US20210093655A1 - Particles with RNA Cleaving Nucleobase Polymers and Uses for Managing Inflammatory Disorders - Google Patents
Particles with RNA Cleaving Nucleobase Polymers and Uses for Managing Inflammatory Disorders Download PDFInfo
- Publication number
- US20210093655A1 US20210093655A1 US17/122,946 US202017122946A US2021093655A1 US 20210093655 A1 US20210093655 A1 US 20210093655A1 US 202017122946 A US202017122946 A US 202017122946A US 2021093655 A1 US2021093655 A1 US 2021093655A1
- Authority
- US
- United States
- Prior art keywords
- certain embodiments
- seq
- nucleobase
- gata
- nucleobase polymers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 83
- 208000027866 inflammatory disease Diseases 0.000 title abstract description 9
- 239000002245 particle Substances 0.000 title description 34
- 208000006673 asthma Diseases 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 24
- 239000002105 nanoparticle Substances 0.000 claims abstract description 13
- 239000003795 chemical substances by application Substances 0.000 claims description 15
- 241000282414 Homo sapiens Species 0.000 claims description 10
- 230000000241 respiratory effect Effects 0.000 claims description 5
- NDAUXUAQIAJITI-UHFFFAOYSA-N albuterol Chemical compound CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=C1 NDAUXUAQIAJITI-UHFFFAOYSA-N 0.000 claims description 2
- 229940124630 bronchodilator Drugs 0.000 claims description 2
- 239000003246 corticosteroid Substances 0.000 claims description 2
- 229960001888 ipratropium Drugs 0.000 claims description 2
- OEXHQOGQTVQTAT-JRNQLAHRSA-N ipratropium Chemical compound O([C@H]1C[C@H]2CC[C@@H](C1)[N@@+]2(C)C(C)C)C(=O)C(CO)C1=CC=CC=C1 OEXHQOGQTVQTAT-JRNQLAHRSA-N 0.000 claims description 2
- 229960002052 salbutamol Drugs 0.000 claims description 2
- 108020004999 messenger RNA Proteins 0.000 abstract description 24
- 230000014509 gene expression Effects 0.000 abstract description 12
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 6
- 208000023504 respiratory system disease Diseases 0.000 abstract description 4
- 230000000593 degrading effect Effects 0.000 abstract description 2
- 101001066288 Gallus gallus GATA-binding factor 3 Proteins 0.000 abstract 2
- 101000819111 Homo sapiens Trans-acting T-cell-specific transcription factor GATA-3 Proteins 0.000 description 42
- 102100021386 Trans-acting T-cell-specific transcription factor GATA-3 Human genes 0.000 description 39
- 239000002773 nucleotide Substances 0.000 description 39
- 150000007523 nucleic acids Chemical group 0.000 description 37
- 102000039446 nucleic acids Human genes 0.000 description 35
- 108020004707 nucleic acids Proteins 0.000 description 35
- 108091027757 Deoxyribozyme Proteins 0.000 description 34
- 125000003729 nucleotide group Chemical group 0.000 description 31
- 239000000203 mixture Substances 0.000 description 27
- 239000008194 pharmaceutical composition Substances 0.000 description 20
- 210000004027 cell Anatomy 0.000 description 17
- 108091034117 Oligonucleotide Proteins 0.000 description 16
- 239000003085 diluting agent Substances 0.000 description 15
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 15
- 241001465754 Metazoa Species 0.000 description 14
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 238000006467 substitution reaction Methods 0.000 description 12
- 238000011282 treatment Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 108020004414 DNA Proteins 0.000 description 11
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 11
- 238000012217 deletion Methods 0.000 description 11
- 230000037430 deletion Effects 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- 239000000546 pharmaceutical excipient Substances 0.000 description 10
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 9
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 9
- 239000013566 allergen Substances 0.000 description 9
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 9
- 239000003814 drug Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 210000004072 lung Anatomy 0.000 description 9
- 230000000295 complement effect Effects 0.000 description 8
- -1 e.g. Substances 0.000 description 8
- 230000008685 targeting Effects 0.000 description 8
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 7
- 239000000428 dust Substances 0.000 description 7
- NZWOPGCLSHLLPA-UHFFFAOYSA-N methacholine Chemical compound C[N+](C)(C)CC(C)OC(C)=O NZWOPGCLSHLLPA-UHFFFAOYSA-N 0.000 description 7
- 229960002329 methacholine Drugs 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 7
- 229940035893 uracil Drugs 0.000 description 7
- 229930024421 Adenine Natural products 0.000 description 6
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 6
- 241000699666 Mus <mouse, genus> Species 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 229960000643 adenine Drugs 0.000 description 6
- 201000009961 allergic asthma Diseases 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- 238000009396 hybridization Methods 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 102000040430 polynucleotide Human genes 0.000 description 6
- 108091033319 polynucleotide Proteins 0.000 description 6
- 239000002157 polynucleotide Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000003380 propellant Substances 0.000 description 6
- 238000003757 reverse transcription PCR Methods 0.000 description 6
- 210000002966 serum Anatomy 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 6
- 208000035657 Abasia Diseases 0.000 description 5
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 5
- 108090000695 Cytokines Proteins 0.000 description 5
- 102000004127 Cytokines Human genes 0.000 description 5
- 102000053602 DNA Human genes 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 5
- 239000000443 aerosol Substances 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 229940104302 cytosine Drugs 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 125000005647 linker group Chemical group 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 210000005265 lung cell Anatomy 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000002663 nebulization Methods 0.000 description 5
- 239000010452 phosphate Substances 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 235000000346 sugar Nutrition 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- FZWGECJQACGGTI-UHFFFAOYSA-N 2-amino-7-methyl-1,7-dihydro-6H-purin-6-one Chemical class NC1=NC(O)=C2N(C)C=NC2=N1 FZWGECJQACGGTI-UHFFFAOYSA-N 0.000 description 4
- RYVNIFSIEDRLSJ-UHFFFAOYSA-N 5-(hydroxymethyl)cytosine Chemical compound NC=1NC(=O)N=CC=1CO RYVNIFSIEDRLSJ-UHFFFAOYSA-N 0.000 description 4
- CZVCGJBESNRLEQ-UHFFFAOYSA-N 7h-purine;pyrimidine Chemical compound C1=CN=CN=C1.C1=NC=C2NC=NC2=N1 CZVCGJBESNRLEQ-UHFFFAOYSA-N 0.000 description 4
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 4
- 108010065108 RNA-cleaving DNA 10-23 Proteins 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 238000003197 gene knockdown Methods 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- DRAVOWXCEBXPTN-UHFFFAOYSA-N isoguanine Chemical compound NC1=NC(=O)NC2=C1NC=N2 DRAVOWXCEBXPTN-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 229940113082 thymine Drugs 0.000 description 4
- STGXGJRRAJKJRG-JDJSBBGDSA-N (3r,4r,5r)-5-(hydroxymethyl)-3-methoxyoxolane-2,4-diol Chemical compound CO[C@H]1C(O)O[C@H](CO)[C@H]1O STGXGJRRAJKJRG-JDJSBBGDSA-N 0.000 description 3
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 description 3
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 206010009900 Colitis ulcerative Diseases 0.000 description 3
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 101710163270 Nuclease Proteins 0.000 description 3
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 3
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 3
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 3
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 201000006704 Ulcerative Colitis Diseases 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000008371 airway function Effects 0.000 description 3
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 3
- 239000005557 antagonist Substances 0.000 description 3
- 239000012062 aqueous buffer Substances 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 3
- 208000037976 chronic inflammation Diseases 0.000 description 3
- 230000006020 chronic inflammation Effects 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 235000019441 ethanol Nutrition 0.000 description 3
- 238000000684 flow cytometry Methods 0.000 description 3
- 238000000799 fluorescence microscopy Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 244000144993 groups of animals Species 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 230000004807 localization Effects 0.000 description 3
- 210000002540 macrophage Anatomy 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 230000002085 persistent effect Effects 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000008159 sesame oil Substances 0.000 description 3
- 235000011803 sesame oil Nutrition 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- JUDOLRSMWHVKGX-UHFFFAOYSA-N 1,1-dioxo-1$l^{6},2-benzodithiol-3-one Chemical compound C1=CC=C2C(=O)SS(=O)(=O)C2=C1 JUDOLRSMWHVKGX-UHFFFAOYSA-N 0.000 description 2
- MPCAJMNYNOGXPB-UHFFFAOYSA-N 1,5-anhydrohexitol Chemical class OCC1OCC(O)C(O)C1O MPCAJMNYNOGXPB-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- ICLOFHWYJZIMIH-XLPZGREQSA-N 2-amino-1-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidin-4-one Chemical compound NC1=NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 ICLOFHWYJZIMIH-XLPZGREQSA-N 0.000 description 2
- XQCZBXHVTFVIFE-UHFFFAOYSA-N 2-amino-4-hydroxypyrimidine Chemical compound NC1=NC=CC(O)=N1 XQCZBXHVTFVIFE-UHFFFAOYSA-N 0.000 description 2
- XSACIPXSUWEZCP-UHFFFAOYSA-N 4-(hydroxymethyl)-2,5-dioxabicyclo[2.2.1]heptan-7-ol Chemical compound C1OC2COC1(CO)C2O XSACIPXSUWEZCP-UHFFFAOYSA-N 0.000 description 2
- LZINOQJQXIEBNN-UHFFFAOYSA-N 4-hydroxybutyl dihydrogen phosphate Chemical compound OCCCCOP(O)(O)=O LZINOQJQXIEBNN-UHFFFAOYSA-N 0.000 description 2
- OIVLITBTBDPEFK-UHFFFAOYSA-N 5,6-dihydrouracil Chemical compound O=C1CCNC(=O)N1 OIVLITBTBDPEFK-UHFFFAOYSA-N 0.000 description 2
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 2
- SWFIFWZFCNRPBN-KVQBGUIXSA-N 6-amino-9-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-1h-purin-2-one Chemical compound C1=NC2=C(N)NC(=O)N=C2N1[C@H]1C[C@H](O)[C@@H](CO)O1 SWFIFWZFCNRPBN-KVQBGUIXSA-N 0.000 description 2
- PEHVGBZKEYRQSX-UHFFFAOYSA-N 7-deaza-adenine Chemical class NC1=NC=NC2=C1C=CN2 PEHVGBZKEYRQSX-UHFFFAOYSA-N 0.000 description 2
- HCGHYQLFMPXSDU-UHFFFAOYSA-N 7-methyladenine Chemical class C1=NC(N)=C2N(C)C=NC2=N1 HCGHYQLFMPXSDU-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 102000001381 Arachidonate 5-Lipoxygenase Human genes 0.000 description 2
- 108010093579 Arachidonate 5-lipoxygenase Proteins 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 201000003883 Cystic fibrosis Diseases 0.000 description 2
- 108010000577 DNA-Formamidopyrimidine Glycosylase Proteins 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- 206010014561 Emphysema Diseases 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 2
- 206010020751 Hypersensitivity Diseases 0.000 description 2
- 229930010555 Inosine Natural products 0.000 description 2
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- 201000008197 Laryngitis Diseases 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 235000019483 Peanut oil Nutrition 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 201000004681 Psoriasis Diseases 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 208000002200 Respiratory Hypersensitivity Diseases 0.000 description 2
- IYFATESGLOUGBX-YVNJGZBMSA-N Sorbitan monopalmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O IYFATESGLOUGBX-YVNJGZBMSA-N 0.000 description 2
- 108010072685 Uracil-DNA Glycosidase Proteins 0.000 description 2
- 102000006943 Uracil-DNA Glycosidase Human genes 0.000 description 2
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 2
- 125000002015 acyclic group Chemical group 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 150000003838 adenosines Chemical class 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 230000010085 airway hyperresponsiveness Effects 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 239000003708 ampul Substances 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 206010006451 bronchitis Diseases 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 125000002837 carbocyclic group Chemical group 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 201000009243 chronic laryngitis Diseases 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 238000010511 deprotection reaction Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 210000002919 epithelial cell Anatomy 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 125000003976 glyceryl group Chemical group [H]C([*])([H])C(O[H])([H])C(O[H])([H])[H] 0.000 description 2
- 125000001475 halogen functional group Chemical group 0.000 description 2
- 210000002443 helper t lymphocyte Anatomy 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229960003786 inosine Drugs 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000008297 liquid dosage form Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000006199 nebulizer Substances 0.000 description 2
- 238000002515 oligonucleotide synthesis Methods 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- 229960000470 omalizumab Drugs 0.000 description 2
- 239000000312 peanut oil Substances 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 150000008300 phosphoramidites Chemical class 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 2
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 2
- 238000009613 pulmonary function test Methods 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 229920002477 rna polymer Polymers 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 150000003839 salts Chemical group 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 2
- 239000001570 sorbitan monopalmitate Substances 0.000 description 2
- 235000011071 sorbitan monopalmitate Nutrition 0.000 description 2
- 229940031953 sorbitan monopalmitate Drugs 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000003637 steroidlike Effects 0.000 description 2
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 239000005451 thionucleotide Substances 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- CNPVJJQCETWNEU-CYFREDJKSA-N (4,6-dimethyl-5-pyrimidinyl)-[4-[(3S)-4-[(1R)-2-methoxy-1-[4-(trifluoromethyl)phenyl]ethyl]-3-methyl-1-piperazinyl]-4-methyl-1-piperidinyl]methanone Chemical compound N([C@@H](COC)C=1C=CC(=CC=1)C(F)(F)F)([C@H](C1)C)CCN1C(CC1)(C)CCN1C(=O)C1=C(C)N=CN=C1C CNPVJJQCETWNEU-CYFREDJKSA-N 0.000 description 1
- CDOOAUSHHFGWSA-OWOJBTEDSA-N (e)-1,3,3,3-tetrafluoroprop-1-ene Chemical compound F\C=C\C(F)(F)F CDOOAUSHHFGWSA-OWOJBTEDSA-N 0.000 description 1
- YFMFNYKEUDLDTL-UHFFFAOYSA-N 1,1,1,2,3,3,3-heptafluoropropane Chemical compound FC(F)(F)C(F)C(F)(F)F YFMFNYKEUDLDTL-UHFFFAOYSA-N 0.000 description 1
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- FGODUFHTWYYOOB-UHFFFAOYSA-N 1,3-diaminopropan-2-yl dihydrogen phosphate Chemical compound NCC(CN)OP(O)(O)=O FGODUFHTWYYOOB-UHFFFAOYSA-N 0.000 description 1
- MCTWTZJPVLRJOU-UHFFFAOYSA-N 1-methyl-1H-imidazole Chemical compound CN1C=CN=C1 MCTWTZJPVLRJOU-UHFFFAOYSA-N 0.000 description 1
- UHUHBFMZVCOEOV-UHFFFAOYSA-N 1h-imidazo[4,5-c]pyridin-4-amine Chemical class NC1=NC=CC2=C1N=CN2 UHUHBFMZVCOEOV-UHFFFAOYSA-N 0.000 description 1
- MIJDSYMOBYNHOT-UHFFFAOYSA-N 2-(ethylamino)ethanol Chemical compound CCNCCO MIJDSYMOBYNHOT-UHFFFAOYSA-N 0.000 description 1
- HTOVHZGIBCAAJU-UHFFFAOYSA-N 2-amino-2-propyl-1h-purin-6-one Chemical compound CCCC1(N)NC(=O)C2=NC=NC2=N1 HTOVHZGIBCAAJU-UHFFFAOYSA-N 0.000 description 1
- MWBWWFOAEOYUST-UHFFFAOYSA-N 2-aminopurine Chemical compound NC1=NC=C2N=CNC2=N1 MWBWWFOAEOYUST-UHFFFAOYSA-N 0.000 description 1
- RXIUEIPPLAFSDF-CYBMUJFWSA-N 2-hydroxy-n,n-dimethyl-3-[[2-[[(1r)-1-(5-methylfuran-2-yl)propyl]amino]-3,4-dioxocyclobuten-1-yl]amino]benzamide Chemical compound N([C@H](CC)C=1OC(C)=CC=1)C(C(C1=O)=O)=C1NC1=CC=CC(C(=O)N(C)C)=C1O RXIUEIPPLAFSDF-CYBMUJFWSA-N 0.000 description 1
- XWKFPIODWVPXLX-UHFFFAOYSA-N 2-methyl-5-methylpyridine Natural products CC1=CC=C(C)N=C1 XWKFPIODWVPXLX-UHFFFAOYSA-N 0.000 description 1
- USCCECGPGBGFOM-UHFFFAOYSA-N 2-propyl-7h-purin-6-amine Chemical compound CCCC1=NC(N)=C2NC=NC2=N1 USCCECGPGBGFOM-UHFFFAOYSA-N 0.000 description 1
- NZOONKHCNQFYCI-UHFFFAOYSA-N 3-[3-tert-butylsulfanyl-1-[(4-chlorophenyl)methyl]-5-(quinolin-2-ylmethoxy)indol-2-yl]-2,2-dimethylpropanoic acid Chemical compound C12=CC=C(OCC=3N=C4C=CC=CC4=CC=3)C=C2C(SC(C)(C)C)=C(CC(C)(C)C(O)=O)N1CC1=CC=C(Cl)C=C1 NZOONKHCNQFYCI-UHFFFAOYSA-N 0.000 description 1
- KUQZVISZELWDNZ-UHFFFAOYSA-N 3-aminopropyl dihydrogen phosphate Chemical compound NCCCOP(O)(O)=O KUQZVISZELWDNZ-UHFFFAOYSA-N 0.000 description 1
- HYCSHFLKPSMPGO-UHFFFAOYSA-N 3-hydroxypropyl dihydrogen phosphate Chemical compound OCCCOP(O)(O)=O HYCSHFLKPSMPGO-UHFFFAOYSA-N 0.000 description 1
- LOJNBPNACKZWAI-UHFFFAOYSA-N 3-nitro-1h-pyrrole Chemical compound [O-][N+](=O)C=1C=CNC=1 LOJNBPNACKZWAI-UHFFFAOYSA-N 0.000 description 1
- MAOIDRRXRLYJNV-NRFANRHFSA-N 4-(4-fluorophenyl)-7-[[[5-[(2s)-1,1,1-trifluoro-2-hydroxybutan-2-yl]-1,3,4-oxadiazol-2-yl]amino]methyl]chromen-2-one Chemical compound O1C([C@@](O)(CC)C(F)(F)F)=NN=C1NCC1=CC=C(C(=CC(=O)O2)C=3C=CC(F)=CC=3)C2=C1 MAOIDRRXRLYJNV-NRFANRHFSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- XSGZNYKZSOJIAM-XUOJEKSQSA-N 4-amino-1-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidin-2-one;2-(10h-phenoxazin-1-yl)ethanamine Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1.O1C2=CC=CC=C2NC2=C1C=CC=C2CCN XSGZNYKZSOJIAM-XUOJEKSQSA-N 0.000 description 1
- JFUAWXPBHXKZGA-IBGZPJMESA-N 4-fluoro-2-[(4r)-5,5,5-trifluoro-4-hydroxy-2-methyl-4-(1h-pyrrolo[2,3-c]pyridin-2-ylmethyl)pentan-2-yl]phenol Chemical compound C([C@@](O)(CC=1NC2=CN=CC=C2C=1)C(F)(F)F)C(C)(C)C1=CC(F)=CC=C1O JFUAWXPBHXKZGA-IBGZPJMESA-N 0.000 description 1
- OVONXEQGWXGFJD-UHFFFAOYSA-N 4-sulfanylidene-1h-pyrimidin-2-one Chemical compound SC=1C=CNC(=O)N=1 OVONXEQGWXGFJD-UHFFFAOYSA-N 0.000 description 1
- 102000004023 5-Lipoxygenase-Activating Proteins Human genes 0.000 description 1
- 108090000411 5-Lipoxygenase-Activating Proteins Proteins 0.000 description 1
- ZLAQATDNGLKIEV-UHFFFAOYSA-N 5-methyl-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CC1=CNC(=S)NC1=O ZLAQATDNGLKIEV-UHFFFAOYSA-N 0.000 description 1
- OZFPSOBLQZPIAV-UHFFFAOYSA-N 5-nitro-1h-indole Chemical compound [O-][N+](=O)C1=CC=C2NC=CC2=C1 OZFPSOBLQZPIAV-UHFFFAOYSA-N 0.000 description 1
- UJBCLAXPPIDQEE-UHFFFAOYSA-N 5-prop-1-ynyl-1h-pyrimidine-2,4-dione Chemical compound CC#CC1=CNC(=O)NC1=O UJBCLAXPPIDQEE-UHFFFAOYSA-N 0.000 description 1
- XDBHURGONHZNJF-UHFFFAOYSA-N 6-[2-(3,4-diethoxyphenyl)-1,3-thiazol-4-yl]pyridine-2-carboxylic acid Chemical compound C1=C(OCC)C(OCC)=CC=C1C1=NC(C=2N=C(C=CC=2)C(O)=O)=CS1 XDBHURGONHZNJF-UHFFFAOYSA-N 0.000 description 1
- KKYABQBFGDZVNQ-UHFFFAOYSA-N 6-[5-[(cyclopropylamino)-oxomethyl]-3-fluoro-2-methylphenyl]-N-(2,2-dimethylpropyl)-3-pyridinecarboxamide Chemical compound CC1=C(F)C=C(C(=O)NC2CC2)C=C1C1=CC=C(C(=O)NCC(C)(C)C)C=N1 KKYABQBFGDZVNQ-UHFFFAOYSA-N 0.000 description 1
- KXBCLNRMQPRVTP-UHFFFAOYSA-N 6-amino-1,5-dihydroimidazo[4,5-c]pyridin-4-one Chemical class O=C1NC(N)=CC2=C1N=CN2 KXBCLNRMQPRVTP-UHFFFAOYSA-N 0.000 description 1
- DCPSTSVLRXOYGS-UHFFFAOYSA-N 6-amino-1h-pyrimidine-2-thione Chemical compound NC1=CC=NC(S)=N1 DCPSTSVLRXOYGS-UHFFFAOYSA-N 0.000 description 1
- QNNARSZPGNJZIX-UHFFFAOYSA-N 6-amino-5-prop-1-ynyl-1h-pyrimidin-2-one Chemical compound CC#CC1=CNC(=O)N=C1N QNNARSZPGNJZIX-UHFFFAOYSA-N 0.000 description 1
- XYVLZAYJHCECPN-UHFFFAOYSA-N 6-aminohexyl phosphate Chemical compound NCCCCCCOP(O)(O)=O XYVLZAYJHCECPN-UHFFFAOYSA-N 0.000 description 1
- XYVLZAYJHCECPN-UHFFFAOYSA-L 6-aminohexyl phosphate Chemical compound NCCCCCCOP([O-])([O-])=O XYVLZAYJHCECPN-UHFFFAOYSA-L 0.000 description 1
- CKOMXBHMKXXTNW-UHFFFAOYSA-N 6-methyladenine Chemical compound CNC1=NC=NC2=C1N=CN2 CKOMXBHMKXXTNW-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- LOSIULRWFAEMFL-UHFFFAOYSA-N 7-deazaguanine Chemical class O=C1NC(N)=NC2=C1CC=N2 LOSIULRWFAEMFL-UHFFFAOYSA-N 0.000 description 1
- PFUVOLUPRFCPMN-UHFFFAOYSA-N 7h-purine-6,8-diamine Chemical compound C1=NC(N)=C2NC(N)=NC2=N1 PFUVOLUPRFCPMN-UHFFFAOYSA-N 0.000 description 1
- HRYKDUPGBWLLHO-UHFFFAOYSA-N 8-azaadenine Chemical class NC1=NC=NC2=NNN=C12 HRYKDUPGBWLLHO-UHFFFAOYSA-N 0.000 description 1
- LPXQRXLUHJKZIE-UHFFFAOYSA-N 8-azaguanine Chemical class NC1=NC(O)=C2NN=NC2=N1 LPXQRXLUHJKZIE-UHFFFAOYSA-N 0.000 description 1
- 229960005508 8-azaguanine Drugs 0.000 description 1
- JRLTTZUODKEYDH-UHFFFAOYSA-N 8-methylquinoline Chemical group C1=CN=C2C(C)=CC=CC2=C1 JRLTTZUODKEYDH-UHFFFAOYSA-N 0.000 description 1
- RGKBRPAAQSHTED-UHFFFAOYSA-N 8-oxoadenine Chemical compound NC1=NC=NC2=C1NC(=O)N2 RGKBRPAAQSHTED-UHFFFAOYSA-N 0.000 description 1
- UBKVUFQGVWHZIR-UHFFFAOYSA-N 8-oxoguanine Chemical compound O=C1NC(N)=NC2=NC(=O)N=C21 UBKVUFQGVWHZIR-UHFFFAOYSA-N 0.000 description 1
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical compound NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 1
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 1
- 208000000884 Airway Obstruction Diseases 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 206010002198 Anaphylactic reaction Diseases 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- KUVIULQEHSCUHY-XYWKZLDCSA-N Beclometasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)COC(=O)CC)(OC(=O)CC)[C@@]1(C)C[C@@H]2O KUVIULQEHSCUHY-XYWKZLDCSA-N 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- VOVIALXJUBGFJZ-KWVAZRHASA-N Budesonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H]3OC(CCC)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O VOVIALXJUBGFJZ-KWVAZRHASA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 108010051109 Cell-Penetrating Peptides Proteins 0.000 description 1
- 102000020313 Cell-Penetrating Peptides Human genes 0.000 description 1
- 102000009410 Chemokine receptor Human genes 0.000 description 1
- 108050000299 Chemokine receptor Proteins 0.000 description 1
- LUKZNWIVRBCLON-GXOBDPJESA-N Ciclesonide Chemical compound C1([C@H]2O[C@@]3([C@H](O2)C[C@@H]2[C@@]3(C[C@H](O)[C@@H]3[C@@]4(C)C=CC(=O)C=C4CC[C@H]32)C)C(=O)COC(=O)C(C)C)CCCCC1 LUKZNWIVRBCLON-GXOBDPJESA-N 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- 206010012438 Dermatitis atopic Diseases 0.000 description 1
- 206010012442 Dermatitis contact Diseases 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- 108010003338 GATA3 Transcription Factor Proteins 0.000 description 1
- 102000004610 GATA3 Transcription Factor Human genes 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000988419 Homo sapiens cAMP-specific 3',5'-cyclic phosphodiesterase 4D Proteins 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 101150019209 IL13 gene Proteins 0.000 description 1
- 101150081923 IL4 gene Proteins 0.000 description 1
- 101150015560 IL5 gene Proteins 0.000 description 1
- ZJVFLBOZORBYFE-UHFFFAOYSA-N Ibudilast Chemical compound C1=CC=CC2=C(C(=O)C(C)C)C(C(C)C)=NN21 ZJVFLBOZORBYFE-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 108090000176 Interleukin-13 Proteins 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 108010002616 Interleukin-5 Proteins 0.000 description 1
- 108010044467 Isoenzymes Proteins 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- UCHDWCPVSPXUMX-TZIWLTJVSA-N Montelukast Chemical compound CC(C)(O)C1=CC=CC=C1CC[C@H](C=1C=C(\C=C\C=2N=C3C=C(Cl)C=CC3=CC=2)C=CC=1)SCC1(CC(O)=O)CC1 UCHDWCPVSPXUMX-TZIWLTJVSA-N 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 101100013967 Mus musculus Gata3 gene Proteins 0.000 description 1
- 102000003896 Myeloperoxidases Human genes 0.000 description 1
- 108090000235 Myeloperoxidases Proteins 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- QJAVERMNASGYHO-UHFFFAOYSA-N O=C1C=CNC(=O)N1.C1=NC=C2NC=NC2=N1 Chemical compound O=C1C=CNC(=O)N1.C1=NC=C2NC=NC2=N1 QJAVERMNASGYHO-UHFFFAOYSA-N 0.000 description 1
- PUGQGMUBFKCUPK-UHFFFAOYSA-N OCC1CN(CCO1)OP(=O)N1CCNCC1 Chemical compound OCC1CN(CCO1)OP(=O)N1CCNCC1 PUGQGMUBFKCUPK-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 108091093037 Peptide nucleic acid Proteins 0.000 description 1
- 229940123932 Phosphodiesterase 4 inhibitor Drugs 0.000 description 1
- IIXHQGSINFQLRR-UHFFFAOYSA-N Piceatannol Natural products Oc1ccc(C=Cc2c(O)c(O)c3CCCCc3c2O)cc1O IIXHQGSINFQLRR-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108091030071 RNAI Proteins 0.000 description 1
- QNVSXXGDAPORNA-UHFFFAOYSA-N Resveratrol Natural products OC1=CC=CC(C=CC=2C=C(O)C(O)=CC=2)=C1 QNVSXXGDAPORNA-UHFFFAOYSA-N 0.000 description 1
- 208000025747 Rheumatic disease Diseases 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 102220497176 Small vasohibin-binding protein_T47D_mutation Human genes 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric Acid Chemical class [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 210000004241 Th2 cell Anatomy 0.000 description 1
- LUKBXSAWLPMMSZ-OWOJBTEDSA-N Trans-resveratrol Chemical compound C1=CC(O)=CC=C1\C=C\C1=CC(O)=CC(O)=C1 LUKBXSAWLPMMSZ-OWOJBTEDSA-N 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- YEEZWCHGZNKEEK-UHFFFAOYSA-N Zafirlukast Chemical compound COC1=CC(C(=O)NS(=O)(=O)C=2C(=CC=CC=2)C)=CC=C1CC(C1=C2)=CN(C)C1=CC=C2NC(=O)OC1CCCC1 YEEZWCHGZNKEEK-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 102000038627 Zinc finger transcription factors Human genes 0.000 description 1
- 108091007916 Zinc finger transcription factors Proteins 0.000 description 1
- 239000001089 [(2R)-oxolan-2-yl]methanol Substances 0.000 description 1
- SZYSLWCAWVWFLT-UTGHZIEOSA-N [(2s,3s,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)-2-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxolan-2-yl]methyl octadecanoate Chemical compound O([C@@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)[C@]1(COC(=O)CCCCCCCCCCCCCCCCC)O[C@H](CO)[C@@H](O)[C@@H]1O SZYSLWCAWVWFLT-UTGHZIEOSA-N 0.000 description 1
- CDKNUFNIFGPFSF-AYVLZSQQSA-N [(8s,9s,10r,11s,13s,14s,17r)-11-hydroxy-10,13-dimethyl-3-oxo-17-(2-propanoylsulfanylacetyl)-2,6,7,8,9,11,12,14,15,16-decahydro-1h-cyclopenta[a]phenanthren-17-yl] butanoate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)CSC(=O)CC)(OC(=O)CCC)[C@@]1(C)C[C@@H]2O CDKNUFNIFGPFSF-AYVLZSQQSA-N 0.000 description 1
- MAFBRQLHRYIKFP-UHFFFAOYSA-N [2-(hydroxymethyl)morpholin-4-yl]-N,N-dimethylphosphonamidic acid Chemical compound CN(C)P(O)(=O)N1CCOC(CO)C1 MAFBRQLHRYIKFP-UHFFFAOYSA-N 0.000 description 1
- JPTKVJWWVFLEJL-GVPGRCOTSA-N [2-[(8S,9R,10S,11S,13S,14S,16R,17R)-17-(cyclopropanecarbonyloxy)-9-luoro-11-hydroxy-10,13,16-trimethyl-3-oxo-6,7,8,11,12,14,15,16-octahydrocyclopenta[a]phenanthren-17-yl]-2-oxoethyl] cyclohexanecarboxylate Chemical compound O([C@]1([C@@]2(C)C[C@H](O)[C@]3(F)[C@@]4(C)C=CC(=O)C=C4CC[C@H]3[C@@H]2C[C@H]1C)C(=O)COC(=O)C1CCCCC1)C(=O)C1CC1 JPTKVJWWVFLEJL-GVPGRCOTSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 210000001552 airway epithelial cell Anatomy 0.000 description 1
- 208000037883 airway inflammation Diseases 0.000 description 1
- 229960004229 alclometasone dipropionate Drugs 0.000 description 1
- DJHCCTTVDRAMEH-DUUJBDRPSA-N alclometasone dipropionate Chemical compound C([C@H]1Cl)C2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)COC(=O)CC)(OC(=O)CC)[C@@]1(C)C[C@@H]2O DJHCCTTVDRAMEH-DUUJBDRPSA-N 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- 125000005103 alkyl silyl group Chemical group 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 229940059260 amidate Drugs 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- FQPFAHBPWDRTLU-UHFFFAOYSA-N aminophylline Chemical compound NCCN.O=C1N(C)C(=O)N(C)C2=C1NC=N2.O=C1N(C)C(=O)N(C)C2=C1NC=N2 FQPFAHBPWDRTLU-UHFFFAOYSA-N 0.000 description 1
- 229960003556 aminophylline Drugs 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 230000036783 anaphylactic response Effects 0.000 description 1
- 208000003455 anaphylaxis Diseases 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 238000011861 anti-inflammatory therapy Methods 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 229920005601 base polymer Polymers 0.000 description 1
- 229950000210 beclometasone dipropionate Drugs 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 229960004436 budesonide Drugs 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 102100029170 cAMP-specific 3',5'-cyclic phosphodiesterase 4D Human genes 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- PNDKCRDVVKJPKG-WHERJAGFSA-N cenicriviroc Chemical compound C1=CC(OCCOCCCC)=CC=C1C1=CC=C(N(CC(C)C)CCC\C(=C/2)C(=O)NC=3C=CC(=CC=3)[S@@](=O)CC=3N(C=NC=3)CCC)C\2=C1 PNDKCRDVVKJPKG-WHERJAGFSA-N 0.000 description 1
- 229950011033 cenicriviroc Drugs 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 229960003728 ciclesonide Drugs 0.000 description 1
- 229960004703 clobetasol propionate Drugs 0.000 description 1
- CBGUOGMQLZIXBE-XGQKBEPLSA-N clobetasol propionate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CCl)(OC(=O)CC)[C@@]1(C)C[C@@H]2O CBGUOGMQLZIXBE-XGQKBEPLSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 235000008504 concentrate Nutrition 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 208000010247 contact dermatitis Diseases 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical class O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- OXPLANUPKBHPMS-ZXBNPROVSA-N desisobutyrylciclesonide Chemical compound C1([C@@H]2O[C@@H]3C[C@H]4[C@H]5[C@@H]([C@]6(C=CC(=O)C=C6CC5)C)[C@@H](O)C[C@@]4([C@@]3(O2)C(=O)CO)C)CCCCC1 OXPLANUPKBHPMS-ZXBNPROVSA-N 0.000 description 1
- 238000006642 detritylation reaction Methods 0.000 description 1
- 229950001264 dexamethasone cipecilate Drugs 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- ANCLJVISBRWUTR-UHFFFAOYSA-N diaminophosphinic acid Chemical compound NP(N)(O)=O ANCLJVISBRWUTR-UHFFFAOYSA-N 0.000 description 1
- UAVLFXWRQRVKCV-UHFFFAOYSA-N diaminophosphinic acid;piperazine Chemical compound NP(N)(O)=O.C1CNCCN1 UAVLFXWRQRVKCV-UHFFFAOYSA-N 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 210000000750 endocrine system Anatomy 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 210000003979 eosinophil Anatomy 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- NPUKDXXFDDZOKR-LLVKDONJSA-N etomidate Chemical compound CCOC(=O)C1=CN=CN1[C@H](C)C1=CC=CC=C1 NPUKDXXFDDZOKR-LLVKDONJSA-N 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 229960001347 fluocinolone acetonide Drugs 0.000 description 1
- FEBLZLNTKCEFIT-VSXGLTOVSA-N fluocinolone acetonide Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1O FEBLZLNTKCEFIT-VSXGLTOVSA-N 0.000 description 1
- 229960001469 fluticasone furoate Drugs 0.000 description 1
- XTULMSXFIHGYFS-VLSRWLAYSA-N fluticasone furoate Chemical compound O([C@]1([C@@]2(C)C[C@H](O)[C@]3(F)[C@@]4(C)C=CC(=O)C=C4[C@@H](F)C[C@H]3[C@@H]2C[C@H]1C)C(=O)SCF)C(=O)C1=CC=CO1 XTULMSXFIHGYFS-VLSRWLAYSA-N 0.000 description 1
- 229960000289 fluticasone propionate Drugs 0.000 description 1
- WMWTYOKRWGGJOA-CENSZEJFSA-N fluticasone propionate Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)SCF)(OC(=O)CC)[C@@]2(C)C[C@@H]1O WMWTYOKRWGGJOA-CENSZEJFSA-N 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 230000009368 gene silencing by RNA Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229940124750 glucocorticoid receptor agonist Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 230000002439 hemostatic effect Effects 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- PHNWGDTYCJFUGZ-UHFFFAOYSA-L hexyl phosphate Chemical compound CCCCCCOP([O-])([O-])=O PHNWGDTYCJFUGZ-UHFFFAOYSA-L 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 150000005828 hydrofluoroalkanes Chemical group 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229960002491 ibudilast Drugs 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 238000000126 in silico method Methods 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 108091006086 inhibitor proteins Proteins 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 150000002617 leukotrienes Chemical class 0.000 description 1
- UAWXGRJVZSAUSZ-UHFFFAOYSA-N licofelone Chemical compound OC(=O)CC=1N2CC(C)(C)CC2=C(C=2C=CC=CC=2)C=1C1=CC=C(Cl)C=C1 UAWXGRJVZSAUSZ-UHFFFAOYSA-N 0.000 description 1
- 229950003488 licofelone Drugs 0.000 description 1
- 230000029226 lipidation Effects 0.000 description 1
- 150000002632 lipids Chemical group 0.000 description 1
- 230000003137 locomotive effect Effects 0.000 description 1
- 229950003265 losmapimod Drugs 0.000 description 1
- 229960003744 loteprednol etabonate Drugs 0.000 description 1
- DMKSVUSAATWOCU-HROMYWEYSA-N loteprednol etabonate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)OCCl)(OC(=O)OCC)[C@@]1(C)C[C@@H]2O DMKSVUSAATWOCU-HROMYWEYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- GSNHKUDZZFZSJB-QYOOZWMWSA-N maraviroc Chemical compound CC(C)C1=NN=C(C)N1[C@@H]1C[C@H](N2CC[C@H](NC(=O)C3CCC(F)(F)CC3)C=3C=CC=CC=3)CC[C@H]2C1 GSNHKUDZZFZSJB-QYOOZWMWSA-N 0.000 description 1
- 229960004710 maraviroc Drugs 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 229940062713 mite extract Drugs 0.000 description 1
- 229960002744 mometasone furoate Drugs 0.000 description 1
- WOFMFGQZHJDGCX-ZULDAHANSA-N mometasone furoate Chemical compound O([C@]1([C@@]2(C)C[C@H](O)[C@]3(Cl)[C@@]4(C)C=CC(=O)C=C4CC[C@H]3[C@@H]2C[C@H]1C)C(=O)CCl)C(=O)C1=CC=CO1 WOFMFGQZHJDGCX-ZULDAHANSA-N 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 229960005127 montelukast Drugs 0.000 description 1
- VLAZLCVSFAYIIL-UHFFFAOYSA-N morpholin-2-ylmethanol Chemical compound OCC1CNCCO1 VLAZLCVSFAYIIL-UHFFFAOYSA-N 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- JERXUPDBWDWFCF-UHFFFAOYSA-N n-(3,5-dichloropyridin-4-yl)-2-[1-[(4-fluorophenyl)methyl]pyrrolo[2,3-b]pyridin-3-yl]-2-oxoacetamide Chemical compound C1=CC(F)=CC=C1CN1C2=NC=CC=C2C(C(=O)C(=O)NC=2C(=CN=CC=2Cl)Cl)=C1 JERXUPDBWDWFCF-UHFFFAOYSA-N 0.000 description 1
- OKFDRAHPFKMAJH-UHFFFAOYSA-N n-(3,5-dichloropyridin-4-yl)-4-(difluoromethoxy)-8-(methanesulfonamido)dibenzofuran-1-carboxamide Chemical compound C=12C3=CC(NS(=O)(=O)C)=CC=C3OC2=C(OC(F)F)C=CC=1C(=O)NC1=C(Cl)C=NC=C1Cl OKFDRAHPFKMAJH-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 229950003726 navarixin Drugs 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 230000009437 off-target effect Effects 0.000 description 1
- 229950000175 oglemilast Drugs 0.000 description 1
- 229940124624 oral corticosteroid Drugs 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 238000009521 phase II clinical trial Methods 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 239000002587 phosphodiesterase IV inhibitor Substances 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- CDRPUGZCRXZLFL-OWOJBTEDSA-N piceatannol Chemical compound OC1=CC(O)=CC(\C=C\C=2C=C(O)C(O)=CC=2)=C1 CDRPUGZCRXZLFL-OWOJBTEDSA-N 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229940068917 polyethylene glycols Drugs 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 229960004063 propylene glycol Drugs 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 229950000099 quiflapon Drugs 0.000 description 1
- 229940016667 resveratrol Drugs 0.000 description 1
- 235000021283 resveratrol Nutrition 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- MNDBXUUTURYVHR-UHFFFAOYSA-N roflumilast Chemical compound FC(F)OC1=CC=C(C(=O)NC=2C(=CN=CC=2Cl)Cl)C=C1OCC1CC1 MNDBXUUTURYVHR-UHFFFAOYSA-N 0.000 description 1
- 229960002586 roflumilast Drugs 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 229950005149 setileuton Drugs 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008227 sterile water for injection Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-M sulfamate Chemical compound NS([O-])(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-M 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 238000011191 terminal modification Methods 0.000 description 1
- 229950002896 tetomilast Drugs 0.000 description 1
- BSYVTEYKTMYBMK-UHFFFAOYSA-N tetrahydrofurfuryl alcohol Chemical compound OCC1CCCO1 BSYVTEYKTMYBMK-UHFFFAOYSA-N 0.000 description 1
- 229960000278 theophylline Drugs 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 229960005294 triamcinolone Drugs 0.000 description 1
- GFNANZIMVAIWHM-OBYCQNJPSA-N triamcinolone Chemical compound O=C1C=C[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@]([C@H](O)C4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 GFNANZIMVAIWHM-OBYCQNJPSA-N 0.000 description 1
- 229960002117 triamcinolone acetonide Drugs 0.000 description 1
- YNDXUCZADRHECN-JNQJZLCISA-N triamcinolone acetonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O YNDXUCZADRHECN-JNQJZLCISA-N 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 1
- 229940045145 uridine Drugs 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 229950009860 vicriviroc Drugs 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
- 229960004764 zafirlukast Drugs 0.000 description 1
- MWLSOWXNZPKENC-SSDOTTSWSA-N zileuton Chemical compound C1=CC=C2SC([C@H](N(O)C(N)=O)C)=CC2=C1 MWLSOWXNZPKENC-SSDOTTSWSA-N 0.000 description 1
- 229960005332 zileuton Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/713—Double-stranded nucleic acids or oligonucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/712—Nucleic acids or oligonucleotides having modified sugars, i.e. other than ribose or 2'-deoxyribose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/007—Pulmonary tract; Aromatherapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/007—Pulmonary tract; Aromatherapy
- A61K9/0073—Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/007—Pulmonary tract; Aromatherapy
- A61K9/0073—Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
- A61K9/0075—Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a dry powder inhaler [DPI], e.g. comprising micronized drug mixed with lactose carrier particles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/007—Pulmonary tract; Aromatherapy
- A61K9/0073—Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
- A61K9/0078—Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a nebulizer such as a jet nebulizer, ultrasonic nebulizer, e.g. in the form of aqueous drug solutions or dispersions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/007—Pulmonary tract; Aromatherapy
- A61K9/0073—Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
- A61K9/008—Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy comprising drug dissolved or suspended in liquid propellant for inhalation via a pressurized metered dose inhaler [MDI]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/141—Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
- C07H21/04—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
Definitions
- Omalizumab is a recombinant humanized monoclonal antibody that specifically binds to human immunoglobulin E (IgE) and used in patients with severe persistent allergic asthma.
- IgE immunoglobulin E
- systemic omalizumab administration may result in anaphylaxis or the generation of inactivating antibodies.
- Somasuntharam et al. report the knockdown of TNF-alpha by DNAzyme gold nanoparticles as an anti-inflammatory therapy for myocardial infarction. Biomaterials. 2016, 83:12-22.
- Yehl et al. report catalytic deoxyribozyme-modified nanoparticles for RNAi-independent gene regulation. ACS Nano. 2012, 6(10):9150-7.
- nucleobase polymers useful for degrading GATA-3 mRNA relate to nucleobase polymers useful for degrading GATA-3 mRNA.
- this disclosure relates to nucleobase polymers and nanoparticles conjugated to nucleobase polymers disclosed herein.
- the nucleobase polymers or nanoparticles can be used in methods of managing disorders associated with excessive GATA-3 expression in inflammatory disorders and respiratory disorders such as asthma.
- the disclosure relates to nucleobase polymers comprising or consisting of SEQ ID NO: 1-49, 53-55 or variants thereof.
- the nucleobase polymer comprises
- SEQ ID NO: 10 GGCTTATTCA GGCTAGCTACAACGA AGATGGGG
- SEQ ID NO: 20 ATTCCTTAAA GGCTAGCTACAACGA TTCTTGGC
- SEQ ID NO: 30 TCTTTTCTTA GGCTAGCTACAACGA TTTGGTGC or variants thereof.
- the disclosure contemplates a particle coated with or conjugated to a nucleobase polymer disclosed herein, e.g., SEQ ID NO: 1-51, 53-55 or variants thereof.
- the nucleobase polymers of disclose herein have an RNA cleaving sequence such as the 10-23 DNAzyme with SEQ ID NO: 51 (GGCTAGCTACAACGA), e.g., contained within SEQ ID NO: 1-50, 53-55.
- the cleaving sequence has monomers of 2-deoxyribose.
- the variant is a nucleobase polymer comprising one nucleobase substitution, insertion, or deletion. In certain embodiments, the variant is a nucleobase polymer comprising two nucleobase substitutions, insertions, or deletions. In certain embodiments, the variant is a nucleobase polymer comprising three or nucleobase substitutions, insertions, or deletions.
- the variant is a nucleobase polymer comprising one 5′ end nucleobase substitution or deletion. In certain embodiments, the variant is a nucleobase polymer comprising two 5′ end nucleobase substitutions or deletions. In certain embodiments, the variant is a nucleobase polymer comprising three 5′ end nucleobase substitutions or deletion.
- the variant is a nucleobase polymer comprising one 3′ end nucleobase substitutions or deletions. In certain embodiments, the variant is a nucleobase polymer comprising two 3′ end nucleobase substitutions or deletions. In certain embodiments, the variant is a nucleobase polymer comprising three 3′ end nucleobase substitutions or deletions.
- the disclosure relates to particles coated with a nucleobase polymer comprising an RNA cleaving sequence such as a nucleobase polymer comprising SEQ ID NO: 51 (GGCTAGCTACAACGA) and linked to flanking 5′ and 3′ nucleobases that hybridize with SEQ ID NO: 52.
- a nucleobase polymer comprising an RNA cleaving sequence such as a nucleobase polymer comprising SEQ ID NO: 51 (GGCTAGCTACAACGA) and linked to flanking 5′ and 3′ nucleobases that hybridize with SEQ ID NO: 52.
- the particle or nanoparticle has a core or hydrodynamic diameter between 5 nm and 500 nm or 5 nm and 200 nm.
- the particle may contain a metal or inorganic or polymer core.
- conjugation to a particle can be accomplished by using linking groups with ligands, e.g., mono or polydentate ligands, capable of binding the metal in the core or by direct conjugation through covalent bonds of a polymer surrounding and encapsulating the core.
- the nucleobase polymer may further contain a targeting nucleobase polymer sequence or targeting nucleic acid sequence that can hybridize with a target sequence coated on the exterior of the particle.
- the disclosure relates to aerosols, liquid particles, mixtures or gas and liquid particles, comprising a nucleobase polymer or a particle disclosed herein.
- the liquid particle has a diameter of between 1 microns and 5 microns, 0.5 microns and 10 microns, 0.1 microns and 50 microns, or 0.5 microns and 100 microns.
- this disclosure relates to a nucleobase polymer or a particle disclosed herein in the form of a micronized powder, e.g., solid particles of a diameter between 1 microns and 5 microns, 0.5 microns and 10 microns, 0.1 microns and 50 microns, or 0.5 microns and 100 microns.
- a micronized powder e.g., solid particles of a diameter between 1 microns and 5 microns, 0.5 microns and 10 microns, 0.1 microns and 50 microns, or 0.5 microns and 100 microns.
- this disclosure relates to pharmaceutical composition
- the pharmaceutical composition comprises a sterilized pH buffered aqueous salt solution or an isotonic aqueous buffer solution.
- the disclosure relates to a container, optionally sealed gas tight, comprising a nucleobase polymer or particle disclosed herein.
- the container further comprises a propellant.
- the container is configured with a spraying or misting apparatus, mouthpiece, or facemask such as a nebulizer or inhaler.
- the inhaler comprises a liquefied gas propellant.
- the nucleobase polymer or particle is dissolved or suspended in the propellant.
- the inhaler is configured with an actuator or mouthpiece, which allows the patient to operate the device, and directs the aerosol, a chamber, and metering value that controls a metered quantity of a formulation to be dispensed with an actuation.
- the disclosure relates to methods of treating an inflammatory disease comprising administering an effective amount of a nucleobase polymer or particle disclosed herein to a subject in need thereof.
- the inflammatory disease is a respiratory disorder, asthma, COPD, atopic dermatitis, psoriasis, or ulcerative colitis.
- the subject is diagnosed with, exhibiting symptoms of or at risk of asthma, COPD, bronchitis, emphysema, chronic obstructive pulmonary disease, laryngitis, or cystic fibrosis.
- administration is in combination with a second respiratory agent.
- the second respiratory agent is a corticosteroid, bronchodilator, albuterol, ipratropium, or combinations thereof.
- FIG. 1 shows a plot quantifying inhaled delivery of GATA-3 DzNPs using fluorescence imaging.
- GATA-3 DzNPs were nebulized with even and distal distribution in the lung.
- Vehicle phosphate buffered saline, 50 ⁇ l of
- 50 ⁇ l of fluorescently tagged DzNPs 100 nM, two lungs on right
- Imaging was performed 24 hours following delivery.
- FIG. 2 shows a plot quantifying the uptake of DzNPs in lung resident cell lines.
- the data was collected using flow cytometry following incubation with 10 nM concentrations of Cy5-labeled DzNPs in epithelial, macrophage, and smooth muscle cells. Cells were incubated in standard serum-containing media for 24 hours without the use of any transfection agent. Flow cytometry confirms resident lung cell uptake of DzNPs.
- FIG. 3A shows the results of performing a pulmonary function test on four groups of animals.
- Two groups received daily doses of the house dust mite (HDM) allergen for two weeks, while two groups were control animals and did not receive the HDM.
- HDM house dust mite
- This allergen induced airway resistance in mice and recapitulates the pathophysiology of asthma.
- Animals received either daily doses of the active DzNPs or an inactive DzNP.
- the plot shows the raw data measuring the airway resistance as a function of a methacholine challenge. There were three animals in each group.
- FIG. 3B shows data summarizing the efficacy of active GATA-3 Dz compared to non-specific (NS) DzNPs when challenged with 100 mg/ml methacholine.
- House dust mite (HDM) extract 50 ug was inhaled via nebulization daily for 5 days.
- AuNP (20 ul) administered intranasally (100 nM of DzNPs).
- FIG. 4A shows RT-PCR quantification of GATA-3 expression levels in cell lines following DNAzyme treatment.
- the screen shows DNAzymes that are more active than HGD40.
- the dotted line indicates the GATA-3 levels in HGD40 sequence treated cells.
- Arrows indicate the DNAzyme sequences that showed lower levels of GATA-3 compared to the soluble HGD40 sequence is SEQ ID NO: 50. All of the DNAzymes have a 3′-end T 10 modification.
- FIG. 4B shows RT-PCR quantification of GATA-3 expression levels in cells treated with with HGD40 sequence with certain modifications.
- HGD40 9 methyl refers to SEQ ID NO: 53, (G*-T*-G*-G*-dA-dT-dG-dG-dA-dG-dG-dC-dT-dA-dG-dC-dT-dA-dC-dA-dA-dC-dG-dA-dG-dT-dC-dT-dT-G*-G*-A*-G*-T 10 -3′-3′T) wherein d is deoxy and * is 2′-O-methyl ribose.
- HGD40 8 methyl refers to SEQ ID NO: 54, (T*-G*-G*-A*-dT-dG-dG-dA-dG-dG-dC-dT-dA-dG-dC-dT-dA-dA-dC-dA-dA-dC-dG-dA-dG-dT-dC-dT-T*-G*-G*-A*-T 10 -3′-3′T) wherein d is deoxy and * is 2′-O-methyl ribose.
- HGD40 7 methyl refers to SEQ ID NO: 55, (G*-G*-A*-T*-dG-dG-dA-dG-dG-dC-dT-dA-dG-dC-dT-dA-dC-dA-dA-dC-dG-dA-dG-dT-dC-T*-T*-G*-G*-T 10 -3′-3′T) wherein d is deoxy and * is 2′-O-methyl ribose.
- FIG. 5 shows RT-PCR data on GATA-3 expression levels following DNAzyme-AuNP treatment (10 nM for 24 hrs). Several DzNPs were shown to be more active than HGD40-NPs.
- FIG. 6A shows the results of performing a pulmonary function test on the HDM model of mouse asthma.
- FIG. 6B shows data using 50 mg/mL methacholine.
- FIG. 6C shows data using 100 mg/mL methacholine.
- FIG. 7 plots RT-PCR levels of GATA-3 mRNA in the lungs of the animals (from FIG. 6 ).
- Embodiments of the present disclosure will employ, unless otherwise indicated, techniques of medicine, organic chemistry, biochemistry, molecular biology, pharmacology, and the like, which are within the skill of the art. Such techniques are explained fully in the literature.
- transitional term “comprising”, which is synonymous with “including,” “containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, unrecited elements or steps, e.g., does not exclude the presence of terminal nucleotides.
- the term “combination with” when used to describe administration with an additional treatment means that the agent may be administered prior to, together with, or after the additional treatment, or a combination thereof.
- the terms “prevent” and “preventing” include the prevention of the recurrence, spread or onset. It is not intended that the present disclosure be limited to complete prevention. In some embodiments, the onset is delayed, or the severity is reduced.
- the terms “treat” and “treating” are not limited to the case where the subject (e.g., patient) is cured and the condition or disease is eradicated. Rather, embodiments, of the present disclosure also contemplate treatment that merely reduces symptoms, and/or delays conditions or disease progression.
- nucleic acid is intended to mean a ribonucleic or deoxyribonucleic acid or analog thereof, including a nucleic acid analyte presented in any context; for example, a probe, target or primer.
- a nucleic acid can include native or non-native bases.
- a native deoxyribonucleic acid can have one or more bases selected from the group consisting of adenine, thymine, cytosine or guanine and a ribonucleic acid can have one or more bases selected from the group consisting of uracil, adenine, cytosine or guanine.
- a deoxyribonucleic acid used in the methods or compositions set forth herein can include uracil bases and a ribonucleic acid can include a thymine base.
- Exemplary non-native bases that can be included in a nucleic acid, whether having a native backbone or analog structure include, without limitation, inosine, xathanine, hypoxathanine, isocytosine, isoguanine, 2-aminopurine, 5-methylcytosine, 5-hydroxymethyl cytosine, 2-aminoadenine, 6-methyl adenine, 6-methyl guanine, 2-propyl guanine, 2-propyl adenine, 2-thioLiracil, 2-thiothymine, 2-thiocytosine, 15-halouracil, 15-halocytosine, 5-propynyl uracil, 5-propynyl cytosine, 6-azo uracil, 6-azo cytosine, 6-azo th
- a non-native base used in a nucleic acid can have universal base pairing activity, wherein it is capable of base pairing with any other naturally occurring base.
- Exemplary bases having universal base pairing activity include 3-nitropyrrole and 5-nitroindole.
- Other bases that can be used include those that have base pairing activity with a subset of the naturally occurring bases such as inosine, which base-pairs with cytosine, adenine or uracil.
- oligonucleotides, nucleotides or nucleosides including the above-described non-native bases can further include reversible blocking groups on the 2′, 3′ or 4′ hydroxyl of the sugar moiety.
- binding means to include interactions between molecules that may be detected using, for example, a hybridization assay.
- a hybridization assay When hybridization occurs in an antiparallel configuration between two single-stranded polynucleotides, the reaction is called “annealing” and those polynucleotides are described as “complementary”.
- annealing When hybridization occurs in an antiparallel configuration between two single-stranded polynucleotides, the reaction is called “annealing” and those polynucleotides are described as “complementary”.
- a double-stranded polynucleotide can be complementary or homologous to another polynucleotide, if hybridization can occur between one of the strands of the first polynucleotide and the second.
- Complementarity or homology (the degree that one polynucleotide is complementary with another) is quantifiable in terms of the proportion of bases in opposing strands that are expected to form hydrogen bonding with each other, according to generally accepted base-pairing rules.
- a “linking group” refers to any variety of molecular arrangements that can be used to bridge to molecular moieties together.
- An example formula may be -Rm- wherein R is selected individually and independently at each occurrence as: —CRmRm-, —CHRm-, —CH—, —C—, —CH2—, —C(OH)Rm, —C(OH)(OH)—, —C(OH)H, —C(Hal)Rm-, —C(Hal)(Hal)-, —C(Hal)H—, —C(N3)Rm-, —C(CN)Rm-, —C(CN)(CN)—, —C(CN)H—, —C(N3)(N3)—, —C(N3)H—, —O—, —S—, —N—, —NH—, —NRm-, —(C ⁇ O)—, —(C ⁇ NH)—,
- an R is branched with an Rm it may be terminated with a group such as —CH3, —H, —CH ⁇ CH2, —CCH, —OH, —SH, —NH2, —N3, —CN, or -Hal, or two branched Rs may form a cyclic structure. It is contemplated that in certain instances, the total Rs or “m” may be less than 100 or 50 or 25 or 10.
- linking groups include bridging amide, alkyl, and alkoxyalkyl groups.
- Th2 type 2 helper T cell
- Th2 type 2 helper T cell
- GATA-3 is the major transcription factor involved in driving differentiation of helper T cells toward the Th2 fate.
- GATA-3 has been found to be upregulated in biopsies and serum from patients with severe asthma, even while on oral corticosteroids.
- GATA-3 is expressed in resident lung cell types, such as mast cells, eosinophils, macrophages, fibroblasts, and airway epithelial cells.
- Inhibiting GATA-3 production by gene knockdown has been shown to suppress upregulation of cytokines and prevent the induction of airway hyper-responsiveness amongst other asthma symptoms.
- a recent phase II clinical trial demonstrated that administering GATA-3 DNAzymes (Dzs) by inhalation can reduce the impact of an allergen challenge on FEV1 (forced expiratory volume) in mild asthmatics.
- Dzs GATA-3 DNAzymes
- FEV1 forced expiratory volume
- Dzs are synthetic, catalytically active DNA antisense molecules that bind to and cleave specific mRNA. They possess a central catalytic domain that typically ranges from 8-15 nucleotides. Flanking this site are two variable domains, typically 8-12 nucleotides each that can be designed to hybridize to the mRNA molecule of interest. By screening sites in the GATA-3 mRNA, a highly active Dzs were discovered that target and cleave the GATA-3 gene. Cytoplasmic RNAses further degrade the cleavage products.
- Dz nanoparticle conjugates were developed for gene regulation. Copies of Dz molecules immobilized onto a 14 nm gold nanoparticle (DzNP) through the 3′ terminus are highly active for mRNA knock down. These particles can rapidly enter cells, protect the DNAzyme against nucleases, and regulate gene expression in vitro. DzNPs show minimal off-target effects and did not require the use of any transfection agents. Therefore, DzNPs offer an attractive approach for delivering catalytic nucleic acids to treat disease.
- DzNP gold nanoparticle
- GATA-3 GATA binding protein 3
- transcript variant 1 mRNA has the NCBI Reference Sequence NM_001002295.1 (SEQ ID NO: 52):
- nucleobase polymers comprising sequences that hybridizes or is the reverse complement to GATA-3 mRNA and contains an RNA cleaving nucleobase sequence such as a cleaving DNAzyme sequence.
- DNAzymes are catalytically active DNA molecules.
- DNAzyme 10-23 is DNA with two binding domains flanking a central catalytic domain. After binding of a DNAzyme to the corresponding sequence in the target mRNA via the binding domains, the catalytic domain cleaves the target mRNA molecule.
- the binding domains and catalytic domain may contain modifications provided they are capable of specifically binding the corresponding target mRNA of GATA-3. Schubert et al.
- nucleobase polymers comprising units of a ribose, 2′ deoxyribose, locked nucleic acids (1-(hydroxymethyl)-2,5-dioxabicyclo[2.2.1]heptan-7-ol), 2′-O-methyl groups, a 3′-3′-inverted thymidine, phosphorothioate linkages, or combinations thereof.
- nucleobase polymer refers to a molecule having nucleobase monomers capable of hybridizing to a single-stranded nucleic acid target.
- the nucleobase polymers that target GATA-3 mRNA typically comprise a sequence that is the reverse complement of, more than 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, or more nucleotides or nucleobases or continuous nucleotide nucleobases of SEQ ID NO: 52.
- the targeting sequence of nucleobases is typically separated by an RNA cleaving sequence such as a DNAzyme sequence capable of forming a loop-like structure.
- the nucleobase polymer may be a single stranded nucleic acid or analog containing a sufficiently small number of target mismatches, additions, or deletions as long as the targeting sequences retain the ability to bind to the target RNA.
- the nucleobase polymer including the targeting sequence and the RNA cleaving DNAzyme may be less than 500, 200, 100, 50, or 35 nucleotides or nucleobases. In certain embodiments, the disclosure contemplates the use of nucleobase polymers disclosed herein for disruption of GATA-3 expression.
- Nucleobase monomers are typically nitrogen containing aromatic or heterocyclic bases that bind to naturally occurring nucleic acids through hydrogen bonding otherwise known as base pairing.
- a typical nucleobase polymer is a nucleic acid, RNA, DNA, or chemically modified form thereof.
- a nucleobase polymer may be single or double stranded or both, e.g., they may contain overhangs.
- Nucleobase polymers may contain naturally occurring or synthetically modified bases and backbones.
- a nucleobase polymer need not be entirely complementary, e.g., may contain one or more insertions, deletions, or be in a hairpin structure provided that there is sufficient selective binding.
- nucleobases With regard to the nucleobases, it is contemplated that the term encompasses isobases, otherwise known as modified bases, e.g., are isoelectronic or have other substitutes configured to mimic naturally occurring hydrogen bonding base-pairs, e.g., within any of the sequences herein U may be substituted for T, or T may be substituted for U.
- nucleotides with modified adenosine or guanosine include, but are not limited to, hypoxanthine, xanthine, 7-methylguanine.
- nucleotides with modified cytidine, thymidine, or uridine include 5,6-dihydrouracil, 5-methylcytosine, 5-hydroxymethylcytosine.
- Contemplated isobases include 2′-deoxy-5-methylisocytidine (iC) and 2′-deoxy-isoguanosine (iG) (see U.S. Pat. Nos. 6,001,983; 6,037,120; 6,617,106; and 6,977,161).
- a removable base such as uracil or 8-oxoguanine
- UDG uracil-DNA glycosylase
- FPG formamidopyrimidine-DNA glycosylase
- nucleic acids may be chemically modified, e.g., within the sugar backbone or on the 5′ or 3′ ends.
- nucleobase polymers disclosed herein may contain monomers of phosphodiester, phosphorothioate, methylphosphonate, phosphorodiamidate, piperazine phosphorodiamidate, ribose, 2′-O-methy ribose, 2′-O-methoxyethyl ribose, 2′-fluororibose, deoxyribose, 1-(hydroxymethyl)-2,5-dioxabicyclo[2.2.1]heptan-7-ol, P-(2-(hydroxymethyl)morpholino)-N,N-dimethylphosphon amidate, morpholin-2-ylmethanol, (2-(hydroxymethyl)morpholino) (piperazin-1-yl)phosphinate, or peptide nucleic acids or combinations thereof.
- U may be T or T may be U.
- the nucleotide base polymer is single or double stranded DNA that is 3′ end capped with one, two, or more thymidine nucleotides and/or a 5′ end polyphosphorylated, e.g., di-phosphate, tri-phosphate.
- the nucleobase polymer can be modified to contain a 3′ end thiol group for direct absorption on gold or silver surfaces and particles.
- the nucleobase polymer is conjugated to a poly T sequence.
- the poly T sequence is on the 3′ end of the nucleobase polymer.
- the poly T sequence has four or more repeating thymine (T) bases followed by a 3′ end thiol group.
- the nucleobase polymer can be modified to contain a phosphodiester bond. Replacing one of the non-bridging oxygen by sulfur imparts resistance to nuclease degradation.
- the nucleobase polymer can be modified to contain a C-5 propyne substitution of dC and/or dT in the target sequences.
- the nucleobase polymer can be modified to contain a 2′-5′ linkages and 2′-5′ linked ends synthesized using 3′-deoxy-2′-phosphoramidites and 2′-deoxy-3′-phosphoramidites.
- the nucleobase polymer can be modified to contain a terminal 5′-5′ or 3′-3′ linkage. For the terminal 5′-5′ linkage, the appropriate 5′-phosphoramidite is incorporated at the 5′-end in a synthesis cycle.
- the appropriate deoxynucleoside-5′-CPG is used as the solid support for the 3′-end, followed by synthesis of the oligo in the standard 3′-5′ direction to make the terminal 3′-3′ linkage.
- nucleobase polymers may contain any of the sequences provided in the table 1 of the experimental section (SEQ ID NO: 1-49).
- DNAzyme 10-23 SEQ ID NO: 51 (GGCTAGCTACAACGA) can be substituted with other DNAzymes sequences.
- the DNAzyme 10-23 is comprised of a sequence of DNA that will cleave mRNA strands that contain an unpaired purine-pyrimidine pair.
- the DNAzyme 10-23 is flanked by recognition sequences that hybridized to the regions of the target mRNA sequences adjacent to the unpaired purine-pyrimidine pair. Therefore, the DNAzyme hybridizes and cleaves at the purine-pyrimidine site.
- the cleaving nucleic acids comprise sequences of DNAzymes 8-17 and 10-23.
- Santoro & Joyce disclosed a general purpose RNA-cleaving DNAzymes 8-17 and 10-23. See PNSA, 1997, 94 (9), 4262-4266.
- the cleaving nucleic acids comprise amine, guanidine, imidazole modifications such as 8-imidazolyl modified deoxy adenosines.
- Perrin et al. disclose modified DNAzymes 20-49 containing amine, guanidine, and imidazole-modified dNTPs. Org Biomol Chem 2011, 9 (7), 2266-2273.
- Small nucleobase polymers and nucleic acid motifs (“small” refers to nucleic acid motifs no more than 100 nucleotides in length, preferably no more than 80 nucleotides in length, and most preferably no more than 50 nucleotides in length; e.g., individual oligonucleotide sequences or sequences synthesized in tandem) are preferably used for exogenous delivery.
- Exemplary molecules of the instant disclosure may be chemically synthesized or by the use of cellular or non-cellular expression systems. Nucleic acids made by cellular or non-cellular expression systems can be further modified.
- oligonucleotides e.g., certain modified oligonucleotides or portions of oligonucleotides
- protocols known in the art as, for example, described in U.S. Pat. No. 6,001,311.
- the synthesis of oligonucleotides makes use of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5′-end and phosphoramidites at the 3′-end.
- small scale syntheses are conducted on a 394 Applied Biosystems, Inc. synthesizer using a 0.2 micro mol scale protocol with a 2.5 min coupling step for 2′-O-methylated nucleotides and a 45 second coupling step for 2′-deoxy nucleotides or 2′-deoxy-2′-fluoro nucleotides.
- syntheses at the 0.2 micro mol scale can be performed on a 96-well plate synthesizer, such as the instrument produced by Protogene (Palo Alto, Calif.) with minimal modification to the cycle.
- a 33-fold excess of 2′-O-methyl phosphoramidite and a 105-fold excess of S-ethyl tetrazole can be used in each coupling cycle of 2′-O-methyl residues relative to polymer-bound 5′-hydroxyl.
- a 22-fold excess of deoxy phosphoramidite and a 70-fold excess of S-ethyl tetrazole mop can be used in each coupling cycle of deoxy residues relative to polymer-bound 5′-hydroxyl.
- synthesizer include the following: detritylation solution is 3% TCA in methylene chloride (ABI); capping is performed with 16% N-methyl imidazole in THF (ABI) and 10% acetic anhydride/10% 2,6-lutidine in THF (ABI); and oxidation solution is 16.9 mM I2, 49 mM pyridine, 9% water in THF (PerSeptive Biosystems, Inc.). S-Ethyltetrazole solution (0.25 M in acetonitrile) is made up from the solid obtained from American International Chemical, Inc. Alternately, for the introduction of phosphorothioate linkages, Beaucage reagent (3H-1,2-benzodithiol-3-one 1,1-dioxide, 0.05 M in acetonitrile) is used.
- Deprotection of the DNA-based oligonucleotides is performed as follows: the polymer-bound trityl-on oligonucleotide is transferred to a 4 mL glass screw top vial and suspended in a solution of 40% aqueous methylamine (1 mL) at 65 degrees for 10 minutes. After cooling to ⁇ 20 degrees, the supernatant is removed from the polymer support. The support is washed three times with 1.0 mL of EtOH:MeCN:H2O/3:1:1, vortexed and the supernatant is then added to the first supernatant. The combined supernatants, containing the oligonucleotide, are dried.
- nucleic acid molecules can be synthesized separately and joined together post-synthetically, for example, by ligation or by hybridization following synthesis and/or deprotection.
- Nucleic acids can also be assembled from two distinct nucleic acid strands or fragments wherein one fragment includes the sense region and the second fragment includes the antisense region of the RNA molecule.
- nucleic acid molecules can be modified extensively to enhance stability by modification with nuclease resistant groups, for example, 2′-amino, 2′-C-allyl, 2′-fluoro, 2′-O-methyl, 2′-H).
- Constructs can be purified by gel electrophoresis using general methods or can be purified by high pressure liquid chromatography and re-suspended in water.
- nucleic acid molecules with modifications can prevent their degradation by serum ribonucleases, which can increase their potency. See e.g., U.S. Pat. Nos. 5,652,094, 5,334,711, and U.S. Pat. No. 6,300,074. All of the above references describe various chemical modifications that can be made to the base, phosphate and/or sugar moieties of the nucleic acid molecules described herein. Modifications that enhance their efficacy in cells, and removal of bases from nucleic acid molecules to shorten oligonucleotide synthesis times and reduce chemical requirements are desired.
- nucleic acid molecules include one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) G-clamp nucleotides.
- a G-clamp is a tricyclic aminoethyl-phenoxazine 2′-deoxycytidine or analogue. See Lin &. Matteucci, J Am Chem Soc, 1998, 120, 8531-8532; Flanagan, et al., Proc Nat Acad Sci USA, 1999, 96, 3513-3518; and Maier, et al., Biochemistry, 2002, 41, 1323-1327.
- a single G-clamp analog substitution within an oligonucleotide can result in substantially enhanced helical thermal stability and mismatch discrimination when hybridized to complementary oligonucleotides.
- the inclusion of such nucleotides in nucleic acid molecules results in both enhanced affinity and specificity to nucleic acid targets, complementary sequences, or template strands.
- nucleic acid molecules include one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) LNA “locked nucleic acid” nucleotides such as a 2′,4′-C methylene bicyclo nucleotide (see for example U.S. Pat. Nos. 6,639,059, 6,670,461, 7,053,207).
- the disclosure features conjugates and/or complexes of nucleobase polymers.
- conjugates and/or complexes can be used to facilitate delivery of polymers into a biological system, such as a cell.
- Contemplated conjugates include those with cell penetrating peptide.
- the conjugates and complexes provided may impart therapeutic activity by transferring therapeutic compounds across cellular membranes, altering the pharmacokinetics, and/or modulating the localization of nucleic acid molecules.
- the transporters described are designed to be used either individually or as part of a multi-component system, with or without degradable linkers.
- Conjugates of the molecules described herein can be attached to biologically active molecules via linkers that are biodegradable, such as biodegradable nucleic acid linker molecules.
- a nucleobase polymer comprises one or more 5′ and/or a 3′-cap structure.
- a “cap structure” refers to chemical modifications, which have been incorporated at either terminus of the oligonucleotide. See, for example, Adamic et al., U.S. Pat. No. 5,998,203. These terminal modifications protect the nucleic acid molecule from exonuclease degradation, and may help in delivery and/or localization within a cell.
- the cap may be present at the 5′-terminus (5′-cap) or at the 3′-terminal (3′-cap) or may be present on both termini.
- the 5′-cap includes, but is not limited to, glyceryl, inverted deoxy abasic residue (moiety); 4′,5′-methylene nucleotide; 1-(beta-D-erythrofuranosyl) nucleotide, 4′-thio nucleotide; carbocyclic nucleotide; 1,5-anhydrohexitol nucleotide; L-nucleotides; alpha-nucleotides; modified base nucleotide; phosphorodithioate linkage; threo-pentofuranosyl nucleotide; acyclic 3′,4′-seco nucleotide; acyclic 3,4-dihydroxybutyl nucleotide; acyclic 3,5-dihydroxypentyl nucleotide, 3′-3′-inverted nucleotide moiety; 3′-3′-inverted abasic moiety; 3′-2
- Non-limiting examples of the 3′-cap include, but are not limited to, glyceryl, polyethylene glycol, alkyl, inverted deoxy abasic residue (moiety), 4′,5′-methylene nucleotide; 1-(beta-D-erythrofuranosyl) nucleotide; 4′-thio nucleotide, carbocyclic nucleotide; 5′-amino-alkyl phosphate; 1,3-diamino-2-propyl phosphate; 3-aminopropyl phosphate; 6-aminohexyl phosphate; 1,2-aminododecyl phosphate; hydroxypropyl phosphate; 1,5-anhydrohexitol nucleotide; L-nucleotide; alpha-nucleotide; modified base nucleotide; phosphorodithioate; threo-pentofuranosyl nucleotide; acycl
- the disclosure features modified nucleobase polymer, with phosphate backbone modifications comprising one or more phosphorothioate, phosphorodithioate, methylphosphonate, phosphotriester, morpholino, amidate carbamate, carboxymethyl, acetamidate, polyamide, sulfonate, sulfonamide, sulfamate, formacetal, thioformacetal, and/or alkylsilyl, substitutions.
- phosphate backbone modifications comprising one or more phosphorothioate, phosphorodithioate, methylphosphonate, phosphotriester, morpholino, amidate carbamate, carboxymethyl, acetamidate, polyamide, sulfonate, sulfonamide, sulfamate, formacetal, thioformacetal, and/or alkylsilyl, substitutions.
- the disclosure contemplates pharmaceutical composition comprising a nucleobase polymer disclosed herein and a pharmaceutically acceptable excipient.
- the pharmaceutical composition is in the form of a sterilized pH buffered aqueous salt solution or an isotonic aqueous buffer solution.
- the pharmaceutically acceptable excipient is a propellant or aerosolizing agent.
- the propellant or aerosolizing agent is a hydrofluoroalkane, 1,1,1,2-tetrafluoroethane, 1,1,1,2,3,3,3-heptafluoropropane, propane, n-butane, isobutene, carbon dioxide, compressed air, nitrogen, nitrous oxide, dimethyl ether, trans-1,3,3,3-tetrafluoroprop-1-ene, or combinations thereof.
- the pharmaceutically acceptable excipient is a lipid, fatty acid, phospholipid, diacyl phospholipid, phosphatidyl choline, sorbitan monopalmitate, polyethyoxylated sorbitan monopalmitate, sucrose stearate (mono- and di-ester), alginate, copolymer of poly(lactide-co-glycolide) (PLGA), poly(vinyl alcohol), or poly(L-lysine) (PLL).
- PLGA poly(lactide-co-glycolide)
- PLL poly(L-lysine)
- the pharmaceutical compositions may be stored in a nebulizer, inhaler, or other container optionally sealed or under a pressure for propelling the pharmaceutical agent(s).
- the container may contain a spraying apparatus that is manually actuated or pressurized.
- Metered dose inhalers typically have a handheld aerosol canister that, upon being pushed, releases an amount of medicine to inhale.
- Dry powder inhalers do not use a propellant to release the medicine. Instead, a dry powder form of the peptide or agent is drawn into your lungs after a breath.
- a container comprising the peptide or agent is inserted a device. Pressing a button or section on the device pierces the container. One can breathe in the powder contained in the container through a mouthpiece on the device.
- the pharmaceutical compositions disclosed herein further comprise a respiratory agent selected from a glucocorticoid receptor agonist (steroidal and non-steroidal) such as triamcinolone, triamcinolone acetonide, prednisone, mometasone furoate, loteprednol etabonate, fluticasone propionate, fluticasone furoate, fluocinolone acetonide, dexamethasone cipecilate, desisobutyryl ciclesonide, clobetasol propionate, ciclesonide, butixocort propionate, budesonide, beclomethasone dipropionate, alclometasone dipropionate; a p38 antagonist such as losmapimod; a phosphodiesterase (PDE) inhibitor such as a methylxanthanine, theophylline, and aminophylline; a selective PDE isoenzyme inhibitor, a PDE
- Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.
- the dosage administered to a patient is typically 0.0001 mg/kg to 100 mg/kg of the patient's body weight.
- the dosage administered to a patient is between 0.0001 mg/kg and 20 mg/kg, 0.0001 mg/kg and 10 mg/kg, 0.0001 mg/kg and 5 mg/kg, 0.0001 and 2 mg/kg, 0.0001 and 1 mg/kg, 0.0001 mg/kg and 0.75 mg/kg, 0.0001 mg/kg and 0.5 mg/kg, 0.0001 mg/kg to 0.25 mg/kg, 0.0001 to 0.15 mg/kg, 0.0001 to 0.10 mg/kg, 0.001 to 0.5 mg/kg, 0.01 to 0.25 mg/kg or 0.01 to 0.10 mg/kg of the patient's body weight.
- the dosage and frequency of administration of nucleobase polymers or particles disclosed herein may be reduced by enhancing uptake and tissue penetration of the nucleobase polymers or particles disclosed herein by modifications such as, for example, lipidation.
- the term “pharmaceutically acceptable” means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans.
- carrier refers to a diluent, adjuvant (e.g., Freund's adjuvant (complete and incomplete), excipient, or vehicle with which the therapeutic is administered.
- Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered intravenously.
- Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions.
- suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like.
- the composition if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like.
- compositions are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent.
- a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent.
- the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline.
- an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.
- compositions can be formulated as neutral or salt forms.
- Pharmaceutically acceptable salts include, but are not limited to, those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.
- One embodiment provides a pharmaceutical pack or kit comprising one or more containers filled with nucleobase polymers or particles disclosed herein. Additionally, one or more other prophylactic or therapeutic agents useful for the treatment of a disease can also be included in the pharmaceutical pack or kit.
- One embodiment provides a pharmaceutical pack or kit including one or more containers filled with one or more of the ingredients of the pharmaceutical compositions.
- Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.
- this disclosure contemplates pharmaceutical compositions comprising nucleobase polymers or particles disclosed herein and pharmaceutically acceptable excipient. In certain embodiments, this disclosure contemplates the production of a medicament comprising nucleobase polymers or particles disclosed herein and uses for methods disclosed herein.
- the disclosure relates to pharmaceutical compositions comprising nucleobase polymers or particles disclosed herein and a pharmaceutically acceptable excipient.
- the composition is a pill or in a capsule or the composition is an aqueous buffer, e.g., a pH between 6 and 8.
- the pharmaceutically acceptable excipient is selected from a filler, glidant, binder, disintegrant, lubricant, and saccharide.
- compositions suitable for parenteral injection may comprise physiologically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, and sterile powders for reconstitution into sterile injectable solutions or dispersions.
- suitable aqueous and nonaqueous carriers, diluents solvents or vehicles include water, ethanol, polyols (propylene glycol, polyethylene glycol, glycerol, and the like), suitable mixtures thereof, vegetable (such as olive oil, sesame oil) and injectable organic esters such as ethyl oleate.
- Prevention of the action of microorganisms may be controlled by addition of any of various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like. It may also be desirable to include isotonic agents, for example sugars, sodium chloride, and the like. Prolonged absorption of the injectable pharmaceutical form can be brought about by the use of agents delaying absorption, for example, aluminum monostearate and gelatin.
- Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs.
- the liquid dosage forms may contain inert diluents commonly used in the art, such as water or other solvents, solubilizing agents and emulsifiers, for example, ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils, in particular, cottonseed oil, groundnut oil, corn germ oil, olive oil, castor oil and sesame oil, glycerol, tetrahydrofurfuryl alcohol, polyethyleneglycols and fatty acid esters of sorbitan or mixtures of these substances, and the like.
- inert diluents commonly used in the art, such as water or other solvents, solubilizing agents and
- production processes are contemplated which two components, nucleobase polymers or particles disclosed herein and a pharmaceutical carrier, are provided already in a combined dry form ready to be reconstituted together.
- nucleobase polymers or particles disclosed herein and a pharmaceutical carrier are admixed to provide a pharmaceutical composition.
- Providing a pharmaceutic composition is possible in a one-step process, simply by adding a suitable pharmaceutically acceptable diluent to the composition in a container.
- the container is preferably a syringe for administering the reconstituted pharmaceutical composition after contact with the diluent.
- the nucleobase polymers or particles disclosed herein can be filled into a syringe, and the syringe can then be closed with the stopper.
- a diluent is used in an amount to achieve the desired end-concentration.
- the pharmaceutical composition may contain other useful component, such as ions, buffers, excipients, stabilizers, etc.
- a “dry” pharmaceutical composition typically has only a residual content of moisture, which may approximately correspond to the moisture content of comparable commercial products, for example, has about 12% moisture as a dry product.
- the dry pharmaceutical composition according to the present invention has a residual moisture content preferably below 10% moisture, more preferred below 5% moisture, especially below 1% moisture.
- the pharmaceutical composition can also have lower moisture content, e.g. 0.1% or even below.
- the pharmaceutical composition is provided in dry in order to prevent degradation and enable storage stability.
- a container can be any container suitable for housing (and storing) pharmaceutically compositions such as inhalers, syringes, vials, tubes, etc.
- the pharmaceutical composition may then be applied via actuation or specific needles of the syringe or via suitable catheters.
- a typical diluent comprises water for injection, and NaCl (preferably 50 to 150 mM, especially 110 mM), CaCl 2 (preferably 10 to 80 mM, especially 40 mM), sodium acetate (preferably 0 to 50 mM, especially 20 mM) and mannitol (preferably up to 10% w/w, especially 2% w/w).
- the diluent can also include a buffer or buffer system so as to buffer the pH of the reconstituted dry composition, preferably at a pH of 6.2 to 7.5, especially at pH of 6.9 to 7.1.
- this disclosure contemplates a kit comprising a pharmaceutical composition disclosed herein such as a peptide or agent and a container optionally with a suitable diluent.
- Further components of the kit may be instructions for use, administration means, such as inhalers, syringes, catheters, brushes, etc. (if the compositions are not already provided in the administration means) or other components necessary for use in medical (surgical) practice, such as substitute needles or catheters, extra vials or further wound cover means.
- the kit comprises a syringe housing the dry and stable hemostatic composition and a syringe containing the diluent (or provided to take up the diluent from another diluent container).
- the diluent is provided in a separate container.
- This can preferably be a syringe.
- the diluent in the syringe can then easily be applied to the container for reconstitution of the dry compositions. If the container is also a syringe, both syringes can be finished together in a pack. It is therefore preferred to provide the dry compositions in a syringe, which is finished with a diluent syringe with a pharmaceutically acceptable diluent for reconstituting, said dry and stable composition.
- Chronic inflammations constitute an increasing medical problem area of high socioeconomic significance.
- the disclosure relates to methods of treating an inflammatory disease or chronic inflammation comprising administering an effective amount of a nucleobase polymer disclosed herein to a subject in need thereof.
- the inflammatory disease is a respiratory disorder.
- the subject is diagnosed with, exhibiting symptoms of or at risk of asthma, bronchitis, emphysema, chronic obstructive pulmonary disease, laryngitis, or cystic fibrosis.
- the inflammatory disease is ulcerative colitis.
- the chronic inflammation is due to autoimmune diseases and diseases from the area of rheumatic diseases (manifestations among others on the skin, lungs, kidneys, vascular system, nervous system, connective tissue, locomotor system, endocrine system), immediate-type allergic reactions and asthma, chronic obstructive lung diseases (COPD), arteriosclerosis, psoriasis and contact eczema and chronic rejection reactions after organ and bone marrow transplants.
- rheumatic diseases manifestations among others on the skin, lungs, kidneys, vascular system, nervous system, connective tissue, locomotor system, endocrine system
- immediate-type allergic reactions and asthma immediate-type allergic reactions and asthma
- COPD chronic obstructive lung diseases
- arteriosclerosis psoriasis and contact eczema
- chronic rejection reactions after organ and bone marrow transplants.
- DzNP particles were prepared that were modified with the Cy5 dye, and these particles were incubated at 10 nM concentration for 36 hrs.
- the cells were cultured in standard serum-containing media. Cells were washed and analyzed using flow cytometry ( FIG. 2 ). The results clearly show a significant level of cellular uptake, with epithelial cells showing the highest level of uptake. Fluorescence microscopy confirmed that the particles were internalized.
- a model of mouse asthma was used to test the efficacy of the DzNPs and showed a significant improvement in airway function for the treated animals as well as reduced cytokine levels in the blood plasma ( FIGS. 3A and B).
- animals are treated with house dust mite ion a daily basis.
- the house dust mite antigen exposure model mimics the Th2 inflammation and airway hyper-responsiveness seen in asthma.
- Der p1 house dust mite extract 50 ⁇ g was administered for 2 weeks.
- DzNP treatment 100 nM, 20 uL
- the group receiving the active DzNP showed airway resistance that is similar to that of the untreated animal group.
- the oligonucleotide dose with the DzNP construct was one order of magnitude smaller than that used for soluble Dz experiments.
- NCBI Reference Sequence NM_001002295.1 for the human mRNA
- NCBI Reference Sequence: NM_008091.3 was used for the mouse gene.
- purine-pyrimidine junctions were identified where the 10-23 DNAzyme is most active.
- the left and right arms of the DNAzyme are tuned such that the delta G of hybridization is between ⁇ 8 and ⁇ 10 kcal/mol.
- G-C rich regions ⁇ 5-7 mer
- A-T rich regions require longer arms ( ⁇ 10-12 mer).
- This screen generates a list of potential DNAzyme targets. The list can then be further filtered based on comparing the human and murine genomes and also various splice variants of a given transcript.
- the top ranked sequences were determined using the algorithm, and these were custom synthesized (see table below).
- the first column is the location of purine-uracil site that will be cleaved in the human transcript. All of these sequences are shared between mouse and human (albeit at different locations).
- the sequence in the far right are the DNAzyme sequences used to generate the DzNP conjugates
- DNAzyme sequences were screened for activity using RT-PCR in T47D breast cancer cell lines that are known to express high levels of the GATA-3 mRNA ( FIG. 4 ). Each oligonucleotide was incubated with the cells for 24 hours prior to collect mRNA, reverse transcription and then running RT-PCR. Lipofectamine delivery was performed using of the soluble oligonucleotides. The expression levels were normalized and the data analyzed using standard methods. Each experiment was run in triplicate, and each well was analyzed several times to obtain the mean GATA-3 expression level in each sample. Several of the tested sequences showed activity that was greater than HGD-40.
- FIG. 5 show the results of the screen and confirm that several of the hits were indeed more potent than HGD40. All the DzNP samples were prepared at 10 nM concentration and incubated in standard serum-containing cell media for 24 hrs prior to measuring mRNA levels.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Pulmonology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Otolaryngology (AREA)
- Biotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Genetics & Genomics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
This disclosure relates to nucleobase polymers useful for degrading GATA-3 mRNA. In certain embodiments, this disclosure relates to nucleobase polymers and nanoparticles conjugated to nucleobase polymers disclosed herein. In certain embodiments, the nucleobase polymers or nanoparticles can be used in methods of managing disorders associated with excessive GATA-3 expression in inflammatory disorders and respiratory disorders such as asthma.
Description
- This application is a continuation of U.S. application Ser. No. 16/304,549 filed Nov. 26, 2018, which is the National Stage of International Application No. PCT/US2017/034268 filed May 24, 2017, which claims the benefit of U.S. Provisional Application No. 62/340,586 filed May 24, 2016. The entirety of each of these applications is hereby incorporated by reference for all purposes.
- The Sequence Listing associated with this application is provided in text format in lieu of a paper copy and is hereby incorporated by reference into the specification. The name of the text file containing the Sequence Listing is 16116US_ST25.txt. The text file is 14 KB, was created on Nov. 26, 2018, and is being submitted electronically via EFS-Web.
- In asthma patients, airway obstruction is due to mucus secretion and airway inflammation. A number of medications can be used to treat asthma attacks, but managing persistent severe allergic asthma is problematic. Omalizumab is a recombinant humanized monoclonal antibody that specifically binds to human immunoglobulin E (IgE) and used in patients with severe persistent allergic asthma. However, systemic omalizumab administration may result in anaphylaxis or the generation of inactivating antibodies. Thus, there is a need to identify improved therapeutic methods to control persistent allergic asthma.
- Allergic asthma results in T-helper (TH)-2 driven responses. Activation of TH2 cells produces cytokines such as IL-4, IL-5, and IL-13. Expression of these cytokines are dependent on the zinc finger transcription factor GATA-3. GATA-3 overexpression is observed in patients with severe asthma. Molecules that inactivate GATA-3 have been reported. See Sel et al. Effective prevention and therapy of experimental allergic asthma using a GATA-3-specific DNAzyme, J Allergy Clin Immunol. 2008, 121(4):910-916.
- Krug et al. report allergen-induced asthmatic responses modified by a GATA-3-specific DNAzyme. The New England Journal of Medicine, 2015, 372(21):1987-1995. See also WO/2016/184556, WO/2014/040891, and WO/2005/033314.
- Somasuntharam et al. report the knockdown of TNF-alpha by DNAzyme gold nanoparticles as an anti-inflammatory therapy for myocardial infarction. Biomaterials. 2016, 83:12-22. Yehl et al. report catalytic deoxyribozyme-modified nanoparticles for RNAi-independent gene regulation. ACS Nano. 2012, 6(10):9150-7.
- References cited herein are not an admission of prior art.
- This disclosure relates to nucleobase polymers useful for degrading GATA-3 mRNA. In certain embodiments, this disclosure relates to nucleobase polymers and nanoparticles conjugated to nucleobase polymers disclosed herein. In certain embodiments, the nucleobase polymers or nanoparticles can be used in methods of managing disorders associated with excessive GATA-3 expression in inflammatory disorders and respiratory disorders such as asthma.
- In certain embodiments, the disclosure relates to nucleobase polymers comprising or consisting of SEQ ID NO: 1-49, 53-55 or variants thereof.
- In certain embodiments, the nucleobase polymer comprises
-
SEQ ID NO: 10 (GGCTTATTCAGGCTAGCTACAACGAAGATGGGG), SEQ ID NO: 20 (ATTCCTTAAAGGCTAGCTACAACGATTCTTGGC), or SEQ ID NO: 30 (TCTTTTCTTAGGCTAGCTACAACGATTTGGTGC) or variants thereof. - In certain embodiments, the disclosure contemplates a particle coated with or conjugated to a nucleobase polymer disclosed herein, e.g., SEQ ID NO: 1-51, 53-55 or variants thereof. In certain embodiments, the nucleobase polymers of disclose herein have an RNA cleaving sequence such as the 10-23 DNAzyme with SEQ ID NO: 51 (GGCTAGCTACAACGA), e.g., contained within SEQ ID NO: 1-50, 53-55. In certain embodiments, the cleaving sequence has monomers of 2-deoxyribose.
- In certain embodiments, the variant is a nucleobase polymer comprising one nucleobase substitution, insertion, or deletion. In certain embodiments, the variant is a nucleobase polymer comprising two nucleobase substitutions, insertions, or deletions. In certain embodiments, the variant is a nucleobase polymer comprising three or nucleobase substitutions, insertions, or deletions.
- In certain embodiments, the variant is a nucleobase polymer comprising one 5′ end nucleobase substitution or deletion. In certain embodiments, the variant is a nucleobase polymer comprising two 5′ end nucleobase substitutions or deletions. In certain embodiments, the variant is a nucleobase polymer comprising three 5′ end nucleobase substitutions or deletion.
- In certain embodiments, the variant is a nucleobase polymer comprising one 3′ end nucleobase substitutions or deletions. In certain embodiments, the variant is a nucleobase polymer comprising two 3′ end nucleobase substitutions or deletions. In certain embodiments, the variant is a nucleobase polymer comprising three 3′ end nucleobase substitutions or deletions.
- In certain embodiments, the disclosure relates to particles coated with a nucleobase polymer comprising an RNA cleaving sequence such as a nucleobase polymer comprising SEQ ID NO: 51 (GGCTAGCTACAACGA) and linked to flanking 5′ and 3′ nucleobases that hybridize with SEQ ID NO: 52.
- In certain embodiments, the particle or nanoparticle has a core or hydrodynamic diameter between 5 nm and 500 nm or 5 nm and 200 nm. In certain embodiments, the particle may contain a metal or inorganic or polymer core. In certain embodiments, conjugation to a particle can be accomplished by using linking groups with ligands, e.g., mono or polydentate ligands, capable of binding the metal in the core or by direct conjugation through covalent bonds of a polymer surrounding and encapsulating the core. In certain embodiments, the nucleobase polymer may further contain a targeting nucleobase polymer sequence or targeting nucleic acid sequence that can hybridize with a target sequence coated on the exterior of the particle.
- In certain embodiments, the disclosure relates to aerosols, liquid particles, mixtures or gas and liquid particles, comprising a nucleobase polymer or a particle disclosed herein. In certain embodiments, the liquid particle has a diameter of between 1 microns and 5 microns, 0.5 microns and 10 microns, 0.1 microns and 50 microns, or 0.5 microns and 100 microns.
- In certain embodiments, this disclosure relates to a nucleobase polymer or a particle disclosed herein in the form of a micronized powder, e.g., solid particles of a diameter between 1 microns and 5 microns, 0.5 microns and 10 microns, 0.1 microns and 50 microns, or 0.5 microns and 100 microns.
- In certain embodiments, this disclosure relates to pharmaceutical composition comprising a nucleobase polymer disclosed herein or a particle disclosed herein and a pharmaceutically acceptable excipient. In certain embodiments, the pharmaceutical composition comprises a sterilized pH buffered aqueous salt solution or an isotonic aqueous buffer solution.
- In certain embodiments, the disclosure relates to a container, optionally sealed gas tight, comprising a nucleobase polymer or particle disclosed herein. In certain embodiments, the container further comprises a propellant. In certain embodiments, the container is configured with a spraying or misting apparatus, mouthpiece, or facemask such as a nebulizer or inhaler. In certain embodiments, the inhaler comprises a liquefied gas propellant. In certain embodiments, the nucleobase polymer or particle is dissolved or suspended in the propellant. In certain embodiments, the inhaler is configured with an actuator or mouthpiece, which allows the patient to operate the device, and directs the aerosol, a chamber, and metering value that controls a metered quantity of a formulation to be dispensed with an actuation.
- In certain embodiments, the disclosure relates to methods of treating an inflammatory disease comprising administering an effective amount of a nucleobase polymer or particle disclosed herein to a subject in need thereof. In certain embodiments, the inflammatory disease is a respiratory disorder, asthma, COPD, atopic dermatitis, psoriasis, or ulcerative colitis. In certain embodiments, the subject is diagnosed with, exhibiting symptoms of or at risk of asthma, COPD, bronchitis, emphysema, chronic obstructive pulmonary disease, laryngitis, or cystic fibrosis.
- In certain embodiments, administration is in combination with a second respiratory agent. In certain embodiments, the second respiratory agent is a corticosteroid, bronchodilator, albuterol, ipratropium, or combinations thereof.
-
FIG. 1 shows a plot quantifying inhaled delivery of GATA-3 DzNPs using fluorescence imaging. GATA-3 DzNPs were nebulized with even and distal distribution in the lung. Vehicle (phosphate buffered saline, 50 μl of) and 50 μl of fluorescently tagged DzNPs (100 nM, two lungs on right) were administered to mice by nebulization into 4-6 μm sized aerosol droplets using a bias flow of 2 liters/min of room air. Imaging was performed 24 hours following delivery. -
FIG. 2 shows a plot quantifying the uptake of DzNPs in lung resident cell lines. The data was collected using flow cytometry following incubation with 10 nM concentrations of Cy5-labeled DzNPs in epithelial, macrophage, and smooth muscle cells. Cells were incubated in standard serum-containing media for 24 hours without the use of any transfection agent. Flow cytometry confirms resident lung cell uptake of DzNPs. -
FIG. 3A shows the results of performing a pulmonary function test on four groups of animals. Two groups received daily doses of the house dust mite (HDM) allergen for two weeks, while two groups were control animals and did not receive the HDM. This allergen induced airway resistance in mice and recapitulates the pathophysiology of asthma. Animals received either daily doses of the active DzNPs or an inactive DzNP. The plot shows the raw data measuring the airway resistance as a function of a methacholine challenge. There were three animals in each group. -
FIG. 3B shows data summarizing the efficacy of active GATA-3 Dz compared to non-specific (NS) DzNPs when challenged with 100 mg/ml methacholine. House dust mite (HDM) extract (50 ug) was inhaled via nebulization daily for 5 days. AuNP (20 ul) administered intranasally (100 nM of DzNPs). -
FIG. 4A shows RT-PCR quantification of GATA-3 expression levels in cell lines following DNAzyme treatment. The screen shows DNAzymes that are more active than HGD40. The dotted line indicates the GATA-3 levels in HGD40 sequence treated cells. Arrows indicate the DNAzyme sequences that showed lower levels of GATA-3 compared to the soluble HGD40 sequence is SEQ ID NO: 50. All of the DNAzymes have a 3′-end T10 modification. -
FIG. 4B shows RT-PCR quantification of GATA-3 expression levels in cells treated with with HGD40 sequence with certain modifications.HGD40 9 methyl refers to SEQ ID NO: 53, (G*-T*-G*-G*-dA-dT-dG-dG-dA-dG-dG-dC-dT-dA-dG-dC-dT-dA-dC-dA-dA-dC-dG-dA-dG-dT-dC-dT-dT-G*-G*-A*-G*-T10-3′-3′T) wherein d is deoxy and * is 2′-O-methyl ribose.HGD40 8 methyl refers to SEQ ID NO: 54, (T*-G*-G*-A*-dT-dG-dG-dA-dG-dG-dC-dT-dA-dG-dC-dT-dA-dC-dA-dA-dC-dG-dA-dG-dT-dC-dT-T*-G*-G*-A*-T10-3′-3′T) wherein d is deoxy and * is 2′-O-methyl ribose. HGD40 7 methyl refers to SEQ ID NO: 55, (G*-G*-A*-T*-dG-dG-dA-dG-dG-dC-dT-dA-dG-dC-dT-dA-dC-dA-dA-dC-dG-dA-dG-dT-dC-T*-T*-G*-G*-T10-3′-3′T) wherein d is deoxy and * is 2′-O-methyl ribose. -
FIG. 5 shows RT-PCR data on GATA-3 expression levels following DNAzyme-AuNP treatment (10 nM for 24 hrs). Several DzNPs were shown to be more active than HGD40-NPs. -
FIG. 6A shows the results of performing a pulmonary function test on the HDM model of mouse asthma. There were four groups of animals with three animals within each group. One group did not receive the HDM allergen and was considered as a control. The second group received the HDM allergen for 3 weeks and was not rescued using the DzNP drug treatment. The third group received the HGD4O-NP along with the HDM allergen. The final group received the DzNP with Dz2251 along with the HDM allergen. The animals were challenged using 25 mg/mL methacholine. Airway resistance was measured in mouse model of asthma. The DzNP were delivered intranasally for 2 weeks (100 nM, 20 uL daily). -
FIG. 6B shows data using 50 mg/mL methacholine. -
FIG. 6C shows data using 100 mg/mL methacholine. -
FIG. 7 plots RT-PCR levels of GATA-3 mRNA in the lungs of the animals (fromFIG. 6 ). - Before the present disclosure is described in greater detail, it is to be understood that this disclosure is not limited to particular embodiments described, and as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.
- Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present disclosure, the preferred methods and materials are now described.
- All publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference and are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present disclosure is not entitled to antedate such publication by virtue of prior disclosure. Further, the dates of publication provided could be different from the actual publication dates that may need to be independently confirmed.
- As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present disclosure. Any recited method can be carried out in the order of events recited or in any other order that is logically possible.
- Embodiments of the present disclosure will employ, unless otherwise indicated, techniques of medicine, organic chemistry, biochemistry, molecular biology, pharmacology, and the like, which are within the skill of the art. Such techniques are explained fully in the literature.
- It must be noted that, as used in the specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.
- The transitional term “comprising”, which is synonymous with “including,” “containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, unrecited elements or steps, e.g., does not exclude the presence of terminal nucleotides. The transitional phrase “consisting of” excludes any additional nucleotides, elements, steps, or ingredients not specified in the claim.
- As used herein, the term “combination with” when used to describe administration with an additional treatment means that the agent may be administered prior to, together with, or after the additional treatment, or a combination thereof.
- As used herein, the terms “prevent” and “preventing” include the prevention of the recurrence, spread or onset. It is not intended that the present disclosure be limited to complete prevention. In some embodiments, the onset is delayed, or the severity is reduced.
- As used herein, the terms “treat” and “treating” are not limited to the case where the subject (e.g., patient) is cured and the condition or disease is eradicated. Rather, embodiments, of the present disclosure also contemplate treatment that merely reduces symptoms, and/or delays conditions or disease progression.
- As used herein, the term “nucleic acid” is intended to mean a ribonucleic or deoxyribonucleic acid or analog thereof, including a nucleic acid analyte presented in any context; for example, a probe, target or primer. A nucleic acid can include native or non-native bases. In this regard, a native deoxyribonucleic acid can have one or more bases selected from the group consisting of adenine, thymine, cytosine or guanine and a ribonucleic acid can have one or more bases selected from the group consisting of uracil, adenine, cytosine or guanine. It will be understood that a deoxyribonucleic acid used in the methods or compositions set forth herein can include uracil bases and a ribonucleic acid can include a thymine base. Exemplary non-native bases that can be included in a nucleic acid, whether having a native backbone or analog structure, include, without limitation, inosine, xathanine, hypoxathanine, isocytosine, isoguanine, 2-aminopurine, 5-methylcytosine, 5-hydroxymethyl cytosine, 2-aminoadenine, 6-methyl adenine, 6-methyl guanine, 2-propyl guanine, 2-propyl adenine, 2-thioLiracil, 2-thiothymine, 2-thiocytosine, 15-halouracil, 15-halocytosine, 5-propynyl uracil, 5-propynyl cytosine, 6-azo uracil, 6-azo cytosine, 6-azo thymine, 5-uracil, 4-thiouracil, 8-halo adenine or guanine, 8-amino adenine or guanine, 8-thiol adenine or guanine, 8-thioalkyl adenine or guanine, 8-hydroxyl adenine or guanine, 5-halo substituted uracil or cytosine, 7-methylguanine, 7-methyladenine, 8-azaguanine, 8-azaadenine, 7-deazaguanine, 7-deazaadenine, 3-deazaguanine, 3-deazaadenine or the like. A particular embodiment can utilize isocytosine and isoguanine in a nucleic acid in order to reduce non-specific hybridization, as generally described in U.S. Pat. No. 5,681,702.
- A non-native base used in a nucleic acid can have universal base pairing activity, wherein it is capable of base pairing with any other naturally occurring base. Exemplary bases having universal base pairing activity include 3-nitropyrrole and 5-nitroindole. Other bases that can be used include those that have base pairing activity with a subset of the naturally occurring bases such as inosine, which base-pairs with cytosine, adenine or uracil. Alternatively or additionally, oligonucleotides, nucleotides or nucleosides including the above-described non-native bases can further include reversible blocking groups on the 2′, 3′ or 4′ hydroxyl of the sugar moiety.
- The terms “binding,” “binds,” “recognition,” or “recognize” as used herein are meant to include interactions between molecules that may be detected using, for example, a hybridization assay. When hybridization occurs in an antiparallel configuration between two single-stranded polynucleotides, the reaction is called “annealing” and those polynucleotides are described as “complementary”. A double-stranded polynucleotide can be complementary or homologous to another polynucleotide, if hybridization can occur between one of the strands of the first polynucleotide and the second. Complementarity or homology (the degree that one polynucleotide is complementary with another) is quantifiable in terms of the proportion of bases in opposing strands that are expected to form hydrogen bonding with each other, according to generally accepted base-pairing rules.
- A “linking group” refers to any variety of molecular arrangements that can be used to bridge to molecular moieties together. An example formula may be -Rm- wherein R is selected individually and independently at each occurrence as: —CRmRm-, —CHRm-, —CH—, —C—, —CH2—, —C(OH)Rm, —C(OH)(OH)—, —C(OH)H, —C(Hal)Rm-, —C(Hal)(Hal)-, —C(Hal)H—, —C(N3)Rm-, —C(CN)Rm-, —C(CN)(CN)—, —C(CN)H—, —C(N3)(N3)—, —C(N3)H—, —O—, —S—, —N—, —NH—, —NRm-, —(C═O)—, —(C═NH)—, —(C═S)—, —(C═CH2)—, which may contain single, double, or triple bonds individually and independently between the R groups. If an R is branched with an Rm it may be terminated with a group such as —CH3, —H, —CH═CH2, —CCH, —OH, —SH, —NH2, —N3, —CN, or -Hal, or two branched Rs may form a cyclic structure. It is contemplated that in certain instances, the total Rs or “m” may be less than 100 or 50 or 25 or 10. Examples of linking groups include bridging amide, alkyl, and alkoxyalkyl groups.
- The most prevalent type of asthma (50% of patients) displays a
type 2 helper T cell (Th2) endotype, which is characterized by an overabundance of Th2 cells that express inflammatory cytokines such as Il-4, Il-5, and Il-13. GATA-3 is the major transcription factor involved in driving differentiation of helper T cells toward the Th2 fate. Moreover, GATA-3 has been found to be upregulated in biopsies and serum from patients with severe asthma, even while on oral corticosteroids. GATA-3 is expressed in resident lung cell types, such as mast cells, eosinophils, macrophages, fibroblasts, and airway epithelial cells. - Inhibiting GATA-3 production by gene knockdown has been shown to suppress upregulation of cytokines and prevent the induction of airway hyper-responsiveness amongst other asthma symptoms. A recent phase II clinical trial demonstrated that administering GATA-3 DNAzymes (Dzs) by inhalation can reduce the impact of an allergen challenge on FEV1 (forced expiratory volume) in mild asthmatics. After treatment with Dz targeting GATA-3, both the early and late asthmatic responses are attenuated, improving overall airway function. This emphasized the importance of GATA-3 in regulating the asthmatic response. However, allowing an oligonucleotide to pass across the plasma membrane is challenging. Accordingly, clinical trials require 2 mg doses of oligonucleotides per patient per day.
- Dzs are synthetic, catalytically active DNA antisense molecules that bind to and cleave specific mRNA. They possess a central catalytic domain that typically ranges from 8-15 nucleotides. Flanking this site are two variable domains, typically 8-12 nucleotides each that can be designed to hybridize to the mRNA molecule of interest. By screening sites in the GATA-3 mRNA, a highly active Dzs were discovered that target and cleave the GATA-3 gene. Cytoplasmic RNAses further degrade the cleavage products.
- To overcome the challenges of delivering Dzs as gene regulation agents, Dz nanoparticle conjugates were developed for gene regulation. Copies of Dz molecules immobilized onto a 14 nm gold nanoparticle (DzNP) through the 3′ terminus are highly active for mRNA knock down. These particles can rapidly enter cells, protect the DNAzyme against nucleases, and regulate gene expression in vitro. DzNPs show minimal off-target effects and did not require the use of any transfection agents. Therefore, DzNPs offer an attractive approach for delivering catalytic nucleic acids to treat disease.
- Homo sapiens GATA binding protein 3 (GATA-3),
transcript variant 1, mRNA has the NCBI Reference Sequence NM_001002295.1 (SEQ ID NO: 52): -
GGCGCCGTCTTGATACTTTCAGAAAGAATGCATTCCCTGTAAAAAAAA AAAAAAAATACTGAGAGAGGGAGAGAGAGAGAGAAGAAGAGAGAGAGA CGGAGGGAGAGCGAGACAGAGCGAGCAACGCAATCTGACCGAGCAGGT CGTACGCCGCCGCCTCCTCCTCCTCTCTGCTCTTCGCTACCCAGGTGA CCCGAGGAGGGACTCCGCCTCCGAGCGGCTGAGGACCCCGGTGCAGAG GAGCCTGGCTCGCAGAATTGCAGAGTCGTCGCCCCTTTTTACAACCTG GTCCCGTTTTATTCTGCCGTACCCAGTTTTTGGATTTTTGTCTTCCCC TTCTTCTCTTTGCTAAACGACCCCTCCAAGATAATTTTTAAAAAACCT TCTCCTTTGCTCACCTTTGCTTCCCAGCCTTCCCATCCCCCCACCGAA AGCAAATCATTCAACGACCCCCGACCCTCCGACGGCAGGAGCCCCCCG ACCTCCCAGGCGGACCGCCCTCCCTCCCCGCGCGCGGGTTCCGGGCCC GGCGAGAGGGCGCGAGCACAGCCGAGGCCATGGAGGTGACGGCGGACC AGCCGCGCTGGGTGAGCCACCACCACCCCGCCGTGCTCAACGGGCAGC ACCCGGACACGCACCACCCGGGCCTCAGCCACTCCTACATGGACGCGG CGCAGTACCCGCTGCCGGAGGAGGTGGATGTGCTTTTTAACATCGACG GTCAAGGCAACCACGTCCCGCCCTACTACGGAAACTCGGTCAGGGCCA CGGTGCAGAGGTACCCTCCGACCCACCACGGGAGCCAGGTGTGCCGCC CGCCTCTGCTTCATGGATCCCTACCCTGGCTGGACGGCGGCAAAGCCC TGGGCAGCCACCACACCGCCTCCCCCTGGAATCTCAGCCCCTTCTCCA AGACGTCCATCCACCACGGCTCCCCGGGGCCCCTCTCCGTCTACCCCC CGGCCTCGTCCTCCTCCTTGTCGGGGGGCCACGCCAGCCCGCACCTCT TCACCTTCCCGCCCACCCCGCCGAAGGACGTCTCCCCGGACCCATCGC TGTCCACCCCAGGCTCGGCCGGCTCGGCCCGGCAGGACGAGAAAGAGT GCCTCAAGTACCAGGTGCCCCTGCCCGACAGCATGAAGCTGGAGTCGT CCCACTCCCGTGGCAGCATGACCGCCCTGGGTGGAGCCTCCTCGTCGA CCCACCACCCCATCACCACCTACCCGCCCTACGTGCCCGAGTACAGCT CCGGACTCTTCCCCCCCAGCAGCCTGCTGGGCGGCTCCCCCACCGGCT TCGGATGCAAGTCCAGGCCCAAGGCCCGGTCCAGCACAGAAGGCAGGG AGTGTGTGAACTGTGGGGCAACCTCGACCCCACTGTGGCGGCGAGATG GCACGGGACACTACCTGTGCAACGCCTGCGGGCTCTATCACAAAATGA ACGGACAGAACCGGCCCCTCATTAAGCCCAAGCGAAGGCTGTCTGCAG CCAGGAGAGCAGGGACGTCCTGTGCGAACTGTCAGACCACCACAACCA CACTCTGGAGGAGGAATGCCAATGGGGACCCTGTCTGCAATGCCTGTG GGCTCTACTACAAGCTTCACAATATTAACAGACCCCTGACTATGAAGA AGGAAGGCATCCAGACCAGAAACCGAAAAATGTCTAGCAAATCCAAAA AGTGCAAAAAAGTGCATGACTCACTGGAGGACTTCCCCAAGAACAGCT CGTTTAACCCGGCCGCCCTCTCCAGACACATGTCCTCCCTGAGCCACA TCTCGCCCTTCAGCCACTCCAGCCACATGCTGACCACGCCCACGCCGA TGCACCCGCCATCCAGCCTGTCCTTTGGACCACACCACCCCTCCAGCA TGGTCACCGCCATGGGTTAGAGCCCTGCTCGATGCTCACAGGGCCCCC AGCGAGAGTCCCTGCAGTCCCTTTCGACTTGCATTTTTGCAGGAGCAG TATCATGAAGCCTAAACGCGATGGATATATGTTTTTGAAGGCAGAAAG CAAAATTATGTTTGCCACTTTGCAAAGGAGCTCACTGTGGTGTCTGTG TTCCAACCACTGAATCTGGACCCCATCTGTGAATAAGCCATTCTGACT CATATCCCCTATTTAACAGGGTCTCTAGTGCTGTGAAAAAAAAAATGC TGAACATTGCATATAACTTATATTGTAAGAAATACTGTACAATGACTT TATTGCATCTGGGTAGCTGTAAGGCATGAAGGATGCCAAGAAGTTTAA GGAATATGGGAGAAATAGTGTGGAAATTAAGAAGAAACTAGGTCTGAT ATTCAAATGGACAAACTGCCAGTTTTGTTTCCTTTCACTGGCCACAGT TGTTTGATGCATTAAAAGAAAATAAAAAAAAGAAAAAAGAGAAAAGAA AAAAAAAGAAAAAAGTTGTAGGCGAATCATTTGTTCAAAGCTGTTGGC CTCTGCAAAGGAAATACCAGTTCTGGGCAATCAGTGTTACCGTTCACC AGTTGCCGTTGAGGGTTTCAGAGAGCCTTTTTCTAGGCCTACATGCTT TGTGAACAAGTCCCTGTAATTGTTGTTTGTATGTATAATTCAAAGCAC CAAAATAAGAAAAGATGTAGATTTATTTCATCATATTATACAGACCGA ACTGTTGTATAATTTATTTACTGCTAGTCTTAAGAACTGCTTTCTTTC GTTTGTTTGTTTCAATATTTTCCTTCTCTCTCAATTTTTGGTTGAATA AACTAGATTACATTCAGTTGGCCTAAGGTGGTTGTGCTCGGAGGGTTT CTTGTTTCTTTTCCATTTTGTTTTTGGATGATATTTATTAAATAGCTT CTAAGAGTCCGGCGGCATCTGTCTTGTCCCTATTCCTGCAGCCTGTGC TGAGGGTAGCAGTGTATGAGCTACCAGCGTGCATGTCAGCGACCCTGG CCCGACAGGCCACGTCCTGCAATCGGCCCGGCTGCCTCTTCGCCCTGT CGTGTTCTGTGTTAGTGATCACTGCCTTTAATACAGTCTGTTGGAATA ATATTATAAGCATAATAATAAAGTGAAAATATTTTAAAACTACAA. The GATA-3 protein is encoded by nucleotide 558-1892. - In certain embodiments, methods and compositions disclosed herein may be implemented with nucleobase polymers comprising sequences that hybridizes or is the reverse complement to GATA-3 mRNA and contains an RNA cleaving nucleobase sequence such as a cleaving DNAzyme sequence. DNAzymes are catalytically active DNA molecules. DNAzyme 10-23 is DNA with two binding domains flanking a central catalytic domain. After binding of a DNAzyme to the corresponding sequence in the target mRNA via the binding domains, the catalytic domain cleaves the target mRNA molecule. The binding domains and catalytic domain may contain modifications provided they are capable of specifically binding the corresponding target mRNA of GATA-3. Schubert et al. report DNAzymes against the same target site that are stabilized by the use of a 3′-3′-inverted thymidine, phosphorothioate linkages, 2′-O-methyl RNA and locked nucleic acids. Nucleic Acids Res. 2003, 31(20): 5982-5992. In certain embodiments, methods and compositions disclosed herein may be implemented with a nucleobase polymers comprising units of a ribose, 2′ deoxyribose, locked nucleic acids (1-(hydroxymethyl)-2,5-dioxabicyclo[2.2.1]heptan-7-ol), 2′-O-methyl groups, a 3′-3′-inverted thymidine, phosphorothioate linkages, or combinations thereof.
- The term “nucleobase polymer” refers to a molecule having nucleobase monomers capable of hybridizing to a single-stranded nucleic acid target. The nucleobase polymers that target GATA-3 mRNA typically comprise a sequence that is the reverse complement of, more than 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, or more nucleotides or nucleobases or continuous nucleotide nucleobases of SEQ ID NO: 52. The targeting sequence of nucleobases is typically separated by an RNA cleaving sequence such as a DNAzyme sequence capable of forming a loop-like structure. The nucleobase polymer may be a single stranded nucleic acid or analog containing a sufficiently small number of target mismatches, additions, or deletions as long as the targeting sequences retain the ability to bind to the target RNA.
- In certain embodiments, the nucleobase polymer including the targeting sequence and the RNA cleaving DNAzyme may be less than 500, 200, 100, 50, or 35 nucleotides or nucleobases. In certain embodiments, the disclosure contemplates the use of nucleobase polymers disclosed herein for disruption of GATA-3 expression.
- Nucleobase monomers are typically nitrogen containing aromatic or heterocyclic bases that bind to naturally occurring nucleic acids through hydrogen bonding otherwise known as base pairing. A typical nucleobase polymer is a nucleic acid, RNA, DNA, or chemically modified form thereof. A nucleobase polymer may be single or double stranded or both, e.g., they may contain overhangs. Nucleobase polymers may contain naturally occurring or synthetically modified bases and backbones. In certain embodiments, a nucleobase polymer need not be entirely complementary, e.g., may contain one or more insertions, deletions, or be in a hairpin structure provided that there is sufficient selective binding.
- With regard to the nucleobases, it is contemplated that the term encompasses isobases, otherwise known as modified bases, e.g., are isoelectronic or have other substitutes configured to mimic naturally occurring hydrogen bonding base-pairs, e.g., within any of the sequences herein U may be substituted for T, or T may be substituted for U. Examples of nucleotides with modified adenosine or guanosine include, but are not limited to, hypoxanthine, xanthine, 7-methylguanine. Examples of nucleotides with modified cytidine, thymidine, or uridine include 5,6-dihydrouracil, 5-methylcytosine, 5-hydroxymethylcytosine. Contemplated isobases include 2′-deoxy-5-methylisocytidine (iC) and 2′-deoxy-isoguanosine (iG) (see U.S. Pat. Nos. 6,001,983; 6,037,120; 6,617,106; and 6,977,161). In another embodiment, a removable base (such as uracil or 8-oxoguanine) is contemplated so that treatment by uracil-DNA glycosylase (UDG) or formamidopyrimidine-DNA glycosylase (FPG), can lead to cleavage and degradation of unwanted sequences.
- In order to prevent in vivo breakdown nucleic acids may be chemically modified, e.g., within the sugar backbone or on the 5′ or 3′ ends. As such, in certain embodiments, nucleobase polymers disclosed herein may contain monomers of phosphodiester, phosphorothioate, methylphosphonate, phosphorodiamidate, piperazine phosphorodiamidate, ribose, 2′-O-methy ribose, 2′-O-methoxyethyl ribose, 2′-fluororibose, deoxyribose, 1-(hydroxymethyl)-2,5-dioxabicyclo[2.2.1]heptan-7-ol, P-(2-(hydroxymethyl)morpholino)-N,N-dimethylphosphon amidate, morpholin-2-ylmethanol, (2-(hydroxymethyl)morpholino) (piperazin-1-yl)phosphinate, or peptide nucleic acids or combinations thereof.
- Within any of the sequences disclosed herein, U may be T or T may be U.
- In certain embodiments, the nucleotide base polymer is single or double stranded DNA that is 3′ end capped with one, two, or more thymidine nucleotides and/or a 5′ end polyphosphorylated, e.g., di-phosphate, tri-phosphate.
- In certain embodiments, the nucleobase polymer can be modified to contain a 3′ end thiol group for direct absorption on gold or silver surfaces and particles. In certain embodiments, the nucleobase polymer is conjugated to a poly T sequence. In certain embodiments, the poly T sequence is on the 3′ end of the nucleobase polymer. In certain embodiments, the poly T sequence has four or more repeating thymine (T) bases followed by a 3′ end thiol group. In certain embodiments, the nucleobase polymer can be modified to contain a phosphodiester bond. Replacing one of the non-bridging oxygen by sulfur imparts resistance to nuclease degradation. In certain embodiments, the nucleobase polymer can be modified to contain a C-5 propyne substitution of dC and/or dT in the target sequences. In certain embodiments, the nucleobase polymer can be modified to contain a 2′-5′ linkages and 2′-5′ linked ends synthesized using 3′-deoxy-2′-phosphoramidites and 2′-deoxy-3′-phosphoramidites. In certain embodiments, the nucleobase polymer can be modified to contain a
terminal 5′-5′ or 3′-3′ linkage. For theterminal 5′-5′ linkage, the appropriate 5′-phosphoramidite is incorporated at the 5′-end in a synthesis cycle. For theterminal 3′-3′ linkage, the appropriate deoxynucleoside-5′-CPG is used as the solid support for the 3′-end, followed by synthesis of the oligo in the standard 3′-5′ direction to make theterminal 3′-3′ linkage. - In certain embodiments, the disclosure relates to compounds, compositions, and methods disclosed herein using nucleobase polymers. In certain embodiment, nucleobase polymers may contain any of the sequences provided in the table 1 of the experimental section (SEQ ID NO: 1-49).
- In certain embodiments, the disclosure contemplates that DNAzyme 10-23, SEQ ID NO: 51 (GGCTAGCTACAACGA) can be substituted with other DNAzymes sequences. The DNAzyme 10-23 is comprised of a sequence of DNA that will cleave mRNA strands that contain an unpaired purine-pyrimidine pair. The DNAzyme 10-23 is flanked by recognition sequences that hybridized to the regions of the target mRNA sequences adjacent to the unpaired purine-pyrimidine pair. Therefore, the DNAzyme hybridizes and cleaves at the purine-pyrimidine site.
- In certain embodiments, this disclosure contemplates that the cleaving nucleic acids comprise sequences of DNAzymes 8-17 and 10-23. Santoro & Joyce disclosed a general purpose RNA-cleaving DNAzymes 8-17 and 10-23. See PNSA, 1997, 94 (9), 4262-4266.
- In certain embodiments, this disclosure contemplates that the cleaving nucleic acids comprise amine, guanidine, imidazole modifications such as 8-imidazolyl modified deoxy adenosines. Perrin et al., disclose modified DNAzymes 20-49 containing amine, guanidine, and imidazole-modified dNTPs. Org Biomol Chem 2011, 9 (7), 2266-2273.
- Small nucleobase polymers and nucleic acid motifs (“small” refers to nucleic acid motifs no more than 100 nucleotides in length, preferably no more than 80 nucleotides in length, and most preferably no more than 50 nucleotides in length; e.g., individual oligonucleotide sequences or sequences synthesized in tandem) are preferably used for exogenous delivery. Exemplary molecules of the instant disclosure may be chemically synthesized or by the use of cellular or non-cellular expression systems. Nucleic acids made by cellular or non-cellular expression systems can be further modified.
- One synthesizes oligonucleotides (e.g., certain modified oligonucleotides or portions of oligonucleotides) using protocols known in the art as, for example, described in U.S. Pat. No. 6,001,311. The synthesis of oligonucleotides makes use of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5′-end and phosphoramidites at the 3′-end.
- In a non-limiting example, small scale syntheses are conducted on a 394 Applied Biosystems, Inc. synthesizer using a 0.2 micro mol scale protocol with a 2.5 min coupling step for 2′-O-methylated nucleotides and a 45 second coupling step for 2′-deoxy nucleotides or 2′-deoxy-2′-fluoro nucleotides. Alternatively, syntheses at the 0.2 micro mol scale can be performed on a 96-well plate synthesizer, such as the instrument produced by Protogene (Palo Alto, Calif.) with minimal modification to the cycle. A 33-fold excess of 2′-O-methyl phosphoramidite and a 105-fold excess of S-ethyl tetrazole can be used in each coupling cycle of 2′-O-methyl residues relative to polymer-bound 5′-hydroxyl. A 22-fold excess of deoxy phosphoramidite and a 70-fold excess of S-ethyl tetrazole mop can be used in each coupling cycle of deoxy residues relative to polymer-bound 5′-hydroxyl. Other oligonucleotide synthesis reagents for the 394 Applied Biosystems, Inc. synthesizer include the following: detritylation solution is 3% TCA in methylene chloride (ABI); capping is performed with 16% N-methyl imidazole in THF (ABI) and 10% acetic anhydride/10% 2,6-lutidine in THF (ABI); and oxidation solution is 16.9 mM I2, 49 mM pyridine, 9% water in THF (PerSeptive Biosystems, Inc.). S-Ethyltetrazole solution (0.25 M in acetonitrile) is made up from the solid obtained from American International Chemical, Inc. Alternately, for the introduction of phosphorothioate linkages, Beaucage reagent (3H-1,2-benzodithiol-3-
one 1,1-dioxide, 0.05 M in acetonitrile) is used. - Deprotection of the DNA-based oligonucleotides is performed as follows: the polymer-bound trityl-on oligonucleotide is transferred to a 4 mL glass screw top vial and suspended in a solution of 40% aqueous methylamine (1 mL) at 65 degrees for 10 minutes. After cooling to −20 degrees, the supernatant is removed from the polymer support. The support is washed three times with 1.0 mL of EtOH:MeCN:H2O/3:1:1, vortexed and the supernatant is then added to the first supernatant. The combined supernatants, containing the oligonucleotide, are dried.
- Alternatively, the nucleic acid molecules can be synthesized separately and joined together post-synthetically, for example, by ligation or by hybridization following synthesis and/or deprotection.
- Nucleic acids can also be assembled from two distinct nucleic acid strands or fragments wherein one fragment includes the sense region and the second fragment includes the antisense region of the RNA molecule.
- The nucleic acid molecules can be modified extensively to enhance stability by modification with nuclease resistant groups, for example, 2′-amino, 2′-C-allyl, 2′-fluoro, 2′-O-methyl, 2′-H). Constructs can be purified by gel electrophoresis using general methods or can be purified by high pressure liquid chromatography and re-suspended in water.
- Chemically synthesizing nucleic acid molecules with modifications (base, sugar and/or phosphate) can prevent their degradation by serum ribonucleases, which can increase their potency. See e.g., U.S. Pat. Nos. 5,652,094, 5,334,711, and U.S. Pat. No. 6,300,074. All of the above references describe various chemical modifications that can be made to the base, phosphate and/or sugar moieties of the nucleic acid molecules described herein. Modifications that enhance their efficacy in cells, and removal of bases from nucleic acid molecules to shorten oligonucleotide synthesis times and reduce chemical requirements are desired.
- In one embodiment, nucleic acid molecules include one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) G-clamp nucleotides. A G-clamp is a tricyclic aminoethyl-
phenoxazine 2′-deoxycytidine or analogue. See Lin &. Matteucci, J Am Chem Soc, 1998, 120, 8531-8532; Flanagan, et al., Proc Nat Acad Sci USA, 1999, 96, 3513-3518; and Maier, et al., Biochemistry, 2002, 41, 1323-1327. A single G-clamp analog substitution within an oligonucleotide can result in substantially enhanced helical thermal stability and mismatch discrimination when hybridized to complementary oligonucleotides. The inclusion of such nucleotides in nucleic acid molecules results in both enhanced affinity and specificity to nucleic acid targets, complementary sequences, or template strands. - In another embodiment, nucleic acid molecules include one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) LNA “locked nucleic acid” nucleotides such as a 2′,4′-C methylene bicyclo nucleotide (see for example U.S. Pat. Nos. 6,639,059, 6,670,461, 7,053,207).
- In another embodiment, the disclosure features conjugates and/or complexes of nucleobase polymers. Such conjugates and/or complexes can be used to facilitate delivery of polymers into a biological system, such as a cell. Contemplated conjugates include those with cell penetrating peptide. The conjugates and complexes provided may impart therapeutic activity by transferring therapeutic compounds across cellular membranes, altering the pharmacokinetics, and/or modulating the localization of nucleic acid molecules. In general, the transporters described are designed to be used either individually or as part of a multi-component system, with or without degradable linkers. These compounds improve delivery and/or localization of nucleic acid molecules into a number of cell types originating from different tissues, in the presence or absence of serum (see U.S. Pat. No. 5,854,038). Conjugates of the molecules described herein can be attached to biologically active molecules via linkers that are biodegradable, such as biodegradable nucleic acid linker molecules.
- In another aspect a nucleobase polymer comprises one or more 5′ and/or a 3′-cap structure. A “cap structure” refers to chemical modifications, which have been incorporated at either terminus of the oligonucleotide. See, for example, Adamic et al., U.S. Pat. No. 5,998,203. These terminal modifications protect the nucleic acid molecule from exonuclease degradation, and may help in delivery and/or localization within a cell. The cap may be present at the 5′-terminus (5′-cap) or at the 3′-terminal (3′-cap) or may be present on both termini. In non-limiting examples, the 5′-cap includes, but is not limited to, glyceryl, inverted deoxy abasic residue (moiety); 4′,5′-methylene nucleotide; 1-(beta-D-erythrofuranosyl) nucleotide, 4′-thio nucleotide; carbocyclic nucleotide; 1,5-anhydrohexitol nucleotide; L-nucleotides; alpha-nucleotides; modified base nucleotide; phosphorodithioate linkage; threo-pentofuranosyl nucleotide; acyclic 3′,4′-seco nucleotide; acyclic 3,4-dihydroxybutyl nucleotide; acyclic 3,5-dihydroxypentyl nucleotide, 3′-3′-inverted nucleotide moiety; 3′-3′-inverted abasic moiety; 3′-2′-inverted nucleotide moiety; 3′-2′-inverted abasic moiety; 1,4-butanediol phosphate; 3′-phosphoramidate; hexylphosphate; aminohexyl phosphate; 3′-phosphate; 3′-phosphorothioate; phosphorodithioate; or bridging or non-bridging methylphosphonate moiety.
- Non-limiting examples of the 3′-cap include, but are not limited to, glyceryl, polyethylene glycol, alkyl, inverted deoxy abasic residue (moiety), 4′,5′-methylene nucleotide; 1-(beta-D-erythrofuranosyl) nucleotide; 4′-thio nucleotide, carbocyclic nucleotide; 5′-amino-alkyl phosphate; 1,3-diamino-2-propyl phosphate; 3-aminopropyl phosphate; 6-aminohexyl phosphate; 1,2-aminododecyl phosphate; hydroxypropyl phosphate; 1,5-anhydrohexitol nucleotide; L-nucleotide; alpha-nucleotide; modified base nucleotide; phosphorodithioate; threo-pentofuranosyl nucleotide; acyclic 3′,4′-seco nucleotide; 3,4-dihydroxybutyl nucleotide; 3,5-dihydroxypentyl nucleotide, 5′-5′-inverted nucleotide moiety; 5′-5′-inverted abasic moiety; 5′-phosphoramidate; 5′-phosphorothioate; 1,4-butanediol phosphate; 5′-amino; bridging and/or
non-bridging 5′-phosphoramidate, phosphorothioate and/or phosphorodithioate, bridging or non-bridging methylphosphonate and 5′-mercapto moieties (for more details see Beaucage and Iyer, 1993, Tetrahedron 49, 1925). - In one embodiment, the disclosure features modified nucleobase polymer, with phosphate backbone modifications comprising one or more phosphorothioate, phosphorodithioate, methylphosphonate, phosphotriester, morpholino, amidate carbamate, carboxymethyl, acetamidate, polyamide, sulfonate, sulfonamide, sulfamate, formacetal, thioformacetal, and/or alkylsilyl, substitutions.
- In certain embodiments, the disclosure contemplates pharmaceutical composition comprising a nucleobase polymer disclosed herein and a pharmaceutically acceptable excipient.
- In certain embodiments, the pharmaceutical composition is in the form of a sterilized pH buffered aqueous salt solution or an isotonic aqueous buffer solution.
- In certain embodiments, the pharmaceutically acceptable excipient is a propellant or aerosolizing agent. In certain embodiments, the propellant or aerosolizing agent is a hydrofluoroalkane, 1,1,1,2-tetrafluoroethane, 1,1,1,2,3,3,3-heptafluoropropane, propane, n-butane, isobutene, carbon dioxide, compressed air, nitrogen, nitrous oxide, dimethyl ether, trans-1,3,3,3-tetrafluoroprop-1-ene, or combinations thereof.
- In certain embodiments, the pharmaceutically acceptable excipient is a lipid, fatty acid, phospholipid, diacyl phospholipid, phosphatidyl choline, sorbitan monopalmitate, polyethyoxylated sorbitan monopalmitate, sucrose stearate (mono- and di-ester), alginate, copolymer of poly(lactide-co-glycolide) (PLGA), poly(vinyl alcohol), or poly(L-lysine) (PLL).
- In certain embodiments, the pharmaceutical compositions may be stored in a nebulizer, inhaler, or other container optionally sealed or under a pressure for propelling the pharmaceutical agent(s). The container may contain a spraying apparatus that is manually actuated or pressurized. Metered dose inhalers (MDIs) typically have a handheld aerosol canister that, upon being pushed, releases an amount of medicine to inhale. Dry powder inhalers (DPIs) do not use a propellant to release the medicine. Instead, a dry powder form of the peptide or agent is drawn into your lungs after a breath. In certain configurations, a container comprising the peptide or agent is inserted a device. Pressing a button or section on the device pierces the container. One can breathe in the powder contained in the container through a mouthpiece on the device.
- In certain embodiments, the pharmaceutical compositions disclosed herein further comprise a respiratory agent selected from a glucocorticoid receptor agonist (steroidal and non-steroidal) such as triamcinolone, triamcinolone acetonide, prednisone, mometasone furoate, loteprednol etabonate, fluticasone propionate, fluticasone furoate, fluocinolone acetonide, dexamethasone cipecilate, desisobutyryl ciclesonide, clobetasol propionate, ciclesonide, butixocort propionate, budesonide, beclomethasone dipropionate, alclometasone dipropionate; a p38 antagonist such as losmapimod; a phosphodiesterase (PDE) inhibitor such as a methylxanthanine, theophylline, and aminophylline; a selective PDE isoenzyme inhibitor, a PDE4 inhibitor and the isoform PDE4D, such as tetomilast, roflumilast, oglemilast, ibudilast, ronomilast; a modulator of chemokine receptor function such as vicriviroc, maraviroc, cenicriviroc, navarixin; a leukotriene biosynthesis inhibitor, 5-lipoxygenase (5-LO) inhibitor, and 5-lipoxygenase activating protein (FLAP) antagonist such as TA270 (4-hydroxy-1-methyl-3-octyloxy-7-sinapinoylamino-2(1H)-quinolinone) such as setileuton, licofelone, quiflapon, zileuton, zafirlukast, or montelukast; and a myeloperoxidase antagonist such as resveratrol and piceatannol.
- Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems. For nucleobase polymers or particles disclosed herein, the dosage administered to a patient is typically 0.0001 mg/kg to 100 mg/kg of the patient's body weight. Preferably, the dosage administered to a patient is between 0.0001 mg/kg and 20 mg/kg, 0.0001 mg/kg and 10 mg/kg, 0.0001 mg/kg and 5 mg/kg, 0.0001 and 2 mg/kg, 0.0001 and 1 mg/kg, 0.0001 mg/kg and 0.75 mg/kg, 0.0001 mg/kg and 0.5 mg/kg, 0.0001 mg/kg to 0.25 mg/kg, 0.0001 to 0.15 mg/kg, 0.0001 to 0.10 mg/kg, 0.001 to 0.5 mg/kg, 0.01 to 0.25 mg/kg or 0.01 to 0.10 mg/kg of the patient's body weight. Further, the dosage and frequency of administration of nucleobase polymers or particles disclosed herein may be reduced by enhancing uptake and tissue penetration of the nucleobase polymers or particles disclosed herein by modifications such as, for example, lipidation.
- In a specific embodiment, the term “pharmaceutically acceptable” means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans. The term “carrier” refers to a diluent, adjuvant (e.g., Freund's adjuvant (complete and incomplete), excipient, or vehicle with which the therapeutic is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like.
- Generally, the ingredients of compositions are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.
- The compositions can be formulated as neutral or salt forms. Pharmaceutically acceptable salts include, but are not limited to, those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.
- One embodiment provides a pharmaceutical pack or kit comprising one or more containers filled with nucleobase polymers or particles disclosed herein. Additionally, one or more other prophylactic or therapeutic agents useful for the treatment of a disease can also be included in the pharmaceutical pack or kit. One embodiment provides a pharmaceutical pack or kit including one or more containers filled with one or more of the ingredients of the pharmaceutical compositions. Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.
- In certain embodiment, this disclosure contemplates pharmaceutical compositions comprising nucleobase polymers or particles disclosed herein and pharmaceutically acceptable excipient. In certain embodiments, this disclosure contemplates the production of a medicament comprising nucleobase polymers or particles disclosed herein and uses for methods disclosed herein.
- In certain embodiments, the disclosure relates to pharmaceutical compositions comprising nucleobase polymers or particles disclosed herein and a pharmaceutically acceptable excipient. In certain embodiments, the composition is a pill or in a capsule or the composition is an aqueous buffer, e.g., a pH between 6 and 8. In certain embodiments, the pharmaceutically acceptable excipient is selected from a filler, glidant, binder, disintegrant, lubricant, and saccharide.
- Compositions suitable for parenteral injection may comprise physiologically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, and sterile powders for reconstitution into sterile injectable solutions or dispersions. Examples of suitable aqueous and nonaqueous carriers, diluents solvents or vehicles include water, ethanol, polyols (propylene glycol, polyethylene glycol, glycerol, and the like), suitable mixtures thereof, vegetable (such as olive oil, sesame oil) and injectable organic esters such as ethyl oleate.
- Prevention of the action of microorganisms may be controlled by addition of any of various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like. It may also be desirable to include isotonic agents, for example sugars, sodium chloride, and the like. Prolonged absorption of the injectable pharmaceutical form can be brought about by the use of agents delaying absorption, for example, aluminum monostearate and gelatin.
- Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs. In addition to the nucleobase polymers or particles disclosed herein, the liquid dosage forms may contain inert diluents commonly used in the art, such as water or other solvents, solubilizing agents and emulsifiers, for example, ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils, in particular, cottonseed oil, groundnut oil, corn germ oil, olive oil, castor oil and sesame oil, glycerol, tetrahydrofurfuryl alcohol, polyethyleneglycols and fatty acid esters of sorbitan or mixtures of these substances, and the like.
- In certain embodiments, production processes are contemplated which two components, nucleobase polymers or particles disclosed herein and a pharmaceutical carrier, are provided already in a combined dry form ready to be reconstituted together. In other embodiments, it is contemplated that nucleobase polymers or particles disclosed herein and a pharmaceutical carrier are admixed to provide a pharmaceutical composition.
- Providing a pharmaceutic composition is possible in a one-step process, simply by adding a suitable pharmaceutically acceptable diluent to the composition in a container. In certain embodiments, the container is preferably a syringe for administering the reconstituted pharmaceutical composition after contact with the diluent. In certain embodiments, the nucleobase polymers or particles disclosed herein can be filled into a syringe, and the syringe can then be closed with the stopper. A diluent is used in an amount to achieve the desired end-concentration. The pharmaceutical composition may contain other useful component, such as ions, buffers, excipients, stabilizers, etc.
- A “dry” pharmaceutical composition typically has only a residual content of moisture, which may approximately correspond to the moisture content of comparable commercial products, for example, has about 12% moisture as a dry product. Usually, the dry pharmaceutical composition according to the present invention has a residual moisture content preferably below 10% moisture, more preferred below 5% moisture, especially below 1% moisture. The pharmaceutical composition can also have lower moisture content, e.g. 0.1% or even below. In certain embodiments, the pharmaceutical composition is provided in dry in order to prevent degradation and enable storage stability.
- A container can be any container suitable for housing (and storing) pharmaceutically compositions such as inhalers, syringes, vials, tubes, etc. The pharmaceutical composition may then be applied via actuation or specific needles of the syringe or via suitable catheters. A typical diluent comprises water for injection, and NaCl (preferably 50 to 150 mM, especially 110 mM), CaCl2 (preferably 10 to 80 mM, especially 40 mM), sodium acetate (preferably 0 to 50 mM, especially 20 mM) and mannitol (preferably up to 10% w/w, especially 2% w/w). Preferably, the diluent can also include a buffer or buffer system so as to buffer the pH of the reconstituted dry composition, preferably at a pH of 6.2 to 7.5, especially at pH of 6.9 to 7.1.
- In certain embodiments, this disclosure contemplates a kit comprising a pharmaceutical composition disclosed herein such as a peptide or agent and a container optionally with a suitable diluent. Further components of the kit may be instructions for use, administration means, such as inhalers, syringes, catheters, brushes, etc. (if the compositions are not already provided in the administration means) or other components necessary for use in medical (surgical) practice, such as substitute needles or catheters, extra vials or further wound cover means. In certain embodiments, the kit comprises a syringe housing the dry and stable hemostatic composition and a syringe containing the diluent (or provided to take up the diluent from another diluent container).
- In certain embodiments, the diluent is provided in a separate container. This can preferably be a syringe. The diluent in the syringe can then easily be applied to the container for reconstitution of the dry compositions. If the container is also a syringe, both syringes can be finished together in a pack. It is therefore preferred to provide the dry compositions in a syringe, which is finished with a diluent syringe with a pharmaceutically acceptable diluent for reconstituting, said dry and stable composition.
- Chronic inflammations constitute an increasing medical problem area of high socioeconomic significance. In certain embodiments, the disclosure relates to methods of treating an inflammatory disease or chronic inflammation comprising administering an effective amount of a nucleobase polymer disclosed herein to a subject in need thereof. In certain embodiments, the inflammatory disease is a respiratory disorder. In certain embodiments, the subject is diagnosed with, exhibiting symptoms of or at risk of asthma, bronchitis, emphysema, chronic obstructive pulmonary disease, laryngitis, or cystic fibrosis.
- In certain embodiments, the inflammatory disease is ulcerative colitis.
- In certain embodiments, the chronic inflammation is due to autoimmune diseases and diseases from the area of rheumatic diseases (manifestations among others on the skin, lungs, kidneys, vascular system, nervous system, connective tissue, locomotor system, endocrine system), immediate-type allergic reactions and asthma, chronic obstructive lung diseases (COPD), arteriosclerosis, psoriasis and contact eczema and chronic rejection reactions after organ and bone marrow transplants.
- To test the activity of GATA-3 DzNPs, 3′thiol modified GATA-3 Dzs were synthesized. Approximately 100 copies of the Dzs were functionalized onto a gold nanoarticle. PAGE demonstrated that these DzNPs were highly active. To test whether DzNPs could be delivered to the lung, the Dzs were tagged with Cy5 dye to generate fluorescent DzNPs. These particles were administered by nebulization into 4-6 micrometer sized aerosol droplets using a bias flow commercial nebulization system. Fluorescence imaging of the mouse lung showed even and distal distribution 24 hrs after nebulization (
FIG. 1 ). - To confirm resident lung cells can internalize DzNP conjugates, uptake in cultured lung cell lines was tested. The lung cell lines tested were macrophages, smooth muscle cells, as well as epithelial cells. DzNP particles were prepared that were modified with the Cy5 dye, and these particles were incubated at 10 nM concentration for 36 hrs. The cells were cultured in standard serum-containing media. Cells were washed and analyzed using flow cytometry (
FIG. 2 ). The results clearly show a significant level of cellular uptake, with epithelial cells showing the highest level of uptake. Fluorescence microscopy confirmed that the particles were internalized. - A model of mouse asthma was used to test the efficacy of the DzNPs and showed a significant improvement in airway function for the treated animals as well as reduced cytokine levels in the blood plasma (
FIGS. 3A and B). In this model, animals are treated with house dust mite ion a daily basis. The house dust mite antigen exposure model mimics the Th2 inflammation and airway hyper-responsiveness seen in asthma. Der p1 house dust mite extract (50 μg) was administered for 2 weeks. DzNP treatment (100 nM, 20 uL) was delivered intranasally for 5 days (the last week of the experiment). The results of the animal experiments demonstrate that the control group did not show any negative effects due to the nanoparticle treatment. The group receiving the active DzNP showed airway resistance that is similar to that of the untreated animal group. Importantly, the oligonucleotide dose with the DzNP construct was one order of magnitude smaller than that used for soluble Dz experiments. These results are promising and suggest that DzNP based targeting of GATA-3 in the lung offers potential for treating asthma. This experiment was conducted using the HGD40 sequence (site 917 on the human mRNA transcript for GATA-3, SEQ ID NO: 50, (TGGATGGAGGCTAGCTACAACGAGTCTTGGAG) that was previously identified and also tested in phase II human trials. DNAzyme sequences were screened to identify ones that could be more active than the HGD40 sequence. In vivo efficacy of DzNP were tested for improvements. - A computational algorithm was created to predict the most efficient DNAzyme sequences to destroy any given mRNA sequence. The algorithm first scans the entire gene transcript identifying regions of minimal secondary structure by leveraging the mFold software package. NCBI Reference Sequence: NM_001002295.1 for the human mRNA and NCBI Reference Sequence: NM_008091.3 was used for the mouse gene. Next, purine-pyrimidine junctions were identified where the 10-23 DNAzyme is most active. Subsequently, the left and right arms of the DNAzyme are tuned such that the delta G of hybridization is between −8 and −10 kcal/mol. For example, G-C rich regions (˜5-7 mer) will tend to have shorter arms, while A-T rich regions require longer arms (˜10-12 mer). This screen generates a list of potential DNAzyme targets. The list can then be further filtered based on comparing the human and murine genomes and also various splice variants of a given transcript.
- A screen was performed on the potential DNAzyme sites. The top ranked sequences were determined using the algorithm, and these were custom synthesized (see table below). The first column is the location of purine-uracil site that will be cleaved in the human transcript. All of these sequences are shared between mouse and human (albeit at different locations). The sequence in the far right are the DNAzyme sequences used to generate the DzNP conjugates
-
TABLE 1 DNAzyme hits that target GATA--3 mRNA Human GATA-3 cleavage site (b) 3′b 5′b Sequence 1461 7 9 5-TGGGCTTAAGGCTAGCTACAACGAGAGGGGC-3 SEQ ID NO: 1 1519 8 8 5-TGGTCTGAGGCTAGCTACAACGAAGTTCGCA-3 SEQ ID NO: 2 1606 8 11 5-GTCTGTTAATAGGCTAGCTACAACGATGTGAAGC-3 SEQ ID NO: 3 1662 8 9 5-TGCTAGACAGGCTAGCTACAACGATTTTCGGT-3 SEQ ID NO: 4 1664 9 9 5-TTTGCTAGAGGCTAGCTACAACGAATTTTTCGG-3 SEQ ID NO: 5 1673 9 9 5-CTTTTTGGAGGCTAGCTACAACGATTGCTAGAC-3 SEQ ID NO: 6 1682 10 9 5-TTTTTTGCAGGCTAGCTACAACGATTTTTGGATT-3 SEQ ID NO: 7 1970 8 9 5-GCTTCATGAGGCTAGCTACAACGAACTGCTCC-3 SEQ ID NO: 8 1973 9 8 5-AGGCTTCAGGCTAGCTACAACGAGATACTGCT-3 SEQ ID NO: 9 2093 8 10 5-GGCTTATTCAGGCTAGCTACAACGAAGATGGGG-3 SEQ ID NO: 10 2097 9 9 5-AATGGCTTAGGCTAGCTACAACGATCACAGATG-3 SEQ ID NO: 11 2114 9 9 5-TAGGGGATAGGCTAGCTACAACGAGAGTCAGAA-3 SEQ ID NO: 12 2116 9 9 5-AATAGGGGAGGCTAGCTACAACGAATGAGTCAG-3 SEQ ID NO: 13 2133 10 9 5-CACTAGAGAGGCTAGCTACAACGACCTGTTAAAT-3 SEQ ID NO: 14 2140 9 8 5-TCACAGCAGGCTAGCTACAACGATAGAGACCC-3 SEQ ID NO: 15 2145 9 10 5-TTTTTTTTCAGGCTAGCTACAACGAAGCACTAGA-3 SEQ ID NO: 16 2157 11 8 5-GTTCAGCAGGCTAGCTACAACGATTTTTTTTTCA-3 SEQ ID NO: 17 2171 9 12 5-ATATAAGTTATAGGCTAGCTACAACGAGCAATGTTC-3 SEQ ID NO: 18 2173 9 12 5-CAATATAAGTTAGGCTAGCTACAACGAATGCAATGT-3 SEQ ID NO: 19 2251 8 10 5-ATTCCTTAAAGGCTAGCTACAACGATTCTTGGC-3 SEQ ID NO: 20 2326 8 10 5-GGAAACAAAAGGCTAGCTACAACGATGGCAGTT-3 SEQ ID NO: 21 2331 9 9 5-GAAAGGAAAGGCTAGCTACAACGAAAAACTGGC-3 SEQ ID NO: 22 2363 9 11 5-TTTTCTTTTAAGGCTAGCTACAACGAGCATCAAAC-3 SEQ ID NO: 23 2560 8 10 5-ACAACAATTAGGCTAGCTACAACGAAGGGACTT-3 SEQ ID NO: 24 2563 9 10 5-CAAACAACAAGGCTAGCTACAACGATACAGGGAC-3 SEQ ID NO: 25 2566 10 10 5-ATACAAACAAGGCTAGCTACAACGAAATTACAGGG-3 SEQ ID NO: 26 2569 10 10 5-TACATACAAAGGCTAGCTACAACGAAACAATTACA-3 SEQ ID NO: 27 2575 9 11 5-TGAATTATACAGGCTAGCTACAACGAACAAACAAC-3 SEQ ID NO: 28 2577 10 11 5-TTTGAATTATAGGCTAGCTACAACGAATACAAACAA-3 SEQ ID NO: 29 2597 8 10 5-TCTTTTCTTAGGCTAGCTACAACGATTTGGTGC-3 SEQ ID NO: 30 2607 11 11 5-ATAAATCTACAGGCTAGCTACAACGACTTTTCTTATT-3 SEQ ID NO: 31 2609 10 11 5-AAATAAATCTAGGCTAGCTACAACGAATCTTTTCTT-3 SEQ ID NO: 32 2622 11 12 5-TGTATAATATGAGGCTAGCTACAACGAGAAATAAATCT-3 SEQ ID NO: 33 2625 11 11 5-TCTGTATAATAGGCTAGCTACAACGAGATGAAATAAA-3 SEQ ID NO: 34 2627 10 10 5-GTCTGTATAAGGCTAGCTACAACGAATGATGAAAT-3 SEQ ID NO: 35 2644 8 11 5-AATTTATACAAGGCTAGCTACAACGAAGTTCGGT-3 SEQ ID NO: 36 2647 9 13 5-AAATAAATTTATAGGCTAGCTACAACGAAACAGTTCG-3 SEQ ID NO: 37 2649 9 12 5-TAAATAAATTTAGGCTAGCTACAACGAACAACAGTT-3 SEQ ID NO: 38 2653 10 11 5-CAGTAAATAAAGGCTAGCTACAACGATTATACAACA-3 SEQ ID NO: 39 2657 11 9 5-AGCAGTAAAGGCTAGCTACAACGAAAATTTATACA-3 SEQ ID NO: 40 2668 9 10 5-GTTCTTAAGAGGCTAGCTACAACGATAGCAGTAA-3 SEQ ID NO: 41 2723 9 10 5-CAACCAAAAAGGCTAGCTACAACGATGAGAGAGA-3 SEQ ID NO: 42 2827 12 10 5-TTAGAAGCTAGGCTAGCTACAACGATTAATAAATATC-3 SEOIDNO:43 2910 8 9 5-TGACATGCAGGCTAGCTACAACGAGCTGGTAG-3 SEQ ID NO: 44 2986 8 9 5-TCACTAACAGGCTAGCTACAACGAAGAACACG-3 SEQ ID NO: 45 2988 9 10 5-TGATCACTAAGGCTAGCTACAACGAACAGAACAC-3 SEQ ID NO: 46 3017 10 10 5-ATTATTCCAAGGCTAGCTACAACGAAGACTGTATT-3 SEQ ID NO: 47 3048 12 11 5-AAATATTTTCAGGCTAGCTACAACGATTTATTATTATG-3 SEQ ID NO: 48 3056 10 11 5-TAGTTTTAAAAGGCTAGCTACAACGAATTTTCACTT-3 SEQ ID NO: 49 - DNAzyme sequences were screened for activity using RT-PCR in T47D breast cancer cell lines that are known to express high levels of the GATA-3 mRNA (
FIG. 4 ). Each oligonucleotide was incubated with the cells for 24 hours prior to collect mRNA, reverse transcription and then running RT-PCR. Lipofectamine delivery was performed using of the soluble oligonucleotides. The expression levels were normalized and the data analyzed using standard methods. Each experiment was run in triplicate, and each well was analyzed several times to obtain the mean GATA-3 expression level in each sample. Several of the tested sequences showed activity that was greater than HGD-40. - Activity of the top DzNP conjugates were tested and compared against a HGD-40 DzNP.
FIG. 5 show the results of the screen and confirm that several of the hits were indeed more potent than HGD40. All the DzNP samples were prepared at 10 nM concentration and incubated in standard serum-containing cell media for 24 hrs prior to measuring mRNA levels. - Animal studies were performed to compare the activity of HGD40 DzNPs against Dz2251 DzNPs (
FIG. 6A-C andFIG. 7 ). The house dust mite antigen model of mouse asthma was used. Four groups of animals were tested. The first group were untreated with antigen and show baseline airway resistance when the animals were challenged with methacholine. The second group received the house dust mite antigen but did not receive any DNAzyme treatments. The third and fourth groups were treated with both the allergen as well as the HGD40-DzNP and the Dz2251 DzNP, respectively. The results are consistent with findings that indicate that HGD40 DzNP is active in improvement airway function. Importantly, Dz2251 showed a higher level of efficacy at all levels of methacholine challenge. Dz2251 also showed greater GATA-3 mRNA knockdown in vivo. These results indicate that Dz2251 -DzNPs are more active in treating the Th2 endotype of asthma as well as other inflammatory diseases such as ulcerative colitis.
Claims (7)
1. A method of treating asthma comprising administering an effective amount of a nanoparticle coated with a nucleobase polymer comprising a sequence selected from SEQ ID NO: 1-49 to a subject in need thereof.
2. The method of claim 1 wherein the nucleobase polymer has SEQ ID NO: 10 (GGCTTATTCAGGCTAGCTACAACGAAGATGGGG).
3. The method of claim 1 wherein the nucleobase polymer has SEQ ID NO: 20 (ATTCCTTAAAGGCTAGCTACAACGATTCTTGGC).
4. The method of claim 1 wherein the nucleobase polymer has SEQ ID NO: 30 (TCTTTTCTTAGGCTAGCTACAACGATTTGGTGC).
5. The method of claim 1 , wherein administration is in combination with a second respiratory agent.
6. The method of claim 5 , wherein the second respiratory agent is a corticosteroid, bronchodilator, albuterol, ipratropium, or combinations thereof.
7. The method of claim 1 , wherein the subject is a human subject.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/122,946 US20210093655A1 (en) | 2016-05-24 | 2020-12-15 | Particles with RNA Cleaving Nucleobase Polymers and Uses for Managing Inflammatory Disorders |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662340586P | 2016-05-24 | 2016-05-24 | |
PCT/US2017/034268 WO2017205506A1 (en) | 2016-05-24 | 2017-05-24 | Particles with rna cleaving nucleobase polymers and uses for managing inflammatory disorders |
US201816304549A | 2018-11-26 | 2018-11-26 | |
US17/122,946 US20210093655A1 (en) | 2016-05-24 | 2020-12-15 | Particles with RNA Cleaving Nucleobase Polymers and Uses for Managing Inflammatory Disorders |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/304,549 Continuation US10905710B2 (en) | 2016-05-24 | 2017-05-24 | Particles with RNA cleaving nucleobase polymers and uses for managing inflammatory disorders |
PCT/US2017/034268 Continuation WO2017205506A1 (en) | 2016-05-24 | 2017-05-24 | Particles with rna cleaving nucleobase polymers and uses for managing inflammatory disorders |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210093655A1 true US20210093655A1 (en) | 2021-04-01 |
Family
ID=60411589
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/304,549 Active US10905710B2 (en) | 2016-05-24 | 2017-05-24 | Particles with RNA cleaving nucleobase polymers and uses for managing inflammatory disorders |
US17/122,946 Pending US20210093655A1 (en) | 2016-05-24 | 2020-12-15 | Particles with RNA Cleaving Nucleobase Polymers and Uses for Managing Inflammatory Disorders |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/304,549 Active US10905710B2 (en) | 2016-05-24 | 2017-05-24 | Particles with RNA cleaving nucleobase polymers and uses for managing inflammatory disorders |
Country Status (3)
Country | Link |
---|---|
US (2) | US10905710B2 (en) |
EP (1) | EP3463388B1 (en) |
WO (1) | WO2017205506A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PT3514235T (en) * | 2018-01-18 | 2024-02-12 | Sterna Biologicals Gmbh | Composition for the treatment of a patient suffering from ulcerative colitis and utilisation of said composition as medicament |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5962219A (en) | 1990-06-11 | 1999-10-05 | Nexstar Pharmaceuticals, Inc. | Systematic evolution of ligands by exponential enrichment: chemi-selex |
US5432272A (en) | 1990-10-09 | 1995-07-11 | Benner; Steven A. | Method for incorporating into a DNA or RNA oligonucleotide using nucleotides bearing heterocyclic bases |
US6037120A (en) | 1995-10-12 | 2000-03-14 | Benner; Steven Albert | Recognition of oligonucleotides containing non-standard base pairs |
US6140496A (en) | 1990-10-09 | 2000-10-31 | Benner; Steven Albert | Precursors for deoxyribonucleotides containing non-standard nucleosides |
DE4216134A1 (en) | 1991-06-20 | 1992-12-24 | Europ Lab Molekularbiolog | SYNTHETIC CATALYTIC OLIGONUCLEOTIDE STRUCTURES |
US5652094A (en) | 1992-01-31 | 1997-07-29 | University Of Montreal | Nucleozymes |
US20030125270A1 (en) | 2000-12-18 | 2003-07-03 | Lawrence Blatt | Enzymatic nucleic acid treatment of diseases or conditions related to hepatitis C virus infection |
AU5961994A (en) | 1993-01-22 | 1994-08-15 | University Research Corporation | Localization of therapeutic agents |
US5681702A (en) | 1994-08-30 | 1997-10-28 | Chiron Corporation | Reduction of nonspecific hybridization by using novel base-pairing schemes |
US5998203A (en) | 1996-04-16 | 1999-12-07 | Ribozyme Pharmaceuticals, Inc. | Enzymatic nucleic acids containing 5'-and/or 3'-cap structures |
US6001311A (en) | 1997-02-05 | 1999-12-14 | Protogene Laboratories, Inc. | Apparatus for diverse chemical synthesis using two-dimensional array |
US6794499B2 (en) | 1997-09-12 | 2004-09-21 | Exiqon A/S | Oligonucleotide analogues |
WO2000056746A2 (en) | 1999-03-24 | 2000-09-28 | Exiqon A/S | Improved synthesis of [2.2.1]bicyclo nucleosides |
DK1178999T3 (en) | 1999-05-04 | 2007-08-06 | Santaris Pharma As | L-ribo-LNA analogues |
US20030064946A1 (en) | 2000-08-09 | 2003-04-03 | Mcswiggen James | Method and reagent for the inhibition of calcium activated chloride channel-1 (CLCA-1) |
ATE422557T1 (en) | 2000-10-14 | 2009-02-15 | Eragen Biosciences Inc | DETECTION SYSTEMS ON SOLID SUPPORTS AND METHODS OF USING NON-STANDARD BASES |
WO2003105780A2 (en) | 2002-06-18 | 2003-12-24 | Epigenesis Pharmaceuticals, Inc. | A dry powder oligonucleotide formulation, preparation and its uses |
DE10346487A1 (en) | 2003-10-02 | 2005-05-12 | Transmit Technologietransfer | Process for the preparation of a cell and / or tissue and / or disease phase specific drug |
EP1796686A4 (en) | 2004-09-30 | 2008-05-14 | Centocor Inc | Emmprin antagonists and uses thereof |
WO2010107957A2 (en) * | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF GATA BINDING PROTEIN 3 (GATA3) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
DE102010007562A1 (en) | 2010-02-10 | 2011-08-11 | sterna biologicals GmbH & Co KG, 35043 | Dermatological, pharmaceutical composition suitable for oligonucleotides |
US20120009130A1 (en) * | 2010-05-06 | 2012-01-12 | Nanoaxis | Viral Therapy and Prophylaxis Using Nanotechnology Delivery Techniques |
US9644019B2 (en) | 2010-12-02 | 2017-05-09 | Carlos Zaragoza Sánchez | Compounds for treating cardiac damage after ischaemia/reperfusion |
EP2864345B1 (en) | 2012-06-25 | 2019-12-11 | Emory University | Particle-nucleic acid conjugates and therapeutic uses related thereto |
EP2708898A1 (en) | 2012-09-14 | 2014-03-19 | Sterna Biologicals GmbH & Co. Kg | Method for diagnosing a molecular phenotype of a patient suffering from an illness related to chronic inflammation |
WO2014201454A2 (en) * | 2013-06-14 | 2014-12-18 | University Of Notre Dame | Dnazyme-nanoparticle conjugates and methods of use thereof |
DK3093022T3 (en) | 2015-05-15 | 2019-11-04 | Sterna Biologicals Gmbh & Co Kg | GATA-3 INHIBITORS TO USE IN THE TREATMENT OF TH2 DRIVEN ASTMA |
EP3768281B1 (en) * | 2018-03-19 | 2023-07-05 | The Regents Of The University Of Michigan | Compositions and methods for t-cell and cytokine activation |
-
2017
- 2017-05-24 WO PCT/US2017/034268 patent/WO2017205506A1/en unknown
- 2017-05-24 US US16/304,549 patent/US10905710B2/en active Active
- 2017-05-24 EP EP17803507.7A patent/EP3463388B1/en active Active
-
2020
- 2020-12-15 US US17/122,946 patent/US20210093655A1/en active Pending
Non-Patent Citations (1)
Title |
---|
GenBank Locus: NM_001002295 "Homo sapiens GATA binding protein 3 (GATA3), transcript variant 1, mRNA", 15-March-2015, from ncbi.nlm.nih.gov (Year: 2015) * |
Also Published As
Publication number | Publication date |
---|---|
EP3463388A4 (en) | 2020-01-01 |
EP3463388A1 (en) | 2019-04-10 |
EP3463388B1 (en) | 2024-09-11 |
US10905710B2 (en) | 2021-02-02 |
US20190192550A1 (en) | 2019-06-27 |
EP3463388C0 (en) | 2024-09-11 |
WO2017205506A1 (en) | 2017-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7488254B2 (en) | RNAi agents for inhibiting expression of 17β-HSD13 (HSD17B13), compositions thereof, and methods of use | |
CN101674853B (en) | Amino acid lipids and uses thereof | |
TWI811238B (en) | RNAi AGENTS AND COMPOSITIONS FOR INHIBITING EXPRESSION OF APOLIPOPROTEIN C-III (APOC3) | |
CN102231979B (en) | Processes and compositions for liposomal and efficient delivery of gene silencing therapeutics | |
JP7049262B2 (en) | Treatment of idiopathic alveolar fibrosis with RNA complexes targeting connective tissue growth factors | |
JP7526195B2 (en) | Compositions, methods, and kits for delivery of polyribonucleotides | |
US20050222064A1 (en) | Polycationic compositions for cellular delivery of polynucleotides | |
JP6944942B2 (en) | Treatment of atopic dermatitis and asthma with RNA complexes targeting IL4Rα, TRPA1, or F2RL1 | |
JP2015518710A (en) | Compositions and methods for regulating hemoglobin gene family expression | |
JP2015523855A (en) | Compositions and methods for modulating APOA1 and ABCA1 expression | |
JP2015523854A (en) | Compositions and methods for modulating SMN gene family expression | |
JP2016534035A (en) | Compositions and methods for treating amyotrophic lateral sclerosis | |
JP2015518711A (en) | Compositions and methods for modulating BDNF expression | |
US20030148928A1 (en) | Enzymatic nucleic acid peptide conjugates | |
TW201919654A (en) | RNAi reagent for inhibiting α-ENaC expression and method of use | |
TW202113081A (en) | Methods for the treatment of alpha-1 antitrypsin deficiency (aatd) | |
US20210093655A1 (en) | Particles with RNA Cleaving Nucleobase Polymers and Uses for Managing Inflammatory Disorders | |
JP2024530169A (en) | method | |
US20210161939A1 (en) | Composition for treating a patient with a respiratory disease caused by chronic inflammation, production method, and use of said composition | |
US20210108200A1 (en) | BRANCHED LIPID CONJUGATES OF siRNA FOR SPECIFIC TISSUE DELIVERY | |
TW202304474A (en) | Rnai agents for inhibiting expression of receptor for advanced glycation end-products, compositions thereof, and methods of use | |
EP4067489A1 (en) | Method for reducing toxicity of antisense nucleic acids | |
EP1644500A2 (en) | Polycationic compositions for cellular delivery of polynucleotides | |
TW202444904A (en) | Rnai agents for inhibiting expression of mitochondrial amidoxime reducing component 1 (marc1), pharmaceutical compositions thereof, and methods of use | |
JP2024546667A (en) | Nucleic acids, compositions and complexes containing the same, and methods of preparation and use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |