgG1 and IgG4
  • The affinity matured hFab VL and VH genes were sub-cloned into the plasmids pFUSEss-CHIg-hG1, pFUSEss-CHIg-hG4 and pFUSE2ss-CLIg-hk (InvivoGen) for generation of whole human IgG1 and IgG4 antibodies. Fragments were PCR amplified using primers designed to introduce relevant restriction sites into the N′ and C′ terminal ends of the variable heavy (VH) or variable light (VL) chains. Example primers for reformatting the VH chain were: pFUSE VH 4.4 For 5′-GAATTCGGAGGTCCAGCTGGTACAG-3′ and pFUSE VH 4.4 Rev 5′-GCTAGCGCTTGAGACGGTGACCGTGG-3′, and for reformatting the light chain: pFUSE VL 4.4 For 5′-GAATTCAGATGTTGTGATGACTCAGTCTCCAC-3′ and pFUSE VL 4.4 Rev 5′-CGTACGTTTGATTTCCACCTTGGTCCCTTGG-3′.
  • Plasmids and PCR products were digested and ligated as previously described. Ligation products were transformed into chemically competent DH5a cells by standard heat shock method. For VH cloning low salt LB agar (10 g Tryptone, 5 g Yeast extract, 5 g sodium chloride, 15 g bactoagar) with Zeocin resistance (25 μg/ml) was used for plating transformed colonies and for VL low salt LB agar with Blasticidin S resistance at 10 μg/ml.

Claims (22)

1-28. (canceled)
29. An isolated nucleic acid encoding a CD83 binding protein comprising an antigen binding domain that specifically binds to CD83, wherein the binding protein comprises:
three heavy chain complementarity determining regions (VH CDRs) comprising amino acid sequences as shown in SEQ ID NO:3 (VH CDR1), SEQ ID NO:4 (VH CDR2), and SEQ ID NO:5 (VH CDR3); and
(i) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:51 (VL CDR1), SEQ ID NO:52 (VL CDR2), and SEQ ID NO:53 (VL CDR3); or
(ii) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:54 (VL CDR1), SEQ ID NO:55 (VL CDR2), and SEQ ID NO:56 (VL CDR3); or
(iii) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:57 (VL CDR1), SEQ ID NO:58 (VL CDR2), and SEQ ID NO:59 (VL CDR3); or
(iv) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:60 (VL CDR1), SEQ ID NO:61 (VL CDR2), and SEQ ID NO:62 (VL CDR3); or
(v) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:63 (VL CDR1), SEQ ID NO:64 (VL CDR2), and SEQ ID NO:65 (VL CDR3); or
(vi) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:66 (VL CDR1), SEQ ID NO:67 (VL CDR2), and SEQ ID NO:68 (VL CDR3); or
(vii) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:69 (VL CDR1), SEQ ID NO:70 (VL CDR2), and SEQ ID NO:71 (VL CDR3); or
(viii) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:72 (VL CDR1), SEQ ID NO:73 (VL CDR2), and SEQ ID NO:74 (VL CDR3); or
(ix) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:75 (VL CDR1), SEQ ID NO:76 (VL CDR2), and SEQ ID NO:77 (VL CDR3); or
(x) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:78 (VL CDR1), SEQ ID NO:79 (VL CDR2), and SEQ ID NO:80 (VL CDR3); or
(xi) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:81 (VL CDR1), SEQ ID NO:82 (VL CDR2), and SEQ ID NO:83 (VL CDR3); or
(xii) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:84 (VL CDR1), SEQ ID NO:85 (VL CDR2), and SEQ ID NO:86 (VL CDR3).
30. The isolated nucleic acid of claim 29, wherein the binding protein comprises a heavy chain variable region (VH) and a light chain variable region (VL) in a single polypeptide chain.
31. The isolated nucleic acid of claim 30, wherein the binding protein is:
(i) a single chain Fv fragment (scFv); or
(ii) a dimeric scFv (di-scFv); or
(iii) (i) or (ii) linked to a Fc or a heavy chain constant domain (CH)2 and/or CH3; or
(iv) (i) or (ii) linked to a protein that binds to an immune effector cell.
32. The isolated nucleic acid of claim 29, wherein the binding protein comprises a heavy chain variable region (VH) and a light chain variable region (VL) in separate polypeptide chains.
33. The isolated nucleic acid of claim 32, wherein the binding protein is:
(i) a diabody; or
(ii) a triabody; or
(iii) a tetrabody; or
(iv) a Fab; or
(v) a F(ab′)2; or
(vi) a Fv; or
(vii) one of (i) to (vi) linked to a Fc or a CH2 and/or CH3; or
(viii) one of (i) to (vi) linked to a protein that binds to an immune effector cell; or (ix) an antibody.
34. The isolated nucleic acid of claim 33, wherein the binding protein is an antibody.
35. The isolated nucleic acid of claim 34, wherein the antibody comprises:
(i) a VH sequence as shown in amino acids 1 to 115 of SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:6; or
(ii) a VH sequence as shown in amino acids 1 to 115 of SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:7; or
(iii) a VH sequence as shown in amino acids 1 to 115 of SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:8; or
(iv) a VH sequence as shown in amino acids 1 to 115 of SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:9; or
(v) a VH sequence as shown in amino acids 1 to 115 of SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:10; or
(vi) a VH sequence as shown in amino acids 1 to 115 of SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:11; or
(vii) a VH sequence as shown in amino acids 1 to 115 of SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:12; or
(viii) a VH sequence as shown in amino acids 1 to 115 of SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:13; or
(ix) a VH sequence as shown in amino acids 1 to 115 of SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:14; or
(x) a VH sequence as shown in amino acids 1 to 115 of SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:15; or
(xi) a VH sequence as shown in amino acids 1 to 115 of SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:16; or
(xii) a VH sequence as shown in amino acids 1 to 115 of SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:17.
36. The isolated nucleic acid of claim 35, wherein the binding protein comprises a VH sequence as shown in amino acids 1 to 115 of SEQ ID NO:2 and a VL sequence as shown in SEQ ID NO:6.
37. The isolated nucleic acid of claim 35, wherein the binding protein comprises a heavy chain sequence as shown in SEQ ID NO:1 and a light chain sequence as shown in SEQ ID NO:31.
38. The isolated nucleic acid of claim 29, wherein the binding protein is a chimeric, de-immunized, humanized, synhumanized, human, primatized, or composite antibody.
39. The isolated nucleic acid of claim 29, wherein the binding protein comprises an Fc region capable of inducing an enhanced level of effector function compared to a human IgG1 or IgG4 Fc region and/or an Fc region capable of conferring an extended half-life compared to a human IgG1 or IgG4 Fc region.
40. The isolated nucleic acid of claim 29, wherein the binding protein competitively inhibits binding of an antibody to CD83 and/or binds to the same epitope on CD83 as an antibody, wherein the antibody comprises a heavy chain sequence as shown in SEQ ID NO:1 and a light chain sequence as shown in SEQ ID NO:31.
41. The isolated nucleic acid of claim 29, wherein the nucleic acid comprises or hybridizes under moderate to high stringency hybridization conditions to a nucleotide sequence as shown in SEQ ID NO: 30 or in any one of SEQ ID NOs: 32 to 43.
42. An expression construct comprising the nucleic acid of claim 29 operably linked to a promoter.
43. An isolated cell modified to express the nucleic acid of claim 29.
44. A composition comprising the isolated nucleic acid of claim 29, and a suitable carrier.
45. The composition of claim 44, wherein the carrier is pharmaceutically acceptable.
46. A method for treating or preventing a disease or condition caused by the dysfunction or undesired function of a cellular immune response involving T cells and/or dendritic cells in a subject, the method comprising administering a CD83 binding protein to the subject, wherein the CD83 binding protein comprises an antigen binding domain which specifically binds to CD83, wherein the binding protein comprises:
three heavy chain complementarity determining regions (VH CDRs) comprising amino acid sequences as shown in SEQ ID NO:3 (VH CDR1), SEQ ID NO:4 (VH CDR2), and SEQ ID NO:5 (VH CDR3); and
(i) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:51 (VL CDR1), SEQ ID NO:52 (VL CDR2), and SEQ ID NO:53 (VL CDR3); or
(ii) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:54 (VL CDR1), SEQ ID NO:55 (VL CDR2), and SEQ ID NO:56 (VL CDR3); or
(iii) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:57 (VL CDR1), SEQ ID NO:58 (VL CDR2), and SEQ ID NO:59 (VL CDR3); or
(iv) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:60 (VL CDR1), SEQ ID NO:61 (VL CDR2), and SEQ ID NO:62 (VL CDR3); or
(v) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:63 (VL CDR1), SEQ ID NO:64 (VL CDR2), and SEQ ID NO:65 (VL CDR3); or
(vi) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:66 (VL CDR1), SEQ ID NO:67 (VL CDR2), and SEQ ID NO:68 (VL CDR3); or
(vii) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:69 (VL CDR1), SEQ ID NO:70 (VL CDR2), and SEQ ID NO:71 (VL CDR3); or
(viii) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:72 (VL CDR1), SEQ ID NO:73 (VL CDR2), and SEQ ID NO:74 (VL CDR3); or
(ix) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:75 (VL CDR1), SEQ ID NO:76 (VL CDR2), and SEQ ID NO:77 (VL CDR3); or
(x) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:78 (VL CDR1), SEQ ID NO:79 (VL CDR2), and SEQ ID NO:80 (VL CDR3); or
(xi) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:81 (VL CDR1), SEQ ID NO:82 (VL CDR2), and SEQ ID NO:83 (VL CDR3); or
(xii) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:84 (VL CDR1), SEQ ID NO:85 (VL CDR2), and SEQ ID NO:86 (VL CDR3).
47. A method for treating or preventing graft versus host disease, an allergy, asthma, rejection of a tissue or organ graft, an autoimmune condition, a skin disease, rheumatoid arthritis, insulin-dependent diabetes mellitus, a CD83 expressing neoplasia, or AIDS in a subject in need thereof, the method comprising administering a CD83 binding protein to the subject,
wherein the CD83 binding protein comprises an antigen binding domain which specifically binds to CD83, wherein the binding protein comprises:
three heavy chain complementarity determining regions (VH CDRs) comprising amino acid sequences as shown in SEQ ID NO:3 (VH CDR1), SEQ ID NO:4 (VH CDR2), and SEQ ID NO:5 (VH CDR3); and
(i) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:51 (VL CDR1), SEQ ID NO:52 (VL CDR2), and SEQ ID NO:53 (VL CDR3); or
(ii) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:54 (VL CDR1), SEQ ID NO:55 (VL CDR2), and SEQ ID NO:56 (VL CDR3); or
(iii) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:57 (VL CDR1), SEQ ID NO:58 (VL CDR2), and SEQ ID NO:59 (VL CDR3); or
(iv) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:60 (VL CDR1), SEQ ID NO:61 (VL CDR2), and SEQ ID NO:62 (VL CDR3); or
(v) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:63 (VL CDR1), SEQ ID NO:64 (VL CDR2), and SEQ ID NO:65 (VL CDR3); or
(vi) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:66 (VL CDR1), SEQ ID NO:67 (VL CDR2), and SEQ ID NO:68 (VL CDR3); or
(vii) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:69 (VL CDR1), SEQ ID NO:70 (VL CDR2), and SEQ ID NO:71 (VL CDR3); or
(viii) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:72 (VL CDR1), SEQ ID NO:73 (VL CDR2), and SEQ ID NO:74 (VL CDR3); or
(ix) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:75 (VL CDR1), SEQ ID NO:76 (VL CDR2), and SEQ ID NO:77 (VL CDR3); or
(x) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:78 (VL CDR1), SEQ ID NO:79 (VL CDR2), and SEQ ID NO:80 (VL CDR3); or
(xi) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:81 (VL CDR1), SEQ ID NO:82 (VL CDR2), and SEQ ID NO:83 (VL CDR3); or
(xii) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:84 (VL CDR1), SEQ ID NO:85 (VL CDR2), and SEQ ID NO:86 (VL CDR3),
wherein optionally the autoimmune condition is myasthenia gravis, multiple sclerosis, vasculitis, a chronic inflammatory bowel disease, an HLA B27-associated autoimmunopathy, or systemic lupus erythematosus; the skin disease is psoriasis; and/or the CD83-expressing neoplasia is a lymphoma or leukemia; and
wherein further optionally the chronic inflammatory bowel disease is Crohn's disease or ulcerative colitis and/or the HLA B27-associated autoimmunopathy is Bechterew's disease.
48. The method of claim 47, wherein the method treats chronic or acute graft versus host disease.
49. A method for downregulating the immunoactivity of an allogeneic graft or autologous graft, the method comprising contacting the graft with a CD83 binding protein,
wherein the CD83 binding protein comprises an antigen binding domain which specifically binds to CD83, wherein the binding protein comprises:
three heavy chain complementarity determining regions (VH CDRs) comprising amino acid sequences as shown in SEQ ID NO:3 (VH CDR1), SEQ ID NO:4 (VH CDR2), and SEQ ID NO:5 (VH CDR3); and
(i) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:51 (VL CDR1), SEQ ID NO:52 (VL CDR2), and SEQ ID NO:53 (VL CDR3); or
(ii) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:54 (VL CDR1), SEQ ID NO:55 (VL CDR2), and SEQ ID NO:56 (VL CDR3); or
(iii) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:57 (VL CDR1), SEQ ID NO:58 (VL CDR2), and SEQ ID NO:59 (VL CDR3); or
(iv) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:60 (VL CDR1), SEQ ID NO:61 (VL CDR2), and SEQ ID NO:62 (VL CDR3); or
(v) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:63 (VL CDR1), SEQ ID NO:64 (VL CDR2), and SEQ ID NO:65 (VL CDR3); or
(vi) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:66 (VL CDR1), SEQ ID NO:67 (VL CDR2), and SEQ ID NO:68 (VL CDR3); or
(vii) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:69 (VL CDR1), SEQ ID NO:70 (VL CDR2), and SEQ ID NO:71 (VL CDR3); or
(viii) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:72 (VL CDR1), SEQ ID NO:73 (VL CDR2), and SEQ ID NO:74 (VL CDR3); or
(ix) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:75 (VL CDR1), SEQ ID NO:76 (VL CDR2), and SEQ ID NO:77 (VL CDR3); or
(x) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:78 (VL CDR1), SEQ ID NO:79 (VL CDR2), and SEQ ID NO:80 (VL CDR3); or
(xi) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:81 (VL CDR1), SEQ ID NO:82 (VL CDR2), and SEQ ID NO:83 (VL CDR3); or
(xii) three light chain complementarity determining regions (VL CDRs) comprising amino acid sequences as shown in SEQ ID NO:84 (VL CDR1), SEQ ID NO:85 (VL CDR2), and SEQ ID NO:86 (VL CDR3).
US17/103,208 2014-10-23 2020-11-24 Cd83 binding proteins and uses thereof Abandoned US20210101992A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/103,208 US20210101992A1 (en) 2014-10-23 2020-11-24 Cd83 binding proteins and uses thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
AU2014904236 2014-10-23
AU2014904236A AU2014904236A0 (en) 2014-10-23 Cd83 binding proteins and uses thereof
PCT/AU2015/000635 WO2016061617A1 (en) 2014-10-23 2015-10-23 Cd83 binding proteins and uses thereof
US201715521124A 2017-04-21 2017-04-21
US17/103,208 US20210101992A1 (en) 2014-10-23 2020-11-24 Cd83 binding proteins and uses thereof

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US15/521,124 Division US10870704B2 (en) 2014-10-23 2015-10-23 CD83 binding proteins and uses thereof
PCT/AU2015/000635 Division WO2016061617A1 (en) 2014-10-23 2015-10-23 Cd83 binding proteins and uses thereof

Publications (1)

Publication Number Publication Date
US20210101992A1 true US20210101992A1 (en) 2021-04-08

Family

ID=55759944

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/521,124 Active 2037-02-08 US10870704B2 (en) 2014-10-23 2015-10-23 CD83 binding proteins and uses thereof
US17/103,208 Abandoned US20210101992A1 (en) 2014-10-23 2020-11-24 Cd83 binding proteins and uses thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/521,124 Active 2037-02-08 US10870704B2 (en) 2014-10-23 2015-10-23 CD83 binding proteins and uses thereof

Country Status (6)

Country Link
US (2) US10870704B2 (en)
EP (1) EP3209695A4 (en)
AU (1) AU2015336931B2 (en)
CA (1) CA2965170A1 (en)
NZ (1) NZ731491A (en)
WO (1) WO2016061617A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11725054B2 (en) 2013-02-01 2023-08-15 Kira Biotech Pty Limited Anti-CD83 antibodies and use thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019051541A1 (en) * 2017-09-13 2019-03-21 Dendrocyte Biotech Pty Ltd Treatment method
AU2019226101A1 (en) * 2018-02-23 2020-09-17 H. Lee Moffitt Cancer Center And Research Institute Inc. CD83-binding chimeric antigen receptors

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4593089A (en) 1980-07-30 1986-06-03 Abbott Laboratories Fluorescent polarization immunoassay utilizing substituted triazinylaminofluorescein aminoglycosides
US4554101A (en) 1981-01-09 1985-11-19 New York Blood Center, Inc. Identification and preparation of epitopes on antigens and allergens on the basis of hydrophilicity
GB8308235D0 (en) 1983-03-25 1983-05-05 Celltech Ltd Polypeptides
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US5807715A (en) 1984-08-27 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin
US4751190A (en) 1985-07-22 1988-06-14 Abbott Laboratories Fluorescence polarization immunoassay and reagents for use therein
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
US5618920A (en) 1985-11-01 1997-04-08 Xoma Corporation Modular assembly of antibody genes, antibodies prepared thereby and use
US5225539A (en) 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
US5260203A (en) 1986-09-02 1993-11-09 Enzon, Inc. Single polypeptide chain binding molecules
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
EP0368684B2 (en) 1988-11-11 2004-09-29 Medical Research Council Cloning immunoglobulin variable domain sequences.
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US6291158B1 (en) 1989-05-16 2001-09-18 Scripps Research Institute Method for tapping the immunological repertoire
US5859205A (en) 1989-12-21 1999-01-12 Celltech Limited Humanised antibodies
WO1994004679A1 (en) 1991-06-14 1994-03-03 Genentech, Inc. Method for making humanized antibodies
ES2136092T3 (en) 1991-09-23 1999-11-16 Medical Res Council PROCEDURES FOR THE PRODUCTION OF HUMANIZED ANTIBODIES.
PT1024191E (en) 1991-12-02 2008-12-22 Medical Res Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
DE4211351A1 (en) 1992-04-04 1993-10-07 Behringwerke Ag Method for analyzing particle-enhanced agglutination reactions on centrifugal analyzers by determining the turbidity brightening
EP0569141A3 (en) 1992-04-14 1994-10-26 Hybritech Inc Methods of inhibiting the growth of multidrug resistant tumors with an antibody.
US5710262A (en) 1992-04-17 1998-01-20 Dana-Faber Cancer Institute, Inc. Nucleic acid encoding HB15 polypeptides
US5316920A (en) 1992-04-17 1994-05-31 Dana-Faber Cancer Institute, Inc. Lymphocyte activation antigen HB15, a member of the immunoglobulin superfamily
WO1994007921A1 (en) 1992-09-25 1994-04-14 Commonwealth Scientific And Industrial Research Organisation Target binding polypeptide
US20080152586A1 (en) 1992-09-25 2008-06-26 Avipep Pty Limited High avidity polyvalent and polyspecific reagents
US5837821A (en) 1992-11-04 1998-11-17 City Of Hope Antibody construct
US5516637A (en) 1994-06-10 1996-05-14 Dade International Inc. Method involving display of protein binding pairs on the surface of bacterial pili and bacteriophage
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US6113898A (en) 1995-06-07 2000-09-05 Idec Pharmaceuticals Corporation Human B7.1-specific primatized antibodies and transfectomas expressing said antibodies
ES2176484T3 (en) 1995-08-18 2002-12-01 Morphosys Ag PROTEIN BANKS / (POLI) PEPTIDES.
GB9603256D0 (en) 1996-02-16 1996-04-17 Wellcome Found Antibodies
US6541213B1 (en) 1996-03-29 2003-04-01 University Of Washington Microscale diffusion immunoassay
US6699658B1 (en) 1996-05-31 2004-03-02 Board Of Trustees Of The University Of Illinois Yeast cell surface display of proteins and uses thereof
CA2244326C (en) 1997-08-11 2006-03-28 Shinichi Eda Microparticle enhanced light scattering agglutination assay and microparticle reagents therefor
WO1999022764A1 (en) 1997-10-31 1999-05-14 Genentech, Inc. Methods and compositions comprising glycoprotein glycoforms
DK1071700T3 (en) 1998-04-20 2010-06-07 Glycart Biotechnology Ag Glycosylation modification of antibodies to enhance antibody-dependent cellular cytotoxicity
US6562622B1 (en) 1998-05-08 2003-05-13 Diatech Pty, Ltd Continuous in vitro evolution
CN1202128C (en) 1998-12-08 2005-05-18 拜奥威神有限公司 Method for reducing immunogenicity of proteins
WO2000042430A1 (en) 1999-01-15 2000-07-20 Medtox Scientific, Inc. Lateral flow test strip
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
US7270969B2 (en) 1999-05-05 2007-09-18 Phylogica Limited Methods of constructing and screening diverse expression libraries
PT1355919E (en) 2000-12-12 2011-03-02 Medimmune Llc Molecules with extended half-lives, compositions and uses thereof
EP1539233B1 (en) 2001-07-12 2011-04-27 FOOTE, Jefferson Super humanized antibodies
AU2002331408B2 (en) 2001-08-20 2008-05-08 Proteome Systems Ltd Diagnostic testing process and apparatus
AR039067A1 (en) 2001-11-09 2005-02-09 Pfizer Prod Inc ANTIBODIES FOR CD40
US7618629B2 (en) 2001-11-21 2009-11-17 Celltech R&D, Inc. Manipulation of cytokine levels using CD83 gene products
US20040185040A1 (en) 2001-11-21 2004-09-23 Celltech R & D Limited Modulating immune responses
US7317091B2 (en) 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
AU2002950779A0 (en) 2002-08-15 2002-09-12 The Corporation Of The Trustees Of The Order Of The Sisters Of Mercy In Queensland A method of immunomodulation
US7217797B2 (en) 2002-10-15 2007-05-15 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
JP2006507510A (en) 2002-11-21 2006-03-02 インバーネス・メデイカル・スウイツツアーランド・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Fluid markers for tissue hypoxia
WO2004048552A2 (en) * 2002-11-21 2004-06-10 Celltech R & D, Inc. Modulating immune responses
US7169898B2 (en) 2002-12-04 2007-01-30 Alexander Steinkasserer Soluble CD83 proteins and use thereof for the treatment or prevention of a disease or medical condition caused by dysfunction or undesired function of a cellular immune response involving T cells
JP2006524039A (en) 2003-01-09 2006-10-26 マクロジェニクス,インコーポレーテッド Identification and production of antibody containing mutant Fc region and use thereof
CN1822857A (en) 2003-06-02 2006-08-23 阿莱克申药物公司 De-immunized anti-CD3 antibody
CA2545539A1 (en) 2003-10-15 2005-04-28 Pdl Biopharma, Inc. Alteration of fc-fusion protein serum half-lives by mutagenesis of positions 250, 314 and/or 428 of the heavy chain constant region of ig
US9296820B2 (en) 2003-11-05 2016-03-29 Roche Glycart Ag Polynucleotides encoding anti-CD20 antigen binding molecules with increased Fc receptor binding affinity and effector function
US8802820B2 (en) 2004-11-12 2014-08-12 Xencor, Inc. Fc variants with altered binding to FcRn
US20070135620A1 (en) 2004-11-12 2007-06-14 Xencor, Inc. Fc variants with altered binding to FcRn
CA2602709A1 (en) 2005-03-31 2006-10-05 Telethon Institute For Child Health Research Isolation of inhibitor of ires-mediated translation
JP2009504685A (en) 2005-08-15 2009-02-05 アラーナ・テラピューティクス・リミテッド Engineered antibodies using the New World primate framework region
CA2690973A1 (en) 2006-06-23 2007-12-27 Paul M. Simon Targeted immune conjugates
EP1985305A1 (en) 2007-04-24 2008-10-29 Vivalis Duck embryonic derived stem cell lines for the production of viral vaccines
EP1995309A1 (en) 2007-05-21 2008-11-26 Vivalis Recombinant protein production in avian EBx® cells
US8197809B2 (en) 2008-06-25 2012-06-12 Korea Research Institute Of Bioscience And Biotechnology CD9-specific human antibodies
AR074369A1 (en) 2008-11-20 2011-01-12 Genentech Inc ANTI-UNC 5B ANTIBODIES (NETRINE RECEIVER) AND METHODS OF USE
UY33826A (en) 2010-12-22 2012-07-31 Abbott Lab UNION PROTEINS WITH TRIVARIABLE DOMAINS AND ITS USES
JP2013040160A (en) 2011-07-01 2013-02-28 Genentech Inc Use of anti-cd83 agonist antibody for treating autoimmune disease
KR102528622B1 (en) * 2011-09-30 2023-05-04 추가이 세이야쿠 가부시키가이샤 Ion concentration-dependent binding molecule library
EP2951208B1 (en) 2013-02-01 2019-11-13 Kira Biotech Pty Limited Anti-cd83 antibodies and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11725054B2 (en) 2013-02-01 2023-08-15 Kira Biotech Pty Limited Anti-CD83 antibodies and use thereof

Also Published As

Publication number Publication date
EP3209695A1 (en) 2017-08-30
US10870704B2 (en) 2020-12-22
AU2015336931A1 (en) 2017-05-18
WO2016061617A1 (en) 2016-04-28
US20170335006A1 (en) 2017-11-23
CA2965170A1 (en) 2016-04-28
NZ731491A (en) 2021-12-24
AU2015336931B2 (en) 2021-04-29
EP3209695A4 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
US20210347904A1 (en) Antibodies against tl1a and uses thereof
JP2022084670A (en) Anti-hla-g specific antibodies
US11725054B2 (en) Anti-CD83 antibodies and use thereof
US20210101992A1 (en) Cd83 binding proteins and uses thereof
WO2022155503A1 (en) Multi-specific antibodies and methods of use
NZ622092B2 (en) Antibodies against tl1a and uses thereof
NZ622092A (en) Antibodies against tl1a and uses thereof

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

AS Assignment

Owner name: KIRA BIOTECH PTY LIMITED, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DENDROCYTE BIOTECH PTY LTD;REEL/FRAME:055915/0988

Effective date: 20190412

Owner name: DENDROCYTE BIOTECH PTY LTD, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CASEY, JOANNE L;COLEY, ANDREW M;REEL/FRAME:055926/0961

Effective date: 20170718

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION