US20210092759A1 - Multi-transmission time interval (tti) scheduling for data transmission - Google Patents

Multi-transmission time interval (tti) scheduling for data transmission Download PDF

Info

Publication number
US20210092759A1
US20210092759A1 US16/951,926 US202016951926A US2021092759A1 US 20210092759 A1 US20210092759 A1 US 20210092759A1 US 202016951926 A US202016951926 A US 202016951926A US 2021092759 A1 US2021092759 A1 US 2021092759A1
Authority
US
United States
Prior art keywords
dci
circuitry
shared channels
pdsch
scheduled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/951,926
Other versions
US11871419B2 (en
Inventor
Gang Xiong
Yingyang Li
Gregory Morozov
Daewon Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Priority to US16/951,926 priority Critical patent/US11871419B2/en
Assigned to INTEL CORPORATION reassignment INTEL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOROZOV, GREGORY, LEE, DAEWON, LI, YINGYANG, XIONG, GANG
Publication of US20210092759A1 publication Critical patent/US20210092759A1/en
Application granted granted Critical
Publication of US11871419B2 publication Critical patent/US11871419B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • H04W72/1289
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes

Definitions

  • Embodiments relate generally to the technical field of wireless communications.
  • one slot For new radio (NR) systems, one slot has 14 symbols.
  • the slot duration can be very short. For instance, for 1.92 MHz subcarrier spacing, one slot duration is approximately 7.8 ⁇ s as shown in FIG. 1 .
  • This extremely short slot duration may not be sufficient for higher layer processing, including Medium Access Layer (MAC) and Radio Link Control (RLC), etc. In this case, certain mechanisms may need to be defined to allow long transmission duration and adequate processing time for higher layer or even scheduler implementation.
  • MAC Medium Access Layer
  • RLC Radio Link Control
  • embodiments of the present disclosure are directed to designs for multi-Transmission Time Interval (TTI) scheduling for data transmission for system operating above the 52.6 GHz carrier frequency.
  • TTI Transmission Time Interval
  • FIG. 1 illustrates an example of a short slot duration of a larger subcarrier spacing in accordance with various embodiments.
  • FIG. 2 illustrates an example of multi-TTI scheduling for PDSCHs, in accordance with various embodiments.
  • FIG. 3 illustrates an example of multi-TTI scheduling for PUSCHs, in accordance with various embodiments.
  • FIG. 4 illustrates an example with the same SLIV for scheduled PDSCHs, in accordance with various embodiments.
  • FIG. 5 illustrates an example of different SLIVs for scheduled PDSCHs, in accordance with various embodiments.
  • FIG. 6 illustrates an example of consecutive time domain resource allocation for scheduled PDSCHs, in accordance with various embodiments.
  • FIG. 7 illustrates an example of multiple PUCCHs for HARQ-ACK response, in accordance with various embodiments.
  • FIG. 8 illustrates an example of single PUCCH for HARQ-ACK response, in accordance with various embodiments.
  • FIGS. 9A, 9B, and 9C illustrate examples of operation flow/algorithmic structures in accordance with some embodiments.
  • FIG. 10 illustrates an example architecture of a system of a network, in accordance with various embodiments.
  • FIG. 11A illustrates an example of infrastructure equipment in accordance with various embodiments.
  • FIG. 11B illustrates an example of a computer platform in accordance with various embodiments.
  • FIG. 12 illustrates example components of baseband circuitry and radio front end modules in accordance with various embodiments.
  • FIG. 13 is a block diagram illustrating components, according to some example embodiments, able to read instructions from a machine-readable or computer-readable medium (e.g., a non-transitory machine-readable storage medium) and perform any one or more of the methodologies discussed herein.
  • a machine-readable or computer-readable medium e.g., a non-transitory machine-readable storage medium
  • NR next generation wireless communication system
  • 5G fifth generation
  • NR new radio
  • 3GPP LTE-Advanced with additional potential new Radio Access Technologies (RATs) to enrich people lives with better, simpler, and more seamless wireless connectivity solutions.
  • RATs Radio Access Technologies
  • one slot has 14 symbols.
  • the slot duration can be very short. For instance, for 1.92 MHz subcarrier spacing, one slot duration is approximately 7.8 ⁇ s as shown in FIG. 1 .
  • This extremely short slot duration may not be sufficient for higher layer processing, including Medium Access Layer (MAC) and Radio Link Control (RLC), etc.
  • MAC Medium Access Layer
  • RLC Radio Link Control
  • certain mechanisms may need to be defined to allow long transmission duration and adequate processing time for higher layer or even scheduler implementation.
  • embodiments of the present disclosure are directed to designs for multi-Transmission Time Interval (TTI) scheduling for data transmission for system operating above the 52.6 GHz carrier frequency.
  • TTI Transmission Time Interval
  • the slot duration can be very short. For instance, for 1.92 MHz subcarrier spacing, one slot duration is approximately 7.8 ⁇ s. This extremely short slot duration may not be sufficient for the processing of higher layer, including MAC and RLC, etc. In this case, certain mechanisms may need to be defined to allow long transmission duration and adequate processing time for higher layer.
  • a long scheduling unit may be considered for the transmission of data channel.
  • a physical downlink control channel (PDCCH) carrying downlink control information (DCI) may be used to schedule one or more physical downlink shared channel (PDSCH) or physical uplink shared channel (PUSCH) with different transport block (TBs) in different slots.
  • DCI downlink control information
  • FIG. 2 illustrates one example of multi-TTI scheduling for PDSCHs.
  • 4 PDSCHs (PDSCH #0-3) with different transport blocks (TB) are scheduled by a single DCI.
  • FIG. 3 illustrates one example of multi-TTI scheduling for PUSCHs.
  • 3 PUSCHs PUSCH #0-2
  • TB transport blocks
  • each PDSCH and/or PUSCH may be scheduled within a slot.
  • the transport block size calculation may be reused based on NR Rel-15.
  • some fields in the DCI may be common for the scheduling of multiple PDSCHs and/or PUSCHs, while other fields may be independent for the scheduling of multiple PDSCHs and/or PUSCHs.
  • carrier indicator and bandwidth part (BWP) indicator for scheduled PDSCHs and/or PUSCHs with different TBs may be the same. This indicates that a same component carrier (CC) and BWP is used for the transmission of PDSCHs and/or PUSCHs with different TBs.
  • CC component carrier
  • frequency domain resource allocation for scheduled PDSCHs and/or PUSCHs with different TBs may be the same. In other words, a single frequency domain resource assignment in the DCI is applied for all the scheduled PDSCHs and/or PUSCHs.
  • the same demodulation reference signal (DMRS) configuration including a single antenna ports and DMRS sequence initialization can be applied for the transmission of all the scheduled PDSCHs and/or PUSCHs.
  • the DMRS sequence applied to each scheduled PDSCH and/or PUSCH could be separately derived.
  • a single transmission configuration indication can be applied for the transmission of all the scheduled PDSCHs. This indicates that the same TCI is applied for all scheduled PDSCHs.
  • a single sounding reference signal (SRS) resource indicator can be applied for the transmission of all the scheduled PUSCHs. This indicates that the same TCI is applied for all scheduled PUSCHs.
  • SRS sounding reference signal
  • a new data indicator may be independent for each scheduled PDSCH and/or PUSCH with different TBs.
  • a bitmap may be defined, where each bit is used for the NDI of each scheduled PDSCH and/or PUSCH with different TBs.
  • the size of bitmap may be configured by higher layers via NR minimum system information (MSI), NR remaining minimum system information (RMSI), NR other system information (OSI) or radio resource control (RRC) signalling, or determined in accordance with the number of scheduled PDSCHs and/or PUSCHs or the maximum number of PDSCHs or PUSCHs that can be scheduled by a single DCI. For the latter case, when the number of actually scheduled PDSCHs and/or PUSCHs is less than the maximum number, the remaining bits in the bitmap may be reserved, e.g., as “0”.
  • a redundancy version may be independent for each scheduled PDSCH and/or PUSCH with different TBs.
  • the same mechanism for NDI may be applied for RV for each scheduled PDSCH and/or PUSCH with different TBs.
  • two sets of NDI and RVs may be included in the DCI for each TB of the scheduled PDSCH and/or PUSCH.
  • the DCI could schedule N ⁇ M PDSCHs and/or PUSCHs.
  • N TBs are scheduled by the DCI with each TB mapped to M consecutive PDSCHs and/or PUSCHs.
  • NDI could be indicated for each TB separately.
  • RV could be indicated for each TB separately.
  • the M consecutive PDSCHs and/or PUSCHs mapped by same TB shares the same NDI and RV.
  • a TB could be divided into M ⁇ L code block groups (CBGs), then each of the M PDSCHs and/or PUSCHs carries L CBGs.
  • CBGs code block groups
  • the number of CBG in each of the M PDSCHs and/or PUSCHs of a TB could be separately determined.
  • number of CBGs depends on the amount of time/frequency resource of a PDSCH or PUSCH.
  • the TB size is determined by the total amount of the M PDSCHs and/or PUSCHs of a TB.
  • the TB is then divided into at least M CBGs and mapped to the M PDSCHs and/or PUSCHs.
  • the number of bits carried by each of the M PDSCHs and/or PUSCHs of a TB is respectively determined.
  • the M numbers are summed to get TBS of the TB.
  • the number of bits carried by a PDSCH and/or PUSCH could equal the TBS for a TB which is only mapped to the PDSCH and/or PUSCH.
  • a single modulation and coding scheme (MCS) field may be included in the DCI, which can be used to indicate the MCS of all the scheduled PDSCHs and/or PUSCHs. In one option, it can be used to indicate the MCS of the initial and retransmission of the scheduled PDSCHs and/or PUSCHs. In another option, it can be used to indicate the MCS of only the initial transmission of the scheduled PDSCHs and/or PUSCHs. Further, the MCS of the retransmission of the scheduled PDSCHs and/or PUSCHs may follow that of the initial transmission. In another option, it can be used to indicate the TBS and modulation order of the initial transmission of the scheduled PDSCHs and/or PUSCHs.
  • MCS modulation and coding scheme
  • the modulation order can be indicated by the MCS field, meanwhile the TBS may follow that of the initial transmission.
  • the MCS may be separately indicated for each scheduled PDSCH and/or PUSCH.
  • a HARQ process number can be different for scheduled PDSCHs and/or PUSCHs.
  • a single HARQ process number field can be included in the DCI.
  • the HARQ process number field is used to indicate the HARQ process number of the first PDSCH and/or PUSCH, while the HARQ process numbers for the remaining scheduled PDSCHs and/or PUSCHs can be implicitly determined in accordance with the indicated HARQ process number for the first PDSCH and/or PUSCH.
  • the HARQ process numbers for the remaining scheduled PDSCHs and/or PUSCHs can be incremented by 1 from the indicated HARQ process ID.
  • the HARQ process number indicated in the DCI is 3 and three PDSCHs are scheduled by the DCI.
  • HARQ process number for the first scheduled PDSCHs is 3 and for the second and third PDSCHs is 4 and 5, respectively.
  • a list of HARQ process number set can be configured by higher layers via MSI, RMSI, OSI or RRC signalling for multiple scheduled PDSCHs, and a field in the DCI may be used to indicate which one is selected for HARQ process number of each scheduled PDSCHs.
  • a list of HARQ process number set can be configured as ⁇ 1, 3, 5, 7 ⁇ for the first set and ⁇ 2, 4, 6, 8 ⁇ for the second set, where field in the DCI with “0” can be used to indicate the HARQ process number of the 4 scheduled PDSCHs are 1, 3, 5, 7, respectively.
  • k0 is used to indicate the slot offset between PDCCH and the first scheduled PDSCH.
  • k2 is used to indicate the slot offset between PDCCH and the first scheduled PUSCH.
  • the same starting and length indicator value (SLIV) and mapping type as part of time domain resource assignment are applied for each scheduled PDSCHs and/or PUSCHs.
  • FIG. 3 illustrates one example of same SLIV for 4 scheduled PDSCHs.
  • different SLIV and mapping type as part of time domain resource assignment are applied for different scheduled PDSCHs and/or PUSCHs.
  • multiple SLIVs can be configured, which indicates the SLIV for each scheduled PDSCHs and/or PUSCHs with different TBs.
  • the number of PDSCHs and/or PUSCHs allocated in a slot could be limited to 1, or could be more than 1.
  • Table 1 illustrates one example of configuring multiple SLIVs and mapping types for each scheduled PDSCHs in PDSCH-TimeDomainResourceAllocation IE.
  • FIG. 4 illustrates one example of different SLIVs for 4 scheduled PDSCHs.
  • consecutive time domain resource allocation can be employed for the scheduled PDSCHs and/or PUSCHs with different TBs.
  • partial slot resource allocation in time can be employed for the scheduled PDSCHs and/or PUSCHs in the first and last slot, respectively.
  • Full slot resource allocation in time is employed for the scheduled PDSCHs and/or PUSCHs in the slots other than the first and last slot.
  • the SLIV for the first and last slot can be explicitly configured by the higher layers in time domain resource allocation configuration. Further, the number of scheduled PDSCHs and/or PUSCHs can be also included in the time domain resource allocation configuration. If the number of scheduled PD PDSCHs and/or PUSCHs is 1, the SLIV for the first slot could apply. Table 2 illustrates one example of configuring consecutive resource allocation in time for PDSCH-TimeDomainResourceAllocation.
  • FIG. 5 illustrates one example of consecutive time domain resource allocation for scheduled PDSCHs.
  • partial slot resource allocation in time is employed for the scheduled PDSCHs in the first and last slot, respectively.
  • Full slot resource allocation in time is employed for the scheduled PDSCHs in the slots other than the first and last slot.
  • number of scheduled PDSCHs and/or PUSCHs with different TBs may be configured by higher layers via MSI, RMSI, OSI or RRC signaling, or implicitly or explicitly indicated in the DCI or a combination thereof.
  • a set of number of scheduled PDSCH and/or PUSCHs with different TBs can be configured by higher layers via MSI, RMSI, OSI or RRC signalling, and further one field in the DCI may be used to explicitly indicate one value from the set of number of scheduled PDSCHs and/or PUSCHs with different TBs.
  • this field may be configured as part of time domain resource allocation configuration.
  • multiple SLIVs can be configured, which indicates the SLIV for each scheduled PDSCHs and/or PUSCHs with different TBs.
  • the number of scheduled PDSCHs and/or PUSCHs can be determined in accordance with the number of SLIVs for the indicated time domain resource allocation by the DCI.
  • the time/frequency resource for DMRS for the multiple scheduled PDSCHs and/or PUSCHs could be designed separately or jointly.
  • the time/frequency resource for DMRS is determined per each scheduled PDSCH or PUSCH separately.
  • a first symbol of the scheduled PDSCH or PUSCH carries DMRS.
  • the number and positions of additional symbols for DMRS could depend on the length of the scheduled PDSCH or PUSCH, which could be predefined for configured by high layer.
  • the time/frequency resource for DMRS is determined assuming the time/frequency resource of all the multiple scheduled PDSCHs and/or PUSCHs as a whole. Assuming the same spatial precoder is applied in all the multiple scheduled PDSCHs and/or PUSCHs, the DMRS mapped to the time resource of a previous or later PDSCH or PUSCH could be used for the channel estimation of the current PDSCH/PUSCH. If the channel delay spread is small, it is possible DMRS could only be transmitted in the first symbol of each scheduled PDSCH or PUSCH. Further, it is possible DMRS could only be transmitted in the first symbol of every X scheduled PDSCH or PUSCH, X>1.
  • the last PDSCH or PUSCH could have a special handling. Since there is no additional PDSCH or PUSCH for the same UE, i.e. it is not possible to do interpolation for channel estimation using DMRS from the additional PDSCH or PUSCH. One more symbol for DMRS could be transmitted at the ending symbol(s) of the last PDSCH or PUSCH.
  • the time/frequency resource of DMRS could be determined assuming the multiple scheduled PDSCHs and/or PUSCHs as a long PDSCH or PUSCH.
  • a first symbol of the long PDSCH or PUSCH carries DMRS.
  • the number and positions of additional symbols for DMRS could depend on the length of the long PDSCH or PUSCH, which could be predefined for configured by high layer.
  • a DMRS symbol could be allocated every X symbols. X could be predefined for configured by high layer.
  • a single PUCCH resource indicator may be used to indicate one or more PUCCH resources for carrying HARQ-ACK response of one or more scheduled PDSCHs.
  • same PDSCH-to-HARQ_feedback timing indicator is used to indicate the slot offset between each scheduled PDSCH and each PUCCH carrying HARQ-ACK feedback of the corresponding PDSCH.
  • FIG. 6 illustrates one example of multiple PUCCHs for carrying HARQ-ACK of each scheduled PDSCHs. In the example, 3 PUCCHs are indicated to carry HARQ-ACK feedback of PDSCH #0-2, respectively.
  • a single PDSCH-to-HARQ_feedback timing indicator is used to indicate the slot offset between the last scheduled PDSCH and one PUCCH.
  • the PUCCH is used to carry the HARQ-ACK of all scheduled PDSCHs.
  • the HARQ-ACK feedback bit order is determined based on the scheduled PDSCH index.
  • FIG. 7 illustrates one example of single PUCCH carrying HARQ-ACK response of all scheduled PDSCHs.
  • a single PUCCH is used to carry 3 HARQ-ACK feedback bits for PDSCH #0-2.
  • a single transmit power command (TPC) for PUCCH can be indicated in the DCI, where the TPC can be applied for one or more scheduled PUCCH carrying HARQ-ACK response.
  • a dynamic HARQ-ACK codebook could be generated considering multi-TTI scheduling for PDSCH transmissions with multiple TBs.
  • two sub-codebooks are generated and concatenated to form the final HARQ-ACK codebook.
  • One sub-codebook carries HARQ-ACK for all TB-based PDSCH scheduling, i.e. one or two HARQ-ACK bits are reported for each PDSCH.
  • UE Whenever at least one cell or BWP is configured with PDSCH transmission with 2 TBs, UE generates two HARQ-ACK bits for each PDSCH.
  • the other sub-codebook is for CBG based PDSCH scheduling.
  • the different cells or BWPs may be configured with different number of CBGs per PDSCH.
  • the number of HARQ-ACK bits per PDSCH equals to the maximum number of CBGs per PDSCH among all configured cells or BWPs. Assuming a multi-TTI DCI could schedule maximum N TBs which each TB consists P CBGs. The maximum number of HARQ-ACK associated with a PDCCH is N ⁇ P. P could be equal to or larger than 1. The counter DAI and total DAI if included could still count the number of PDCCHs which schedules PDSCH transmissions belonging to the same sub-codebook.
  • the first sub-codebook carries HARQ-ACK bits for all TB based PDSCH transmissions scheduled by a DCI scheduling a single TTI.
  • the number of HARQ-ACK bits associated with such a DCI is the maximum number of TBs which are scheduled by such DCIs.
  • the first sub-codebook includes HARQ-ACK bits,
  • the second sub-codebook carries HARQ-ACK bits for all other PDSCH transmissions, e.g. CBG-based PDSCH transmissions and PDSCH transmissions scheduled by a DCI scheduling multiple TTIs.
  • the number of HARQ-ACK bits associated with such a DCI is the maximum number among
  • the first sub-codebook carries HARQ-ACK bits for TB based PDSCH transmissions scheduled by a DCI scheduling one or two TBs.
  • the number of HARQ-ACK bits associated with such a DCI is the maximum number of TBs which are scheduled by such DCIs.
  • the first sub-codebook includes HARQ-ACK bits,
  • the second sub-codebook carries HARQ-ACK bits for all other PDSCH transmissions.
  • the number of HARQ-ACK bits associated with such a DCI is the maximum number among
  • the first sub-codebook carries HARQ-ACK bits for PDSCH transmissions scheduled by a DCI scheduling one or two TBs or two CBGs.
  • the number of HARQ-ACK bits associated with such a DCI is the maximum number of TBs or CBGs which are scheduled by such DCIs.
  • the first sub-codebook includes HARQ-ACK bits,
  • the second sub-codebook carries HARQ-ACK bits for all other PDSCH transmissions.
  • the number of HARQ-ACK bits associated with such a DCI is the maximum number among
  • FIG. 10 illustrates an example architecture of a system 1000 of a network, in accordance with various embodiments.
  • the following description is provided for an example system 1000 that operates in conjunction with the LTE system standards and 5G or NR system standards as provided by 3GPP technical specifications.
  • the example embodiments are not limited in this regard and the described embodiments may apply to other networks that benefit from the principles described herein, such as future 3GPP systems (e.g., Sixth Generation (6G)) systems, IEEE 802.16 protocols (e.g., WMAN, WiMAX, etc.), or the like.
  • 6G Sixth Generation
  • IEEE 802.16 protocols e.g., WMAN, WiMAX, etc.
  • the system 1000 includes UE 1001 a and UE 1001 b (collectively referred to as “UEs 1001 ” or “UE 1001 ”).
  • UEs 1001 are illustrated as smartphones (e.g., handheld touchscreen mobile computing devices connectable to one or more cellular networks), but may also comprise any mobile or non-mobile computing device, such as consumer electronics devices, cellular phones, smartphones, feature phones, tablet computers, wearable computer devices, personal digital assistants (PDAs), pagers, wireless handsets, desktop computers, laptop computers, in-vehicle infotainment (IVI), in-car entertainment (ICE) devices, an Instrument Cluster (IC), head-up display (HUD) devices, onboard diagnostic (OBD) devices, dashtop mobile equipment (DME), mobile data terminals (MDTs), Electronic Engine Management System (EEMS), electronic/engine control units (ECUs), electronic/engine control modules (ECMs), embedded systems, microcontrollers, control modules, engine management systems (EMS), networked or
  • EEMS Electronic Engine Management System
  • any of the UEs 1001 may be IoT UEs, which may comprise a network access layer designed for low-power IoT applications utilizing short-lived UE connections.
  • An IoT UE can utilize technologies such as M2M or MTC for exchanging data with an MTC server or device via a PLMN, ProSe or D2D communication, sensor networks, or IoT networks.
  • the M2M or MTC exchange of data may be a machine-initiated exchange of data.
  • An IoT network describes interconnecting IoT UEs, which may include uniquely identifiable embedded computing devices (within the Internet infrastructure), with short-lived connections.
  • the IoT UEs may execute background applications (e.g., keep-alive messages, status updates, etc.) to facilitate the connections of the IoT network.
  • the UEs 1001 may be configured to connect, for example, communicatively couple, with an or RAN 1010 .
  • the RAN 1010 may be an NG RAN or a 5G RAN, an E-UTRAN, or a legacy RAN, such as a UTRAN or GERAN.
  • the term “NG RAN” or the like may refer to a RAN 1010 that operates in an NR or 5G system 1000
  • the term “E-UTRAN” or the like may refer to a RAN 1010 that operates in an LTE or 4G system 1000 .
  • the UEs 1001 utilize connections (or channels) 1003 and 1004 , respectively, each of which comprises a physical communications interface or layer (discussed in further detail below).
  • connections 1003 and 1004 are illustrated as an air interface to enable communicative coupling, and can be consistent with cellular communications protocols, such as a GSM protocol, a CDMA network protocol, a PTT protocol, a POC protocol, a UMTS protocol, a 3GPP LTE protocol, a 5G protocol, a NR protocol, and/or any of the other communications protocols discussed herein.
  • the UEs 1001 may directly exchange communication data via a ProSe interface 1005 .
  • the ProSe interface 1005 may alternatively be referred to as a SL interface 1005 and may comprise one or more logical channels, including but not limited to a PSCCH, a PSSCH, a PSDCH, and a PSBCH.
  • the UE 1001 b is shown to be configured to access an AP 1006 (also referred to as “WLAN node 1006 ,” “WLAN 1006 ,” “WLAN Termination 1006 ,” “WT 1006 ” or the like) via connection 1007 .
  • the connection 1007 can comprise a local wireless connection, such as a connection consistent with any IEEE 802.11 protocol, wherein the AP 1006 would comprise a wireless fidelity (Wi-Fi®) router.
  • the AP 1006 is shown to be connected to the Internet without connecting to the core network of the wireless system (described in further detail below).
  • the UE 1001 b , RAN 1010 , and AP 1006 may be configured to utilize LWA operation and/or LWIP operation.
  • the LWA operation may involve the UE 1001 b in RRC_CONNECTED being configured by a RAN node 1011 a - b to utilize radio resources of LTE and WLAN.
  • LWIP operation may involve the UE 1001 b using WLAN radio resources (e.g., connection 1007 ) via IPsec protocol tunneling to authenticate and encrypt packets (e.g., IP packets) sent over the connection 1007 .
  • IPsec tunneling may include encapsulating the entirety of original IP packets and adding a new packet header, thereby protecting the original header of the IP packets.
  • the RAN 1010 can include one or more AN nodes or RAN nodes 1011 a and 1011 b (collectively referred to as “RAN nodes 1011 ” or “RAN node 1011 ”) that enable the connections 1003 and 1004 .
  • RAN nodes 1011 RAN nodes 1011 a and 1011 b
  • the terms “access node,” “access point,” or the like may describe equipment that provides the radio baseband functions for data and/or voice connectivity between a network and one or more users.
  • BS gNode B
  • RSU eNode B
  • TRxP TRxP
  • TRP TRP
  • NG RAN node may refer to a RAN node 1011 that operates in an NR or 5G system 1000 (for example, a gNB)
  • E-UTRAN node may refer to a RAN node 1011 that operates in an LTE or 4G system 1000 (e.g., an eNB).
  • the RAN nodes 1011 may be implemented as one or more of a dedicated physical device such as a macrocell base station, and/or a low power (LP) base station for providing femtocells, picocells or other like cells having smaller coverage areas, smaller user capacity, or higher bandwidth compared to macrocells.
  • a dedicated physical device such as a macrocell base station, and/or a low power (LP) base station for providing femtocells, picocells or other like cells having smaller coverage areas, smaller user capacity, or higher bandwidth compared to macrocells.
  • LP low power
  • all or parts of the RAN nodes 1011 may be implemented as one or more software entities running on server computers as part of a virtual network, which may be referred to as a CRAN and/or a virtual baseband unit pool (vBBUP).
  • the CRAN or vBBUP may implement a RAN function split, such as a PDCP split wherein RRC and PDCP layers are operated by the CRAN/vBBUP and other L2 protocol entities are operated by individual RAN nodes 1011 ; a MAC/PHY split wherein RRC, PDCP, RLC, and MAC layers are operated by the CRAN/vBBUP and the PHY layer is operated by individual RAN nodes 1011 ; or a “lower PHY” split wherein RRC, PDCP, RLC, MAC layers and upper portions of the PHY layer are operated by the CRAN/vBBUP and lower portions of the PHY layer are operated by individual RAN nodes 1011 .
  • an individual RAN node 1011 may represent individual gNB-DUs that are connected to a gNB-CU via individual F1 interfaces (not shown by FIG. 10 ).
  • the gNB-DUs may include one or more remote radio heads or RFEMs (see, e.g., FIG. 11A ), and the gNB-CU may be operated by a server that is located in the RAN 1010 (not shown) or by a server pool in a similar manner as the CRAN/vBBUP.
  • one or more of the RAN nodes 1011 may be next generation eNBs (ng-eNBs), which are RAN nodes that provide E-UTRA user plane and control plane protocol terminations toward the UEs 1001 , and are connected to a 5GC via an NG interface (discussed infra).
  • ng-eNBs next generation eNBs
  • RSU Radio Access Side Unit
  • An RSU may be implemented in or by a suitable RAN node or a stationary (or relatively stationary) UE, where an RSU implemented in or by a UE may be referred to as a “UE-type RSU,” an RSU implemented in or by an eNB may be referred to as an “eNB-type RSU,” an RSU implemented in or by a gNB may be referred to as a “gNB-type RSU,” and the like.
  • an RSU is a computing device coupled with radio frequency circuitry located on a roadside that provides connectivity support to passing vehicle UEs 1001 (vUEs 1001 ).
  • the RSU may also include internal data storage circuitry to store intersection map geometry, traffic statistics, media, as well as applications/software to sense and control ongoing vehicular and pedestrian traffic.
  • the RSU may operate on the 5.9 GHz Direct Short Range Communications (DSRC) band to provide very low latency communications required for high speed events, such as crash avoidance, traffic warnings, and the like. Additionally or alternatively, the RSU may operate on the cellular V2X band to provide the aforementioned low latency communications, as well as other cellular communications services.
  • DSRC Direct Short Range Communications
  • the RSU may operate as a Wi-Fi hotspot (2.4 GHz band) and/or provide connectivity to one or more cellular networks to provide uplink and downlink communications.
  • the computing device(s) and some or all of the radiofrequency circuitry of the RSU may be packaged in a weatherproof enclosure suitable for outdoor installation, and may include a network interface controller to provide a wired connection (e.g., Ethernet) to a traffic signal controller and/or a backhaul network.
  • any of the RAN nodes 1011 can terminate the air interface protocol and can be the first point of contact for the UEs 1001 .
  • any of the RAN nodes 1011 can fulfill various logical functions for the RAN 1010 including, but not limited to, radio network controller (RNC) functions such as radio bearer management, uplink and downlink dynamic radio resource management and data packet scheduling, and mobility management.
  • RNC radio network controller
  • the UEs 1001 can be configured to communicate using OFDM communication signals with each other or with any of the RAN nodes 1011 over a multicarrier communication channel in accordance with various communication techniques, such as, but not limited to, an OFDMA communication technique (e.g., for downlink communications) or a SC-FDMA communication technique (e.g., for uplink and ProSe or sidelink communications), although the scope of the embodiments is not limited in this respect.
  • the OFDM signals can comprise a plurality of orthogonal subcarriers.
  • a downlink resource grid can be used for downlink transmissions from any of the RAN nodes 1011 to the UEs 1001 , while uplink transmissions can utilize similar techniques.
  • the grid can be a time-frequency grid, called a resource grid or time-frequency resource grid, which is the physical resource in the downlink in each slot.
  • a time-frequency plane representation is a common practice for OFDM systems, which makes it intuitive for radio resource allocation.
  • Each column and each row of the resource grid corresponds to one OFDM symbol and one OFDM subcarrier, respectively.
  • the duration of the resource grid in the time domain corresponds to one slot in a radio frame.
  • the smallest time-frequency unit in a resource grid is denoted as a resource element.
  • Each resource grid comprises a number of resource blocks, which describe the mapping of certain physical channels to resource elements.
  • Each resource block comprises a collection of resource elements; in the frequency domain, this may represent the smallest quantity of resources that currently can be allocated.
  • the UEs 1001 and the RAN nodes 1011 communicate data (for example, transmit and receive) data over a licensed medium (also referred to as the “licensed spectrum” and/or the “licensed band”) and an unlicensed shared medium (also referred to as the “unlicensed spectrum” and/or the “unlicensed band”).
  • the licensed spectrum may include channels that operate in the frequency range of approximately 400 MHz to approximately 3.8 GHz, whereas the unlicensed spectrum may include the 5 GHz band.
  • the UEs 1001 and the RAN nodes 1011 may operate using LAA, eLAA, and/or feLAA mechanisms.
  • the UEs 1001 and the RAN nodes 1011 may perform one or more known medium-sensing operations and/or carrier-sensing operations in order to determine whether one or more channels in the unlicensed spectrum is unavailable or otherwise occupied prior to transmitting in the unlicensed spectrum.
  • the medium/carrier sensing operations may be performed according to a listen-before-talk (LBT) protocol.
  • LBT listen-before-talk
  • LBT is a mechanism whereby equipment (for example, UEs 1001 RAN nodes 1011 , etc.) senses a medium (for example, a channel or carrier frequency) and transmits when the medium is sensed to be idle (or when a specific channel in the medium is sensed to be unoccupied).
  • the medium sensing operation may include CCA, which utilizes at least ED to determine the presence or absence of other signals on a channel in order to determine if a channel is occupied or clear.
  • CCA which utilizes at least ED to determine the presence or absence of other signals on a channel in order to determine if a channel is occupied or clear.
  • This LBT mechanism allows cellular/LAA networks to coexist with incumbent systems in the unlicensed spectrum and with other LAA networks.
  • ED may include sensing RF energy across an intended transmission band for a period of time and comparing the sensed RF energy to a predefined or configured threshold.
  • WLAN employs a contention-based channel access mechanism, called CSMA/CA.
  • CSMA/CA contention-based channel access mechanism
  • a WLAN node e.g., a mobile station (MS) such as UE 1001 , AP 1006 , or the like
  • the WLAN node may first perform CCA before transmission.
  • a backoff mechanism is used to avoid collisions in situations where more than one WLAN node senses the channel as idle and transmits at the same time.
  • the backoff mechanism may be a counter that is drawn randomly within the CWS, which is increased exponentially upon the occurrence of collision and reset to a minimum value when the transmission succeeds.
  • the LBT mechanism designed for LAA is somewhat similar to the CSMA/CA of WLAN.
  • the LBT procedure for DL or UL transmission bursts including PDSCH or PUSCH transmissions, respectively may have an LAA contention window that is variable in length between X and Y ECCA slots, where X and Y are minimum and maximum values for the CWSs for LAA.
  • the minimum CWS for an LAA transmission may be 9 microseconds ( ⁇ s); however, the size of the CWS and a MCOT (for example, a transmission burst) may be based on governmental regulatory requirements.
  • each aggregated carrier is referred to as a CC.
  • a CC may have a bandwidth of 1.4, 3, 5, 10, 15 or 20 MHz and a maximum of five CCs can be aggregated, and therefore, a maximum aggregated bandwidth is 100 MHz.
  • the number of aggregated carriers can be different for DL and UL, where the number of UL CCs is equal to or lower than the number of DL component carriers.
  • individual CCs can have a different bandwidth than other CCs.
  • the number of CCs as well as the bandwidths of each CC is usually the same for DL and UL.
  • CA also comprises individual serving cells to provide individual CCs.
  • the coverage of the serving cells may differ, for example, because CCs on different frequency bands will experience different pathloss.
  • a primary service cell or PCell may provide a PCC for both UL and DL, and may handle RRC and NAS related activities.
  • the other serving cells are referred to as SCells, and each SCell may provide an individual SCC for both UL and DL.
  • the SCCs may be added and removed as required, while changing the PCC may require the UE 1001 to undergo a handover.
  • LAA SCells may operate in the unlicensed spectrum (referred to as “LAA SCells”), and the LAA SCells are assisted by a PCell operating in the licensed spectrum.
  • LAA SCells When a UE is configured with more than one LAA SCell, the UE may receive UL grants on the configured LAA SCells indicating different PUSCH starting positions within a same subframe.
  • the PDSCH carries user data and higher-layer signaling to the UEs 1001 .
  • the PDCCH carries information about the transport format and resource allocations related to the PDSCH channel, among other things. It may also inform the UEs 1001 about the transport format, resource allocation, and HARQ information related to the uplink shared channel.
  • downlink scheduling (assigning control and shared channel resource blocks to the UE 1001 b within a cell) may be performed at any of the RAN nodes 1011 based on channel quality information fed back from any of the UEs 1001 .
  • the downlink resource assignment information may be sent on the PDCCH used for (e.g., assigned to) each of the UEs 1001 .
  • the PDCCH uses CCEs to convey the control information. Before being mapped to resource elements, the PDCCH complex-valued symbols may first be organized into quadruplets, which may then be permuted using a sub-block interleaver for rate matching. Each PDCCH may be transmitted using one or more of these CCEs, where each CCE may correspond to nine sets of four physical resource elements known as REGs. Four Quadrature Phase Shift Keying (QPSK) symbols may be mapped to each REG.
  • QPSK Quadrature Phase Shift Keying
  • Some embodiments may use concepts for resource allocation for control channel information that are an extension of the above-described concepts. For example, some embodiments may utilize an EPDCCH that uses PDSCH resources for control information transmission.
  • the EPDCCH may be transmitted using one or more ECCEs. Similar to above, each ECCE may correspond to nine sets of four physical resource elements known as an EREGs. An ECCE may have other numbers of EREGs in some situations.
  • the RAN nodes 1011 may be configured to communicate with one another via interface 1012 .
  • the interface 1012 may be an X2 interface 1012 .
  • the X2 interface may be defined between two or more RAN nodes 1011 (e.g., two or more eNBs and the like) that connect to EPC 1020 , and/or between two eNBs connecting to EPC 1020 .
  • the X2 interface may include an X2 user plane interface (X2-U) and an X2 control plane interface (X2-C).
  • the X2-U may provide flow control mechanisms for user data packets transferred over the X2 interface, and may be used to communicate information about the delivery of user data between eNBs.
  • the X2-U may provide specific sequence number information for user data transferred from a MeNB to an SeNB; information about successful in sequence delivery of PDCP PDUs to a UE 1001 from an SeNB for user data; information of PDCP PDUs that were not delivered to a UE 1001 ; information about a current minimum desired buffer size at the SeNB for transmitting to the UE user data; and the like.
  • the X2-C may provide intra-LTE access mobility functionality, including context transfers from source to target eNBs, user plane transport control, etc.; load management functionality; as well as inter-cell interference coordination functionality.
  • the interface 1012 may be an Xn interface 1012 .
  • the Xn interface is defined between two or more RAN nodes 1011 (e.g., two or more gNBs and the like) that connect to 5GC 1020 , between a RAN node 1011 (e.g., a gNB) connecting to 5GC 1020 and an eNB, and/or between two eNBs connecting to 5GC 1020 .
  • the Xn interface may include an Xn user plane (Xn-U) interface and an Xn control plane (Xn-C) interface.
  • the Xn-U may provide non-guaranteed delivery of user plane PDUs and support/provide data forwarding and flow control functionality.
  • the Xn-C may provide management and error handling functionality, functionality to manage the Xn-C interface; mobility support for UE 1001 in a connected mode (e.g., CM-CONNECTED) including functionality to manage the UE mobility for connected mode between one or more RAN nodes 1011 .
  • the mobility support may include context transfer from an old (source) serving RAN node 1011 to new (target) serving RAN node 1011 ; and control of user plane tunnels between old (source) serving RAN node 1011 to new (target) serving RAN node 1011 .
  • a protocol stack of the Xn-U may include a transport network layer built on Internet Protocol (IP) transport layer, and a GTP-U layer on top of a UDP and/or IP layer(s) to carry user plane PDUs.
  • the Xn-C protocol stack may include an application layer signaling protocol (referred to as Xn Application Protocol (Xn-AP)) and a transport network layer that is built on SCTP.
  • the SCTP may be on top of an IP layer, and may provide the guaranteed delivery of application layer messages.
  • point-to-point transmission is used to deliver the signaling PDUs.
  • the Xn-U protocol stack and/or the Xn-C protocol stack may be same or similar to the user plane and/or control plane protocol stack(s) shown and described herein.
  • the RAN 1010 is shown to be communicatively coupled to a core network—in this embodiment, core network (CN) 1020 .
  • the CN 1020 may comprise a plurality of network elements 1022 , which are configured to offer various data and telecommunications services to customers/subscribers (e.g., users of UEs 1001 ) who are connected to the CN 1020 via the RAN 1010 .
  • the components of the CN 1020 may be implemented in one physical node or separate physical nodes including components to read and execute instructions from a machine-readable or computer-readable medium (e.g., a non-transitory machine-readable storage medium).
  • NFV may be utilized to virtualize any or all of the above-described network node functions via executable instructions stored in one or more computer-readable storage mediums (described in further detail below).
  • a logical instantiation of the CN 1020 may be referred to as a network slice, and a logical instantiation of a portion of the CN 1020 may be referred to as a network sub-slice.
  • NFV architectures and infrastructures may be used to virtualize one or more network functions, alternatively performed by proprietary hardware, onto physical resources comprising a combination of industry-standard server hardware, storage hardware, or switches. In other words, NFV systems can be used to execute virtual or reconfigurable implementations of one or more EPC components/functions.
  • the application server 1030 may be an element offering applications that use IP bearer resources with the core network (e.g., UMTS PS domain, LTE PS data services, etc.).
  • the application server 1030 can also be configured to support one or more communication services (e.g., VoIP sessions, PTT sessions, group communication sessions, social networking services, etc.) for the UEs 1001 via the EPC 1020 .
  • the CN 1020 may be a 5GC (referred to as “5GC 1020 ” or the like), and the RAN 1010 may be connected with the CN 1020 via an NG interface 1013 .
  • the NG interface 1013 may be split into two parts, an NG user plane (NG-U) interface 1014 , which carries traffic data between the RAN nodes 1011 and a UPF, and the Si control plane (NG-C) interface 1015 , which is a signaling interface between the RAN nodes 1011 and AMFs.
  • NG-U NG user plane
  • NG-C Si control plane
  • the CN 1020 may be a 5G CN (referred to as “5GC 1020 ” or the like), while in other embodiments, the CN 1020 may be an EPC).
  • the RAN 1010 may be connected with the CN 1020 via an Si interface 1013 .
  • the S1 interface 1013 may be split into two parts, an S1 user plane (S1-U) interface 1014 , which carries traffic data between the RAN nodes 1011 and the S-GW, and the S1-MME interface 1015 , which is a signaling interface between the RAN nodes 1011 and MMES.
  • S1-U S1 user plane
  • FIG. 11A illustrates an example of infrastructure equipment 11100 in accordance with various embodiments.
  • the infrastructure equipment 11100 (or “system 11100 ”) may be implemented as a base station, radio head, RAN node such as the RAN nodes 1011 and/or AP 1006 shown and described previously, application server(s) 1030 , and/or any other element/device discussed herein.
  • the system 11100 could be implemented in or by a UE.
  • the system 11100 includes application circuitry 11105 , baseband circuitry 11110 , one or more radio front end modules (RFEMs) 11115 , memory circuitry 11120 , power management integrated circuitry (PMIC) 11125 , power tee circuitry 11130 , network controller circuitry 11135 , network interface connector 11140 , satellite positioning circuitry 11145 , and user interface 11150 .
  • the device 11100 may include additional elements such as, for example, memory/storage, display, camera, sensor, or input/output (I/O) interface.
  • the components described below may be included in more than one device.
  • said circuitries may be separately included in more than one device for CRAN, vBBU, or other like implementations.
  • Application circuitry 11105 includes circuitry such as, but not limited to one or more processors (or processor cores), cache memory, and one or more of low drop-out voltage regulators (LDOs), interrupt controllers, serial interfaces such as SPI, I2C or universal programmable serial interface module, real time clock (RTC), timer-counters including interval and watchdog timers, general purpose input/output (I/O or IO), memory card controllers such as Secure Digital (SD) MultiMediaCard (MMC) or similar, Universal Serial Bus (USB) interfaces, Mobile Industry Processor Interface (MIPI) interfaces and Joint Test Access Group (JTAG) test access ports.
  • LDOs low drop-out voltage regulators
  • interrupt controllers serial interfaces such as SPI, I2C or universal programmable serial interface module, real time clock (RTC), timer-counters including interval and watchdog timers, general purpose input/output (I/O or IO), memory card controllers such as Secure Digital (SD) MultiMediaCard (MMC) or
  • the processors (or cores) of the application circuitry 11105 may be coupled with or may include memory/storage elements and may be configured to execute instructions stored in the memory/storage to enable various applications or operating systems to run on the system 11100 .
  • the memory/storage elements may be on-chip memory circuitry, which may include any suitable volatile and/or non-volatile memory, such as DRAM, SRAM, EPROM, EEPROM, Flash memory, solid-state memory, and/or any other type of memory device technology, such as those discussed herein.
  • the processor(s) of application circuitry 11105 may include, for example, one or more processor cores (CPUs), one or more application processors, one or more graphics processing units (GPUs), one or more reduced instruction set computing (RISC) processors, one or more Acorn RISC Machine (ARM) processors, one or more complex instruction set computing (CISC) processors, one or more digital signal processors (DSP), one or more FPGAs, one or more PLDs, one or more ASICs, one or more microprocessors or controllers, or any suitable combination thereof.
  • the application circuitry 11105 may comprise, or may be, a special-purpose processor/controller to operate according to the various embodiments herein.
  • the processor(s) of application circuitry 11105 may include one or more Intel Pentium®, Core®, or Xeon® processor(s); Advanced Micro Devices (AMD) Ryzen® processor(s), Accelerated Processing Units (APUs), or Epyc® processors; ARM-based processor(s) licensed from ARM Holdings, Ltd. such as the ARM Cortex-A family of processors and the ThunderX2® provided by CaviumTM, Inc.; a MIPS-based design from MIPS Technologies, Inc. such as MIPS Warrior P-class processors; and/or the like.
  • the system 11100 may not utilize application circuitry 11105 , and instead may include a special-purpose processor/controller to process IP data received from an EPC or 5GC, for example.
  • the application circuitry 11105 may include one or more hardware accelerators, which may be microprocessors, programmable processing devices, or the like.
  • the one or more hardware accelerators may include, for example, computer vision (CV) and/or deep learning (DL) accelerators.
  • the programmable processing devices may be one or more a field-programmable devices (FPDs) such as field-programmable gate arrays (FPGAs) and the like; programmable logic devices (PLDs) such as complex PLDs (CPLDs), high-capacity PLDs (HCPLDs), and the like; ASICs such as structured ASICs and the like; programmable SoCs (PSoCs); and the like.
  • FPDs field-programmable devices
  • PLDs programmable logic devices
  • CPLDs complex PLDs
  • HPLDs high-capacity PLDs
  • ASICs such as structured ASICs and the like
  • PSoCs programmable SoCs
  • the circuitry of application circuitry 11105 may comprise logic blocks or logic fabric, and other interconnected resources that may be programmed to perform various functions, such as the procedures, methods, functions, etc. of the various embodiments discussed herein.
  • the circuitry of application circuitry 11105 may include memory cells (e.g., erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), flash memory, static memory (e.g., static random access memory (SRAM), anti-fuses, etc.)) used to store logic blocks, logic fabric, data, etc. in look-up-tables (LUTs) and the like.
  • memory cells e.g., erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), flash memory, static memory (e.g., static random access memory (SRAM), anti-fuses, etc.)
  • SRAM static random access memory
  • LUTs look-up-tables
  • the baseband circuitry 11110 may be implemented, for example, as a solder-down substrate including one or more integrated circuits, a single packaged integrated circuit soldered to a main circuit board or a multi-chip module containing two or more integrated circuits.
  • the various hardware electronic elements of baseband circuitry 11110 are discussed infra with regard to FIG. 12 .
  • User interface circuitry 11150 may include one or more user interfaces designed to enable user interaction with the system 11100 or peripheral component interfaces designed to enable peripheral component interaction with the system 11100 .
  • User interfaces may include, but are not limited to, one or more physical or virtual buttons (e.g., a reset button), one or more indicators (e.g., light emitting diodes (LEDs)), a physical keyboard or keypad, a mouse, a touchpad, a touchscreen, speakers or other audio emitting devices, microphones, a printer, a scanner, a headset, a display screen or display device, etc.
  • Peripheral component interfaces may include, but are not limited to, a nonvolatile memory port, a universal serial bus (USB) port, an audio jack, a power supply interface, etc.
  • USB universal serial bus
  • the radio front end modules (RFEMs) 11115 may comprise a millimeter wave (mmWave) RFEM and one or more sub-mmWave radio frequency integrated circuits (RFICs).
  • the one or more sub-mmWave RFICs may be physically separated from the mmWave RFEM.
  • the RFICs may include connections to one or more antennas or antenna arrays (see e.g., antenna array 1211 of FIG. 12 infra), and the RFEM may be connected to multiple antennas.
  • both mmWave and sub-mmWave radio functions may be implemented in the same physical RFEM 11115 , which incorporates both mmWave antennas and sub-mmWave.
  • the memory circuitry 11120 may include one or more of volatile memory including dynamic random access memory (DRAM) and/or synchronous dynamic random access memory (SDRAM), and nonvolatile memory (NVM) including high-speed electrically erasable memory (commonly referred to as Flash memory), phase change random access memory (PRAM), magnetoresistive random access memory (MRAM), etc., and may incorporate the three-dimensional (3D) cross-point (XPOINT) memories from Intel® and Micron®.
  • Memory circuitry 11120 may be implemented as one or more of solder down packaged integrated circuits, socketed memory modules and plug-in memory cards.
  • the PMIC 11125 may include voltage regulators, surge protectors, power alarm detection circuitry, and one or more backup power sources such as a battery or capacitor.
  • the power alarm detection circuitry may detect one or more of brown out (under-voltage) and surge (over-voltage) conditions.
  • the power tee circuitry 11130 may provide for electrical power drawn from a network cable to provide both power supply and data connectivity to the infrastructure equipment 11100 using a single cable.
  • the network controller circuitry 11135 may provide connectivity to a network using a standard network interface protocol such as Ethernet, Ethernet over GRE Tunnels, Ethernet over Multiprotocol Label Switching (MPLS), or some other suitable protocol.
  • Network connectivity may be provided to/from the infrastructure equipment 11100 via network interface connector 11140 using a physical connection, which may be electrical (commonly referred to as a “copper interconnect”), optical, or wireless.
  • the network controller circuitry 11135 may include one or more dedicated processors and/or FPGAs to communicate using one or more of the aforementioned protocols. In some implementations, the network controller circuitry 11135 may include multiple controllers to provide connectivity to other networks using the same or different protocols.
  • the positioning circuitry 11145 includes circuitry to receive and decode signals transmitted/broadcasted by a positioning network of a global navigation satellite system (GNSS).
  • GNSS global navigation satellite system
  • Examples of navigation satellite constellations (or GNSS) include United States' Global Positioning System (GPS), Russia's Global Navigation System (GLONASS), the European Union's Galileo system, China's BeiDou Navigation Satellite System, a regional navigation system or GNSS augmentation system (e.g., Navigation with Indian Constellation (NAVIC), Japan's Quasi-Zenith Satellite System (QZSS), France's Doppler Orbitography and Radio-positioning Integrated by Satellite (DORIS), etc.), or the like.
  • GPS Global Positioning System
  • GLONASS Global Navigation System
  • Galileo system China's BeiDou Navigation Satellite System
  • a regional navigation system or GNSS augmentation system e.g., Navigation with Indian Constellation (NAVIC), Japan's Quasi-Zeni
  • the positioning circuitry 11145 comprises various hardware elements (e.g., including hardware devices such as switches, filters, amplifiers, antenna elements, and the like to facilitate OTA communications) to communicate with components of a positioning network, such as navigation satellite constellation nodes.
  • the positioning circuitry 11145 may include a Micro-Technology for Positioning, Navigation, and Timing (Micro-PNT) IC that uses a master timing clock to perform position tracking/estimation without GNSS assistance.
  • the positioning circuitry 11145 may also be part of, or interact with, the baseband circuitry 11110 and/or RFEMs 11115 to communicate with the nodes and components of the positioning network.
  • the positioning circuitry 11145 may also provide position data and/or time data to the application circuitry 11105 , which may use the data to synchronize operations with various infrastructure (e.g., RAN nodes 1011 , etc.), or the like.
  • interface circuitry may include any number of bus and/or interconnect (IX) technologies such as industry standard architecture (ISA), extended ISA (EISA), peripheral component interconnect (PCI), peripheral component interconnect extended (PCIx), PCI express (PCIe), or any number of other technologies.
  • IX interconnect
  • ISA industry standard architecture
  • EISA extended ISA
  • PCI peripheral component interconnect
  • PCIx peripheral component interconnect extended
  • PCIe PCI express
  • the bus/IX may be a proprietary bus, for example, used in a SoC based system.
  • Other bus/IX systems may be included, such as an I 2 C interface, an SPI interface, point to point interfaces, and a power bus, among others.
  • FIG. 11B illustrates an example of a platform 11200 (or “device 11200 ”) in accordance with various embodiments.
  • the computer platform 11200 may be suitable for use as UEs 1001 , application servers 1030 , and/or any other element/device discussed herein.
  • the platform 11200 may include any combinations of the components shown in the example.
  • the components of platform 11200 may be implemented as integrated circuits (ICs), portions thereof, discrete electronic devices, or other modules, logic, hardware, software, firmware, or a combination thereof adapted in the computer platform 11200 , or as components otherwise incorporated within a chassis of a larger system.
  • the block diagram of FIG. 11B is intended to show a high level view of components of the computer platform 11200 . However, some of the components shown may be omitted, additional components may be present, and different arrangement of the components shown may occur in other implementations.
  • Application circuitry 11205 includes circuitry such as, but not limited to one or more processors (or processor cores), cache memory, and one or more of LDOs, interrupt controllers, serial interfaces such as SPI, I2C or universal programmable serial interface module, RTC, timer-counters including interval and watchdog timers, general purpose I/O, memory card controllers such as SD MMC or similar, USB interfaces, MIPI interfaces, and JTAG test access ports.
  • the processors (or cores) of the application circuitry 11205 may be coupled with or may include memory/storage elements and may be configured to execute instructions stored in the memory/storage to enable various applications or operating systems to run on the system 11200 .
  • the memory/storage elements may be on-chip memory circuitry, which may include any suitable volatile and/or non-volatile memory, such as DRAM, SRAM, EPROM, EEPROM, Flash memory, solid-state memory, and/or any other type of memory device technology, such as those discussed herein.
  • any suitable volatile and/or non-volatile memory such as DRAM, SRAM, EPROM, EEPROM, Flash memory, solid-state memory, and/or any other type of memory device technology, such as those discussed herein.
  • the processor(s) of application circuitry 11105 may include, for example, one or more processor cores, one or more application processors, one or more GPUs, one or more RISC processors, one or more ARM processors, one or more CISC processors, one or more DSP, one or more FPGAs, one or more PLDs, one or more ASICs, one or more microprocessors or controllers, a multithreaded processor, an ultra-low voltage processor, an embedded processor, some other known processing element, or any suitable combination thereof.
  • the application circuitry 11105 may comprise, or may be, a special-purpose processor/controller to operate according to the various embodiments herein.
  • the processor(s) of application circuitry 11205 may include an Intel® Architecture CoreTM based processor, such as a QuarkTM, an AtomTM, an i3, an i5, an i7, or an MCU-class processor, or another such processor available from Intel® Corporation, Santa Clara, Calif.
  • the processors of the application circuitry 11205 may also be one or more of Advanced Micro Devices (AMD) Ryzen® processor(s) or Accelerated Processing Units (APUs); A5-A9 processor(s) from Apple® Inc., QualcommTM processor(s) from Qualcomm® Technologies, Inc., Texas Instruments, Inc.® Open Multimedia Applications Platform (OMAP)TM processor(s); a MIPS-based design from MIPS Technologies, Inc.
  • AMD Advanced Micro Devices
  • APUs Accelerated Processing Units
  • A5-A9 processor(s) from Apple® Inc.
  • SnapdragonTM processor(s) from Qualcomm® Technologies, Inc. Texas Instruments, Inc.
  • OMAP Open Multimedia Applications Platform
  • the application circuitry 11205 may be a part of a system on a chip (SoC) in which the application circuitry 11205 and other components are formed into a single integrated circuit, or a single package, such as the EdisonTM or GalileoTM SoC boards from Intel® Corporation.
  • SoC system on a chip
  • application circuitry 11205 may include circuitry such as, but not limited to, one or more a field-programmable devices (FPDs) such as FPGAs and the like; programmable logic devices (PLDs) such as complex PLDs (CPLDs), high-capacity PLDs (HCPLDs), and the like; ASICs such as structured ASICs and the like; programmable SoCs (PSoCs); and the like.
  • FPDs field-programmable devices
  • PLDs programmable logic devices
  • CPLDs complex PLDs
  • HPLDs high-capacity PLDs
  • PSoCs programmable SoCs
  • the circuitry of application circuitry 11205 may comprise logic blocks or logic fabric, and other interconnected resources that may be programmed to perform various functions, such as the procedures, methods, functions, etc. of the various embodiments discussed herein.
  • the circuitry of application circuitry 11205 may include memory cells (e.g., erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), flash memory, static memory (e.g., static random access memory (SRAM), anti-fuses, etc.)) used to store logic blocks, logic fabric, data, etc. in look-up tables (LUTs) and the like.
  • memory cells e.g., erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), flash memory, static memory (e.g., static random access memory (SRAM), anti-fuses, etc.)
  • SRAM static random access memory
  • LUTs look-up tables
  • the baseband circuitry 11210 may be implemented, for example, as a solder-down substrate including one or more integrated circuits, a single packaged integrated circuit soldered to a main circuit board or a multi-chip module containing two or more integrated circuits.
  • the various hardware electronic elements of baseband circuitry 11210 are discussed infra with regard to FIG. 12 .
  • the RFEMs 11215 may comprise a millimeter wave (mmWave) RFEM and one or more sub-mmWave radio frequency integrated circuits (RFICs).
  • the one or more sub-mmWave RFICs may be physically separated from the mmWave RFEM.
  • the RFICs may include connections to one or more antennas or antenna arrays (see e.g., antenna array 1211 of FIG. 12 infra), and the RFEM may be connected to multiple antennas.
  • both mmWave and sub-mmWave radio functions may be implemented in the same physical RFEM 11215 , which incorporates both mmWave antennas and sub-mmWave.
  • the memory circuitry 11220 may include any number and type of memory devices used to provide for a given amount of system memory.
  • the memory circuitry 11220 may include one or more of volatile memory including random access memory (RAM), dynamic RAM (DRAM) and/or synchronous dynamic RAM (SDRAM), and nonvolatile memory (NVM) including high-speed electrically erasable memory (commonly referred to as Flash memory), phase change random access memory (PRAM), magnetoresistive random access memory (MRAM), etc.
  • RAM random access memory
  • DRAM dynamic RAM
  • SDRAM synchronous dynamic RAM
  • NVM nonvolatile memory
  • Flash memory high-speed electrically erasable memory
  • PRAM phase change random access memory
  • MRAM magnetoresistive random access memory
  • the memory circuitry 11220 may be developed in accordance with a Joint Electron Devices Engineering Council (JEDEC) low power double data rate (LPDDR)-based design, such as LPDDR2, LPDDR3, LPDDR4, or the like.
  • JEDEC Joint
  • Memory circuitry 11220 may be implemented as one or more of solder down packaged integrated circuits, single die package (SDP), dual die package (DDP) or quad die package (Q17P), socketed memory modules, dual inline memory modules (DIMMs) including microDIMMs or MiniDIMMs, and/or soldered onto a motherboard via a ball grid array (BGA).
  • the memory circuitry 11220 may be on-die memory or registers associated with the application circuitry 11205 .
  • memory circuitry 11220 may include one or more mass storage devices, which may include, inter alia, a solid state disk drive (SSDD), hard disk drive (HDD), a micro HDD, resistance change memories, phase change memories, holographic memories, or chemical memories, among others.
  • SSDD solid state disk drive
  • HDD hard disk drive
  • micro HDD micro HDD
  • resistance change memories phase change memories
  • phase change memories phase change memories
  • holographic memories holographic memories
  • chemical memories among others.
  • the computer platform 11200 may incorporate the three-dimensional (3D) cross-point (XPOINT) memories from Intel® and Micron®.
  • Removable memory circuitry 11223 may include devices, circuitry, enclosures/housings, ports or receptacles, etc. used to couple portable data storage devices with the platform 11200 . These portable data storage devices may be used for mass storage purposes, and may include, for example, flash memory cards (e.g., Secure Digital (SD) cards, microSD cards, xD picture cards, and the like), and USB flash drives, optical discs, external HDDs, and the like.
  • flash memory cards e.g., Secure Digital (SD) cards, microSD cards, xD picture cards, and the like
  • USB flash drives e.g., USB flash drives, optical discs, external HDDs, and the like.
  • the platform 11200 may also include interface circuitry (not shown) that is used to connect external devices with the platform 11200 .
  • the external devices connected to the platform 11200 via the interface circuitry include sensor circuitry 11221 and electro-mechanical components (EMCs) 11222 , as well as removable memory devices coupled to removable memory circuitry 11223 .
  • EMCs electro-mechanical components
  • the sensor circuitry 11221 include devices, modules, or subsystems whose purpose is to detect events or changes in its environment and send the information (sensor data) about the detected events to some other a device, module, subsystem, etc.
  • sensors include, inter alia, inertia measurement units (IMUs) comprising accelerometers, gyroscopes, and/or magnetometers; microelectromechanical systems (MEMS) or nanoelectromechanical systems (NEMS) comprising 3-axis accelerometers, 3-axis gyroscopes, and/or magnetometers; level sensors; flow sensors; temperature sensors (e.g., thermistors); pressure sensors; barometric pressure sensors; gravimeters; altimeters; image capture devices (e.g., cameras or lensless apertures); light detection and ranging (LiDAR) sensors; proximity sensors (e.g., infrared radiation detector and the like), depth sensors, ambient light sensors, ultrasonic transceivers; microphones or other like audio capture devices;
  • EMCs 11222 include devices, modules, or subsystems whose purpose is to enable platform 11200 to change its state, position, and/or orientation, or move or control a mechanism or (sub)system. Additionally, EMCs 11222 may be configured to generate and send messages/signalling to other components of the platform 11200 to indicate a current state of the EMCs 11222 .
  • EMCs 11222 include one or more power switches, relays including electromechanical relays (EMRs) and/or solid state relays (SSRs), actuators (e.g., valve actuators, etc.), an audible sound generator, a visual warning device, motors (e.g., DC motors, stepper motors, etc.), wheels, thrusters, propellers, claws, clamps, hooks, and/or other like electro-mechanical components.
  • platform 11200 is configured to operate one or more EMCs 11222 based on one or more captured events and/or instructions or control signals received from a service provider and/or various clients.
  • the interface circuitry may connect the platform 11200 with positioning circuitry 11245 .
  • the positioning circuitry 11245 includes circuitry to receive and decode signals transmitted/broadcasted by a positioning network of a GNSS.
  • GNSS navigation satellite constellations
  • Examples of navigation satellite constellations (or GNSS) include United States' GPS, Russia's GLONASS, the European Union's Galileo system, China's BeiDou Navigation Satellite System, a regional navigation system or GNSS augmentation system (e.g., NAVIC), Japan's QZSS, France's DORIS, etc.), or the like.
  • the positioning circuitry 11245 comprises various hardware elements (e.g., including hardware devices such as switches, filters, amplifiers, antenna elements, and the like to facilitate OTA communications) to communicate with components of a positioning network, such as navigation satellite constellation nodes.
  • the positioning circuitry 11245 may include a Micro-PNT IC that uses a master timing clock to perform position tracking/estimation without GNSS assistance.
  • the positioning circuitry 11245 may also be part of, or interact with, the baseband circuitry 11110 and/or RFEMs 11215 to communicate with the nodes and components of the positioning network.
  • the positioning circuitry 11245 may also provide position data and/or time data to the application circuitry 11205 , which may use the data to synchronize operations with various infrastructure (e.g., radio base stations), for turn-by-turn navigation applications, or the like
  • the interface circuitry may connect the platform 11200 with Near-Field Communication (NFC) circuitry 11240 .
  • NFC circuitry 11240 is configured to provide contactless, short-range communications based on radio frequency identification (RFID) standards, wherein magnetic field induction is used to enable communication between NFC circuitry 11240 and NFC-enabled devices external to the platform 11200 (e.g., an “NFC touchpoint”).
  • RFID radio frequency identification
  • NFC circuitry 11240 comprises an NFC controller coupled with an antenna element and a processor coupled with the NFC controller.
  • the NFC controller may be a chip/IC providing NFC functionalities to the NFC circuitry 11240 by executing NFC controller firmware and an NFC stack.
  • the NFC stack may be executed by the processor to control the NFC controller, and the NFC controller firmware may be executed by the NFC controller to control the antenna element to emit short-range RF signals.
  • the RF signals may power a passive NFC tag (e.g., a microchip embedded in a sticker or wristband) to transmit stored data to the NFC circuitry 11240 , or initiate data transfer between the NFC circuitry 11240 and another active NFC device (e.g., a smartphone or an NFC-enabled POS terminal) that is proximate to the platform 11200 .
  • a passive NFC tag e.g., a microchip embedded in a sticker or wristband
  • another active NFC device e.g., a smartphone or an NFC-enabled POS terminal
  • the driver circuitry 11246 may include software and hardware elements that operate to control particular devices that are embedded in the platform 11200 , attached to the platform 11200 , or otherwise communicatively coupled with the platform 11200 .
  • the driver circuitry 11246 may include individual drivers allowing other components of the platform 11200 to interact with or control various input/output (I/O) devices that may be present within, or connected to, the platform 11200 .
  • I/O input/output
  • driver circuitry 11246 may include a display driver to control and allow access to a display device, a touchscreen driver to control and allow access to a touchscreen interface of the platform 11200 , sensor drivers to obtain sensor readings of sensor circuitry 11221 and control and allow access to sensor circuitry 11221 , EMC drivers to obtain actuator positions of the EMCs 11222 and/or control and allow access to the EMCs 11222 , a camera driver to control and allow access to an embedded image capture device, audio drivers to control and allow access to one or more audio devices.
  • a display driver to control and allow access to a display device
  • a touchscreen driver to control and allow access to a touchscreen interface of the platform 11200
  • sensor drivers to obtain sensor readings of sensor circuitry 11221 and control and allow access to sensor circuitry 11221
  • EMC drivers to obtain actuator positions of the EMCs 11222 and/or control and allow access to the EMCs 11222
  • a camera driver to control and allow access to an embedded image capture device
  • audio drivers to control and allow access to
  • the power management integrated circuitry (PMIC) 11225 may manage power provided to various components of the platform 11200 .
  • the PMIC 11225 may control power-source selection, voltage scaling, battery charging, or DC-to-DC conversion.
  • the PMIC 11225 may often be included when the platform 11200 is capable of being powered by a battery 11230 , for example, when the device is included in a UE 1001 .
  • the PMIC 11225 may control, or otherwise be part of, various power saving mechanisms of the platform 11200 .
  • the platform 11200 may enter a state known as Discontinuous Reception Mode (DRX) after a period of inactivity. During this state, the platform 11200 may power down for brief intervals of time and thus save power. If there is no data traffic activity for an extended period of time, then the platform 11200 may transition off to an RRC Idle state, where it disconnects from the network and does not perform operations such as channel quality feedback, handover, etc.
  • DRX Discontinuous Reception Mode
  • the platform 11200 goes into a very low power state and it performs paging where again it periodically wakes up to listen to the network and then powers down again.
  • the platform 11200 may not receive data in this state; in order to receive data, it must transition back to RRC_Connected state.
  • An additional power saving mode may allow a device to be unavailable to the network for periods longer than a paging interval (ranging from seconds to a few hours). During this time, the device is totally unreachable to the network and may power down completely. Any data sent during this time incurs a large delay and it is assumed the delay is acceptable.
  • a battery 11230 may power the platform 11200 , although in some examples the platform 11200 may be mounted deployed in a fixed location, and may have a power supply coupled to an electrical grid.
  • the battery 11230 may be a lithium ion battery, a metal-air battery, such as a zinc-air battery, an aluminum-air battery, a lithium-air battery, and the like. In some implementations, such as in V2X applications, the battery 11230 may be a typical lead-acid automotive battery.
  • the battery 11230 may be a “smart battery,” which includes or is coupled with a Battery Management System (BMS) or battery monitoring integrated circuitry.
  • BMS Battery Management System
  • the BMS may be included in the platform 11200 to track the state of charge (SoCh) of the battery 11230 .
  • the BMS may be used to monitor other parameters of the battery 11230 to provide failure predictions, such as the state of health (SoH) and the state of function (SoF) of the battery 11230 .
  • the BMS may communicate the information of the battery 11230 to the application circuitry 11205 or other components of the platform 11200 .
  • the BMS may also include an analog-to-digital (ADC) convertor that allows the application circuitry 11205 to directly monitor the voltage of the battery 11230 or the current flow from the battery 11230 .
  • the battery parameters may be used to determine actions that the platform 11200 may perform, such as transmission frequency, network operation, sensing frequency, and the like.
  • a power block, or other power supply coupled to an electrical grid may be coupled with the BMS to charge the battery 11230 .
  • the power block 1130 may be replaced with a wireless power receiver to obtain the power wirelessly, for example, through a loop antenna in the computer platform 11200 .
  • a wireless battery charging circuit may be included in the BMS. The specific charging circuits chosen may depend on the size of the battery 11230 , and thus, the current required.
  • the charging may be performed using the Airfuel standard promulgated by the Airfuel Alliance, the Qi wireless charging standard promulgated by the Wireless Power Consortium, or the Rezence charging standard promulgated by the Alliance for Wireless Power, among others.
  • User interface circuitry 11250 includes various input/output (I/O) devices present within, or connected to, the platform 11200 , and includes one or more user interfaces designed to enable user interaction with the platform 11200 and/or peripheral component interfaces designed to enable peripheral component interaction with the platform 11200 .
  • the user interface circuitry 11250 includes input device circuitry and output device circuitry.
  • Input device circuitry includes any physical or virtual means for accepting an input including, inter alia, one or more physical or virtual buttons (e.g., a reset button), a physical keyboard, keypad, mouse, touchpad, touchscreen, microphones, scanner, headset, and/or the like.
  • the output device circuitry includes any physical or virtual means for showing information or otherwise conveying information, such as sensor readings, actuator position(s), or other like information.
  • Output device circuitry may include any number and/or combinations of audio or visual display, including, inter alia, one or more simple visual outputs/indicators (e.g., binary status indicators (e.g., light emitting diodes (LEDs)) and multi-character visual outputs, or more complex outputs such as display devices or touchscreens (e.g., Liquid Chrystal Displays (LCD), LED displays, quantum dot displays, projectors, etc.), with the output of characters, graphics, multimedia objects, and the like being generated or produced from the operation of the platform 11200 .
  • the output device circuitry may also include speakers or other audio emitting devices, printer(s), and/or the like.
  • the sensor circuitry 11221 may be used as the input device circuitry (e.g., an image capture device, motion capture device, or the like) and one or more EMCs may be used as the output device circuitry (e.g., an actuator to provide haptic feedback or the like).
  • EMCs e.g., an actuator to provide haptic feedback or the like.
  • NFC circuitry comprising an NFC controller coupled with an antenna element and a processing device may be included to read electronic tags and/or connect with another NFC-enabled device.
  • Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a USB port, an audio jack, a power supply interface, etc.
  • bus or interconnect may include any number of technologies, including ISA, EISA, PCI, PCIx, PCIe, a Time-Trigger Protocol (TTP) system, a FlexRay system, or any number of other technologies.
  • the bus/IX may be a proprietary bus/IX, for example, used in a SoC based system.
  • Other bus/IX systems may be included, such as an I 2 C interface, an SPI interface, point-to-point interfaces, and a power bus, among others.
  • FIG. 12 illustrates example components of baseband circuitry 1210 and radio front end modules (RFEM) 1215 in accordance with various embodiments.
  • the baseband circuitry 1210 corresponds to the baseband circuitry 11110 and 11210 of FIGS. 11A and 11B , respectively.
  • the RFEM 1215 corresponds to the RFEM 11115 and 11215 of FIGS. 11A and 11B , respectively.
  • the RFEMs 1215 may include Radio Frequency (RF) circuitry 1206 , front-end module (FEM) circuitry 1208 , antenna array 1211 coupled together at least as shown.
  • RF Radio Frequency
  • FEM front-end module
  • the baseband circuitry 1210 includes circuitry and/or control logic configured to carry out various radio/network protocol and radio control functions that enable communication with one or more radio networks via the RF circuitry 1206 .
  • the radio control functions may include, but are not limited to, signal modulation/demodulation, encoding/decoding, radio frequency shifting, etc.
  • modulation/demodulation circuitry of the baseband circuitry 1210 may include Fast-Fourier Transform (FFT), precoding, or constellation mapping/demapping functionality.
  • FFT Fast-Fourier Transform
  • encoding/decoding circuitry of the baseband circuitry 1210 may include convolution, tail-biting convolution, turbo, Viterbi, or Low Density Parity Check (LDPC) encoder/decoder functionality.
  • LDPC Low Density Parity Check
  • the baseband circuitry 1210 is configured to process baseband signals received from a receive signal path of the RF circuitry 1206 and to generate baseband signals for a transmit signal path of the RF circuitry 1206 .
  • the baseband circuitry 1210 is configured to interface with application circuitry 11105 / 11205 (see FIGS. 11A and 11B ) for generation and processing of the baseband signals and for controlling operations of the RF circuitry 1206 .
  • the baseband circuitry 1210 may handle various radio control functions.
  • the aforementioned circuitry and/or control logic of the baseband circuitry 1210 may include one or more single or multi-core processors.
  • the one or more processors may include a 3G baseband processor 1204 A, a 4G/LTE baseband processor 1204 B, a 5G/NR baseband processor 1204 C, or some other baseband processor(s) 1204 D for other existing generations, generations in development or to be developed in the future (e.g., sixth generation (6G), etc.).
  • 6G sixth generation
  • some or all of the functionality of baseband processors 1204 A-D may be included in modules stored in the memory 1204 G and executed via a Central Processing Unit (CPU) 1204 E.
  • CPU Central Processing Unit
  • baseband processors 1204 A-D may be provided as hardware accelerators (e.g., FPGAs, ASICs, etc.) loaded with the appropriate bit streams or logic blocks stored in respective memory cells.
  • the memory 1204 G may store program code of a real-time OS (RTOS), which when executed by the CPU 1204 E (or other baseband processor), is to cause the CPU 1204 E (or other baseband processor) to manage resources of the baseband circuitry 1210 , schedule tasks, etc.
  • RTOS real-time OS
  • the RTOS may include Operating System Embedded (OSE)TM provided by Enea®, Nucleus RTOSTM provided by Mentor Graphics®, Versatile Real-Time Executive (VRTX) provided by Mentor Graphics®, ThreadXTM provided by Express Logic®, FreeRTOS, REX OS provided by Qualcomm®, OKL4 provided by Open Kernel (OK) Labs®, or any other suitable RTOS, such as those discussed herein.
  • the baseband circuitry 1210 includes one or more audio digital signal processor(s) (DSP) 1204 F.
  • the audio DSP(s) 1204 F include elements for compression/decompression and echo cancellation and may include other suitable processing elements in other embodiments.
  • each of the processors 1204 A- 1204 E include respective memory interfaces to send/receive data to/from the memory 1204 G.
  • the baseband circuitry 1210 may further include one or more interfaces to communicatively couple to other circuitries/devices, such as an interface to send/receive data to/from memory external to the baseband circuitry 1210 ; an application circuitry interface to send/receive data to/from the application circuitry 11105 / 11205 of FIGS. 11A-12 ); an RF circuitry interface to send/receive data to/from RF circuitry 1206 of FIG.
  • a wireless hardware connectivity interface to send/receive data to/from one or more wireless hardware elements (e.g., Near Field Communication (NFC) components, Bluetooth®/Bluetooth® Low Energy components, Wi-Fi® components, and/or the like); and a power management interface to send/receive power or control signals to/from the PMIC 11225 .
  • NFC Near Field Communication
  • baseband circuitry 1210 comprises one or more digital baseband systems, which are coupled with one another via an interconnect subsystem and to a CPU subsystem, an audio subsystem, and an interface subsystem.
  • the digital baseband subsystems may also be coupled to a digital baseband interface and a mixed-signal baseband subsystem via another interconnect subsystem.
  • Each of the interconnect subsystems may include a bus system, point-to-point connections, network-on-chip (NOC) structures, and/or some other suitable bus or interconnect technology, such as those discussed herein.
  • the audio subsystem may include DSP circuitry, buffer memory, program memory, speech processing accelerator circuitry, data converter circuitry such as analog-to-digital and digital-to-analog converter circuitry, analog circuitry including one or more of amplifiers and filters, and/or other like components.
  • baseband circuitry 1210 may include protocol processing circuitry with one or more instances of control circuitry (not shown) to provide control functions for the digital baseband circuitry and/or radio frequency circuitry (e.g., the radio front end modules 1215 ).
  • the baseband circuitry 1210 includes individual processing device(s) to operate one or more wireless communication protocols (e.g., a “multi-protocol baseband processor” or “protocol processing circuitry”) and individual processing device(s) to implement PHY layer functions.
  • the PHY layer functions include the aforementioned radio control functions.
  • the protocol processing circuitry operates or implements various protocol layers/entities of one or more wireless communication protocols.
  • the protocol processing circuitry may operate LTE protocol entities and/or 5G/NR protocol entities when the baseband circuitry 1210 and/or RF circuitry 1206 are part of mmWave communication circuitry or some other suitable cellular communication circuitry.
  • the protocol processing circuitry would operate MAC, RLC, PDCP, SDAP, RRC, and NAS functions.
  • the protocol processing circuitry may operate one or more IEEE-based protocols when the baseband circuitry 1210 and/or RF circuitry 1206 are part of a Wi-Fi communication system.
  • the protocol processing circuitry would operate Wi-Fi MAC and logical link control (LLC) functions.
  • the protocol processing circuitry may include one or more memory structures (e.g., 1204 G) to store program code and data for operating the protocol functions, as well as one or more processing cores to execute the program code and perform various operations using the data.
  • the baseband circuitry 1210 may also support radio communications for more than one wireless protocol.
  • the various hardware elements of the baseband circuitry 1210 discussed herein may be implemented, for example, as a solder-down substrate including one or more integrated circuits (ICs), a single packaged IC soldered to a main circuit board or a multi-chip module containing two or more ICs.
  • the components of the baseband circuitry 1210 may be suitably combined in a single chip or chipset, or disposed on a same circuit board.
  • some or all of the constituent components of the baseband circuitry 1210 and RF circuitry 1206 may be implemented together such as, for example, a system on a chip (SoC) or System-in-Package (SiP).
  • SoC system on a chip
  • SiP System-in-Package
  • the constituent components of the baseband circuitry 1210 may be implemented as a separate SoC that is communicatively coupled with and RF circuitry 1206 (or multiple instances of RF circuitry 1206 ).
  • some or all of the constituent components of the baseband circuitry 1210 and the application circuitry 11105 / 11205 may be implemented together as individual SoCs mounted to a same circuit board (e.g., a “multi-chip package”).
  • the baseband circuitry 1210 may provide for communication compatible with one or more radio technologies.
  • the baseband circuitry 1210 may support communication with an E-UTRAN or other WMAN, a WLAN, a WPAN.
  • Embodiments in which the baseband circuitry 1210 is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry.
  • RF circuitry 1206 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium.
  • the RF circuitry 1206 may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
  • RF circuitry 1206 may include a receive signal path, which may include circuitry to down-convert RF signals received from the FEM circuitry 1208 and provide baseband signals to the baseband circuitry 1210 .
  • RF circuitry 1206 may also include a transmit signal path, which may include circuitry to up-convert baseband signals provided by the baseband circuitry 1210 and provide RF output signals to the FEM circuitry 1208 for transmission.
  • the receive signal path of the RF circuitry 1206 may include mixer circuitry 1206 a , amplifier circuitry 1206 b and filter circuitry 1206 c .
  • the transmit signal path of the RF circuitry 1206 may include filter circuitry 1206 c and mixer circuitry 1206 a .
  • RF circuitry 1206 may also include synthesizer circuitry 1206 d for synthesizing a frequency for use by the mixer circuitry 1206 a of the receive signal path and the transmit signal path.
  • the mixer circuitry 1206 a of the receive signal path may be configured to down-convert RF signals received from the FEM circuitry 1208 based on the synthesized frequency provided by synthesizer circuitry 1206 d .
  • the amplifier circuitry 1206 b may be configured to amplify the down-converted signals and the filter circuitry 1206 c may be a low-pass filter (LPF) or band-pass filter (BPF) configured to remove unwanted signals from the down-converted signals to generate output baseband signals.
  • Output baseband signals may be provided to the baseband circuitry 1210 for further processing.
  • the output baseband signals may be zero-frequency baseband signals, although this is not a requirement.
  • mixer circuitry 1206 a of the receive signal path may comprise passive mixers, although the scope of the embodiments is not limited in this respect.
  • the mixer circuitry 1206 a of the transmit signal path may be configured to up-convert input baseband signals based on the synthesized frequency provided by the synthesizer circuitry 1206 d to generate RF output signals for the FEM circuitry 1208 .
  • the baseband signals may be provided by the baseband circuitry 1210 and may be filtered by filter circuitry 1206 c.
  • the mixer circuitry 1206 a of the receive signal path and the mixer circuitry 1206 a of the transmit signal path may include two or more mixers and may be arranged for quadrature downconversion and upconversion, respectively.
  • the mixer circuitry 1206 a of the receive signal path and the mixer circuitry 1206 a of the transmit signal path may include two or more mixers and may be arranged for image rejection (e.g., Hartley image rejection).
  • the mixer circuitry 1206 a of the receive signal path and the mixer circuitry 1206 a of the transmit signal path may be arranged for direct downconversion and direct upconversion, respectively.
  • the mixer circuitry 1206 a of the receive signal path and the mixer circuitry 1206 a of the transmit signal path may be configured for super-heterodyne operation.
  • the output baseband signals and the input baseband signals may be analog baseband signals, although the scope of the embodiments is not limited in this respect.
  • the output baseband signals and the input baseband signals may be digital baseband signals.
  • the RF circuitry 1206 may include analog-to-digital converter (ADC) and digital-to-analog converter (DAC) circuitry and the baseband circuitry 1210 may include a digital baseband interface to communicate with the RF circuitry 1206 .
  • ADC analog-to-digital converter
  • DAC digital-to-analog converter
  • a separate radio IC circuitry may be provided for processing signals for each spectrum, although the scope of the embodiments is not limited in this respect.
  • the synthesizer circuitry 1206 d may be a fractional-N synthesizer or a fractional N/N+1 synthesizer, although the scope of the embodiments is not limited in this respect as other types of frequency synthesizers may be suitable.
  • synthesizer circuitry 1206 d may be a delta-sigma synthesizer, a frequency multiplier, or a synthesizer comprising a phase-locked loop with a frequency divider.
  • the synthesizer circuitry 1206 d may be configured to synthesize an output frequency for use by the mixer circuitry 1206 a of the RF circuitry 1206 based on a frequency input and a divider control input. In some embodiments, the synthesizer circuitry 1206 d may be a fractional N/N+1 synthesizer.
  • frequency input may be provided by a voltage controlled oscillator (VCO), although that is not a requirement.
  • VCO voltage controlled oscillator
  • Divider control input may be provided by either the baseband circuitry 1210 or the application circuitry 11105 / 11205 depending on the desired output frequency.
  • a divider control input (e.g., N) may be determined from a look-up table based on a channel indicated by the application circuitry 11105 / 11205 .
  • Synthesizer circuitry 1206 d of the RF circuitry 1206 may include a divider, a delay-locked loop (DLL), a multiplexer and a phase accumulator.
  • the divider may be a dual modulus divider (DMD) and the phase accumulator may be a digital phase accumulator (DPA).
  • the DMD may be configured to divide the input signal by either N or N+1 (e.g., based on a carry out) to provide a fractional division ratio.
  • the DLL may include a set of cascaded, tunable, delay elements, a phase detector, a charge pump and a D-type flip-flop.
  • the delay elements may be configured to break a VCO period up into Nd equal packets of phase, where Nd is the number of delay elements in the delay line.
  • Nd is the number of delay elements in the delay line.
  • synthesizer circuitry 1206 d may be configured to generate a carrier frequency as the output frequency, while in other embodiments, the output frequency may be a multiple of the carrier frequency (e.g., twice the carrier frequency, four times the carrier frequency) and used in conjunction with quadrature generator and divider circuitry to generate multiple signals at the carrier frequency with multiple different phases with respect to each other.
  • the output frequency may be a LO frequency (fLO).
  • the RF circuitry 1206 may include an IQ/polar converter.
  • FEM circuitry 1208 may include a receive signal path, which may include circuitry configured to operate on RF signals received from antenna array 1211 , amplify the received signals and provide the amplified versions of the received signals to the RF circuitry 1206 for further processing.
  • FEM circuitry 1208 may also include a transmit signal path, which may include circuitry configured to amplify signals for transmission provided by the RF circuitry 1206 for transmission by one or more of antenna elements of antenna array 1211 .
  • the amplification through the transmit or receive signal paths may be done solely in the RF circuitry 1206 , solely in the FEM circuitry 1208 , or in both the RF circuitry 1206 and the FEM circuitry 1208 .
  • the FEM circuitry 1208 may include a TX/RX switch to switch between transmit mode and receive mode operation.
  • the FEM circuitry 1208 may include a receive signal path and a transmit signal path.
  • the receive signal path of the FEM circuitry 1208 may include an LNA to amplify received RF signals and provide the amplified received RF signals as an output (e.g., to the RF circuitry 1206 ).
  • the transmit signal path of the FEM circuitry 1208 may include a power amplifier (PA) to amplify input RF signals (e.g., provided by RF circuitry 1206 ), and one or more filters to generate RF signals for subsequent transmission by one or more antenna elements of the antenna array 1211 .
  • PA power amplifier
  • the antenna array 1211 comprises one or more antenna elements, each of which is configured convert electrical signals into radio waves to travel through the air and to convert received radio waves into electrical signals.
  • digital baseband signals provided by the baseband circuitry 1210 is converted into analog RF signals (e.g., modulated waveform) that will be amplified and transmitted via the antenna elements of the antenna array 1211 including one or more antenna elements (not shown).
  • the antenna elements may be omnidirectional, direction, or a combination thereof.
  • the antenna elements may be formed in a multitude of arranges as are known and/or discussed herein.
  • the antenna array 1211 may comprise microstrip antennas or printed antennas that are fabricated on the surface of one or more printed circuit boards.
  • the antenna array 1211 may be formed in as a patch of metal foil (e.g., a patch antenna) in a variety of shapes, and may be coupled with the RF circuitry 1206 and/or FEM circuitry 1208 using metal transmission lines or the like.
  • Processors of the application circuitry 11105 / 11205 and processors of the baseband circuitry 1210 may be used to execute elements of one or more instances of a protocol stack.
  • processors of the baseband circuitry 1210 may be used execute Layer 3, Layer 2, or Layer 1 functionality, while processors of the application circuitry 11105 / 11205 may utilize data (e.g., packet data) received from these layers and further execute Layer 4 functionality (e.g., TCP and UDP layers).
  • Layer 3 may comprise a RRC layer, described in further detail below.
  • Layer 2 may comprise a MAC layer, an RLC layer, and a PDCP layer, described in further detail below.
  • Layer 1 may comprise a PHY layer of a UE/RAN node, described in further detail below.
  • FIG. 13 is a block diagram illustrating components, according to some example embodiments, able to read instructions from a machine-readable or computer-readable medium (e.g., a non-transitory machine-readable storage medium) and perform any one or more of the methodologies discussed herein.
  • FIG. 13 shows a diagrammatic representation of hardware resources 1300 including one or more processors (or processor cores) 1310 , one or more memory/storage devices 1320 , and one or more communication resources 1330 , each of which may be communicatively coupled via a bus 1340 .
  • node virtualization e.g., NFV
  • a hypervisor 1302 may be executed to provide an execution environment for one or more network slices/sub-slices to utilize the hardware resources 1300 .
  • the processors 1310 may include, for example, a processor 1312 and a processor 1314 .
  • the processor(s) 1310 may be, for example, a central processing unit (CPU), a reduced instruction set computing (RISC) processor, a complex instruction set computing (CISC) processor, a graphics processing unit (GPU), a DSP such as a baseband processor, an ASIC, an FPGA, a radio-frequency integrated circuit (RFIC), another processor (including those discussed herein), or any suitable combination thereof.
  • CPU central processing unit
  • RISC reduced instruction set computing
  • CISC complex instruction set computing
  • GPU graphics processing unit
  • DSP such as a baseband processor, an ASIC, an FPGA, a radio-frequency integrated circuit (RFIC), another processor (including those discussed herein), or any suitable combination thereof.
  • the memory/storage devices 1320 may include main memory, disk storage, or any suitable combination thereof.
  • the memory/storage devices 1320 may include, but are not limited to, any type of volatile or nonvolatile memory such as dynamic random access memory (DRAM), static random access memory (SRAM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), Flash memory, solid-state storage, etc.
  • DRAM dynamic random access memory
  • SRAM static random access memory
  • EPROM erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • Flash memory solid-state storage, etc.
  • the communication resources 1330 may include interconnection or network interface components or other suitable devices to communicate with one or more peripheral devices 1304 or one or more databases 1306 via a network 1308 .
  • the communication resources 1330 may include wired communication components (e.g., for coupling via USB), cellular communication components, NFC components, Bluetooth® (or Bluetooth® Low Energy) components, Wi-Fi® components, and other communication components.
  • Instructions 1350 may comprise software, a program, an application, an applet, an app, or other executable code for causing at least any of the processors 1310 to perform any one or more of the methodologies discussed herein.
  • the instructions 1350 may reside, completely or partially, within at least one of the processors 1310 (e.g., within the processor's cache memory), the memory/storage devices 1320 , or any suitable combination thereof.
  • any portion of the instructions 1350 may be transferred to the hardware resources 1300 from any combination of the peripheral devices 1304 or the databases 1306 .
  • the memory of processors 1310 , the memory/storage devices 1320 , the peripheral devices 1304 , and the databases 1306 are examples of computer-readable and machine-readable media.
  • the electronic device(s), network(s), system(s), chip(s) or component(s), or portions or implementations thereof, of FIGS. 10-13 , or some other figure herein may be configured to perform one or more processes, techniques, or methods as described herein, or portions thereof.
  • FIG. 9A may be performed by a next-generation NodeB (gNB) or portion thereof in some embodiments.
  • the process 900 may include, at 905 , retrieving downlink control information (DCI) from memory, wherein the DCI is to schedule one or more shared channels with different transport blocks (TBs) in different slots.
  • the process further includes, at 910 , encoding a physical downlink control channel (PDCCH) message that includes the DCI for transmission to a user equipment (UE).
  • PDCCH physical downlink control channel
  • the process 920 may include, at 925 , determining downlink control information (DCI) that is to schedule one or more shared channels with different transport blocks (TBs) in different slots, wherein the one or more shared channels include a physical downlink shared channel (PDSCH) or a physical uplink shared channel (PUSCH).
  • DCI downlink control information
  • the process further includes, at 930 , encoding a physical downlink control channel (PDCCH) message that includes the DCI for transmission to a user equipment (UE).
  • UE user equipment
  • the process 940 includes, at 945 , receiving downlink control information (DCI) from a physical downlink control channel (PDCCH) message, the DCI to schedule one or more shared channels with different transport blocks (TBs) in different slots, wherein the one or more shared channels include one or more physical uplink shared channels (PUSCHs).
  • DCI downlink control information
  • TBs transport blocks
  • PUSCHs physical uplink shared channels
  • the process further includes, at 950 , encoding one or more PUSCH messages for transmission based on the DCI.
  • At least one of the components set forth in one or more of the preceding figures may be configured to perform one or more operations, techniques, processes, and/or methods as set forth in the example section below.
  • the baseband circuitry as described above in connection with one or more of the preceding figures may be configured to operate in accordance with one or more of the examples set forth below.
  • circuitry associated with a UE, base station, network element, etc. as described above in connection with one or more of the preceding figures may be configured to operate in accordance with one or more of the examples set forth below in the example section.
  • Example 1 may include a method of wireless communication for a fifth generation (5G) or new radio (NR) system, the method comprising:
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channels
  • PUSCH physical uplink shared channels
  • Example 2 may include the method of example 1, wherein in the DCI for scheduling multiple PDSCHs and/or PUSCHs with different TBs, each PDSCH and/or PUSCH may be scheduled within a slot.
  • Example 3 may include the method of example 1, wherein some fields in the DCI may be common for the scheduling of multiple PDSCHs and/or PUSCHs, while other fields may be independent for the scheduling of multiple PDSCHs and/or PUSCHs.
  • Example 4 may include the method of example 1, wherein carrier indicator and bandwidth part (BWP) indicator demodulation reference signal (DMRS) configuration, transmission configuration indication (TCI), sounding reference signal (SRS) resource indicator, frequency domain resource allocation, and transmit power command (TPC) for PUCCH for scheduled PDSCHs and/or PUSCHs with different TBs may be the same
  • BWP carrier indicator and bandwidth part
  • TCI transmission configuration indication
  • SRS sounding reference signal
  • TPC transmit power command
  • Example 5 may include the method of example 1, wherein new data indicator (NDI) may be independent for each scheduled PDSCH and/or PUSCH with different TBs; wherein redundancy version (RV) may be independent for each scheduled PDSCH and/or PUSCH with different TBs.
  • NDI new data indicator
  • RV redundancy version
  • Example 6 may include the method of example 1, wherein the DCI could schedule N ⁇ M PDSCHs and/or PUSCHs where N TBs are scheduled by the DCI with each TB mapped to M consecutive PDSCHs and/or PUSCHs. NDI could be indicated for each TB separately.
  • Example 7 may include the method of example 1, wherein a single modulation and coding scheme (MCS) field may be included in the DCI, which can be used to indicate the MCS of all the scheduled PDSCHs and/or PUSCHs.
  • MCS modulation and coding scheme
  • Example 8 may include the method of example 1, wherein HARQ process number can be different for scheduled PDSCHs and/or PUSCHs.
  • Example 9 may include the method of example 1, wherein, a single HARQ process number field can be included in the DCI.
  • the HARQ process number field is used to indicate the HARQ process number of the first PDSCH and/or PUSCH, while the HARQ process numbers for the remaining scheduled PDSCHs and/or PUSCHs can be implicitly determined in accordance with the indicated HARQ process number for the first PDSCH and/or PUSCH.
  • Example 10 may include the method of example 1, wherein a list of HARQ process number set can be configured by higher layers via MSI, RMSI, OSI or RRC signalling for multiple scheduled PDSCHs, and a field in the DCI may be used to indicate which one is selected for HARQ process number of each scheduled PDSCHs.
  • Example 11 may include the method of example 1, wherein for time domain resource assignment for PDSCH, k0 is used to indicate the slot offset between PDCCH and the first scheduled PDSCH; wherein k2 is used to indicate the slot offset between PDCCH and the first scheduled PUSCH.
  • Example 12 may include the method of example 1, wherein same starting and length indicator value (SLIV) and mapping type as part of time domain resource assignment are applied for each scheduled PDSCHs and/or PUSCHs.
  • SIV starting and length indicator value
  • Example 13 may include the method of example 1, wherein different SLIV and mapping type as part of time domain resource assignment are applied for different scheduled PDSCHs and/or PUSCHs.
  • Example 14 may include the method of example 1, wherein consecutive time domain resource allocation can be employed for the scheduled PDSCHs and/or PUSCHs with different TBs.
  • Example 15 may include the method of example 1, wherein number of scheduled PDSCHs and/or PUSCHs with different TBs may be configured by higher layers via MSI, RMSI, OSI or RRC signalling, or implicitly or explicitly indicated in the DCI or a combination thereof.
  • Example 16 may include the method of example 1, wherein a set of number of scheduled PDSCH and/or PUSCHs with different TBs can be configured by higher layers via MSI, RMSI, OSI or RRC signalling, and further one field in the DCI may be used to explicitly indicate one value from the set of number of scheduled PDSCHs and/or PUSCHs with different TBs.
  • Example 17 may include the method of example 1, wherein time/frequency resource for DMRS for the multiple scheduled PDSCHs and/or PUSCHs could be designed separately or jointly.
  • Example 18 may include the method of example 1, wherein for multi-TTI scheduling for PDSCHs with different TBs, a single PUCCH resource indicator (PRI) may be used to indicate one or more PUCCH resources for carrying HARQ-ACK response of one or more scheduled PDSCHs.
  • PRI PUCCH resource indicator
  • Example 19 may include the method of example 1, same PDSCH-to-HARQ_feedback timing indicator is used to indicate the slot offset between each scheduled PDSCH and each PUCCH carrying HARQ-ACK feedback of the corresponding PDSCH.
  • Example 20 may include the method of example 1, single PDSCH-to-HARQ_feedback timing indicator is used to indicate the slot offset between the last scheduled PDSCH and one PUCCH
  • Example 21 may include the method of example 1 or some other example herein, wherein a dynamic HARQ-ACK codebook is generated considering multi-TTI scheduling PDSCH transmissions with multiple TBs, which consists of two sub-codebooks.
  • Example 22 may include the method of example 21 or some other example herein, wherein the first sub-codebook carries HARQ-ACK bits for all TB based PDSCH transmissions scheduled by a DCI scheduling a single TTI, while the second sub-codebook carries HARQ-ACK bits for all other PDSCH transmissions.
  • Example 23 may include the method of example 21 or some other example herein, wherein the first sub-codebook carries HARQ-ACK bits for TB based PDSCH transmissions scheduled by a DCI scheduling one or two TBs, while the second sub-codebook carries HARQ-ACK bits for all other PDSCH transmissions.
  • Example 24 may include the method of example 21 or some other example herein, wherein the first sub-codebook carries HARQ-ACK bits for PDSCH transmissions scheduled by a DCI scheduling one or two TBs or two CBGs, while the second sub-codebook carries HARQ-ACK bits for all other PDSCH transmissions.
  • Example 25 includes a method comprising:
  • PDCCH physical downlink control channel
  • DCI downlink control information
  • TBs transport blocks
  • Example 26 includes the method of example 29 or some other example herein, wherein the one or more shared channels include a physical downlink shared channel (PDSCH) or a physical uplink shared channel (PUSCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • Example 27 includes the method of example 26 or some other example herein, wherein the DCI is to schedule four PDSCHs with different TBs.
  • Example 28 includes the method of example 26 or some other example herein, wherein the DCI is to schedule three PUSCHs with different TBs.
  • Example 29 includes the method of example 25 or some other example herein, wherein each respective of the one or more shared channels is scheduled within a respective slot.
  • Example 30 includes the method of example 25 or some other example herein, wherein a plurality of fields within the DCI are common among multiple shared channels.
  • Example 31 includes the method of example 30 or some other example herein, wherein a carrier indicator and a bandwidth part (BWP) indicator indicated in the DCI are the same for multiple shared channels.
  • BWP bandwidth part
  • Example 32 includes the method of example 30 or some other example herein, wherein a frequency domain resource allocation indicated in the DCI is the same for multiple shared channels.
  • Example 33 includes the method of example 25 or some other example herein, wherein a single transmission configuration indication (TCI) in the DCI is to be applied to transmission of a plurality of shared channels.
  • TCI transmission configuration indication
  • Example 34 includes the method of example 25 or some other example herein, wherein a single sounding reference signal (SRS) resource indicator in the DCI is to be applied to a plurality of shared channels.
  • SRS sounding reference signal
  • Example 35 includes the method of example 25 or some other example herein, wherein the DCI includes an independent new data indicator (NDI) for each respective shared channel.
  • NDI independent new data indicator
  • Example 36 includes the method of example 25 or some other example herein, further comprising generating a dynamic hybrid automatic repeat request-acknowledgement (HARQ-ACK) codebook for multiple transmit time interval (multi-TTI) scheduling for PDSCH transmissions with multiple transport blocks (TBs).
  • HARQ-ACK dynamic hybrid automatic repeat request-acknowledgement
  • Example 37 includes the method of example 36 or some other example herein, wherein the dynamic HARQ-ACK codebook includes two concatenated sub-codebooks.
  • Example 38 includes the method of example 37 or some other example herein, wherein a first sub-codebook is to carry HARQ-ACK for TB-based PDSCH scheduling, and a second sub-codebook is for code block group (CBG) based PDSCH scheduling.
  • a first sub-codebook is to carry HARQ-ACK for TB-based PDSCH scheduling
  • a second sub-codebook is for code block group (CBG) based PDSCH scheduling.
  • CBG code block group
  • Example 39 includes the method of example 38 or some other example herein, wherein the first sub-codebook includes HARQ-ACK bits for all TB based PDSCH transmissions scheduled by a DCI scheduling a single TTI.
  • Example 40 includes the method of example 38 or some other example herein, wherein the second sub-codebook includes HARQ-ACK bits for CBG-based PDSCH transmissions and PDSCH transmissions scheduled by a DCI scheduling multiple TTIs.
  • Example 41 includes the method of any of examples 25-40 or some other example herein, wherein the method is performed by a next-generation NodeB (gNB) or portion thereof.
  • gNB next-generation NodeB
  • Example X1 includes an apparatus comprising: memory to store downlink control information (DCI); and processor circuitry, coupled with the memory, to: retrieve the DCI from the memory, wherein the DCI is to schedule one or more shared channels with different transport blocks (TBs) in different slots; and encode a physical downlink control channel (PDCCH) message that includes the DCI for transmission to a user equipment (UE).
  • DCI downlink control information
  • processor circuitry coupled with the memory, to: retrieve the DCI from the memory, wherein the DCI is to schedule one or more shared channels with different transport blocks (TBs) in different slots; and encode a physical downlink control channel (PDCCH) message that includes the DCI for transmission to a user equipment (UE).
  • UE user equipment
  • Example X2 includes the apparatus of example X1 or some other example herein, wherein the one or more shared channels include a physical downlink shared channel (PDSCH) or a physical uplink shared channel (PUSCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • Example X3 includes the apparatus of example X2 or some other example herein, wherein the DCI is to schedule four PDSCHs with different TBs, or the DCI is to schedule three PUSCHs with different TBs.
  • Example X4 includes the apparatus of example X1 or some other example herein, wherein each respective shared channel of the one or more shared channels is scheduled within a respective slot.
  • Example X5 includes the apparatus of example X1 or some other example herein, wherein a plurality of fields within the DCI are common among multiple shared channels, and wherein: a carrier indicator and a bandwidth part (BWP) indicator indicated in the DCI are the same for multiple shared channels; or a frequency domain resource allocation indicated in the DCI is the same for multiple shared channels.
  • BWP bandwidth part
  • Example X6 includes the apparatus of example X1 or some other example herein, wherein: a single transmission configuration indication (TCI) in the DCI is to be applied to transmission of a plurality of shared channels; or a single sounding reference signal (SRS) resource indicator in the DCI is to be applied to a plurality of shared channels; or the DCI includes an independent new data indicator (NDI) for each respective shared channel.
  • TCI transmission configuration indication
  • SRS sounding reference signal
  • NDI independent new data indicator
  • Example X7 includes the apparatus of example X1 or some other example herein, wherein the processing circuitry is further to generate a dynamic hybrid automatic repeat request-acknowledgement (HARQ-ACK) codebook for multiple transmit time interval (multi-TTI) scheduling for PDSCH transmissions with multiple transport blocks (TBs).
  • HARQ-ACK dynamic hybrid automatic repeat request-acknowledgement
  • Example X8 includes the apparatus of example X7 or some other example herein, wherein the dynamic HARQ-ACK codebook includes two concatenated sub-codebooks, and wherein a first sub-codebook is to carry HARQ-ACK for TB-based PDSCH scheduling, and a second sub-codebook is for code block group (CBG) based PDSCH scheduling.
  • CBG code block group
  • Example X9 includes the apparatus of example X8 or some other example herein, wherein the second sub-codebook includes HARQ-ACK bits for CBG-based PDSCH transmissions and PDSCH transmissions scheduled by a DCI scheduling multiple TTIs.
  • Example X10 includes one or more non-transitory computer-readable media storing instructions that, when executed by one or more processors, are to cause a next-generation NodeB (gNB) to: determine downlink control information (DCI) that is to schedule one or more shared channels with different transport blocks (TBs) in different slots, wherein the one or more shared channels include a physical downlink shared channel (PDSCH) or a physical uplink shared channel (PUSCH); and encode a physical downlink control channel (PDCCH) message that includes the DCI for transmission to a user equipment (UE).
  • DCI downlink control information
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • PDCCH physical downlink control channel
  • Example X11 includes the one or more non-transitory computer-readable media of example X10 or some other example herein, wherein the DCI is to schedule four PDSCHs with different TBs, or the DCI is to schedule three PUSCHs with different TBs.
  • Example X12 includes the one or more non-transitory computer-readable media of example X10 or some other example herein, wherein each respective shared channel of the one or more shared channels is scheduled within a respective slot.
  • Example X13 includes the one or more non-transitory computer-readable media of example X10 or some other example herein, wherein a plurality of fields within the DCI are common among multiple shared channels, and wherein: a carrier indicator and a bandwidth part (BWP) indicator indicated in the DCI are the same for multiple shared channels; or a frequency domain resource allocation indicated in the DCI is the same for multiple shared channels.
  • BWP bandwidth part
  • Example X14 includes the one or more non-transitory computer-readable media of example X10 or some other example herein, wherein: a single transmission configuration indication (TCI) in the DCI is to be applied to transmission of a plurality of shared channels; or a single sounding reference signal (SRS) resource indicator in the DCI is to be applied to a plurality of shared channels; or the DCI includes an independent new data indicator (NDI) for each respective shared channel.
  • TCI transmission configuration indication
  • SRS sounding reference signal
  • NDI independent new data indicator
  • Example X15 includes the one or more non-transitory computer-readable media of example X10 or some other example herein, wherein the processing circuitry is further to generate a dynamic hybrid automatic repeat request-acknowledgement (HARQ-ACK) codebook for multiple transmit time interval (multi-TTI) scheduling for PDSCH transmissions with multiple transport blocks (TBs).
  • HARQ-ACK dynamic hybrid automatic repeat request-acknowledgement
  • Example X16 includes the one or more non-transitory computer-readable media of example X15 or some other example herein, wherein the dynamic HARQ-ACK codebook includes two concatenated sub-codebooks, and wherein a first sub-codebook is to carry HARQ-ACK for TB-based PDSCH scheduling, and a second sub-codebook is for code block group (CBG) based PDSCH scheduling.
  • CBG code block group
  • Example X17 includes the one or more non-transitory computer-readable media of example X16 or some other example herein, wherein the second sub-codebook includes HARQ-ACK bits for CBG-based PDSCH transmissions and PDSCH transmissions scheduled by a DCI scheduling multiple TTIs.
  • Example X18 includes one or more non-transitory computer-readable media storing instructions that, when executed by one or more processors, are to cause a user equipment (UE) to: receive downlink control information (DCI) from a physical downlink control channel (PDCCH) message, the DCI to schedule one or more shared channels with different transport blocks (TBs) in different slots, wherein the one or more shared channels include one or more physical uplink shared channels (PUSCHs); and encode one or more PUSCH messages for transmission based on the DCI.
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • TBs transport blocks
  • PUSCHs physical uplink shared channels
  • Example X19 includes the one or more non-transitory computer-readable media of example X18 or some other example herein, wherein a plurality of fields within the DCI are common among multiple shared channels, and wherein: a carrier indicator and a bandwidth part (BWP) indicator indicated in the DCI are the same for multiple shared channels; or a frequency domain resource allocation indicated in the DCI is the same for multiple shared channels.
  • BWP bandwidth part
  • Example X20 includes the one or more non-transitory computer-readable media of example X18 or some other example herein, wherein: a single transmission configuration indication (TCI) in the DCI is to be applied to transmission of a plurality of shared channels; or a single sounding reference signal (SRS) resource indicator in the DCI is to be applied to a plurality of shared channels; or the DCI includes an independent new data indicator (NDI) for each respective shared channel.
  • TCI transmission configuration indication
  • SRS sounding reference signal
  • NDI independent new data indicator
  • Example Z01 may include an apparatus comprising means to perform one or more elements of a method described in or related to any of examples 1-X20, or any other method or process described herein.
  • Example Z02 may include one or more non-transitory computer-readable media comprising instructions to cause an electronic device, upon execution of the instructions by one or more processors of the electronic device, to perform one or more elements of a method described in or related to any of examples 1-X20, or any other method or process described herein.
  • Example Z03 may include an apparatus comprising logic, modules, or circuitry to perform one or more elements of a method described in or related to any of examples 1-X20, or any other method or process described herein.
  • Example Z04 may include a method, technique, or process as described in or related to any of examples 1-X20, or portions or parts thereof.
  • Example Z05 may include an apparatus comprising: one or more processors and one or more computer-readable media comprising instructions that, when executed by the one or more processors, cause the one or more processors to perform the method, techniques, or process as described in or related to any of examples 1-X20, or portions thereof.
  • Example Z06 may include a signal as described in or related to any of examples 1-X20, or portions or parts thereof.
  • Example Z07 may include a datagram, packet, frame, segment, protocol data unit (PDU), or message as described in or related to any of examples 1-X20, or portions or parts thereof, or otherwise described in the present disclosure.
  • PDU protocol data unit
  • Example Z08 may include a signal encoded with data as described in or related to any of examples 1-X20, or portions or parts thereof, or otherwise described in the present disclosure.
  • Example Z09 may include a signal encoded with a datagram, packet, frame, segment, protocol data unit (PDU), or message as described in or related to any of examples 1-X20, or portions or parts thereof, or otherwise described in the present disclosure.
  • PDU protocol data unit
  • Example Z10 may include an electromagnetic signal carrying computer-readable instructions, wherein execution of the computer-readable instructions by one or more processors is to cause the one or more processors to perform the method, techniques, or process as described in or related to any of examples 1-X20, or portions thereof.
  • Example Z11 may include a computer program comprising instructions, wherein execution of the program by a processing element is to cause the processing element to carry out the method, techniques, or process as described in or related to any of examples 1-X20, or portions thereof.
  • Example Z12 may include a signal in a wireless network as shown and described herein.
  • Example Z13 may include a method of communicating in a wireless network as shown and described herein.
  • Example Z14 may include a system for providing wireless communication as shown and described herein.
  • Example Z15 may include a device for providing wireless communication as shown and described herein.
  • EPC Evolved Packet Core EPDCCH enhanced PDCCH, enhanced Physical Downlink Control Cannel EPRE Energy per resource element EPS Evolved Packet System EREG enhanced REG, enhanced resource element groups ETSI European Telecommunications Standards Institute ETWS Earthquake and Tsunami Warning System eUICC embedded UICC, embedded Universal
  • I-Block Information Block ICCID Integrated Circuit Card Identification IAB Integrated Access and Backhaul ICIC Inter-Cell Interference Coordination ID Identity, identifier IDFT Inverse Discrete Fourier Transform IE Information element IBE In-Band Emission IEEE Institute of Electrical and Electronics Engineers IEI Information Element Identifier IEIDL Information Element Identifier Data Length IETF Internet Engineering Task Force IF Infrastructure IM Interference Measurement, Intermodulation, IP Multimedia IMC IMS Credentials IMEI International Mobile Equipment Identity IMGI International mobile group identity IMPI IP Multimedia Private Identity IMPU IP Multimedia PUblic identity IMS IP Multimedia Subsystem IMSI International Mobile Subscriber Identity IoT Internet of Things IP Internet Protocol Ipsec IP Security, Internet Protocol Security IP-CAN IP-Connectivity Access Network IP-M IP Multicast IPv4 Internet Protocol Version 4 IPv6 Internet Protocol Version 6 IR Infrared IS In Sync IRP Integration Reference Point ISDN Integrated Services Digital Network ISIM IM Services Identity Module ISO International
  • circuitry refers to, is part of, or includes hardware components such as an electronic circuit, a logic circuit, a processor (shared, dedicated, or group) and/or memory (shared, dedicated, or group), an Application Specific Integrated Circuit (ASIC), a field-programmable device (FPD) (e.g., a field-programmable gate array (FPGA), a programmable logic device (PLD), a complex PLD (CPLD), a high-capacity PLD (HCPLD), a structured ASIC, or a programmable SoC), digital signal processors (DSPs), etc., that are configured to provide the described functionality.
  • FPD field-programmable device
  • FPGA field-programmable gate array
  • PLD programmable logic device
  • CPLD complex PLD
  • HPLD high-capacity PLD
  • DSPs digital signal processors
  • the circuitry may execute one or more software or firmware programs to provide at least some of the described functionality.
  • the term “circuitry” may also refer to a combination of one or more hardware elements (or a combination of circuits used in an electrical or electronic system) with the program code used to carry out the functionality of that program code. In these embodiments, the combination of hardware elements and program code may be referred to as a particular type of circuitry.
  • processor circuitry refers to, is part of, or includes circuitry capable of sequentially and automatically carrying out a sequence of arithmetic or logical operations, or recording, storing, and/or transferring digital data.
  • processor circuitry may refer to one or more application processors, one or more baseband processors, a physical central processing unit (CPU), a single-core processor, a dual-core processor, a triple-core processor, a quad-core processor, and/or any other device capable of executing or otherwise operating computer-executable instructions, such as program code, software modules, and/or functional processes.
  • application circuitry and/or “baseband circuitry” may be considered synonymous to, and may be referred to as, “processor circuitry.”
  • interface circuitry refers to, is part of, or includes circuitry that enables the exchange of information between two or more components or devices.
  • interface circuitry may refer to one or more hardware interfaces, for example, buses, I/O interfaces, peripheral component interfaces, network interface cards, and/or the like.
  • user equipment refers to a device with radio communication capabilities and may describe a remote user of network resources in a communications network.
  • the term “user equipment” or “UE” may be considered synonymous to, and may be referred to as, client, mobile, mobile device, mobile terminal, user terminal, mobile unit, mobile station, mobile user, subscriber, user, remote station, access agent, user agent, receiver, radio equipment, reconfigurable radio equipment, reconfigurable mobile device, etc.
  • the term “user equipment” or “UE” may include any type of wireless/wired device or any computing device including a wireless communications interface.
  • network element refers to physical or virtualized equipment and/or infrastructure used to provide wired or wireless communication network services.
  • network element may be considered synonymous to and/or referred to as a networked computer, networking hardware, network equipment, network node, router, switch, hub, bridge, radio network controller, RAN device, RAN node, gateway, server, virtualized VNF, NFVI, and/or the like.
  • computer system refers to any type interconnected electronic devices, computer devices, or components thereof. Additionally, the term “computer system” and/or “system” may refer to various components of a computer that are communicatively coupled with one another. Furthermore, the term “computer system” and/or “system” may refer to multiple computer devices and/or multiple computing systems that are communicatively coupled with one another and configured to share computing and/or networking resources.
  • appliance refers to a computer device or computer system with program code (e.g., software or firmware) that is specifically designed to provide a specific computing resource.
  • program code e.g., software or firmware
  • a “virtual appliance” is a virtual machine image to be implemented by a hypervisor-equipped device that virtualizes or emulates a computer appliance or otherwise is dedicated to provide a specific computing resource.
  • resource refers to a physical or virtual device, a physical or virtual component within a computing environment, and/or a physical or virtual component within a particular device, such as computer devices, mechanical devices, memory space, processor/CPU time, processor/CPU usage, processor and accelerator loads, hardware time or usage, electrical power, input/output operations, ports or network sockets, channel/link allocation, throughput, memory usage, storage, network, database and applications, workload units, and/or the like.
  • a “hardware resource” may refer to compute, storage, and/or network resources provided by physical hardware element(s).
  • a “virtualized resource” may refer to compute, storage, and/or network resources provided by virtualization infrastructure to an application, device, system, etc.
  • network resource or “communication resource” may refer to resources that are accessible by computer devices/systems via a communications network.
  • system resources may refer to any kind of shared entities to provide services, and may include computing and/or network resources. System resources may be considered as a set of coherent functions, network data objects or services, accessible through a server where such system resources reside on a single host or multiple hosts and are clearly identifiable.
  • channel refers to any transmission medium, either tangible or intangible, which is used to communicate data or a data stream.
  • channel may be synonymous with and/or equivalent to “communications channel,” “data communications channel,” “transmission channel,” “data transmission channel,” “access channel,” “data access channel,” “link,” “data link,” “carrier,” “radiofrequency carrier,” and/or any other like term denoting a pathway or medium through which data is communicated.
  • link refers to a connection between two devices through a RAT for the purpose of transmitting and receiving information.
  • instantiate refers to the creation of an instance.
  • An “instance” also refers to a concrete occurrence of an object, which may occur, for example, during execution of program code.
  • Coupled may mean two or more elements are in direct physical or electrical contact with one another, may mean that two or more elements indirectly contact each other but still cooperate or interact with each other, and/or may mean that one or more other elements are coupled or connected between the elements that are said to be coupled with each other.
  • directly coupled may mean that two or more elements are in direct contact with one another.
  • communicatively coupled may mean that two or more elements may be in contact with one another by a means of communication including through a wire or other interconnect connection, through a wireless communication channel or ink, and/or the like.
  • information element refers to a structural element containing one or more fields.
  • field refers to individual contents of an information element, or a data element that contains content.
  • SMTC refers to an SSB-based measurement timing configuration configured by SSB-MeasurementTimingConfiguration.
  • SSB refers to an SS/PBCH block.
  • a “Primary Cell” refers to the MCG cell, operating on the primary frequency, in which the UE either performs the initial connection establishment procedure or initiates the connection re-establishment procedure.
  • Primary SCG Cell refers to the SCG cell in which the UE performs random access when performing the Reconfiguration with Sync procedure for DC operation.
  • Secondary Cell refers to a cell providing additional radio resources on top of a Special Cell for a UE configured with CA.
  • Secondary Cell Group refers to the subset of serving cells comprising the PSCell and zero or more secondary cells for a UE configured with DC.
  • Server Cell refers to the primary cell for a UE in RRC_CONNECTED not configured with CA/DC there is only one serving cell comprising of the primary cell.
  • serving cell refers to the set of cells comprising the Special Cell(s) and all secondary cells for a UE in RRC_CONNECTED configured with CA/.
  • Special Cell refers to the PCell of the MCG or the PSCell of the SCG for DC operation; otherwise, the term “Special Cell” refers to the Pcell.

Abstract

Various embodiments herein are directed to multi-Transmission Time Interval (TTI) scheduling for data transmission for system operating above the 52.6 GHz carrier frequency. Other embodiments may be disclosed and/or claimed.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • The present application claims priority to U.S. Provisional Patent Application No. 62/937,687, which was filed Nov. 19, 2019; U.S. Provisional Patent Application No. 62/942,646, which was filed Dec. 2, 2019; the disclosures of which are hereby incorporated by reference.
  • FIELD
  • Embodiments relate generally to the technical field of wireless communications.
  • BACKGROUND
  • For new radio (NR) systems, one slot has 14 symbols. For systems operating above 52.6 GHz carrier frequency, if a larger subcarrier spacing, e.g., 1.92 MHz or 3.84 MHz is employed, the slot duration can be very short. For instance, for 1.92 MHz subcarrier spacing, one slot duration is approximately 7.8 μs as shown in FIG. 1. This extremely short slot duration may not be sufficient for higher layer processing, including Medium Access Layer (MAC) and Radio Link Control (RLC), etc. In this case, certain mechanisms may need to be defined to allow long transmission duration and adequate processing time for higher layer or even scheduler implementation.
  • Among other things, embodiments of the present disclosure are directed to designs for multi-Transmission Time Interval (TTI) scheduling for data transmission for system operating above the 52.6 GHz carrier frequency.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments will be readily understood by the following detailed description in conjunction with the accompanying drawings. To facilitate this description, like reference numerals designate like structural elements. Embodiments are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings.
  • FIG. 1 illustrates an example of a short slot duration of a larger subcarrier spacing in accordance with various embodiments.
  • FIG. 2 illustrates an example of multi-TTI scheduling for PDSCHs, in accordance with various embodiments.
  • FIG. 3 illustrates an example of multi-TTI scheduling for PUSCHs, in accordance with various embodiments.
  • FIG. 4 illustrates an example with the same SLIV for scheduled PDSCHs, in accordance with various embodiments.
  • FIG. 5 illustrates an example of different SLIVs for scheduled PDSCHs, in accordance with various embodiments.
  • FIG. 6 illustrates an example of consecutive time domain resource allocation for scheduled PDSCHs, in accordance with various embodiments.
  • FIG. 7 illustrates an example of multiple PUCCHs for HARQ-ACK response, in accordance with various embodiments.
  • FIG. 8 illustrates an example of single PUCCH for HARQ-ACK response, in accordance with various embodiments.
  • FIGS. 9A, 9B, and 9C illustrate examples of operation flow/algorithmic structures in accordance with some embodiments.
  • FIG. 10 illustrates an example architecture of a system of a network, in accordance with various embodiments.
  • FIG. 11A illustrates an example of infrastructure equipment in accordance with various embodiments.
  • FIG. 11B illustrates an example of a computer platform in accordance with various embodiments.
  • FIG. 12 illustrates example components of baseband circuitry and radio front end modules in accordance with various embodiments.
  • FIG. 13 is a block diagram illustrating components, according to some example embodiments, able to read instructions from a machine-readable or computer-readable medium (e.g., a non-transitory machine-readable storage medium) and perform any one or more of the methodologies discussed herein.
  • DETAILED DESCRIPTION
  • The following detailed description refers to the accompanying drawings. The same reference numbers may be used in different drawings to identify the same or similar elements. In the following description, for purposes of explanation and not limitation, specific details are set forth such as particular structures, architectures, interfaces, techniques, etc. in order to provide a thorough understanding of the various aspects of various embodiments. However, it will be apparent to those skilled in the art having the benefit of the present disclosure that the various aspects of the various embodiments may be practiced in other examples that depart from these specific details. In certain instances, descriptions of well-known devices, circuits, and methods are omitted so as not to obscure the description of the various embodiments with unnecessary detail. For the purposes of the present document, the phrase “A or B” means (A), (B), or (A and B).
  • Mobile communication has evolved significantly from early voice systems to today's highly sophisticated integrated communication platform. The next generation wireless communication system, fifth generation (5G), or new radio (NR) will provide access to information and sharing of data anywhere, anytime by various users and applications. NR is expected to be a unified network/system that target to meet vastly different and sometime conflicting performance dimensions and services. Such diverse multi-dimensional requirements are driven by different services and applications. In general, NR will evolve based on 3GPP LTE-Advanced with additional potential new Radio Access Technologies (RATs) to enrich people lives with better, simpler, and more seamless wireless connectivity solutions. NR will enable everything connected by wireless and deliver fast, rich content and services.
  • As defined in NR, one slot has 14 symbols. For systems operating above 52.6 GHz carrier frequency, if larger subcarrier spacing, e.g., 1.92 MHz or 3.84 MHz is employed, the slot duration can be very short. For instance, for 1.92 MHz subcarrier spacing, one slot duration is approximately 7.8 μs as shown in FIG. 1. This extremely short slot duration may not be sufficient for higher layer processing, including Medium Access Layer (MAC) and Radio Link Control (RLC), etc. In this case, certain mechanisms may need to be defined to allow long transmission duration and adequate processing time for higher layer or even scheduler implementation.
  • Among other things, embodiments of the present disclosure are directed to designs for multi-Transmission Time Interval (TTI) scheduling for data transmission for system operating above the 52.6 GHz carrier frequency.
  • Multi-TTI Scheduling for Data Transmission
  • As mentioned above, for systems operating above 52.6 GHz carrier frequency, if larger subcarrier spacing, e.g., 1.92 MHz or 3.84 MHz is employed, the slot duration can be very short. For instance, for 1.92 MHz subcarrier spacing, one slot duration is approximately 7.8 μs. This extremely short slot duration may not be sufficient for the processing of higher layer, including MAC and RLC, etc. In this case, certain mechanisms may need to be defined to allow long transmission duration and adequate processing time for higher layer.
  • For practical implementation of scheduler, a long scheduling unit may be considered for the transmission of data channel. In one embodiment, a physical downlink control channel (PDCCH) carrying downlink control information (DCI) may be used to schedule one or more physical downlink shared channel (PDSCH) or physical uplink shared channel (PUSCH) with different transport block (TBs) in different slots.
  • FIG. 2 illustrates one example of multi-TTI scheduling for PDSCHs. In the example, 4 PDSCHs (PDSCH #0-3) with different transport blocks (TB) are scheduled by a single DCI.
  • FIG. 3 illustrates one example of multi-TTI scheduling for PUSCHs. In the example, 3 PUSCHs (PUSCH #0-2) with different transport blocks (TB) are scheduled by a single DCI.
  • In one embodiment, in the DCI for scheduling multiple PDSCHs and/or PUSCHs with different TBs, each PDSCH and/or PUSCH may be scheduled within a slot. In this case, the transport block size calculation may be reused based on NR Rel-15.
  • Further, in the DCI for scheduling multiple PDSCHs and/or PUSCHs with different TBs, some fields in the DCI may be common for the scheduling of multiple PDSCHs and/or PUSCHs, while other fields may be independent for the scheduling of multiple PDSCHs and/or PUSCHs.
  • In one option, carrier indicator and bandwidth part (BWP) indicator for scheduled PDSCHs and/or PUSCHs with different TBs may be the same. This indicates that a same component carrier (CC) and BWP is used for the transmission of PDSCHs and/or PUSCHs with different TBs.
  • In one option, frequency domain resource allocation for scheduled PDSCHs and/or PUSCHs with different TBs may be the same. In other words, a single frequency domain resource assignment in the DCI is applied for all the scheduled PDSCHs and/or PUSCHs.
  • In one option, the same demodulation reference signal (DMRS) configuration including a single antenna ports and DMRS sequence initialization can be applied for the transmission of all the scheduled PDSCHs and/or PUSCHs. The DMRS sequence applied to each scheduled PDSCH and/or PUSCH could be separately derived.
  • In one option, a single transmission configuration indication (TCI) can be applied for the transmission of all the scheduled PDSCHs. This indicates that the same TCI is applied for all scheduled PDSCHs.
  • In one option, a single sounding reference signal (SRS) resource indicator can be applied for the transmission of all the scheduled PUSCHs. This indicates that the same TCI is applied for all scheduled PUSCHs.
  • In one embodiment, a new data indicator (NDI) may be independent for each scheduled PDSCH and/or PUSCH with different TBs. In particular, a bitmap may be defined, where each bit is used for the NDI of each scheduled PDSCH and/or PUSCH with different TBs. The size of bitmap may be configured by higher layers via NR minimum system information (MSI), NR remaining minimum system information (RMSI), NR other system information (OSI) or radio resource control (RRC) signalling, or determined in accordance with the number of scheduled PDSCHs and/or PUSCHs or the maximum number of PDSCHs or PUSCHs that can be scheduled by a single DCI. For the latter case, when the number of actually scheduled PDSCHs and/or PUSCHs is less than the maximum number, the remaining bits in the bitmap may be reserved, e.g., as “0”.
  • In one option, a redundancy version (RV) may be independent for each scheduled PDSCH and/or PUSCH with different TBs. The same mechanism for NDI may be applied for RV for each scheduled PDSCH and/or PUSCH with different TBs.
  • Note that in cases where two TBs are scheduled for each scheduled PDSCH and/or PUSCH, two sets of NDI and RVs may be included in the DCI for each TB of the scheduled PDSCH and/or PUSCH.
  • In one embodiment, the DCI could schedule N·M PDSCHs and/or PUSCHs. N TBs are scheduled by the DCI with each TB mapped to M consecutive PDSCHs and/or PUSCHs. NDI could be indicated for each TB separately. Correspondingly, RV could be indicated for each TB separately. The M consecutive PDSCHs and/or PUSCHs mapped by same TB shares the same NDI and RV.
  • In one option, a TB could be divided into M·L code block groups (CBGs), then each of the M PDSCHs and/or PUSCHs carries L CBGs.
  • In one option, the number of CBG in each of the M PDSCHs and/or PUSCHs of a TB could be separately determined. For example, number of CBGs depends on the amount of time/frequency resource of a PDSCH or PUSCH.
  • In one option, the TB size (TBS) is determined by the total amount of the M PDSCHs and/or PUSCHs of a TB. The TB is then divided into at least M CBGs and mapped to the M PDSCHs and/or PUSCHs.
  • In one option, the number of bits carried by each of the M PDSCHs and/or PUSCHs of a TB is respectively determined. The M numbers are summed to get TBS of the TB. Herein, the number of bits carried by a PDSCH and/or PUSCH could equal the TBS for a TB which is only mapped to the PDSCH and/or PUSCH.
  • In one embodiment, a single modulation and coding scheme (MCS) field may be included in the DCI, which can be used to indicate the MCS of all the scheduled PDSCHs and/or PUSCHs. In one option, it can be used to indicate the MCS of the initial and retransmission of the scheduled PDSCHs and/or PUSCHs. In another option, it can be used to indicate the MCS of only the initial transmission of the scheduled PDSCHs and/or PUSCHs. Further, the MCS of the retransmission of the scheduled PDSCHs and/or PUSCHs may follow that of the initial transmission. In another option, it can be used to indicate the TBS and modulation order of the initial transmission of the scheduled PDSCHs and/or PUSCHs. For the retransmission of the scheduled PDSCHs and/or PUSCHs, the modulation order can be indicated by the MCS field, meanwhile the TBS may follow that of the initial transmission. In another option, the MCS may be separately indicated for each scheduled PDSCH and/or PUSCH.
  • In one embodiment, a HARQ process number can be different for scheduled PDSCHs and/or PUSCHs. In one option, a single HARQ process number field can be included in the DCI. The HARQ process number field is used to indicate the HARQ process number of the first PDSCH and/or PUSCH, while the HARQ process numbers for the remaining scheduled PDSCHs and/or PUSCHs can be implicitly determined in accordance with the indicated HARQ process number for the first PDSCH and/or PUSCH. In one option, the HARQ process numbers for the remaining scheduled PDSCHs and/or PUSCHs can be incremented by 1 from the indicated HARQ process ID.
  • In one example, the HARQ process number indicated in the DCI is 3 and three PDSCHs are scheduled by the DCI. For this option, HARQ process number for the first scheduled PDSCHs is 3 and for the second and third PDSCHs is 4 and 5, respectively.
  • In another option, a list of HARQ process number set can be configured by higher layers via MSI, RMSI, OSI or RRC signalling for multiple scheduled PDSCHs, and a field in the DCI may be used to indicate which one is selected for HARQ process number of each scheduled PDSCHs.
  • In one example, a list of HARQ process number set can be configured as {1, 3, 5, 7} for the first set and {2, 4, 6, 8} for the second set, where field in the DCI with “0” can be used to indicate the HARQ process number of the 4 scheduled PDSCHs are 1, 3, 5, 7, respectively.
  • In one embodiment, for time domain resource allocation, several options may be considered for each scheduled PDSCH/PUSCH with different TBs.
  • In one option, for time domain resource assignment for PDSCH, k0 is used to indicate the slot offset between PDCCH and the first scheduled PDSCH. Similarly, for time domain resource assignment for PDSCH, k2 is used to indicate the slot offset between PDCCH and the first scheduled PUSCH.
  • In one option, the same starting and length indicator value (SLIV) and mapping type as part of time domain resource assignment are applied for each scheduled PDSCHs and/or PUSCHs. FIG. 3 illustrates one example of same SLIV for 4 scheduled PDSCHs.
  • In another option, different SLIV and mapping type as part of time domain resource assignment are applied for different scheduled PDSCHs and/or PUSCHs. In particular, for each time domain resource allocation configuration within a list of time domain resource allocation configurations, multiple SLIVs can be configured, which indicates the SLIV for each scheduled PDSCHs and/or PUSCHs with different TBs. The number of PDSCHs and/or PUSCHs allocated in a slot could be limited to 1, or could be more than 1.
  • Table 1 illustrates one example of configuring multiple SLIVs and mapping types for each scheduled PDSCHs in PDSCH-TimeDomainResourceAllocation IE.
  • TABLE 1
    PDSCH-TimeDomainResourceAllocation for multiple SLIVs and mapping types for each scheduled PDSCH
    PDSCH-TimeDomainResourceAllocation ::= SEQUENCE {
    k0 INEGER (0 . . . 32) OPTIONAL, --Need S
    mappingTypeList SEQUENCE (SIZE(1 . . . maxNrofScheduledPDSCHs)) OF mappingType ENUMERATED {typeA, typeB}
    startSymbolAndLengthList SEQUENCE (SIZE(1 . . . maxNrofScheduledPDSCHs)) OF startSymbolAndLength INTEGER (0 . . . 127)
  • FIG. 4 illustrates one example of different SLIVs for 4 scheduled PDSCHs.
  • In another option, consecutive time domain resource allocation can be employed for the scheduled PDSCHs and/or PUSCHs with different TBs. In particular, partial slot resource allocation in time can be employed for the scheduled PDSCHs and/or PUSCHs in the first and last slot, respectively. Full slot resource allocation in time is employed for the scheduled PDSCHs and/or PUSCHs in the slots other than the first and last slot.
  • For this option, the SLIV for the first and last slot can be explicitly configured by the higher layers in time domain resource allocation configuration. Further, the number of scheduled PDSCHs and/or PUSCHs can be also included in the time domain resource allocation configuration. If the number of scheduled PD PDSCHs and/or PUSCHs is 1, the SLIV for the first slot could apply. Table 2 illustrates one example of configuring consecutive resource allocation in time for PDSCH-TimeDomainResourceAllocation.
  • TABLE 2
    PDSCH-TimeDomainResourceAllocation for consecutive
    resource allocation in time
    PDSCH-TimeDomainResourceAllocation : := SEQUENCE {
    k0 INEGER (0 . . . 32) OPTIONAL,
    --Need S
    mappingType ENUMERATED
    {typeA, typeB},
    norfScheduledPD SCHs INTEGER (0 . . . 8)
    startSymbolAndLengthFirstSlot INTEGER (0 . . . 127)
    startSymbolAndLengthLastSlot INTEGER (0 . . . 127)
  • FIG. 5 illustrates one example of consecutive time domain resource allocation for scheduled PDSCHs. In this example, partial slot resource allocation in time is employed for the scheduled PDSCHs in the first and last slot, respectively. Full slot resource allocation in time is employed for the scheduled PDSCHs in the slots other than the first and last slot.
  • In one embodiment, number of scheduled PDSCHs and/or PUSCHs with different TBs may be configured by higher layers via MSI, RMSI, OSI or RRC signaling, or implicitly or explicitly indicated in the DCI or a combination thereof.
  • In one option, a set of number of scheduled PDSCH and/or PUSCHs with different TBs can be configured by higher layers via MSI, RMSI, OSI or RRC signalling, and further one field in the DCI may be used to explicitly indicate one value from the set of number of scheduled PDSCHs and/or PUSCHs with different TBs. In addition, this field may be configured as part of time domain resource allocation configuration.
  • In another option, for each time domain resource allocation configuration within a list of time domain resource allocation configurations, multiple SLIVs can be configured, which indicates the SLIV for each scheduled PDSCHs and/or PUSCHs with different TBs. In this case, the number of scheduled PDSCHs and/or PUSCHs can be determined in accordance with the number of SLIVs for the indicated time domain resource allocation by the DCI.
  • In one embodiment, the time/frequency resource for DMRS for the multiple scheduled PDSCHs and/or PUSCHs could be designed separately or jointly.
  • In one option, the time/frequency resource for DMRS is determined per each scheduled PDSCH or PUSCH separately. For example, a first symbol of the scheduled PDSCH or PUSCH carries DMRS. The number and positions of additional symbols for DMRS could depend on the length of the scheduled PDSCH or PUSCH, which could be predefined for configured by high layer.
  • In one option, the time/frequency resource for DMRS is determined assuming the time/frequency resource of all the multiple scheduled PDSCHs and/or PUSCHs as a whole. Assuming the same spatial precoder is applied in all the multiple scheduled PDSCHs and/or PUSCHs, the DMRS mapped to the time resource of a previous or later PDSCH or PUSCH could be used for the channel estimation of the current PDSCH/PUSCH. If the channel delay spread is small, it is possible DMRS could only be transmitted in the first symbol of each scheduled PDSCH or PUSCH. Further, it is possible DMRS could only be transmitted in the first symbol of every X scheduled PDSCH or PUSCH, X>1. The last PDSCH or PUSCH could have a special handling. Since there is no additional PDSCH or PUSCH for the same UE, i.e. it is not possible to do interpolation for channel estimation using DMRS from the additional PDSCH or PUSCH. One more symbol for DMRS could be transmitted at the ending symbol(s) of the last PDSCH or PUSCH.
  • In one option, if the multiple scheduled PDSCHs and/or PUSCHs occupy the continuous time resources. The time/frequency resource of DMRS could be determined assuming the multiple scheduled PDSCHs and/or PUSCHs as a long PDSCH or PUSCH. A first symbol of the long PDSCH or PUSCH carries DMRS. The number and positions of additional symbols for DMRS could depend on the length of the long PDSCH or PUSCH, which could be predefined for configured by high layer. Alternatively, a DMRS symbol could be allocated every X symbols. X could be predefined for configured by high layer.
  • In one embodiment, for multi-TTI scheduling for PDSCHs with different TBs, a single PUCCH resource indicator (PRI) may be used to indicate one or more PUCCH resources for carrying HARQ-ACK response of one or more scheduled PDSCHs.
  • In one option, same PDSCH-to-HARQ_feedback timing indicator is used to indicate the slot offset between each scheduled PDSCH and each PUCCH carrying HARQ-ACK feedback of the corresponding PDSCH. FIG. 6 illustrates one example of multiple PUCCHs for carrying HARQ-ACK of each scheduled PDSCHs. In the example, 3 PUCCHs are indicated to carry HARQ-ACK feedback of PDSCH #0-2, respectively.
  • In another option, a single PDSCH-to-HARQ_feedback timing indicator is used to indicate the slot offset between the last scheduled PDSCH and one PUCCH. The PUCCH is used to carry the HARQ-ACK of all scheduled PDSCHs. The HARQ-ACK feedback bit order is determined based on the scheduled PDSCH index. FIG. 7 illustrates one example of single PUCCH carrying HARQ-ACK response of all scheduled PDSCHs. In the example, a single PUCCH is used to carry 3 HARQ-ACK feedback bits for PDSCH #0-2.
  • Further, a single transmit power command (TPC) for PUCCH can be indicated in the DCI, where the TPC can be applied for one or more scheduled PUCCH carrying HARQ-ACK response.
  • In one embodiment of the disclosure, a dynamic HARQ-ACK codebook could be generated considering multi-TTI scheduling for PDSCH transmissions with multiple TBs. In Rel-15, two sub-codebooks are generated and concatenated to form the final HARQ-ACK codebook. One sub-codebook carries HARQ-ACK for all TB-based PDSCH scheduling, i.e. one or two HARQ-ACK bits are reported for each PDSCH. Whenever at least one cell or BWP is configured with PDSCH transmission with 2 TBs, UE generates two HARQ-ACK bits for each PDSCH. The other sub-codebook is for CBG based PDSCH scheduling. The different cells or BWPs may be configured with different number of CBGs per PDSCH. Therefore, the number of HARQ-ACK bits per PDSCH equals to the maximum number of CBGs per PDSCH among all configured cells or BWPs. Assuming a multi-TTI DCI could schedule maximum N TBs which each TB consists P CBGs. The maximum number of HARQ-ACK associated with a PDCCH is N·P. P could be equal to or larger than 1. The counter DAI and total DAI if included could still count the number of PDCCHs which schedules PDSCH transmissions belonging to the same sub-codebook.
  • In one option, two sub-codebooks are generated. The first sub-codebook carries HARQ-ACK bits for all TB based PDSCH transmissions scheduled by a DCI scheduling a single TTI. The number of HARQ-ACK bits associated with such a DCI is the maximum number of TBs which are scheduled by such DCIs. The first sub-codebook includes HARQ-ACK bits,
      • For all PDSCHs transmitted on a cell configured with TB based PDSCH transmission and single-TTI scheduling;
      • For a PDSCH scheduled by a fallback DCI on a cell configured with CBG based transmission or multi-TTI scheduling. Herein, it is assumed a fallback DCI always schedules a single TTI.
  • The second sub-codebook carries HARQ-ACK bits for all other PDSCH transmissions, e.g. CBG-based PDSCH transmissions and PDSCH transmissions scheduled by a DCI scheduling multiple TTIs. The number of HARQ-ACK bits associated with such a DCI is the maximum number among
      • Maximum number of CBGs scheduled by a DCI scheduling single TTI;
      • Maximum number of TBs scheduled by a DCI scheduling multiple TTIs without CBG based transmission;
      • Maximum total number of CBGs in the multiple TTIs scheduled by a DCI scheduling multiple TTIs with CBG based transmission.
  • In one option, two sub-codebooks are generated. The first sub-codebook carries HARQ-ACK bits for TB based PDSCH transmissions scheduled by a DCI scheduling one or two TBs. The number of HARQ-ACK bits associated with such a DCI is the maximum number of TBs which are scheduled by such DCIs. The first sub-codebook includes HARQ-ACK bits,
      • For all PDSCHs transmitted on a cell configured with TB based PDSCH transmission and single-TTI scheduling;
      • For a PDSCH scheduled by a fallback DCI on a cell configured with CBG based transmission or multi-TTI scheduling. Herein, it is assumed a fallback DCI always schedules a single TTI;
      • For the one or two PDSCHs if the number of currently scheduled TB is one or two by a DCI scheduling multiple TTIs without CBG based transmission.
  • The second sub-codebook carries HARQ-ACK bits for all other PDSCH transmissions. The number of HARQ-ACK bits associated with such a DCI is the maximum number among
      • Maximum number of CBGs scheduled by a DCI scheduling single TTI;
      • Maximum number of TBs scheduled by a DCI scheduling multiple TTIs without CBG based transmission;
      • Maximum total number of CBGs in the multiple TTIs scheduled by a DCI scheduling multiple TTIs with CBG based transmission.
  • In one option, two sub-codebooks are generated. The first sub-codebook carries HARQ-ACK bits for PDSCH transmissions scheduled by a DCI scheduling one or two TBs or two CBGs. The number of HARQ-ACK bits associated with such a DCI is the maximum number of TBs or CBGs which are scheduled by such DCIs. The first sub-codebook includes HARQ-ACK bits,
      • For all PDSCHs transmitted on a cell configured with TB based PDSCH transmission and single-TTI scheduling;
      • For a PDSCH scheduled by a fallback DCI on a cell configured with CBG based transmission or multi-TTI scheduling. Herein, it is assumed a fallback DCI always schedules a single TTI;
      • For the one or two PDSCHs if the number of currently scheduled TB is one or two by a DCI scheduling multiple TTIs without CBG based transmission;
      • For the two configured CBGs scheduled by a DCI scheduling one TB with two configured CBGs in a single TTI.
  • The second sub-codebook carries HARQ-ACK bits for all other PDSCH transmissions. The number of HARQ-ACK bits associated with such a DCI is the maximum number among
      • Maximum number of CBGs scheduled by a DCI scheduling single TTI;
      • Maximum number of TBs scheduled by a DCI scheduling multiple TTIs without CBG based transmission;
      • Maximum total number of CBGs in the multiple TTIs scheduled by a DCI scheduling multiple TTIs with CBG based transmission.
    Systems and Implementations
  • FIG. 10 illustrates an example architecture of a system 1000 of a network, in accordance with various embodiments. The following description is provided for an example system 1000 that operates in conjunction with the LTE system standards and 5G or NR system standards as provided by 3GPP technical specifications. However, the example embodiments are not limited in this regard and the described embodiments may apply to other networks that benefit from the principles described herein, such as future 3GPP systems (e.g., Sixth Generation (6G)) systems, IEEE 802.16 protocols (e.g., WMAN, WiMAX, etc.), or the like.
  • As shown by FIG. 10, the system 1000 includes UE 1001 a and UE 1001 b (collectively referred to as “UEs 1001” or “UE 1001”). In this example, UEs 1001 are illustrated as smartphones (e.g., handheld touchscreen mobile computing devices connectable to one or more cellular networks), but may also comprise any mobile or non-mobile computing device, such as consumer electronics devices, cellular phones, smartphones, feature phones, tablet computers, wearable computer devices, personal digital assistants (PDAs), pagers, wireless handsets, desktop computers, laptop computers, in-vehicle infotainment (IVI), in-car entertainment (ICE) devices, an Instrument Cluster (IC), head-up display (HUD) devices, onboard diagnostic (OBD) devices, dashtop mobile equipment (DME), mobile data terminals (MDTs), Electronic Engine Management System (EEMS), electronic/engine control units (ECUs), electronic/engine control modules (ECMs), embedded systems, microcontrollers, control modules, engine management systems (EMS), networked or “smart” appliances, MTC devices, M2M, IoT devices, and/or the like.
  • In some embodiments, any of the UEs 1001 may be IoT UEs, which may comprise a network access layer designed for low-power IoT applications utilizing short-lived UE connections. An IoT UE can utilize technologies such as M2M or MTC for exchanging data with an MTC server or device via a PLMN, ProSe or D2D communication, sensor networks, or IoT networks. The M2M or MTC exchange of data may be a machine-initiated exchange of data. An IoT network describes interconnecting IoT UEs, which may include uniquely identifiable embedded computing devices (within the Internet infrastructure), with short-lived connections. The IoT UEs may execute background applications (e.g., keep-alive messages, status updates, etc.) to facilitate the connections of the IoT network.
  • The UEs 1001 may be configured to connect, for example, communicatively couple, with an or RAN 1010. In embodiments, the RAN 1010 may be an NG RAN or a 5G RAN, an E-UTRAN, or a legacy RAN, such as a UTRAN or GERAN. As used herein, the term “NG RAN” or the like may refer to a RAN 1010 that operates in an NR or 5G system 1000, and the term “E-UTRAN” or the like may refer to a RAN 1010 that operates in an LTE or 4G system 1000. The UEs 1001 utilize connections (or channels) 1003 and 1004, respectively, each of which comprises a physical communications interface or layer (discussed in further detail below).
  • In this example, the connections 1003 and 1004 are illustrated as an air interface to enable communicative coupling, and can be consistent with cellular communications protocols, such as a GSM protocol, a CDMA network protocol, a PTT protocol, a POC protocol, a UMTS protocol, a 3GPP LTE protocol, a 5G protocol, a NR protocol, and/or any of the other communications protocols discussed herein. In embodiments, the UEs 1001 may directly exchange communication data via a ProSe interface 1005. The ProSe interface 1005 may alternatively be referred to as a SL interface 1005 and may comprise one or more logical channels, including but not limited to a PSCCH, a PSSCH, a PSDCH, and a PSBCH.
  • The UE 1001 b is shown to be configured to access an AP 1006 (also referred to as “WLAN node 1006,” “WLAN 1006,” “WLAN Termination 1006,” “WT 1006” or the like) via connection 1007. The connection 1007 can comprise a local wireless connection, such as a connection consistent with any IEEE 802.11 protocol, wherein the AP 1006 would comprise a wireless fidelity (Wi-Fi®) router. In this example, the AP 1006 is shown to be connected to the Internet without connecting to the core network of the wireless system (described in further detail below). In various embodiments, the UE 1001 b, RAN 1010, and AP 1006 may be configured to utilize LWA operation and/or LWIP operation. The LWA operation may involve the UE 1001 b in RRC_CONNECTED being configured by a RAN node 1011 a-b to utilize radio resources of LTE and WLAN. LWIP operation may involve the UE 1001 b using WLAN radio resources (e.g., connection 1007) via IPsec protocol tunneling to authenticate and encrypt packets (e.g., IP packets) sent over the connection 1007. IPsec tunneling may include encapsulating the entirety of original IP packets and adding a new packet header, thereby protecting the original header of the IP packets.
  • The RAN 1010 can include one or more AN nodes or RAN nodes 1011 a and 1011 b (collectively referred to as “RAN nodes 1011” or “RAN node 1011”) that enable the connections 1003 and 1004. As used herein, the terms “access node,” “access point,” or the like may describe equipment that provides the radio baseband functions for data and/or voice connectivity between a network and one or more users. These access nodes can be referred to as BS, gNBs, RAN nodes, eNBs, NodeBs, RSUs, TRxPs or TRPs, and so forth, and can comprise ground stations (e.g., terrestrial access points) or satellite stations providing coverage within a geographic area (e.g., a cell). As used herein, the term “NG RAN node” or the like may refer to a RAN node 1011 that operates in an NR or 5G system 1000 (for example, a gNB), and the term “E-UTRAN node” or the like may refer to a RAN node 1011 that operates in an LTE or 4G system 1000 (e.g., an eNB). According to various embodiments, the RAN nodes 1011 may be implemented as one or more of a dedicated physical device such as a macrocell base station, and/or a low power (LP) base station for providing femtocells, picocells or other like cells having smaller coverage areas, smaller user capacity, or higher bandwidth compared to macrocells.
  • In some embodiments, all or parts of the RAN nodes 1011 may be implemented as one or more software entities running on server computers as part of a virtual network, which may be referred to as a CRAN and/or a virtual baseband unit pool (vBBUP). In these embodiments, the CRAN or vBBUP may implement a RAN function split, such as a PDCP split wherein RRC and PDCP layers are operated by the CRAN/vBBUP and other L2 protocol entities are operated by individual RAN nodes 1011; a MAC/PHY split wherein RRC, PDCP, RLC, and MAC layers are operated by the CRAN/vBBUP and the PHY layer is operated by individual RAN nodes 1011; or a “lower PHY” split wherein RRC, PDCP, RLC, MAC layers and upper portions of the PHY layer are operated by the CRAN/vBBUP and lower portions of the PHY layer are operated by individual RAN nodes 1011. This virtualized framework allows the freed-up processor cores of the RAN nodes 1011 to perform other virtualized applications. In some implementations, an individual RAN node 1011 may represent individual gNB-DUs that are connected to a gNB-CU via individual F1 interfaces (not shown by FIG. 10). In these implementations, the gNB-DUs may include one or more remote radio heads or RFEMs (see, e.g., FIG. 11A), and the gNB-CU may be operated by a server that is located in the RAN 1010 (not shown) or by a server pool in a similar manner as the CRAN/vBBUP. Additionally or alternatively, one or more of the RAN nodes 1011 may be next generation eNBs (ng-eNBs), which are RAN nodes that provide E-UTRA user plane and control plane protocol terminations toward the UEs 1001, and are connected to a 5GC via an NG interface (discussed infra).
  • In V2X scenarios one or more of the RAN nodes 1011 may be or act as RSUs. The term “Road Side Unit” or “RSU” may refer to any transportation infrastructure entity used for V2X communications. An RSU may be implemented in or by a suitable RAN node or a stationary (or relatively stationary) UE, where an RSU implemented in or by a UE may be referred to as a “UE-type RSU,” an RSU implemented in or by an eNB may be referred to as an “eNB-type RSU,” an RSU implemented in or by a gNB may be referred to as a “gNB-type RSU,” and the like. In one example, an RSU is a computing device coupled with radio frequency circuitry located on a roadside that provides connectivity support to passing vehicle UEs 1001 (vUEs 1001). The RSU may also include internal data storage circuitry to store intersection map geometry, traffic statistics, media, as well as applications/software to sense and control ongoing vehicular and pedestrian traffic. The RSU may operate on the 5.9 GHz Direct Short Range Communications (DSRC) band to provide very low latency communications required for high speed events, such as crash avoidance, traffic warnings, and the like. Additionally or alternatively, the RSU may operate on the cellular V2X band to provide the aforementioned low latency communications, as well as other cellular communications services. Additionally or alternatively, the RSU may operate as a Wi-Fi hotspot (2.4 GHz band) and/or provide connectivity to one or more cellular networks to provide uplink and downlink communications. The computing device(s) and some or all of the radiofrequency circuitry of the RSU may be packaged in a weatherproof enclosure suitable for outdoor installation, and may include a network interface controller to provide a wired connection (e.g., Ethernet) to a traffic signal controller and/or a backhaul network.
  • Any of the RAN nodes 1011 can terminate the air interface protocol and can be the first point of contact for the UEs 1001. In some embodiments, any of the RAN nodes 1011 can fulfill various logical functions for the RAN 1010 including, but not limited to, radio network controller (RNC) functions such as radio bearer management, uplink and downlink dynamic radio resource management and data packet scheduling, and mobility management.
  • In embodiments, the UEs 1001 can be configured to communicate using OFDM communication signals with each other or with any of the RAN nodes 1011 over a multicarrier communication channel in accordance with various communication techniques, such as, but not limited to, an OFDMA communication technique (e.g., for downlink communications) or a SC-FDMA communication technique (e.g., for uplink and ProSe or sidelink communications), although the scope of the embodiments is not limited in this respect. The OFDM signals can comprise a plurality of orthogonal subcarriers.
  • In some embodiments, a downlink resource grid can be used for downlink transmissions from any of the RAN nodes 1011 to the UEs 1001, while uplink transmissions can utilize similar techniques. The grid can be a time-frequency grid, called a resource grid or time-frequency resource grid, which is the physical resource in the downlink in each slot. Such a time-frequency plane representation is a common practice for OFDM systems, which makes it intuitive for radio resource allocation. Each column and each row of the resource grid corresponds to one OFDM symbol and one OFDM subcarrier, respectively. The duration of the resource grid in the time domain corresponds to one slot in a radio frame. The smallest time-frequency unit in a resource grid is denoted as a resource element. Each resource grid comprises a number of resource blocks, which describe the mapping of certain physical channels to resource elements. Each resource block comprises a collection of resource elements; in the frequency domain, this may represent the smallest quantity of resources that currently can be allocated. There are several different physical downlink channels that are conveyed using such resource blocks.
  • According to various embodiments, the UEs 1001 and the RAN nodes 1011 communicate data (for example, transmit and receive) data over a licensed medium (also referred to as the “licensed spectrum” and/or the “licensed band”) and an unlicensed shared medium (also referred to as the “unlicensed spectrum” and/or the “unlicensed band”). The licensed spectrum may include channels that operate in the frequency range of approximately 400 MHz to approximately 3.8 GHz, whereas the unlicensed spectrum may include the 5 GHz band.
  • To operate in the unlicensed spectrum, the UEs 1001 and the RAN nodes 1011 may operate using LAA, eLAA, and/or feLAA mechanisms. In these implementations, the UEs 1001 and the RAN nodes 1011 may perform one or more known medium-sensing operations and/or carrier-sensing operations in order to determine whether one or more channels in the unlicensed spectrum is unavailable or otherwise occupied prior to transmitting in the unlicensed spectrum. The medium/carrier sensing operations may be performed according to a listen-before-talk (LBT) protocol.
  • LBT is a mechanism whereby equipment (for example, UEs 1001 RAN nodes 1011, etc.) senses a medium (for example, a channel or carrier frequency) and transmits when the medium is sensed to be idle (or when a specific channel in the medium is sensed to be unoccupied). The medium sensing operation may include CCA, which utilizes at least ED to determine the presence or absence of other signals on a channel in order to determine if a channel is occupied or clear. This LBT mechanism allows cellular/LAA networks to coexist with incumbent systems in the unlicensed spectrum and with other LAA networks. ED may include sensing RF energy across an intended transmission band for a period of time and comparing the sensed RF energy to a predefined or configured threshold.
  • Typically, the incumbent systems in the 5 GHz band are WLANs based on IEEE 802.11 technologies. WLAN employs a contention-based channel access mechanism, called CSMA/CA. Here, when a WLAN node (e.g., a mobile station (MS) such as UE 1001, AP 1006, or the like) intends to transmit, the WLAN node may first perform CCA before transmission. Additionally, a backoff mechanism is used to avoid collisions in situations where more than one WLAN node senses the channel as idle and transmits at the same time. The backoff mechanism may be a counter that is drawn randomly within the CWS, which is increased exponentially upon the occurrence of collision and reset to a minimum value when the transmission succeeds. The LBT mechanism designed for LAA is somewhat similar to the CSMA/CA of WLAN. In some implementations, the LBT procedure for DL or UL transmission bursts including PDSCH or PUSCH transmissions, respectively, may have an LAA contention window that is variable in length between X and Y ECCA slots, where X and Y are minimum and maximum values for the CWSs for LAA. In one example, the minimum CWS for an LAA transmission may be 9 microseconds (μs); however, the size of the CWS and a MCOT (for example, a transmission burst) may be based on governmental regulatory requirements.
  • The LAA mechanisms are built upon CA technologies of LTE-Advanced systems. In CA, each aggregated carrier is referred to as a CC. A CC may have a bandwidth of 1.4, 3, 5, 10, 15 or 20 MHz and a maximum of five CCs can be aggregated, and therefore, a maximum aggregated bandwidth is 100 MHz. In FDD systems, the number of aggregated carriers can be different for DL and UL, where the number of UL CCs is equal to or lower than the number of DL component carriers. In some cases, individual CCs can have a different bandwidth than other CCs. In TDD systems, the number of CCs as well as the bandwidths of each CC is usually the same for DL and UL.
  • CA also comprises individual serving cells to provide individual CCs. The coverage of the serving cells may differ, for example, because CCs on different frequency bands will experience different pathloss. A primary service cell or PCell may provide a PCC for both UL and DL, and may handle RRC and NAS related activities. The other serving cells are referred to as SCells, and each SCell may provide an individual SCC for both UL and DL. The SCCs may be added and removed as required, while changing the PCC may require the UE 1001 to undergo a handover. In LAA, eLAA, and feLAA, some or all of the SCells may operate in the unlicensed spectrum (referred to as “LAA SCells”), and the LAA SCells are assisted by a PCell operating in the licensed spectrum. When a UE is configured with more than one LAA SCell, the UE may receive UL grants on the configured LAA SCells indicating different PUSCH starting positions within a same subframe.
  • The PDSCH carries user data and higher-layer signaling to the UEs 1001. The PDCCH carries information about the transport format and resource allocations related to the PDSCH channel, among other things. It may also inform the UEs 1001 about the transport format, resource allocation, and HARQ information related to the uplink shared channel. Typically, downlink scheduling (assigning control and shared channel resource blocks to the UE 1001 b within a cell) may be performed at any of the RAN nodes 1011 based on channel quality information fed back from any of the UEs 1001. The downlink resource assignment information may be sent on the PDCCH used for (e.g., assigned to) each of the UEs 1001.
  • The PDCCH uses CCEs to convey the control information. Before being mapped to resource elements, the PDCCH complex-valued symbols may first be organized into quadruplets, which may then be permuted using a sub-block interleaver for rate matching. Each PDCCH may be transmitted using one or more of these CCEs, where each CCE may correspond to nine sets of four physical resource elements known as REGs. Four Quadrature Phase Shift Keying (QPSK) symbols may be mapped to each REG. The PDCCH can be transmitted using one or more CCEs, depending on the size of the DCI and the channel condition. There can be four or more different PDCCH formats defined in LTE with different numbers of CCEs (e.g., aggregation level, L=1, 2, 4, or 8).
  • Some embodiments may use concepts for resource allocation for control channel information that are an extension of the above-described concepts. For example, some embodiments may utilize an EPDCCH that uses PDSCH resources for control information transmission. The EPDCCH may be transmitted using one or more ECCEs. Similar to above, each ECCE may correspond to nine sets of four physical resource elements known as an EREGs. An ECCE may have other numbers of EREGs in some situations.
  • The RAN nodes 1011 may be configured to communicate with one another via interface 1012. In embodiments where the system 1000 is an LTE system, the interface 1012 may be an X2 interface 1012. The X2 interface may be defined between two or more RAN nodes 1011 (e.g., two or more eNBs and the like) that connect to EPC 1020, and/or between two eNBs connecting to EPC 1020. In some implementations, the X2 interface may include an X2 user plane interface (X2-U) and an X2 control plane interface (X2-C). The X2-U may provide flow control mechanisms for user data packets transferred over the X2 interface, and may be used to communicate information about the delivery of user data between eNBs. For example, the X2-U may provide specific sequence number information for user data transferred from a MeNB to an SeNB; information about successful in sequence delivery of PDCP PDUs to a UE 1001 from an SeNB for user data; information of PDCP PDUs that were not delivered to a UE 1001; information about a current minimum desired buffer size at the SeNB for transmitting to the UE user data; and the like. The X2-C may provide intra-LTE access mobility functionality, including context transfers from source to target eNBs, user plane transport control, etc.; load management functionality; as well as inter-cell interference coordination functionality.
  • In embodiments where the system 1000 is a 5G or NR system, the interface 1012 may be an Xn interface 1012. The Xn interface is defined between two or more RAN nodes 1011 (e.g., two or more gNBs and the like) that connect to 5GC 1020, between a RAN node 1011 (e.g., a gNB) connecting to 5GC 1020 and an eNB, and/or between two eNBs connecting to 5GC 1020. In some implementations, the Xn interface may include an Xn user plane (Xn-U) interface and an Xn control plane (Xn-C) interface. The Xn-U may provide non-guaranteed delivery of user plane PDUs and support/provide data forwarding and flow control functionality. The Xn-C may provide management and error handling functionality, functionality to manage the Xn-C interface; mobility support for UE 1001 in a connected mode (e.g., CM-CONNECTED) including functionality to manage the UE mobility for connected mode between one or more RAN nodes 1011. The mobility support may include context transfer from an old (source) serving RAN node 1011 to new (target) serving RAN node 1011; and control of user plane tunnels between old (source) serving RAN node 1011 to new (target) serving RAN node 1011. A protocol stack of the Xn-U may include a transport network layer built on Internet Protocol (IP) transport layer, and a GTP-U layer on top of a UDP and/or IP layer(s) to carry user plane PDUs. The Xn-C protocol stack may include an application layer signaling protocol (referred to as Xn Application Protocol (Xn-AP)) and a transport network layer that is built on SCTP. The SCTP may be on top of an IP layer, and may provide the guaranteed delivery of application layer messages. In the transport IP layer, point-to-point transmission is used to deliver the signaling PDUs. In other implementations, the Xn-U protocol stack and/or the Xn-C protocol stack may be same or similar to the user plane and/or control plane protocol stack(s) shown and described herein.
  • The RAN 1010 is shown to be communicatively coupled to a core network—in this embodiment, core network (CN) 1020. The CN 1020 may comprise a plurality of network elements 1022, which are configured to offer various data and telecommunications services to customers/subscribers (e.g., users of UEs 1001) who are connected to the CN 1020 via the RAN 1010. The components of the CN 1020 may be implemented in one physical node or separate physical nodes including components to read and execute instructions from a machine-readable or computer-readable medium (e.g., a non-transitory machine-readable storage medium). In some embodiments, NFV may be utilized to virtualize any or all of the above-described network node functions via executable instructions stored in one or more computer-readable storage mediums (described in further detail below). A logical instantiation of the CN 1020 may be referred to as a network slice, and a logical instantiation of a portion of the CN 1020 may be referred to as a network sub-slice. NFV architectures and infrastructures may be used to virtualize one or more network functions, alternatively performed by proprietary hardware, onto physical resources comprising a combination of industry-standard server hardware, storage hardware, or switches. In other words, NFV systems can be used to execute virtual or reconfigurable implementations of one or more EPC components/functions.
  • Generally, the application server 1030 may be an element offering applications that use IP bearer resources with the core network (e.g., UMTS PS domain, LTE PS data services, etc.). The application server 1030 can also be configured to support one or more communication services (e.g., VoIP sessions, PTT sessions, group communication sessions, social networking services, etc.) for the UEs 1001 via the EPC 1020.
  • In embodiments, the CN 1020 may be a 5GC (referred to as “5GC 1020” or the like), and the RAN 1010 may be connected with the CN 1020 via an NG interface 1013. In embodiments, the NG interface 1013 may be split into two parts, an NG user plane (NG-U) interface 1014, which carries traffic data between the RAN nodes 1011 and a UPF, and the Si control plane (NG-C) interface 1015, which is a signaling interface between the RAN nodes 1011 and AMFs.
  • In embodiments, the CN 1020 may be a 5G CN (referred to as “5GC 1020” or the like), while in other embodiments, the CN 1020 may be an EPC). Where CN 1020 is an EPC (referred to as “EPC 1020” or the like), the RAN 1010 may be connected with the CN 1020 via an Si interface 1013. In embodiments, the S1 interface 1013 may be split into two parts, an S1 user plane (S1-U) interface 1014, which carries traffic data between the RAN nodes 1011 and the S-GW, and the S1-MME interface 1015, which is a signaling interface between the RAN nodes 1011 and MMES.
  • FIG. 11A illustrates an example of infrastructure equipment 11100 in accordance with various embodiments. The infrastructure equipment 11100 (or “system 11100”) may be implemented as a base station, radio head, RAN node such as the RAN nodes 1011 and/or AP 1006 shown and described previously, application server(s) 1030, and/or any other element/device discussed herein. In other examples, the system 11100 could be implemented in or by a UE.
  • The system 11100 includes application circuitry 11105, baseband circuitry 11110, one or more radio front end modules (RFEMs) 11115, memory circuitry 11120, power management integrated circuitry (PMIC) 11125, power tee circuitry 11130, network controller circuitry 11135, network interface connector 11140, satellite positioning circuitry 11145, and user interface 11150. In some embodiments, the device 11100 may include additional elements such as, for example, memory/storage, display, camera, sensor, or input/output (I/O) interface. In other embodiments, the components described below may be included in more than one device. For example, said circuitries may be separately included in more than one device for CRAN, vBBU, or other like implementations.
  • Application circuitry 11105 includes circuitry such as, but not limited to one or more processors (or processor cores), cache memory, and one or more of low drop-out voltage regulators (LDOs), interrupt controllers, serial interfaces such as SPI, I2C or universal programmable serial interface module, real time clock (RTC), timer-counters including interval and watchdog timers, general purpose input/output (I/O or IO), memory card controllers such as Secure Digital (SD) MultiMediaCard (MMC) or similar, Universal Serial Bus (USB) interfaces, Mobile Industry Processor Interface (MIPI) interfaces and Joint Test Access Group (JTAG) test access ports. The processors (or cores) of the application circuitry 11105 may be coupled with or may include memory/storage elements and may be configured to execute instructions stored in the memory/storage to enable various applications or operating systems to run on the system 11100. In some implementations, the memory/storage elements may be on-chip memory circuitry, which may include any suitable volatile and/or non-volatile memory, such as DRAM, SRAM, EPROM, EEPROM, Flash memory, solid-state memory, and/or any other type of memory device technology, such as those discussed herein.
  • The processor(s) of application circuitry 11105 may include, for example, one or more processor cores (CPUs), one or more application processors, one or more graphics processing units (GPUs), one or more reduced instruction set computing (RISC) processors, one or more Acorn RISC Machine (ARM) processors, one or more complex instruction set computing (CISC) processors, one or more digital signal processors (DSP), one or more FPGAs, one or more PLDs, one or more ASICs, one or more microprocessors or controllers, or any suitable combination thereof. In some embodiments, the application circuitry 11105 may comprise, or may be, a special-purpose processor/controller to operate according to the various embodiments herein. As examples, the processor(s) of application circuitry 11105 may include one or more Intel Pentium®, Core®, or Xeon® processor(s); Advanced Micro Devices (AMD) Ryzen® processor(s), Accelerated Processing Units (APUs), or Epyc® processors; ARM-based processor(s) licensed from ARM Holdings, Ltd. such as the ARM Cortex-A family of processors and the ThunderX2® provided by Cavium™, Inc.; a MIPS-based design from MIPS Technologies, Inc. such as MIPS Warrior P-class processors; and/or the like. In some embodiments, the system 11100 may not utilize application circuitry 11105, and instead may include a special-purpose processor/controller to process IP data received from an EPC or 5GC, for example.
  • In some implementations, the application circuitry 11105 may include one or more hardware accelerators, which may be microprocessors, programmable processing devices, or the like. The one or more hardware accelerators may include, for example, computer vision (CV) and/or deep learning (DL) accelerators. As examples, the programmable processing devices may be one or more a field-programmable devices (FPDs) such as field-programmable gate arrays (FPGAs) and the like; programmable logic devices (PLDs) such as complex PLDs (CPLDs), high-capacity PLDs (HCPLDs), and the like; ASICs such as structured ASICs and the like; programmable SoCs (PSoCs); and the like. In such implementations, the circuitry of application circuitry 11105 may comprise logic blocks or logic fabric, and other interconnected resources that may be programmed to perform various functions, such as the procedures, methods, functions, etc. of the various embodiments discussed herein. In such embodiments, the circuitry of application circuitry 11105 may include memory cells (e.g., erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), flash memory, static memory (e.g., static random access memory (SRAM), anti-fuses, etc.)) used to store logic blocks, logic fabric, data, etc. in look-up-tables (LUTs) and the like.
  • The baseband circuitry 11110 may be implemented, for example, as a solder-down substrate including one or more integrated circuits, a single packaged integrated circuit soldered to a main circuit board or a multi-chip module containing two or more integrated circuits. The various hardware electronic elements of baseband circuitry 11110 are discussed infra with regard to FIG. 12.
  • User interface circuitry 11150 may include one or more user interfaces designed to enable user interaction with the system 11100 or peripheral component interfaces designed to enable peripheral component interaction with the system 11100. User interfaces may include, but are not limited to, one or more physical or virtual buttons (e.g., a reset button), one or more indicators (e.g., light emitting diodes (LEDs)), a physical keyboard or keypad, a mouse, a touchpad, a touchscreen, speakers or other audio emitting devices, microphones, a printer, a scanner, a headset, a display screen or display device, etc. Peripheral component interfaces may include, but are not limited to, a nonvolatile memory port, a universal serial bus (USB) port, an audio jack, a power supply interface, etc.
  • The radio front end modules (RFEMs) 11115 may comprise a millimeter wave (mmWave) RFEM and one or more sub-mmWave radio frequency integrated circuits (RFICs). In some implementations, the one or more sub-mmWave RFICs may be physically separated from the mmWave RFEM. The RFICs may include connections to one or more antennas or antenna arrays (see e.g., antenna array 1211 of FIG. 12 infra), and the RFEM may be connected to multiple antennas. In alternative implementations, both mmWave and sub-mmWave radio functions may be implemented in the same physical RFEM 11115, which incorporates both mmWave antennas and sub-mmWave.
  • The memory circuitry 11120 may include one or more of volatile memory including dynamic random access memory (DRAM) and/or synchronous dynamic random access memory (SDRAM), and nonvolatile memory (NVM) including high-speed electrically erasable memory (commonly referred to as Flash memory), phase change random access memory (PRAM), magnetoresistive random access memory (MRAM), etc., and may incorporate the three-dimensional (3D) cross-point (XPOINT) memories from Intel® and Micron®. Memory circuitry 11120 may be implemented as one or more of solder down packaged integrated circuits, socketed memory modules and plug-in memory cards.
  • The PMIC 11125 may include voltage regulators, surge protectors, power alarm detection circuitry, and one or more backup power sources such as a battery or capacitor. The power alarm detection circuitry may detect one or more of brown out (under-voltage) and surge (over-voltage) conditions. The power tee circuitry 11130 may provide for electrical power drawn from a network cable to provide both power supply and data connectivity to the infrastructure equipment 11100 using a single cable.
  • The network controller circuitry 11135 may provide connectivity to a network using a standard network interface protocol such as Ethernet, Ethernet over GRE Tunnels, Ethernet over Multiprotocol Label Switching (MPLS), or some other suitable protocol. Network connectivity may be provided to/from the infrastructure equipment 11100 via network interface connector 11140 using a physical connection, which may be electrical (commonly referred to as a “copper interconnect”), optical, or wireless. The network controller circuitry 11135 may include one or more dedicated processors and/or FPGAs to communicate using one or more of the aforementioned protocols. In some implementations, the network controller circuitry 11135 may include multiple controllers to provide connectivity to other networks using the same or different protocols.
  • The positioning circuitry 11145 includes circuitry to receive and decode signals transmitted/broadcasted by a positioning network of a global navigation satellite system (GNSS). Examples of navigation satellite constellations (or GNSS) include United States' Global Positioning System (GPS), Russia's Global Navigation System (GLONASS), the European Union's Galileo system, China's BeiDou Navigation Satellite System, a regional navigation system or GNSS augmentation system (e.g., Navigation with Indian Constellation (NAVIC), Japan's Quasi-Zenith Satellite System (QZSS), France's Doppler Orbitography and Radio-positioning Integrated by Satellite (DORIS), etc.), or the like. The positioning circuitry 11145 comprises various hardware elements (e.g., including hardware devices such as switches, filters, amplifiers, antenna elements, and the like to facilitate OTA communications) to communicate with components of a positioning network, such as navigation satellite constellation nodes. In some embodiments, the positioning circuitry 11145 may include a Micro-Technology for Positioning, Navigation, and Timing (Micro-PNT) IC that uses a master timing clock to perform position tracking/estimation without GNSS assistance. The positioning circuitry 11145 may also be part of, or interact with, the baseband circuitry 11110 and/or RFEMs 11115 to communicate with the nodes and components of the positioning network. The positioning circuitry 11145 may also provide position data and/or time data to the application circuitry 11105, which may use the data to synchronize operations with various infrastructure (e.g., RAN nodes 1011, etc.), or the like.
  • The components shown by FIG. 11A may communicate with one another using interface circuitry, which may include any number of bus and/or interconnect (IX) technologies such as industry standard architecture (ISA), extended ISA (EISA), peripheral component interconnect (PCI), peripheral component interconnect extended (PCIx), PCI express (PCIe), or any number of other technologies. The bus/IX may be a proprietary bus, for example, used in a SoC based system. Other bus/IX systems may be included, such as an I2C interface, an SPI interface, point to point interfaces, and a power bus, among others.
  • FIG. 11B illustrates an example of a platform 11200 (or “device 11200”) in accordance with various embodiments. In embodiments, the computer platform 11200 may be suitable for use as UEs 1001, application servers 1030, and/or any other element/device discussed herein. The platform 11200 may include any combinations of the components shown in the example. The components of platform 11200 may be implemented as integrated circuits (ICs), portions thereof, discrete electronic devices, or other modules, logic, hardware, software, firmware, or a combination thereof adapted in the computer platform 11200, or as components otherwise incorporated within a chassis of a larger system. The block diagram of FIG. 11B is intended to show a high level view of components of the computer platform 11200. However, some of the components shown may be omitted, additional components may be present, and different arrangement of the components shown may occur in other implementations.
  • Application circuitry 11205 includes circuitry such as, but not limited to one or more processors (or processor cores), cache memory, and one or more of LDOs, interrupt controllers, serial interfaces such as SPI, I2C or universal programmable serial interface module, RTC, timer-counters including interval and watchdog timers, general purpose I/O, memory card controllers such as SD MMC or similar, USB interfaces, MIPI interfaces, and JTAG test access ports. The processors (or cores) of the application circuitry 11205 may be coupled with or may include memory/storage elements and may be configured to execute instructions stored in the memory/storage to enable various applications or operating systems to run on the system 11200. In some implementations, the memory/storage elements may be on-chip memory circuitry, which may include any suitable volatile and/or non-volatile memory, such as DRAM, SRAM, EPROM, EEPROM, Flash memory, solid-state memory, and/or any other type of memory device technology, such as those discussed herein.
  • The processor(s) of application circuitry 11105 may include, for example, one or more processor cores, one or more application processors, one or more GPUs, one or more RISC processors, one or more ARM processors, one or more CISC processors, one or more DSP, one or more FPGAs, one or more PLDs, one or more ASICs, one or more microprocessors or controllers, a multithreaded processor, an ultra-low voltage processor, an embedded processor, some other known processing element, or any suitable combination thereof. In some embodiments, the application circuitry 11105 may comprise, or may be, a special-purpose processor/controller to operate according to the various embodiments herein.
  • As examples, the processor(s) of application circuitry 11205 may include an Intel® Architecture Core™ based processor, such as a Quark™, an Atom™, an i3, an i5, an i7, or an MCU-class processor, or another such processor available from Intel® Corporation, Santa Clara, Calif. The processors of the application circuitry 11205 may also be one or more of Advanced Micro Devices (AMD) Ryzen® processor(s) or Accelerated Processing Units (APUs); A5-A9 processor(s) from Apple® Inc., Snapdragon™ processor(s) from Qualcomm® Technologies, Inc., Texas Instruments, Inc.® Open Multimedia Applications Platform (OMAP)™ processor(s); a MIPS-based design from MIPS Technologies, Inc. such as MIPS Warrior M-class, Warrior I-class, and Warrior P-class processors; an ARM-based design licensed from ARM Holdings, Ltd., such as the ARM Cortex-A, Cortex-R, and Cortex-M family of processors; or the like. In some implementations, the application circuitry 11205 may be a part of a system on a chip (SoC) in which the application circuitry 11205 and other components are formed into a single integrated circuit, or a single package, such as the Edison™ or Galileo™ SoC boards from Intel® Corporation.
  • Additionally or alternatively, application circuitry 11205 may include circuitry such as, but not limited to, one or more a field-programmable devices (FPDs) such as FPGAs and the like; programmable logic devices (PLDs) such as complex PLDs (CPLDs), high-capacity PLDs (HCPLDs), and the like; ASICs such as structured ASICs and the like; programmable SoCs (PSoCs); and the like. In such embodiments, the circuitry of application circuitry 11205 may comprise logic blocks or logic fabric, and other interconnected resources that may be programmed to perform various functions, such as the procedures, methods, functions, etc. of the various embodiments discussed herein. In such embodiments, the circuitry of application circuitry 11205 may include memory cells (e.g., erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), flash memory, static memory (e.g., static random access memory (SRAM), anti-fuses, etc.)) used to store logic blocks, logic fabric, data, etc. in look-up tables (LUTs) and the like.
  • The baseband circuitry 11210 may be implemented, for example, as a solder-down substrate including one or more integrated circuits, a single packaged integrated circuit soldered to a main circuit board or a multi-chip module containing two or more integrated circuits. The various hardware electronic elements of baseband circuitry 11210 are discussed infra with regard to FIG. 12.
  • The RFEMs 11215 may comprise a millimeter wave (mmWave) RFEM and one or more sub-mmWave radio frequency integrated circuits (RFICs). In some implementations, the one or more sub-mmWave RFICs may be physically separated from the mmWave RFEM. The RFICs may include connections to one or more antennas or antenna arrays (see e.g., antenna array 1211 of FIG. 12 infra), and the RFEM may be connected to multiple antennas. In alternative implementations, both mmWave and sub-mmWave radio functions may be implemented in the same physical RFEM 11215, which incorporates both mmWave antennas and sub-mmWave.
  • The memory circuitry 11220 may include any number and type of memory devices used to provide for a given amount of system memory. As examples, the memory circuitry 11220 may include one or more of volatile memory including random access memory (RAM), dynamic RAM (DRAM) and/or synchronous dynamic RAM (SDRAM), and nonvolatile memory (NVM) including high-speed electrically erasable memory (commonly referred to as Flash memory), phase change random access memory (PRAM), magnetoresistive random access memory (MRAM), etc. The memory circuitry 11220 may be developed in accordance with a Joint Electron Devices Engineering Council (JEDEC) low power double data rate (LPDDR)-based design, such as LPDDR2, LPDDR3, LPDDR4, or the like. Memory circuitry 11220 may be implemented as one or more of solder down packaged integrated circuits, single die package (SDP), dual die package (DDP) or quad die package (Q17P), socketed memory modules, dual inline memory modules (DIMMs) including microDIMMs or MiniDIMMs, and/or soldered onto a motherboard via a ball grid array (BGA). In low power implementations, the memory circuitry 11220 may be on-die memory or registers associated with the application circuitry 11205. To provide for persistent storage of information such as data, applications, operating systems and so forth, memory circuitry 11220 may include one or more mass storage devices, which may include, inter alia, a solid state disk drive (SSDD), hard disk drive (HDD), a micro HDD, resistance change memories, phase change memories, holographic memories, or chemical memories, among others. For example, the computer platform 11200 may incorporate the three-dimensional (3D) cross-point (XPOINT) memories from Intel® and Micron®.
  • Removable memory circuitry 11223 may include devices, circuitry, enclosures/housings, ports or receptacles, etc. used to couple portable data storage devices with the platform 11200. These portable data storage devices may be used for mass storage purposes, and may include, for example, flash memory cards (e.g., Secure Digital (SD) cards, microSD cards, xD picture cards, and the like), and USB flash drives, optical discs, external HDDs, and the like.
  • The platform 11200 may also include interface circuitry (not shown) that is used to connect external devices with the platform 11200. The external devices connected to the platform 11200 via the interface circuitry include sensor circuitry 11221 and electro-mechanical components (EMCs) 11222, as well as removable memory devices coupled to removable memory circuitry 11223.
  • The sensor circuitry 11221 include devices, modules, or subsystems whose purpose is to detect events or changes in its environment and send the information (sensor data) about the detected events to some other a device, module, subsystem, etc. Examples of such sensors include, inter alia, inertia measurement units (IMUs) comprising accelerometers, gyroscopes, and/or magnetometers; microelectromechanical systems (MEMS) or nanoelectromechanical systems (NEMS) comprising 3-axis accelerometers, 3-axis gyroscopes, and/or magnetometers; level sensors; flow sensors; temperature sensors (e.g., thermistors); pressure sensors; barometric pressure sensors; gravimeters; altimeters; image capture devices (e.g., cameras or lensless apertures); light detection and ranging (LiDAR) sensors; proximity sensors (e.g., infrared radiation detector and the like), depth sensors, ambient light sensors, ultrasonic transceivers; microphones or other like audio capture devices; etc.
  • EMCs 11222 include devices, modules, or subsystems whose purpose is to enable platform 11200 to change its state, position, and/or orientation, or move or control a mechanism or (sub)system. Additionally, EMCs 11222 may be configured to generate and send messages/signalling to other components of the platform 11200 to indicate a current state of the EMCs 11222. Examples of the EMCs 11222 include one or more power switches, relays including electromechanical relays (EMRs) and/or solid state relays (SSRs), actuators (e.g., valve actuators, etc.), an audible sound generator, a visual warning device, motors (e.g., DC motors, stepper motors, etc.), wheels, thrusters, propellers, claws, clamps, hooks, and/or other like electro-mechanical components. In embodiments, platform 11200 is configured to operate one or more EMCs 11222 based on one or more captured events and/or instructions or control signals received from a service provider and/or various clients.
  • In some implementations, the interface circuitry may connect the platform 11200 with positioning circuitry 11245. The positioning circuitry 11245 includes circuitry to receive and decode signals transmitted/broadcasted by a positioning network of a GNSS. Examples of navigation satellite constellations (or GNSS) include United States' GPS, Russia's GLONASS, the European Union's Galileo system, China's BeiDou Navigation Satellite System, a regional navigation system or GNSS augmentation system (e.g., NAVIC), Japan's QZSS, France's DORIS, etc.), or the like. The positioning circuitry 11245 comprises various hardware elements (e.g., including hardware devices such as switches, filters, amplifiers, antenna elements, and the like to facilitate OTA communications) to communicate with components of a positioning network, such as navigation satellite constellation nodes. In some embodiments, the positioning circuitry 11245 may include a Micro-PNT IC that uses a master timing clock to perform position tracking/estimation without GNSS assistance. The positioning circuitry 11245 may also be part of, or interact with, the baseband circuitry 11110 and/or RFEMs 11215 to communicate with the nodes and components of the positioning network. The positioning circuitry 11245 may also provide position data and/or time data to the application circuitry 11205, which may use the data to synchronize operations with various infrastructure (e.g., radio base stations), for turn-by-turn navigation applications, or the like
  • In some implementations, the interface circuitry may connect the platform 11200 with Near-Field Communication (NFC) circuitry 11240. NFC circuitry 11240 is configured to provide contactless, short-range communications based on radio frequency identification (RFID) standards, wherein magnetic field induction is used to enable communication between NFC circuitry 11240 and NFC-enabled devices external to the platform 11200 (e.g., an “NFC touchpoint”). NFC circuitry 11240 comprises an NFC controller coupled with an antenna element and a processor coupled with the NFC controller. The NFC controller may be a chip/IC providing NFC functionalities to the NFC circuitry 11240 by executing NFC controller firmware and an NFC stack. The NFC stack may be executed by the processor to control the NFC controller, and the NFC controller firmware may be executed by the NFC controller to control the antenna element to emit short-range RF signals. The RF signals may power a passive NFC tag (e.g., a microchip embedded in a sticker or wristband) to transmit stored data to the NFC circuitry 11240, or initiate data transfer between the NFC circuitry 11240 and another active NFC device (e.g., a smartphone or an NFC-enabled POS terminal) that is proximate to the platform 11200.
  • The driver circuitry 11246 may include software and hardware elements that operate to control particular devices that are embedded in the platform 11200, attached to the platform 11200, or otherwise communicatively coupled with the platform 11200. The driver circuitry 11246 may include individual drivers allowing other components of the platform 11200 to interact with or control various input/output (I/O) devices that may be present within, or connected to, the platform 11200. For example, driver circuitry 11246 may include a display driver to control and allow access to a display device, a touchscreen driver to control and allow access to a touchscreen interface of the platform 11200, sensor drivers to obtain sensor readings of sensor circuitry 11221 and control and allow access to sensor circuitry 11221, EMC drivers to obtain actuator positions of the EMCs 11222 and/or control and allow access to the EMCs 11222, a camera driver to control and allow access to an embedded image capture device, audio drivers to control and allow access to one or more audio devices.
  • The power management integrated circuitry (PMIC) 11225 (also referred to as “power management circuitry 11225”) may manage power provided to various components of the platform 11200. In particular, with respect to the baseband circuitry 11210, the PMIC 11225 may control power-source selection, voltage scaling, battery charging, or DC-to-DC conversion. The PMIC 11225 may often be included when the platform 11200 is capable of being powered by a battery 11230, for example, when the device is included in a UE 1001.
  • In some embodiments, the PMIC 11225 may control, or otherwise be part of, various power saving mechanisms of the platform 11200. For example, if the platform 11200 is in an RRC_Connected state, where it is still connected to the RAN node as it expects to receive traffic shortly, then it may enter a state known as Discontinuous Reception Mode (DRX) after a period of inactivity. During this state, the platform 11200 may power down for brief intervals of time and thus save power. If there is no data traffic activity for an extended period of time, then the platform 11200 may transition off to an RRC Idle state, where it disconnects from the network and does not perform operations such as channel quality feedback, handover, etc. The platform 11200 goes into a very low power state and it performs paging where again it periodically wakes up to listen to the network and then powers down again. The platform 11200 may not receive data in this state; in order to receive data, it must transition back to RRC_Connected state. An additional power saving mode may allow a device to be unavailable to the network for periods longer than a paging interval (ranging from seconds to a few hours). During this time, the device is totally unreachable to the network and may power down completely. Any data sent during this time incurs a large delay and it is assumed the delay is acceptable.
  • A battery 11230 may power the platform 11200, although in some examples the platform 11200 may be mounted deployed in a fixed location, and may have a power supply coupled to an electrical grid. The battery 11230 may be a lithium ion battery, a metal-air battery, such as a zinc-air battery, an aluminum-air battery, a lithium-air battery, and the like. In some implementations, such as in V2X applications, the battery 11230 may be a typical lead-acid automotive battery.
  • In some implementations, the battery 11230 may be a “smart battery,” which includes or is coupled with a Battery Management System (BMS) or battery monitoring integrated circuitry. The BMS may be included in the platform 11200 to track the state of charge (SoCh) of the battery 11230. The BMS may be used to monitor other parameters of the battery 11230 to provide failure predictions, such as the state of health (SoH) and the state of function (SoF) of the battery 11230. The BMS may communicate the information of the battery 11230 to the application circuitry 11205 or other components of the platform 11200. The BMS may also include an analog-to-digital (ADC) convertor that allows the application circuitry 11205 to directly monitor the voltage of the battery 11230 or the current flow from the battery 11230. The battery parameters may be used to determine actions that the platform 11200 may perform, such as transmission frequency, network operation, sensing frequency, and the like.
  • A power block, or other power supply coupled to an electrical grid may be coupled with the BMS to charge the battery 11230. In some examples, the power block 1130 may be replaced with a wireless power receiver to obtain the power wirelessly, for example, through a loop antenna in the computer platform 11200. In these examples, a wireless battery charging circuit may be included in the BMS. The specific charging circuits chosen may depend on the size of the battery 11230, and thus, the current required. The charging may be performed using the Airfuel standard promulgated by the Airfuel Alliance, the Qi wireless charging standard promulgated by the Wireless Power Consortium, or the Rezence charging standard promulgated by the Alliance for Wireless Power, among others.
  • User interface circuitry 11250 includes various input/output (I/O) devices present within, or connected to, the platform 11200, and includes one or more user interfaces designed to enable user interaction with the platform 11200 and/or peripheral component interfaces designed to enable peripheral component interaction with the platform 11200. The user interface circuitry 11250 includes input device circuitry and output device circuitry. Input device circuitry includes any physical or virtual means for accepting an input including, inter alia, one or more physical or virtual buttons (e.g., a reset button), a physical keyboard, keypad, mouse, touchpad, touchscreen, microphones, scanner, headset, and/or the like. The output device circuitry includes any physical or virtual means for showing information or otherwise conveying information, such as sensor readings, actuator position(s), or other like information. Output device circuitry may include any number and/or combinations of audio or visual display, including, inter alia, one or more simple visual outputs/indicators (e.g., binary status indicators (e.g., light emitting diodes (LEDs)) and multi-character visual outputs, or more complex outputs such as display devices or touchscreens (e.g., Liquid Chrystal Displays (LCD), LED displays, quantum dot displays, projectors, etc.), with the output of characters, graphics, multimedia objects, and the like being generated or produced from the operation of the platform 11200. The output device circuitry may also include speakers or other audio emitting devices, printer(s), and/or the like. In some embodiments, the sensor circuitry 11221 may be used as the input device circuitry (e.g., an image capture device, motion capture device, or the like) and one or more EMCs may be used as the output device circuitry (e.g., an actuator to provide haptic feedback or the like). In another example, NFC circuitry comprising an NFC controller coupled with an antenna element and a processing device may be included to read electronic tags and/or connect with another NFC-enabled device. Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a USB port, an audio jack, a power supply interface, etc.
  • Although not shown, the components of platform 11200 may communicate with one another using a suitable bus or interconnect (IX) technology, which may include any number of technologies, including ISA, EISA, PCI, PCIx, PCIe, a Time-Trigger Protocol (TTP) system, a FlexRay system, or any number of other technologies. The bus/IX may be a proprietary bus/IX, for example, used in a SoC based system. Other bus/IX systems may be included, such as an I2C interface, an SPI interface, point-to-point interfaces, and a power bus, among others.
  • FIG. 12 illustrates example components of baseband circuitry 1210 and radio front end modules (RFEM) 1215 in accordance with various embodiments. The baseband circuitry 1210 corresponds to the baseband circuitry 11110 and 11210 of FIGS. 11A and 11B, respectively. The RFEM 1215 corresponds to the RFEM 11115 and 11215 of FIGS. 11A and 11B, respectively. As shown, the RFEMs 1215 may include Radio Frequency (RF) circuitry 1206, front-end module (FEM) circuitry 1208, antenna array 1211 coupled together at least as shown.
  • The baseband circuitry 1210 includes circuitry and/or control logic configured to carry out various radio/network protocol and radio control functions that enable communication with one or more radio networks via the RF circuitry 1206. The radio control functions may include, but are not limited to, signal modulation/demodulation, encoding/decoding, radio frequency shifting, etc. In some embodiments, modulation/demodulation circuitry of the baseband circuitry 1210 may include Fast-Fourier Transform (FFT), precoding, or constellation mapping/demapping functionality. In some embodiments, encoding/decoding circuitry of the baseband circuitry 1210 may include convolution, tail-biting convolution, turbo, Viterbi, or Low Density Parity Check (LDPC) encoder/decoder functionality. Embodiments of modulation/demodulation and encoder/decoder functionality are not limited to these examples and may include other suitable functionality in other embodiments. The baseband circuitry 1210 is configured to process baseband signals received from a receive signal path of the RF circuitry 1206 and to generate baseband signals for a transmit signal path of the RF circuitry 1206. The baseband circuitry 1210 is configured to interface with application circuitry 11105/11205 (see FIGS. 11A and 11B) for generation and processing of the baseband signals and for controlling operations of the RF circuitry 1206. The baseband circuitry 1210 may handle various radio control functions.
  • The aforementioned circuitry and/or control logic of the baseband circuitry 1210 may include one or more single or multi-core processors. For example, the one or more processors may include a 3G baseband processor 1204A, a 4G/LTE baseband processor 1204B, a 5G/NR baseband processor 1204C, or some other baseband processor(s) 1204D for other existing generations, generations in development or to be developed in the future (e.g., sixth generation (6G), etc.). In other embodiments, some or all of the functionality of baseband processors 1204A-D may be included in modules stored in the memory 1204G and executed via a Central Processing Unit (CPU) 1204E. In other embodiments, some or all of the functionality of baseband processors 1204A-D may be provided as hardware accelerators (e.g., FPGAs, ASICs, etc.) loaded with the appropriate bit streams or logic blocks stored in respective memory cells. In various embodiments, the memory 1204G may store program code of a real-time OS (RTOS), which when executed by the CPU 1204E (or other baseband processor), is to cause the CPU 1204E (or other baseband processor) to manage resources of the baseband circuitry 1210, schedule tasks, etc. Examples of the RTOS may include Operating System Embedded (OSE)™ provided by Enea®, Nucleus RTOS™ provided by Mentor Graphics®, Versatile Real-Time Executive (VRTX) provided by Mentor Graphics®, ThreadX™ provided by Express Logic®, FreeRTOS, REX OS provided by Qualcomm®, OKL4 provided by Open Kernel (OK) Labs®, or any other suitable RTOS, such as those discussed herein. In addition, the baseband circuitry 1210 includes one or more audio digital signal processor(s) (DSP) 1204F. The audio DSP(s) 1204F include elements for compression/decompression and echo cancellation and may include other suitable processing elements in other embodiments.
  • In some embodiments, each of the processors 1204A-1204E include respective memory interfaces to send/receive data to/from the memory 1204G. The baseband circuitry 1210 may further include one or more interfaces to communicatively couple to other circuitries/devices, such as an interface to send/receive data to/from memory external to the baseband circuitry 1210; an application circuitry interface to send/receive data to/from the application circuitry 11105/11205 of FIGS. 11A-12); an RF circuitry interface to send/receive data to/from RF circuitry 1206 of FIG. 12; a wireless hardware connectivity interface to send/receive data to/from one or more wireless hardware elements (e.g., Near Field Communication (NFC) components, Bluetooth®/Bluetooth® Low Energy components, Wi-Fi® components, and/or the like); and a power management interface to send/receive power or control signals to/from the PMIC 11225.
  • In alternate embodiments (which may be combined with the above described embodiments), baseband circuitry 1210 comprises one or more digital baseband systems, which are coupled with one another via an interconnect subsystem and to a CPU subsystem, an audio subsystem, and an interface subsystem. The digital baseband subsystems may also be coupled to a digital baseband interface and a mixed-signal baseband subsystem via another interconnect subsystem. Each of the interconnect subsystems may include a bus system, point-to-point connections, network-on-chip (NOC) structures, and/or some other suitable bus or interconnect technology, such as those discussed herein. The audio subsystem may include DSP circuitry, buffer memory, program memory, speech processing accelerator circuitry, data converter circuitry such as analog-to-digital and digital-to-analog converter circuitry, analog circuitry including one or more of amplifiers and filters, and/or other like components. In an aspect of the present disclosure, baseband circuitry 1210 may include protocol processing circuitry with one or more instances of control circuitry (not shown) to provide control functions for the digital baseband circuitry and/or radio frequency circuitry (e.g., the radio front end modules 1215).
  • Although not shown by FIG. 12, in some embodiments, the baseband circuitry 1210 includes individual processing device(s) to operate one or more wireless communication protocols (e.g., a “multi-protocol baseband processor” or “protocol processing circuitry”) and individual processing device(s) to implement PHY layer functions. In these embodiments, the PHY layer functions include the aforementioned radio control functions. In these embodiments, the protocol processing circuitry operates or implements various protocol layers/entities of one or more wireless communication protocols. In a first example, the protocol processing circuitry may operate LTE protocol entities and/or 5G/NR protocol entities when the baseband circuitry 1210 and/or RF circuitry 1206 are part of mmWave communication circuitry or some other suitable cellular communication circuitry. In the first example, the protocol processing circuitry would operate MAC, RLC, PDCP, SDAP, RRC, and NAS functions. In a second example, the protocol processing circuitry may operate one or more IEEE-based protocols when the baseband circuitry 1210 and/or RF circuitry 1206 are part of a Wi-Fi communication system. In the second example, the protocol processing circuitry would operate Wi-Fi MAC and logical link control (LLC) functions. The protocol processing circuitry may include one or more memory structures (e.g., 1204G) to store program code and data for operating the protocol functions, as well as one or more processing cores to execute the program code and perform various operations using the data. The baseband circuitry 1210 may also support radio communications for more than one wireless protocol.
  • The various hardware elements of the baseband circuitry 1210 discussed herein may be implemented, for example, as a solder-down substrate including one or more integrated circuits (ICs), a single packaged IC soldered to a main circuit board or a multi-chip module containing two or more ICs. In one example, the components of the baseband circuitry 1210 may be suitably combined in a single chip or chipset, or disposed on a same circuit board. In another example, some or all of the constituent components of the baseband circuitry 1210 and RF circuitry 1206 may be implemented together such as, for example, a system on a chip (SoC) or System-in-Package (SiP). In another example, some or all of the constituent components of the baseband circuitry 1210 may be implemented as a separate SoC that is communicatively coupled with and RF circuitry 1206 (or multiple instances of RF circuitry 1206). In yet another example, some or all of the constituent components of the baseband circuitry 1210 and the application circuitry 11105/11205 may be implemented together as individual SoCs mounted to a same circuit board (e.g., a “multi-chip package”).
  • In some embodiments, the baseband circuitry 1210 may provide for communication compatible with one or more radio technologies. For example, in some embodiments, the baseband circuitry 1210 may support communication with an E-UTRAN or other WMAN, a WLAN, a WPAN. Embodiments in which the baseband circuitry 1210 is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry.
  • RF circuitry 1206 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium. In various embodiments, the RF circuitry 1206 may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network. RF circuitry 1206 may include a receive signal path, which may include circuitry to down-convert RF signals received from the FEM circuitry 1208 and provide baseband signals to the baseband circuitry 1210. RF circuitry 1206 may also include a transmit signal path, which may include circuitry to up-convert baseband signals provided by the baseband circuitry 1210 and provide RF output signals to the FEM circuitry 1208 for transmission.
  • In some embodiments, the receive signal path of the RF circuitry 1206 may include mixer circuitry 1206 a, amplifier circuitry 1206 b and filter circuitry 1206 c. In some embodiments, the transmit signal path of the RF circuitry 1206 may include filter circuitry 1206 c and mixer circuitry 1206 a. RF circuitry 1206 may also include synthesizer circuitry 1206 d for synthesizing a frequency for use by the mixer circuitry 1206 a of the receive signal path and the transmit signal path. In some embodiments, the mixer circuitry 1206 a of the receive signal path may be configured to down-convert RF signals received from the FEM circuitry 1208 based on the synthesized frequency provided by synthesizer circuitry 1206 d. The amplifier circuitry 1206 b may be configured to amplify the down-converted signals and the filter circuitry 1206 c may be a low-pass filter (LPF) or band-pass filter (BPF) configured to remove unwanted signals from the down-converted signals to generate output baseband signals. Output baseband signals may be provided to the baseband circuitry 1210 for further processing. In some embodiments, the output baseband signals may be zero-frequency baseband signals, although this is not a requirement. In some embodiments, mixer circuitry 1206 a of the receive signal path may comprise passive mixers, although the scope of the embodiments is not limited in this respect.
  • In some embodiments, the mixer circuitry 1206 a of the transmit signal path may be configured to up-convert input baseband signals based on the synthesized frequency provided by the synthesizer circuitry 1206 d to generate RF output signals for the FEM circuitry 1208. The baseband signals may be provided by the baseband circuitry 1210 and may be filtered by filter circuitry 1206 c.
  • In some embodiments, the mixer circuitry 1206 a of the receive signal path and the mixer circuitry 1206 a of the transmit signal path may include two or more mixers and may be arranged for quadrature downconversion and upconversion, respectively. In some embodiments, the mixer circuitry 1206 a of the receive signal path and the mixer circuitry 1206 a of the transmit signal path may include two or more mixers and may be arranged for image rejection (e.g., Hartley image rejection). In some embodiments, the mixer circuitry 1206 a of the receive signal path and the mixer circuitry 1206 a of the transmit signal path may be arranged for direct downconversion and direct upconversion, respectively. In some embodiments, the mixer circuitry 1206 a of the receive signal path and the mixer circuitry 1206 a of the transmit signal path may be configured for super-heterodyne operation.
  • In some embodiments, the output baseband signals and the input baseband signals may be analog baseband signals, although the scope of the embodiments is not limited in this respect. In some alternate embodiments, the output baseband signals and the input baseband signals may be digital baseband signals. In these alternate embodiments, the RF circuitry 1206 may include analog-to-digital converter (ADC) and digital-to-analog converter (DAC) circuitry and the baseband circuitry 1210 may include a digital baseband interface to communicate with the RF circuitry 1206.
  • In some dual-mode embodiments, a separate radio IC circuitry may be provided for processing signals for each spectrum, although the scope of the embodiments is not limited in this respect.
  • In some embodiments, the synthesizer circuitry 1206 d may be a fractional-N synthesizer or a fractional N/N+1 synthesizer, although the scope of the embodiments is not limited in this respect as other types of frequency synthesizers may be suitable. For example, synthesizer circuitry 1206 d may be a delta-sigma synthesizer, a frequency multiplier, or a synthesizer comprising a phase-locked loop with a frequency divider.
  • The synthesizer circuitry 1206 d may be configured to synthesize an output frequency for use by the mixer circuitry 1206 a of the RF circuitry 1206 based on a frequency input and a divider control input. In some embodiments, the synthesizer circuitry 1206 d may be a fractional N/N+1 synthesizer.
  • In some embodiments, frequency input may be provided by a voltage controlled oscillator (VCO), although that is not a requirement. Divider control input may be provided by either the baseband circuitry 1210 or the application circuitry 11105/11205 depending on the desired output frequency. In some embodiments, a divider control input (e.g., N) may be determined from a look-up table based on a channel indicated by the application circuitry 11105/11205.
  • Synthesizer circuitry 1206 d of the RF circuitry 1206 may include a divider, a delay-locked loop (DLL), a multiplexer and a phase accumulator. In some embodiments, the divider may be a dual modulus divider (DMD) and the phase accumulator may be a digital phase accumulator (DPA). In some embodiments, the DMD may be configured to divide the input signal by either N or N+1 (e.g., based on a carry out) to provide a fractional division ratio. In some example embodiments, the DLL may include a set of cascaded, tunable, delay elements, a phase detector, a charge pump and a D-type flip-flop. In these embodiments, the delay elements may be configured to break a VCO period up into Nd equal packets of phase, where Nd is the number of delay elements in the delay line. In this way, the DLL provides negative feedback to help ensure that the total delay through the delay line is one VCO cycle.
  • In some embodiments, synthesizer circuitry 1206 d may be configured to generate a carrier frequency as the output frequency, while in other embodiments, the output frequency may be a multiple of the carrier frequency (e.g., twice the carrier frequency, four times the carrier frequency) and used in conjunction with quadrature generator and divider circuitry to generate multiple signals at the carrier frequency with multiple different phases with respect to each other. In some embodiments, the output frequency may be a LO frequency (fLO). In some embodiments, the RF circuitry 1206 may include an IQ/polar converter.
  • FEM circuitry 1208 may include a receive signal path, which may include circuitry configured to operate on RF signals received from antenna array 1211, amplify the received signals and provide the amplified versions of the received signals to the RF circuitry 1206 for further processing. FEM circuitry 1208 may also include a transmit signal path, which may include circuitry configured to amplify signals for transmission provided by the RF circuitry 1206 for transmission by one or more of antenna elements of antenna array 1211. In various embodiments, the amplification through the transmit or receive signal paths may be done solely in the RF circuitry 1206, solely in the FEM circuitry 1208, or in both the RF circuitry 1206 and the FEM circuitry 1208.
  • In some embodiments, the FEM circuitry 1208 may include a TX/RX switch to switch between transmit mode and receive mode operation. The FEM circuitry 1208 may include a receive signal path and a transmit signal path. The receive signal path of the FEM circuitry 1208 may include an LNA to amplify received RF signals and provide the amplified received RF signals as an output (e.g., to the RF circuitry 1206). The transmit signal path of the FEM circuitry 1208 may include a power amplifier (PA) to amplify input RF signals (e.g., provided by RF circuitry 1206), and one or more filters to generate RF signals for subsequent transmission by one or more antenna elements of the antenna array 1211.
  • The antenna array 1211 comprises one or more antenna elements, each of which is configured convert electrical signals into radio waves to travel through the air and to convert received radio waves into electrical signals. For example, digital baseband signals provided by the baseband circuitry 1210 is converted into analog RF signals (e.g., modulated waveform) that will be amplified and transmitted via the antenna elements of the antenna array 1211 including one or more antenna elements (not shown). The antenna elements may be omnidirectional, direction, or a combination thereof. The antenna elements may be formed in a multitude of arranges as are known and/or discussed herein. The antenna array 1211 may comprise microstrip antennas or printed antennas that are fabricated on the surface of one or more printed circuit boards. The antenna array 1211 may be formed in as a patch of metal foil (e.g., a patch antenna) in a variety of shapes, and may be coupled with the RF circuitry 1206 and/or FEM circuitry 1208 using metal transmission lines or the like.
  • Processors of the application circuitry 11105/11205 and processors of the baseband circuitry 1210 may be used to execute elements of one or more instances of a protocol stack. For example, processors of the baseband circuitry 1210, alone or in combination, may be used execute Layer 3, Layer 2, or Layer 1 functionality, while processors of the application circuitry 11105/11205 may utilize data (e.g., packet data) received from these layers and further execute Layer 4 functionality (e.g., TCP and UDP layers). As referred to herein, Layer 3 may comprise a RRC layer, described in further detail below. As referred to herein, Layer 2 may comprise a MAC layer, an RLC layer, and a PDCP layer, described in further detail below. As referred to herein, Layer 1 may comprise a PHY layer of a UE/RAN node, described in further detail below.
  • FIG. 13 is a block diagram illustrating components, according to some example embodiments, able to read instructions from a machine-readable or computer-readable medium (e.g., a non-transitory machine-readable storage medium) and perform any one or more of the methodologies discussed herein. Specifically, FIG. 13 shows a diagrammatic representation of hardware resources 1300 including one or more processors (or processor cores) 1310, one or more memory/storage devices 1320, and one or more communication resources 1330, each of which may be communicatively coupled via a bus 1340. For embodiments where node virtualization (e.g., NFV) is utilized, a hypervisor 1302 may be executed to provide an execution environment for one or more network slices/sub-slices to utilize the hardware resources 1300.
  • The processors 1310 may include, for example, a processor 1312 and a processor 1314. The processor(s) 1310 may be, for example, a central processing unit (CPU), a reduced instruction set computing (RISC) processor, a complex instruction set computing (CISC) processor, a graphics processing unit (GPU), a DSP such as a baseband processor, an ASIC, an FPGA, a radio-frequency integrated circuit (RFIC), another processor (including those discussed herein), or any suitable combination thereof.
  • The memory/storage devices 1320 may include main memory, disk storage, or any suitable combination thereof. The memory/storage devices 1320 may include, but are not limited to, any type of volatile or nonvolatile memory such as dynamic random access memory (DRAM), static random access memory (SRAM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), Flash memory, solid-state storage, etc.
  • The communication resources 1330 may include interconnection or network interface components or other suitable devices to communicate with one or more peripheral devices 1304 or one or more databases 1306 via a network 1308. For example, the communication resources 1330 may include wired communication components (e.g., for coupling via USB), cellular communication components, NFC components, Bluetooth® (or Bluetooth® Low Energy) components, Wi-Fi® components, and other communication components.
  • Instructions 1350 may comprise software, a program, an application, an applet, an app, or other executable code for causing at least any of the processors 1310 to perform any one or more of the methodologies discussed herein. The instructions 1350 may reside, completely or partially, within at least one of the processors 1310 (e.g., within the processor's cache memory), the memory/storage devices 1320, or any suitable combination thereof. Furthermore, any portion of the instructions 1350 may be transferred to the hardware resources 1300 from any combination of the peripheral devices 1304 or the databases 1306. Accordingly, the memory of processors 1310, the memory/storage devices 1320, the peripheral devices 1304, and the databases 1306 are examples of computer-readable and machine-readable media.
  • Example Procedures
  • In some embodiments, the electronic device(s), network(s), system(s), chip(s) or component(s), or portions or implementations thereof, of FIGS. 10-13, or some other figure herein, may be configured to perform one or more processes, techniques, or methods as described herein, or portions thereof. One such process is depicted in FIG. 9A, which may be performed by a next-generation NodeB (gNB) or portion thereof in some embodiments. For example, the process 900 may include, at 905, retrieving downlink control information (DCI) from memory, wherein the DCI is to schedule one or more shared channels with different transport blocks (TBs) in different slots. The process further includes, at 910, encoding a physical downlink control channel (PDCCH) message that includes the DCI for transmission to a user equipment (UE).
  • Another such process is illustrated in FIG. 9B, which may be performed by a next-generation NodeB (gNB) or portion thereof in some embodiments. For example, the process 920 may include, at 925, determining downlink control information (DCI) that is to schedule one or more shared channels with different transport blocks (TBs) in different slots, wherein the one or more shared channels include a physical downlink shared channel (PDSCH) or a physical uplink shared channel (PUSCH). The process further includes, at 930, encoding a physical downlink control channel (PDCCH) message that includes the DCI for transmission to a user equipment (UE).
  • Another such process is illustrated in FIG. 9C, which may be performed by a user equipment (UE) or portion thereof in some embodiments. In this example, the process 940 includes, at 945, receiving downlink control information (DCI) from a physical downlink control channel (PDCCH) message, the DCI to schedule one or more shared channels with different transport blocks (TBs) in different slots, wherein the one or more shared channels include one or more physical uplink shared channels (PUSCHs). The process further includes, at 950, encoding one or more PUSCH messages for transmission based on the DCI.
  • For one or more embodiments, at least one of the components set forth in one or more of the preceding figures may be configured to perform one or more operations, techniques, processes, and/or methods as set forth in the example section below. For example, the baseband circuitry as described above in connection with one or more of the preceding figures may be configured to operate in accordance with one or more of the examples set forth below. For another example, circuitry associated with a UE, base station, network element, etc. as described above in connection with one or more of the preceding figures may be configured to operate in accordance with one or more of the examples set forth below in the example section.
  • EXAMPLES
  • Example 1 may include a method of wireless communication for a fifth generation (5G) or new radio (NR) system, the method comprising:
  • decoding, by a user equipment (UE), a downlink control information (DCI) from physical downlink control channel (PDCCH);
  • decoding, by the UE, one or more physical downlink shared channels (PDSCH) which are scheduled by the DCI; and
  • transmitting, by the UE, one or more physical uplink shared channels (PUSCH) which are scheduled by the DCI.
  • Example 2 may include the method of example 1, wherein in the DCI for scheduling multiple PDSCHs and/or PUSCHs with different TBs, each PDSCH and/or PUSCH may be scheduled within a slot.
  • Example 3 may include the method of example 1, wherein some fields in the DCI may be common for the scheduling of multiple PDSCHs and/or PUSCHs, while other fields may be independent for the scheduling of multiple PDSCHs and/or PUSCHs.
  • Example 4 may include the method of example 1, wherein carrier indicator and bandwidth part (BWP) indicator demodulation reference signal (DMRS) configuration, transmission configuration indication (TCI), sounding reference signal (SRS) resource indicator, frequency domain resource allocation, and transmit power command (TPC) for PUCCH for scheduled PDSCHs and/or PUSCHs with different TBs may be the same
  • Example 5 may include the method of example 1, wherein new data indicator (NDI) may be independent for each scheduled PDSCH and/or PUSCH with different TBs; wherein redundancy version (RV) may be independent for each scheduled PDSCH and/or PUSCH with different TBs.
  • Example 6 may include the method of example 1, wherein the DCI could schedule N·M PDSCHs and/or PUSCHs where N TBs are scheduled by the DCI with each TB mapped to M consecutive PDSCHs and/or PUSCHs. NDI could be indicated for each TB separately.
  • Example 7 may include the method of example 1, wherein a single modulation and coding scheme (MCS) field may be included in the DCI, which can be used to indicate the MCS of all the scheduled PDSCHs and/or PUSCHs.
  • Example 8 may include the method of example 1, wherein HARQ process number can be different for scheduled PDSCHs and/or PUSCHs.
  • Example 9 may include the method of example 1, wherein, a single HARQ process number field can be included in the DCI. The HARQ process number field is used to indicate the HARQ process number of the first PDSCH and/or PUSCH, while the HARQ process numbers for the remaining scheduled PDSCHs and/or PUSCHs can be implicitly determined in accordance with the indicated HARQ process number for the first PDSCH and/or PUSCH.
  • Example 10 may include the method of example 1, wherein a list of HARQ process number set can be configured by higher layers via MSI, RMSI, OSI or RRC signalling for multiple scheduled PDSCHs, and a field in the DCI may be used to indicate which one is selected for HARQ process number of each scheduled PDSCHs.
  • Example 11 may include the method of example 1, wherein for time domain resource assignment for PDSCH, k0 is used to indicate the slot offset between PDCCH and the first scheduled PDSCH; wherein k2 is used to indicate the slot offset between PDCCH and the first scheduled PUSCH.
  • Example 12 may include the method of example 1, wherein same starting and length indicator value (SLIV) and mapping type as part of time domain resource assignment are applied for each scheduled PDSCHs and/or PUSCHs.
  • Example 13 may include the method of example 1, wherein different SLIV and mapping type as part of time domain resource assignment are applied for different scheduled PDSCHs and/or PUSCHs.
  • Example 14 may include the method of example 1, wherein consecutive time domain resource allocation can be employed for the scheduled PDSCHs and/or PUSCHs with different TBs.
  • Example 15 may include the method of example 1, wherein number of scheduled PDSCHs and/or PUSCHs with different TBs may be configured by higher layers via MSI, RMSI, OSI or RRC signalling, or implicitly or explicitly indicated in the DCI or a combination thereof.
  • Example 16 may include the method of example 1, wherein a set of number of scheduled PDSCH and/or PUSCHs with different TBs can be configured by higher layers via MSI, RMSI, OSI or RRC signalling, and further one field in the DCI may be used to explicitly indicate one value from the set of number of scheduled PDSCHs and/or PUSCHs with different TBs.
  • Example 17 may include the method of example 1, wherein time/frequency resource for DMRS for the multiple scheduled PDSCHs and/or PUSCHs could be designed separately or jointly.
  • Example 18 may include the method of example 1, wherein for multi-TTI scheduling for PDSCHs with different TBs, a single PUCCH resource indicator (PRI) may be used to indicate one or more PUCCH resources for carrying HARQ-ACK response of one or more scheduled PDSCHs.
  • Example 19 may include the method of example 1, same PDSCH-to-HARQ_feedback timing indicator is used to indicate the slot offset between each scheduled PDSCH and each PUCCH carrying HARQ-ACK feedback of the corresponding PDSCH.
  • Example 20 may include the method of example 1, single PDSCH-to-HARQ_feedback timing indicator is used to indicate the slot offset between the last scheduled PDSCH and one PUCCH
  • Example 21 may include the method of example 1 or some other example herein, wherein a dynamic HARQ-ACK codebook is generated considering multi-TTI scheduling PDSCH transmissions with multiple TBs, which consists of two sub-codebooks.
  • Example 22 may include the method of example 21 or some other example herein, wherein the first sub-codebook carries HARQ-ACK bits for all TB based PDSCH transmissions scheduled by a DCI scheduling a single TTI, while the second sub-codebook carries HARQ-ACK bits for all other PDSCH transmissions.
  • Example 23 may include the method of example 21 or some other example herein, wherein the first sub-codebook carries HARQ-ACK bits for TB based PDSCH transmissions scheduled by a DCI scheduling one or two TBs, while the second sub-codebook carries HARQ-ACK bits for all other PDSCH transmissions.
  • Example 24 may include the method of example 21 or some other example herein, wherein the first sub-codebook carries HARQ-ACK bits for PDSCH transmissions scheduled by a DCI scheduling one or two TBs or two CBGs, while the second sub-codebook carries HARQ-ACK bits for all other PDSCH transmissions.
  • Example 25 includes a method comprising:
  • generating a physical downlink control channel (PDCCH) message that includes downlink control information (DCI), wherein the DCI is to schedule one or more shared channels with different transport blocks (TBs) in different slots; and encoding the PDCCH message for transmission to a user equipment (UE).
  • Example 26 includes the method of example 29 or some other example herein, wherein the one or more shared channels include a physical downlink shared channel (PDSCH) or a physical uplink shared channel (PUSCH).
  • Example 27 includes the method of example 26 or some other example herein, wherein the DCI is to schedule four PDSCHs with different TBs.
  • Example 28 includes the method of example 26 or some other example herein, wherein the DCI is to schedule three PUSCHs with different TBs.
  • Example 29 includes the method of example 25 or some other example herein, wherein each respective of the one or more shared channels is scheduled within a respective slot.
  • Example 30 includes the method of example 25 or some other example herein, wherein a plurality of fields within the DCI are common among multiple shared channels.
  • Example 31 includes the method of example 30 or some other example herein, wherein a carrier indicator and a bandwidth part (BWP) indicator indicated in the DCI are the same for multiple shared channels.
  • Example 32 includes the method of example 30 or some other example herein, wherein a frequency domain resource allocation indicated in the DCI is the same for multiple shared channels.
  • Example 33 includes the method of example 25 or some other example herein, wherein a single transmission configuration indication (TCI) in the DCI is to be applied to transmission of a plurality of shared channels.
  • Example 34 includes the method of example 25 or some other example herein, wherein a single sounding reference signal (SRS) resource indicator in the DCI is to be applied to a plurality of shared channels.
  • Example 35 includes the method of example 25 or some other example herein, wherein the DCI includes an independent new data indicator (NDI) for each respective shared channel.
  • Example 36 includes the method of example 25 or some other example herein, further comprising generating a dynamic hybrid automatic repeat request-acknowledgement (HARQ-ACK) codebook for multiple transmit time interval (multi-TTI) scheduling for PDSCH transmissions with multiple transport blocks (TBs).
  • Example 37 includes the method of example 36 or some other example herein, wherein the dynamic HARQ-ACK codebook includes two concatenated sub-codebooks.
  • Example 38 includes the method of example 37 or some other example herein, wherein a first sub-codebook is to carry HARQ-ACK for TB-based PDSCH scheduling, and a second sub-codebook is for code block group (CBG) based PDSCH scheduling.
  • Example 39 includes the method of example 38 or some other example herein, wherein the first sub-codebook includes HARQ-ACK bits for all TB based PDSCH transmissions scheduled by a DCI scheduling a single TTI.
  • Example 40 includes the method of example 38 or some other example herein, wherein the second sub-codebook includes HARQ-ACK bits for CBG-based PDSCH transmissions and PDSCH transmissions scheduled by a DCI scheduling multiple TTIs.
  • Example 41 includes the method of any of examples 25-40 or some other example herein, wherein the method is performed by a next-generation NodeB (gNB) or portion thereof.
  • Example X1 includes an apparatus comprising: memory to store downlink control information (DCI); and processor circuitry, coupled with the memory, to: retrieve the DCI from the memory, wherein the DCI is to schedule one or more shared channels with different transport blocks (TBs) in different slots; and encode a physical downlink control channel (PDCCH) message that includes the DCI for transmission to a user equipment (UE).
  • Example X2 includes the apparatus of example X1 or some other example herein, wherein the one or more shared channels include a physical downlink shared channel (PDSCH) or a physical uplink shared channel (PUSCH).
  • Example X3 includes the apparatus of example X2 or some other example herein, wherein the DCI is to schedule four PDSCHs with different TBs, or the DCI is to schedule three PUSCHs with different TBs.
  • Example X4 includes the apparatus of example X1 or some other example herein, wherein each respective shared channel of the one or more shared channels is scheduled within a respective slot.
  • Example X5 includes the apparatus of example X1 or some other example herein, wherein a plurality of fields within the DCI are common among multiple shared channels, and wherein: a carrier indicator and a bandwidth part (BWP) indicator indicated in the DCI are the same for multiple shared channels; or a frequency domain resource allocation indicated in the DCI is the same for multiple shared channels.
  • Example X6 includes the apparatus of example X1 or some other example herein, wherein: a single transmission configuration indication (TCI) in the DCI is to be applied to transmission of a plurality of shared channels; or a single sounding reference signal (SRS) resource indicator in the DCI is to be applied to a plurality of shared channels; or the DCI includes an independent new data indicator (NDI) for each respective shared channel.
  • Example X7 includes the apparatus of example X1 or some other example herein, wherein the processing circuitry is further to generate a dynamic hybrid automatic repeat request-acknowledgement (HARQ-ACK) codebook for multiple transmit time interval (multi-TTI) scheduling for PDSCH transmissions with multiple transport blocks (TBs).
  • Example X8 includes the apparatus of example X7 or some other example herein, wherein the dynamic HARQ-ACK codebook includes two concatenated sub-codebooks, and wherein a first sub-codebook is to carry HARQ-ACK for TB-based PDSCH scheduling, and a second sub-codebook is for code block group (CBG) based PDSCH scheduling.
  • Example X9 includes the apparatus of example X8 or some other example herein, wherein the second sub-codebook includes HARQ-ACK bits for CBG-based PDSCH transmissions and PDSCH transmissions scheduled by a DCI scheduling multiple TTIs.
  • Example X10 includes one or more non-transitory computer-readable media storing instructions that, when executed by one or more processors, are to cause a next-generation NodeB (gNB) to: determine downlink control information (DCI) that is to schedule one or more shared channels with different transport blocks (TBs) in different slots, wherein the one or more shared channels include a physical downlink shared channel (PDSCH) or a physical uplink shared channel (PUSCH); and encode a physical downlink control channel (PDCCH) message that includes the DCI for transmission to a user equipment (UE).
  • Example X11 includes the one or more non-transitory computer-readable media of example X10 or some other example herein, wherein the DCI is to schedule four PDSCHs with different TBs, or the DCI is to schedule three PUSCHs with different TBs.
  • Example X12 includes the one or more non-transitory computer-readable media of example X10 or some other example herein, wherein each respective shared channel of the one or more shared channels is scheduled within a respective slot.
  • Example X13 includes the one or more non-transitory computer-readable media of example X10 or some other example herein, wherein a plurality of fields within the DCI are common among multiple shared channels, and wherein: a carrier indicator and a bandwidth part (BWP) indicator indicated in the DCI are the same for multiple shared channels; or a frequency domain resource allocation indicated in the DCI is the same for multiple shared channels.
  • Example X14 includes the one or more non-transitory computer-readable media of example X10 or some other example herein, wherein: a single transmission configuration indication (TCI) in the DCI is to be applied to transmission of a plurality of shared channels; or a single sounding reference signal (SRS) resource indicator in the DCI is to be applied to a plurality of shared channels; or the DCI includes an independent new data indicator (NDI) for each respective shared channel.
  • Example X15 includes the one or more non-transitory computer-readable media of example X10 or some other example herein, wherein the processing circuitry is further to generate a dynamic hybrid automatic repeat request-acknowledgement (HARQ-ACK) codebook for multiple transmit time interval (multi-TTI) scheduling for PDSCH transmissions with multiple transport blocks (TBs).
  • Example X16 includes the one or more non-transitory computer-readable media of example X15 or some other example herein, wherein the dynamic HARQ-ACK codebook includes two concatenated sub-codebooks, and wherein a first sub-codebook is to carry HARQ-ACK for TB-based PDSCH scheduling, and a second sub-codebook is for code block group (CBG) based PDSCH scheduling.
  • Example X17 includes the one or more non-transitory computer-readable media of example X16 or some other example herein, wherein the second sub-codebook includes HARQ-ACK bits for CBG-based PDSCH transmissions and PDSCH transmissions scheduled by a DCI scheduling multiple TTIs.
  • Example X18 includes one or more non-transitory computer-readable media storing instructions that, when executed by one or more processors, are to cause a user equipment (UE) to: receive downlink control information (DCI) from a physical downlink control channel (PDCCH) message, the DCI to schedule one or more shared channels with different transport blocks (TBs) in different slots, wherein the one or more shared channels include one or more physical uplink shared channels (PUSCHs); and encode one or more PUSCH messages for transmission based on the DCI.
  • Example X19 includes the one or more non-transitory computer-readable media of example X18 or some other example herein, wherein a plurality of fields within the DCI are common among multiple shared channels, and wherein: a carrier indicator and a bandwidth part (BWP) indicator indicated in the DCI are the same for multiple shared channels; or a frequency domain resource allocation indicated in the DCI is the same for multiple shared channels.
  • Example X20 includes the one or more non-transitory computer-readable media of example X18 or some other example herein, wherein: a single transmission configuration indication (TCI) in the DCI is to be applied to transmission of a plurality of shared channels; or a single sounding reference signal (SRS) resource indicator in the DCI is to be applied to a plurality of shared channels; or the DCI includes an independent new data indicator (NDI) for each respective shared channel.
  • Example Z01 may include an apparatus comprising means to perform one or more elements of a method described in or related to any of examples 1-X20, or any other method or process described herein.
  • Example Z02 may include one or more non-transitory computer-readable media comprising instructions to cause an electronic device, upon execution of the instructions by one or more processors of the electronic device, to perform one or more elements of a method described in or related to any of examples 1-X20, or any other method or process described herein.
  • Example Z03 may include an apparatus comprising logic, modules, or circuitry to perform one or more elements of a method described in or related to any of examples 1-X20, or any other method or process described herein.
  • Example Z04 may include a method, technique, or process as described in or related to any of examples 1-X20, or portions or parts thereof.
  • Example Z05 may include an apparatus comprising: one or more processors and one or more computer-readable media comprising instructions that, when executed by the one or more processors, cause the one or more processors to perform the method, techniques, or process as described in or related to any of examples 1-X20, or portions thereof.
  • Example Z06 may include a signal as described in or related to any of examples 1-X20, or portions or parts thereof.
  • Example Z07 may include a datagram, packet, frame, segment, protocol data unit (PDU), or message as described in or related to any of examples 1-X20, or portions or parts thereof, or otherwise described in the present disclosure.
  • Example Z08 may include a signal encoded with data as described in or related to any of examples 1-X20, or portions or parts thereof, or otherwise described in the present disclosure.
  • Example Z09 may include a signal encoded with a datagram, packet, frame, segment, protocol data unit (PDU), or message as described in or related to any of examples 1-X20, or portions or parts thereof, or otherwise described in the present disclosure.
  • Example Z10 may include an electromagnetic signal carrying computer-readable instructions, wherein execution of the computer-readable instructions by one or more processors is to cause the one or more processors to perform the method, techniques, or process as described in or related to any of examples 1-X20, or portions thereof.
  • Example Z11 may include a computer program comprising instructions, wherein execution of the program by a processing element is to cause the processing element to carry out the method, techniques, or process as described in or related to any of examples 1-X20, or portions thereof.
  • Example Z12 may include a signal in a wireless network as shown and described herein.
  • Example Z13 may include a method of communicating in a wireless network as shown and described herein.
  • Example Z14 may include a system for providing wireless communication as shown and described herein.
  • Example Z15 may include a device for providing wireless communication as shown and described herein.
  • Any of the above-described examples may be combined with any other example (or combination of examples), unless explicitly stated otherwise. The foregoing description of one or more implementations provides illustration and description, but is not intended to be exhaustive or to limit the scope of embodiments to the precise form disclosed. Modifications and variations are possible in light of the above teachings or may be acquired from practice of various embodiments.
  • Abbreviations
  • For the purposes of the present document, the following abbreviations may apply to the examples and embodiments discussed herein.
  • 3GPP Third Generation Partnership Project
    4G Fourth Generation
    5G Fifth Generation
    5GC 5G Core network
    ACK Acknowledgement
    AF Application Function
    AM Acknowledged Mode
    AMBR Aggregate
    Maximum Bit Rate
    AMF Access and Mobility
    Management Function
    AN Access Network
    ANR Automatic Neighbour Relation
    AP Application
    Protocol, Antenna
    Port, Access Point
    API Application Programming Interface
    APN Access Point Name
    ARP Allocation and Retention Priority
    ARQ Automatic Repeat Request
    AS Access Stratum
    ASN.1 Abstract Syntax
    Notation One
    AUSF Authentication Server Function
    AWGN Additive White Gaussian Noise
    BAP Backhaul Adaptation Protocol
    BCH Broadcast Channel
    BER Bit Error Ratio
    BFD Beam Failure Detection
    BLER Block Error Rate
    BPSK Binary Phase Shift Keying
    BRAS Broadband Remote Access Server
    BSS Business Support System
    BS Base Station
    BSR Buffer Status Report
    BW Bandwidth
    BWP Bandwidth Part
    C-RNTI Cell Radio Network Temporary Identity
    CA Carrier Aggregation, Certification Authority
    CAPEX CAPital EXpenditure
    CBRA Contention Based Random Access
    CC Component Carrier,
    Country Code,
    Cryptographic Checksum
    CCA Clear Channel Assessment
    CCE Control Channel Element
    CCCH Common Control Channel
    CE Coverage Enhancement
    CDM Content Delivery Network
    CDMA Code-Division Multiple Access
    CFRA Contention Free Random Access
    CG Cell Group
    CI Cell Identity
    CID Cell-ID (e.g., positioning method)
    CIM Common Information Model
    CIR Carrier to Interference Ratio
    CK Cipher Key
    CM Connection Management, Conditional
    Mandatory
    CMAS Commercial Mobile Alert Service
    CMD Command
    CMS Cloud Management System
    CO Conditional Optional
    CoMP Coordinated Multi-Point
    CORESET Control Resource Set
    COTS Commercial Off The-Shelf
    CP Control Plane,
    Cyclic Prefix, Connection Point
    CPD Connection Point Descriptor
    CPE Customer Premise Equipment
    CPICH Common Pilot Channel
    CQI Channel Quality Indicator
    CPU CSI processing
    unit, Central Processing
    Unit
    C/R Command/Response field bit
    CRAN Cloud Radio Access Network,
    Cloud RAN
    CRB Common Resource Block
    CRC Cyclic Redundancy Check
    CRI Channel-State Information
    Resource Indicator, CSI-RS
    Resource Indicator
    C-RNTI Cell RNTI
    CS Circuit Switched
    CSAR Cloud Service Archive
    CSI Channel-State Information
    CSI-IM CSI Interference Measurement
    CSI-RS CSI Reference Signal
    CSI-RSRP CSI reference signal received power
    CSI-RSRQ CSI reference signal received quality
    CSI-SINR CSI signal-to-noise and interference ratio
    CSMA Carrier Sense Multiple Access
    CSMA/CA CSMA with collision avoidance
    CSS Common Search
    Space, Cell-specific
    Search Space
    CTS Clear-to-Send
    CW Codeword
    CWS Contention Window Size
    D2D Device-to-Device
    DC Dual Connectivity,
    Direct Current
    DCI Downlink Control Information
    DF Deployment Flavour
    DL Downlink
    DMTF Distributed Management Task Force
    DPDK Data Plane Development Kit
    DM-RS, DMRS Demodulation Reference Signal
    DN Data network
    DRB Data Radio Bearer
    DRS Discovery Reference Signal
    DRX Discontinuous Reception
    DSL Domain Specific
    Language. Digital Subscriber Line
    DSLAM DSL Access Multiplexer
    DwPTS Downlink Pilot Time Slot
    E-LAN Ethernet Local Area Network
    E2E End-to-End
    ECCA extended clear channel assessment,
    extended CCA
    ECCE Enhanced Control Channel Element,
    Enhanced CCE
    ED Energy Detection
    EDGE Enhanced Datarates
    for GSM Evolution
    (GSM Evolution)
    EGMF Exposure Governance Management Function
    EGPRS Enhanced GPRS
    EIR Equipment Identity Register
    eLAA enhanced Licensed
    Assisted Access, enhanced LAA
    EM Element Manager
    eMBB Enhanced Mobile Broadband
    EMS Element Management System
    eNB evolved NodeB, E-
    UTRAN Node B
    EN-DC E-UTRA-NR Dual
    Connectivity
    EPC Evolved Packet Core
    EPDCCH enhanced
    PDCCH, enhanced
    Physical Downlink Control Cannel
    EPRE Energy per resource element
    EPS Evolved Packet System
    EREG enhanced REG,
    enhanced resource element groups
    ETSI European Telecommunications Standards
    Institute
    ETWS Earthquake and Tsunami Warning System
    eUICC embedded UICC,
    embedded Universal
    Integrated Circuit Card
    E-UTRA Evolved UTRA
    E-UTRAN Evolved UTRAN
    EV2X Enhanced V2X
    F1AP F1 Application Protocol
    F1-C F1 Control plane interface
    F1-U F1 User plane interface
    FACCH Fast Associated Control CHannel
    FACCH/F Fast Associated Control
    Channel/Full rate
    FACCH/H Fast Associated Control
    Channel/Half rate
    FACH Forward Access Channel
    FAUSCH Fast Uplink Signalling Channel
    FB Functional Block
    FBI Feedback Information
    FCC Federal Communications Commission
    FCCH Frequency Correction CHannel
    FDD Frequency Division Duplex
    FDM Frequency Division Multiplex
    FDMA Frequency Division Multiple Access
    FE Front End
    FEC Forward Error Correction
    FFS For Further Study
    FFT Fast Fourier Transformation
    feLAA further enhanced
    Licensed Assisted Access, further
    enhanced LAA
    FN Frame Number
    FPGA Field-Programmable Gate Array
    FR Frequency Range
    G-RNTI GERAN Radio Network Temporary Identity
    GERAN GSM EDGE RAN,
    GSM EDGE Radio
    Access Network
    GGSN Gateway GPRS
    Support Node
    GLONASS GLObal′naya
    NAvigatsionnaya Sputnikovaya
    Sistema (Engl.: Global Navigation
    Satellite System)
    gNB Nex Generation NodeB
    gNB-CU gNB-centralized unit, Next
    Generation NodeB
    centralized unit
    gNB-DU gNB-
    distributed unit, Next
    Generation NodeB
    distributed unit
    GNSS Global Navigation Satellite System
    GPRS General Packet Radio Service
    GSM Global System for Mobile
    Communications,
    Groupe Spécial Mobile
    GTP GPRS Tunneling Protocol
    GTP-UGPRS Tunnelling Protocol for User Plane
    GTS Go To Sleep Signal
    (related to WUS)
    GUMMEI Globally Unique MME Identifier
    GUTI Globally Unique Temporary UE Identity
    HARQ Hybrid ARQ, Hybrid Automatic Repeat Request
    HANDO Handover
    HFN HyperFrame Number
    HHO Hard Handover
    HLR Home Location Register
    HN Home Network
    HO Handover
    HPLMN Home
    Public Land Mobile Network
    HSDPA High Speed Downlink Packet Access
    HSN Hopping Sequence Number
    HSPA High Speed Packet Access
    HSS Home Subscriber Server
    HSUPA High Speed Uplink Packet Access
    HTTP Hyper Text Transfer Protocol
    HTTPS Hyper Text Transfer Protocol
    Secure (https is http/1.1 over SSL,
    i.e. port 443)
    I-Block Information Block
    ICCID Integrated Circuit Card Identification
    IAB Integrated Access and Backhaul
    ICIC Inter-Cell Interference Coordination
    ID Identity, identifier
    IDFT Inverse Discrete Fourier Transform
    IE Information element
    IBE In-Band Emission
    IEEE Institute of Electrical and Electronics Engineers
    IEI Information Element Identifier
    IEIDL Information Element Identifier Data Length
    IETF Internet Engineering Task Force
    IF Infrastructure
    IM Interference Measurement,
    Intermodulation, IP
    Multimedia
    IMC IMS Credentials
    IMEI International Mobile Equipment Identity
    IMGI International mobile group identity
    IMPI IP Multimedia Private Identity
    IMPU IP Multimedia PUblic identity
    IMS IP Multimedia Subsystem
    IMSI International Mobile Subscriber Identity
    IoT Internet of Things
    IP Internet Protocol
    Ipsec IP Security, Internet Protocol Security
    IP-CAN IP-Connectivity Access Network
    IP-M IP Multicast
    IPv4 Internet Protocol Version 4
    IPv6 Internet Protocol Version 6
    IR Infrared
    IS In Sync
    IRP Integration Reference Point
    ISDN Integrated Services Digital Network
    ISIM IM Services Identity Module
    ISO International Organisation for
    Standardisation
    ISP Internet Service Provider
    IWF Interworking-Function
    I-WLAN Interworking
    WLAN Constraint length of
    the convolutional code,
    USIM Individual key
    kB Kilobyte (1000 bytes)
    kbps kilo-bits per second
    Kc Ciphering key
    Ki Individual subscriber authentication key
    KPI Key Performance Indicator
    KQI Key Quality Indicator
    KSI Key Set Identifier
    ksps kilo-symbols per second
    KVM Kernel Virtual Machine
    L1 Layer 1 (physical layer)
    L1-RSRP Layer 1 reference signal received power
    L2 Layer 2 (data link layer)
    L3 Layer 3 (network layer)
    LAA Licensed Assisted Access
    LAN Local Area Network
    LBT Listen Before Talk
    LCM LifeCycle Management
    LCR Low Chip Rate
    LCS Location Services
    LCID Logical Channel ID
    LI Layer Indicator
    LLC Logical Link Control, Low Layer Compatibility
    LPLMN Local PLMN
    LPP LTE Positioning Protocol
    LSB Least Significant Bit
    LTE Long Term Evolution
    LWA LTE-WLAN aggregation
    LWIP LTE/WLAN Radio
    Level Integration with IPsec Tunnel
    LTE Long Term Evolution
    M2M Machine-to-Machine
    MAC Medium Access Control (protocol
    layering context)
    MAC Message authentication code
    (security/encryption context)
    MAC-A MAC used for authentication and
    key agreement (TSG T WG3 context)
    MAC-IMAC used for data integrity of
    signalling messages (TSG T WG3 context)
    MANO Management and Orchestration
    MBMS Multimedia Broadcast and Multicast Service
    MBSFN Multimedia Broadcast multicast
    service Single Frequency Network
    MCC Mobile Country Code
    MCG Master Cell Group
    MCOT Maximum Channel Occupancy Time
    MCS Modulation and coding scheme
    MDAF Management Data Analytics Function
    MDAS Management Data Analytics Service
    MDT Minimization of Drive Tests
    ME Mobile Equipment
    MeNB master eNB
    MER Message Error Ratio
    MGL Measurement Gap Length
    MGRP Measurement Gap Repetition Period
    MIB Master Information Block, Management
    Information Base
    MIMO Multiple Input Multiple Output
    MLC Mobile Location Centre
    MM Mobility Management
    MME Mobility Management Entity
    MN Master Node
    MO Measurement Object, Mobile Originated
    MPBCH MTC Physical Broadcast CHannel
    MPDCCH MTC Physical Downlink Control CHannel
    MPDSCH MTC Physical Downlink Shared CHannel
    MPRACH MTC Physical Random Access CHannel
    MPUSCH MTC
    Physical Uplink Shared Channel
    MPLS MultiProtocol Label Switching
    MS Mobile Station
    MSB Most Significant Bit
    MSC Mobile Switching Centre
    MSI Minimum System
    Information, MCH
    Scheduling Information
    MSID Mobile Station Identifier
    MSIN Mobile Station Identification Number
    MSISDN Mobile
    Subscriber ISDN Number
    MT Mobile Terminated,
    Mobile Termination
    MTC Machine-Type Communications
    mMTCmassive MTC, massive
    Machine-Type Communications
    MU-MIMO Multi User MIMO
    MWUS MTC wake-up signal, MTC WUS
    NACK Negative Acknowledgement
    NAI Network Access Identifier
    NAS Non-Access Stratum, Non-Access Stratum layer
    NCT Network Connectivity Topology
    NC-JT Non-Coherent Joint Transmission
    NEC Network Capability Exposure
    NE-DC NR-E-UTRA Dual Connectivity
    NEF Network Exposure Function
    NF Network Function
    NFP Network Forwarding Path
    NFPD Network Forwarding Path Descriptor
    NFV Network Functions Virtualization
    NFVI NFV Infrastructure
    NFVO NFV Orchestrator
    NG Next Generation, Next Gen
    NGEN-DC NG-RAN
    E-UTRA-NR Dual Connectivity
    NM Network Manager
    NMS Network Management System
    N-PoP Network Point of Presence
    NMIB, N-MIB Narrowband MIB
    NPBCH Narrowband Physical Broadcast CHannel
    NPDCCH Narrowband Physical Downlink Control
    CHannel
    NPDSCH Narrowband Physical Downlink Shared
    CHannel
    NPRACH Narrowband Physical Random Access CHannel
    NPUSCH Narrowband Physical Uplink Shared CHannel
    NPSS Narrowband Primary Synchronization Signal
    NSSS Narrowband Secondary Synchronization Signal
    NR New Radio,
    Neighbour Relation
    NRF NF Repository Function
    NRS Narrowband Reference Signal
    NS Network Service
    NSA Non-Standalone operation mode
    NSD Network Service Descriptor
    NSR Network Service Record
    NSSAI Network Slice Selection Assistance Information
    S-NNSAI Single-NSSAI NSSF Network Slice
    Selection Function
    NW Network
    NWUS Narrowband wake-up signal, Narrowband
    WUS
    NZP Non-Zero Power
    O&M Operation and Maintenance
    ODU2 Optical channel Data Unit - type 2
    OFDM Orthogonal Frequency Division Multiplexing
    OFDMA Orthogonal Frequency Division Multiple Access
    OOB Out-of-band
    OOS Out of Sync
    OPEX OPerating EXpense
    OSI Other System Information
    OSS Operations Support System
    OTA over-the-air
    PAPR Peak-to-Average
    Power Ratio
    PAR Peak to Average Ratio
    PBCH Physical Broadcast Channel
    PC Power Control, Personal Computer
    PCC Primary Component Carrier,
    Primary CC
    PCell Primary Cell
    PCI Physical Cell ID, Physical Cell Identity
    PCEF Policy and Charging Enforcement Function
    PCF Policy Control Function
    PCRF Policy Control and Charging Rules Function
    PDCP Packet Data Convergence Protocol,
    Packet Data Convergence
    Protocol layer
    PDCCH Physical Downlink Control Channel
    PDCP Packet Data
    Convergence Protocol
    PDN Packet Data Network, Public Data Network
    PDSCH Physical Downlink Shared Channel
    PDU Protocol Data Unit
    PEI Permanent Equipment Identifiers
    PFD Packet Flow Description
    P-GW PDN Gateway
    PHICH Physical hybrid-ARQ indicator channel
    PHY Physical layer
    PLMN Public Land Mobile Network
    PIN Personal Identification Number
    PM Performance Measurement
    PMI Precoding Matrix Indicator
    PNF Physical Network Function
    PNFD Physical Network Function Descriptor
    PNFR Physical Network Function Record
    POC PTT over Cellular
    PP, PTP Point-to-Point
    PPP Point-to-Point Protocol
    PRACH Physical RACH
    PRB Physical resource block
    PRG Physical resource block group
    ProSe Proximity Services,
    Proximity-Based Service
    PRS Positioning Reference Signal
    PRR Packet Reception Radio
    PS Packet Services
    PSBCH Physical Sidelink Broadcast Channel
    PSDCH Physical Sidelink Downlink Channel
    PSCCH Physical Sidelink Control Channel
    PSSCH Physical Sidelink Shared Channel
    PSCell Primary SCell
    PSS Primary Synchronization Signal
    PSTN Public Switched Telephone Network
    PT-RS Phase-tracking reference signal
    PTT Push-to-Talk
    PUCCH Physical Uplink Control Channel
    PUSCH Physical Uplink Shared Channel
    QAM Quadrature Amplitude Modulation
    QCI QoS class of identifier
    QCL Quasi co-location
    QFI QoS Flow ID, QoS Flow Identifier
    QoS Quality of Service
    QPSK Quadrature (Quaternary) Phase Shift Keying
    QZSS Quasi-Zenith Satellite System
    RA-RNTI Random Access RNTI
    RAB Radio Access Bearer, Random
    Access Burst
    RACH Random Access Channel
    RADIUS Remote Authentication Dial In User Service
    RAN Radio Access Network
    RAND RANDom number (used for authentication)
    RAR Random Access Response
    RAT Radio Access Technology
    RAU Routing Area Update
    RB Resource block, Radio Bearer
    RBG Resource block group
    REG Resource Element Group
    Rel Release
    REQ REQuest
    RF Radio Frequency
    RI Rank Indicator
    RIV Resource indicator value
    RL Radio Link
    RLC Radio Link
    Control, Radio Link Control layer
    RLC AM RLC Acknowledged Mode
    RLC UM RLC Unacknowledged Mode
    RLF Radio Link Failure
    RLM Radio Link Monitoring
    RLM-RS Reference Signal for RLM
    RM Registration Management
    RMC Reference Measurement Channel
    RMSI Remaining MSI,
    Remaining Minimum System Information
    RN Relay Node
    RNC Radio Network Controller
    RNL Radio Network Layer
    RNTI Radio Network Temporary Identifier
    ROHC RObust Header Compression
    RRC Radio Resource Control, Radio
    Resource Control layer
    RRM Radio Resource Management
    RS Reference Signal
    RSRP Reference Signal Received Power
    RSRQ Reference Signal Received Quality
    RSSI Received Signal Strength Indicator
    RSU Road Side Unit
    RSTD Reference Signal Time difference
    RTP Real Time Protocol
    RTS Ready-To-Send
    RTT Round Trip Time
    Rx Reception, Receiving, Receiver
    S1AP S1 Application Protocol
    S1-MME S1 for the control plane
    S1-U S1 for the user plane
    S-GW Serving Gateway
    S-RNTI SRNC Radio Network Temporary Identity
    S-TMSI SAE Temporary Mobile Station Identifier
    SA Standalone operation mode
    SAE System Architecture Evolution
    SAP Service Access Point
    SAPD Service Access Point Descriptor
    SAPI Service Access Point Identifier
    SCC Secondary Component Carrier,
    Secondary CC
    SCell Secondary Cell
    SC-FDMA Single Carrier Frequency
    Division Multiple Access
    SCG Secondary Cell Group
    SCM Security Context Management
    SCS Subcarrier Spacing
    SCTP Stream Control Transmission Protocol
    SDAP Service Data Adaptation Protocol,
    Service Data Adaptation
    Protocol layer
    SDL Supplementary Downlink
    SDNF Structured Data Storage Network Function
    SDP Session Description Protocol
    SDSF Structured Data Storage Function
    SDU Service Data Unit
    SEAF Security Anchor Function
    SeNB secondary eNB
    SEPP Security Edge Protection Proxy
    SFI Slot format indication
    SFTD Space-Frequency
    Time Diversity, SFN and
    frame timing difference
    SFN System Frame Number
    SgNB Secondary gNB
    SGSN Serving GPRS Support Node
    S-GW Serving Gateway
    SI System Information
    SI-RNTI System Information RNTI
    SIB System Information Block
    SIM Subscriber Identity Module
    SIP Session Initiated Protocol
    SiP System in Package
    SL Sidelink
    SLA Service Level Agreement
    SM Session Management
    SMF Session Management Function
    SMS Short Message Service
    SMSF SMS Function
    SMTC SSB-based Measurement Timing
    Configuration
    SN Secondary Node, Sequence Number
    SoC System on Chip
    SON Self-Organizing Network
    SpCell Special Cell
    SP-CSI-RNTI Semi-Persistent CSI RNTI
    SPS Semi-Persistent Scheduling
    SQN Sequence number
    SR Scheduling Request
    SRB Signalling Radio Bearer
    SRS Sounding Reference Signal
    SS Synchronization Signal
    SSB Synchronization Signal Block, SS/PBCH Block
    SSBRI SS/PBCH Block
    Resource Indicator, Synchronization
    Signal Block
    Resource Indicator
    SSC Session and Service Continuity
    SS-RSRP Synchronization
    Signal based Reference
    Signal Received Power
    SS-RSRQ Synchronization
    Signal based Reference
    Signal Received Quality
    SS-SINR Synchronization
    Signal based Signal to
    Noise and Interference Ratio
    SSS Secondary Synchronization Signal
    SSSG Search Space Set Group
    SSSIF Search Space Set Indicator
    SST Slice/Service Types
    SU-MIMO Single User MIMO
    SUL Supplementary Uplink
    TA Timing Advance, Tracking Area
    TAC Tracking Area Code
    TAG Timing Advance Group
    TAU Tracking Area Update
    TB Transport Block
    TBS Transport Block Size
    TBD To Be Defined
    TCI Transmission Configuration Indicator
    TCP Transmission Communication Protocol
    TDD Time Division Duplex
    TDM Time Division Multiplexing
    TDMATime Division Multiple Access
    TE Terminal Equipment
    TEID Tunnel End Point Identifier
    TFT Traffic Flow Template
    TMSI Temporary Mobile Subscriber Identity
    TNL Transport Network Layer
    TPC Transmit Power Control
    TPMI Transmitted Precoding Matrix Indicator
    TR Technical Report
    TRP, TRxP Transmission Reception Point
    TRS Tracking Reference Signal
    TRx Transceiver
    TS Technical Specifications, Technical Standard
    TTI Transmission Time Interval
    Tx Transmission, Transmitting, Transmitter
    U-RNTI UTRAN Radio Network
    Temporary Identity
    UART Universal Asynchronous Receiver and
    Transmitter
    UCI Uplink Control Information
    UE User Equipment
    UDM Unified Data Management
    UDP User Datagram Protocol
    UDSF Unstructured Data Storage Network Function
    UICC Universal Integrated Circuit Card
    UL Uplink
    UM Unacknowledged Mode
    UML Unified Modelling Language
    UMTS Universal Mobile
    Telecommunications System
    UP User Plane
    UPF User Plane Function
    URI Uniform Resource Identifier
    URL Uniform Resource Locator
    URLLC Ultra-Reliable and Low Latency
    USB Universal Serial Bus
    USIM Universal Subscriber Identity Module
    USS UE-specific search space
    UTRA UMTS Terrestrial Radio Access
    UTRAN Universal Terrestrial Radio
    Access Network
    UwPTS Uplink Pilot Time Slot
    V2I Vehicle-to-Infrastruction
    V2P Vehicle-to-Pedestrian
    V2V Vehicle-to-Vehicle
    V2X Vehicle-to-everything
    VIM Virtualized Infrastructure Manager
    VL Virtual Link,
    VLAN Virtual LAN, Virtual Local Area Network
    VM Virtual Machine
    VNF Virtualized Network Function
    VNFFG VNF Forwarding Graph
    VNFFGD VNF Forwarding Graph Descriptor
    VNFMVNF Manager
    VoIP Voice-over-IP, Voice-over-Internet Protocol
    VPLMN Visited Public Land Mobile Network
    VPN Virtual Private Network
    VRB Virtual Resource Block
    WiMAX Worldwide Interoperability for Microwave
    Access
    WLAN Wireless Local Area Network
    WMAN Wireless
    Metropolitan Area Network
    WPAN Wireless Personal Area Network
    X2-C X2-Control plane
    X2-U X2-User plane
    XML eXtensible Markup Language
    XRES EXpected user RESponse
    XOR eXclusive OR
    ZC Zadoff-Chu
    ZP Zero Power
  • Terminology
  • For the purposes of the present document, the following terms and definitions are applicable to the examples and embodiments discussed herein.
  • The term “circuitry” as used herein refers to, is part of, or includes hardware components such as an electronic circuit, a logic circuit, a processor (shared, dedicated, or group) and/or memory (shared, dedicated, or group), an Application Specific Integrated Circuit (ASIC), a field-programmable device (FPD) (e.g., a field-programmable gate array (FPGA), a programmable logic device (PLD), a complex PLD (CPLD), a high-capacity PLD (HCPLD), a structured ASIC, or a programmable SoC), digital signal processors (DSPs), etc., that are configured to provide the described functionality. In some embodiments, the circuitry may execute one or more software or firmware programs to provide at least some of the described functionality. The term “circuitry” may also refer to a combination of one or more hardware elements (or a combination of circuits used in an electrical or electronic system) with the program code used to carry out the functionality of that program code. In these embodiments, the combination of hardware elements and program code may be referred to as a particular type of circuitry.
  • The term “processor circuitry” as used herein refers to, is part of, or includes circuitry capable of sequentially and automatically carrying out a sequence of arithmetic or logical operations, or recording, storing, and/or transferring digital data. The term “processor circuitry” may refer to one or more application processors, one or more baseband processors, a physical central processing unit (CPU), a single-core processor, a dual-core processor, a triple-core processor, a quad-core processor, and/or any other device capable of executing or otherwise operating computer-executable instructions, such as program code, software modules, and/or functional processes. The terms “application circuitry” and/or “baseband circuitry” may be considered synonymous to, and may be referred to as, “processor circuitry.”
  • The term “interface circuitry” as used herein refers to, is part of, or includes circuitry that enables the exchange of information between two or more components or devices. The term “interface circuitry” may refer to one or more hardware interfaces, for example, buses, I/O interfaces, peripheral component interfaces, network interface cards, and/or the like.
  • The term “user equipment” or “UE” as used herein refers to a device with radio communication capabilities and may describe a remote user of network resources in a communications network. The term “user equipment” or “UE” may be considered synonymous to, and may be referred to as, client, mobile, mobile device, mobile terminal, user terminal, mobile unit, mobile station, mobile user, subscriber, user, remote station, access agent, user agent, receiver, radio equipment, reconfigurable radio equipment, reconfigurable mobile device, etc. Furthermore, the term “user equipment” or “UE” may include any type of wireless/wired device or any computing device including a wireless communications interface.
  • The term “network element” as used herein refers to physical or virtualized equipment and/or infrastructure used to provide wired or wireless communication network services. The term “network element” may be considered synonymous to and/or referred to as a networked computer, networking hardware, network equipment, network node, router, switch, hub, bridge, radio network controller, RAN device, RAN node, gateway, server, virtualized VNF, NFVI, and/or the like.
  • The term “computer system” as used herein refers to any type interconnected electronic devices, computer devices, or components thereof. Additionally, the term “computer system” and/or “system” may refer to various components of a computer that are communicatively coupled with one another. Furthermore, the term “computer system” and/or “system” may refer to multiple computer devices and/or multiple computing systems that are communicatively coupled with one another and configured to share computing and/or networking resources.
  • The term “appliance,” “computer appliance,” or the like, as used herein refers to a computer device or computer system with program code (e.g., software or firmware) that is specifically designed to provide a specific computing resource. A “virtual appliance” is a virtual machine image to be implemented by a hypervisor-equipped device that virtualizes or emulates a computer appliance or otherwise is dedicated to provide a specific computing resource.
  • The term “resource” as used herein refers to a physical or virtual device, a physical or virtual component within a computing environment, and/or a physical or virtual component within a particular device, such as computer devices, mechanical devices, memory space, processor/CPU time, processor/CPU usage, processor and accelerator loads, hardware time or usage, electrical power, input/output operations, ports or network sockets, channel/link allocation, throughput, memory usage, storage, network, database and applications, workload units, and/or the like. A “hardware resource” may refer to compute, storage, and/or network resources provided by physical hardware element(s). A “virtualized resource” may refer to compute, storage, and/or network resources provided by virtualization infrastructure to an application, device, system, etc. The term “network resource” or “communication resource” may refer to resources that are accessible by computer devices/systems via a communications network. The term “system resources” may refer to any kind of shared entities to provide services, and may include computing and/or network resources. System resources may be considered as a set of coherent functions, network data objects or services, accessible through a server where such system resources reside on a single host or multiple hosts and are clearly identifiable.
  • The term “channel” as used herein refers to any transmission medium, either tangible or intangible, which is used to communicate data or a data stream. The term “channel” may be synonymous with and/or equivalent to “communications channel,” “data communications channel,” “transmission channel,” “data transmission channel,” “access channel,” “data access channel,” “link,” “data link,” “carrier,” “radiofrequency carrier,” and/or any other like term denoting a pathway or medium through which data is communicated. Additionally, the term “link” as used herein refers to a connection between two devices through a RAT for the purpose of transmitting and receiving information.
  • The terms “instantiate,” “instantiation,” and the like as used herein refers to the creation of an instance. An “instance” also refers to a concrete occurrence of an object, which may occur, for example, during execution of program code.
  • The terms “coupled,” “communicatively coupled,” along with derivatives thereof are used herein. The term “coupled” may mean two or more elements are in direct physical or electrical contact with one another, may mean that two or more elements indirectly contact each other but still cooperate or interact with each other, and/or may mean that one or more other elements are coupled or connected between the elements that are said to be coupled with each other. The term “directly coupled” may mean that two or more elements are in direct contact with one another. The term “communicatively coupled” may mean that two or more elements may be in contact with one another by a means of communication including through a wire or other interconnect connection, through a wireless communication channel or ink, and/or the like.
  • The term “information element” refers to a structural element containing one or more fields. The term “field” refers to individual contents of an information element, or a data element that contains content.
  • The term “SMTC” refers to an SSB-based measurement timing configuration configured by SSB-MeasurementTimingConfiguration.
  • The term “SSB” refers to an SS/PBCH block.
  • The term “a “Primary Cell” refers to the MCG cell, operating on the primary frequency, in which the UE either performs the initial connection establishment procedure or initiates the connection re-establishment procedure.
  • The term “Primary SCG Cell” refers to the SCG cell in which the UE performs random access when performing the Reconfiguration with Sync procedure for DC operation.
  • The term “Secondary Cell” refers to a cell providing additional radio resources on top of a Special Cell for a UE configured with CA.
  • The term “Secondary Cell Group” refers to the subset of serving cells comprising the PSCell and zero or more secondary cells for a UE configured with DC.
  • The term “Serving Cell” refers to the primary cell for a UE in RRC_CONNECTED not configured with CA/DC there is only one serving cell comprising of the primary cell.
  • The term “serving cell” or “serving cells” refers to the set of cells comprising the Special Cell(s) and all secondary cells for a UE in RRC_CONNECTED configured with CA/.
  • The term “Special Cell” refers to the PCell of the MCG or the PSCell of the SCG for DC operation; otherwise, the term “Special Cell” refers to the Pcell.

Claims (20)

What is claimed is:
1. An apparatus comprising:
memory to store downlink control information (DCI); and
processor circuitry, coupled with the memory, to:
retrieve the DCI from the memory, wherein the DCI is to schedule one or more shared channels with different transport blocks (TBs) in different slots; and
encode a physical downlink control channel (PDCCH) message that includes the DCI for transmission to a user equipment (UE).
2. The apparatus of claim 1, wherein the one or more shared channels include a physical downlink shared channel (PDSCH) or a physical uplink shared channel (PUSCH).
3. The apparatus of claim 2, wherein the DCI is to schedule four PDSCHs with different TBs, or the DCI is to schedule three PUSCHs with different TBs.
4. The apparatus of claim 1, wherein each respective shared channel of the one or more shared channels is scheduled within a respective slot.
5. The apparatus of claim 1, wherein a plurality of fields within the DCI are common among multiple shared channels, and wherein:
a carrier indicator and a bandwidth part (BWP) indicator indicated in the DCI are the same for multiple shared channels; or
a frequency domain resource allocation indicated in the DCI is the same for multiple shared channels.
6. The apparatus of claim 1, wherein:
a single transmission configuration indication (TCI) in the DCI is to be applied to transmission of a plurality of shared channels; or
a single sounding reference signal (SRS) resource indicator in the DCI is to be applied to a plurality of shared channels; or
the DCI includes an independent new data indicator (NDI) for each respective shared channel.
7. The apparatus of claim 1, wherein the processing circuitry is further to generate a dynamic hybrid automatic repeat request-acknowledgement (HARQ-ACK) codebook for multiple transmit time interval (multi-TTI) scheduling for PDSCH transmissions with multiple transport blocks (TBs).
8. The apparatus of claim 7, wherein the dynamic HARQ-ACK codebook includes two concatenated sub-codebooks, and wherein a first sub-codebook is to carry HARQ-ACK for TB-based PDSCH scheduling, and a second sub-codebook is for code block group (CBG) based PDSCH scheduling.
9. The apparatus of claim 8, wherein the second sub-codebook includes HARQ-ACK bits for CBG-based PDSCH transmissions and PDSCH transmissions scheduled by a DCI scheduling multiple TTIs.
10. One or more non-transitory computer-readable media storing instructions that, when executed by one or more processors, are to cause a next-generation NodeB (gNB) to:
determine downlink control information (DCI) that is to schedule one or more shared channels with different transport blocks (TBs) in different slots, wherein the one or more shared channels include a physical downlink shared channel (PDSCH) or a physical uplink shared channel (PUSCH); and
encode a physical downlink control channel (PDCCH) message that includes the DCI for transmission to a user equipment (UE).
11. The one or more non-transitory computer-readable media of claim 10, wherein the DCI is to schedule four PDSCHs with different TBs, or the DCI is to schedule three PUSCHs with different TBs.
12. The one or more non-transitory computer-readable media of claim 10, wherein each respective shared channel of the one or more shared channels is scheduled within a respective slot.
13. The one or more non-transitory computer-readable media of claim 10, wherein a plurality of fields within the DCI are common among multiple shared channels, and wherein:
a carrier indicator and a bandwidth part (BWP) indicator indicated in the DCI are the same for multiple shared channels; or
a frequency domain resource allocation indicated in the DCI is the same for multiple shared channels.
14. The one or more non-transitory computer-readable media of claim 10, wherein:
a single transmission configuration indication (TCI) in the DCI is to be applied to transmission of a plurality of shared channels; or
a single sounding reference signal (SRS) resource indicator in the DCI is to be applied to a plurality of shared channels; or
the DCI includes an independent new data indicator (NDI) for each respective shared channel.
15. The one or more non-transitory computer-readable media of claim 10, wherein the processing circuitry is further to generate a dynamic hybrid automatic repeat request-acknowledgement (HARQ-ACK) codebook for multiple transmit time interval (multi-TTI) scheduling for PDSCH transmissions with multiple transport blocks (TBs).
16. The one or more non-transitory computer-readable media of claim 15, wherein the dynamic HARQ-ACK codebook includes two concatenated sub-codebooks, and wherein a first sub-codebook is to carry HARQ-ACK for TB-based PDSCH scheduling, and a second sub-codebook is for code block group (CBG) based PDSCH scheduling.
17. The one or more non-transitory computer-readable media of claim 16, wherein the second sub-codebook includes HARQ-ACK bits for CBG-based PDSCH transmissions and PDSCH transmissions scheduled by a DCI scheduling multiple TTIs.
18. One or more non-transitory computer-readable media storing instructions that, when executed by one or more processors, are to cause a user equipment (UE) to:
receive downlink control information (DCI) from a physical downlink control channel (PDCCH) message, the DCI to schedule one or more shared channels with different transport blocks (TBs) in different slots, wherein the one or more shared channels include one or more physical uplink shared channels (PUSCHs); and
encode one or more PUSCH messages for transmission based on the DCI.
19. The one or more non-transitory computer-readable media of claim 18, wherein a plurality of fields within the DCI are common among multiple shared channels, and wherein:
a carrier indicator and a bandwidth part (BWP) indicator indicated in the DCI are the same for multiple shared channels; or
a frequency domain resource allocation indicated in the DCI is the same for multiple shared channels.
20. The one or more non-transitory computer-readable media of claim 18, wherein:
a single transmission configuration indication (TCI) in the DCI is to be applied to transmission of a plurality of shared channels; or
a single sounding reference signal (SRS) resource indicator in the DCI is to be applied to a plurality of shared channels; or
the DCI includes an independent new data indicator (NDI) for each respective shared channel.
US16/951,926 2019-11-19 2020-11-18 Multi-transmission time interval (TTI) scheduling for data transmission Active 2041-06-12 US11871419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/951,926 US11871419B2 (en) 2019-11-19 2020-11-18 Multi-transmission time interval (TTI) scheduling for data transmission

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962937687P 2019-11-19 2019-11-19
US201962942646P 2019-12-02 2019-12-02
US16/951,926 US11871419B2 (en) 2019-11-19 2020-11-18 Multi-transmission time interval (TTI) scheduling for data transmission

Publications (2)

Publication Number Publication Date
US20210092759A1 true US20210092759A1 (en) 2021-03-25
US11871419B2 US11871419B2 (en) 2024-01-09

Family

ID=74881486

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/951,926 Active 2041-06-12 US11871419B2 (en) 2019-11-19 2020-11-18 Multi-transmission time interval (TTI) scheduling for data transmission

Country Status (1)

Country Link
US (1) US11871419B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210219319A1 (en) * 2020-01-13 2021-07-15 Shanghai Langbo Communication Technology Company Limited Method and device used for wireless communication
US11115271B1 (en) * 2020-03-31 2021-09-07 Nokia Solutions And Networks Oy Network slice configuration
US20220030560A1 (en) * 2020-07-27 2022-01-27 Samsung Electronics Co., Ltd. Harq process identification and soft buffer management for non-terrestrial networks
US20220303914A1 (en) * 2021-03-17 2022-09-22 T-Mobile Usa, Inc. Dynamic switching of user equipment power class
US20220338175A1 (en) * 2021-04-19 2022-10-20 Qualcomm Incorporated Multi-tti selective grant for sidelink communication in unlicensed spectrum
WO2023185077A1 (en) * 2022-03-29 2023-10-05 网络通信与安全紫金山实验室 Energy efficiency optimization method and system for network-assisted full-duplex system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230199852A1 (en) * 2021-12-21 2023-06-22 Qualcomm Incorporated Interaction of prach repetition and request of msg3 repetition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018031623A1 (en) * 2016-08-11 2018-02-15 Intel Corporation Flexible transmission time interval and on slot aggregation for data transmission for new radio
US20180167932A1 (en) * 2016-12-09 2018-06-14 Samsung Electronics Co., Ltd. Multiplexing control information in a physical uplink data channel
US20180242317A1 (en) * 2015-08-25 2018-08-23 Idac Holdings, Inc. Framing, scheduling, and synchronization in wireless systems
US20190149271A1 (en) * 2017-11-16 2019-05-16 Sharp Laboratories Of America, Inc. Codebook determination of harq-ack multiplexing with fallback downlink control information (dci) and code block group (cbg) configurations
US20200413427A1 (en) * 2019-06-28 2020-12-31 Qualcomm Incorporated Multi-transmission time interval (tti) grant scheduling
US20220150832A1 (en) * 2019-05-03 2022-05-12 Lg Electronics Inc. Method and device for transmitting and receiving signals in wireless communication system
US20220174707A1 (en) * 2019-03-29 2022-06-02 Lg Electronics Inc. Method and apparatus for transmitting or receiving wireless signals in wireless communication system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180242317A1 (en) * 2015-08-25 2018-08-23 Idac Holdings, Inc. Framing, scheduling, and synchronization in wireless systems
WO2018031623A1 (en) * 2016-08-11 2018-02-15 Intel Corporation Flexible transmission time interval and on slot aggregation for data transmission for new radio
US20180167932A1 (en) * 2016-12-09 2018-06-14 Samsung Electronics Co., Ltd. Multiplexing control information in a physical uplink data channel
US20190149271A1 (en) * 2017-11-16 2019-05-16 Sharp Laboratories Of America, Inc. Codebook determination of harq-ack multiplexing with fallback downlink control information (dci) and code block group (cbg) configurations
US20220174707A1 (en) * 2019-03-29 2022-06-02 Lg Electronics Inc. Method and apparatus for transmitting or receiving wireless signals in wireless communication system
US20220150832A1 (en) * 2019-05-03 2022-05-12 Lg Electronics Inc. Method and device for transmitting and receiving signals in wireless communication system
US20200413427A1 (en) * 2019-06-28 2020-12-31 Qualcomm Incorporated Multi-transmission time interval (tti) grant scheduling

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Provisional 62931756 Yang et al. (US 20220150832) 06/11/2019 (Year: 2019) *
Sony On transmission of multiple DL transport blocks 3GPP TSG RAN WG1 Meeting #96: R1-1902193 03/2019 (Year: 2019) *
US provisional 62868168 Corresponding to US 20200413427 06/2019 (Year: 2019) *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210219319A1 (en) * 2020-01-13 2021-07-15 Shanghai Langbo Communication Technology Company Limited Method and device used for wireless communication
US11856575B2 (en) * 2020-01-13 2023-12-26 Shanghai Langbo Communication Technology Company Limited Method and device used for wireless communication
US11115271B1 (en) * 2020-03-31 2021-09-07 Nokia Solutions And Networks Oy Network slice configuration
US20220030560A1 (en) * 2020-07-27 2022-01-27 Samsung Electronics Co., Ltd. Harq process identification and soft buffer management for non-terrestrial networks
US11924846B2 (en) * 2020-07-27 2024-03-05 Samsung Electronics Co., Ltd. HARQ process identification and soft buffer management for non-terrestrial networks
US20220303914A1 (en) * 2021-03-17 2022-09-22 T-Mobile Usa, Inc. Dynamic switching of user equipment power class
US11533688B2 (en) * 2021-03-17 2022-12-20 T-Mobile Usa, Inc. Dynamic switching of user equipment power class
US20230117857A1 (en) * 2021-03-17 2023-04-20 T-Mobile Usa, Inc. Dynamic switching of user equipment power class
US11889430B2 (en) * 2021-03-17 2024-01-30 T-Mobile Usa, Inc. Dynamic switching of user equipment power class
US20220338175A1 (en) * 2021-04-19 2022-10-20 Qualcomm Incorporated Multi-tti selective grant for sidelink communication in unlicensed spectrum
US11671981B2 (en) * 2021-04-19 2023-06-06 Qualcomm Incorporated Multi-TTI selective grant for sidelink communication in unlicensed spectrum
WO2023185077A1 (en) * 2022-03-29 2023-10-05 网络通信与安全紫金山实验室 Energy efficiency optimization method and system for network-assisted full-duplex system

Also Published As

Publication number Publication date
US11871419B2 (en) 2024-01-09

Similar Documents

Publication Publication Date Title
US20200396744A1 (en) Techniques for high frequency wireless communication
US11812405B2 (en) User equipment operation with multiple subscriber identity modules
US11751251B2 (en) Grant based PUSCH transmission and configured grant based PUSCH transmission in NR systems operating on unlicensed spectrum
US11963041B2 (en) Load balancing optimization for 5G self-organizing networks
US20210058989A1 (en) Network coding and delay-efficient integrated access and backhaul network topologies
US20210045125A1 (en) Multiplexing transmission types in multiple-panel user equipments
US20210058970A1 (en) Mechanisms to operate on a downlink wideband carrier in unlicensed band
US20210067391A1 (en) Low peak-to-average power ratio (papr) reference signal (rs) design for high frequency bands
US11743006B2 (en) Physical uplink control channel design for discrete fourier transform-spread-orthogonal frequency-division multiplexing (DFT-s-OFDM) waveforms
US20220060277A1 (en) Dynamic indication of soft resource availability via sfi procedure in iab
US20210076359A1 (en) Method and system for dl prs transmission for accurate rat-dependent nr positioning
US20200389876A1 (en) Uplink cancelation indication
US20220085931A1 (en) Systems and methods for physical downlink control channel candidate selection
US20220095240A1 (en) Network Coordination for Crosslink Interference Mitigation
US20210007129A1 (en) Multiplexing rules for configured grant transmissions in new radio systems operating on unlicensed spectrum
US20210083911A1 (en) Synchronization signal block configuration for above 52.6ghz carrier frequency
US20220086860A1 (en) Sidelink procedures and structures for transmission and reception of non-standalone and standalone physical sidelink shared channel
US11871419B2 (en) Multi-transmission time interval (TTI) scheduling for data transmission
US20210022018A1 (en) Methods for selection of ca configuration for nr normal ca requirements
US20220095301A1 (en) Cot sharing procedure for configured grants in nr systems operating on unlicensed spectrum
US20220104214A1 (en) Data channel mapping type and dm-rs configuration to enable l1 cli measurement and reporting
US20220159768A1 (en) Uplink (ul) retransmission and radio link failure (rlf) recovery in a multi-hop relay network
US20220103270A1 (en) Methods for timing offset signaling for cross-link interference (cli) measurement
US11770848B2 (en) Techniques for uplink cancellation indication signaling
US20220132326A1 (en) Pusch default beam in nr with multi-trp multi-panel operation

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: INTEL CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:XIONG, GANG;LI, YINGYANG;MOROZOV, GREGORY;AND OTHERS;SIGNING DATES FROM 20201118 TO 20201123;REEL/FRAME:054494/0949

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STCT Information on status: administrative procedure adjustment

Free format text: PROSECUTION SUSPENDED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction