US20210085725A1 - Mesenchymal-like stem cells derived from human embryonic stem cells, methods and uses thereof - Google Patents
Mesenchymal-like stem cells derived from human embryonic stem cells, methods and uses thereof Download PDFInfo
- Publication number
- US20210085725A1 US20210085725A1 US17/066,642 US202017066642A US2021085725A1 US 20210085725 A1 US20210085725 A1 US 20210085725A1 US 202017066642 A US202017066642 A US 202017066642A US 2021085725 A1 US2021085725 A1 US 2021085725A1
- Authority
- US
- United States
- Prior art keywords
- msc
- cells
- cell
- mscs
- stem cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 256
- 210000001671 embryonic stem cell Anatomy 0.000 title claims abstract description 34
- 210000000130 stem cell Anatomy 0.000 title abstract description 94
- 210000004027 cell Anatomy 0.000 claims abstract description 329
- 210000002993 trophoblast Anatomy 0.000 claims abstract description 70
- 238000011282 treatment Methods 0.000 claims abstract description 40
- 238000012258 culturing Methods 0.000 claims abstract description 10
- 210000002901 mesenchymal stem cell Anatomy 0.000 claims description 137
- 230000014509 gene expression Effects 0.000 claims description 52
- 239000002609 medium Substances 0.000 claims description 49
- 102100022464 5'-nucleotidase Human genes 0.000 claims description 47
- 101000678236 Homo sapiens 5'-nucleotidase Proteins 0.000 claims description 47
- 239000003795 chemical substances by application Substances 0.000 claims description 40
- -1 CD31 Proteins 0.000 claims description 39
- 108090001005 Interleukin-6 Proteins 0.000 claims description 36
- 239000003550 marker Substances 0.000 claims description 35
- 102000004889 Interleukin-6 Human genes 0.000 claims description 34
- 210000001185 bone marrow Anatomy 0.000 claims description 29
- 230000004888 barrier function Effects 0.000 claims description 28
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 claims description 25
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 claims description 25
- 101000800116 Homo sapiens Thy-1 membrane glycoprotein Proteins 0.000 claims description 24
- 102100033523 Thy-1 membrane glycoprotein Human genes 0.000 claims description 24
- 102100037241 Endoglin Human genes 0.000 claims description 23
- 101000881679 Homo sapiens Endoglin Proteins 0.000 claims description 23
- 239000003112 inhibitor Substances 0.000 claims description 23
- 210000001218 blood-brain barrier Anatomy 0.000 claims description 22
- 239000001963 growth medium Substances 0.000 claims description 22
- 101000935043 Homo sapiens Integrin beta-1 Proteins 0.000 claims description 21
- 102100025304 Integrin beta-1 Human genes 0.000 claims description 21
- 230000008499 blood brain barrier function Effects 0.000 claims description 21
- 102100032912 CD44 antigen Human genes 0.000 claims description 20
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 claims description 20
- 102100024616 Platelet endothelial cell adhesion molecule Human genes 0.000 claims description 20
- 108010065805 Interleukin-12 Proteins 0.000 claims description 19
- 102000013462 Interleukin-12 Human genes 0.000 claims description 19
- 102000004887 Transforming Growth Factor beta Human genes 0.000 claims description 18
- 108090001012 Transforming Growth Factor beta Proteins 0.000 claims description 18
- 108060008682 Tumor Necrosis Factor Proteins 0.000 claims description 18
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 claims description 18
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 claims description 17
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 claims description 17
- 102100022749 Aminopeptidase N Human genes 0.000 claims description 15
- 102100023126 Cell surface glycoprotein MUC18 Human genes 0.000 claims description 15
- 101000757160 Homo sapiens Aminopeptidase N Proteins 0.000 claims description 15
- 101000623903 Homo sapiens Cell surface glycoprotein MUC18 Proteins 0.000 claims description 15
- 101000599852 Homo sapiens Intercellular adhesion molecule 1 Proteins 0.000 claims description 15
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 claims description 15
- 102100024210 CD166 antigen Human genes 0.000 claims description 14
- 101000980840 Homo sapiens CD166 antigen Proteins 0.000 claims description 14
- 208000024891 symptom Diseases 0.000 claims description 14
- 102100024505 Bone morphogenetic protein 4 Human genes 0.000 claims description 13
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 claims description 13
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 claims description 13
- 108090000174 Interleukin-10 Proteins 0.000 claims description 13
- 102000003814 Interleukin-10 Human genes 0.000 claims description 13
- 108010085895 Laminin Proteins 0.000 claims description 13
- 102000007547 Laminin Human genes 0.000 claims description 13
- 102100026802 72 kDa type IV collagenase Human genes 0.000 claims description 11
- 108010010803 Gelatin Proteins 0.000 claims description 11
- 101000627872 Homo sapiens 72 kDa type IV collagenase Proteins 0.000 claims description 11
- 101000762379 Homo sapiens Bone morphogenetic protein 4 Proteins 0.000 claims description 11
- 101000622304 Homo sapiens Vascular cell adhesion protein 1 Proteins 0.000 claims description 11
- 102100023543 Vascular cell adhesion protein 1 Human genes 0.000 claims description 11
- 229920000159 gelatin Polymers 0.000 claims description 11
- 239000008273 gelatin Substances 0.000 claims description 11
- 235000019322 gelatine Nutrition 0.000 claims description 11
- 235000011852 gelatine desserts Nutrition 0.000 claims description 11
- 210000004263 induced pluripotent stem cell Anatomy 0.000 claims description 11
- 108010035532 Collagen Proteins 0.000 claims description 10
- 102000008186 Collagen Human genes 0.000 claims description 10
- 229920001436 collagen Polymers 0.000 claims description 10
- 102100037362 Fibronectin Human genes 0.000 claims description 9
- 108010067306 Fibronectins Proteins 0.000 claims description 9
- 108010031318 Vitronectin Proteins 0.000 claims description 8
- 102100035140 Vitronectin Human genes 0.000 claims description 8
- 239000002771 cell marker Substances 0.000 claims description 8
- 208000027866 inflammatory disease Diseases 0.000 claims description 8
- 230000000770 proinflammatory effect Effects 0.000 claims description 7
- 230000002829 reductive effect Effects 0.000 claims description 5
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 claims description 4
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 claims description 4
- 208000006011 Stroke Diseases 0.000 claims description 4
- 238000011161 development Methods 0.000 claims description 4
- 210000002744 extracellular matrix Anatomy 0.000 claims description 4
- 102100021943 C-C motif chemokine 2 Human genes 0.000 claims description 3
- 208000032109 Transient ischaemic attack Diseases 0.000 claims description 3
- 238000007912 intraperitoneal administration Methods 0.000 claims description 3
- 238000001990 intravenous administration Methods 0.000 claims description 3
- 201000010875 transient cerebral ischemia Diseases 0.000 claims description 3
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 claims description 2
- 101000897480 Homo sapiens C-C motif chemokine 2 Proteins 0.000 claims description 2
- 201000009794 Idiopathic Pulmonary Fibrosis Diseases 0.000 claims description 2
- 101100482117 Saimiri sciureus THBD gene Proteins 0.000 claims description 2
- 238000001802 infusion Methods 0.000 claims description 2
- 208000036971 interstitial lung disease 2 Diseases 0.000 claims description 2
- 238000007917 intracranial administration Methods 0.000 claims description 2
- 210000004072 lung Anatomy 0.000 claims description 2
- 238000007747 plating Methods 0.000 claims description 2
- 108010049955 Bone Morphogenetic Protein 4 Proteins 0.000 claims 2
- 238000007913 intrathecal administration Methods 0.000 claims 2
- 108010000684 Matrix Metalloproteinases Proteins 0.000 claims 1
- 108700012920 TNF Proteins 0.000 claims 1
- 102000006747 Transforming Growth Factor alpha Human genes 0.000 claims 1
- 101800004564 Transforming growth factor alpha Proteins 0.000 claims 1
- 238000001361 intraarterial administration Methods 0.000 claims 1
- 238000007918 intramuscular administration Methods 0.000 claims 1
- 238000007919 intrasynovial administration Methods 0.000 claims 1
- 238000007915 intraurethral administration Methods 0.000 claims 1
- 238000007914 intraventricular administration Methods 0.000 claims 1
- 238000007920 subcutaneous administration Methods 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 201000006417 multiple sclerosis Diseases 0.000 abstract description 61
- 230000004069 differentiation Effects 0.000 abstract description 55
- 208000023275 Autoimmune disease Diseases 0.000 abstract description 28
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 13
- 239000003018 immunosuppressive agent Substances 0.000 abstract description 7
- 229940125721 immunosuppressive agent Drugs 0.000 abstract description 6
- 230000006806 disease prevention Effects 0.000 abstract description 5
- 108090000623 proteins and genes Proteins 0.000 description 83
- 102000004169 proteins and genes Human genes 0.000 description 65
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 64
- 210000001744 T-lymphocyte Anatomy 0.000 description 60
- 201000010099 disease Diseases 0.000 description 59
- 239000000090 biomarker Substances 0.000 description 54
- 239000000203 mixture Substances 0.000 description 50
- 230000001506 immunosuppresive effect Effects 0.000 description 47
- 239000000243 solution Substances 0.000 description 46
- 238000004113 cell culture Methods 0.000 description 45
- 210000002865 immune cell Anatomy 0.000 description 42
- 150000001875 compounds Chemical class 0.000 description 39
- 239000000523 sample Substances 0.000 description 39
- 210000001519 tissue Anatomy 0.000 description 37
- 229940100601 interleukin-6 Drugs 0.000 description 32
- 230000000694 effects Effects 0.000 description 30
- 230000028993 immune response Effects 0.000 description 30
- 201000002491 encephalomyelitis Diseases 0.000 description 28
- 238000000338 in vitro Methods 0.000 description 26
- 238000007799 mixed lymphocyte reaction assay Methods 0.000 description 26
- 230000001537 neural effect Effects 0.000 description 26
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 23
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 23
- 238000003752 polymerase chain reaction Methods 0.000 description 23
- 241000699670 Mus sp. Species 0.000 description 22
- 239000000825 pharmaceutical preparation Substances 0.000 description 22
- 230000006052 T cell proliferation Effects 0.000 description 21
- 239000003814 drug Substances 0.000 description 21
- 239000000463 material Substances 0.000 description 21
- 239000000427 antigen Substances 0.000 description 20
- 230000035755 proliferation Effects 0.000 description 20
- 238000003556 assay Methods 0.000 description 19
- 210000002536 stromal cell Anatomy 0.000 description 19
- 108091007433 antigens Proteins 0.000 description 18
- 102000036639 antigens Human genes 0.000 description 18
- 150000007523 nucleic acids Chemical class 0.000 description 18
- 230000001225 therapeutic effect Effects 0.000 description 17
- 108020004414 DNA Proteins 0.000 description 16
- 239000012091 fetal bovine serum Substances 0.000 description 16
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 16
- 238000001727 in vivo Methods 0.000 description 16
- 239000011159 matrix material Substances 0.000 description 16
- 239000000047 product Substances 0.000 description 16
- 238000012360 testing method Methods 0.000 description 16
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 15
- 210000003169 central nervous system Anatomy 0.000 description 15
- 108090000765 processed proteins & peptides Proteins 0.000 description 15
- 230000017423 tissue regeneration Effects 0.000 description 15
- 102000004127 Cytokines Human genes 0.000 description 14
- 108090000695 Cytokines Proteins 0.000 description 14
- 102000004190 Enzymes Human genes 0.000 description 14
- 108090000790 Enzymes Proteins 0.000 description 14
- 229940088598 enzyme Drugs 0.000 description 14
- 238000002493 microarray Methods 0.000 description 14
- 210000001789 adipocyte Anatomy 0.000 description 13
- 238000001514 detection method Methods 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 13
- 210000002950 fibroblast Anatomy 0.000 description 13
- 230000006870 function Effects 0.000 description 13
- 230000035876 healing Effects 0.000 description 13
- 230000002519 immonomodulatory effect Effects 0.000 description 13
- 102000004196 processed proteins & peptides Human genes 0.000 description 13
- 239000000126 substance Substances 0.000 description 13
- 206010062016 Immunosuppression Diseases 0.000 description 12
- 210000001612 chondrocyte Anatomy 0.000 description 12
- 102000039446 nucleic acids Human genes 0.000 description 12
- 108020004707 nucleic acids Proteins 0.000 description 12
- 210000000963 osteoblast Anatomy 0.000 description 12
- 210000002966 serum Anatomy 0.000 description 12
- VDABVNMGKGUPEY-UHFFFAOYSA-N 6-carboxyfluorescein succinimidyl ester Chemical compound C=1C(O)=CC=C2C=1OC1=CC(O)=CC=C1C2(C1=C2)OC(=O)C1=CC=C2C(=O)ON1C(=O)CCC1=O VDABVNMGKGUPEY-UHFFFAOYSA-N 0.000 description 11
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 11
- 241000699666 Mus <mouse, genus> Species 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 11
- 238000003491 array Methods 0.000 description 11
- 239000003636 conditioned culture medium Substances 0.000 description 11
- 239000012634 fragment Substances 0.000 description 11
- 239000003102 growth factor Substances 0.000 description 11
- 239000013598 vector Substances 0.000 description 11
- LKKMLIBUAXYLOY-UHFFFAOYSA-N 3-Amino-1-methyl-5H-pyrido[4,3-b]indole Chemical compound N1C2=CC=CC=C2C2=C1C=C(N)N=C2C LKKMLIBUAXYLOY-UHFFFAOYSA-N 0.000 description 10
- 108091007065 BIRCs Proteins 0.000 description 10
- 206010061218 Inflammation Diseases 0.000 description 10
- 102000055031 Inhibitor of Apoptosis Proteins Human genes 0.000 description 10
- 239000011324 bead Substances 0.000 description 10
- 210000004369 blood Anatomy 0.000 description 10
- 239000008280 blood Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 230000003247 decreasing effect Effects 0.000 description 10
- 238000009795 derivation Methods 0.000 description 10
- 230000004054 inflammatory process Effects 0.000 description 10
- 108010082117 matrigel Proteins 0.000 description 10
- 210000003098 myoblast Anatomy 0.000 description 10
- 238000010839 reverse transcription Methods 0.000 description 10
- 241000124008 Mammalia Species 0.000 description 9
- 241001465754 Metazoa Species 0.000 description 9
- 239000002299 complementary DNA Substances 0.000 description 9
- 229940079593 drug Drugs 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 230000002265 prevention Effects 0.000 description 9
- 239000012679 serum free medium Substances 0.000 description 9
- 230000000638 stimulation Effects 0.000 description 9
- 208000011580 syndromic disease Diseases 0.000 description 9
- 210000003954 umbilical cord Anatomy 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 230000006378 damage Effects 0.000 description 8
- 239000008103 glucose Substances 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 238000002372 labelling Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 108020004999 messenger RNA Proteins 0.000 description 8
- 239000011859 microparticle Substances 0.000 description 8
- 210000002569 neuron Anatomy 0.000 description 8
- 102000005962 receptors Human genes 0.000 description 8
- 108020003175 receptors Proteins 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 229940124597 therapeutic agent Drugs 0.000 description 8
- 238000001890 transfection Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 102100026992 Dermcidin Human genes 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 7
- 206010021143 Hypoxia Diseases 0.000 description 7
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 7
- 230000027455 binding Effects 0.000 description 7
- 239000000969 carrier Substances 0.000 description 7
- 230000010261 cell growth Effects 0.000 description 7
- 238000000684 flow cytometry Methods 0.000 description 7
- 238000003018 immunoassay Methods 0.000 description 7
- 210000004698 lymphocyte Anatomy 0.000 description 7
- 238000010208 microarray analysis Methods 0.000 description 7
- 102000040430 polynucleotide Human genes 0.000 description 7
- 108091033319 polynucleotide Proteins 0.000 description 7
- 239000002157 polynucleotide Substances 0.000 description 7
- 230000005855 radiation Effects 0.000 description 7
- 230000008929 regeneration Effects 0.000 description 7
- 238000011069 regeneration method Methods 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 206010039073 rheumatoid arthritis Diseases 0.000 description 7
- 150000003384 small molecules Chemical class 0.000 description 7
- 235000002639 sodium chloride Nutrition 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 238000002560 therapeutic procedure Methods 0.000 description 7
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 101800000414 Corticotropin Proteins 0.000 description 6
- 108010024164 HLA-G Antigens Proteins 0.000 description 6
- 238000000636 Northern blotting Methods 0.000 description 6
- 108091028043 Nucleic acid sequence Proteins 0.000 description 6
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 229940098773 bovine serum albumin Drugs 0.000 description 6
- 238000003501 co-culture Methods 0.000 description 6
- IDLFZVILOHSSID-OVLDLUHVSA-N corticotropin Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](N)CO)C1=CC=C(O)C=C1 IDLFZVILOHSSID-OVLDLUHVSA-N 0.000 description 6
- 229960000258 corticotropin Drugs 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000003795 desorption Methods 0.000 description 6
- 229960003957 dexamethasone Drugs 0.000 description 6
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 6
- 239000012595 freezing medium Substances 0.000 description 6
- 239000000017 hydrogel Substances 0.000 description 6
- 210000000987 immune system Anatomy 0.000 description 6
- 206010025135 lupus erythematosus Diseases 0.000 description 6
- 210000001161 mammalian embryo Anatomy 0.000 description 6
- 230000001404 mediated effect Effects 0.000 description 6
- 210000000056 organ Anatomy 0.000 description 6
- 230000037361 pathway Effects 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 239000013615 primer Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000000750 progressive effect Effects 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 230000008439 repair process Effects 0.000 description 6
- 238000003757 reverse transcription PCR Methods 0.000 description 6
- 238000010561 standard procedure Methods 0.000 description 6
- 230000001629 suppression Effects 0.000 description 6
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 6
- 239000000275 Adrenocorticotropic Hormone Substances 0.000 description 5
- 102400000739 Corticotropin Human genes 0.000 description 5
- 208000011231 Crohn disease Diseases 0.000 description 5
- 208000016192 Demyelinating disease Diseases 0.000 description 5
- 206010012305 Demyelination Diseases 0.000 description 5
- 208000007465 Giant cell arteritis Diseases 0.000 description 5
- 208000009329 Graft vs Host Disease Diseases 0.000 description 5
- 102100028967 HLA class I histocompatibility antigen, alpha chain G Human genes 0.000 description 5
- 206010063491 Herpes zoster oticus Diseases 0.000 description 5
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 5
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 5
- 239000004098 Tetracycline Substances 0.000 description 5
- 108091023040 Transcription factor Proteins 0.000 description 5
- 102000040945 Transcription factor Human genes 0.000 description 5
- 208000027418 Wounds and injury Diseases 0.000 description 5
- 230000001154 acute effect Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000012472 biological sample Substances 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 230000024245 cell differentiation Effects 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 238000005138 cryopreservation Methods 0.000 description 5
- 210000004443 dendritic cell Anatomy 0.000 description 5
- 238000010790 dilution Methods 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- 235000019441 ethanol Nutrition 0.000 description 5
- 239000007850 fluorescent dye Substances 0.000 description 5
- 208000024908 graft versus host disease Diseases 0.000 description 5
- 230000003394 haemopoietic effect Effects 0.000 description 5
- 210000003566 hemangioblast Anatomy 0.000 description 5
- 230000001146 hypoxic effect Effects 0.000 description 5
- 230000006698 induction Effects 0.000 description 5
- 230000008595 infiltration Effects 0.000 description 5
- 238000001764 infiltration Methods 0.000 description 5
- 230000002757 inflammatory effect Effects 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- 208000014674 injury Diseases 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 230000000069 prophylactic effect Effects 0.000 description 5
- 210000000278 spinal cord Anatomy 0.000 description 5
- 238000010186 staining Methods 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 229960002180 tetracycline Drugs 0.000 description 5
- 229930101283 tetracycline Natural products 0.000 description 5
- 235000019364 tetracycline Nutrition 0.000 description 5
- 150000003522 tetracyclines Chemical class 0.000 description 5
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- 229940088872 Apoptosis inhibitor Drugs 0.000 description 4
- 241000271566 Aves Species 0.000 description 4
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 4
- 108010036949 Cyclosporine Proteins 0.000 description 4
- 206010012289 Dementia Diseases 0.000 description 4
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 4
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 4
- 102000034615 Glial cell line-derived neurotrophic factor Human genes 0.000 description 4
- 108091010837 Glial cell line-derived neurotrophic factor Proteins 0.000 description 4
- 102000006354 HLA-DR Antigens Human genes 0.000 description 4
- 108010058597 HLA-DR Antigens Proteins 0.000 description 4
- 102000003693 Hedgehog Proteins Human genes 0.000 description 4
- 108090000031 Hedgehog Proteins Proteins 0.000 description 4
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 4
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- 208000001089 Multiple system atrophy Diseases 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 4
- 108091034117 Oligonucleotide Proteins 0.000 description 4
- 229920000954 Polyglycolide Polymers 0.000 description 4
- 108090000631 Trypsin Proteins 0.000 description 4
- 102000004142 Trypsin Human genes 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 230000003213 activating effect Effects 0.000 description 4
- 239000013543 active substance Substances 0.000 description 4
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 4
- 239000000158 apoptosis inhibitor Substances 0.000 description 4
- 201000003710 autoimmune thrombocytopenic purpura Diseases 0.000 description 4
- 229960002170 azathioprine Drugs 0.000 description 4
- LMEKQMALGUDUQG-UHFFFAOYSA-N azathioprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1NC=N2 LMEKQMALGUDUQG-UHFFFAOYSA-N 0.000 description 4
- 239000012620 biological material Substances 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 4
- 208000029028 brain injury Diseases 0.000 description 4
- 230000022159 cartilage development Effects 0.000 description 4
- 230000004663 cell proliferation Effects 0.000 description 4
- 229960001265 ciclosporin Drugs 0.000 description 4
- 230000001268 conjugating effect Effects 0.000 description 4
- 229930182912 cyclosporin Natural products 0.000 description 4
- 238000007405 data analysis Methods 0.000 description 4
- 201000001981 dermatomyositis Diseases 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 108010007093 dispase Proteins 0.000 description 4
- 239000003937 drug carrier Substances 0.000 description 4
- 206010014599 encephalitis Diseases 0.000 description 4
- 239000003925 fat Substances 0.000 description 4
- 210000004700 fetal blood Anatomy 0.000 description 4
- 229940126864 fibroblast growth factor Drugs 0.000 description 4
- 229960000556 fingolimod Drugs 0.000 description 4
- KKGQTZUTZRNORY-UHFFFAOYSA-N fingolimod Chemical compound CCCCCCCCC1=CC=C(CCC(N)(CO)CO)C=C1 KKGQTZUTZRNORY-UHFFFAOYSA-N 0.000 description 4
- 239000006260 foam Substances 0.000 description 4
- 201000011349 geniculate herpes zoster Diseases 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 230000036737 immune function Effects 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 238000004949 mass spectrometry Methods 0.000 description 4
- 229960000485 methotrexate Drugs 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 210000000822 natural killer cell Anatomy 0.000 description 4
- 230000011164 ossification Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000002953 phosphate buffered saline Substances 0.000 description 4
- 230000002285 radioactive effect Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 238000010374 somatic cell nuclear transfer Methods 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 208000020431 spinal cord injury Diseases 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- 206010043207 temporal arteritis Diseases 0.000 description 4
- 239000012588 trypsin Substances 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- VHRSUDSXCMQTMA-PJHHCJLFSA-N 6alpha-methylprednisolone Chemical compound C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@](O)(C(=O)CO)CC[C@H]21 VHRSUDSXCMQTMA-PJHHCJLFSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 208000024827 Alzheimer disease Diseases 0.000 description 3
- 102100040124 Apoptosis-inducing factor 1, mitochondrial Human genes 0.000 description 3
- 102100022716 Atypical chemokine receptor 3 Human genes 0.000 description 3
- 208000032116 Autoimmune Experimental Encephalomyelitis Diseases 0.000 description 3
- 102100039398 C-X-C motif chemokine 2 Human genes 0.000 description 3
- 102100037904 CD9 antigen Human genes 0.000 description 3
- 206010008874 Chronic Fatigue Syndrome Diseases 0.000 description 3
- 208000030939 Chronic inflammatory demyelinating polyneuropathy Diseases 0.000 description 3
- PTOAARAWEBMLNO-KVQBGUIXSA-N Cladribine Chemical compound C1=NC=2C(N)=NC(Cl)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 PTOAARAWEBMLNO-KVQBGUIXSA-N 0.000 description 3
- 108060005980 Collagenase Proteins 0.000 description 3
- 102000029816 Collagenase Human genes 0.000 description 3
- 208000012514 Cumulative Trauma disease Diseases 0.000 description 3
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 3
- 229920002307 Dextran Polymers 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- 208000001640 Fibromyalgia Diseases 0.000 description 3
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 3
- 102100039619 Granulocyte colony-stimulating factor Human genes 0.000 description 3
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 3
- 102100025110 Homeobox protein Hox-A5 Human genes 0.000 description 3
- 102100021090 Homeobox protein Hox-A9 Human genes 0.000 description 3
- 102100034862 Homeobox protein Hox-B2 Human genes 0.000 description 3
- 102100028411 Homeobox protein Hox-B3 Human genes 0.000 description 3
- 102100029240 Homeobox protein Hox-B5 Human genes 0.000 description 3
- 102100025061 Homeobox protein Hox-B7 Human genes 0.000 description 3
- 101000678890 Homo sapiens Atypical chemokine receptor 3 Proteins 0.000 description 3
- 101000889128 Homo sapiens C-X-C motif chemokine 2 Proteins 0.000 description 3
- 101001077568 Homo sapiens Homeobox protein Hox-A5 Proteins 0.000 description 3
- 101001019752 Homo sapiens Homeobox protein Hox-B2 Proteins 0.000 description 3
- 101000839775 Homo sapiens Homeobox protein Hox-B3 Proteins 0.000 description 3
- 101000840553 Homo sapiens Homeobox protein Hox-B5 Proteins 0.000 description 3
- 101001077539 Homo sapiens Homeobox protein Hox-B7 Proteins 0.000 description 3
- 101000617130 Homo sapiens Stromal cell-derived factor 1 Proteins 0.000 description 3
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 3
- 208000023105 Huntington disease Diseases 0.000 description 3
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 3
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 3
- 108010002350 Interleukin-2 Proteins 0.000 description 3
- 239000012825 JNK inhibitor Substances 0.000 description 3
- 229940118135 JNK inhibitor Drugs 0.000 description 3
- UETNIIAIRMUTSM-UHFFFAOYSA-N Jacareubin Natural products CC1(C)OC2=CC3Oc4c(O)c(O)ccc4C(=O)C3C(=C2C=C1)O UETNIIAIRMUTSM-UHFFFAOYSA-N 0.000 description 3
- 108090000581 Leukemia inhibitory factor Proteins 0.000 description 3
- 208000016604 Lyme disease Diseases 0.000 description 3
- 201000009906 Meningitis Diseases 0.000 description 3
- 206010049567 Miller Fisher syndrome Diseases 0.000 description 3
- 206010028851 Necrosis Diseases 0.000 description 3
- 206010033799 Paralysis Diseases 0.000 description 3
- 208000018737 Parkinson disease Diseases 0.000 description 3
- 208000037534 Progressive hemifacial atrophy Diseases 0.000 description 3
- 206010037742 Rabies Diseases 0.000 description 3
- 208000032831 Ramsay Hunt syndrome Diseases 0.000 description 3
- 208000005587 Refsum Disease Diseases 0.000 description 3
- 102100021669 Stromal cell-derived factor 1 Human genes 0.000 description 3
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 3
- 108700012457 TACSTD2 Proteins 0.000 description 3
- 210000000068 Th17 cell Anatomy 0.000 description 3
- 102000056172 Transforming growth factor beta-3 Human genes 0.000 description 3
- 108090000097 Transforming growth factor beta-3 Proteins 0.000 description 3
- 102100027212 Tumor-associated calcium signal transducer 2 Human genes 0.000 description 3
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 3
- 229940022663 acetate Drugs 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 230000001464 adherent effect Effects 0.000 description 3
- 230000011759 adipose tissue development Effects 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 229960002576 amiloride Drugs 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 230000003110 anti-inflammatory effect Effects 0.000 description 3
- 230000006907 apoptotic process Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000000668 atmospheric pressure chemical ionisation mass spectrometry Methods 0.000 description 3
- 238000001854 atmospheric pressure photoionisation mass spectrometry Methods 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 3
- 230000003115 biocidal effect Effects 0.000 description 3
- 210000001109 blastomere Anatomy 0.000 description 3
- 239000013592 cell lysate Substances 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 201000005795 chronic inflammatory demyelinating polyneuritis Diseases 0.000 description 3
- 229960002436 cladribine Drugs 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 229960004397 cyclophosphamide Drugs 0.000 description 3
- 230000002354 daily effect Effects 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 230000004064 dysfunction Effects 0.000 description 3
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 230000003511 endothelial effect Effects 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 206010015037 epilepsy Diseases 0.000 description 3
- 208000012997 experimental autoimmune encephalomyelitis Diseases 0.000 description 3
- 208000002980 facial hemiatrophy Diseases 0.000 description 3
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 230000005017 genetic modification Effects 0.000 description 3
- 108010027263 homeobox protein HOXA9 Proteins 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000000099 in vitro assay Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 238000004811 liquid chromatography Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920000609 methyl cellulose Polymers 0.000 description 3
- 239000001923 methylcellulose Substances 0.000 description 3
- 229960004584 methylprednisolone Drugs 0.000 description 3
- 108091070501 miRNA Proteins 0.000 description 3
- 239000002679 microRNA Substances 0.000 description 3
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 3
- 229960001156 mitoxantrone Drugs 0.000 description 3
- 238000010172 mouse model Methods 0.000 description 3
- 230000009756 muscle regeneration Effects 0.000 description 3
- 208000029766 myalgic encephalomeyelitis/chronic fatigue syndrome Diseases 0.000 description 3
- 230000017074 necrotic cell death Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000003499 nucleic acid array Methods 0.000 description 3
- 238000007911 parenteral administration Methods 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 210000005259 peripheral blood Anatomy 0.000 description 3
- 239000011886 peripheral blood Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 229920000656 polylysine Polymers 0.000 description 3
- 229920005862 polyol Polymers 0.000 description 3
- 150000003077 polyols Chemical class 0.000 description 3
- 108010055896 polyornithine Proteins 0.000 description 3
- 238000004321 preservation Methods 0.000 description 3
- 238000003127 radioimmunoassay Methods 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 239000004017 serum-free culture medium Substances 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 229960001940 sulfasalazine Drugs 0.000 description 3
- NCEXYHBECQHGNR-QZQOTICOSA-N sulfasalazine Chemical compound C1=C(O)C(C(=O)O)=CC(\N=N\C=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-QZQOTICOSA-N 0.000 description 3
- NCEXYHBECQHGNR-UHFFFAOYSA-N sulfasalazine Natural products C1=C(O)C(C(=O)O)=CC(N=NC=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-UHFFFAOYSA-N 0.000 description 3
- 238000001269 time-of-flight mass spectrometry Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 238000002054 transplantation Methods 0.000 description 3
- 101150079396 trpC2 gene Proteins 0.000 description 3
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- 201000002882 Agraphia Diseases 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- 101800001288 Atrial natriuretic factor Proteins 0.000 description 2
- 101800001890 Atrial natriuretic peptide Proteins 0.000 description 2
- 102400001282 Atrial natriuretic peptide Human genes 0.000 description 2
- 208000000659 Autoimmune lymphoproliferative syndrome Diseases 0.000 description 2
- 239000012583 B-27 Supplement Substances 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 2
- 238000011740 C57BL/6 mouse Methods 0.000 description 2
- 229940123169 Caspase inhibitor Drugs 0.000 description 2
- 201000003728 Centronuclear myopathy Diseases 0.000 description 2
- 206010008748 Chorea Diseases 0.000 description 2
- 102000012422 Collagen Type I Human genes 0.000 description 2
- 108010022452 Collagen Type I Proteins 0.000 description 2
- 208000023890 Complex Regional Pain Syndromes Diseases 0.000 description 2
- 208000014311 Cushing syndrome Diseases 0.000 description 2
- 206010011831 Cytomegalovirus infection Diseases 0.000 description 2
- 239000003155 DNA primer Substances 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 208000004986 Diffuse Cerebral Sclerosis of Schilder Diseases 0.000 description 2
- 206010061818 Disease progression Diseases 0.000 description 2
- 206010067557 Dysmetropsia Diseases 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 102400001368 Epidermal growth factor Human genes 0.000 description 2
- 101800003838 Epidermal growth factor Proteins 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- 102000003951 Erythropoietin Human genes 0.000 description 2
- 108090000394 Erythropoietin Proteins 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- OHCQJHSOBUTRHG-KGGHGJDLSA-N FORSKOLIN Chemical compound O=C([C@@]12O)C[C@](C)(C=C)O[C@]1(C)[C@@H](OC(=O)C)[C@@H](O)[C@@H]1[C@]2(C)[C@@H](O)CCC1(C)C OHCQJHSOBUTRHG-KGGHGJDLSA-N 0.000 description 2
- 238000004252 FT/ICR mass spectrometry Methods 0.000 description 2
- 108090000368 Fibroblast growth factor 8 Proteins 0.000 description 2
- 102100037680 Fibroblast growth factor 8 Human genes 0.000 description 2
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 2
- 208000010055 Globoid Cell Leukodystrophy Diseases 0.000 description 2
- 108010015776 Glucose oxidase Proteins 0.000 description 2
- 239000004366 Glucose oxidase Substances 0.000 description 2
- DHCLVCXQIBBOPH-UHFFFAOYSA-N Glycerol 2-phosphate Chemical compound OCC(CO)OP(O)(O)=O DHCLVCXQIBBOPH-UHFFFAOYSA-N 0.000 description 2
- 208000030836 Hashimoto thyroiditis Diseases 0.000 description 2
- 208000035186 Hemolytic Autoimmune Anemia Diseases 0.000 description 2
- 208000007514 Herpes zoster Diseases 0.000 description 2
- RPTUSVTUFVMDQK-UHFFFAOYSA-N Hidralazin Chemical compound C1=CC=C2C(NN)=NN=CC2=C1 RPTUSVTUFVMDQK-UHFFFAOYSA-N 0.000 description 2
- 102100029433 Homeobox protein Hox-B9 Human genes 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000989000 Homo sapiens Homeobox protein Hox-B9 Proteins 0.000 description 2
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 2
- 208000008498 Infantile Refsum disease Diseases 0.000 description 2
- 206010021750 Infantile Spasms Diseases 0.000 description 2
- 206010061216 Infarction Diseases 0.000 description 2
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 2
- 102100036157 Interferon gamma receptor 2 Human genes 0.000 description 2
- 108010050904 Interferons Proteins 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- 102100030698 Interleukin-12 subunit alpha Human genes 0.000 description 2
- 101710194995 Interleukin-12 subunit alpha Proteins 0.000 description 2
- 102000000588 Interleukin-2 Human genes 0.000 description 2
- 102100026019 Interleukin-6 Human genes 0.000 description 2
- 108090001007 Interleukin-8 Proteins 0.000 description 2
- 102000004890 Interleukin-8 Human genes 0.000 description 2
- 102000004195 Isomerases Human genes 0.000 description 2
- 108090000769 Isomerases Proteins 0.000 description 2
- 208000028226 Krabbe disease Diseases 0.000 description 2
- MIJPAVRNWPDMOR-ZAFYKAAXSA-N L-ascorbic acid 2-phosphate Chemical compound OC[C@H](O)[C@H]1OC(=O)C(OP(O)(O)=O)=C1O MIJPAVRNWPDMOR-ZAFYKAAXSA-N 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 101710128836 Large T antigen Proteins 0.000 description 2
- 102100032352 Leukemia inhibitory factor Human genes 0.000 description 2
- 108060001084 Luciferase Proteins 0.000 description 2
- 239000005089 Luciferase Substances 0.000 description 2
- 208000002569 Machado-Joseph Disease Diseases 0.000 description 2
- 108010009474 Macrophage Inflammatory Proteins Proteins 0.000 description 2
- 102000009571 Macrophage Inflammatory Proteins Human genes 0.000 description 2
- 108010052285 Membrane Proteins Proteins 0.000 description 2
- 208000027530 Meniere disease Diseases 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- 201000002983 Mobius syndrome Diseases 0.000 description 2
- 208000002033 Myoclonus Diseases 0.000 description 2
- 208000010316 Myotonia congenita Diseases 0.000 description 2
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 2
- 229930193140 Neomycin Natural products 0.000 description 2
- 208000012902 Nervous system disease Diseases 0.000 description 2
- 102000008730 Nestin Human genes 0.000 description 2
- 108010088225 Nestin Proteins 0.000 description 2
- 208000025966 Neurological disease Diseases 0.000 description 2
- 102100023050 Nuclear factor NF-kappa-B p105 subunit Human genes 0.000 description 2
- 206010053854 Opsoclonus myoclonus Diseases 0.000 description 2
- 208000005225 Opsoclonus-Myoclonus Syndrome Diseases 0.000 description 2
- 206010031127 Orthostatic hypotension Diseases 0.000 description 2
- 208000002193 Pain Diseases 0.000 description 2
- 235000019483 Peanut oil Nutrition 0.000 description 2
- 206010034277 Pemphigoid Diseases 0.000 description 2
- 102000003992 Peroxidases Human genes 0.000 description 2
- 108010081690 Pertussis Toxin Proteins 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 108010039918 Polylysine Proteins 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 206010036376 Postherpetic Neuralgia Diseases 0.000 description 2
- 208000024777 Prion disease Diseases 0.000 description 2
- 108010083644 Ribonucleases Proteins 0.000 description 2
- 102000006382 Ribonucleases Human genes 0.000 description 2
- 239000008156 Ringer's lactate solution Substances 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 208000021235 Schilder disease Diseases 0.000 description 2
- 206010039710 Scleroderma Diseases 0.000 description 2
- 241000700584 Simplexvirus Species 0.000 description 2
- 208000021386 Sjogren Syndrome Diseases 0.000 description 2
- 201000003696 Sotos syndrome Diseases 0.000 description 2
- 208000003954 Spinal Muscular Atrophies of Childhood Diseases 0.000 description 2
- 208000036834 Spinocerebellar ataxia type 3 Diseases 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 206010072148 Stiff-Person syndrome Diseases 0.000 description 2
- 208000032978 Structural Congenital Myopathies Diseases 0.000 description 2
- 206010042265 Sturge-Weber Syndrome Diseases 0.000 description 2
- 108091008874 T cell receptors Proteins 0.000 description 2
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 2
- 108010006785 Taq Polymerase Proteins 0.000 description 2
- 210000000447 Th1 cell Anatomy 0.000 description 2
- 208000031981 Thrombocytopenic Idiopathic Purpura Diseases 0.000 description 2
- 101710113649 Thyroid peroxidase Proteins 0.000 description 2
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 2
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 2
- DFBIRQPKNDILPW-CIVMWXNOSA-N Triptolide Chemical compound O=C1OCC([C@@H]2C3)=C1CC[C@]2(C)[C@]12O[C@H]1[C@@H]1O[C@]1(C(C)C)[C@@H](O)[C@]21[C@H]3O1 DFBIRQPKNDILPW-CIVMWXNOSA-N 0.000 description 2
- 108010046334 Urease Proteins 0.000 description 2
- 201000006791 West syndrome Diseases 0.000 description 2
- CJGYSWNGNKCJSB-YVLZZHOMSA-M [(4ar,6r,7r,7ar)-6-[6-(butanoylamino)purin-9-yl]-2-oxido-2-oxo-4a,6,7,7a-tetrahydro-4h-furo[3,2-d][1,3,2]dioxaphosphinin-7-yl] butanoate Chemical compound C([C@H]1O2)OP([O-])(=O)O[C@H]1[C@@H](OC(=O)CCC)[C@@H]2N1C(N=CN=C2NC(=O)CCC)=C2N=C1 CJGYSWNGNKCJSB-YVLZZHOMSA-M 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 229960005305 adenosine Drugs 0.000 description 2
- 230000009815 adipogenic differentiation Effects 0.000 description 2
- 208000030597 adult Refsum disease Diseases 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 239000000556 agonist Substances 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- XSDQTOBWRPYKKA-UHFFFAOYSA-N amiloride Chemical compound NC(=N)NC(=O)C1=NC(Cl)=C(N)N=C1N XSDQTOBWRPYKKA-UHFFFAOYSA-N 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 239000003146 anticoagulant agent Substances 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 210000003050 axon Anatomy 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 239000007640 basal medium Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- 230000000975 bioactive effect Effects 0.000 description 2
- 229960000074 biopharmaceutical Drugs 0.000 description 2
- 210000002459 blastocyst Anatomy 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 201000006431 brachial plexus neuropathy Diseases 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 210000000133 brain stem Anatomy 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L calcium carbonate Substances [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- NSQLIUXCMFBZME-MPVJKSABSA-N carperitide Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)=O)[C@@H](C)CC)C1=CC=CC=C1 NSQLIUXCMFBZME-MPVJKSABSA-N 0.000 description 2
- 230000003915 cell function Effects 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 230000002490 cerebral effect Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 239000003593 chromogenic compound Substances 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229960002424 collagenase Drugs 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 210000002808 connective tissue Anatomy 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 229940039227 diagnostic agent Drugs 0.000 description 2
- 239000000032 diagnostic agent Substances 0.000 description 2
- 230000005750 disease progression Effects 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- 239000002158 endotoxin Substances 0.000 description 2
- 229940116977 epidermal growth factor Drugs 0.000 description 2
- 229940105423 erythropoietin Drugs 0.000 description 2
- 230000003203 everyday effect Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 210000003414 extremity Anatomy 0.000 description 2
- 230000004720 fertilization Effects 0.000 description 2
- 230000001605 fetal effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 239000007903 gelatin capsule Substances 0.000 description 2
- 238000012239 gene modification Methods 0.000 description 2
- 235000013617 genetically modified food Nutrition 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229940116332 glucose oxidase Drugs 0.000 description 2
- 235000019420 glucose oxidase Nutrition 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 229920000669 heparin Polymers 0.000 description 2
- 229960002897 heparin Drugs 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000007954 hypoxia Effects 0.000 description 2
- 230000003100 immobilizing effect Effects 0.000 description 2
- 238000010166 immunofluorescence Methods 0.000 description 2
- 238000003125 immunofluorescent labeling Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 229960000905 indomethacin Drugs 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 229940079322 interferon Drugs 0.000 description 2
- 108010085650 interferon gamma receptor Proteins 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 238000011031 large-scale manufacturing process Methods 0.000 description 2
- 201000003723 learning disability Diseases 0.000 description 2
- 210000003041 ligament Anatomy 0.000 description 2
- 239000008297 liquid dosage form Substances 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 238000001819 mass spectrum Methods 0.000 description 2
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 2
- 230000035800 maturation Effects 0.000 description 2
- 238000002483 medication Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000002025 microglial effect Effects 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 210000005087 mononuclear cell Anatomy 0.000 description 2
- 206010028417 myasthenia gravis Diseases 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 230000025020 negative regulation of T cell proliferation Effects 0.000 description 2
- 229960004927 neomycin Drugs 0.000 description 2
- 210000005055 nestin Anatomy 0.000 description 2
- 201000010193 neural tube defect Diseases 0.000 description 2
- 230000000926 neurological effect Effects 0.000 description 2
- 108091027963 non-coding RNA Proteins 0.000 description 2
- 102000042567 non-coding RNA Human genes 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 238000011275 oncology therapy Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 230000008186 parthenogenesis Effects 0.000 description 2
- 239000000312 peanut oil Substances 0.000 description 2
- 108040007629 peroxidase activity proteins Proteins 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 230000004983 pleiotropic effect Effects 0.000 description 2
- 210000001778 pluripotent stem cell Anatomy 0.000 description 2
- 229920002627 poly(phosphazenes) Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 208000005987 polymyositis Diseases 0.000 description 2
- 229920002714 polyornithine Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 2
- 206010036807 progressive multifocal leukoencephalopathy Diseases 0.000 description 2
- 201000002212 progressive supranuclear palsy Diseases 0.000 description 2
- 238000012797 qualification Methods 0.000 description 2
- 238000011536 re-plating Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 208000002477 septooptic dysplasia Diseases 0.000 description 2
- 239000008159 sesame oil Substances 0.000 description 2
- 235000011803 sesame oil Nutrition 0.000 description 2
- 230000001568 sexual effect Effects 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 210000002460 smooth muscle Anatomy 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 208000002320 spinal muscular atrophy Diseases 0.000 description 2
- 208000005198 spinal stenosis Diseases 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 238000013268 sustained release Methods 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- 206010042772 syncope Diseases 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 2
- 210000002435 tendon Anatomy 0.000 description 2
- 238000010257 thawing Methods 0.000 description 2
- 229960000187 tissue plasminogen activator Drugs 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- YKUJZZHGTWVWHA-UHFFFAOYSA-N triptolide Natural products COC12CC3OC3(C(C)C)C(O)C14OC4CC5C6=C(CCC25C)C(=O)OC6 YKUJZZHGTWVWHA-UHFFFAOYSA-N 0.000 description 2
- 208000006961 tropical spastic paraparesis Diseases 0.000 description 2
- 238000001419 two-dimensional polyacrylamide gel electrophoresis Methods 0.000 description 2
- 230000005951 type IV hypersensitivity Effects 0.000 description 2
- 208000027930 type IV hypersensitivity disease Diseases 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 208000029257 vision disease Diseases 0.000 description 2
- 208000006542 von Hippel-Lindau disease Diseases 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- WDLWHQDACQUCJR-ZAMMOSSLSA-N (6r,7r)-7-[[(2r)-2-azaniumyl-2-(4-hydroxyphenyl)acetyl]amino]-8-oxo-3-[(e)-prop-1-enyl]-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)/C=C/C)C(O)=O)=CC=C(O)C=C1 WDLWHQDACQUCJR-ZAMMOSSLSA-N 0.000 description 1
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 1
- JCAULFRGWRHHIG-UHFFFAOYSA-N 1-bromo-1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-henicosafluorodecane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)Br JCAULFRGWRHHIG-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- CIVCELMLGDGMKZ-UHFFFAOYSA-N 2,4-dichloro-6-methylpyridine-3-carboxylic acid Chemical compound CC1=CC(Cl)=C(C(O)=O)C(Cl)=N1 CIVCELMLGDGMKZ-UHFFFAOYSA-N 0.000 description 1
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- APIXJSLKIYYUKG-UHFFFAOYSA-N 3 Isobutyl 1 methylxanthine Chemical compound O=C1N(C)C(=O)N(CC(C)C)C2=C1N=CN2 APIXJSLKIYYUKG-UHFFFAOYSA-N 0.000 description 1
- LCSKNASZPVZHEG-UHFFFAOYSA-N 3,6-dimethyl-1,4-dioxane-2,5-dione;1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1.CC1OC(=O)C(C)OC1=O LCSKNASZPVZHEG-UHFFFAOYSA-N 0.000 description 1
- XTOKHGASSRJDQX-UHFFFAOYSA-N 3-(1h-indol-3-yl)-4-(pentylamino)pyrrole-2,5-dione Chemical compound O=C1NC(=O)C(NCCCCC)=C1C1=CNC2=CC=CC=C12 XTOKHGASSRJDQX-UHFFFAOYSA-N 0.000 description 1
- RXMUPNVSYKGKMY-UHFFFAOYSA-N 3-amino-6-chloro-n-(diaminomethylidene)-5-(dimethylamino)pyrazine-2-carboxamide Chemical compound CN(C)C1=NC(N)=C(C(=O)N=C(N)N)N=C1Cl RXMUPNVSYKGKMY-UHFFFAOYSA-N 0.000 description 1
- 238000010146 3D printing Methods 0.000 description 1
- HUDPLKWXRLNSPC-UHFFFAOYSA-N 4-aminophthalhydrazide Chemical compound O=C1NNC(=O)C=2C1=CC(N)=CC=2 HUDPLKWXRLNSPC-UHFFFAOYSA-N 0.000 description 1
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 1
- UZOVYGYOLBIAJR-UHFFFAOYSA-N 4-isocyanato-4'-methyldiphenylmethane Chemical compound C1=CC(C)=CC=C1CC1=CC=C(N=C=O)C=C1 UZOVYGYOLBIAJR-UHFFFAOYSA-N 0.000 description 1
- RQQJJXVETXFINY-UHFFFAOYSA-N 5-(N,N-hexamethylene)amiloride Chemical compound N1=C(N)C(C(=O)N=C(N)N)=NC(Cl)=C1N1CCCCCC1 RQQJJXVETXFINY-UHFFFAOYSA-N 0.000 description 1
- NMUSYJAQQFHJEW-UHFFFAOYSA-N 5-Azacytidine Natural products O=C1N=C(N)N=CN1C1C(O)C(O)C(CO)O1 NMUSYJAQQFHJEW-UHFFFAOYSA-N 0.000 description 1
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 description 1
- 102100031126 6-phosphogluconolactonase Human genes 0.000 description 1
- 108010029731 6-phosphogluconolactonase Proteins 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- GSDSWSVVBLHKDQ-UHFFFAOYSA-N 9-fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid Chemical compound FC1=CC(C(C(C(O)=O)=C2)=O)=C3N2C(C)COC3=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-UHFFFAOYSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 208000035657 Abasia Diseases 0.000 description 1
- 108010022752 Acetylcholinesterase Proteins 0.000 description 1
- 102000012440 Acetylcholinesterase Human genes 0.000 description 1
- 206010052075 Acquired epileptic aphasia Diseases 0.000 description 1
- 102100029457 Adenine phosphoribosyltransferase Human genes 0.000 description 1
- 108010024223 Adenine phosphoribosyltransferase Proteins 0.000 description 1
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 1
- ZKHQWZAMYRWXGA-KQYNXXCUSA-N Adenosine triphosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-N 0.000 description 1
- 108010000239 Aequorin Proteins 0.000 description 1
- 208000000230 African Trypanosomiasis Diseases 0.000 description 1
- 208000008190 Agammaglobulinemia Diseases 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 102400000424 Agrin C-terminal 90 kDa fragment Human genes 0.000 description 1
- 101800001087 Agrin C-terminal 90 kDa fragment Proteins 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 1
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 1
- 208000007848 Alcoholism Diseases 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 208000003343 Antiphospholipid Syndrome Diseases 0.000 description 1
- 206010003062 Apraxia Diseases 0.000 description 1
- 108091023037 Aptamer Proteins 0.000 description 1
- 206010003101 Arnold-Chiari Malformation Diseases 0.000 description 1
- 108010024976 Asparaginase Proteins 0.000 description 1
- 102000015790 Asparaginase Human genes 0.000 description 1
- 208000036640 Asperger disease Diseases 0.000 description 1
- 201000006062 Asperger syndrome Diseases 0.000 description 1
- 206010003591 Ataxia Diseases 0.000 description 1
- 206010003594 Ataxia telangiectasia Diseases 0.000 description 1
- 102000007371 Ataxin-3 Human genes 0.000 description 1
- 102000014461 Ataxins Human genes 0.000 description 1
- 108010078286 Ataxins Proteins 0.000 description 1
- 208000006096 Attention Deficit Disorder with Hyperactivity Diseases 0.000 description 1
- 208000036864 Attention deficit/hyperactivity disease Diseases 0.000 description 1
- 206010003805 Autism Diseases 0.000 description 1
- 208000020706 Autistic disease Diseases 0.000 description 1
- 206010003827 Autoimmune hepatitis Diseases 0.000 description 1
- 206010003840 Autonomic nervous system imbalance Diseases 0.000 description 1
- 108090000145 Bacillolysin Proteins 0.000 description 1
- 208000009137 Behcet syndrome Diseases 0.000 description 1
- 208000006373 Bell palsy Diseases 0.000 description 1
- 208000009299 Benign Mucous Membrane Pemphigoid Diseases 0.000 description 1
- 208000034577 Benign intracranial hypertension Diseases 0.000 description 1
- 102100040794 Beta-1 adrenergic receptor Human genes 0.000 description 1
- 101710181961 Beta-1 adrenergic receptor Proteins 0.000 description 1
- 102100039705 Beta-2 adrenergic receptor Human genes 0.000 description 1
- 101710152983 Beta-2 adrenergic receptor Proteins 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 102100022548 Beta-hexosaminidase subunit alpha Human genes 0.000 description 1
- 208000008439 Biliary Liver Cirrhosis Diseases 0.000 description 1
- 208000033222 Biliary cirrhosis primary Diseases 0.000 description 1
- 208000020925 Bipolar disease Diseases 0.000 description 1
- 206010069632 Bladder dysfunction Diseases 0.000 description 1
- 201000004940 Bloch-Sulzberger syndrome Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 206010006074 Brachial plexus injury Diseases 0.000 description 1
- 108700031361 Brachyury Proteins 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 102000004219 Brain-derived neurotrophic factor Human genes 0.000 description 1
- 108090000715 Brain-derived neurotrophic factor Proteins 0.000 description 1
- 206010068597 Bulbospinal muscular atrophy congenital Diseases 0.000 description 1
- 239000004255 Butylated hydroxyanisole Substances 0.000 description 1
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- 102100032367 C-C motif chemokine 5 Human genes 0.000 description 1
- 102100036150 C-X-C motif chemokine 5 Human genes 0.000 description 1
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 1
- 201000002829 CREST Syndrome Diseases 0.000 description 1
- 102100029761 Cadherin-5 Human genes 0.000 description 1
- 208000022526 Canavan disease Diseases 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 108010051152 Carboxylesterase Proteins 0.000 description 1
- 102000013392 Carboxylesterase Human genes 0.000 description 1
- 206010007556 Cardiac failure acute Diseases 0.000 description 1
- 208000031229 Cardiomyopathies Diseases 0.000 description 1
- 108090000397 Caspase 3 Proteins 0.000 description 1
- 102100029855 Caspase-3 Human genes 0.000 description 1
- 102100035882 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 102100035654 Cathepsin S Human genes 0.000 description 1
- 108090000613 Cathepsin S Proteins 0.000 description 1
- 208000001387 Causalgia Diseases 0.000 description 1
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 1
- 206010064012 Central pain syndrome Diseases 0.000 description 1
- 208000023442 Cephalocele Diseases 0.000 description 1
- 229930186147 Cephalosporin Natural products 0.000 description 1
- 206010008025 Cerebellar ataxia Diseases 0.000 description 1
- 206010065559 Cerebral arteriosclerosis Diseases 0.000 description 1
- 206010008096 Cerebral atrophy Diseases 0.000 description 1
- 206010008313 Cervical spinal stenosis Diseases 0.000 description 1
- 208000010693 Charcot-Marie-Tooth Disease Diseases 0.000 description 1
- 201000006868 Charcot-Marie-Tooth disease type 3 Diseases 0.000 description 1
- 102000001326 Chemokine CCL4 Human genes 0.000 description 1
- 108010055165 Chemokine CCL4 Proteins 0.000 description 1
- 208000015321 Chiari malformation Diseases 0.000 description 1
- 206010008513 Child maltreatment syndrome Diseases 0.000 description 1
- 102000009016 Cholera Toxin Human genes 0.000 description 1
- 229920001287 Chondroitin sulfate Polymers 0.000 description 1
- 208000000094 Chronic Pain Diseases 0.000 description 1
- 208000019888 Circadian rhythm sleep disease Diseases 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 208000015943 Coeliac disease Diseases 0.000 description 1
- 208000001353 Coffin-Lowry syndrome Diseases 0.000 description 1
- 208000011038 Cold agglutinin disease Diseases 0.000 description 1
- 206010009868 Cold type haemolytic anaemia Diseases 0.000 description 1
- 206010009900 Colitis ulcerative Diseases 0.000 description 1
- 102000004266 Collagen Type IV Human genes 0.000 description 1
- 108010042086 Collagen Type IV Proteins 0.000 description 1
- 206010010071 Coma Diseases 0.000 description 1
- 208000013586 Complex regional pain syndrome type 1 Diseases 0.000 description 1
- 102000015225 Connective Tissue Growth Factor Human genes 0.000 description 1
- 108010039419 Connective Tissue Growth Factor Proteins 0.000 description 1
- 108010022152 Corticotropin-Releasing Hormone Proteins 0.000 description 1
- 102000012289 Corticotropin-Releasing Hormone Human genes 0.000 description 1
- 239000000055 Corticotropin-Releasing Hormone Substances 0.000 description 1
- 208000009283 Craniosynostoses Diseases 0.000 description 1
- 206010049889 Craniosynostosis Diseases 0.000 description 1
- 208000020406 Creutzfeldt Jacob disease Diseases 0.000 description 1
- 208000003407 Creutzfeldt-Jakob Syndrome Diseases 0.000 description 1
- 208000010859 Creutzfeldt-Jakob disease Diseases 0.000 description 1
- 208000019707 Cryoglobulinemic vasculitis Diseases 0.000 description 1
- IVOMOUWHDPKRLL-KQYNXXCUSA-N Cyclic adenosine monophosphate Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-KQYNXXCUSA-N 0.000 description 1
- 206010011732 Cyst Diseases 0.000 description 1
- 102000000311 Cytosine Deaminase Human genes 0.000 description 1
- 108010080611 Cytosine Deaminase Proteins 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 230000007067 DNA methylation Effects 0.000 description 1
- 238000000018 DNA microarray Methods 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 201000003863 Dandy-Walker Syndrome Diseases 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- 208000006313 Delayed Hypersensitivity Diseases 0.000 description 1
- SUZLHDUTVMZSEV-UHFFFAOYSA-N Deoxycoleonol Natural products C12C(=O)CC(C)(C=C)OC2(C)C(OC(=O)C)C(O)C2C1(C)C(O)CCC2(C)C SUZLHDUTVMZSEV-UHFFFAOYSA-N 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 208000020401 Depressive disease Diseases 0.000 description 1
- 229920000045 Dermatan sulfate Polymers 0.000 description 1
- 201000004624 Dermatitis Diseases 0.000 description 1
- 206010012442 Dermatitis contact Diseases 0.000 description 1
- 208000019246 Developmental coordination disease Diseases 0.000 description 1
- 208000032131 Diabetic Neuropathies Diseases 0.000 description 1
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 1
- 208000003164 Diplopia Diseases 0.000 description 1
- 201000010374 Down Syndrome Diseases 0.000 description 1
- 201000007547 Dravet syndrome Diseases 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 206010049669 Dyscalculia Diseases 0.000 description 1
- 208000014094 Dystonic disease Diseases 0.000 description 1
- 201000008009 Early infantile epileptic encephalopathy Diseases 0.000 description 1
- 206010071545 Early infantile epileptic encephalopathy with burst-suppression Diseases 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 206010014567 Empty Sella Syndrome Diseases 0.000 description 1
- 206010049020 Encephalitis periaxialis diffusa Diseases 0.000 description 1
- 208000002403 Encephalocele Diseases 0.000 description 1
- 208000000271 Encopresis Diseases 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 208000010228 Erectile Dysfunction Diseases 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- 208000024720 Fabry Disease Diseases 0.000 description 1
- 206010063006 Facial spasm Diseases 0.000 description 1
- 208000002091 Febrile Seizures Diseases 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- 102100020997 Fractalkine Human genes 0.000 description 1
- 208000024412 Friedreich ataxia Diseases 0.000 description 1
- 201000011240 Frontotemporal dementia Diseases 0.000 description 1
- 208000014540 Functional gastrointestinal disease Diseases 0.000 description 1
- 241000272496 Galliformes Species 0.000 description 1
- 208000015872 Gaucher disease Diseases 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 208000007223 Gerstmann syndrome Diseases 0.000 description 1
- 201000004311 Gilles de la Tourette syndrome Diseases 0.000 description 1
- 108010072051 Glatiramer Acetate Proteins 0.000 description 1
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 1
- 102100022624 Glucoamylase Human genes 0.000 description 1
- 108010018962 Glucosephosphate Dehydrogenase Proteins 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 206010072579 Granulomatosis with polyangiitis Diseases 0.000 description 1
- 208000003807 Graves Disease Diseases 0.000 description 1
- 208000015023 Graves' disease Diseases 0.000 description 1
- 208000009396 Group II Malformations of Cortical Development Diseases 0.000 description 1
- 208000035895 Guillain-Barré syndrome Diseases 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 101150118887 HOX9 gene Proteins 0.000 description 1
- 241000193159 Hathewaya histolytica Species 0.000 description 1
- 206010019196 Head injury Diseases 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 208000004095 Hemifacial Spasm Diseases 0.000 description 1
- 229920002971 Heparan sulfate Polymers 0.000 description 1
- 208000002972 Hepatolenticular Degeneration Diseases 0.000 description 1
- 208000006411 Hereditary Sensory and Motor Neuropathy Diseases 0.000 description 1
- 229920000209 Hexadimethrine bromide Polymers 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 102000007625 Hirudins Human genes 0.000 description 1
- 108010007267 Hirudins Proteins 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 101000797762 Homo sapiens C-C motif chemokine 5 Proteins 0.000 description 1
- 101000947186 Homo sapiens C-X-C motif chemokine 5 Proteins 0.000 description 1
- 101000777550 Homo sapiens CCN family member 2 Proteins 0.000 description 1
- 101000794587 Homo sapiens Cadherin-5 Proteins 0.000 description 1
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 1
- 101000854520 Homo sapiens Fractalkine Proteins 0.000 description 1
- 101000898034 Homo sapiens Hepatocyte growth factor Proteins 0.000 description 1
- 101001011442 Homo sapiens Interferon regulatory factor 5 Proteins 0.000 description 1
- 101001076408 Homo sapiens Interleukin-6 Proteins 0.000 description 1
- 101000958041 Homo sapiens Musculin Proteins 0.000 description 1
- 101000979342 Homo sapiens Nuclear factor NF-kappa-B p105 subunit Proteins 0.000 description 1
- 101000884271 Homo sapiens Signal transducer CD24 Proteins 0.000 description 1
- 101000868152 Homo sapiens Son of sevenless homolog 1 Proteins 0.000 description 1
- 101100369992 Homo sapiens TNFSF10 gene Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 1
- 241000701806 Human papillomavirus Species 0.000 description 1
- 108010003272 Hyaluronate lyase Proteins 0.000 description 1
- 102000001974 Hyaluronidases Human genes 0.000 description 1
- 229920001612 Hydroxyethyl starch Polymers 0.000 description 1
- 208000037171 Hypercorticoidism Diseases 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 206010020983 Hypogammaglobulinaemia Diseases 0.000 description 1
- 108010091358 Hypoxanthine Phosphoribosyltransferase Proteins 0.000 description 1
- 102100029098 Hypoxanthine-guanine phosphoribosyltransferase Human genes 0.000 description 1
- 208000018127 Idiopathic intracranial hypertension Diseases 0.000 description 1
- 208000010159 IgA glomerulonephritis Diseases 0.000 description 1
- 206010021263 IgA nephropathy Diseases 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 208000007031 Incontinentia pigmenti Diseases 0.000 description 1
- 208000035899 Infantile spasms syndrome Diseases 0.000 description 1
- 108010052370 Inhibitor of Differentiation Proteins Proteins 0.000 description 1
- 102000018728 Inhibitor of Differentiation Proteins Human genes 0.000 description 1
- 206010022158 Injury to brachial plexus due to birth trauma Diseases 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 108010005716 Interferon beta-1a Proteins 0.000 description 1
- 108010005714 Interferon beta-1b Proteins 0.000 description 1
- 102100030131 Interferon regulatory factor 5 Human genes 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 102000000589 Interleukin-1 Human genes 0.000 description 1
- 102000013691 Interleukin-17 Human genes 0.000 description 1
- 108050003558 Interleukin-17 Proteins 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 102000004388 Interleukin-4 Human genes 0.000 description 1
- 102000010781 Interleukin-6 Receptors Human genes 0.000 description 1
- 108010038501 Interleukin-6 Receptors Proteins 0.000 description 1
- 102100037795 Interleukin-6 receptor subunit beta Human genes 0.000 description 1
- 101710152369 Interleukin-6 receptor subunit beta Proteins 0.000 description 1
- 201000008450 Intracranial aneurysm Diseases 0.000 description 1
- 206010022773 Intracranial pressure increased Diseases 0.000 description 1
- 208000000209 Isaacs syndrome Diseases 0.000 description 1
- 201000008645 Joubert syndrome Diseases 0.000 description 1
- 208000003456 Juvenile Arthritis Diseases 0.000 description 1
- 206010059176 Juvenile idiopathic arthritis Diseases 0.000 description 1
- 206010048804 Kearns-Sayre syndrome Diseases 0.000 description 1
- 208000027747 Kennedy disease Diseases 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 208000006541 Klippel-Feil syndrome Diseases 0.000 description 1
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- 208000005870 Lafora disease Diseases 0.000 description 1
- 208000014161 Lafora myoclonic epilepsy Diseases 0.000 description 1
- 201000010743 Lambert-Eaton myasthenic syndrome Diseases 0.000 description 1
- 201000005802 Landau-Kleffner Syndrome Diseases 0.000 description 1
- 208000020358 Learning disease Diseases 0.000 description 1
- 208000006136 Leigh Disease Diseases 0.000 description 1
- 208000017507 Leigh syndrome Diseases 0.000 description 1
- 208000009625 Lesch-Nyhan syndrome Diseases 0.000 description 1
- 208000009829 Lewy Body Disease Diseases 0.000 description 1
- 201000002832 Lewy body dementia Diseases 0.000 description 1
- 108010052014 Liberase Proteins 0.000 description 1
- 206010048911 Lissencephaly Diseases 0.000 description 1
- 201000000251 Locked-in syndrome Diseases 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- 108010047357 Luminescent Proteins Proteins 0.000 description 1
- 102000006830 Luminescent Proteins Human genes 0.000 description 1
- 206010025421 Macule Diseases 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 102000013460 Malate Dehydrogenase Human genes 0.000 description 1
- 108010026217 Malate Dehydrogenase Proteins 0.000 description 1
- 206010064281 Malignant atrophic papulosis Diseases 0.000 description 1
- 206010064912 Malignant transformation Diseases 0.000 description 1
- 208000005767 Megalencephaly Diseases 0.000 description 1
- 201000002571 Melkersson-Rosenthal syndrome Diseases 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 208000008948 Menkes Kinky Hair Syndrome Diseases 0.000 description 1
- 208000012583 Menkes disease Diseases 0.000 description 1
- 201000011442 Metachromatic leukodystrophy Diseases 0.000 description 1
- 108010006035 Metalloproteases Proteins 0.000 description 1
- 102000005741 Metalloproteases Human genes 0.000 description 1
- 108010059724 Micrococcal Nuclease Proteins 0.000 description 1
- 208000019695 Migraine disease Diseases 0.000 description 1
- 201000002169 Mitochondrial myopathy Diseases 0.000 description 1
- 208000003250 Mixed connective tissue disease Diseases 0.000 description 1
- 206010027802 Moebius II syndrome Diseases 0.000 description 1
- 208000034167 Moebius syndrome Diseases 0.000 description 1
- 206010069681 Monomelic amyotrophy Diseases 0.000 description 1
- 208000019896 Motor Skills disease Diseases 0.000 description 1
- 208000016285 Movement disease Diseases 0.000 description 1
- 208000009433 Moyamoya Disease Diseases 0.000 description 1
- 208000002678 Mucopolysaccharidoses Diseases 0.000 description 1
- 208000012192 Mucous membrane pemphigoid Diseases 0.000 description 1
- 208000008238 Muscle Spasticity Diseases 0.000 description 1
- 208000021642 Muscular disease Diseases 0.000 description 1
- 206010028424 Myasthenic syndrome Diseases 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 108010083674 Myelin Proteins Proteins 0.000 description 1
- 102000006386 Myelin Proteins Human genes 0.000 description 1
- 102100026784 Myelin proteolipid protein Human genes 0.000 description 1
- 108010000123 Myelin-Oligodendrocyte Glycoprotein Proteins 0.000 description 1
- 102100023302 Myelin-oligodendrocyte glycoprotein Human genes 0.000 description 1
- 206010028570 Myelopathy Diseases 0.000 description 1
- 208000036572 Myoclonic epilepsy Diseases 0.000 description 1
- 201000009623 Myopathy Diseases 0.000 description 1
- 201000002481 Myositis Diseases 0.000 description 1
- 208000012905 Myotonic disease Diseases 0.000 description 1
- 239000012580 N-2 Supplement Substances 0.000 description 1
- 108700026495 N-Myc Proto-Oncogene Proteins 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- 102100030124 N-myc proto-oncogene protein Human genes 0.000 description 1
- 108010057466 NF-kappa B Proteins 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 102000015336 Nerve Growth Factor Human genes 0.000 description 1
- 208000009905 Neurofibromatoses Diseases 0.000 description 1
- 208000008457 Neurologic Manifestations Diseases 0.000 description 1
- 206010072359 Neuromyotonia Diseases 0.000 description 1
- 208000002537 Neuronal Ceroid-Lipofuscinoses Diseases 0.000 description 1
- 206010029333 Neurosis Diseases 0.000 description 1
- 208000007125 Neurotoxicity Syndromes Diseases 0.000 description 1
- 102000035092 Neutral proteases Human genes 0.000 description 1
- 108091005507 Neutral proteases Proteins 0.000 description 1
- 208000014060 Niemann-Pick disease Diseases 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- SNIOPGDIGTZGOP-UHFFFAOYSA-N Nitroglycerin Chemical compound [O-][N+](=O)OCC(O[N+]([O-])=O)CO[N+]([O-])=O SNIOPGDIGTZGOP-UHFFFAOYSA-N 0.000 description 1
- 239000000006 Nitroglycerin Substances 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 208000020265 O'Sullivan-McLeod syndrome Diseases 0.000 description 1
- 206010068106 Occipital neuralgia Diseases 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 208000003435 Optic Neuritis Diseases 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 206010069350 Osmotic demyelination syndrome Diseases 0.000 description 1
- 102000016387 Pancreatic elastase Human genes 0.000 description 1
- 108010067372 Pancreatic elastase Proteins 0.000 description 1
- 208000017493 Pelizaeus-Merzbacher disease Diseases 0.000 description 1
- 201000011152 Pemphigus Diseases 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 229930195708 Penicillin V Natural products 0.000 description 1
- 206010051766 Perineurial cyst Diseases 0.000 description 1
- 208000031845 Pernicious anaemia Diseases 0.000 description 1
- 208000012202 Pervasive developmental disease Diseases 0.000 description 1
- 229940099471 Phosphodiesterase inhibitor Drugs 0.000 description 1
- 108010053210 Phycocyanin Proteins 0.000 description 1
- 108010004729 Phycoerythrin Proteins 0.000 description 1
- 208000000609 Pick Disease of the Brain Diseases 0.000 description 1
- 208000007913 Pituitary Neoplasms Diseases 0.000 description 1
- 208000000474 Poliomyelitis Diseases 0.000 description 1
- 206010065159 Polychondritis Diseases 0.000 description 1
- 206010073489 Polymicrogyria Diseases 0.000 description 1
- 208000007048 Polymyalgia Rheumatica Diseases 0.000 description 1
- 206010036105 Polyneuropathy Diseases 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 206010036172 Porencephaly Diseases 0.000 description 1
- 206010057244 Post viral fatigue syndrome Diseases 0.000 description 1
- 206010052469 Postictal paralysis Diseases 0.000 description 1
- 208000010366 Postpoliomyelitis syndrome Diseases 0.000 description 1
- 201000010769 Prader-Willi syndrome Diseases 0.000 description 1
- 208000012654 Primary biliary cholangitis Diseases 0.000 description 1
- 208000032319 Primary lateral sclerosis Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 102100027467 Pro-opiomelanocortin Human genes 0.000 description 1
- 208000033526 Proximal spinal muscular atrophy type 3 Diseases 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- VSWDORGPIHIGNW-UHFFFAOYSA-N Pyrrolidine dithiocarbamic acid Chemical compound SC(=S)N1CCCC1 VSWDORGPIHIGNW-UHFFFAOYSA-N 0.000 description 1
- 206010037714 Quadriplegia Diseases 0.000 description 1
- 108020004518 RNA Probes Proteins 0.000 description 1
- 239000003391 RNA probe Substances 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 238000003559 RNA-seq method Methods 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 206010037779 Radiculopathy Diseases 0.000 description 1
- 206010071141 Rasmussen encephalitis Diseases 0.000 description 1
- 208000004160 Rasmussen subacute encephalitis Diseases 0.000 description 1
- 208000012322 Raynaud phenomenon Diseases 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 208000033464 Reiter syndrome Diseases 0.000 description 1
- 206010038584 Repetitive strain injury Diseases 0.000 description 1
- 208000005793 Restless legs syndrome Diseases 0.000 description 1
- 108010081750 Reticulin Proteins 0.000 description 1
- 206010038997 Retroviral infections Diseases 0.000 description 1
- 208000006289 Rett Syndrome Diseases 0.000 description 1
- 201000007981 Reye syndrome Diseases 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 108010017324 STAT3 Transcription Factor Proteins 0.000 description 1
- 208000021811 Sandhoff disease Diseases 0.000 description 1
- 208000000729 Schizencephaly Diseases 0.000 description 1
- 206010040026 Sensory disturbance Diseases 0.000 description 1
- 102000012479 Serine Proteases Human genes 0.000 description 1
- 108010022999 Serine Proteases Proteins 0.000 description 1
- 206010073677 Severe myoclonic epilepsy of infancy Diseases 0.000 description 1
- 201000001880 Sexual dysfunction Diseases 0.000 description 1
- 208000002108 Shaken Baby Syndrome Diseases 0.000 description 1
- 208000009106 Shy-Drager Syndrome Diseases 0.000 description 1
- 102100038081 Signal transducer CD24 Human genes 0.000 description 1
- 102100024040 Signal transducer and activator of transcription 3 Human genes 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 108091027967 Small hairpin RNA Proteins 0.000 description 1
- 206010064387 Sotos' syndrome Diseases 0.000 description 1
- 206010041415 Spastic paralysis Diseases 0.000 description 1
- 102000011011 Sphingosine 1-phosphate receptors Human genes 0.000 description 1
- 108050001083 Sphingosine 1-phosphate receptors Proteins 0.000 description 1
- 201000010829 Spina bifida Diseases 0.000 description 1
- 208000006097 Spinal Dysraphism Diseases 0.000 description 1
- 208000009415 Spinocerebellar Ataxias Diseases 0.000 description 1
- 201000002661 Spondylitis Diseases 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 1
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 208000027522 Sydenham chorea Diseases 0.000 description 1
- 208000035239 Synesthesia Diseases 0.000 description 1
- 206010042928 Syringomyelia Diseases 0.000 description 1
- 206010042953 Systemic sclerosis Diseases 0.000 description 1
- 230000037453 T cell priming Effects 0.000 description 1
- 102000046283 TNF-Related Apoptosis-Inducing Ligand Human genes 0.000 description 1
- 108700012411 TNFSF10 Proteins 0.000 description 1
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 1
- 208000001106 Takayasu Arteritis Diseases 0.000 description 1
- 206010043118 Tardive Dyskinesia Diseases 0.000 description 1
- 208000003664 Tarlov Cysts Diseases 0.000 description 1
- 206010043121 Tarsal tunnel syndrome Diseases 0.000 description 1
- 208000022292 Tay-Sachs disease Diseases 0.000 description 1
- 206010043276 Teratoma Diseases 0.000 description 1
- GUGOEEXESWIERI-UHFFFAOYSA-N Terfenadine Chemical compound C1=CC(C(C)(C)C)=CC=C1C(O)CCCN1CCC(C(O)(C=2C=CC=CC=2)C=2C=CC=CC=2)CC1 GUGOEEXESWIERI-UHFFFAOYSA-N 0.000 description 1
- 206010043376 Tetanus Diseases 0.000 description 1
- 108090001109 Thermolysin Proteins 0.000 description 1
- 208000035954 Thomsen and Becker disease Diseases 0.000 description 1
- 102000007614 Thrombospondin 1 Human genes 0.000 description 1
- 108010046722 Thrombospondin 1 Proteins 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 102100027188 Thyroid peroxidase Human genes 0.000 description 1
- 102000002689 Toll-like receptor Human genes 0.000 description 1
- 108020000411 Toll-like receptor Proteins 0.000 description 1
- 208000035317 Total hypoxanthine-guanine phosphoribosyl transferase deficiency Diseases 0.000 description 1
- 208000000323 Tourette Syndrome Diseases 0.000 description 1
- 208000016620 Tourette disease Diseases 0.000 description 1
- 206010044221 Toxic encephalopathy Diseases 0.000 description 1
- 231100000076 Toxic encephalopathy Toxicity 0.000 description 1
- GYDJEQRTZSCIOI-UHFFFAOYSA-N Tranexamic acid Chemical compound NCC1CCC(C(O)=O)CC1 GYDJEQRTZSCIOI-UHFFFAOYSA-N 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 208000030886 Traumatic Brain injury Diseases 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 241000830536 Tripterygium wilfordii Species 0.000 description 1
- 206010044688 Trisomy 21 Diseases 0.000 description 1
- 206010044696 Tropical spastic paresis Diseases 0.000 description 1
- 208000026911 Tuberous sclerosis complex Diseases 0.000 description 1
- 206010053613 Type IV hypersensitivity reaction Diseases 0.000 description 1
- IVOMOUWHDPKRLL-UHFFFAOYSA-N UNPD107823 Natural products O1C2COP(O)(=O)OC2C(O)C1N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-UHFFFAOYSA-N 0.000 description 1
- 201000006704 Ulcerative Colitis Diseases 0.000 description 1
- 108020004417 Untranslated RNA Proteins 0.000 description 1
- 102000039634 Untranslated RNA Human genes 0.000 description 1
- 206010046298 Upper motor neurone lesion Diseases 0.000 description 1
- 206010046851 Uveitis Diseases 0.000 description 1
- 208000036826 VIIth nerve paralysis Diseases 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 201000004810 Vascular dementia Diseases 0.000 description 1
- 206010047115 Vasculitis Diseases 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- 229930003268 Vitamin C Natural products 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 206010047642 Vitiligo Diseases 0.000 description 1
- 206010049644 Williams syndrome Diseases 0.000 description 1
- 208000018839 Wilson disease Diseases 0.000 description 1
- 208000006269 X-Linked Bulbo-Spinal Atrophy Diseases 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- FHEAIOHRHQGZPC-KIWGSFCNSA-N acetic acid;(2s)-2-amino-3-(4-hydroxyphenyl)propanoic acid;(2s)-2-aminopentanedioic acid;(2s)-2-aminopropanoic acid;(2s)-2,6-diaminohexanoic acid Chemical compound CC(O)=O.C[C@H](N)C(O)=O.NCCCC[C@H](N)C(O)=O.OC(=O)[C@@H](N)CCC(O)=O.OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 FHEAIOHRHQGZPC-KIWGSFCNSA-N 0.000 description 1
- 229940022698 acetylcholinesterase Drugs 0.000 description 1
- 229960004308 acetylcysteine Drugs 0.000 description 1
- 210000005221 acidic domain Anatomy 0.000 description 1
- DZBUGLKDJFMEHC-UHFFFAOYSA-O acridine;hydron Chemical compound C1=CC=CC2=CC3=CC=CC=C3[NH+]=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-O 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 208000038016 acute inflammation Diseases 0.000 description 1
- 230000006022 acute inflammation Effects 0.000 description 1
- 229960001456 adenosine triphosphate Drugs 0.000 description 1
- 201000005255 adrenal gland hyperfunction Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 229940050528 albumin Drugs 0.000 description 1
- 201000007930 alcohol dependence Diseases 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 108700023471 alginate-polylysine-alginate Proteins 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 108010004469 allophycocyanin Proteins 0.000 description 1
- 208000004631 alopecia areata Diseases 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- 210000001691 amnion Anatomy 0.000 description 1
- 210000004381 amniotic fluid Anatomy 0.000 description 1
- 210000003663 amniotic stem cell Anatomy 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 230000003092 anti-cytokine Effects 0.000 description 1
- 230000001387 anti-histamine Effects 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 230000001754 anti-pyretic effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 239000002220 antihypertensive agent Substances 0.000 description 1
- 229940127088 antihypertensive drug Drugs 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002221 antipyretic Substances 0.000 description 1
- 229960004676 antithrombotic agent Drugs 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 201000007201 aphasia Diseases 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- 206010003074 arachnoiditis Diseases 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 229960003272 asparaginase Drugs 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-M asparaginate Chemical compound [O-]C(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-M 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 208000015802 attention deficit-hyperactivity disease Diseases 0.000 description 1
- 208000021900 auditory perceptual disease Diseases 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- JPIYZTWMUGTEHX-UHFFFAOYSA-N auramine O free base Chemical compound C1=CC(N(C)C)=CC=C1C(=N)C1=CC=C(N(C)C)C=C1 JPIYZTWMUGTEHX-UHFFFAOYSA-N 0.000 description 1
- 208000029560 autism spectrum disease Diseases 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 201000000448 autoimmune hemolytic anemia Diseases 0.000 description 1
- 208000027625 autoimmune inner ear disease Diseases 0.000 description 1
- 208000036923 autoimmune primary adrenal insufficiency Diseases 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 201000004562 autosomal dominant cerebellar ataxia Diseases 0.000 description 1
- 208000031375 autosomal dominant myotonia congenita Diseases 0.000 description 1
- 229940003504 avonex Drugs 0.000 description 1
- 229960002756 azacitidine Drugs 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 229960004669 basiliximab Drugs 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 229940021459 betaseron Drugs 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 239000005312 bioglass Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005415 bioluminescence Methods 0.000 description 1
- 230000029918 bioluminescence Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 210000003969 blast cell Anatomy 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000009583 bone marrow aspiration Methods 0.000 description 1
- 230000010478 bone regeneration Effects 0.000 description 1
- 239000012888 bovine serum Substances 0.000 description 1
- 201000007637 bowel dysfunction Diseases 0.000 description 1
- 230000006931 brain damage Effects 0.000 description 1
- 231100000874 brain damage Toxicity 0.000 description 1
- 201000007293 brain stem infarction Diseases 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 208000000594 bullous pemphigoid Diseases 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- 229940043253 butylated hydroxyanisole Drugs 0.000 description 1
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 1
- 229940046731 calcineurin inhibitors Drugs 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical class [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical class [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical class [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- 230000003185 calcium uptake Effects 0.000 description 1
- KMQAPZBMEMMKSS-UHFFFAOYSA-K calcium;magnesium;phosphate Chemical class [Mg+2].[Ca+2].[O-]P([O-])([O-])=O KMQAPZBMEMMKSS-UHFFFAOYSA-K 0.000 description 1
- BPKIGYQJPYCAOW-FFJTTWKXSA-I calcium;potassium;disodium;(2s)-2-hydroxypropanoate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].C[C@H](O)C([O-])=O BPKIGYQJPYCAOW-FFJTTWKXSA-I 0.000 description 1
- BMLSTPRTEKLIPM-UHFFFAOYSA-I calcium;potassium;disodium;hydrogen carbonate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].OC([O-])=O BMLSTPRTEKLIPM-UHFFFAOYSA-I 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 230000003848 cartilage regeneration Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229960005361 cefaclor Drugs 0.000 description 1
- QYIYFLOTGYLRGG-GPCCPHFNSA-N cefaclor Chemical compound C1([C@H](C(=O)N[C@@H]2C(N3C(=C(Cl)CS[C@@H]32)C(O)=O)=O)N)=CC=CC=C1 QYIYFLOTGYLRGG-GPCCPHFNSA-N 0.000 description 1
- 229960004841 cefadroxil Drugs 0.000 description 1
- NBFNMSULHIODTC-CYJZLJNKSA-N cefadroxil monohydrate Chemical compound O.C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=C(O)C=C1 NBFNMSULHIODTC-CYJZLJNKSA-N 0.000 description 1
- 229960002129 cefixime Drugs 0.000 description 1
- OKBVVJOGVLARMR-QSWIMTSFSA-N cefixime Chemical compound S1C(N)=NC(C(=N\OCC(O)=O)\C(=O)N[C@@H]2C(N3C(=C(C=C)CS[C@@H]32)C(O)=O)=O)=C1 OKBVVJOGVLARMR-QSWIMTSFSA-N 0.000 description 1
- 229960002580 cefprozil Drugs 0.000 description 1
- 229960002588 cefradine Drugs 0.000 description 1
- 229960001668 cefuroxime Drugs 0.000 description 1
- JFPVXVDWJQMJEE-IZRZKJBUSA-N cefuroxime Chemical compound N([C@@H]1C(N2C(=C(COC(N)=O)CS[C@@H]21)C(O)=O)=O)C(=O)\C(=N/OC)C1=CC=CO1 JFPVXVDWJQMJEE-IZRZKJBUSA-N 0.000 description 1
- 210000005056 cell body Anatomy 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000006727 cell loss Effects 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 239000002458 cell surface marker Substances 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 208000010353 central nervous system vasculitis Diseases 0.000 description 1
- 208000009885 central pontine myelinolysis Diseases 0.000 description 1
- 229940106164 cephalexin Drugs 0.000 description 1
- ZAIPMKNFIOOWCQ-UEKVPHQBSA-N cephalexin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=CC=C1 ZAIPMKNFIOOWCQ-UEKVPHQBSA-N 0.000 description 1
- 229940124587 cephalosporin Drugs 0.000 description 1
- 150000001780 cephalosporins Chemical class 0.000 description 1
- RDLPVSKMFDYCOR-UEKVPHQBSA-N cephradine Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CCC=CC1 RDLPVSKMFDYCOR-UEKVPHQBSA-N 0.000 description 1
- 206010008129 cerebral palsy Diseases 0.000 description 1
- TVFDJXOCXUVLDH-RNFDNDRNSA-N cesium-137 Chemical compound [137Cs] TVFDJXOCXUVLDH-RNFDNDRNSA-N 0.000 description 1
- YRQNKMKHABXEJZ-UVQQGXFZSA-N chembl176323 Chemical compound C1C[C@]2(C)[C@@]3(C)CC(N=C4C[C@]5(C)CCC6[C@]7(C)CC[C@@H]([C@]7(CC[C@]6(C)[C@@]5(C)CC4=N4)C)CCCCCCCC)=C4C[C@]3(C)CCC2[C@]2(C)CC[C@H](CCCCCCCC)[C@]21C YRQNKMKHABXEJZ-UVQQGXFZSA-N 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 108010026341 choleragen receptor Proteins 0.000 description 1
- 230000009816 chondrogenic differentiation Effects 0.000 description 1
- 229940094517 chondroitin 4-sulfate Drugs 0.000 description 1
- KXKPYJOVDUMHGS-OSRGNVMNSA-N chondroitin sulfate Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](OS(O)(=O)=O)[C@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](C(O)=O)O1 KXKPYJOVDUMHGS-OSRGNVMNSA-N 0.000 description 1
- 208000012601 choreatic disease Diseases 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- 230000006020 chronic inflammation Effects 0.000 description 1
- 201000010002 cicatricial pemphigoid Diseases 0.000 description 1
- 229960003405 ciprofloxacin Drugs 0.000 description 1
- AGOYDEPGAOXOCK-KCBOHYOISA-N clarithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@](C)([C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)OC)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 AGOYDEPGAOXOCK-KCBOHYOISA-N 0.000 description 1
- 229960002626 clarithromycin Drugs 0.000 description 1
- DGBIGWXXNGSACT-UHFFFAOYSA-N clonazepam Chemical compound C12=CC([N+](=O)[O-])=CC=C2NC(=O)CN=C1C1=CC=CC=C1Cl DGBIGWXXNGSACT-UHFFFAOYSA-N 0.000 description 1
- 229960003120 clonazepam Drugs 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- OHCQJHSOBUTRHG-UHFFFAOYSA-N colforsin Natural products OC12C(=O)CC(C)(C=C)OC1(C)C(OC(=O)C)C(O)C1C2(C)C(O)CCC1(C)C OHCQJHSOBUTRHG-UHFFFAOYSA-N 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 208000014439 complex regional pain syndrome type 2 Diseases 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 235000008504 concentrate Nutrition 0.000 description 1
- 208000010247 contact dermatitis Diseases 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 229940041967 corticotropin-releasing hormone Drugs 0.000 description 1
- KLVRDXBAMSPYKH-RKYZNNDCSA-N corticotropin-releasing hormone (human) Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(N)=O)[C@@H](C)CC)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H]1N(CCC1)C(=O)[C@H]1N(CCC1)C(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CO)[C@@H](C)CC)C(C)C)C(C)C)C1=CNC=N1 KLVRDXBAMSPYKH-RKYZNNDCSA-N 0.000 description 1
- 230000000139 costimulatory effect Effects 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 201000003278 cryoglobulinemia Diseases 0.000 description 1
- 229940095074 cyclic amp Drugs 0.000 description 1
- 208000031513 cyst Diseases 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 1
- 229960002806 daclizumab Drugs 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 201000001098 delayed sleep phase syndrome Diseases 0.000 description 1
- 208000033921 delayed sleep phase type circadian rhythm sleep disease Diseases 0.000 description 1
- 239000005549 deoxyribonucleoside Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- AVJBPWGFOQAPRH-FWMKGIEWSA-L dermatan sulfate Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@H](OS([O-])(=O)=O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](C([O-])=O)O1 AVJBPWGFOQAPRH-FWMKGIEWSA-L 0.000 description 1
- 229940051593 dermatan sulfate Drugs 0.000 description 1
- 208000013257 developmental and epileptic encephalopathy Diseases 0.000 description 1
- 229940119744 dextran 40 Drugs 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 239000008356 dextrose and sodium chloride injection Substances 0.000 description 1
- 239000008355 dextrose injection Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- XEYBRNLFEZDVAW-ARSRFYASSA-N dinoprostone Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1C\C=C/CCCC(O)=O XEYBRNLFEZDVAW-ARSRFYASSA-N 0.000 description 1
- 229960002986 dinoprostone Drugs 0.000 description 1
- 229960000525 diphenhydramine hydrochloride Drugs 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 235000021186 dishes Nutrition 0.000 description 1
- XEYBHCRIKKKOSS-UHFFFAOYSA-N disodium;azanylidyneoxidanium;iron(2+);pentacyanide Chemical compound [Na+].[Na+].[Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].[O+]#N XEYBHCRIKKKOSS-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- 230000003291 dopaminomimetic effect Effects 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 208000019479 dysautonomia Diseases 0.000 description 1
- 206010058319 dysgraphia Diseases 0.000 description 1
- 206010013932 dyslexia Diseases 0.000 description 1
- 208000010118 dystonia Diseases 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 210000004177 elastic tissue Anatomy 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000002101 electrospray ionisation tandem mass spectrometry Methods 0.000 description 1
- 210000002242 embryoid body Anatomy 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 201000003104 endogenous depression Diseases 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 230000004049 epigenetic modification Effects 0.000 description 1
- 230000006718 epigenetic regulation Effects 0.000 description 1
- 201000011384 erythromelalgia Diseases 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 201000006517 essential tremor Diseases 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- QDERNBXNXJCIQK-UHFFFAOYSA-N ethylisopropylamiloride Chemical compound CCN(C(C)C)C1=NC(N)=C(C(=O)N=C(N)N)N=C1Cl QDERNBXNXJCIQK-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 206010016256 fatigue Diseases 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 108700014844 flt3 ligand Proteins 0.000 description 1
- ZFKJVJIDPQDDFY-UHFFFAOYSA-N fluorescamine Chemical compound C12=CC=CC=C2C(=O)OC1(C1=O)OC=C1C1=CC=CC=C1 ZFKJVJIDPQDDFY-UHFFFAOYSA-N 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- 238000001215 fluorescent labelling Methods 0.000 description 1
- 108010027329 forskolin receptor Proteins 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- IRSCQMHQWWYFCW-UHFFFAOYSA-N ganciclovir Chemical compound O=C1NC(N)=NC2=C1N=CN2COC(CO)CO IRSCQMHQWWYFCW-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 229940014259 gelatin Drugs 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 229960003776 glatiramer acetate Drugs 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 235000003969 glutathione Nutrition 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 229960003711 glyceryl trinitrate Drugs 0.000 description 1
- 210000004884 grey matter Anatomy 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 230000011132 hemopoiesis Effects 0.000 description 1
- 244000144980 herd Species 0.000 description 1
- 208000008675 hereditary spastic paraplegia Diseases 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 208000010726 hind limb paralysis Diseases 0.000 description 1
- 229940006607 hirudin Drugs 0.000 description 1
- WQPDUTSPKFMPDP-OUMQNGNKSA-N hirudin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(OS(O)(=O)=O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H]1NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H]2CSSC[C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@H](C(NCC(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N2)=O)CSSC1)C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)[C@@H](C)O)CSSC1)C(C)C)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 WQPDUTSPKFMPDP-OUMQNGNKSA-N 0.000 description 1
- 208000009624 holoprosencephaly Diseases 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 208000029080 human African trypanosomiasis Diseases 0.000 description 1
- 102000047612 human CCN2 Human genes 0.000 description 1
- 102000046949 human MSC Human genes 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 229960002773 hyaluronidase Drugs 0.000 description 1
- 229960002474 hydralazine Drugs 0.000 description 1
- 201000009075 hydranencephaly Diseases 0.000 description 1
- 208000003906 hydrocephalus Diseases 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229940050526 hydroxyethylstarch Drugs 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 230000003832 immune regulation Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 230000036046 immunoreaction Effects 0.000 description 1
- 229960003444 immunosuppressant agent Drugs 0.000 description 1
- 230000001861 immunosuppressant effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 201000001881 impotence Diseases 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 208000023692 inborn mitochondrial myopathy Diseases 0.000 description 1
- 210000003000 inclusion body Anatomy 0.000 description 1
- 201000008319 inclusion body myositis Diseases 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000007574 infarction Effects 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000015788 innate immune response Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 210000003962 intermediate trophoblast Anatomy 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 201000005851 intracranial arteriosclerosis Diseases 0.000 description 1
- 201000009941 intracranial hypertension Diseases 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 238000005040 ion trap Methods 0.000 description 1
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 238000001155 isoelectric focusing Methods 0.000 description 1
- 229940074928 isopropyl myristate Drugs 0.000 description 1
- 201000004815 juvenile spinal muscular atrophy Diseases 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical class CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 208000004343 lateral medullary syndrome Diseases 0.000 description 1
- 201000010901 lateral sclerosis Diseases 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 208000036546 leukodystrophy Diseases 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 229920006008 lipopolysaccharide Polymers 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 208000014817 lissencephaly spectrum disease Diseases 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- DLBFLQKQABVKGT-UHFFFAOYSA-L lucifer yellow dye Chemical compound [Li+].[Li+].[O-]S(=O)(=O)C1=CC(C(N(C(=O)NN)C2=O)=O)=C3C2=CC(S([O-])(=O)=O)=CC3=C1N DLBFLQKQABVKGT-UHFFFAOYSA-L 0.000 description 1
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 239000003120 macrolide antibiotic agent Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000014380 magnesium carbonate Nutrition 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229960003390 magnesium sulfate Drugs 0.000 description 1
- 208000024714 major depressive disease Diseases 0.000 description 1
- 230000036212 malign transformation Effects 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 239000012577 media supplement Substances 0.000 description 1
- 229940127554 medical product Drugs 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000001259 mesencephalon Anatomy 0.000 description 1
- 210000003716 mesoderm Anatomy 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 208000004141 microcephaly Diseases 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 206010027599 migraine Diseases 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- ZHBJMVNZRZUQEP-KIKMAQITSA-L minnelide Chemical compound [Na+].[Na+].O=C1OCC([C@@H]2C3)=C1CC[C@]2(C)[C@]12O[C@H]1[C@@H]1O[C@]1(C(C)C)[C@@H](OCOP([O-])([O-])=O)[C@]21[C@H]3O1 ZHBJMVNZRZUQEP-KIKMAQITSA-L 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 210000002161 motor neuron Anatomy 0.000 description 1
- 208000005264 motor neuron disease Diseases 0.000 description 1
- 206010028093 mucopolysaccharidosis Diseases 0.000 description 1
- 206010065579 multifocal motor neuropathy Diseases 0.000 description 1
- 229960003816 muromonab-cd3 Drugs 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 201000006938 muscular dystrophy Diseases 0.000 description 1
- RTGDFNSFWBGLEC-SYZQJQIISA-N mycophenolate mofetil Chemical compound COC1=C(C)C=2COC(=O)C=2C(O)=C1C\C=C(/C)CCC(=O)OCCN1CCOCC1 RTGDFNSFWBGLEC-SYZQJQIISA-N 0.000 description 1
- 229960004866 mycophenolate mofetil Drugs 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- 210000005012 myelin Anatomy 0.000 description 1
- 210000003007 myelin sheath Anatomy 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 230000004070 myogenic differentiation Effects 0.000 description 1
- 230000001114 myogenic effect Effects 0.000 description 1
- 201000003631 narcolepsy Diseases 0.000 description 1
- 208000019382 nerve compression syndrome Diseases 0.000 description 1
- 210000003061 neural cell Anatomy 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000000626 neurodegenerative effect Effects 0.000 description 1
- 201000004931 neurofibromatosis Diseases 0.000 description 1
- 201000008051 neuronal ceroid lipofuscinosis Diseases 0.000 description 1
- 230000003018 neuroregenerative effect Effects 0.000 description 1
- 208000015238 neurotic disease Diseases 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 208000013651 non-24-hour sleep-wake syndrome Diseases 0.000 description 1
- 239000002687 nonaqueous vehicle Substances 0.000 description 1
- 230000001453 nonthrombogenic effect Effects 0.000 description 1
- 231100000028 nontoxic concentration Toxicity 0.000 description 1
- 229960001180 norfloxacin Drugs 0.000 description 1
- OGJPXUAPXNRGGI-UHFFFAOYSA-N norfloxacin Chemical compound C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNCC1 OGJPXUAPXNRGGI-UHFFFAOYSA-N 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229960000988 nystatin Drugs 0.000 description 1
- VQOXZBDYSJBXMA-NQTDYLQESA-N nystatin A1 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/CC/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 VQOXZBDYSJBXMA-NQTDYLQESA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 229960001699 ofloxacin Drugs 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 208000031237 olivopontocerebellar atrophy Diseases 0.000 description 1
- 244000309459 oncolytic virus Species 0.000 description 1
- 210000001328 optic nerve Anatomy 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 210000004409 osteocyte Anatomy 0.000 description 1
- 230000009818 osteogenic differentiation Effects 0.000 description 1
- 206010033103 otosclerosis Diseases 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 208000002593 pantothenate kinase-associated neurodegeneration Diseases 0.000 description 1
- 229960005489 paracetamol Drugs 0.000 description 1
- 208000027838 paramyotonia congenita of Von Eulenburg Diseases 0.000 description 1
- 239000006201 parenteral dosage form Substances 0.000 description 1
- 208000035824 paresthesia Diseases 0.000 description 1
- 230000001314 paroxysmal effect Effects 0.000 description 1
- 208000010713 partial hind limb paralysis Diseases 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 201000001976 pemphigus vulgaris Diseases 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 229940056367 penicillin v Drugs 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- WTWWXOGTJWMJHI-UHFFFAOYSA-N perflubron Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)Br WTWWXOGTJWMJHI-UHFFFAOYSA-N 0.000 description 1
- 229960001217 perflubron Drugs 0.000 description 1
- 230000009984 peri-natal effect Effects 0.000 description 1
- 208000021999 perineural cyst Diseases 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 1
- 208000033808 peripheral neuropathy Diseases 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 208000020930 peroxisome biogenesis disorder 1B Diseases 0.000 description 1
- 208000030591 peroxisome biogenesis disorder type 3B Diseases 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 238000001050 pharmacotherapy Methods 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- BPLBGHOLXOTWMN-MBNYWOFBSA-N phenoxymethylpenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)COC1=CC=CC=C1 BPLBGHOLXOTWMN-MBNYWOFBSA-N 0.000 description 1
- RXNXLAHQOVLMIE-UHFFFAOYSA-N phenyl 10-methylacridin-10-ium-9-carboxylate Chemical compound C12=CC=CC=C2[N+](C)=C2C=CC=CC2=C1C(=O)OC1=CC=CC=C1 RXNXLAHQOVLMIE-UHFFFAOYSA-N 0.000 description 1
- 239000002571 phosphodiesterase inhibitor Substances 0.000 description 1
- ZWLUXSQADUDCSB-UHFFFAOYSA-N phthalaldehyde Chemical compound O=CC1=CC=CC=C1C=O ZWLUXSQADUDCSB-UHFFFAOYSA-N 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 235000017807 phytochemicals Nutrition 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 230000003169 placental effect Effects 0.000 description 1
- 229930000223 plant secondary metabolite Natural products 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 201000006292 polyarteritis nodosa Diseases 0.000 description 1
- 230000007824 polyneuropathy Effects 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920003226 polyurethane urea Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000023603 positive regulation of transcription initiation, DNA-dependent Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 208000018290 primary dysautonomia Diseases 0.000 description 1
- 201000009395 primary hyperaldosteronism Diseases 0.000 description 1
- 206010063401 primary progressive multiple sclerosis Diseases 0.000 description 1
- 230000007425 progressive decline Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- XEYBRNLFEZDVAW-UHFFFAOYSA-N prostaglandin E2 Natural products CCCCCC(O)C=CC1C(O)CC(=O)C1CC=CCCCC(O)=O XEYBRNLFEZDVAW-UHFFFAOYSA-N 0.000 description 1
- 230000004224 protection Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000164 protein isolation Methods 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 208000001381 pseudotumor cerebri Diseases 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 210000002804 pyramidal tract Anatomy 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- LISFMEBWQUVKPJ-UHFFFAOYSA-N quinolin-2-ol Chemical compound C1=CC=C2NC(=O)C=CC2=C1 LISFMEBWQUVKPJ-UHFFFAOYSA-N 0.000 description 1
- 101150036383 rad16 gene Proteins 0.000 description 1
- 239000002287 radioligand Substances 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- 208000002574 reactive arthritis Diseases 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229940075993 receptor modulator Drugs 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- 201000003068 rheumatic fever Diseases 0.000 description 1
- 230000001020 rhythmical effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 201000000306 sarcoidosis Diseases 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 1
- 201000008628 secondary progressive multiple sclerosis Diseases 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 231100000872 sexual dysfunction Toxicity 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229940115586 simulect Drugs 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 230000036560 skin regeneration Effects 0.000 description 1
- 201000002859 sleep apnea Diseases 0.000 description 1
- 201000002612 sleeping sickness Diseases 0.000 description 1
- 239000004055 small Interfering RNA Substances 0.000 description 1
- AWUCVROLDVIAJX-GSVOUGTGSA-N sn-glycerol 3-phosphate Chemical compound OC[C@@H](O)COP(O)(O)=O AWUCVROLDVIAJX-GSVOUGTGSA-N 0.000 description 1
- 239000008354 sodium chloride injection Substances 0.000 description 1
- 229940083618 sodium nitroprusside Drugs 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- 229940054269 sodium pyruvate Drugs 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 208000018198 spasticity Diseases 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 206010062261 spinal cord neoplasm Diseases 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 208000023366 superficial siderosis Diseases 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000009747 swallowing Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 229960001967 tacrolimus Drugs 0.000 description 1
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 101150061166 tetR gene Proteins 0.000 description 1
- 201000006361 tethered spinal cord syndrome Diseases 0.000 description 1
- GBNXLQPMFAUCOI-UHFFFAOYSA-H tetracalcium;oxygen(2-);diphosphate Chemical compound [O-2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GBNXLQPMFAUCOI-UHFFFAOYSA-H 0.000 description 1
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 206010048627 thoracic outlet syndrome Diseases 0.000 description 1
- 235000015398 thunder god vine Nutrition 0.000 description 1
- 230000009772 tissue formation Effects 0.000 description 1
- 208000037816 tissue injury Diseases 0.000 description 1
- 229960000707 tobramycin Drugs 0.000 description 1
- NLVFBUXFDBBNBW-PBSUHMDJSA-N tobramycin Chemical compound N[C@@H]1C[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N NLVFBUXFDBBNBW-PBSUHMDJSA-N 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 208000009174 transverse myelitis Diseases 0.000 description 1
- 230000009529 traumatic brain injury Effects 0.000 description 1
- 206010044652 trigeminal neuralgia Diseases 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 125000002264 triphosphate group Chemical class [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 description 1
- 201000002311 trypanosomiasis Diseases 0.000 description 1
- 208000009999 tuberous sclerosis Diseases 0.000 description 1
- 229940046728 tumor necrosis factor alpha inhibitor Drugs 0.000 description 1
- 239000002452 tumor necrosis factor alpha inhibitor Substances 0.000 description 1
- 208000032471 type 1 spinal muscular atrophy Diseases 0.000 description 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 1
- 208000032527 type III spinal muscular atrophy Diseases 0.000 description 1
- 229940079023 tysabri Drugs 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 229940124549 vasodilator Drugs 0.000 description 1
- 239000003071 vasodilator agent Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 229960001722 verapamil Drugs 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 239000008136 water-miscible vehicle Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 238000012070 whole genome sequencing analysis Methods 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/48—Reproductive organs
- A61K35/54—Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
- A61K35/545—Embryonic stem cells; Pluripotent stem cells; Induced pluripotent stem cells; Uncharacterised stem cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/28—Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/04—Drugs for skeletal disorders for non-specific disorders of the connective tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0662—Stem cells
- C12N5/0668—Mesenchymal stem cells from other natural sources
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/90—Serum-free medium, which may still contain naturally-sourced components
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/115—Basic fibroblast growth factor (bFGF, FGF-2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/135—Platelet-derived growth factor [PDGF]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/145—Thrombopoietin [TPO]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/155—Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/165—Vascular endothelial growth factor [VEGF]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/20—Cytokines; Chemokines
- C12N2501/23—Interleukins [IL]
- C12N2501/235—Leukemia inhibitory factor [LIF]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/20—Cytokines; Chemokines
- C12N2501/26—Flt-3 ligand (CD135L, flk-2 ligand)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2506/00—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
- C12N2506/02—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2506/00—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
- C12N2506/45—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2529/00—Culture process characterised by the use of electromagnetic stimulation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/90—Substrates of biological origin, e.g. extracellular matrix, decellularised tissue
Definitions
- the disclosure provided herein relates generally to mesenchymal-like stem cells “hES-T-MSC” or “T-MSC” and the method of producing the stem cells.
- the method comprises culturing embryonic stem cells under conditions that the embryonic stem cells develop through an intermediate differentiation of trophoblasts, and differentiating trophoblasts into hES-T-MSC or T-MSC.
- T-MSC Disclosed herein are the T-MSC, solutions and pharmaceutical compositions comprising the T-MSC, methods of making the T-MSC, methods of using the T-MSC for treatment and prevention of diseases, specifically, T-MSC are used as an immunosuppressive agent to treat multiple sclerosis and other autoimmune diseases, for tissue regeneration/repair uses, and methods of using the T-MSC for the delivery of agents across the blood brain barrier and the blood spinal cord barrier. Also disclosed herein are methods of using T-MSCs to modulate the immune system, inhibit immune response to an individual's self-antigen and repair damaged central nervous systems. Compositions comprising T-MSCs for use in immunomodulation are disclosed herein, as are methods of providing modified T-MSC with improved immunosuppressive function through modified gene expression.
- MSCs Human mesenchymal stem/stromal cells
- hESCs Human embryonic stem cells
- MSCs Mesenchymal stem cells derived from adult mouse or human tissues such as bone marrow, umbilical cord and fat tissue are multipotent, i.e., capable of generating a variety of mature cell lineages including adipocytes, chondrocytes, osteoblast cells, neural lineage cells. myoblast, stromal cells and fibroblast, etc.
- MSCs Mesenchymal stem cells
- the currently available adult tissue-derived MSCs have several pitfalls.
- Third, there are safety issues regarding to the use of adult-derived MSCs including malignant transformation (Wong, 2011) and potential transmission of infectious pathogens from donors.
- MS Multiple sclerosis
- CNS central nervous system
- BBB blood-brain barer
- BSCB blood-spinal cord barrier
- IFN ⁇ -1a Avonex
- Betaseron IFN ⁇ -1b
- Gilenya a sphingosine 1-phosphate receptor modulator
- Glatiramer acetate or Copolymer 1
- Tysabri humanized anti- ⁇ -integrin antibody
- MSCs mesenchymal stromal/stem cells
- MSCs have several unique advantages over current pharmacotherapies, as these cells can serve as carriers of multiple and potentially synergistic therapeutic factors, and can migrate to injured tissues to exert local effects through secretion of mediators and cell-cell contact (Uccelli and Prockop (2010a)).
- EAE experimental autoimmune encephalomyelitis
- MS MS-recognized animal model of MS (Gordon et al., 2008a; Gordon et al. (2010); Morando et al. (2012); Peron et al. (2012); Zappia et al. (2005); Zhang et al. (2005)), as well as MS patients in clinical trials (Connick et al.
- BM-MSC mouse and human bone marrow-derived MSC
- hES-T-MSCs derived from hESCs through a highly efficient differentiation method that meets these needs. Also disclosed herein are a microarray analysis and other analysis, where several key factors are identified that are differentially expressed in hES-T-MSC compared to BM-MSC and other hES-MSC differentiated through other methods.
- T-MSC mesenchymal-like stem cells from hESCs through an intermediate step of trophoblast induction.
- the MSCs derived via this method are called “hES-T-MSC” or “T-MSC”.
- the T-MSC may be differentiated into cells or cell lineages including, but not limited to, adipocytes, myoblast cells, neuron cells, osteoblast cells, fibroblast, chondrocytes, stromal cells
- T-MSC derived cells or cell lineages or called “T-MSC derived lineages” or “T-MSC-DL”.
- compositions including compositions comprising T-MSC and/or T-MSC-DL, having immunosuppressive properties. Described herein are populations of T-MSC and/or T-MSC-DL selected on the basis of their ability to modulate an immune response, and compositions having immunomodulatory properties. As disclosed herein, T-MSC and/or T-MSC-DL have higher immunosuppressive activity compared to bone marrow-derived MSCs.
- T-MSC T-MSC in high purity and high yield.
- the method has the features of relatively few steps and fewer required differentiation factors than previously reported.
- hESCs human embryonic stem cells
- T-MSC T-MSC
- the T-MSC can be used to modulate the immune system. For example, they are effective in treating multiple sclerosis by preventing immune cell-caused damage in the central nervous systems.
- human embryonic-derived mesenchymal stem cells produced by the methods disclosed herein.
- T-MSC and/or T-MSC-DL are disclosed herein.
- T-MSC and/or T-MSC-DL are also disclosed herein.
- the immune response is graft-versus-host disease.
- the immune response is an autoimmune disease. e.g., diabetes, lupus erythematosus, or rheumatoid arthritis.
- the method can employ as many stem cells provided herein as are required to effect a detectable suppression of an immune response.
- the plurality of stem cells provided herein used to contact the plurality of immune cells can comprise 1 ⁇ 10 5 T-MSC, 1 ⁇ 10 6 T-MSC, 1 ⁇ 10 7 T-MSC, 1 ⁇ 10 8 T-MSC or more.
- the method described herein is a novel process for deriving (also referred to herein as producing) MSCs from hESCs.
- the method comprising the steps of:
- the trophoblasts derived from hESC express Trop-2, but not CD73.
- the pre-T-MSC express Trop-2 and/or CD73.
- the T-MSC express CD73 + CD105 + CD90 + . It is an object of the disclosed method to differentiate hESCs into MSCs of high purity.
- CD73 + CD105 + CD90 + T-MSC are produced with greater than 90%, 95%, 96%, 97%, 98%, 99% purity.
- T-MSC T-MSC
- the serum-containing medium contains fetal calf serum or human AB serum, L-glutamine and the serum-free medium contains knockout serum replacement (KOSR) or bovine serum albumin (BSA).
- KOSR knockout serum replacement
- BSA bovine serum albumin
- the method for generating and expanding T-MSC results in at least 10,000 T-MSC, at least 50,000 T-MSC, at least 100,000 T-MSC, at least 500,000 T-MSC, at least 1 ⁇ 10 6 T-MSC, at least 5 ⁇ 10 6 T-MSC, at least 1 ⁇ 10 7 T-MSC, at least 5 ⁇ 10 7 T-MSC, at least 1 ⁇ 10 8 T-MSC, at least 5 ⁇ 10 8 T-MSC, at least 1 ⁇ 10 9 T-MSC, at least 5 ⁇ 10 9 T-MSC, or at least 1 ⁇ 10 10 T-MSC.
- cell solutions that may comprise between 10,000 and 10 billion T-MSC, In certain embodiments, at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% of the resulting human embryonic-mesenchymal stem cells express one or more hES-MSC differential markers.
- the marker is C73, CD90 and CD105.
- the T-MSCs remarkably attenuate the disease score of the EAE mice, accompanied by decreased demyelination, T cell infiltration, and microglial responses.
- the T-MSCs have much stronger immunosuppressive activity in vivo and in vitro when compared to bone marrow derived MSCs (BMMSC).
- BMMSC bone marrow derived MSCs
- key proteins/molecules that are differentially expressed between T-MSC and BM-MSCs.
- methods of identifying T-MSCs with improved immunosuppressive activity by measuring the expression level of the protein/molecular markers.
- methods of genetic modification to improve immunosuppressive activity of T-MSCs are also provided herein.
- a further embodiment of the present invention is a solution comprising T-MSC comprising at least 10,000 T-MSC, at least 50,000 T-MSC, at least 100,000 T-MSC, at least 500,000 T-MSC, at least 1 ⁇ 10 6 T-MSC, at least 5 ⁇ 10 6 T-MSC, at least 1 ⁇ 10 7 T-MSC, at least 5 ⁇ 10 7 T-MSC, at least 1 ⁇ 10 8 T-MSC, at least 5 ⁇ 10 8 T-MSC, at least 1 ⁇ 10 9 T-MSC, at least 5 ⁇ 10 9 T-MSC, or at least 1 ⁇ 10 10 T-MSC.
- the culture volume is from 2 ml for at least 10,000 cells, 10 ml for at least 100,000 cells, 100 ml for at least 1,000,000 cells, 1000 ml for at least 10,000,000 cells, and up to 4000 ml of media for 5 ⁇ 10 8 cells.
- These solutions can be injected into a subject. These solutions can be frozen. These solutions can be used for the manufacture of a medicament for a disease that can be treated by the administration of T-MSC.
- This invention also provides a method for producing a solution of T-MSC suitable for injection into a patient comprising the steps of isolating the solution of cells described in the preceding paragraph and placing the cells into solution suitable for injection into a patient.
- This invention also provides a method of producing a solution of T-MSC suitable for freezing comprising the steps of isolating the cells described in the preceding paragraph and placing into a solution suitable for freezing.
- Yet another embodiment of the present invention is a T-MSC expressing one or more of cell marker proteins including CD73, CD90, CD105, CD13, CD29, CD54, CD44, CD146, CD166 or a combination thereof.
- the human embryonic-mesenchymal stem cell does not express or expresses low levels of one or more cell marker proteins including CD34, CD31, CD45 or a combination thereof.
- the human embryonic-mesenchymal stem cell does not express or expresses low levels of one or more pro-inflammatory proteins including MMP2, RAGE, IFN ⁇ R1, IFN ⁇ R2, IL-12, TNF ⁇ , IL-6, VCAM1 or a combination thereof.
- the human embryonic-mesenchymal stem cell expressed at least half of the level of the above markers as compared to bone marrow derived MSC.
- a further embodiment of the present invention is a cd culture comprising T-MSC expressing one or more of cell marker proteins including CD73, CD90, CD105, CD13, CD29, CD54, CD144, CD146 and CD44.
- the T-MSC in the cell culture do not express or express low levels of one or more cell marker proteins including CD34, CD31 and CD45.
- the T-MSC in the cell culture do not express or express low levels of one or more pro-inflammatory proteins including MMP2, RAGE, IFN ⁇ R1, IFN ⁇ R2, IL-12, TNF ⁇ , IL-6, and VCAM1.
- the cell culture comprises at least 1 ⁇ 10 6 T-MSC, at least 1 ⁇ 10 7 T-MSC at least 1 ⁇ 10 8 T-MSC, at least 1 ⁇ 10 9 T-MSC, or at least 1 ⁇ 10 10 T-MSC.
- At least about 90% of the T-MSC in the cell culture express the CD73 protein, at least more than 90% of the T-MSC express the CD73 protein, at least about 95% T-MSC express the CD73 protein, or more than 95% T-MSC express the CD73 protein.
- at least about 96% of the T-MSC in the cell culture express the CD73 protein, at least more then 97% of the T-MSC express the CD73 protein, at least about 98% T-MSC express the CD73 protein, or more than 99% T-MSC express the CD73 protein.
- At least about 75%, 80%, 85%, 90%, 95%, 99% of the T-MSC in the cell culture express at least one cell marker protein selected from the group consisting of CD90, CD105, CD44, and CD29.
- At least about 80%, 85%, 90%, 95%, 99% of the T-MSC in the cell culture do not express or express low levels of at least one cell marker including CD34, CD31, and CD45.
- At least about 75%, 80%, 85%, 90%, 95%, 99% of the T-MSC in the cell culture do not express or express low levels of at least one pro-inflammatory protein including MMP2, RAGE, IFN ⁇ R1, IFN ⁇ R2, IL-12, TNF ⁇ , IL-6, and VCAM1.
- the T-MSC express high levels of CD24, TGF ⁇ 2 or both.
- the cells are irradiated using gamma radiation.
- compositions comprising any one of the T-MSC or cell cultures described herein and pharmaceutically acceptable carriers.
- Yet further embodiments of the present invention are cryopreserved preparations of any of the T-MSC or cell cultures described herein.
- T cell related autoimmune diseases include but are not limited to Crohn's disease, inflammatory bowel disease, graft versus host disease, systemic lupus erythematosus, and rheumatoid arthritis.
- T call mediated delayed type hypersensitivity i.e., Type 1 diabetes mellitus, MS, RA, Hashimoto's thyroiditis, Crohn's, contact dermatitis, Scleroderma, etc.
- the subject is preferably a mammal or avian, and most preferably human.
- the solution, cell culture or pharmaceutical preparation comprises irradiated or non-irradiated T-MSC.
- the method for treating or preventing disease includes combination therapy with one or more therapeutic agents for the treatment or prevention of disease.
- the present invention provides methods for treating or preventing multiple sclerosis disease in a subject in need thereof, comprising the steps of administering a therapeutically effective amount of solution, cell culture or pharmaceutical preparation comprising T-MSC as described in the preceding paragraphs, to the subject in need thereof.
- the multiple sclerosis can be relapsing/remitting multiple sclerosis, progressive/relapsing multiple sclerosis, primary multiple sclerosis, or secondary multiple sclerosis.
- the subject is preferably a mammal, and most preferably human.
- the solution, cell culture or pharmaceutical preparation can comprise irradiated or non-irradiated T-MSC.
- the method can further comprise the administration of additional therapeutic agents to the subject, including but not limited to fingolimod, adrenoortiotropic hormone (ACTH), methylprednisolone, dexamethasone, IFN ⁇ -1a, IFN-1b, gliatriamer acetate, cyclophosphamide, methotrexate, azathioprine, cladribine, cyclosporine, mitoxantrone, and sulfasalazine.
- additional therapeutic agents including but not limited to fingolimod, adrenoortiotropic hormone (ACTH), methylprednisolone, dexamethasone, IFN ⁇ -1a, IFN-1b, gliatriamer acetate, cyclophosphamide, methotrexate, azathioprine, cladribine, cyclosporine, mitoxantrone, and sulfasalazine.
- T-MSC may be in the form of a single cell, a cell culture, a solution or a pharmaceutical preparation.
- Agents would include, but are not limited to, drugs, proteins, DNA, RNA, and small molecules.
- a further embodiment is a delivery system comprising a T-MSC and a conjugated or attached agent, for crossing the blood-brain barrier and/or the blood-spinal cord barrier.
- the method described herein has a number of advantages. It is an object of the disclosed method to differentiate hESCs via an intermediate stage of trophoblasts, which is different from all the existing methods and leads to the following advantages.
- T-MSC for the treatment of autoimmune diseases, the T-MSC having the following characteristics: (i) contain >95% of cells expressing group-1 markers; (ii) contain >80% of cells expressing group 2 markers; (iii) contain ⁇ 5% of cells expressing group-3 markers; (iv) express IL-10 and TGF ⁇ ; (v) contain ⁇ 2% of cells expressing IL-6, IL-12 and TNF ⁇ ; (vi) express high level of CXCR7, CXCL2, CXCL12 but a low level of HOXB2, HOXB3, HOXB5, HOXB7, HOXB9, HOXA5, HOXA9 and other HOX family genes (vii) contain ⁇ 0.001% of cells co-expressing all group-4 markers, wherein group-1 markers are CD73, CD90, CD105, CD146, CD166, and CD44, group-2 markers are CD13. CD29, CD54, CD49E, group-3 markers are CD45, CD45, CD45, CD45, CD45,
- a method of modifying T-MSC to produce a population of modified MSC having the following characteristics: (i) contain >95% of cells expressing group-1 markers; (ii) contain >80% of cells expressing group 2 markers; (iii) contain ⁇ 5% of cells expressing group-3 markers (iv) expressing IL-10 and TGF ⁇ ; (v) contain ⁇ 2% of cells expressing IL-6, IL-12 and TNF ⁇ ; and (vi) contains ⁇ 0.001% of cells co-expressing all group-4 markers, wherein group-1 markers are CD73, CD90, CD105, CD146, CD166, and CD44, group-2 markers are CD13, CD29, CD54, CD49E, group-3 markers are CD45, CD34, CD31 and SSEA4, and group-4 markers are OCT4, NANOG, TRA-1-60 and SSEA4.
- conditioned medium concentrate of conditioned medium, cell lysate or other derivatives thereof that comprises one or more biomolecules secreted by the T-MSC as described.
- T-MSC as described herein as feeder cells for bone marrow hematopoietic stem cell expansion and umbilical-cord hematopoietic stem can expansion.
- the T-MSC suitable for the disclosed method express Stro3.
- T-MSC is co-cultured with bone marrow hematopoietic stem cells and/or umbilical-cord hematopoietic stem cells.
- the T-MSC are mesenchymal stromal cells.
- a co-culture of T-MSC as described herein and bone marrow hematopoietic stem cells Provided herein is a co-culture of T-MSC as described herein and umbilical-cord hematopoietic stem cells.
- kits comprising T-MSC described herein.
- the kits comprise T-MSC and a cell delivery carrier.
- provided heron is a method of suppressing or reducing an immune response comprising contacting a plurality of immune cells with a plurality of T-MSC for a time sufficient for the T-MSC to detectably suppress an immune response, wherein the T-MSC delectably suppress T cell proliferation and/or differentiation in a mixed lymphocyte reaction (MLR) assay.
- MLR mixed lymphocyte reaction
- the contacting is performed in vitro.
- the contacting is performed in vivo.
- the in vivo contacting is performed in a mammalian subject, e.g., a human subject.
- the contacting comprises administering the T-MSC intravenously, intramuscularly, or into an organ in the subject (e.g., a pancreas).
- the invention provides a method of selecting a T-MSC population comprising (a) assaying a plurality of T-MSC in a mixed lymphocyte reaction (MLR) assay; and (b) selecting the plurality of T-MSC if the plurality of T-MSC detectably suppresses CD4 + or CD8 + T cell proliferation in an MLR (mixed lymphocyte reaction), wherein the T-MSC express CD73.
- MLR mixed lymphocyte reaction
- the T-MSC do not express or express at low level CD34, CD31 and CD45. In one embodiment, the T-MSC do not express or express at low level MMP2, RAGE, IFNGR2, IL-12A, IL-6 and VCAM1.
- T-MSC tissue-derived multi-replasia
- myoblast cells adipocytes, myoblast cells, neural lineage co, osteoblast cells, fibroblast, chondrocytes, and stroma cells.
- T-MSC and its differentiated cellular products for tissue regeneration and/or tissue repair comprising administering T-MSC and/or T-MSC derived other cell lineages, in an amount sufficient to promote tissue regeneration including, but not limited to, joint regeneration, tendon regeneration, connective tissue regeneration, neural lineage cells regeneration, fat tissue regeneration, bone regeneration, skin regeneration, muscle regeneration, cartilage regeneration, smooth muscle regeneration, cardiac muscle regeneration, epithelia tissue regeneration, ligament regeneration, etc.
- the T cells and the T-MSC are present in the MLR at a ratio of, e.g., about 20:1, 15:1, 10:1, 5:1, 2:2, 1:1, 1:2, 1:5, 1:10 or 1:20, preferably 10:1.
- the disclosed method can generate about 10-fold higher numbers of MSCs compared to the starting number of hESCs. There is very little cell loss when hESCs are differentiated through the trophoblast stage, whereas, other methods usually have over 90% loss of the starting cells during the initial differentiation step, resulting in much lower cell yields than the method disclosed herein.
- the entire process disclosed herein can be completed in no more than 6-14 days, depending on the starting hES lines.
- the differentiation method described herein only requires a very small amount of culture medium, and the method only requires one cytokine-BMP4, which is used in the disclosed method at a low dose.
- the differentiation method described herein only requires a very small amount of culture medium, and the method only requires one cytokine-BMP4 and/or a TGF ⁇ inhibitor (i.e., SB31542, A83-01 or ALK5 inhibitor etc.).
- a TGF ⁇ inhibitor i.e., SB31542, A83-01 or ALK5 inhibitor etc.
- the differentiation method described herein can produce 1-5 ⁇ 10 10 T-MSC cells within 30 days from 1 ⁇ 10 6 of hESC, whereas other method can only produce up to 1 ⁇ 10 8 MSC cells within 30 days.
- the T-MSC have higher immunosuppressive potency than MSCs derived from bone marrow (BM) or other sources, the T-MSC have higher immunosuppressive potency than MSCs derived from hESCs via other methods.
- the T-MSC suppress CD4 + or CD8 + T cell proliferation by at least 50%, 70%, 90%, or 95% in an MLR compared to an amount of T cell proliferation in the MLR in the absence of the T-MSC.
- any of the foregoing compositions comprises a matrix.
- the matrix is a three-dimensional scaffold.
- the matrix comprises collagen, gelatin, laminin, fibronectin, pectin, ornithine, or vitronectin.
- the matrix is a biomaterial.
- the matrix comprises an extracellular membrane protein.
- the matrix comprises a synthetic compound.
- the matrix comprises a bioactive compound.
- the bioactive compound is a growth factor, cytokine, antibody, or organic molecule of less than 5,000 daltons.
- the invention further provides cryopreserved stem cell populations, e.g., a cell population comprising T-MSC, wherein the cell population is immunomodulatory, which are described herein.
- the invention provides a population of T-MSC that have been identified as detectably suppressing T cell proliferation and/or differentiation in a nixed lymphocyte reaction (MLR) assay, wherein the cells have been cryopreserved, and wherein the population is contained within a container.
- MLR nixed lymphocyte reaction
- the container is a bag.
- the population comprises about, at least, or at most 1 ⁇ 10 6 the stem cells, 5 ⁇ 10 8 the stem cells, 1 ⁇ 10 7 the stem cells, 5 ⁇ 10 7 the stem cells, 1 ⁇ 10 8 the stem cells, 5 ⁇ 10 8 the stem cells, 1 ⁇ 10 9 the stem cells, 5 ⁇ 10 9 the stem cells, or 1 ⁇ 10 10 the stem cells.
- the stem cells have been passaged about, at least, or no more than 5 times, no more than 10 times, no more than 15 times, or no more than 20 times.
- the stem cells have been expanded within the container.
- FIGS. 1 (A-B).
- A Flow chart of the protocol for hESC differentiation into T-MSCs via a trophoblast and pre-T-MSC stage. Key bio-markers that are associated with each differentiation stage are indicated.
- B Comparison of various MSC generation protocols for MSC yield and quality: hESCs were differentiated in three protocols. 1) T-MSC: 3 days in the trophoblast differentiation medium followed by 8-10 days in a MSC growth medium. 2) SB-MSC: 3-10 days in SB431542-supplemented differentiation medium followed by 12 days in the MSC growth medium.
- HB-MSC hESC are differentiated into MSC through a hemangioblast intermediate stage, hESC were differentiated into hemangioblast in serum-free medium for 10-13 days followed by 12 days in the MSC growth medium. The total number of MSCs (millions of cells) in different cultures at day 10, 20 and 30 following the initiation of the differentiation procedures are shown. MSC purity was determined by FACS analysis of CD73+ cell ratio.
- FIGS. 2 A-C. Morphological changes observed at various time points in cultures of hESCs which are in the process of differentiating to T-MSCs.
- FIGS. 3 (A-C). Analysis of the ratio of cells expressing the trophoblast marker Trop-2 (Trp-2) and MSC marker CD73 at various time points during the differentiation of hESC into T-MSC.
- FIGS. 4 (A-H). Surface marker expression profile of T-MSC after 11 days of differentiation.
- Trp2 is a marker for trophoblasts
- CD31 is a marker for endothelial cells
- CD34 is a marker for hematopoietic stem cells.
- D-H CD73, CD90, CD 105, CD44, CD29 are markers for MSCs.
- FIGS. 5 The in vitro immunosuppressive function of T-MSCs.
- BM-MSCs G-L or T-MSCs (M-R) were mixed with CFSE-labeled mouse lymphocytes at 10:1 ratio.
- the cells were stimulated with anti-CD3 antibody at 0.3 or 1 ⁇ g/ml together with 1 ⁇ g/mA of anti-CD28 antibody.
- Cell proliferation was indicated by CFSE dilution via FACS analysis.
- A-F T cells cultured without BM-MSC or T-MSC (labeled control) are shown.
- FIG. 6 T-MSC attenuate the disease score of an EAE mouse model: EAE was induced in C57BL/6 mice with MOG35-55 plus an adjuvant and pertussis toxin. T-MSC, BM-MSC or MSCs derived from hESCs using the SB431542 method (hES-MSC(SB)) were intraperitoneously injected into the mice, 6 days after the EAE induction. Disease score (from 0 being the no disease to 4 being the severe disease) was recorded for 27 days after the MSC injection.
- SB SB431542 method
- FIGS. 7 Determination of the multipotency of T-MSC to differentiate into: (A) osteocytes, (B) chondrocytes, and (C) adipocytes.
- FIG. 8 Gene expression analysis of comparing hES-HB-MSC (hES hemagioblast derived MSC) with T-MSC (hES trophoblast derived MSC) and BM-MSC (adult bone marrow derived MSC). Gene expression was normalized and is shown as arbitrary expression units.
- hESC means human embryonic stem cells that encompass pluripotent stem cells produced from embryo, inner cell mass, blastomere or a cell line.
- hES-MSC or “hES-MSCs” or “human embryonic mesenchymal stem cells” or human embryonic stem cell derived mesenchymal stem cells” or “hES-MSC population” as used herein means mesenchymal-like stem cells, mesenchymal-like stromal cells, mesenchymal stem cells or mesenchymal stromal cells, derived from human embryonic stem cells or derived from induced pluripotent stem cells (“IPSCs”) using any methods.
- hES-MSC as used herein includes individual cells, cell lines, batches, lots or populations of hES-MSC
- T-MSC refers to MSC or mesenchymal stem/stromal cells that are derived from human embryonic stem cells (hESC) or induced pluripotent stem cells (iPSC) through a trophoblast intermediate stage where cells express Trop-2 with trophoblast-like morphology.
- hES-T-MSC refers to T-MSC differentiated from hESC.
- iPS-T-MSC and “iT-MSC” refer to T-MSC differentiated from iPSC.
- T-MSC does not refer to a trophoblast.
- a cell is considered a “stem cell” if the coal retains at least one attribute of a stem cell, e.g., the ability to differentiate into at least one other type of cell, or the like. These cells can be described based upon numerous structural and functional properties including but not limited to, expression or lack of expression of one or more markers.
- T-MSCs including both hES-T-MSC and iT-MSC, are multipotent and capable of differentiating to give rise to other cell types and cell lineages.
- hES-HB-MSC and “HB-MSC” are mesenchymal stem cells that are derived from human pluripotent stem cells including hESC and iPSCs via hemangioblast or hemangio-colony forming middle step.
- Clinical grade T-MSC means T-MSC which contains characteristics that are suitable for use in clinical use for human, avian or other mammals.
- Clinical grade T-MSC as used herein includes individual cells, cell lines, batches, lots or populations of MSC.
- T-MSC population means a population of T-MSC cells which contains cells that have characteristics that are suitable for use in treatment and cells that do not have characteristics that are suitable for use m treatment.
- T-MSC derived lineages or T-MSC-DL as used herein means cells or cell lineages differentiated from T-MSC including, but not limited to, adipocytes, myoblast cells, neural lineage cells, osteoblast cells, fibroblast, chondrocytes, and stromal cells.
- terapéuticaally effective amount is used herein to mean an amount sufficient to cause an improvement in a clinically significant condition in the subject, or delays or minimizes or mitigates one or more symptoms associated with the disease, or results in a desired beneficial change of physiology in the subject.
- treat refers to a means to slow down, relieve, ameliorate or alleviate at least one of the symptoms of the disease, or reverse the disease after its onset.
- prevent refers to acting prior to overt disease onset, to prevent the disease from developing or minimize the extent of the disease or slow its course of development.
- subject as used in this application means an animal with an immune system such as avians and mammals. Mammals include canines, felines, rodents, bovine, equines, porcines, ovines, and primates. Avians include, but are not limited to, fowls, songbirds, and raptors.
- the invention can be used in veterinary medicine, e.g., to treat companion animals, farm animals, laboratory animals in zoological parks, and animals in the wild.
- the invention Is particularly desirable for human medical applications
- the term “in need thereof” would be a subject known or suspected of having or being at risk of developing a disease including but not limited to multiple sclerosis and other T cell related autoimmune diseases, or diseases related to the central nervous system or the blood-brain barrier or the blood-spinal cord barrier.
- a subject in need of treatment would be one that has already developed the disease.
- a subject in need of prevention would be one with risk factors of the disease.
- agent means a substance that produces or is capable of producing an effect and would include, but is not limited to, chemicals, pharmaceuticals, drugs, biologics, small molecules, antibodies, nucleic acids, peptides, and proteins.
- a stem cell is “positive” for a particular marker when that marker is detectable.
- a T-MSC is positive for, e.g., CD73 because CD73 is detectable on T-MSC in an amount detectably greater than background (in comparison to, e.g., an isotype control).
- a cell is also positive for a marker when that marker can be used to distinguish the cell from at least one other cell type, or can be used to select or isolate the cell when present or expressed by the cell.
- immunomodulation and “immunomodulatory” mean causing, or having the capacity to cause, a detectable change in an immune response, and the ability to cause a detectable change in an immune response.
- immunosuppression and “immunosuppressive” mean causing, or having the capacity to cause, a detectable reduction in an immune response, and the ability to cause a detectable suppression of an immune response.
- the present invention is based on the first discovery that mesenchymal stem cells MSCs can be differentiated from the hESC derived trophoblasts, and that the trophoblast-derived MSCs (T-MSC) can be used for tissue repair and immune regulation.
- T-MSC trophoblast-derived MSCs
- These T-MSC produced from the disclosed methods all remarkably inhibited T cell proliferation and differentiation in vitro and attenuated the disease score in vivo, whereas bone marrow-derived MSC (BM-MSC) had no effect at all in vivo, although the BM-MSC may partially reduce T cell proliferation and differentiation in vitro.
- the T-MSC disclosed herein have surprisingly higher immunosuppressive activity compared to BM-MSC.
- the methods disclosed herein are highly efficient and can produce high number of T-MSC with low cost and high purity.
- the methods disclosed herein are highly reproducible with little batch-to-batch variations, and easily adaptable to meet clinical needs.
- the present invention overcomes the problems described above by providing a method of generating mesenchymal stem cells (MSC) in vitro from human embryonic stem cells.
- MSC mesenchymal stem cells
- the ability to generate the hES-T-MSC by the methods disclosed herein allows the production of cells that can be used in a variety of therapeutic applications, Including the treatment and prevention of multiple sclerosis, and other autoimmune diseases.
- the hES-MSC produced by the methods described herein have the ability to cross the brain-blood barrier (BBB) and the blood-spinal cord barrier (BSCB) allowing them to be used for a variety of therapeutic applications, including drug delivery.
- BBB brain-blood barrier
- BSCB blood-spinal cord barrier
- the methods of the invention provide further utility in that they enable the generation of large numbers of hES-T-MSC that can be used on a commercial scale.
- T-MSC mesenchymal-like stem cells
- hES embryonic stem cells
- MSC-like cells have been derived from human embryonic stem cells by various methods (Barbieri et al. (2005); Olivier et al. (2006); Sanchez et al. (2011); Brown et al. (2009)). However, all of these methods involve co-culturing and hand-picking procedures that limit yield and purity and result in varying quality of cells.
- hESC express low levels of MHC antigens
- many cell types differentiated from hESC have increased expression of these antigens (Draper et al., 2002; Drukker et al., 2006; Drukker et al., 2002), thus, causing great concern for immunorejection of the differentiated cells if transplanted into patients.
- MSC express low levels of costimulatory molecules and major MHC antigens, and have been used in allogeneic or xenograft models to treat autoimmune diseases (Gordon et al., 2008b; Grinnemo et al., 2004; Rafei et al., 2009a; Rafei et al., 2009b; Tse et al., 2003).
- T-MSC like adult tissue-derived MSC, express low levels of the co-stimulatory molecules and MHC antigens, and do not require long-term engraftment to exert immunosuppressive effect, thus, there is no concern for immunorejection due to mismatch of MHC antigens between MSC and the recipient.
- One hESC line is sufficient to generate T-MSC at large scale, in an endless supply, and with easy quality control, suitable for industrial production as a potential therapy to treat patients with MS and other T cell-based autoimmune diseases.
- Human trophoblast can be generated from human embryonic stem cells.
- embryonic stem cells include embryonic stem cells derived from or using, for example, blastocysts, plated ICMs, one or more blastomeres, or other portions of a pre-implantation-stage embryo or embryo-like structure, regardless of whether produced by fertilization, somatic cell nuclear transfer (SCNT), parthenogenesis, androgenesis, or other sexual or asexual means.
- SCNT somatic cell nuclear transfer
- trophoblast can be generated from other embryo-derived cells.
- trophoblast can be generated (without necessarily going through a step of embryonic stem cell derivation) from or using plated embryos, ICMs, blastocysts, one or more blastomeres, trophoblast stem cells, embryonic germ cells, or other portions of a pre-implantation-stage embryo or embryo-like structure, regardless of whether produced by fertilization, somatic cell nuclear transfer (SCNT), parthenogenesis, androgenesis, or other sexual or asexual means.
- SCNT somatic cell nuclear transfer
- trophoblast can be generated using cells or cell lines partially differentiated from embryo-derived cells. For example, if a human embryonic stem cell line is used to produce cells that are more developmentally primitive than trophoblast, in terms of development potential and plasticity, such embryo-derived cells could then be used to generate trophoblast.
- trophoblast can be generated from other pre-natal or peri-natal sources including, without limitation, umbilical cord, umbilical cord blood, amniotic fluid, amniotic stem cells, and placenta.
- the human embryonic stem cells may be the starting material of this method.
- the embryonic stem cells may be cultured in any way known in the art such as in the presence or absence of feeder cells.
- H9 derived from WiCell Research Institute
- CT2 derived from University of Connecticut Stem Cell Core (Lin et al. (2010)
- ES03-Envy Envy, a GFP-labeled line, derived at ES International
- ESI-017 ESI-053, ESI-049, ESI-035, and ESI-051.
- T-MSC human embryonic stem cells are grown in small clumps or single cells in serum-free media without bFGF. The cells are then re-plated and cultured with BMP4 (1-200 ng/ml) as the only cytokine for a short time (2-5 days) to obtain a highly homogenous population of trophoblasts as they express the typical trophoblast marker Trop2/TACSTD2 (Trp2).
- BMP4 1-200 ng/ml
- a TGF ⁇ inhibitor SB431542 (1-20 ⁇ M), A83-01 (0.2-5 ⁇ M) or ALK5 inhibitor (1-20 ⁇ M), etc.
- the cells will expand and differentiate into trophoblast cells in 2-5 days with trophoblast-like morphology, in certain embodiments, more than 90% of cells express Trop-2/TACSTD2 (Trp-2) (Xu et al., 2002).
- Trophoblasts may be isolated by size or purified with antibody, such as by immunoaffinity column chromatography.
- trophoblast cells are digested to form single cells with TrypLE, Trypsin or collagenase B.
- the single cells are re-suspended in a medium optimized for mesenchymal stem cell growth such as alpha-MEM containing 2-20% of fetal bovine serum (FBS) or human AB serum (ABHS), DMEM-high glucose containing 2-20% of FBS or ABHS, the FBS can be replaced with 5-20% of knock-out serum replacement (KOSR) or bovine serum albumin (BSA), or any other commercial available serum free MSC culture mediums.
- FBS fetal bovine serum
- ABHS human AB serum
- DMEM-high glucose containing 2-20% of FBS or ABHS the FBS can be replaced with 5-20% of knock-out serum replacement (KOSR) or bovine serum albumin (BSA), or any other commercial available serum free MSC culture mediums.
- KOSR knock-out serum replacement
- BSA bovine serum albumin
- fetal bovine serum is preferred.
- cells are cultured at a density of about 10-1000 cells/cm 2 .
- the cells are cultured in an environment that mimics the extracellular environment of tissues, such as gelatin, vitronectin, laminin, fibronectin, collagen I.
- the MSC culture medium comprises LIF (2-20 ng/ml), bFGF (2-100 ng/ml), or PDGF (1-50 ng/ml) to increase expansion efficiency.
- pre-T-MSC After approximately 24 hours, a number of cells (50-90%) attached to the culture plate and approximately 2-3 days later, pre-T-MSC begin to differentiate from the trophoblasts, cells were elongated and form clear cell border.
- the pre-T-MSC express both CD73 and Trop-2. After 8-10 days, more than 80-90% cells trophoblasts are differentiated into mesenchymal-like small cell with spindle-like morphology, so called T-MSC here.
- T-MSC can also be identified by the expression of certain markers, such as CD73, CD90, CD105, CD13, CD29, CD54, CD44, CD146 and CD166 and by the absence or low expression of certain markers such as CD31, CD34, and CD45.
- T-MSC do not express HOX and HLA-G.
- T-MSC express high level of CXCR7, CXCL2, CXCL12 but low level of HOXB2, HOXB3, HOXB5, HOXB7, HOXB9, HOXA5, HOXA9 and other HOX family genes.
- T-MSC are also characterized as multipotent and able to differentiate into adipocytes, chondrocytes, osteoblast cells, neurons, myoblasts, stromal cells and fibroblasts.
- an isolated cell population comprising a plurality of immunosuppressive T-MSC that expresses at least one of the following markers: CD73, CD90 and CD105.
- an additional step of irradiating the T-MSCs is performed.
- This irradiation can be accomplished with the use of any method known in the at that emits radiation including but not limited to gamma irradiation e.g., Cesium-137 gamma irradiation, or photon radiation using X-ray.
- the preferred amount of radiation to be administered is about between 5 and 20000 gy, more preferably about between 50 and 100 gy, and most preferably 80 gy.
- the method described herein is a novel process for deriving (also referred to herein as producing) T-MSC from hESCs.
- the method comprises the steps of:
- the disclosed method starts with dispersal of hESC colonies into small clumps or single cells.
- the cells are then re-plated and cultured with BMP4 as the only cytokine, and a TGF ⁇ inhibitor for a short time (2-5 days) to obtain a highly homogenous population of trophoblasts as they express the typical trophoblast marker Trop-2/TACSTD2 (Trp-2) (Xu et al., 2002).
- the trophoblasts ae then dissociated and re-plated onto a gelatin, laminin, fibronectin, vitronectin, collagen or matrigel-coated plate and cultured in a MSC growth medium for 4-10 days to generate spindle-like cells similar to the morphology of typical MSCs.
- the method disclosed herein does not require feeder cells, sorting or hand-picking of the cells.
- the initial trophoblast differentiation step is in a defined, serum-free medium without bFGF.
- the entire protocol only requires two steps of differentiation in a total of 6-14 days to generate T-MSC at high purity and high yield ( FIG. 1 ). This is the shortest differentiation protocol ever reported for MSC derivation from hESC. The yield and purity of the T-MSC are very high compared to those achieved using previously reported methods.
- T-MSC at 5 ⁇ 10 5 fold the number of the original hESCs can be obtained and with a high percentage of CD73+ cells, a typical marker for MSCs, whereas the other methods can only yield less than 100 fold the original hESC number with a low percentage of CD73+ cells.
- the derivation of the T-MSC includes an intermediate stage of CD73/Trp-2 double positive cells, hereafter named pre-T-MSC. After 2-3 days of the BMP4 plus a TGF ⁇ inhibitor treatment, the cells first express Trp-2 at a high percentage and demonstrate a homogenous morphology of trophoblasts ( FIGS. 2 & 3 ).
- the cells After 5-6 days, the cells express both Trp-2 and CD73; after 6-14 days, the cells no longer express Trp2 but express the typical MSC surface markers at high percentages including CD73 (>98%), CD90 (>95%), CD105 (>90%). CD44 (>95%), CD29 (>80%); and the cells are negative for the endothelial marker CD31 and hematopoiesis markers CD34 and CD45 ( FIGS. 3& 4 ).
- T-MSC produced by the method disclosed herein are capable of differentiating to downstream osteogenesis, chondrogenesis and adipogenesis lineages ( FIG. 7 ).
- the T-MSC are phenotypically and functionally similar to MSCs derived from the bone marrow (SM) and other sources.
- BM-MSCs Bone marrow-derived MSCs
- T-MSCs Bone marrow-derived MSCs
- BM-MSCs have less potency in suppressing proliferation of both CD4 and CD8 T cells than T-MSC.
- CFSE dilution assay was used here to evaluate the T cell proliferation: an increased percentage of T cells with decreased CFSE signal indicates an accelerated proliferation.
- FIG. 5 when anti-CD3 antibody increased to 1 ug/ml, there were 59% of CD4 and 46% of CD8 T cells detected with decreased CFSE signal.
- T-MSC significantly decreased both the CD4 and CD8 T cells to 16%, whereas BM-MSCs only decreased CD4 and CD8 T cells to 32% and 36%, respectively.
- T-MSC produced by the method disclosed herein were shown to be effective to treat experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis.
- EAE experimental autoimmune encephalomyelitis
- FIG. 6 when T-MSC were injected 6 days post the EAE induction, the disease score of the EAE mice significantly declined, compared to vehicle injection controls.
- T-MSC also demonstrated much stronger immunosuppressive effect than BM-MSCs and hES-MSCs derived through SB431542 treatment (Chen et al., 2012) ( FIG. 6 ).
- BM-MSCs consistently failed to attenuate the disease score of EAE mice.
- the replacement of BM-MSCs with T-MSC produced by the disclosed method for use in clinical applications would remove the need for risky, invasive procedures for bone marrow aspiration, reduce the time for waiting for BM donations, reduce the cost, and reduce batch to batch variations for preparing BM-MSCs on a per-patient basis.
- T-MSC mesenchymal-like cells or MSCs from hESCs through an intermediate trophoblast stage
- Microarray analysis suggested that the T-MSC had a gene expression profile not identical to that of BM-MSCs (data not shown), although both can differentiate into the same downstream call lineages ( FIG. 7 ).
- the T-MSC have stronger immunosuppressive ability both in vitro and in vivo than BM-MSCs.
- T-MSC produced by the disclosed method are different from traditional, adult-derived MSCs. Due to their strong inhibition of T cell proliferation, T-MSC may be used to treat multiple sclerosis with much higher efficacy than BM-MSCs. To address potential safety concerns, T-MSC were injected into immunodeficient SCID-beige mice. No tumor or teratoma formation was observed in the mice.
- the T-MSC of the present invention are unique and have a variety of therapeutic and other uses.
- the present invention includes various preparations, including pharmaceutical preparations, and compositions comprising T-MSC.
- T-MSC refers to MSC or mesenchymal stem/stromal cells that are derived from human embryonic stem cells (hESC) or induced pluripotent stem cells (iPSC) through a trophoblast intermediate stage where cells express Trop-2 with trophoblast-like morphology.
- hES-T-MSC refers to T-MSC differentiated tom hESC.
- iPS-T-MSC and “iT-MSC” refer to T-MSC differentiated from iPSC, The term “T-MSC” as used herein does not refer to a trophoblast.
- a cell is considered a “stem cell” if the cell retains at least one attribute of a stem cell, e.g., the ability to differentiate into at least one other type of cell, or the like. These cells can be described based upon numerous structural and functional properties including but not limited to, expression or lack of expression of one or more markers.
- T-MSC are characterized by small cell bodies with a fibroblast morphology.
- T-MSCs including both hES-T-MSC and iT-MSC, are multipotent and capable of differentiating to give rise to other cell types and cell lineages.
- the term “T-MSC-DL” refers to all the cell types and cell lineages differentiated from T-MSC.
- the differentiation method described herein can achieve the differentiation of MSC from iPS cells within 6-14 days, the shortest time ever reported.
- these iT-MSC can be used for patient specific iPS based therapy under emergency conditions which requires the generation of MSC in very short time, such as acute heart infarction, acute heart failure, acute spinal cord injury, acute radiation/burning treatments, etc.
- T-MSC can be identified or characterized by the expression or lack of expression as assessed on the level of DNA, RNA or protein, of one or more cell markers.
- T-MSC can be identified as expressing cell surface marker CD73, or expressing at least one or more of the following cell surface markers: CD90, CD105, CD13, CD29, CD54, CD44, CD146 or CD166 or not expressing or expressing at a low level at least one of the following cell surface markers: CD34, CD31, or CD45.
- T-MSC can be identified or characterized based upon their low level of expression of one or more pro-inflammatory proteins, MMP2, RAGE, IFNGR2, TNF ⁇ , IL-12A, IL-6, and VCAM1.
- This profile of gene expression is in contrast to bone marrow derived mesenchymal stem cells.
- IL-6 was expressed much higher in BM-MSCs than in T-MSC.
- IL-6 is a pleiotropic cytokine involved in crosstalk between hematopoietic/immune cos and stromal cells, including the onset and resolution of inflammation.
- the T-MSC can also be characterized in their ability to inhibit T cell proliferation after stimulation in vitro. This characteristic is in contrast to BM-MSCs which do not inhibit T cell proliferation after stimulation in vitro.
- the T-MSC described herein have at least one of the following characteristics: (1) differentiate into adipocytes, chondrocytes, osteoblast cells, neurons, myoblasts, stromal cells and fibroblasts; (2) have a fibroblast-like morphology; (3) express CD73, CD90, CD105, CD13, CD29, CD54, CD44, CD146 and/or CD166; (4) express at low levels or do not express CD34, CD31, and/or C45; (5) express at low levels or do not express MMP2, RAGE, IFN ⁇ R1, IFN ⁇ R2, IL-2 TNF ⁇ , IL-6, and/or VCAM1, particularly IL-6; (6) express MHC antigen HLA-G and/or HLA-ABC and express at low levels or do not express HLA-DR and/or CD60; and (7) inhibit T cell proliferation after stimulation in vitro.
- the T-MSCs have at least two, at least three, at least four, at least five, at least six, or all
- T-MSC is distinguishable with previously reported HB-MSC, T-MSC express at least one fold higher level of CXCR7, CXCL2 and/or CXCL12 than HB-MSC, but at least half of the level of HOXB2, HOXB3, HOXB5, HOXB7, HOX9, HOXA5, HOXA9 and other HOX family genes compared to HB-MSC.
- the T-MSC have the unique ability to cross the blood-brain barrier (BBB) and the blood-spinal cord barrier (BSCB), making them uniquely suited for therapeutic and diagnostic applications.
- BBB blood-brain barrier
- BSCB blood-spinal cord barrier
- the T-MSC of the current invention have the ability to migrate in and out of the vessels of the spinal cord, across the BSCB, to fulfill functions in the CNS, including but not limited to the delivery of therapeutic and diagnostic agents. This is in contrast to BM-MSCs which do not have this ability.
- T-MSC that is irradiated.
- This embodiment would include T-MSC with at least one of the following characteristics listed above, having at least two, at least three, at least four, at least five, at least six, or all seven characteristics that have been subject to irradiation.
- the cell culture comprises T-MSC.
- the T-MSC differentiate into adipocytes, chondrocytes, osteoblast cells, neurons, myoblasts, stromal cells and fibroblasts.
- the T-MSC cells express CD73, CD90, CD105, CD13, CD29, CD54, CD44, CD146, and/or CD166.
- the cells express at low levels or do not express CD34, CD31, and/or CD45.
- the cells express at low levels or do not express MMP2, RAGE, IFN ⁇ R1, IFN ⁇ R2, IL-12, TNF ⁇ , IL-6, and/or VCAM1, especially IL-6.
- the cells express MHC antigen HLA-G and/or HLA-ABC and express at low levels or do not express HLA-DR and/or CD80. In certain other embodiments, the cells inhibit T cell proliferation after stimulation in vitro. In certain embodiments, the cells can cross the blood-brain barrier and the blood-spinal cord barrier. In certain embodiments, the cells have been irradiated.
- a pharmaceutical preparation comprising T-MSC.
- the T-MSC can differentiate into adipocytes, chondrocytes, osteoblast cells, neurons, myoblasts, stromal cells and fibroblasts.
- the cells express CD73, CD90. CD105, CD13, CD29, CD54, CD44, CD146 and/or CD166.
- the cells express at low levels or do not express CD34, CD31, and/or CD45.
- the cells express at low levels or do not express MMP2, RAGE, IFN ⁇ R1, IFN ⁇ R2, TNF ⁇ , IL-12, IL-6, and/or VCAM1, especially IL-6.
- the cells express MHC antigen HLA G and/or HLA-ABC and express at low levels or do not express HLA-DR and/or CD80.
- the cells inhibit T cell proliferation after stimulation in vitro.
- the cells can cross the blood-brain barrier and the blood-spinal cord barrier.
- the cells have been irradiated.
- the pharmaceutical preparation can be prepared using any pharmaceutically acceptable carrier or excipient.
- the composition or pharmaceutical preparation comprises at least at least 10,000 T-MSC, at least 50,000 T-MSC, at least 100,000 T-MSC, at least 500,000 T-MSC, at least 1 ⁇ 10 6 T-MSC, at least 5 ⁇ 10 6 T-MSC, at least 1 ⁇ 10 7 T-MSC, at least 5 ⁇ 10 7 T-MSC, at least 1 ⁇ 10 8 T-MSC, at least 5 ⁇ 10 8 T-MSC, at least 1 ⁇ 10 9 T-MSC, at least 5 ⁇ 10 9 T-MSC, or at least 1 ⁇ 10 10 T-MSC.
- T-MSC obtained and isolated directly from a human embryonic stem cell line that have been cultured and passaged at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30 or more times, or a combination thereof.
- cryopreserved preparation of T-MSC or cells partially or terminally differentiated therefrom is provided herein.
- T-MSC or compositions or preparations of T-MSC, including irradiated T-MSC.
- Such cells and preparations can be used in the treatment of any of the conditions or diseases as described, as well as in a delivery system for agents across the blood-brain barrier and the blood-spinal cord barrier.
- the invention provides a cryopreserved preparation of trophoblasts, pre-T-MSC, or T-MSC cells partially or terminally differentiated therefrom.
- the invention provides the therapeutic use of T-MSCs, or compositions or preparations of T-MSCs, including irradiated T-MSCs.
- T-MSCs or compositions or preparations of T-MSCs, including irradiated T-MSCs.
- Such cells and preparations can be used in the treatment of any of the conditions or diseases detailed throughout the specification, as well as in a delivery system for agents across the blood-brain barrier and the blood-spinal cord barrier.
- the clinical grade T-MSC have the following characteristics: (i) contain >95% of cells expressing group-1 markers; (ii) contain >80% of cells expressing group 2 markers; (iii) contain ⁇ 5% of cells expressing group-3 markers (iv) express IL-10 and TGF ⁇ ; (v) contain ⁇ 2% of cells expressing IL-6, IL-12 and TNF ⁇ ; and (vi) contains ⁇ 0.001% of cells co-expressing al group-4 markers, wherein group-1 markers are CD73, CD90, CD105, CD146, CD166, and CD44, group-2 markers are CD13, CD29, CD54, CD49E, group-3 markers are CD45, CD34, CD31 and SSEA4, and group-4 markers are OCT4, NANOG, TRA-1-60 and SSEA4.
- the method comprises measuring the differential expression of markers that encode anti-inflammatory factors (“AIF”) and pro-inflammatory factors (“PIF”).
- AIF anti-inflammatory factors
- PIF pro-inflammatory factors
- the AIF is IL-10, TGF ⁇ 2.
- the PIF is up regulated.
- T-MSC express at least 1.5 fold of the above markers as compared to BM-MSC.
- the PIF is IL-6, IL-12, TNF ⁇ , CCL2, VCAM1, RAGE, MMP2.
- the PIF is down regulated.
- T-MSC express at least half of the above markers as compared to BM-MSC
- highly immunosuppressive T-MSC has a lower ratio of IL-6 + cells as compared to BM-MSC.
- highly immunosuppressive T-MSC have less than 5%, 4%, 3%, 2%, or 1% of IL-6 positive cells.
- T-MSC express low levels of IL12, TNF ⁇ , RAGE and other PIF.
- T-MSC may express high levels of TGF ⁇ 2 and IL-10.
- the expression of markers is compared to expression in BM-MSC.
- markers include, for example, (1) MSC-specific markers (set 1): CD73, CD90, CD105, CD166, and CD44, (2) MSC-specific markers (set 2): CD13, CD29, CD54, CD49E, SCA-1, and STRO-1, (3) hematopoietic stem/progenitor markers: CD45 and CD34, and endothelial cell marker CD31, (4) immunogenic markers: HLA-ABC, HLA-G, CD80, and CD86, (5) cytokines: IL-10, TGF ⁇ , IL-8, and IL-12, and (6) pluripotency markers: OCT4, NANOG, TRA-1-60, and SSEA-4.
- T-MSC population contains more than 95%, 96%, 97%, 98%, or 99% of cells that express at least one group 1 markers. In certain embodiments, T-MSC population contains more than 80%, 85%, 90%, 95%, or 99% of cells that express at least one group 2 markers. In certain embodiments, T-MSC population contains less than 0.1%, 0.08%, 0.05%, 0.03%, 0.02%, or 0.01% of cells that express at least one group 3 marker. In certain embodiments, T-MSC population contains more than 80%, 85%, 90%, 95%, or 99% of cells that express IL-10 and/or TGF ⁇ .
- T-MSC population contains less than 5%, 4%, 3%, 2%, 1% of cells that express IL-6 and/or IL-12. In certain embodiments, T-MSC population contains less 0.001% of cells that express at least one group 6 marker.
- the clinical-grade T-MSC is compared with the preclinical-grade T-MSC as a positive control. In certain embodiments, the T-MSC is characterized through multi-color flow cytometry analyses and/or immunofluoresence.
- T-MSC population express CCL2, CCL3, CCL4, CCL5, IL-1, IL-2, IL-4, IL-6, IL-8, IL-10, IL-17, TNF ⁇ , TGF ⁇ , IFN ⁇ , GM-CSF, G-CSF, bFGF, CXCL5, VEGF, TPO or a combination thereof.
- the T-MSC population will also be analyzed for (1) presence of exogenous materials such as endotoxin and residual cytokines/growth factors, and/or (2) genomic abnormalities (via karyotyping and whole-genome sequencing).
- T-MSC with better regeneration potential and immunosuppressive function may express a lower level of CD9, where CD9 expression level of Passage 1-2 T-MSC will be recorded as basal level, if after certain passages and procedures, the CD9 expression level increases by 2 fold, the cells will be stopped for passaging.
- the expression profile of the T-MSC are determined by cytometric bead array based multiplex cytokine analysis, luminex system based multiplex cytokine analysis, microarray RNA-seq, quantitative RT-PCR, Elispot Elisa, Elisa cytokine array, flow cytometry luciferase reporter system, fluorescence reporter system, histology staining, and immunofluorescence staining.
- biomarkers in a biomarker profile are nucleic acids. Such biomarkers and corresponding features of the biomarker profile may be generated, for example, by detecting the expression product (e.g., a polynucleotide or polypeptide) of one or more markers. In a specific embodiment, the biomarkers and corresponding features in a biomarker profile are obtained by detecting and/or analyzing one or more nucleic acids expressed from a marker disclosed herein using any method well known to those skilled in the art including, but not limited to, hybridization, microarray analysis, RT-PCR, nuclease protection assays and Northern blot analysis.
- nucleic acids detected and/or analyzed by the methods and compositions of the invention include RNA molecules such as, for example, expressed RNA molecules which include messenger RNA (mRNA) molecules, mRNA spliced variants as well as regulatory RNA cRNA molecules (e.g., RNA molecules prepared from cDNA molecules that are transcribed in vitro) and discriminating fragments thereof.
- RNA molecules such as, for example, expressed RNA molecules which include messenger RNA (mRNA) molecules, mRNA spliced variants as well as regulatory RNA cRNA molecules (e.g., RNA molecules prepared from cDNA molecules that are transcribed in vitro) and discriminating fragments thereof.
- the nucleic acids are prepared in vitro from nucleic acids present in, or isolated or partially isolated from a cell culture, which are well known in the art, and are described generally, e.g., in Sambrook et al., 2001, Molecular Cloning: A Laboratory Manual. 3rd ed., Cold Spring Harbor Laboratory Press (Cold Spring Harbor, N.Y.), which is hereby incorporated by reference in its entirety.
- nucleic acid arrays are employed to generate features of biomarkers in a biomarker profile by detecting the expression of any one or more of the markers described herein.
- a microarray such as a cDNA microarray is used to determine feature values of biomarkers in a biomarker profile. Exemplary methods for cDNA microarray analysis are described below, and in the examples.
- the feature values for biomarkers in a biomarker profile are obtained by hybridizing to the array detectably labeled nucleic acids representing or corresponding to the nucleic acid sequences in mRNA transcripts present in a biological sample (e.g., fluorescently labeled cDNA synthesized from the sample) to a microarray comprising one or more probe spots.
- a biological sample e.g., fluorescently labeled cDNA synthesized from the sample
- Nucleic acid arrays for example, microarrays, can be made in a number of ways, of which several are described herein below.
- the arrays are reproducible, allowing multiple copies of a given array to be produced and results from the microarrays compared with each other.
- the arrays are made from materials that are stable under binding (e.g., nucleic acid hybridization) conditions.
- suitable supports, substrates or carriers for hybridizing test probes to probe spots on an army or will be able to ascertain the same by use of routine experimentation.
- Arrays for example, microarrays, used can include one or more test probes.
- each such test probe comprises a nucleic acid sequence that is complementary to a subsequence of RNA or DNA to be detected.
- Each probe typically has a different nucleic acid sequence, and the position of each probe on the solid surface of the array is usually known or can be determined.
- Arrays useful in accordance with the invention can include, for example, oligonucleotide microarrays, cDNA based arrays, SNP arrays, spliced variant arrays and any other array able to provide a qualitative, quantitative or semi-quantitative measurement of expression of a marker described herein. Some types of microarrays are addressable arrays.
- microarrays are positionally addressable arrays.
- each probe of the array is located at a known, predetermined position on the solid support so that the identity (e.g., the sequence) of each probe can be determined from its position on the array (e.g., on the support or surface).
- the arrays are ordered arrays. Microarrays are generally described in Draghici, 2003, Data Analysis Tools for DNA Microarrays, Chapman & Hall/CRC, which is hereby incorporated by reference in its entirety.
- the feature values are measured by amplifying RNA from a sample using reverse transcription (RT) in combination with the polymerase chain reaction (PCR).
- RT reverse transcription
- PCR polymerase chain reaction
- the reverse transcription may be quantitative or semi-quantitative.
- the RT-PCR methods taught herein may be used in conjunction with the microarray methods described above. For example, a bulk PCR reaction may be performed, and the PCR products may be resolved and used as probe spots on a microarray.
- RNA Total RNA, or mRNA is used as a template and a primer specific to the transcribed portion of the marker(s) is used to initiate reverse transcription.
- Methods of reverse transcribing RNA into cDNA are well known and described in Sambrook et al., 2001, supra.
- Primer design can be accomplished based on known nucleotide sequences that have been published or available from any publicly available sequence database such as GenBank. For example, primers may be designed for any of the markers described herein. Further, primer design may be accomplished by utilizing commercially available software (e.g., Primer Designer 1.0, Scientific Software etc.). The product of the reverse transcription is subsequently used as a template for PCR.
- PCR provides a method for rapidly amplifying a particular nucleic acid sequence by using multiple cycles of DNA replication catalyzed by a thermostable, DNA-dependent DNA polymerase to amplify the target sequence of interest.
- PCR requires the presence of a nucleic acid to be amplified, two single-stranded oligonucleotide primers flanking the sequence to be amplified, a DNA polymerase, deoxyribonucleoside triphosphates, a buffer and salts.
- the method of PCR is well known in the at PCR, is performed, for example, as described in Mullis and Faloona, 1987, Methods Enzymol. 155:335, which is hereby incorporated by reference in its entirety.
- PCR can be performed using template DNA or cDNA (at least 10 fg; more usefully, 1-1000 ng) and at least 25 pmol of oligonucleotide primers.
- a typical reaction mixture includes: 2 ⁇ l of DNA, 25 pmol of oligonucleotide primer, 2.5 ⁇ l of 10 M PCR buffer 1 (Perkin-Elmer, Foster City, Calif.), 0.4 ⁇ l of 1.25 M dNTP, 0.15 ⁇ l (or 2.5 units) of Taq DNA polymerase (Perkin Elmer, Foster City, Calif.) and deionized water to a total volume of 25 ⁇ l.
- Mineral oil is overlaid and the PCR is performed using a programmable thermal cycler.
- QRT-PCR Quantitative RT-PCR
- reverse transcription and PCR can be performed in two steps, or reverse transcription combined with PCR can be performed concurrently.
- One of these techniques for which there are commercially available kits such as Taqman (Perkin Elmer, Foster City, Calif.) or as provided by Applied Biosystems (Foster City, Calif.) is performed with a transcript-specific antisense probe. This probe is specific for the PCR product (e.g. a nucleic acid fragment derived from a gene) and is prepared with a quencher and fluorescent reporter probe complexed to the 5′ end of the oligonucleotide.
- Different fluorescent markers are attached to different reporters, allowing for measurement of two products in one reaction.
- Taq DNA polymerase When Taq DNA polymerase is activated, it cleaves off the fluorescent reporters of the probe bound to the template by virtue of its 5′-to-3′ exonuclease activity. In the absence of the quenchers, the reporters now fluoresce. The color change in the reporters is proportional to the amount of each specific product and is measured by a fluorometer; therefore, the amount of each color is measured and the PCR product is quantified.
- the PCR reactions are performed in 96-well plates so that samples derived from many individuals are processed and measured simultaneously.
- the Taqman system has the additional advantage of not requiring gel electrophoresis and allows for quantification when used with a standard curve.
- a second technique useful for detecting PCR products quantitatively is to use an intercalating dye such as the commercially available QuantiTect SYBR Green PCR (Qiagen, Valencia Calif.).
- RT-PCR is performed using SYBR green as a fluorescent label which is incorporated into the PCR product during the PCR stage and produces a fluorescence proportional to the amount of PCR product.
- Both Taqman and QuantiTect SYBR systems can be used subsequent to reverse transcription of RNA.
- Reverse transcription can either be performed in the same reaction mixture as the PCR step (one-step protocol) or reverse transcription can be performed first prior to amplification utilizing PCR (two-step protocol).
- other systems to quantitatively measure mRNA expression products are known, including Molecular Beacons®, which uses a probe having a fluorescent molecule and a quencher molecule, the probe capable of forming a hairpin structure such that when in the hairpin form, the fluorescence molecule is quenched, and when hybridized the fluorescence increases giving a quantitative measurement of gene expression.
- feature values for biomarkers in a biomarker profile can be obtained by Northern blot analysis (to detect and quantify specific RNA molecules.
- a standard Northern blot assay can be used to ascertain an RNA transcript size, identify alternatively spliced RNA transcripts, and the relative amounts of one or more genes described herein (in particular, mRNA)
- Northern blots RNA samples are first separated by size via electrophoresis in an agarose gel under denaturing conditions.
- RNA is then transferred to a membrane, cross-linked and hybridized with a labeled probe.
- Non-isotopic or high specific activity radiolabeled probes can be used including random-primed, nick-translated, or PCR-generated DNA probes, in vitro transcribed RNA probes, and oligonucleotides. Additionally, sequences with only partial homology (e.g., cDNA from a different species or genomic DNA fragments that might contain an exon) may be used as probes.
- the labeled probe e.g., a radiolabelled cDNA, either containing the full-length, single stranded DNA or a fragment of that DNA sequence may be at least 20, at least 30, at least 50, or at least 100 consecutive nucleotides in length.
- the probe can be labeled by any of the many different methods known to those skilled in this art.
- the labels most commonly employed for these studies are radioactive elements, enzymes, chemicals that fluoresce when exposed to ultraviolet light, and others.
- a number of fluorescent materials are known and can be utilized as labels. These include, but are not limited to, fluorescein, rhodamine, auramine, Texas Red, AMCA blue and Lucifer Yellow.
- the radioactive label can be detected by any of the currently available counting procedures.
- Non-limiting examples of isotopes include 2 H, 14 C, 32 P, 35 S, 36 Cl, 51 Cr, 57 Co, 58 Co, 59 Fe, 90 Y, 125 I, and 131 I, and 186 Re.
- Enzyme labels are likewise useful, and can be detected by any of the presently utilized colorimetric, spectrophotometric, fluorospectrophotometric, amperometric or gasometric techniques.
- the enzyme is conjugated to the selected particle by reaction with bridging molecules such as carbodiimides, diisocyanates, glutaraldehyde and the like. Any enzymes known to one of sill in the art can be utilized.
- enzymes include, but are not limited to, peroxidase, beta-D-galactosidase, urease, glucose oxidase plus peroxidase and alkaline phosphatase.
- U.S. Pat. Nos. 3,654,090, 3,850,752, and 4,018,043 are referred to by way of example for their disclosure of alternate labeling material and methods.
- feature values of biomarkers in a biomarker profile can be obtained by detecting proteins, for example, by detecting the expression product (e.g. a nucleic acid or protein) of one or more markers described herein, or post-translationally modified, or otherwise modified, or processed forms of such proteins.
- a biomarker profile is generated by detecting and/or analyzing one or more proteins and/or discriminating fragments thereof expressed from a marker disclosed herein using any method known to those skilled in the art for detecting proteins including, but not limited to protein microarray analysis, immunohistochemistry and mass spectrometry.
- Standard techniques may be utilized for determining the amount of the protein or proteins of interest present in a cell culture.
- standard techniques can be employed using, e.g., immunoassays such as, for example, Western blot, immunoprecipitation followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, (SDS-PAGE), inmunocytochemistry, and the like to determine the amount of protein or proteins of interest present in a sample.
- One exemplary agent for detecting a protein of interest is an antibody capable of specifically binding to a protein of interest, preferably an antibody detectably labeled, either directly or indirectly.
- Protein isolation methods can, for example, be such as those described in Harlow and Lane, 1988, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press (Cold Spring Harbor, N.Y.), which is hereby incorporated by reference in its entirety.
- methods of detection of the protein or proteins of interest involve their detection via interaction with a protein-specific antibody.
- antibodies directed to a protein of interest can be generated utilizing standard techniques well known to those of skill in the art.
- antibodies can be polyclonal, or more preferably, monoclonal.
- An intact antibody, or an antibody fragment e.g., scFv, Fab or F(ab′) 2 ) can, for example, be used.
- antibodies, or fragments of antibodies, specific for a protein of interest can be used to quantitatively or qualitatively detect the presence of a protein. This can be accomplished, for example, by immunofluorescence techniques. Antibodies (or fragments thereof) can, additionally, be employed histologically, as in immunofluorescence or immunoelectron microscopy, for in situ detection of a protein of interest. In situ detection can be accomplished by removing a biological sample (e.g., a biopsy specimen) from a patient, and applying thereto a labeled antibody that is directed to a protein of interest. The antibody (or fragment) is preferably applied by overlaying the antibody (or fragment) onto a biological sample.
- a biological sample e.g., a biopsy specimen
- Immunoassays for a protein of interest typically comprise incubating a sample of a detectably labeled antibody capable of identifying a protein of interest, and detecting the bound antibody by any of a number of techniques well-known in the art.
- labeled can refer to direct labeling of the antibody via, e.g., coupling (i.e., physically linking) a detectable substance to the antibody, and can also refer to indirect labeling of the antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently labeled secondary antibody.
- the sample can be brought in contact with and immobilized onto a solid phase support or carrier such as nitrocellulose, or other solid support which is capable of immobilizing cells, cell particles or soluble proteins.
- a solid phase support or carrier such as nitrocellulose, or other solid support which is capable of immobilizing cells, cell particles or soluble proteins.
- the support can then be washed with suitable buffers followed by treatment with the detectably labeled fingerprint gene-specific antibody.
- the solid phase support can then be washed with the buffer a second time to remove unbound antibody.
- the amount of bound label on solid support can then be detected by conventional methods.
- solid phase support or carrier any support capable of binding an antigen or an antibody.
- supports or carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides and magnetite.
- the nature of the carrier can be either soluble to some extent or insoluble for the purposes of the present invention.
- the support material can have virtually any possible structural configuration so long as the coupled molecule is capable of binding to an antigen or antibody.
- the support configuration can be spherical, as in a bead, or cylindrical, as in the inside surface of a test tube, or the external surface of a rod. Alternatively, the surface can be flat such as a sheet, test strip, etc.
- Preferred supports include polystyrene beads.
- an antibody specific for a protein of interest can be detectably labeled is by linking the same to an enzyme and use in an enzyme immunoassay (EIA) (Voller, 1978, “The Enzyme Linked Immunosorbent Assay (ELISA)”, Diagnostic Horizons 2:1-7, Microbiological Associates Quarterly Publication, Walkersville. Md.; Voller et al., 1978, J. Clin. Pathol. 31:507-520; Butler, J. E., 1981, Meth. Enzymol.
- EIA enzyme immunoassay
- the enzyme which is bound to the antibody will react with an appropriate substrate, preferably a chromogenic substrate, in such a manner as to produce a chemical moiety which can be detected, for example, by spectrophotometric, fluorimetric or by visual means.
- Enzymes which can be used to detectably label the antibody include, but are not limited to, malate dehydrogenase, staphylococcal nuclease, delta-S-steroid isomerase, yeast alcohol dehydrogenase, alpha-glycerophosphate, dehydrogenase, triose phosphate isomerase, horseradish peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase and acetylcholinesterase.
- the detection can be accomplished by colorimetric methods which employ a chromogenic substrate for the enzyme. Detection can also be accomplished by visual comparison of the extent of enzymatic reaction of a substrate in comparison with similarly prepared standards.
- Detection can also be accomplished using any of a variety of other immunoassays.
- a radioimmunoassay RIA
- the radioactive isotope e.g., 125 I, 131 I, 35 S or 3 H
- a gamma counter or a scintillation counter can be detected by such means as the use of a gamma counter or a scintillation counter or by autoradiography.
- fluorescent labeling compounds fluorescein isothiocyanate, rhodamine, phycoerythrin, phycocyanin, allophycocyanin, o-phthaldehyde and fluorescamine.
- the antibody can also be detectably labeled using fluorescence emitting metals such as 152 Eu, or others of the lanthanide series. These metals can be attached to the antibody using such metal chelating groups as diethylenetriaminepentacetic acid (DTPA) or ethylenediaminetetraacetic acid (EDTA).
- DTPA diethylenetriaminepentacetic acid
- EDTA ethylenediaminetetraacetic acid
- the antibody also can be detectably labeled by coupling it to a chemiluminescent compound.
- the presence of the chemiluminescent-tagged antibody is then determined by detecting the presence of luminescence that arises during the course of a chemical reaction.
- chemiluminescent labeling compounds are luminol, isoluminol, theromatic acridinium ester, imidazole, acridinium sat and oxalate ester.
- Bioluminescence is a type of chemiluminescence found in biological systems in, which a catalytic protein increases the efficiency of the chemiluminescent reaction. The presence of a bioluminescent protein is determined by detecting the presence of luminescence. Important bioluminescent compounds for purposes of labeling are luciferin, luciferase and aequorin.
- biomarker profile may comprise a measurable aspect of an infectious agent (e.g., lipopolysaccharides or viral proteins) or a component thereof.
- infectious agent e.g., lipopolysaccharides or viral proteins
- a protein chip assay (e.g., The ProteinChip® Biomarker System, Ciphergen, Fremont, Calif.) is used to measure feature values for the biomarkers in the biomarker profile. See also, for example, Lin, 2004, Modern Pathology, 1-9; Li, 2004, Journal of Urology 171, 1782-1787; Wadsworth, 2004, Clinical Cancer Research, 10, 1625-1632; Prieto, 2003, Journal of Liquid Chromatography & Related Technologies 26, 2315-2328; Coombes, 2003, Clinical Chemistry 49, 1615-1623; Mian, 2003, Proteomics 3, 1725-1737; Lehre et al., 2003, BJU International 92, 223-225; and Diamond, 2003, Journal of the American Society for Mass Spectrometry 14, 760-765, each of which is hereby incorporated by reference in its entirety.
- a bead assay is used to measure feature values for the biomarkers in the biomarker profile.
- One such bead assay is the Becton Dickinson Cytometric Bead Array (CBA).
- CBA employs a series of particles with discrete fluorescence intensities to simultaneously detect multiple soluble analytes.
- CBA is combined with flow cytometry to create a multiplexed assay.
- the Becton Dickinson CBA system as embodied for example in the Becton Dickinson Human Inflammation Kit, uses the sensitivity of amplified fluorescence detection by flow cytometry measure soluble analytes in a particle-based immunoassay.
- Each bead in a CBA provides a capture surface for a specific protein and is analogous to an individually coated well in an ELISA plate.
- the BD CBA capture bead mixture is in suspension to allow for the detection of multiple analytes in a small volume sample.
- the multiplex analysis method described in U.S. Pat. No. 5,981,180 (“the '180 patent”), hereby incorporated by reference in its entirety, and in particular for its teachings of the general methodology, bead technology, system hardware and antibody detection, is used to measure feature values for the biomarkers in a biomarker profile.
- a matrix of microparticles is synthesized, where the matrix consists of different sets of microparticles.
- Each set of microparticles can have thousands of molecules of a distinct antibody capture reagent immobilized on the microparticle surface and can be color-coded by incorporation of varying amounts of two fluorescent dyes.
- a separation method may be used to determine feature values for biomarkers in a biomarker profile, such that only a subset of biomarkers within the sample is analyzed.
- the biomarkers that are analyzed in a sample may be mRNA species from a cellular extract which has been fractionated to obtain only the nucleic acid biomarkers within the sample, or the biomarkers may be from a fraction of the total complement of proteins within the sample, which have been fractionated by chromatographic techniques.
- Feature values for biomarkers in a biomarker profile can also, for example, be generated by the use of one or more of the following methods described below.
- methods may include nuclear magnetic resonance (NMR) spectroscopy, a mass spectrometry method, such as electrospray ionization mass spectrometry (ESI-MS), ESI-MS/MS, ESI-MS/(MS) n (n is an integer greater than zero), matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS), desorption/ionization on silicon (DIOS), secondary ion mass spectrometry (SIMS), quadrupole time-of-flight (Q-TOF), atmospheric pressure chemical ionization mass spectrometry (APCI-MS), APCI-MS/MS, APCI-(MS)
- mass spectrometry methods may include, inter alia, quadrupole. Fourier transform mass spectrometry (FTMS) and ion trap. Other suitable methods may include chemical extraction partitioning, column chromatography, ion exchange chromatography, hydrophobic (reverse phase) liquid chromatography, isoelectric focusing, one-dimensional polyacrylamide gel electrophoresis (PAGE), two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) or other chromatography, such as thin-layer, gas or liquid chromatography, or any combination thereof.
- the biological sample may be fractionated prior to application of the separation method.
- laser desorption/ionization time-of-flight mass spectrometry is used to determine feature values in a biomarker profile where the biomarkers are proteins or protein fragments that have been ionized and vaporized off an immobilizing support by incident laser radiation and the feature values are the presence or absence of peaks representing these fragments in the mass spectra profile.
- biomarkers are proteins or protein fragments that have been ionized and vaporized off an immobilizing support by incident laser radiation and the feature values are the presence or absence of peaks representing these fragments in the mass spectra profile.
- a variety of laser desorption/ionization techniques are known in the art (see, e.g., Guttman et al., 2001, Anal. Chem. 73:1252-62 and Wei et al., 1999. Nature 399:243-246, each of which is hereby incorporated by reference in its entirety).
- Laser desorption/ionization time-of-flight mass spectrometry allows the generation of large amounts of information in a relatively short period of time.
- a biological sample is applied to one of several varieties of a support that binds all of the biomarkers, or a subset thereof, in the sample.
- Cell lysates or samples are directly applied to these surfaces in volumes as small as 0.5 ⁇ L, with or without prior purification or fractionation.
- the lysates or sample can be concentrated or diluted prior to application onto the support surface.
- Laser desorption/ionization is then used to generate mass spectra of the sample, or samples, in as little as three hours.
- Biomarker expression profile of T-MSC are factors discriminating between clinical grade T-MSC and non-clinical grade T-MSC.
- the identity of these biomarkers and their corresponding features can be used to develop a decision rule, or plurality of decision rules, that discriminate between clinical grade and non-clinical grade T-MSC.
- Specific data analysis algorithms for building a decision rule, or plurality of decision rules can discriminate between clinical grade T-MSC and non-clinical grade T-MSC.
- the decision rule can be used to classify a T-MSC population into one of the two or more phenotypic classes (e.g., a clinical grade or a non-clinical grade T-MSC). This is accomplished by applying the decision rule to a biomarker profile obtained from the cell culture.
- phenotypic classes e.g., a clinical grade or a non-clinical grade T-MSC.
- each biomarker profile obtained from the control population, as well as the test cell culture comprises a feature for each of a plurality of different biomarkers.
- this comparison is accomplished by (i) developing a decision rule using the biomarker profiles from the control population and (ii) applying the decision rule to the biomarker profile from the test cell culture.
- the decision rules applied in some embodiments of the present invention are used to determine whether a test cell culture is clinical grade or non-clinical grade.
- the control population is a clinical grade T-MSC. In other embodiments, the control population is BM-MSC.
- the test cell culture when the results of the application of a decision rule indicate that the test cell culture is clinical grade T-MSC, it is used for treatment. If the results of an application of a decision rule indicate that the test cell culture is non-clinical grade T-MSC, the test cell culture is not used for treatment.
- the MSC have the following characteristics: (i) contain >96% of cells expressing group-1 markers; (ii) contain >80% of cells expressing group 2 markers; (iii) contain ⁇ 5% of cells expressing group-3 markers: (iv) expresses IL-10 and TGF ⁇ ; (v) contain ⁇ 2% of cells expressing IL-6, IL-12 and TNF ⁇ ; and (vi) contains ⁇ 0.001% of cells co-expressing all group-4 markers, wherein group-1 markers are CD73, CD90, CD105, CD146, CD166, and CD44, group-2 markers are CD13, CD29, CD54, CD49E, group-3 markers are CD45, CD34, CD31 and SSEA4, and group-4 markers are OCT4, NANOG, TRA-1-60 and SSEA4.
- the method comprises decreasing the expression of PIF. In an embodiment, the method comprises decreasing the expression of IL6, IL12, TNF ⁇ , RAGE and other PIF in T-MSC. In an embodiment, the method comprises increasing the expression of TGF ⁇ and IL-10 in T-MSC.
- the method comprises genetic and epigenetic modifications of T-MSC that are known in the art.
- the genetic modification or epigenetic regulation includes, but is not limited to, knockout, small heir pin RNA (“shRNA”), micro RNA (“miRNA”), non-coding RNA (“ncRNA”), morpholino oligo, decoy RNA, DNA methylation regulation, histone methylation regulation, translation inhibition and/or antibody blocking.
- shRNA small heir pin RNA
- miRNA micro RNA
- ncRNA non-coding RNA
- morpholino oligo morpholino oligo
- small molecules are used to target any of the signaling pathway components of IL-6 signaling.
- the target includes, but is not limited to, gp130, STAT3, Cathepsin S, NFkappaB, IRF5.
- IL-12 expression is decreased in T-MSC by activation of the prostaglandin E2 pathway, by increasing intracellular cyclic AMP levels with cAMP agonists that include, but are not limited to, forskolin, cholera toxin, ⁇ 1- and ⁇ 2 adrenoreceptor agonists, by inhibition of the NF- ⁇ B Rel-B pathway, by treating T-MSC with apoptotic calls, by treatment with phosphatidylserine, by treatment with butyrate, by treatment with Triptolide or extracts from Tripterygium wilfordii or synthetic forms or Triptolide (i.e., Minnelide).
- cAMP agonists include, but are not limited to, forskolin, cholera toxin, ⁇ 1- and ⁇ 2 adrenoreceptor agonists, by inhibition of the NF- ⁇ B Rel-B pathway, by treating T-MSC with apoptotic calls, by treatment with phosphat
- MSC may be modified to express a certain marker using methods known in the art of recombinant DNA.
- MSC may be modified by transfection using the nucleotide sequence encoding the marker.
- the marker can be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for the transcription and translation of the inserted coding sequence.
- the necessary transcriptional and translational elements can also be present.
- the regulatory regions and enhancer elements can be of a variety of origins, both natural and synthetic. A variety of host-vector systems may be utilized to express the marker.
- mammalian cell systems infected with virus e.g., vaccinia virus, adenovinis, etc.
- insect cell systems infected with virus e.g., baculovirus
- microorganisms such as yeast containing yeast vectors, or bacteria transformed with bacteriophage, DNA, plasmid DNA, or cosmid DNA
- stable cell lines generated by transformation using a selectable marker e.g., vaccinia virus, adenovinis, etc.
- the expression elements of vectors vary in their strengths and specificities. Depending on the host-vector system utilized, any one of a number of suitable transcription and translation elements may be used.
- the MSC is transformed or transfected with the vector of interest.
- Transformation may be by any known method for introducing polynucleotides into a host cell, including, for example packaging the polynucleotide in a virus and transducing a host cell with the virus, and by direct uptake of the polynucleotide.
- Mammalian transformations (i.e., transfections) by direct uptake may be conducted using the calcium phosphate precipitation method of Graham & Van der Eb. 1978, Virol. 52:546, or the various known modifications thereof.
- stable cell lines containing the constructs of interest are generated for high throughput screening.
- Such stable cells lines may be generated by introducing a construct comprising a selectable marker, allowing the cells to grow for 1-2 days in an enriched medium, and then growing the cells on a selective medium.
- the selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines.
- a number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler, et al., 1977, Cell 11:223), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, 1962, Proc. Natl. Acad. Sci. USA 48:2026), and adenine phosphoribosyltransferase (Lowy, et al, 1980, Cell 22:817) genes can be employed in tk-, hgprt- or aprt-cells, respectively.
- anti-metabolite resistance can be used as the basis of selection for dhfr, which confers resistance to methotrexate (Wigler, et al., 1980, Natl. Acad. Sci. USA 77:3567; O'Hare, et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, 1981, Proc. Natl. Acad. Sci. USA 78:2072); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin, et al., 1981, J. Mol. Biol. 150:1); and hygro, which confers resistance to hygromycin (Santerre, et al., 1984, Gene 30:147) genes.
- the stem cell collection composition can comprise any physiologically-acceptable solution suitable for the collection and/or culture of stem cells, for example, a saline solution (e.g., phosphate-buffered saline, Kreb's solution, modified Kreb's solution, Eagle's solution, 0.9% NaCl, etc.), a culture medium (e.g., DMEM, H.DMEM, etc.), and the like.
- a saline solution e.g., phosphate-buffered saline, Kreb's solution, modified Kreb's solution, Eagle's solution, 0.9% NaCl, etc.
- a culture medium e.g., DMEM, H.DMEM, etc.
- the stem cell collection composition can comprise one or more components that tend to preserve stem cells, that is, prevent the stem cells from dying, or delay the death of the stem cells, reduce the number of stem cells in a population of cells that die, or the like, from the time of collection to the time of culturing.
- Such components can be, e.g., an apoptosis inhibitor (e.g., a caspase inhibitor or JNK inhibitor); a vasodilator (e.g., magnesium sulfate, an antihypertensive drug, atrial natriuretic peptide (ANP), adrenocorticotropin, corticotropin-releasing hormone, sodium nitroprusside, hydralazine, adenosine triphosphate, adenosine, indomethacin or magnesium sulfate, a phosphodiesterase inhibitor, etc.); a necrosis inhibitor (e.g., 2-(1H-Indol-3-yl)-3-pentylamino-maleimide, pyrrolidine dithiocarbamate, or clonazepam); a TNF- ⁇ inhibitor; and/or an oxygen-carrying perfluorocarbon (e.g., perfluorooctyl bromid
- the stem cell collection composition can comprise one or more tissue-degrading enzymes, e.g., a metalloprotease, a serine protease, a neutral protease, an RNase, or a DNase, or the like.
- tissue-degrading enzymes include, but are not limited to, collagenases (e.g., collagenase I, II, III or IV, a collagenase from Clostridium histolyticum , etc.); dispase, thermolysin, elastase, trypsin, LIBERASE, hyaluronidase, and the like.
- the stem cell collection composition can comprise a bacteriocidally or bacteriostatically effective amount of an antibiotic.
- the antibiotic is a macrolide (e.g., tobramycin), a cephalosporin (e.g., cephalexin, cephradine, cefuroxime, cefprozil, cefaclor, cefixime or cefadroxil), a clarithromycin, an erythromycin, a penicillin (e.g., penicillin V) or a quinolone (e.g., ofloxacin, ciprofloxacin or norfloxacin), a tetracycline, a streptomycin, etc.
- the antibiotic is active against Gram(+) and/or Gram( ⁇ ) bacteria, e.g., Pseudomonas aeruginosa, Staphylococcus aureus , and the like.
- the stem cell collection composition can also comprise one or more of the following compounds: adenosine (about 1 mM to about 50 mM); D-glucose (about 20 mM to about 100 mM); magnesium ions (about 1 mM to about 50 mM); a macromolecule of molecular weight greater than 20,000 daltons, in one embodiment, present in an amount sufficient to maintain endothelial integrity and cellular viability (e.g., a synthetic or naturally occurring colloid, a polysaccharide such as dextran or a polyethylene glycol present at about 25 g/l to about 100 g/l, or about 40 g/l to about 60 g/l); an antioxidant (e.g., butylated hydroxyanisole, butylated hydroxytoluene, glutathione, vitamin C or vitamin E present at about 25 ⁇ M to about 100 ⁇ M); a reducing agent (e.g., N-acetylcysteine present at about 0.1
- the modulation of the activity e.g. reduced cell proliferation, reduced cell survival, impaired cell migration to sites of inflammation, reduced ability of the cells to promote or prolong inflammation or enhanced cell functions that promote the restoration of healthy tissue or organ homeostasis
- the activity e.g. reduced cell proliferation, reduced cell survival, impaired cell migration to sites of inflammation, reduced ability of the cells to promote or prolong inflammation or enhanced cell functions that promote the restoration of healthy tissue or organ homeostasis
- the method of modulating an immune response comprises contacting a plurality of immune cells with a plurality of T-MSC or iT-MSC for a time sufficient for the T-MSC or iT-MSC to detectably suppress an immune response, wherein the T-MSC or iT-MSC detectably suppress T cell proliferation in a mixed lymphocyte reaction (MLR) assay.
- MLR mixed lymphocyte reaction
- BM-MSC BM-MSC
- T-MSC have superior immunosuppressive function to BM-MSC, and thus T-MSC can be used in all areas and diseases that are currently targeted by BM-MSC.
- T-MSC or iPS-MSC used for immunomodulation may be derived or obtained from an embryonic stem cell line or induced pluripotent stem cell line, respectively.
- T-MSC or iPS-MSC used for immunomodulation may also be derived from the same species as the immune cells whose activity is to be modulated or from a different species as that of the immune cells whose activity is to be modulated.
- an “immune cell” in the context of this method means any cell of the immune system, particularly T cells and NK (natural killer) cells.
- T-MSC are contacted with a plurality of immune cells, wherein the plurality of immune cells are, or comprise, a plurality of T cells (e.g., a plurality of CD3 + T cells, CD4 + T cells and/or CD8 + T cells) and/or natural killer cells.
- An “immune response” in the context of the method can be any response by an immune cell to a stimulus normally perceived by an immune cell, e.g., a response to the presence of an antigen.
- an immune response can be the proliferation of T cells (e.g., CD3 + T cells, CD4 + T cells and/or CD8 + T cells) in response to a foreign antigen, such as an antigen present in a transfusion or graft, or to a self-antigen, as in an autoimmune disease.
- the immune response can also be a proliferation of T cells contained within a graft.
- the immune response can also be any activity of a natural killer (NK) cell, the maturation of a dendritic cell, or the like.
- NK natural killer
- the immune response can also be a local, tissue- or organ-specific, or systemic effect of an activity of one or more classes of immune cells, e.g., the immune response can be graft versus host disease, inflammation, formation of inflammation-related scar tissue, an autoimmune condition (e.g., rheumatoid arthritis, Type I diabetes, lupus erythematosus, etc.), and the like.
- the immune response can be graft versus host disease, inflammation, formation of inflammation-related scar tissue, an autoimmune condition (e.g., rheumatoid arthritis, Type I diabetes, lupus erythematosus, etc.), and the like.
- Contacting in this context encompasses bringing the T-MSC and immune cells together in a single container (e.g., culture dish, flask, vial, etc.) or in vivo, for example, the same individual (e.g., mammal, for example, human).
- the contacting is for a time sufficient, and with a sufficient number of T-MSC and immune cells, that a change in an immune function of the immune cells is detectable. More preferably, in various embodiments, the contacting is sufficient to suppress immune function (e.g., T cell proliferation in response to an antigen) by at least 50%, 60%, 70%, 80%, 90% or 95%, compared to the immune function in the absence of the T-MSC.
- immune function e.g., T cell proliferation in response to an antigen
- Such suppression in an in vivo context can be determined in an in vivo assay that is, the degree of suppression in the in vitro assay can be extrapolated, for a particular number of T-MSC and a number of immune cells in a recipient individual, to a degree of suppression in the individual.
- the invention in certain embodiments provides methods of using T-MSC to modulate an immune response, or the activity of a plurality of one or more types of immune cols, in vitro.
- Contacting the T-MSC and plurality of immune cells can comprise combining the T-MSC and immune cells in the same physical space such that at least a portion of the plurality of T-MSC interacts with at least a portion of the plurality of immune cells; maintaining the T-MSC and immune cells in separate physical spaces with common medium; or can comprise contacting medium from one or a culture of T-MSC or immune cells with the other type of cell (for example, obtaining culture medium from a culture of T-MSC and resuspending isolated immune cells in the medium).
- the contacting is a Mixed Lymphocyte Reaction (MLR).
- Such contacting can, for example, take place in an experimental setting designed to determine the extent to which a particular plurality of T-MSC is immunomodulatory, e.g., immunosuppressive.
- an experimental setting can be, for example, a mixed lymphocyte reaction (MLR) or regression assay.
- MLR mixed lymphocyte reaction
- Procedures for performing the MLR and regression assays are well-known in the art. See, e.g., Schwarz, “The Mixed Lymphocyte Reaction: An In Vitro Test for Tolerance,” J. Exp. Med.
- an MLR is performed in which a plurality of T-MSC am contacted with a plurality of immune cells (e.g., lymphocytes, for example, CD3 + CD4 + and/or CD8 + T lymphocytes).
- a plurality of T-MSC am contacted with a plurality of immune cells (e.g., lymphocytes, for example, CD3 + CD4 + and/or CD8 + T lymphocytes).
- the MLR can be used to determine the immunosuppressive capacity of a plurality of T-MSC.
- a plurality of T-MSC can be tested in an MLR comprising combining CD4 + or CD8 + T cells, dendritic cells (DC) and T-MSC in a ratio of about 10:1:2, wherein the T cells are stained with a dye such as, e.g., CFSE that partitions into daughter cells, and wherein the T cells are allowed to proliferate for about 6 days.
- the plurality of T-MSC is immunosuppressive if the T cell proliferation at 6 days in the presence of T-MSC is detectably reduced compared to T cell proliferation in the presence of DC and absence of T-MSC.
- T-MSC are either thawed or harvested from culture. About 10,000 T-MSC are resuspended in 100 ⁇ l of medium (RPMI 1640, 1 mM HEPES buffer, antibiotics, and 5% pooled human serum), and allowed to attach to the bottom of a well for 2 hours.
- CD4 + and/or CD8 + T cells are isolated from whole peripheral blood mononuclear cells with Miltenyi magnetic beads. The cells are CFSE stained, and a total of 100,000 T cells (CD4 + T cells alone, CD8 + T cells alone, or equal amounts of CD4 + and CD8 + T cells) are added per well. The volume in the well is brought to 200 ⁇ l, and the MLR is allowed to proceed.
- the invention provides a method of suppressing an immune response comprising contacting a plurality of immune cells with a plurality of T-MSC for a time sufficient for the T-MSC to detectably suppress T cell proliferation in a mixed lymphocyte reaction (MLR) assay.
- MLR mixed lymphocyte reaction
- T-MSC populations of T-MSC obtained from different embryonic stem cell lines, can differ in their ability to modulate an activity of an immune cell. e.g., can differ in their ability to suppress T cell activity or proliferation or NK cell activity. It is thus desirable to determine, prior to use, the capacity of a particular population of T-MSC for immunosuppression.
- a capacity can be determined, for example, by testing a sample of the stem cell population in an MLR or regression assay.
- an MLR is performed with the sample, and a degree of immunosuppression in the assay attributable to the T-MSC is determined. This degree of immunosuppression can then be attributed to the stem cell population that was sampled.
- the MLR can be used as a method of determining the absolute and relative ability of a particular population of T-MSC to suppress immune function.
- the parameters of the MLR can be varied to provide more data or to best determine the capacity of a sample of T-MSC to immunosuppress.
- the MLR can be performed with, in one embodiment, two or more numbers of stem cells, e.g., 1 ⁇ 10 3 , 3 ⁇ 10 3 , 1 ⁇ 10 4 and/or 3 ⁇ 10 4 T-MSC per reaction.
- the number of T-MSC relative to the number of T cells in the assay can also be varied.
- T-MSC and T cells in the assay can be present in any ratio of, e.g., about 10:1 to about 1:10, preferably about 1:5, though a relatively greater number of T-MSC or T cells can be used.
- the invention also provides methods of using T-MSC to modulate an immune response, or the activity of a plurality of one or more types of immune cells, in vivo.
- T-MSC and immune cells can be contacted, e.g., in an individual that is a recipient of a plurality of T-MSC. Where the contacting is performed in an individual, in one embodiment, the contacting is between exogenous T-MSC (that is. T-MSC not derived from the individual) and a plurality of immune cells endogenous to the individual.
- the immune cells within the individual are CD3 + T cells, CD4 + T cells, CD8 + T cells, and/or NK cells.
- T-MSC-mediated immunomodulation e.g., immunosuppression
- the invention provides a method of suppressing an immune response, wherein the immune response is an autoimmune disease, e.g., lupus erythematosus, diabetes, rheumatoid arthritis, or multiple sclerosis.
- the contacting of the plurality of T-MSC with the plurality of one or more types of immune cells can occur in vivo in the context of, or as an adjunct to, for example, grafting or transplanting of one or more types of tissues to a recipient individual.
- tissues may be, for example, bone marrow or blood; an organ; a specific tissue (e.g., skin graft); composite tissue allograft (i.e., a graft comprising two or more different types of tissues); etc.
- the T-MSC can be used to suppress one or more immune responses of one or more immune cells contained within the recipient individual, within the transplanted tissue or graft, or both.
- the contacting can occur before, during and/or after the grafting or transplanting.
- T-MSC can be administered at the time of the transplant or graft.
- the T-MSC can also, or alternatively, be administered prior to the transplanting or grafting, e.g., about 1, 2, 3, 4, 5, 6 or 7 days prior to the transplanting or grafting.
- T-MSC can also, or alternatively, be administered to a transplant or graft recipient after the transplantation or grafting, for example, about 1, 2, 3, 4, 5, 6 or 7 days after the transplanting or grafting.
- the plurality of T cells are contacted with the plurality of T-MSC before any detectable sign or symptom of an immune response, either by the recipient individual or the transplanted tissue or graft, e.g., a detectable sign or symptom of graft-versus-host disease or detectable inflammation, is detectable.
- any detectable sign or symptom of an immune response either by the recipient individual or the transplanted tissue or graft, e.g., a detectable sign or symptom of graft-versus-host disease or detectable inflammation, is detectable.
- the contacting within an individual is primarily between exogenous T-MSC and exogenous progenitor cells or stem cells, e.g., exogenous progenitor cells or stem cells that differentiate into immune cells.
- exogenous progenitor cells or stem cells e.g., exogenous progenitor cells or stem cells that differentiate into immune cells.
- individuals undergoing partial or full immunoablation or myeloablation as an adjunct to cancer therapy can receive T-MSC in combination with one or more other types of stem or progenitor cells.
- the T-MSC can be combined with a plurality of CD34 + cells, e.g., CD34 + hematopoietic stem cells.
- CD34 + cells can be, e.g., CD34 + cells from a tissue source such as peripheral blood, umbilical cord blood, placental blood, or bone marrow.
- the CD34 + cells can be isolated from such tissue sources, or the whole tissue source (e.g., units of umbilical cord blood or bone marrow) or a partially purified preparation from the tissue source (e.g., white blood cells from cord blood) can be combined with the T-MSC.
- tissue sources e.g., units of umbilical cord blood or bone marrow
- a partially purified preparation from the tissue source e.g., white blood cells from cord blood
- the T-MSC are administered to the individual preferably in a ratio, with respect to the known or expected number of immune cells, e.g., T cells, in the individual, of from about 10:1 to about 1:10, preferably about 1:5.
- a plurality of T-MSC can be administered to an individual in a ratio of in non-limiting examples, about 10,000:1, about 1,000:1, about 100:1, about 10:1, about 1:1, about 1:10, about 1:100, about 1:1,000 or about 1:10,000.
- about 1 ⁇ 10 5 to about 1 ⁇ 10 8 T-MSC per recipient kilogram, preferably about 1 ⁇ 10 6 to about 1 ⁇ 10 7 T-MSC recipient kilogram can be administered to effect immunosuppression.
- a plurality of T-MSC administered to an individual or subject comprises at least, about, or no more than, 1 ⁇ 10 5 , 3 ⁇ 10 5 , 1 ⁇ 10 6 , 3 ⁇ 10 6 , 1 ⁇ 10 7 , 3 ⁇ 10 7 , 1 ⁇ 10 8 , 3 ⁇ 10 8 , 1 ⁇ 10 9 , 3 ⁇ 10 9 T-MSC, or more.
- the T-MSC can also be administered with one or more second types of stem calls, e.g., mesenchymal stem cells from bone marrow.
- second stem cells can be administered to an individual with T-MSC in a ratio of, e.g., about 1:10 to about 10:1.
- the T-MSC can be administered to the individual by any route sufficient to bring the T-MSC and immune cells into contact with each other.
- the T-MSC can be administered to the individual, e.g., intravenously, intramuscularly, intraperitoneally, or directly into an organ, e.g., pancreas.
- the T-MSC can be formulated as a pharmaceutical composition.
- the method of immunosuppression can additionally comprise the addition of one or more immunosuppressive agents, particularly in the in vivo context.
- the plurality of T-MSC are contacted with the plurality of immune cells in vivo in an individual, and a composition comprising an immunosuppressive agent is administered to the individual.
- Immunosuppressive agents are well known in the art and include, e.g., anti-T cell receptor antibodies (monoclonal or polyclonal, or antibody fragments or derivatives thereof), anti-IL-2 receptor antibodies (e.g., Basiliximab (SIMULECT®) or daclizumab (ZENAPAX®), anti T cell receptor antibodies (e.g., Muromonab-CD3), azathioprine, corticosteroids, cyclosporine, tacrolimus, mycophenolate mofetil, sirolimus, calcineurin inhibitors, and the like.
- the immunosuppressive agent is a neutralizing antibody to macrophage inflammatory protein (MIP)-1 ⁇ or MIP-1 ⁇ .
- MIP macrophage inflammatory protein
- T-MSC and/or T-MSC-DL can be preserved, that is, placed under conditions that allow for long-term storage, or conditions that inhibit cell death by, e.g., apoptosis or necrosis.
- T-MSC and/or T-MSC-DL can be preserved using, e.g., a composition comprising an apoptosis inhibitor, necrosis inhibitor.
- the invention provides a method of preserving a population of stem cells comprising contacting a population of stem cells with a stem cell collection composition comprising an inhibitor of apoptosis, wherein the inhibitor of apoptosis is present in an amount and for a time sufficient to reduce or prevent apoptosis in the population of stem cells, as compared to a population of stem cells not contacted with the inhibitor of apoptosis.
- the inhibitor of apoptosis is a caspase inhibitor.
- the inhibitor of apoptosis is a JNK inhibitor.
- the JNK inhibitor does not modulate differentiation or proliferation of the stem cells.
- the stem cell collection composition comprises an inhibitor of apoptosis and an oxygen-carrying perfluorocarbon in separate phases.
- the stem cell collection composition comprises an inhibitor of apoptosis and an oxygen-carrying perfluorocarbon in an emulsion.
- the stem cell collection composition additionally comprises an emulsifier, e.g., lecithin.
- the apoptosis inhibitor and the perfluorocarbon are between about 0° C. and about 25° C. at the time of contacting the stem cells.
- the apoptosis inhibitor and the perfluorocarbon are between about 2 and 10° C., or between about 2° C. and about 5, at the time of contacting the stem cells.
- the contacting is performed during transport of the population of stem cells. In another more specific embodiment, the contacting is performed during freezing and thawing of the population of stem cells.
- the invention provides a method of preserving a population of T-MSC and/or T-MSC-DL comprising contacting the population of stem cells with an inhibitor of apoptosis and an organ-preserving compound, wherein the inhibitor of apoptosis is present in an amount and for a time sufficient to reduce or prevent apoptosis in the population of stem cells, as compared to a population of stem cells not contacted with the inhibitor of apoptosis.
- a stem cell, or population of stem cells is exposed to a hypoxic condition during collection, enrichment or isolation for less than six hours during the preservation, wherein a hypoxic condition is a concentration of oxygen that is less than normal blood oxygen concentration.
- a hypoxic condition is a concentration of oxygen that is less than normal blood oxygen concentration.
- the population of stem cells is exposed to the hypoxic condition for less than two hours during the preservation.
- the population of stem cells is exposed to the hypoxic condition for less than one hour, or less than thirty minutes, or is not exposed to a hypoxic condition, during collection, enrichment or isolation.
- the population of stem cells is not exposed to shear stress during collection, enrichment or isolation.
- the T-MSC and/or T-MSC-DL can be cryopreserved, e.g., in cryopreservation medium in small containers, e.g., ampoules.
- Suitable cryopreservation medium includes, but is not limited to, culture medium including, e.g., growth medium, or cell freezing medium, for example commercially available cell freezing medium, e.g., C2695, C2639 or C6039 (Sigma).
- Cryopreservation medium preferably comprises DMSO (dimethylsulfoxide), at a concentration of, e.g., about 10% (v/v)
- Cryopreservation medium may comprise additional agents, for example, methylcellulose and/or glycerol.
- T-MSC and/or T-MSC-DL are preferably cooled at about 1° C./min during cryopreservation.
- a preferred cryopreservation temperature is about ⁇ 80° C. to about ⁇ 180° C., preferably about ⁇ 125° C. to about ⁇ 140° C.
- Cryopreserved cells can be transferred to liquid nitrogen prior to thawing for use. In some embodiments, for example, once the ampoules have reached about ⁇ 90° C., they are transferred to a liquid nitrogen storage area.
- Cryopreserved cells preferably are thawed at a temperature of about 25° C. to about 40° C., preferably to a temperature of about 37° C.
- T-MSC and/or T-MSC-DL disclosed herein can be preserved, for example, cryopreserved for later use. Methods for cryopreservation of cells, such as stem cells, are well known in the art.
- T-MSC and/or T-MSC-DL can be prepared in a form that is easily administrable to an individual.
- T-MSC and/or T-MSC-DL that are contained within a container that is suitable for medical use.
- a container can be, for example, a sterile plastic bag, flask, jar, or other container from which the T-MSC and/or T-MSC-DL can be easily dispensed.
- the container can be a blood bag or other plastic, medically-acceptable bag suitable for the intravenous administration of a liquid to a recipient.
- the container is preferably one that allows for cryopreservation of the combined stem cell population.
- Cryopreserved T-MSC and/or T-MSC-DL can comprise T-MSC and/or T-MSC-DL derived from a single donor, or from multiple donors.
- the T-MSC and/or T-MSC-DL can be completely HLA-matched to an intended recipient, or partially or completely HLA-mismatched.
- the container is a beg, flask, or jar.
- the bag is a sterile plastic bag.
- the bag is suitable for, allows or facilitates intravenous administration of the T-MSC and/or T-MSC-DL.
- the bag can comprise multiple lumens or compartments that are interconnected to allow mixing of the T-MSC and/or T-MSC-DL and one or more other solutions, e.g., a drug, prior to, or during, administration.
- the composition comprises one or more compounds that facilitate cryopreservation of the combined stem cell population.
- the T-MSC and/or T-MSC-DL is contained within a physiologically-acceptable aqueous solution.
- the physiologically-acceptable aqueous solution is a 0.9% NaCl solution.
- the hES-MSC are HLA-matched to a recipient of the stem cell population.
- the combined stem cell population comprises hES-MSC that are at least partially HLA-mismatched to a recipient of the stem cell population.
- T-MSC may be differentiated into various cell lineages including neuronal lineage cells or neurons, or adipocytes, or myoblasts, or fibroblasts, or osteoblasts or chrondrocytes. Unless specifically indicated. T-MSC may be plated onto cell culture plates coated with gelatin, collagen, fibronectin, Matrigel, laminin, vitronectin, or poly(lysine). T-MSC may be plated at a concentration of 1 ⁇ 10 3 cells/cm 2 to 1 ⁇ 10 4 cells/cm 2 in serum free medium or serum-containing medium with bovine serum FBS or ABHS. T-MSCs plated according to the above mentioned conditions may be differentiated by one of the following methods.
- T-MSC may be differentiated in medium containing 1-50 ng/mL Fibroblast Growth Factor (FGF)-2 (optimally 10 ng/ml) plus 1-50 ng/ml Epidermal Growth Factor (EGF) (optimally 10 ng/l) plus 0.5-5 ng/ml Platelet-Derived Growth Factor (PDGF) (optimally 1 ng/m).
- FGF Fibroblast Growth Factor
- EGF Epidermal Growth Factor
- PDGF Platelet-Derived Growth Factor
- T-MSC may be differentiated into neuronal lineage cells by plating on Poly-L-ornithine and Laminin coated plates.
- T-MSCs will be differentiated in three stages. Stage 1: 1-50 ng/ml FGF-2 (optimally 10 ng/ml) and 1-50 ng/ml EGF (optimally 10 ng/ml), to prime hMSCs towards a neural fate. Stage 2: 10-200 ng/ml Sonic Hedgehog (SHH) (optimally 100 ng/ml), 1-50 ng/ml FGF-8 (human) (optimally 10 ng/ml) and 50-500 ⁇ M AAP (optimally 200 ⁇ M), for initiating midbrain specification.
- SHH Sonic Hedgehog
- Stage 3 5-500 ng/ml Glial-Derived Neurotrophic Factor (GDNF) (optimally 50 ng/ml) and 50-500 ⁇ M AAP (optimally 200 ⁇ M), for inducing differentiation and maturation towards a dopaminergic neuronal phenotype.
- GDNF Glial-Derived Neurotrophic Factor
- AAP 50-500 ⁇ M
- GDNF Glial-Derived Neurotrophic Factor
- Each stage is applied for 1 week and the adherent cells are passaged by disassociation with Trypsin or TrypLE/dispase between each stage. Growth factors are replenished every day and the medium is changed every 2 days.
- Expected yield is 0.5 ⁇ 10 6 -4 ⁇ 10 6 neuronal lineage cells per 1 ⁇ 10 6 T-MSC.
- T-MSC may be differentiated into neuronal lineage cells in Neurobasal medium (Gibco) containing 0.25 ⁇ B-27 supplement plus 10-200 ng/ml Sonic Hedgehog (SHH) (optimally 100 ng/ml), plus 1-50 ng/ml FGF-8 (mouse) (optimally 10 ng/ml) plus 1-200 ng/ml FGF-2 (optimally 50 ng/ml).
- SHH Sonic Hedgehog
- FGF-8 mouse
- FGF-2 optically 50 ng/ml
- Cells are harvested after 6- and 12-days. Media is not replaced during this period.
- Expected yield is 0.5 ⁇ 10 6 -4 ⁇ 10 6 neuronal lineage cells per 1 ⁇ 10 6 T-MSC.
- T-MSC may be differentiated into neuron lineage cells in two stages.
- Stage 1 T-MSC are cultured in serum-free medium (DMEM) supplemented with 2 mM glutamine, 1-20 U/ml (optimally 12.5 U/ml) nystatin, N2 supplement, and 2-50 ng/ml (optimally 20 ng/m) fibroblast growth factor-2 (FGF-2) and 1-50 ng/mL EGF (optimally 10 ng/ml) for 48-72 hours.
- DMEM serum-free medium
- FGF-2 fibroblast growth factor-2
- EGF EGF
- Stage 2 cells are cultured in Neurobasal medium plus B27 supplement plus 0.1-10 mM (optimally 1 mM) dibutyryl cyclic AMP (dbcAMP), 3-isobutyl-1-methylxanthine (IBMX), and 10-500 ⁇ M (optimally 200 ⁇ M) ascorbic acid plus 1-100 ng/ml BDNF (optimally 50 ng/ml), 1-50 ng/ml glial-derived neurotrophic factor (GDNF; optimally 10 ng/ml), 0.2-10 ng/ml transforming growth factor- ⁇ 3 (TGF- ⁇ 3, optimally 2 ng/ml), and 0.05-5 ⁇ M all-transretinoic acid (RA, optimally 0.1 ⁇ M).
- BDNF optically 50 ng/ml
- GDNF glial-derived neurotrophic factor
- TGF- ⁇ 3 0.2-10 ng/ml transforming growth factor- ⁇ 3
- RA all-transretinoic acid
- Each stage is applied for 1 week and the adherent cells are passaged by disassociation with Trypsin or TrypLE/dispase between each stage.
- the medium is changed every 2 days and the expected yield is 0.5 ⁇ 10 6 -4 ⁇ 10 6 neuronal lineage cells per 1 ⁇ 10 6 T-MSC
- T-MSC may be cultured to induce osteogenic differentiation.
- T-MSCs will be cultured in low glucose DMEM plus 10% FCS. 1-150 ⁇ M (optimally 80 ⁇ M) ascorbic acid 2-phosphate, 0.5-5 ⁇ M (optimally 1 ⁇ M) dexamethasone, and 1-100 mM (optimally 20 mM) beta-glycerophosphate. The medium is changed every 2 to 3 days and the expected yield is 0.5 ⁇ 10 6 -4 ⁇ 10 6 neuronal lineage cells per 1 ⁇ 10 6 T-MSC after 2 weeks.
- T-MSC may be cultured to induce adipogenic differentiation.
- T-MSCs will be grown in low glucose DMEM plus 20% FCS, 1-10 ⁇ g/m (optimally 5 ⁇ g/ml) insulin, 0.5-10 ⁇ M (optimally 2 ⁇ M) dexamethasone, 0.1-1 mM (optimally 0.5 mM) isobutymethylxanthine, and 1-100 ⁇ M (optimally 60 ⁇ M) indomethacin.
- the medium is changed every 2 to 3 days and the expected yield is 0.5 ⁇ 10 6 -4 ⁇ 10 6 neuronal lineage cells per 1 ⁇ 10 6 T-MSC after 4 weeks.
- T-MSC may be cultured to induce chondrogenic differentiation.
- T-MSC will be grown in a pellet in high glucose DMEM supplemented with 0.5-10 mM (optimally 1 mM) Sodium Pyruvate, 0.05-1 mM (optimally 0.1 mM) ascorbic acid 2-phosphate, 0.05-1 ⁇ M (optimally 0.1 ⁇ M) dexamethasone, 0.2-2% (optimally 1%) ITS, and 1-50 ng/ml (optimally 10 ng/mL) TGF- ⁇ 3.
- the medium is changed every 2 to 3 days and the expected yield is 0.5 ⁇ 10 6 -4 ⁇ 10 6 neuronal lineage cells per 1 ⁇ 10 6 T-MSC after 20 days.
- T-MSC may be cultured to induce myogenic differentiation.
- T-MSC will be grown in low-glucose DMEM supplemented with 10% FBS, 1-20 ⁇ M (optimally 10 ⁇ M) 5-azacytidine, and 1-50 ng/ml (optimally 10 ng/ml) basic FGF. After 24 hours, the myogenic induction medium will be replaced with DMEM supplemented with 10% FBS plus 1-50 ng/m (optimally 10 ng/ml) basic FGF. The medium is changed every 2 to 3 days and the expected yield is 0.5 ⁇ 10 6 -4 ⁇ 10 6 neuronal lineage cells per 1 ⁇ 10 6 T-MSC after 2 weeks.
- T-MSC may be cultured to induce fibroblast differentiation.
- T-MSC will be grown in hMSCs that were treated with DMEM plus 10% FBS supplemented 50-200 ng/ml (optimally 100 ng/ml) of recombinant human Connective Tissue Growth Factor (CTGF) and 1-100 ⁇ g/ml (optimally 50 ⁇ g/ml) ascorbic acid.
- CTGF human Connective Tissue Growth Factor
- the medium is changed every 3 to 4 days and the expected yield is 0.5 ⁇ 10 6 -4 ⁇ 10 6 neuronal lineage cells per 1 ⁇ 10 6 T-MSC after 4 weeks.
- T-MSC-DL All the cell lineages and cell types derived from T-MSC using any differentiation methods including, but not limited to, the methods above are called T-MSC-DL throughout.
- a pharmaceutical composition comprising a therapeutically effective amount of a T-MSC and a pharmaceutically acceptable carrier.
- the pharmaceutical compostions can comprise any number of T-MSC and/or T-MSC-DL.
- a single unit dose of T-MSC can comprise, in various embodiments, about, at least, or no more than 1 ⁇ 10 5 , 5 ⁇ 10 5 , 1 ⁇ 10 5 , 1 ⁇ 10 7 , 5 ⁇ 10 7 , 1 ⁇ 10 8 , 5 ⁇ 10 8 , 1 ⁇ 10 9 , 5 ⁇ 10 9 , 1 ⁇ 10 10 , 5 ⁇ 10 10 , 1 ⁇ 10 11 or more T-MSC and/or T-MSC-DL.
- the pharmaceutical compostions disclosed herein comprise populations of cells that comprise 50% viable cells or more (that is, at least 50% of the cols in the population are functional or living). Preferably, at least 60% of the cells in the population are viable. More preferably, at least 70%, 80%, 90%, 95%, or 99% of the cells in the population in the pharmaceutical composition are viable.
- compositions disclosed herein can comprise one or more compounds that, e.g., facilitate engraftment (e.g., anti-T-cell receptor antibodies, an immunosuppressant, or the like); stabilizers such as albumin, dextran 40, gelatin, hydroxyethyl starch, and the like.
- facilitate engraftment e.g., anti-T-cell receptor antibodies, an immunosuppressant, or the like
- stabilizers such as albumin, dextran 40, gelatin, hydroxyethyl starch, and the like.
- phrases “pharmaceutically acceptable” refers to molecular entities and compositions that are physiologically tolerable and do not typically produce an allergic or similar untoward reaction, such as gastric upset, dizziness and the like, when administered to a human, and approved by a regulatory agency of a Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans.
- Carrier refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered.
- Such pharmaceutical carriers can be sterile liquids, such as saline solutions in water and oils, including those of petroleum, animal, vegetable, or synthetic origin, such as peanut oil, soybean oi, mineral oil, sesame oil, and the like.
- a saline solution is a preferred carrier when the pharmaceutical composition is administered intravenously.
- Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions.
- Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol, and the like.
- the composition if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents.
- compositions can take the form of solutions, suspensions, emulsions, tablets, pills, capsules, powders, sustained-release formulations, cachets, troches, lozenges, dispersions, suppositories, ointments, cataplasms (poultices), pastes, powders, dressings, creams, plasters, patches, aerosols, gels, liquid dosage forms suitable for parenteral administration to a patient, and sterile solids (e.g., crystalline or amorphous solids) that can be reconstituted to provide liquid dosage forms suitable for parenteral administration to a patient.
- Such compositions will contain a therapeutically effective amount of the compound, preferably in purified form, together with a suitable form of carrier so as to provide the form for proper administration to the patient.
- the formulation should suit the mode of administration.
- compositions adapted for oral administration may be capsules, tablets, powders, granules, solutions, syrups, suspensions (in non-aqueous or aqueous liquids), or emulsions.
- Tablets or herd gelatin capsules may comprise lactose, starch or derivatives thereof, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, stearic acid or salts thereof.
- Soft gelatin capsules may comprise vegetable oils, waxes, fats, semi-solid, or liquid polyols. Solutions and syrups may comprise water, polyols, and sugars.
- An active agent intended for oral administration may be coated with or admixed with a material that delays disintegration and/or absorption of the active agent in the gastrointestinal tract. Thus, the sustained release may be achieved over many hours and if necessary, the active agent can be protected from degradation within the stomach.
- Pharmaceutical compositions for oral administration may be formulated to facilitate release of an active agent at a particular gastrointestinal location due to specific pH or
- compositions adapted for transdermal administration may be provided as discrete patches intended to remain in intimate contact with the epidermis of the recipient over a prolonged period of time.
- compositions adapted for nasal and pulmonary administration may comprise solid carriers such as powders which can be administered by rapid inhalation through the nose.
- Compositions for nasal administration may comprise liquid carriers, such as sprays or drops.
- inhalation directly through into the lungs may be accomplished by inhalation deeply or installation through a mouthpiece.
- These compositions may comprise aqueous or oil solutions of the active ingredient.
- Compositions for inhalation may be supplied in specially adapted devices including, but not limited to, pressurized aerosols, nebulizers or insufflators, which can be constructed so as to provide predetermined dosages of the active ingredient.
- compositions adapted for parenteral administration include aqueous and non-aqueous sterile injectable solutions or suspensions, which may contain anti-oxidants, buffers, bacteriostats, and solutes that render the compositions substantially isotonic with the blood of the subject.
- Other components which may be present in such compositions include water, alcohols, polyols, glycerine, and vegetable oils.
- Compositions adapted for parental administration may be presented in unit-dose or multi-dose containers, such as sealed ampules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of a sterile carrier, immediately prior to use.
- Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules, and tablets.
- Suitable vehicles that can be used to provide parenteral dosage forms of the invention are well known to those skilled in the art. Examples include: Water for Injection USP; aqueous vehicles such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, and Lactated Ringer's Injection; water-miscible vehicles such as ethyl alcohol, polyethylene glycol, and polypropylene glycol; and non-aqueous vehicles such as corn oil, cottonseed oil, peanut oil, sesame oil, ethyl oleate, isopropyl myristate, and benzyl benzoate.
- a therapeutically effective dose will be determined by the skilled artisan considering several factors which will be known to one of ordinary skill in the art. Such factors include the particular form of the inhibitor, and its pharmacokinetic parameters such as bioavailability, metabolism, and half-life, which will have been established during the usual development procedures typically employed in obtaining regulatory approval for a pharmaceutical compound. Further factors in considering the dose include the condition or disease to be treated or the benefit to be achieved in a normal individual, the body mass of the patient, the route of administration, whether the administration is acute or chronic, concomitant medications, and other factors well known to affect the efficacy of administered pharmaceutical agents. Thus, the precise dose should be decided according to the judgment of the person of skill in the art, and each patient's circumstances, and according to standard clinical techniques.
- patients are treated with antipyretic and/or antihistamine (acetaminophen and diphenhydramine hydrochloride) to minimize any possible DMS infusion toxicity related to the cryopreserve component in the hES-MSC treatment.
- antipyretic and/or antihistamine acetaminophen and diphenhydramine hydrochloride
- the T-MSC disclosed herein can be used to produce conditioned medium that is immunosuppressive, that is, medium comprising one or more biomolecules secreted or excreted by the stem cells that have a detectable immunosuppressive effect on a plurality of one or more types of immune cells.
- the conditioned medium comprises medium in which T-MSC have grown for at least 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14 or more days.
- the conditioned medium comprises medium in which T-MSC have grown to at least 30%, 40%, 50%, 60%, 70%, 80%, 90% confluence, or up to 100% confluence.
- Such conditioned medium can be used to support the culture of a separate population of T-MSC, or stem cells of another kind.
- the conditioned medium comprises medium in which T-MSC have been differentiated into an adult cell type.
- the conditioned medium of the invention comprises medium in which T-MSC and non-T-MSC have been cultured.
- the invention provides a composition comprising culture medium, cell lysate and/or other derivatives from a culture of T-MSC, wherein the T-MSC (a) adhere to a substrate; (b) express CD73, CD105. CD90, CD29. CD44, CD146. IL-10, TGFb2, HGF, but do not express IL-6, TNF ⁇ , IL-12 and/or RAGE,
- the composition comprises an anti-proliferative agent, e.g., an anti-MIP-1 ⁇ or anti-MIP-1 ⁇ antibody.
- T-MSC as described herein as feeder cells for bone marrow hematopoietic stem cell, peripheral blood hematopoietic stem cell and umbilical-cord hematopoietic stem cell expansion.
- the T-MSC suitable for the disclosed method express Stro-3, Stro-1, DL1, and/or Nestin.
- the T-MSC can also be modified or engineered to express high level of Stro-3, Stro-1, DL1, Nestin or Frizzle using the method disclosed herein in Section 5.5.
- T-MSC is co-cultured with bone marrow hematopoietic stem cells, peripheral blood hematopoietic stem cells and/or umbilical-cord hematopoietic stem cells.
- the T-MSC are mesenchymal stromal cells.
- a co-culture of T-MSC as described herein and bone marrow hematopoietic stem cells is provided herein.
- the invention further comprises matrices, hydrogels, scaffolds, and the like that comprise T-MSC and/or T-MSC-DL.
- T-MSC and/or T-MSC-DL can be seeded onto a natural matrix, e.g., a biomaterial.
- the scaffold is obtained by 3D printing.
- the T-MSC and/or T-MSC-DL can be suspended in a hydrogel solution suitable for, e.g., injection. Suitable hydrogels for such compositions include self-assembling peptides, such as RAD16.
- a hydrogel solution comprising the cells can be allowed to harden, for instance in a mold, to form a matrix having cells dispersed therein for implantation.
- T-MSC and/or T-MSC-DL in such a matrix can also be cultured so that the cells are mitotically expanded prior to implantation.
- the hydrogel is, e.g., an organic polymer (natural or synthetic) that is cross-linked via covalent, ionic, or hydrogen bonds to create a three-dimensional open-lattice structure that entraps water molecules to form a gel.
- Hydrogel-forming materials include polysaccharides such as alginate and salts thereof, peptides, polyphosphazines, and polyacrylates, which are cross-linked ionically, or block polymers such as polyethylene oxide-polypropylene glycol block copolymers which are cross-linked by temperature or pH, respectively.
- the hydrogel or matrix of the invention is biodegradable.
- the formulation comprises an in situ polymerizable gel (see, e.g., U.S. Patent Application Publication 2002/0022676; Anseth et al., J. Control Release, 78(1-3):199-209 (2002); Wang et al., Biomaterials, 24(22):3969-80 (2003).
- the polymers are at least partially soluble in aqueous solutions, such as water, buffered salt solutions, or aqueous alcohol solutions, that have charged side groups, or a monovalent ionic salt thereof.
- aqueous solutions such as water, buffered salt solutions, or aqueous alcohol solutions
- polymers having acidic side groups that can be reacted with cations are poly(phosphazenes), poly(acrylic acids), poly(methacrylic acids), copolymers of acrylic acid and methacrylic acid, poly(vinyl acetate), and sulfonated polymers, such as sulfonated polystyrene.
- Copolymers having acidic side groups formed by reaction of acrylic or methacrylic acid and vinyl ether monomers or polymers can also be used.
- acidic groups are carboxylic acid groups, sulfonic acid groups, halogenated (preferably fluorinated) alcohol groups, phenolic OH groups, and acidic OH groups.
- T-MSC, T-MSC-DL and/or co-cultures thereof can be seeded onto a three-dimensional framework or scaffold and implanted in vivo.
- a three-dimensional framework or scaffold can be implanted in combination with any one or more growth factors, cells, drugs or other components that stimulate tissue formation or otherwise enhance or improve the practice of the invention.
- Nonwoven mats can be formed using fibers comprised of a synthetic absorbable copolymer of glycolic and lactic acids (e.g., PGA/PLA) (VICRYL, Ethicon, Inc., Somerville, N.J.).
- Foams composed of, e.g., poly(s-caprolaclone)poly(glycolic acid) (PCL/PGA) copolymer, formed by processes such as freeze-drying, or lyophilization (see, e.g., U.S. Pat. No. 6,355,699), can also be used as scaffolds.
- the T-MSC and/or T-MSC-DL can also be seeded onto, or contacted with, a physiologically-acceptable ceramic material including, but not limited to, mono-, di-, tri-, alpha-tri-, beta-tri-, and tetra-calcium phosphate, hydroxyapatite, fluoroapatites, calcium sulfates, calcium fluorides, calcium oxides, calcium carbonates, magnesium calcium phosphates, biologically active glasses such as BIOGLASS®, and mixtures thereof.
- Porous biocompatible ceramic materials currently commercially available include SURGIBONE® (CanMedica Corp., Canada).
- the framework can be a mixture, blend or composite of natural and/or synthetic materials.
- T-MSC and/or T-MSC-DL can be seeded onto, or contacted with, a felt, which can be, e.g., composed of a multifilament yarn made from a bioabsorbable material such as PGA, PA, PCL copolymers or blends, or hyaluronic acid.
- a felt which can be, e.g., composed of a multifilament yarn made from a bioabsorbable material such as PGA, PA, PCL copolymers or blends, or hyaluronic acid.
- the T-MSC and/or T-MSC-DL can, in another embodiment, be seeded onto foam scaffolds that may be composite structures.
- foam scaffolds can be molded into a useful shape, such as that of a portion of a specific structure in the body to be repaired, replaced or augmented.
- the framework is treated, e.g., with 0.1M acetic acid followed by incubation in polylysine, PBS, and/or collagen, prior to inoculation of the cells of the invention in order to enhance cell attachment.
- External surfaces of a matrix may be modified to improve the attachment or growth of cells and differentiation of tissue, such as by plasma-coating the matrix, or addition of one or more proteins (e.g., collagens, elastic fibers, reticular fibers), glycoproteins, glycosaminoglycans (e.g., heparin sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, dermatan sulfate, keratin sulfate, etc.), a cellular matrix, and/or other materials such as, but not limited to, gelatin, alginates, agar, agarose, and plant gums, and the like.
- proteins e.g., collagens, elastic fibers, reticular fibers
- glycoproteins e.g., glycoproteins, glycosaminoglycans (e.g., heparin sulfate, chondroitin-4-sulfate, chondroitin-6-sul
- the scaffold comprises, or is treated with, materials that render it non-thrombogenic. These treatments and materials may also promote and sustain endothelial growth, migration, and extracellular matrix deposition. Examples of these materials and treatments include but are not limited to natural materials such as basement membrane proteins such as laminin and Type IV collagen, synthetic materials such as EPTFE, and segmented polyurethaneurea silicones, such as PURSPANTM (The Polymer Technology Group, Inc., Berkeley, Calif.).
- the scaffold can also comprise anti-thrombotic agents such as heparin; the scaffolds can also be treated to alter the surface charge (e.g., coating with plasma) prior to seeding with stem cells.
- Mammalian T-MSC and/or T-MSC-DL can be conditionaly immortalized by transfection with any suitable vector containing a growth-promoting gene, that is, a gene encoding a protein that, under appropriate conditions, promotes growth of the transfected cell, such that the production and/or activity of the growth-promoting protein is relatable by an external factor.
- a growth-promoting gene is an oncogene such as, but not limited to, ⁇ -myc, N-myc, c-myc, p53, SV40 large T antigen, polyoma large T antigen, E1a adenovirus or E7 protein of human papillomavirus.
- External regulation of the growth-promoting protein can be achieved by placing the growth-promoting gene under the control of an externally-regulatable promoter, e.g., a promoter the activity of which can be controlled by, for example, modifying the temperature of the transfected cells or the composition of the medium in contact with the cells.
- an externally-regulatable promoter e.g., a promoter the activity of which can be controlled by, for example, modifying the temperature of the transfected cells or the composition of the medium in contact with the cells.
- tet tetracycline
- tTA tet-controlled transactivator
- tTA is a fusion protein of the repressor (tetR) of the transposon-10-derived tet resistance operon of Escherichia col and the acidic domain of VP 16 of herpes simplex virus.
- the vector further contains a gene encoding a selectable marker, e.g., a protein that confers drug resistance.
- a selectable marker e.g., a protein that confers drug resistance.
- the bacterial neomycin resistance gene (neo R ) is one such marker that may be employed within the present invention.
- Cells carrying neo R may be selected by means known to those of ordinary skill in the art, such as the addition of, e.g., 100-200 ⁇ g/mL G418 to the growth medium.
- Transfection can be achieved by any of a variety of means known to those of ordinary skill in the art including, but not limited to, retroviral infection.
- a cell culture may be transfected by incubation with a mixture of conditioned medium collected from the producer cell line for the vector and DMEM/F12 containing N2 supplements.
- a stem cell culture prepared as described above may be infected after, e.g., five days in vitro by incubation for about hours in one volume of conditioned medium and two volumes of DMEM/F12 containing N2 supplements.
- Transfected cells carrying a selectable marker may then be selected as described above.
- the substrate is a polyornithine/laminin substrate, consisting of tissue culture plastic coated with polyornithine (10 ⁇ g/mL) and/or laminin (10 ⁇ g/m), a polylysine/laminin substrate or a surface treated with fibronectin.
- Cultures are then fed every 3-4 days with growth medium, which may or may not be supplemented with one or more proliferation-enhancing factors. Proliferation-enhancing factors may be added to the growth medium when cultures are less than 50% confluent.
- conditionally-immortalized T-MSC and/or T-MSC-DL cell lines can be passaged using standard techniques, such as by trypsinization, when 80-95% confluent. Up to approximately the twentieth passage, it is, in some embodiments, beneficial to maintain selection (by, for example, the addition of G418 for cells containing a neomycin resistance gene). Cells may also be frozen in liquid nitrogen for long-term storage.
- Clonal cell lines can be isolated from a conditionally-immortalized human T-MSC cell line prepared as described above. In general, such clonal cell lines may be isolated using standard techniques, such as by limiting dilution or using cloning rings, and expanded. Clonal cell lines may generally be fed and passaged as described above.
- Conditionally-immortalized human T-MSC cell lines which may, but need not, be clonal, may generally be induced to differentiate by suppressing the production and/or activity of the growth-promoting protein under culture conditions that facilitate differentiation.
- the conditions e.g., temperature or composition of medium
- differentiation can be achieved by the addition of tetracycline to suppress transcription of the growth-promoting gene. In general, 1 ⁇ g/mL tetracycline for 4-5 days is sufficient to initiate differentiation.
- additional agents may be included in the growth medium.
- the T-MSC and/or T-MSC-DL can be used in assays to determine the influence of culture conditions, environmental factors, molecules (e.g., biomolecules, small inorganic molecules, etc.) and the like on stem cell proliferation, expansion, and/or differentiation, compared to T-MSC and/or T-MSC-DL not exposed to such conditions.
- environmental factors e.g., biomolecules, small inorganic molecules, etc.
- molecules e.g., biomolecules, small inorganic molecules, etc.
- the T-MSC and/or T-MSC-DL are assayed for changes in proliferation, expansion or differentiation upon contact with a molecule.
- the invention provides a method of identifying a compound that modulates the proliferation of a plurality of T-MSC and/or T-MSC-DL, comprising contacting the plurality of T-MSC and/or T-MSC-DL with the compound under conditions that allow proliferation, wherein if the compound causes a detectable change in proliferation of the T-MSC and/or T-MSC-DL compared to a plurality of T-MSC and/or T-MSC-DL not contacted with the compound, the compound is identified as a compound that modulates proliferation of T-MSC and/or T-MSC-DL.
- the compound is identified as an inhibitor of proliferation.
- the compound is identified as an enhancer of proliferation.
- the invention provides a method of identifying a compound that modulates the expansion of a plurality of T-MSC and/or T-MSC-DL, comprising contacting the plurality of T-MSC and/or T-MSC-DL with the compound under conditions that allow expansion, wherein if the compound causes a detectable change in expansion of the plurality of T-MSC and/or T-MSC-DL compared to a plurality of T-MSC and/or T-MSC-DL not contacted with the compound, the compound is identified as a compound that modulates expansion of T-MSC and/or T-MSC-DL.
- the compound is identified as an inhibitor of expansion.
- the compound is identified as an enhancer of expansion.
- a method of identifying a compound that modulates the differentiation of a T-MSC and/or T-MSC-DL comprising contacting a T-MSC and/or T-MSC-DL with a compound under conditions that allow differentiation, wherein if the compound causes a detectable change in differentiation of the T-MSC and/or T-MSC-DL compared to a T-MSC and/or T-MSC-DL not contacted with the compound, the compound is identified as a compound that modulates proliferation of T-MSC and/or T-MSC-DL.
- the compound is identified as an inhibitor of differentiation.
- the compound is identified as an enhancer of differentiation.
- BM-MSCs Mesenchymal stem cells derived from bone marrow
- MS multiple sclerosis
- the novel method for generating mesenchymal stem cells from embryonic stem cells set forth herein, and the novel T-MSC generated from this method, provide new therapies for T cell related autoimmune disease, in particular multiple sclerosis.
- T-MSC given to mice pre-onset of EAE remarkably attenuated the disease score of these animals.
- the decrease in score was accompanied by decreased demyelination, T cell infiltration, and microglial responses in the central nervous system, as well as repressed immune cell proliferation, and differentiation in vitro.
- T-MSC have both prophylactic and therapeutic effects on the disease.
- the immunosuppressive activity of the T-MSC account for the prophylactic effect on the disease as irradiated T-MSC, which are unlikely to replace damage myelin, and were also effective in reducing disease score. In one embodiment, irradiation does not shorten the lifespan of the T-MSC.
- the therapeutic effect of the T-MSC involve immunosuppression as well as neural repair and regeneration.
- EAE mice treated with T-MSC have much fewer inflammatory T cells in their central nervous system and less T cells infiltrating the spinal cord.
- the T-MSC can reduce damage and symptoms caused by inflammatory T cells, making them useful in therapy and prevention of all T cell related autoimmune diseases.
- T-MSC also decreased demyelination.
- T-MSCs The characteristics of the T-MSC are all in marked contrast to the results obtained with bone marrow-derived mesenchymal stem cells.
- BM-MSCs only suppressed mouse T cell proliferation in response to anti-CD3 stimuli at low doses in vitro, and even enhanced Th1 and Th17 cell infiltration into the CNS.
- Autoreactive effector CD4 T cells have been associated with the pathogenesis of several autoimmune disorders, including multiple sclerosis, Crohn's disease, and rheumatoid arthritis. These CD4+ T cells include Th1 and Th17 cells.
- CD4+ T cells include Th1 and Th17 cells.
- BM-MSC and T-MSC have very similar global transcriptional profiles, but differentially express some pro- and anti-inflammatory factors.
- IL-6 is expressed at a much higher level in BM-MSCs than T-MSC.
- IL-6 expression in BM-MSCs was double upon IFN ⁇ stimulation in vitro, whereas it remained low in the T-MSC.
- IL-6 is a pleiotropic cytokine involved in crosstalk between hematopoietic/immune cells and stromal cells, including the onset and resolution of inflammation. IL-6 can promote the differentiation and functions of Th17 cells (Dong, 2008). The levels of IL-6 are elevated in mononuclear cells in blood and in brain tissue from MS patients (Patanella et al., 2010), as well as in serum in aged humans (Sethe et al. 2006). Mice lacking IL-6 receptor a at the time of T cell priming are resistant to EAE (Leech et al., 2012).
- IL-6 has become a promising therapeutic target for treatment of MS.
- MS Immunomodulation of peripheral T cell activity and regeneration and repair of neural cells are widely recognized modes of MSC therapeutic action in MS and in EAE (Al Jumah and Abumaree, 2012; Auletta et al., 2012; Morando et al., 2012).
- long-term functional neuronal recovery and sustained disease remission in MS needs repair of the damaged blood-brain barrier and blood-spinal cord barrier (Correale and Villa, 2007; Minagar et al., 2012).
- MS is an inflammatory, neurodegenerative, and vascular disease, and effective treatment need to target all three component.
- T-MSC The characteristics of T-MSC make them uniquely suited for the treatment of T cell related autoimmune diseases especially multiple sclerosis.
- the T-MSC can decrease disease scores of EAE mice, but also decrease demyelination and decrease Th1 and Th17 proliferation, and have low expression of IL-6, These latter two characteristics make them suitable to treat other T cell related autoimmune diseases.
- the ability of the T-MSC to cross the blood-brain barrier and blood-spinal cord barrier makes them superior as a treatment and prevention of multiple sclerosis and other autoimmune diseases related to the central nervous system.
- T cell related autoimmune diseases would include but are not limited to multiple sclerosis, inflammatory bowel disease, Crohn's disease, graft versus host disease, systemic lupus erythematosus, and rheumatoid arthritis.
- the subject is preferably a mammal, and most preferably human.
- the solution, cell culture or pharmaceutical preparation can comprise irradiated or non-irradiated T-MSC.
- the solution, cell culture or pharmaceutical preparation is preferably administered by injection.
- Multiple sclerosis has been categorized into four subtypes: relapsing/remitting; secondary progressive; primary progressive; and progressive relapsing.
- the relapsing/remitting subtype is characterized by unpredictable relapses followed by long periods of remission.
- Secondary progressive MS often happens in individuals who start with relapsing/remitting MS and then have a progressive decline with no periods of remission.
- Primary progressive MS describes a small number of individuals who never have remission after their initial symptoms. Individuals with progressive relapsing, the least common subtype, have a steady neurologic decline, and suffer from acute attacks.
- a method for treating or preventing multiple sclerosis disease in a subject in need thereof comprising the steps of administering a therapeutically effective amount of solution, cell culture or pharmaceutical preparation comprising T-MSC as described in the preceding paragraphs, to the subject in need thereof.
- the multiple sclerosis can be relapsing/remitting multiple sclerosis, progressive/relapsing multiple sclerosis, primary multiple sclerosis, or secondary multiple sclerosis.
- the subject is preferably a mammal, and most preferably human.
- the solution, cell culture or pharmaceutical preparation can comprise irradiated or non-irradiated T-ASC.
- the solution, cell culture or pharmaceutical preparation is preferably administered by injection.
- Multiple sclerosis manifests in a variety of symptoms including sensory disturbance of the limbs, optic nerve dysfunction, pyramidal tract dysfunction, bladder dysfunction, bowel dysfunction, sexual dysfunction, ataxia and diplopia attacks.
- a further embodiment of the present invention is a method of treating multiple sclerosis comprising the steps of administering a therapeutically effective amount of solution, cell culture or pharmaceutical preparation comprising T-MSC, to the subject in need thereof, wherein there is detectable improvement in at least one of these symptoms, at least two of these symptoms, at least four of these symptoms, at least five of these symptoms or all of these symptoms.
- the Expanded Disability Status Scale is the most commonly used rating scale to evaluate the clinical status of patients with multiple sclerosis. It measures disability along several separate parameters: strength, sensation, brainstem functions (speech and swallowing), coordination, vision, cognition, and bowel/bladder continence. It is a well-accepted measure of disability in MS and it is not particularly difficult or time consuming to perform.
- the EDSS quantifies disability in eight Functional Systems (FS) and allows neurologists to assign a Functional System Score (FSS) in each of these (Kurtzke 1983).
- the EDSS steps 1.0 to 4.5 refer to people with multiple sclerosis who are fully ambulatory.
- EDSS steps 5.0 to 9.5 are defined by the impairment to ambulation.
- the clinical meaning of each possible result is the following:
- a method for treating multiple sclerosis disease in a subject in need thereof comprising the steps of administering a therapeutically effective amount of solution, cell culture or pharmaceutical preparation comprising T-MSC, to the subject in need thereof wherein the subject demonstrates improvement on the Expanded Disability Status Scale of at least one point, and preferably at least two points.
- fingolimod adrenocorticotropic hormone (ACTH)
- methylprednisolone dexamethasone
- IFN ⁇ -1a IFN-1b
- gliatriamer acetate cyclophosphamide
- methotrexate methotrexate
- azathioprine cladribine
- cyclosporine mitoxantrone
- sulfasalazine sulfasalazine
- the method of the present invention can further comprise the administration of one or more additional therapeutic agents to the subject, including but not limited to, fingolimod, adrenocorticotropic hormone (ACTH), methylprednisolone, dexamethasone, IFN ⁇ -1a, IFN-1b, gliatriamer acetate, cyclophosphamide, methotrexate, azathioprine, cladribine, cyclosporine, mitoxantrone, and sulfasalazine.
- these additional therapeutic agents can be administered prior to, after, or at the same time as the T-MSC, or can be conjugated or attached to the T-MSC.
- T-MSC also have strong suppressive function on B cells, dendritic cells, neutrophils, NK cells, macrophage and other inflammatory and immunity related functions.
- T cell, B cell, inflammatory and/or innate immunity related autoimmune diseases that can all be treated by the disclosed T-MSC include, but are not limited to, Alopecia Areata, Ankosing Spondylitis, Antiphospholipid Syndrome, Autoimmune Addison's Disease, Autoimmune Hemolytic Anemia, Autoimmune Hepatitis, Autoimmune Inner Ear Disease, Autoimmune Lymphoproliferative Syndrome (ALPS), Autoimmune Thrombocytopenic Purpura (ATP), Behcet's Disease, Bullous Pemphigoid, Cardiomyopathy, Celiac Sprue-Dermatitis, Chronic Fatigue Syndrome Immune Deficiency Syndrome (CFIDS), Chronic Inflammatory Demyelinating Polyneuropathy, Chronic Obstructive Pulmonary Disease (COPD), Cica
- Pernicious Anemia Polyarteritis Nodosa, Polychondritis, Polyglancular Syndromes, Polymyalgia Rheumatica, Polymyositis and Dermatomyositis, Primary Agammaglobulinemia, Primary Biliary Cirrhosis, Psoriasis, Raynaud's Phenomenon, Reiter's Syndrome, Rheumatic Fever, Rheumatoid Arthritis, Sarcoidosis, Scleroderma, Sjogren's Syndrome, Stiff-Man Syndrome, Takayasu Arteritis, Temporal Arteritis/Giant Cell Arteritis. Ulcerative Colitis, Uveitis, Vasculitis, Vitiligo, Wegener's Granulomatosis, or any acute or chronic inflammation related to burning, surgery, injury, and allergy.
- T-MSC can be differentiated into multiple cell lineages including, but not limited to, adipocytes, myoblast cells, neural lineage cells, osteoblast cells, fibroblasts, chondrocytes, and stromal cells.
- T-MSC-DL T-MSC-DL
- T-MSC-DL tissue engineering, tissue repair, tissue regeneration purposes like, joint healing, tendon healing, connective tissue healing, neural lineage tissue and cells healing, fat tissue healing, bone healing, skin healing, other wound healing, muscle healing, cartilage healing, smooth muscle healing, myocardiac healing, epithelia tissue healing, ligament healing, stroma repair, etc.
- T-MSC can be differentiated into neural lineage cells, which can be used to treat many neural disease including but not limited to Agraphia, Alzheimer's disease, Amyotrophic lateral sclerosis, Aphasia, Apraxia, Arachnoiditis, Ataxia Telangiectasia, Attention deficit hyperactivity disorder, Auditory processing disorder, Autism, Alcoholism, Asperger's syndrome, Bipolar disorder, Bell's palsy, Brachial plexus injury, Brain damage, Brain injury, Brain tumor, Canavan disease, Capgras, Causalgia, Central pain syndrome, Central pontine myelinolysis, Centronuclear myopathy, Cephalic disorder, Cerebral aneurysm, Cerebral arteriosclerosis, Cerebral atrophy, Cerebral gigantism, Cerebral palsy.
- Agraphia Alzheimer's disease, Amyotrophic lateral sclerosis, Aphasia, Apraxia, Arachnoiditis, Ataxia Telangiec
- Cerebral vasculitis Cervical spinal stenosis Charcot-Marie-Tooth disease.
- Chiari malformation Chorea, Chronic fatigue syndrome, Chronic inflammatory demyelinating polyneuropathy (CIDP), Chronic pain, Coffin-Lowry syndrome, Coma, Complex regional pain syndrome, Compression neuropathy, Congenital facial diplegia, orticobasal degeneration, Cranial arteritis, Craniosynostosis, Creutzfeldt-Jakob disease, Cumulative trauma disorders, Cushing's syndrome, Cytomegalic inclusion body disease (CIBD), Cytomegalovirus Infection, Dandy-Walker syndrome, Dawson disease, De Morsier's syndrome, Dejerine-Klumpke palsy.
- CIBD Cytomegalic inclusion body disease
- Dejerine-Sottas disease Delayed sleep phase syndrome, Dementia, Dermatomyositis, Developmental dyspraxia, Diabetic neuropathy, Diffuse sclerosis, Downs syndrome, Dravet syndrome, Dysautonomia, Dyscalculia, Dysgraphia, Dyslexia, Dystonia, Empty sella syndrome, Encephalitis, Encephalocele, Encephalotrigeminal angiomatosis, Encopresis, Epilepsy, Erb's palsy, Erythromelalgia, Essential tremor, Fabry's disease, Fahr's syndrome, Fainting, Familial spastic paralysis, Febrile seizures, Fisher syndrome, Friedreich's ataxia, Fibromyalgia, Foville's syndrome, Fetal Alcohol Effect, Gaucher's disease, Gerstmann's syndrome.
- Giant cell arteritis Giant cell inclusion disease, Globoid Cell Leukodystrophy, Gray matter heterotopia, Guillain-Barré syndrome, HTLV-1 associated myelopathy, Hallervorden-Spatz disease, Head injury, Headache, Hemifacial Spasm, Hereditary Spastic Paraplegia, Heredopathia atactica polyneuritiformis, Herpes zoster oticus, Herpes zoster, Hirayama syndrome, Holoprosencephaly, Huntington's disease, Hydranencephaly, Hydrocephalus, Hypercortisolism, Hypoxia, Immune-Mediated encephalomyelitis, Inclusion body myositis, Incontinentia pigmenti, Infantile phytanic acid storage disease, Infantile Refsum disease, Infantile spasms, Inflammatory myopathy, Intracranial cyst, Intracranial hypertension, Joubert syndrome, Karak syndrome, Kearns-Sayre syndrome, Kennedy
- a further embodiment of the present invention is a method of using T-MSC for delivery of agents through the blood brain barrier and/or the blood spinal cord barrier, by attaching or conjugating the agent to the T-MSC to form a complex; and administering the T-MSC-agent complex to a subject, wherein the T-MSC cross the blood-brain and/or the blood-spinal cord barrier and deliver the agent to the central nervous system.
- the T-MSC may be in the form of a single cell, a cell culture, a solution or a pharmaceutical preparation. Agents would include but are not limited to chemicals, drugs, proteins, DNA, RNA, antibodies, and small molecules.
- a further embodiment of the present invention is a delivery system for the delivery of agents through the blood brain barrier and/or the blood spinal cord barrier comprising T-MSC and an agent conjugated or attached to the T-MSC.
- the ability to permeate the blood-brain barrier and the blood-spinal cord barrier would be useful in the treatment and prevention of diseases including but not limited to neurological disorders, multiple sclerosis, cancer, Parkinson's Disease, Alzheimer's Disease, Huntington's Disease, meningitis, encephalitis, rabies, epilepsy, dementia, Lyme's Disease, stroke, and amyotrophic lateral sclerosis, as well as brain and spinal cord injury.
- a subject in need thereof would have a disease or be at risk for a disease in which the blood-brain barrier and/or blood-spinal cord barrier is involved.
- a further embodiment of the present invention is a method of eating a disease or injury, by attaching or conjugating an agent to the T-MSC to form a complex; and administering the T-MSC-agent complex to a subject in need thereof, wherein the T-MSC cross the blood-brain and/or the blood-spinal cord barrier and deliver the agent to the central nervous system, and the agent is used as a treatment or prevention of the disease or injury of the subject.
- the T-MSC have strong migration ability and infiltration ability, it can also been used as carrier for tumor/cancer therapy to carry anti-tumor drugs and proteins.
- the T-MSC may be in the form of a single cell, a cell culture, a solution or a pharmaceutical preparation.
- Agents include, but are not limited to, chemicals, drugs, proteins, DNA, RNA, micro-RNA, non-coding RNA, antibodies, small molecules and/or nano particles.
- Agents that are useful in the treatment and prevention of diseases include, but ARE not limited to, antibiotics, anti-viral agents, anti-fungal agents, steroids, chemotherapeutics, anti-inflammatories, cytokines, and/or synthetic peptides.
- Proteins and peptides would also be useful to conjugate to the T-MSC and would include erythropoietin (EPO), anti-beta-amyloid peptides, tissue plasminogen activator (TPA), granulocyte colony stimulating factor (G-CSF), interferon (IFN), growth factor/hormone, anti-VEGF peptides, anti-TNF peptides, NGF, HGF, IL-2, CX3CL1, GCV, CPT-11, cytosine deaminase, HSV-TK, carboxyesterase, oncolytic virus. TSP-1, TRAIL, FASL, IL-10, and TGFb. Proteins and peptides that bind to particular receptors and block these receptors would also be useful and are contemplated by the current invention to be attached to the T-MSCs.
- EPO erythropoietin
- TPA tissue plasminogen activator
- G-CSF granulocyte colony stimulating
- DNA and RNA that coded for therapeutic proteins and peptide would also be useful 1 conjugate to the T-MSC for delivery across the blood-brain barrier and/or the blood-spinal cord barrier.
- antibody and “antibodies” include polyclonal antibodies, monoclonal antibodies, humanized or chimeric antibodies, single chain Fv antibody fragments, Fab fragments, and F(ab′) 2 fragments.
- Polyclonal antibodies are heterogeneous populations of antibody molecules that are specific for a particular antigen, while monoclonal antibodies are homogeneous populations of antibodies to a particular epitope contained within an antigen.
- Monoclonal antibodies are particularly useful in the present invention.
- Any agent that would block the activation, expression and/or action of a molecule or the receptor of the molecule in the pathway related to any disease in which crossing the blood-brain barrier and/or blood-spinal cord barrier is useful could be attached or conjugated to the T-MSCs.
- agents include but are not limited to chemicals, phytochemicals, pharmaceuticals, biologics, small organic molecules, antibodies, nucleic acids, peptides, and proteins.
- Inhibiting a pathway can also be effected using “decoy” molecules which mimic the region of a target molecule in the pathway binds and activates.
- the activating molecule would bind to the decoy instead of the target, and activation could not occur.
- Inhibition can also be effected by the use of “dominantly interfering” molecule, or one in which the binding portion of activating molecule is retained but the molecule is truncated so that the activating domain is lacking. These molecules would bind to receptors in the pathway but be unproductive and block the receptors from binding to the activating molecule.
- decoy molecules and dominantly interfering molecule can be manufactured by methods known in the art, and attached or conjugated to the T-MSC for delivery across the blood-brain or blood-spinal cord barrier.
- a method for delivery of agents across the blood-brain and/or blood-spinal cord barrier is also useful for diagnostic agents, including but not limited to chemicals, antibodies, peptides, proteins, DNA, and RNA.
- agents in order to be useful for diagnosis must have a means of being visualized and/or quantified.
- Such means include, but are not limited to, fluorescence, biomarkers, dyes, radioactive isotypes labels and/or nanoparticles.
- Such a method for delivery and a delivery system would be useful for the diagnosis of neurological disorders, multiple sclerosis, cancer, Parkinson's Disease, Alzheimer's Disease, Huntington's Disease, meningitis, encephalitis, rabies, epilepsy, dementia, Lyme's Disease, stoke, and amyotrophic lateral sclerosis, as well as brain and spinal cord injury.
- a further embodiment of the present invention is a method of diagnosing a disease or injury, by attaching or conjugating the agent to the T-MSC to form a complex; and administering the T-MSC-agent complex to a subject in which a disease is suspected, wherein the T-MSC cross the blood-brain and/or the blood-spinal cord barrier and deliver the agent to the central nervous system.
- the T-MSC may be in the form of a single cell, a cell culture, a solution or a pharmaceutical preparation.
- Agents would include but are not limited to chemicals, drugs, proteins, DNA, RNA, antibodies, and small molecules.
- T-MSC T-MSC
- Agents no matter the type and whether for treatment, prevention, or diagnosis, can be conjugated or attached to the T-MSC by any method known in the art including, but not limited to, synthetic extracellular matrix, alginate-poly-L-Lysine encapsulate and/or container.
- large scale production at industrial level of manufacturing is included in the present disclosure, methods of which are well known in the art.
- the large scale production includes the use of a Hyper-STACK 2D culture system and/or a Microcarrier 3D bioreactor.
- CT2 hESC line derived at the University of Connecticut Stem Cell Core was cultured for two passages on irradiated mouse embryonic fibroblast (MEF) as feeders.
- the hESCs were then split on plates coated with Matrigel (BD Biosciences, San Jose, Calif.) and cultured in mTeSR1 (Ludwig et al., 2006) (Stem Cell Technologies, Vancouver, Canada).
- ESI-017, ESI-051, ESI-053, ESI-049, and ESI-35 human embryonic stem cells were purchased from BioTime, Inc. (CA).
- hESCs at ⁇ 80% confluency on the Matrigel-coated plates were digested with Dispase at 1 mg/ml for 5-10 min. The cells were then washed with mTESR1 medium once and split as small clumps or single cells onto Matrigel-coated plate and cultured in mTeSR1 for 12 hr. Then the culture medium was replaced by a trophoblast-formation medium containing BMP4 (2-100 ng/ml), or optional A83-01 (0.1-1 ⁇ M).
- the cells After culture for 48-72 hr, the cells changed from hESC-like morphology into trophoblast-like morphology featured by flat, enlarged cell size, small nuclear/cytosol ratio, and diffuse cell borders.
- the cells were digested with Tryp-LE and washed with MSC growth medium (alpha-MEM containing 20% fetal bovine serum and non-essential amino acids).
- MSC growth medium alpha-MEM containing 20% fetal bovine serum and non-essential amino acids
- the cells were then plated onto Matrigel-coated plates at a density of 5,000 cells/cm 2 .
- the medium was changed after 24 hr, and then changed every 3-4 days. After 6 more days, the cells were differentiated into spindle-like cells similar to the morphology of typical MSCs. Morphology of Day2 Trophablast are shown in FIG. 2A , morphology of Day 5 pre-T-MSC are shown in FIG. 2B , morphology of T-MSC are
- CT2 hESC cells were differentiated into EB cells and then enriched for HB as previously described (Lu et al., 2008); Lu et al, 2007)).
- 50-80% confluent hEC cell on the Matrigel plate were digested with Dispose (1 mg/mi for 5 to 10 minutes) and then washed with EB formation basal medium, HPGM (Lonza, Walksville, Md.), or STEMLINE I/II Hematopoietic Stell Cell Expansion Medium (Sigma, St. Louis, Mo.), or StemSpan H3000 (Stem Cell Technologies, Vancouver, Canada), or IMDM with 10% FBS, or DMEDM/F12 with 10% FBS.
- ES formation medium supplemented with 50 ng/ml of VEGF (Peprotech) and 50 ng/ml of BMP4 (Stemgent) for 48 hours on ultra-low plate at a density of about 2-3 million cells/ml. After 48 hours, half the culture medium was replaced with fresh EB formation medium plus 25-50 ng/ml of bFGF.
- EB cells formed in the medium were harvested and dissociated into single cells with TrypLE (Invitrogen) at 37° C. for 2-3 minutes. Cells were washed and resuspended at 1-5 million cells/ml in EB formation basal medium. The single cell suspension was then mixed at 1:10 with Hemangioblast Growth Medium (Stem Cell Technologies, Vancouver, Canada).
- BGM Blast cell growth medium
- the mixtures were vortexed and plated onto ultralow plates by passing through a 16 G needle and cultured for 5-9 days at 37° C. with 5% CO 2 .
- MSC medium containing: 1) 10-20% FBS in alpha-MEM (Invitrogen) or 2) 10-20% KOSR alpha-MEM, 3) 10-20% FBS DMEM high-glucose, or 4) 10-20% KOSR DMEM high-glucose, and cultured on either Matrigel, gelatin, vitronectin, laminin, fibronectin, or collagen I coated plates at a density of 100-5,000 cell/cm 2 . The medium was changed after 24 hours and refreshed every 2-4 days. After 6-12 days the cogs gradually differentiated into spindle-like cells similar to typical MSCs.
- T-MSC that have superior efficiency, yield and purity.
- T-MSC already generated >90% purify of MSC with 10 fold cell number increase, whereas other methods either did not have any MSC or only had very low purity of MSCs.
- T-MSC already had 3000 fold expansion with >99% purity of MSCs, whereas the other methods only expanded 20 fold at most.
- 0.1 million of hESC generated 50 billion of T-MSC, that is a 500,000 fold expansion of the original hESCs, whereas the other methods only expanded 3000 fold at most.
- T-MSC cells obtained in Example 1 were further analyzed using flow cytometry immunofluorescence staining.
- Flow cytometry staining was used to characterize the T-MSCs.
- Cells were washed and blocked with 2% BSA in PBS, and stained with antibodies for various cell surface markers Trop-2 (Trp-2, eBioscience), CD31, CD34, CD29, CD73, C90, C105, CD44, CD45, CD146, CD166, HLA-ABC, HLA-DR, HLA-G (BD Bioscience or eBioscience) by following the manufacturers' instructions.
- Data were collected on FACS LSR II Flow Cytometer using FACSDiva software (BD Bioscience). Post-acquisition analysis was performed with the FlowJo software (Treestar).
- the attached cells obtained from Day 2 trophoblast, Day 5 pre-T-MSC and Day 9 T-MSC were stained with CD73 and Trop-2.
- the trophoblast cells only expressed high levels of Trop-2 (greater than 95%), but less than 1% of CD73 ( FIG. 3A ); the pre-T-MSC at day 5 has more than 50% of cells express both Trop-2 and CD73, 40% of the cells express only CD73 ( FIG. 3B ); T-MSC at day 9 of hESC differentiation has less than 1% of the cells express Trop-2, and 99% of calls express only CD73 ( FIG. 3C ).
- T-MSC Further characterization of the T-MSC by FACS staining of multiple cell surface makers show T-MSC express ⁇ 3% of Trop-2, 1% of CD31, CD34, >99% of CD73, >95% of CD90, >90% of CD105, >99% of CD44 and >80% of CD29 ( FIGS. 4 A-H).
- TMSCs have a Stronger Inhibition on T Cell Functions In Vitro than BM-MSC
- hEs-MSCs and BM-MSCs were compared for their ability to inhibit T cell proliferation in vitro following antigen stimulation.
- BM-MSCs were derived from BM mononuclear cells (BMMNCs) or obtained from AllCells, Inc. (Alameda) and Lonza (Basel, Switzerland) BMMNCs.
- BMMNCs were thawed and plated onto tissue culture plastic dishes in DMEM+20% FBS. Adherent cells began to appear within the first 4-5 days and fed every 3 days until day ⁇ 10-12, when cells were harvested and replated at 3,000-5,000 cells/cm 2 .
- the in vitro assay for T cell proliferation was performed using lymphocytes isolated from mouse peripheral lymph nodes. These lymphocytes were labeled with 5 ⁇ M of carboxyfluorescein succinimidyl ester (CFSE) to track their proliferation by monitoring CFSE dilution in their daughter cells, for 10 minutes at 37° C.
- CFSE carboxyfluorescein succinimidyl ester
- 10,000 T-MSCs or BM-MSCs were mixed with 100,000 lymphocytes per well in a 96-well plate, and the cells were stimulated for proliferation with plate-bound anti-CD3 (at 0.3, 1 ⁇ g/ml) and soluble anti-CD28 antibodies (1 ⁇ g/ml, eBioscience, CA).
- the cells were collected 3 days after the stimulation, followed by FACS staining with anti-CD4 and anti-CD8 antibodies (BD Bioscience, CA).
- CFSE dilution was gated on CD4+ and CD8+ T cells, respectively.
- T-MSCs inhibited the proliferation of mouse CD4+ and C8+ T cells when stimulated with anti-CD3 antibody at 0.3 and 1 ⁇ g/ml, whereas BM-MSC only did so when the T cells were stimulated with anti-CD3 antibody at low doses, i.e., 0.3 ⁇ g/ml ( FIG. 5 )
- BM-MSCs can attenuate the disease progression of the mouse model of multiple sclerosis.
- EAE experimental autoimmune encephalomyelitis
- mice The mouse EAE model was induced as previously described (Stromnes and Goverman, 2006). C57BL/6 mice were subcutaneously injected with a mixture of myelin oligodendrocyte glycoprotein peptide 35-55 (MOG 35-55 ), Freund's adjuvant, and pertussis toxin contained in the EAE induction Kit (Hooke Laboratories, Inc, MA. (Cat. #EK-0114)) following the manufacturer's protocol and as described in Ge et al. (2012).
- MOG 35-55 myelin oligodendrocyte glycoprotein peptide 35-55
- Freund's adjuvant a mixture of myelin oligodendrocyte glycoprotein peptide 35-55
- pertussis toxin contained in the EAE induction Kit (Hooke Laboratories, Inc, MA. (Cat. #EK-0114)) following the manufacturer's protocol and as described in Ge et al. (2012).
- BM-MSC, T-MSC or hES-MSC(SB) at 10 6 cells/mouse or PBS (a vehicle control) was intraperitoneal (i.p.) injected on day 6 (for pre-onset) or 18 (for post-onset) after the immunization.
- the disease score was monitored on the mice every day for up to 31 days.
- the disease scoring system is as follows:
- the T-MSCs significantly attenuated the daily disease scores when injected at 6 days or pre-onset of disease, showing a prophylactic effect of the T-MSCs.
- Mice injected with BM-MSC did not attenuate the disease score, hES-MSC(SB) had a partial effect in attenuating the disease score but not as good as T-MSC.
- STEMPRO Osteogenesis and Chondrogenesis Differentiation Kits were used for osteogenesis and chondrogenesis, and the Hyclone AdvanceSTEM Adipogenic Differentiation kit (Thermo Scientific, Logan, Utah) for adipogenesis, following the manufacturers' instructions.
- T-MSC had good potency in differentiating into all the 3 lineages of mesoderm tissues, osteoblasts, chondrocyte and adipocytes.
- T-MSC can be used as source for tissue regeneration, tissue engineering and tissue repair.
- T-3SC are Different from hES-HB-MSC and BM-MSC
- Microarray analysis was performed to compare the gene expression profile of T-MSC, hES-HB-MSC and BM-MSCs.
- RNA of hES-MSC at passages 2-4 or BM-MSC at passage 3 were harvested with Trizol (Invitrogen, CA) following the manufacturer's protocol.
- Trizol Invitrogen, CA
- the HumanHT-12 v4 Expression BeadChip (Illumina, San Diego, Calif.) was used to analyze the gene expression profile of the cells. Data were analyzed using Genome Studio V2011.1. Two BM-MSC cell lines from different sources were used, and two hES-MSC cell lines, derived from H9 and MA09, were used.
- T-MSC may play different roles in immunosuppression and tissue regeneration.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Developmental Biology & Embryology (AREA)
- Biomedical Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Cell Biology (AREA)
- Immunology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Physical Education & Sports Medicine (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Rheumatology (AREA)
- Virology (AREA)
- Epidemiology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Reproductive Health (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Hematology (AREA)
- Neurology (AREA)
- Dermatology (AREA)
- Gynecology & Obstetrics (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Neurosurgery (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
The disclosure provided herein relates generally to mesenchymal-like stem cells “hES-T-MiSC” or “T-MSC” and the method of producing the stem cells. The method comprises culturing embryonic stem cells under conditions that the embryonic stem cells develop through an intermediate differentiation of trophoblasts, and culturing the differentiated trophoblasts to hES-T-MSC or T-MSC, T-MSC derived cell and cell lineages “T-MSC-DL” are also described. Disclosed also herein are solutions and pharmaceutical compositions comprising the T-MSC and/or T-MSC-DL, methods of making the T-MSC and T-MSC-DL, and methods of using the T-MSC and T-MSC-DL for treatment and prevention of diseases, specifically, T-MSC and T-MSC-DL are used as immunosuppressive agents to treat multiple sclerosis and autoimmune diseases.
Description
- The present application claims priority to U.S. Provisional Application Ser. No. 61/670,192, filed Jul. 11, 2012 and U.S. Provisional Application Ser. No. 61/684,509, filed Aug. 17, 2012, which are hereby incorporated by reference in their entireties.
- The disclosure provided herein relates generally to mesenchymal-like stem cells “hES-T-MSC” or “T-MSC” and the method of producing the stem cells. The method comprises culturing embryonic stem cells under conditions that the embryonic stem cells develop through an intermediate differentiation of trophoblasts, and differentiating trophoblasts into hES-T-MSC or T-MSC. Disclosed herein are the T-MSC, solutions and pharmaceutical compositions comprising the T-MSC, methods of making the T-MSC, methods of using the T-MSC for treatment and prevention of diseases, specifically, T-MSC are used as an immunosuppressive agent to treat multiple sclerosis and other autoimmune diseases, for tissue regeneration/repair uses, and methods of using the T-MSC for the delivery of agents across the blood brain barrier and the blood spinal cord barrier. Also disclosed herein are methods of using T-MSCs to modulate the immune system, inhibit immune response to an individual's self-antigen and repair damaged central nervous systems. Compositions comprising T-MSCs for use in immunomodulation are disclosed herein, as are methods of providing modified T-MSC with improved immunosuppressive function through modified gene expression.
- Human mesenchymal stem/stromal cells (MSCs) have been widely used for immune system regulation and tissue repair. Human embryonic stem cells (hESCs) can be used as a reliable source for generating high-quality human MSCs. There are many methods to differentiate hESCs into MSCs. However, current methods are not able to conduct such differentiation in an efficient manner to produce a high yield of high purity MSCs.
- Mesenchymal stem cells (MSCs) derived from adult mouse or human tissues such as bone marrow, umbilical cord and fat tissue are multipotent, i.e., capable of generating a variety of mature cell lineages including adipocytes, chondrocytes, osteoblast cells, neural lineage cells. myoblast, stromal cells and fibroblast, etc. These technologies have been well characterized and patented. For example, see Caplan et al., U.S. Pat. No. 5,486,359 (human mesenchymal stem cells).
- However, the currently available adult tissue-derived MSCs have several pitfalls. First, the limited sources and varying quality of the donor tissues such as the bone marrow restrict the study and application of the MSCs and prevent the standardization of the MSCs as a medical product for large-scale clinical use. Second, the MSCs obtained from the adult tissues are highly mixed populations of cells, in which only a small portion of the cells have strong immunosuppressive effect. To obtain enough cell numbers for clinical use, in vitro expansion is necessary, which can decrease the immunosuppressive and homing abilities of MSCs (Javazon et al., 2004). Third, there are safety issues regarding to the use of adult-derived MSCs including malignant transformation (Wong, 2011) and potential transmission of infectious pathogens from donors.
- To overcome these pitfalls, scientists have attempted to derive MSCs from hESCs via various methods. These methods involve either co-culture with the mouse OP9 cell line or handpicking plus the use of multiple cytokines and chemicals (Barbei et al., 2005; Chen et al., 2012; Uu et al., 2012; Sanchez et al., 2011). Recently, a TGFβ signaling inhibitor SB431542 has been used to differentiate hESCs into MSCs, which simplifies the procedures and improves the efficiency (Chen et al., 2012), but the yield and purity are quite low (see the below-described comparison tests.). In 2010, the inventors and Advanced Cell Technology developed another method to derive MSC from hemangioblast, which involved the use of many expensive cytokines and methylcellulose medium, but the derivation efficiency is also low using this method.
- Currently known methods for differentiation of hESCs into MSCs are each characterized as having one or more serious shortcomings and weaknesses: Differentiation of MSCs from hESCs co-cultured with the OP9 stromal cells has the disadvantages of being time consuming, producing cells of low yield, low purity, and using animal feeder cells and undefined culture conditions (Barbei et al., 2005). Differentiation from outgrowing cells around replated embryoid bodies formed by hESCs has the disadvantages of being time consuming, producing cells in low yield, using undefined culture condition, and being an expensive method (Olivier et al., 2006). Differentiation from hESCs cultured on collagen-coated plates has the disadvantages of very low yield, undefined culture conditions, and being time consuming (Liu et al., 2012). Differentiation with hESCs treated with inhibitors of TGFβ signaling has the disadvantages including low purity of cells (per our tests), low cell yield, time consuming method, and low immunosuppressive effect of the cells that are produced (Chen et al., 2012; Sanchez et al., 2011). Thus, there is a need for an unlimited, safe, highly stable, efficient and consistent source of MSCs to use as a treatment and prophylactic for various diseases.
- Multiple sclerosis (MS) is a chronic autoimmune disease caused by infiltration of peripheral immune cells into the central nervous system (CNS) through damaged blood-brain barer (BBB) or blood-spinal cord barrier (BSCB), which causes inflammation of the myelin sheaths around neuronal axons, and causes demyelination and scarring of the axons (McFarland and Martin (2007)). According to the National Multiple Sclerosis Society of United States, there are more than 70 FDA-approved medications for the treatment of MS, including Avonex (IFNβ-1a). Betaseron (IFNβ-1b), Gilenya (a sphingosine 1-phosphate receptor modulator), Glatiramer acetate (or Copolymer 1), and Tysabri (humanized anti-α-integrin antibody). However, these offer only palliative relief and are associated with serious adverse effects including increased infection, heart attack, stroke, progressive multifocal leukoencephalopathy, arrhythmia, pain, depression, fatigue, macula edema, and erectile dysfunction (Johnston and So (2012); Weber et al. (2012)).
- Transplantation of mesenchymal stromal/stem cells (MSCs) has emerged as a potentially attractive therapy due to their immunomodulatory and neuroregenerative effects (Auletta et al., (2012); Pittenger et al. (1999)) and potential ability to repair the blood-brain barrier (Chao et al. (2009); Mange et al. (2012)). MSCs are multipotent meaning they can generate a variety of cell lineages including adipocyte, chondrocyte, osteoblast cells and neurons. They can be derived from fetal, neonatal, and adult tissues such as the amniotic membrane, umbilical cord, bone marrow, and adipose. MSCs have several unique advantages over current pharmacotherapies, as these cells can serve as carriers of multiple and potentially synergistic therapeutic factors, and can migrate to injured tissues to exert local effects through secretion of mediators and cell-cell contact (Uccelli and Prockop (2010a)). Importantly, MSCs have been found efficacious in the treatment of mice with experimental autoimmune encephalomyelitis (EAE), a well-recognized animal model of MS (Gordon et al., 2008a; Gordon et al. (2010); Morando et al. (2012); Peron et al. (2012); Zappia et al. (2005); Zhang et al. (2005)), as well as MS patients in clinical trials (Connick et al. (2012); Karussis et al. (2010); Mohyeddin Bonab et al. (2007); Yamout et al. (2010)). Xenogeneity does not appear problematic as both mouse and human bone marrow-derived MSC (BM-MSC) can attenuate disease progression of EAE mice (Gordon et al. (2008a); Gordon et al. (2010); Morando et al. (2012); Perona et al. (2012); Zappia et al, (2005); Zhang et al. (2005)). However, varying effects were reported on EAE mice treated with BM-MSC in different reports (Gordon et al. (2008a); Payne et at, (2012); Zappia et al. (2005); Zhang et al, (2005)). The efficacy of BM-MSC on treatment of the disease is questionable.
- There is a strong need for an unlimited, safe, highly stable, efficient and consistent source of MSC to use as a treatment and prophylactic for these diseases as well as others. Disclosed herein are hES-T-MSCs derived from hESCs through a highly efficient differentiation method that meets these needs. Also disclosed herein are a microarray analysis and other analysis, where several key factors are identified that are differentially expressed in hES-T-MSC compared to BM-MSC and other hES-MSC differentiated through other methods.
- Disclosed herein is a method to derive mesenchymal-like stem cells from hESCs through an intermediate step of trophoblast induction. The MSCs derived via this method are called “hES-T-MSC” or “T-MSC”. The T-MSC may be differentiated into cells or cell lineages including, but not limited to, adipocytes, myoblast cells, neuron cells, osteoblast cells, fibroblast, chondrocytes, stromal cells The T-MSC derived cells or cell lineages or called “T-MSC derived lineages” or “T-MSC-DL”.
- Disclosed herein are compositions, including compositions comprising T-MSC and/or T-MSC-DL, having immunosuppressive properties. Described herein are populations of T-MSC and/or T-MSC-DL selected on the basis of their ability to modulate an immune response, and compositions having immunomodulatory properties. As disclosed herein, T-MSC and/or T-MSC-DL have higher immunosuppressive activity compared to bone marrow-derived MSCs.
- Disclosed herein is a method to efficiently produce T-MSC in high purity and high yield. The method has the features of relatively few steps and fewer required differentiation factors than previously reported.
- Disclosed herein are methods of using human embryonic stem cells (hESCs) to derive mesenchymal-like stem cells through an intermediate differentiation of trophoblasts. The MSCs derived from trophoblasts are called hES-T-MSC or T-MSC. The T-MSC can be used to modulate the immune system. For example, they are effective in treating multiple sclerosis by preventing immune cell-caused damage in the central nervous systems.
- Disclosed herein are human embryonic-derived mesenchymal stem cells produced by the methods disclosed herein.
- Disclosed herein are methods to induce differentiation of T-MSC into T-MSC-DL.
- Also disclosed herein is the application of the T-MSC and/or T-MSC-DL to treat multiple sclerosis and other autoimmune diseases in mammals and especially in human subjects.
- It is a further object of the disclosed invention to provide a cell product T-MSC for use in immunomodulation, for example, for prevention or inhibition of immunoreaction during tissue or organ transplantation. In another specific embodiment of the method of reducing or suppressing an immune response, the immune response is graft-versus-host disease. In another specific embodiment, the immune response is an autoimmune disease. e.g., diabetes, lupus erythematosus, or rheumatoid arthritis.
- It is a further object of the disclosed invention to provide a cell product T-MSC-DL for use in treatment of neural diseases.
- The method can employ as many stem cells provided herein as are required to effect a detectable suppression of an immune response. For example, the plurality of stem cells provided herein used to contact the plurality of immune cells can comprise 1×105 T-MSC, 1×106 T-MSC, 1×107 T-MSC, 1×108 T-MSC or more.
- In one embodiment, the method described herein is a novel process for deriving (also referred to herein as producing) MSCs from hESCs. The method comprising the steps of:
-
- a. Culturing a cell culture comprising human embryonic stem cells in serum-free medium in the present of at least one growth factor in an amount sufficient to induce the differentiation of the embryonic stem cells to differentiate into trophoblasts; in an embodiment, the time period of the differentiation into trophoblasts is about 2-5 days; in an embodiment, the medium comprises BMP4, with or without the presence of a TGFβ inhibitor (i.e., SB431542, A83-01 or ALK5 inhibitor, etc.) to increase the differentiation efficiency;
- b. Adding at least one growth factor the culture comprising the trophoblasts and continuing to culture in serum-free medium, wherein the growth factor is in an amount sufficient to expand the trophoblasts, in an embodiment, the medium comprises BMP4 (this step is optional);
- c. Isolating the trophoblasts and re-plating the trophoblasts onto gelatin, laminin, fibronectin, vitronectin, collagen or Matrigel-coated plates and cultured in a serum-containing or serum-free media in an amount sufficient to differentiate the trophoblasts into T-MSC through pre-T-MSC, in an embodiment, the isolated trophoblasts are cultured for 4-10 days to produce the T-MSC, wherein at least about 90%, 95%, 96%, 97%, 98%, 99% of the resulting T-MSC express cell surface markers for adult MSCs, in an embodiment, the medium comprises LIF, bFGF, or PDGF to increase expansion efficiency.
- In a specific embodiment, the trophoblasts derived from hESC express Trop-2, but not CD73.
- In a specific embodiment, the pre-T-MSC express Trop-2 and/or CD73.
- In a specific embodiment, the T-MSC express CD73+CD105+CD90+. It is an object of the disclosed method to differentiate hESCs into MSCs of high purity. In a preferred embodiment, CD73+CD105+CD90+ T-MSC are produced with greater than 90%, 95%, 96%, 97%, 98%, 99% purity.
- A large number of T-MSC with high purity is demonstrated by the observation that high percentages of the MSCs express cell-surface markers for adult MSCs. The MSCs have higher immunosuppressive effect both in vitro and in vivo than MSCs obtained via other methods. The MSCs derived via this currently disclosed method are named hES-trophoblast-derived MSCs and are more briefly referred to herein as T-MSC.
- In certain embodiments, the serum-containing medium contains fetal calf serum or human AB serum, L-glutamine and the serum-free medium contains knockout serum replacement (KOSR) or bovine serum albumin (BSA).
- In certain embodiments, there is an additional step of irradiating the resulting T-MSC with gamma radiation ranging from 1 gy to 200 gy.
- In a further embodiment of the current invention, the method for generating and expanding T-MSC results in at least 10,000 T-MSC, at least 50,000 T-MSC, at least 100,000 T-MSC, at least 500,000 T-MSC, at least 1×106 T-MSC, at least 5×106 T-MSC, at least 1×107 T-MSC, at least 5×107 T-MSC, at least 1×108 T-MSC, at least 5×108 T-MSC, at least 1×109 T-MSC, at least 5×109 T-MSC, or at least 1×1010 T-MSC. These methods result in cell solutions that may comprise between 10,000 and 10 billion T-MSC, In certain embodiments, at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% of the resulting human embryonic-mesenchymal stem cells express one or more hES-MSC differential markers. In certain embodiments, the marker is C73, CD90 and CD105.
- In one embodiment, the T-MSCs remarkably attenuate the disease score of the EAE mice, accompanied by decreased demyelination, T cell infiltration, and microglial responses. In addition, the T-MSCs have much stronger immunosuppressive activity in vivo and in vitro when compared to bone marrow derived MSCs (BMMSC). Also provided herein are key proteins/molecules that are differentially expressed between T-MSC and BM-MSCs. Provided herein are methods of identifying T-MSCs with improved immunosuppressive activity by measuring the expression level of the protein/molecular markers. Also disclosed are methods of genetic modification to improve immunosuppressive activity of T-MSCs.
- A further embodiment of the present invention is a solution comprising T-MSC comprising at least 10,000 T-MSC, at least 50,000 T-MSC, at least 100,000 T-MSC, at least 500,000 T-MSC, at least 1×106 T-MSC, at least 5×106 T-MSC, at least 1×107 T-MSC, at least 5×107 T-MSC, at least 1×108 T-MSC, at least 5×108 T-MSC, at least 1×109 T-MSC, at least 5×109 T-MSC, or at least 1×1010 T-MSC.
- In certain embodiments, the culture volume is from 2 ml for at least 10,000 cells, 10 ml for at least 100,000 cells, 100 ml for at least 1,000,000 cells, 1000 ml for at least 10,000,000 cells, and up to 4000 ml of media for 5×108 cells.
- These solutions can be injected into a subject. These solutions can be frozen. These solutions can be used for the manufacture of a medicament for a disease that can be treated by the administration of T-MSC.
- This invention also provides a method for producing a solution of T-MSC suitable for injection into a patient comprising the steps of isolating the solution of cells described in the preceding paragraph and placing the cells into solution suitable for injection into a patient. This invention also provides a method of producing a solution of T-MSC suitable for freezing comprising the steps of isolating the cells described in the preceding paragraph and placing into a solution suitable for freezing.
- Yet another embodiment of the present invention is a T-MSC expressing one or more of cell marker proteins including CD73, CD90, CD105, CD13, CD29, CD54, CD44, CD146, CD166 or a combination thereof. In a further embodiment, the human embryonic-mesenchymal stem cell does not express or expresses low levels of one or more cell marker proteins including CD34, CD31, CD45 or a combination thereof. In a further embodiment, the human embryonic-mesenchymal stem cell does not express or expresses low levels of one or more pro-inflammatory proteins including MMP2, RAGE, IFNγR1, IFNγR2, IL-12, TNFα, IL-6, VCAM1 or a combination thereof. In certain embodiments, the human embryonic-mesenchymal stem cell expressed at least half of the level of the above markers as compared to bone marrow derived MSC.
- A further embodiment of the present invention is a cd culture comprising T-MSC expressing one or more of cell marker proteins including CD73, CD90, CD105, CD13, CD29, CD54, CD144, CD146 and CD44. In a further embodiment, the T-MSC in the cell culture do not express or express low levels of one or more cell marker proteins including CD34, CD31 and CD45. In a further embodiment, the T-MSC in the cell culture do not express or express low levels of one or more pro-inflammatory proteins including MMP2, RAGE, IFNγR1, IFNγR2, IL-12, TNFα, IL-6, and VCAM1.
- In certain embodiments, the cell culture comprises at least 1×106 T-MSC, at least 1×107 T-MSC at least 1×108 T-MSC, at least 1×109 T-MSC, or at least 1×1010 T-MSC.
- In further embodiments, at least about 90% of the T-MSC in the cell culture express the CD73 protein, at least more than 90% of the T-MSC express the CD73 protein, at least about 95% T-MSC express the CD73 protein, or more than 95% T-MSC express the CD73 protein. In further embodiments, at least about 96% of the T-MSC in the cell culture express the CD73 protein, at least more then 97% of the T-MSC express the CD73 protein, at least about 98% T-MSC express the CD73 protein, or more than 99% T-MSC express the CD73 protein.
- In further embodiments, at least about 75%, 80%, 85%, 90%, 95%, 99% of the T-MSC in the cell culture express at least one cell marker protein selected from the group consisting of CD90, CD105, CD44, and CD29.
- In further embodiments, at least about 80%, 85%, 90%, 95%, 99% of the T-MSC in the cell culture do not express or express low levels of at least one cell marker including CD34, CD31, and CD45.
- In further embodiments, at least about 75%, 80%, 85%, 90%, 95%, 99% of the T-MSC in the cell culture do not express or express low levels of at least one pro-inflammatory protein including MMP2, RAGE, IFNγR1, IFNγR2, IL-12, TNFα, IL-6, and VCAM1. In certain embodiments, the T-MSC express high levels of CD24, TGFβ2 or both.
- In certain embodiments of the T-MSC or cell cultures described herein, the cells are irradiated using gamma radiation.
- Further embodiments of the present invention are pharmaceutical preparations comprising any one of the T-MSC or cell cultures described herein and pharmaceutically acceptable carriers.
- Yet further embodiments of the present invention are cryopreserved preparations of any of the T-MSC or cell cultures described herein.
- Provided herein are methods of treating or preventing a T cell related autoimmune disease in a subject in need thereof, comprising the steps of administering a therapeutically effective amount of solution, cell culture or pharmaceutical preparation comprising T-MSC as described in the preceding paragraphs, to the subject in need thereof. The T cell related autoimmune diseases include but are not limited to Crohn's disease, inflammatory bowel disease, graft versus host disease, systemic lupus erythematosus, and rheumatoid arthritis. T call mediated delayed type hypersensitivity (Type IV hypersensitivity) i.e.,
Type 1 diabetes mellitus, MS, RA, Hashimoto's thyroiditis, Crohn's, contact dermatitis, Scleroderma, etc. - In certain embodiments, the subject is preferably a mammal or avian, and most preferably human. In certain embodiments, the solution, cell culture or pharmaceutical preparation comprises irradiated or non-irradiated T-MSC.
- In certain embodiments, the method for treating or preventing disease includes combination therapy with one or more therapeutic agents for the treatment or prevention of disease.
- In other certain embodiments, the present invention provides methods for treating or preventing multiple sclerosis disease in a subject in need thereof, comprising the steps of administering a therapeutically effective amount of solution, cell culture or pharmaceutical preparation comprising T-MSC as described in the preceding paragraphs, to the subject in need thereof. The multiple sclerosis can be relapsing/remitting multiple sclerosis, progressive/relapsing multiple sclerosis, primary multiple sclerosis, or secondary multiple sclerosis. The subject is preferably a mammal, and most preferably human. The solution, cell culture or pharmaceutical preparation can comprise irradiated or non-irradiated T-MSC.
- The method can further comprise the administration of additional therapeutic agents to the subject, including but not limited to fingolimod, adrenoortiotropic hormone (ACTH), methylprednisolone, dexamethasone, IFNβ-1a, IFN-1b, gliatriamer acetate, cyclophosphamide, methotrexate, azathioprine, cladribine, cyclosporine, mitoxantrone, and sulfasalazine. In yet another embodiment, one or more of these therapeutic agents can be attached to the T-MSCs in order to cross the blood-brain and/or blood-spinal cord barrier, for delivery of the therapeutic agent to the central nervous system.
- Provided herein is a method of delivering an agent through the blood-brain barrier and/or the blood-spinal cord barrier, the method comprising the steps of attaching or conjugating the agent to a T-MSC to form a complex; and administering the human embryonic-mesenchymal stem cell-agent complex to a subject in need thereof, wherein the T-MSC is capable of crossing the blood-brain barrier and/or the blood-spinal cord barrier and the agent is for the treatment, prevention or diagnosis of a disease or injury in the subject in need thereof. T-MSC may be in the form of a single cell, a cell culture, a solution or a pharmaceutical preparation. Agents would include, but are not limited to, drugs, proteins, DNA, RNA, and small molecules.
- A further embodiment is a delivery system comprising a T-MSC and a conjugated or attached agent, for crossing the blood-brain barrier and/or the blood-spinal cord barrier.
- The method described herein has a number of advantages. It is an object of the disclosed method to differentiate hESCs via an intermediate stage of trophoblasts, which is different from all the existing methods and leads to the following advantages.
- Provided herein is a method of selecting clinical grade T-MSC for the treatment of autoimmune diseases, the T-MSC having the following characteristics: (i) contain >95% of cells expressing group-1 markers; (ii) contain >80% of
cells expressing group 2 markers; (iii) contain <5% of cells expressing group-3 markers; (iv) express IL-10 and TGFβ; (v) contain <2% of cells expressing IL-6, IL-12 and TNFα; (vi) express high level of CXCR7, CXCL2, CXCL12 but a low level of HOXB2, HOXB3, HOXB5, HOXB7, HOXB9, HOXA5, HOXA9 and other HOX family genes (vii) contain <0.001% of cells co-expressing all group-4 markers, wherein group-1 markers are CD73, CD90, CD105, CD146, CD166, and CD44, group-2 markers are CD13. CD29, CD54, CD49E, group-3 markers are CD45, CD34, CD31 and SSEA4, and group-4 markers are OCT4, NANOG, TRA-1-60 and SSEA4. - Provided herein is a method of modifying T-MSC to produce a population of modified MSC having the following characteristics: (i) contain >95% of cells expressing group-1 markers; (ii) contain >80% of
cells expressing group 2 markers; (iii) contain <5% of cells expressing group-3 markers (iv) expressing IL-10 and TGFβ; (v) contain <2% of cells expressing IL-6, IL-12 and TNFα; and (vi) contains <0.001% of cells co-expressing all group-4 markers, wherein group-1 markers are CD73, CD90, CD105, CD146, CD166, and CD44, group-2 markers are CD13, CD29, CD54, CD49E, group-3 markers are CD45, CD34, CD31 and SSEA4, and group-4 markers are OCT4, NANOG, TRA-1-60 and SSEA4. - Provided herein are conditioned medium, concentrate of conditioned medium, cell lysate or other derivatives thereof that comprises one or more biomolecules secreted by the T-MSC as described.
- Provided herein is a method of using T-MSC as described herein as feeder cells for bone marrow hematopoietic stem cell expansion and umbilical-cord hematopoietic stem can expansion. In certain embodiments, the T-MSC suitable for the disclosed method express Stro3. In certain embodiments, T-MSC is co-cultured with bone marrow hematopoietic stem cells and/or umbilical-cord hematopoietic stem cells. In certain embodiments, the T-MSC are mesenchymal stromal cells. Provided herein is a co-culture of T-MSC as described herein and bone marrow hematopoietic stem cells. Provided herein is a co-culture of T-MSC as described herein and umbilical-cord hematopoietic stem cells.
- Also disclosed are kits comprising T-MSC described herein. In certain embodiments, the kits comprise T-MSC and a cell delivery carrier.
- In one aspect, provided heron is a method of suppressing or reducing an immune response comprising contacting a plurality of immune cells with a plurality of T-MSC for a time sufficient for the T-MSC to detectably suppress an immune response, wherein the T-MSC delectably suppress T cell proliferation and/or differentiation in a mixed lymphocyte reaction (MLR) assay. In another specific embodiment, the contacting is performed in vitro. In another specific embodiment, the contacting is performed in vivo. In a more specific embodiment, the in vivo contacting is performed in a mammalian subject, e.g., a human subject. In another more specific embodiment, the contacting comprises administering the T-MSC intravenously, intramuscularly, or into an organ in the subject (e.g., a pancreas).
- Provided herein are methods of producing cell populations comprising T-MSC selected on the basis of their ability to modulate (e.g., suppress) an immune response. In one embodiment, for example, the invention provides a method of selecting a T-MSC population comprising (a) assaying a plurality of T-MSC in a mixed lymphocyte reaction (MLR) assay; and (b) selecting the plurality of T-MSC if the plurality of T-MSC detectably suppresses CD4+ or CD8+ T cell proliferation in an MLR (mixed lymphocyte reaction), wherein the T-MSC express CD73. CD90, CD105, CD13, CD29, CD54, CD 44. In one embodiment, the T-MSC do not express or express at low level CD34, CD31 and CD45. In one embodiment, the T-MSC do not express or express at low level MMP2, RAGE, IFNGR2, IL-12A, IL-6 and VCAM1.
- Provided herein are methods to differentiate T-MSC into multiple other cell lineages including, but not limited to, adipocytes, myoblast cells, neural lineage co, osteoblast cells, fibroblast, chondrocytes, and stroma cells.
- Provided herein are methods for using T-MSC and its differentiated cellular products for tissue regeneration and/or tissue repair comprising administering T-MSC and/or T-MSC derived other cell lineages, in an amount sufficient to promote tissue regeneration including, but not limited to, joint regeneration, tendon regeneration, connective tissue regeneration, neural lineage cells regeneration, fat tissue regeneration, bone regeneration, skin regeneration, muscle regeneration, cartilage regeneration, smooth muscle regeneration, cardiac muscle regeneration, epithelia tissue regeneration, ligament regeneration, etc.
- In specific embodiments, the T cells and the T-MSC are present in the MLR at a ratio of, e.g., about 20:1, 15:1, 10:1, 5:1, 2:2, 1:1, 1:2, 1:5, 1:10 or 1:20, preferably 10:1.
- It is a further object of the disclosed method to efficiently generate large numbers of MSCs via a high yield process. The disclosed method can generate about 10-fold higher numbers of MSCs compared to the starting number of hESCs. There is very little cell loss when hESCs are differentiated through the trophoblast stage, whereas, other methods usually have over 90% loss of the starting cells during the initial differentiation step, resulting in much lower cell yields than the method disclosed herein.
- It is an object of the disclosed method to provide a method that can produce MSCs in a relatively short time. The entire process disclosed herein can be completed in no more than 6-14 days, depending on the starting hES lines.
- It is an object of the disclosed method to provide a method that is low in cost. The differentiation method described herein only requires a very small amount of culture medium, and the method only requires one cytokine-BMP4, which is used in the disclosed method at a low dose.
- It is an object of the disclosed method to provide a method that is low in cost. The differentiation method described herein only requires a very small amount of culture medium, and the method only requires one cytokine-BMP4 and/or a TGFβ inhibitor (i.e., SB31542, A83-01 or ALK5 inhibitor etc.).
- It is an object of the disclosed method to provide a method that is high in yield. The differentiation method described herein can produce 1-5×1010 T-MSC cells within 30 days from 1×106 of hESC, whereas other method can only produce up to 1×108 MSC cells within 30 days.
- It is a further object of the disclosed method to provide MSCs having high immunosuppressive efficacy. The T-MSC have higher immunosuppressive potency than MSCs derived from bone marrow (BM) or other sources, the T-MSC have higher immunosuppressive potency than MSCs derived from hESCs via other methods.
- In specific embodiments, the T-MSC suppress CD4+ or CD8+ T cell proliferation by at least 50%, 70%, 90%, or 95% in an MLR compared to an amount of T cell proliferation in the MLR in the absence of the T-MSC.
- In another specific embodiment, any of the foregoing compositions comprises a matrix. In a more specific embodiment, the matrix is a three-dimensional scaffold. In another more specific embodiment, the matrix comprises collagen, gelatin, laminin, fibronectin, pectin, ornithine, or vitronectin. In another more specific embodiment, the matrix is a biomaterial. In another more specific embodiment, the matrix comprises an extracellular membrane protein. In another more specific embodiment, the matrix comprises a synthetic compound. In another more specific embodiment, the matrix comprises a bioactive compound. In another more specific embodiment, the bioactive compound is a growth factor, cytokine, antibody, or organic molecule of less than 5,000 daltons.
- The invention further provides cryopreserved stem cell populations, e.g., a cell population comprising T-MSC, wherein the cell population is immunomodulatory, which are described herein. For example, the invention provides a population of T-MSC that have been identified as detectably suppressing T cell proliferation and/or differentiation in a nixed lymphocyte reaction (MLR) assay, wherein the cells have been cryopreserved, and wherein the population is contained within a container.
- In a specific embodiment of any of the foregoing cryopreserved populations, the container is a bag. In various specific embodiments, the population comprises about, at least, or at most 1×106 the stem cells, 5×108 the stem cells, 1×107 the stem cells, 5×107 the stem cells, 1×108 the stem cells, 5×108 the stem cells, 1×109 the stem cells, 5×109 the stem cells, or 1×1010 the stem cells. In other specific embodiments of any of the foregoing cryopreserved populations, the stem cells have been passaged about, at least, or no more than 5 times, no more than 10 times, no more than 15 times, or no more than 20 times. In another specific embodiment of any of the foregoing cryopreserved populations, the stem cells have been expanded within the container.
-
FIGS. 1 (A-B). (A) Flow chart of the protocol for hESC differentiation into T-MSCs via a trophoblast and pre-T-MSC stage. Key bio-markers that are associated with each differentiation stage are indicated. (B) Comparison of various MSC generation protocols for MSC yield and quality: hESCs were differentiated in three protocols. 1) T-MSC: 3 days in the trophoblast differentiation medium followed by 8-10 days in a MSC growth medium. 2) SB-MSC: 3-10 days in SB431542-supplemented differentiation medium followed by 12 days in the MSC growth medium. 3) HB-MSC: hESC are differentiated into MSC through a hemangioblast intermediate stage, hESC were differentiated into hemangioblast in serum-free medium for 10-13 days followed by 12 days in the MSC growth medium. The total number of MSCs (millions of cells) in different cultures atday -
FIGS. 2 (A-C). Morphological changes observed at various time points in cultures of hESCs which are in the process of differentiating to T-MSCs. (A) Day 2: trophoblasts; (B) Day 5: pre-MSCs (mesodermal cells); and (C) Day 9: MSCs. -
FIGS. 3 (A-C). Analysis of the ratio of cells expressing the trophoblast marker Trop-2 (Trp-2) and MSC marker CD73 at various time points during the differentiation of hESC into T-MSC. (A) Day 2: trophoblasts; (B) Day 5: pre-MSCs (mesodermal cells); and (C) Day 9: MSCs. -
FIGS. 4 (A-H). Surface marker expression profile of T-MSC after 11 days of differentiation. (A) Trp2 is a marker for trophoblasts, (B) CD31 is a marker for endothelial cells, and (C) CD34 is a marker for hematopoietic stem cells. (D-H) CD73, CD90,CD 105, CD44, CD29 are markers for MSCs. -
FIGS. 5 (A-R). The in vitro immunosuppressive function of T-MSCs. BM-MSCs (G-L) or T-MSCs (M-R) were mixed with CFSE-labeled mouse lymphocytes at 10:1 ratio. The cells were stimulated with anti-CD3 antibody at 0.3 or 1 μg/ml together with 1 μg/mA of anti-CD28 antibody. Cell proliferation was indicated by CFSE dilution via FACS analysis. (A-F) T cells cultured without BM-MSC or T-MSC (labeled control) are shown. -
FIG. 6 . T-MSC attenuate the disease score of an EAE mouse model: EAE was induced in C57BL/6 mice with MOG35-55 plus an adjuvant and pertussis toxin. T-MSC, BM-MSC or MSCs derived from hESCs using the SB431542 method (hES-MSC(SB)) were intraperitoneously injected into the mice, 6 days after the EAE induction. Disease score (from 0 being the no disease to 4 being the severe disease) was recorded for 27 days after the MSC injection. -
FIGS. 7 (A-C). Determination of the multipotency of T-MSC to differentiate into: (A) osteocytes, (B) chondrocytes, and (C) adipocytes. -
FIG. 8 . Gene expression analysis of comparing hES-HB-MSC (hES hemagioblast derived MSC) with T-MSC (hES trophoblast derived MSC) and BM-MSC (adult bone marrow derived MSC). Gene expression was normalized and is shown as arbitrary expression units. - The terms used in this specification generally have their ordinary meanings in the art, within the context of this invention and the specific context where each term is used. Certain terms are discussed below, or elsewhere in the specification, to provide additional guidance to the practitioner in describing the methods of the invention and how to use them. Moreover, it will be appreciated that the same thing can be the in more than one way. Consequently, alternative language and synonyms may be used for any one or more of the terms discussed herein, nor is any special significance to be placed upon whether or not a term is elaborated or discussed herein. Synonyms for certain terms are provided. A recital of one or more synonyms does not exclude the use of the other synonyms. The use of examples anywhere in the specification, including examples of any terms discussed herein, is illustrative only, and in no way limits the scope and meaning of the invention or any exemplified term. Likewise, the invention is not limited to its preferred embodiments.
- The term hESC means human embryonic stem cells that encompass pluripotent stem cells produced from embryo, inner cell mass, blastomere or a cell line.
- The term “hES-MSC” or “hES-MSCs” or “human embryonic mesenchymal stem cells” or human embryonic stem cell derived mesenchymal stem cells” or “hES-MSC population” as used herein means mesenchymal-like stem cells, mesenchymal-like stromal cells, mesenchymal stem cells or mesenchymal stromal cells, derived from human embryonic stem cells or derived from induced pluripotent stem cells (“IPSCs”) using any methods. hES-MSC as used herein includes individual cells, cell lines, batches, lots or populations of hES-MSC
- The term “T-MSC” refers to MSC or mesenchymal stem/stromal cells that are derived from human embryonic stem cells (hESC) or induced pluripotent stem cells (iPSC) through a trophoblast intermediate stage where cells express Trop-2 with trophoblast-like morphology. The term “hES-T-MSC” refers to T-MSC differentiated from hESC. The term “iPS-T-MSC” and “iT-MSC” refer to T-MSC differentiated from iPSC. The term “T-MSC” as used herein does not refer to a trophoblast. A cell is considered a “stem cell” if the coal retains at least one attribute of a stem cell, e.g., the ability to differentiate into at least one other type of cell, or the like. These cells can be described based upon numerous structural and functional properties including but not limited to, expression or lack of expression of one or more markers. T-MSCs, including both hES-T-MSC and iT-MSC, are multipotent and capable of differentiating to give rise to other cell types and cell lineages.
- The term “hES-HB-MSC” and “HB-MSC” are mesenchymal stem cells that are derived from human pluripotent stem cells including hESC and iPSCs via hemangioblast or hemangio-colony forming middle step.
- The term “clinical grade T-MSC” as used herein means T-MSC which contains characteristics that are suitable for use in clinical use for human, avian or other mammals. Clinical grade T-MSC as used herein includes individual cells, cell lines, batches, lots or populations of MSC.
- The term “T-MSC population” as used herein means a population of T-MSC cells which contains cells that have characteristics that are suitable for use in treatment and cells that do not have characteristics that are suitable for use m treatment.
- The term “T-MSC derived lineages” or T-MSC-DL as used herein means cells or cell lineages differentiated from T-MSC including, but not limited to, adipocytes, myoblast cells, neural lineage cells, osteoblast cells, fibroblast, chondrocytes, and stromal cells.
- The phrase “therapeutically effective amount” is used herein to mean an amount sufficient to cause an improvement in a clinically significant condition in the subject, or delays or minimizes or mitigates one or more symptoms associated with the disease, or results in a desired beneficial change of physiology in the subject.
- The terms “treat”, “treatment”, and the like refer to a means to slow down, relieve, ameliorate or alleviate at least one of the symptoms of the disease, or reverse the disease after its onset.
- The terms “prevent”, “prevention”, and the like refer to acting prior to overt disease onset, to prevent the disease from developing or minimize the extent of the disease or slow its course of development.
- The term “subject” as used in this application means an animal with an immune system such as avians and mammals. Mammals include canines, felines, rodents, bovine, equines, porcines, ovines, and primates. Avians include, but are not limited to, fowls, songbirds, and raptors. Thus, the invention can be used in veterinary medicine, e.g., to treat companion animals, farm animals, laboratory animals in zoological parks, and animals in the wild. The invention Is particularly desirable for human medical applications
- The term “in need thereof” would be a subject known or suspected of having or being at risk of developing a disease including but not limited to multiple sclerosis and other T cell related autoimmune diseases, or diseases related to the central nervous system or the blood-brain barrier or the blood-spinal cord barrier.
- A subject in need of treatment would be one that has already developed the disease. A subject in need of prevention would be one with risk factors of the disease.
- The term “agent” as used herein means a substance that produces or is capable of producing an effect and would include, but is not limited to, chemicals, pharmaceuticals, drugs, biologics, small molecules, antibodies, nucleic acids, peptides, and proteins.
- As used herein, a stem cell is “positive” for a particular marker when that marker is detectable. For example, a T-MSC is positive for, e.g., CD73 because CD73 is detectable on T-MSC in an amount detectably greater than background (in comparison to, e.g., an isotype control). A cell is also positive for a marker when that marker can be used to distinguish the cell from at least one other cell type, or can be used to select or isolate the cell when present or expressed by the cell.
- As used herein, “immunomodulation” and “immunomodulatory” mean causing, or having the capacity to cause, a detectable change in an immune response, and the ability to cause a detectable change in an immune response.
- As used herein, “immunosuppression” and “immunosuppressive” mean causing, or having the capacity to cause, a detectable reduction in an immune response, and the ability to cause a detectable suppression of an immune response.
- The present invention is based on the first discovery that mesenchymal stem cells MSCs can be differentiated from the hESC derived trophoblasts, and that the trophoblast-derived MSCs (T-MSC) can be used for tissue repair and immune regulation. These T-MSC produced from the disclosed methods all remarkably inhibited T cell proliferation and differentiation in vitro and attenuated the disease score in vivo, whereas bone marrow-derived MSC (BM-MSC) had no effect at all in vivo, although the BM-MSC may partially reduce T cell proliferation and differentiation in vitro. The T-MSC disclosed herein have surprisingly higher immunosuppressive activity compared to BM-MSC. The methods disclosed herein are highly efficient and can produce high number of T-MSC with low cost and high purity. The methods disclosed herein are highly reproducible with little batch-to-batch variations, and easily adaptable to meet clinical needs.
- Thus, the present invention overcomes the problems described above by providing a method of generating mesenchymal stem cells (MSC) in vitro from human embryonic stem cells. The ability to generate the hES-T-MSC by the methods disclosed herein allows the production of cells that can be used in a variety of therapeutic applications, Including the treatment and prevention of multiple sclerosis, and other autoimmune diseases. Additionally, the hES-MSC produced by the methods described herein have the ability to cross the brain-blood barrier (BBB) and the blood-spinal cord barrier (BSCB) allowing them to be used for a variety of therapeutic applications, including drug delivery. The methods of the invention provide further utility in that they enable the generation of large numbers of hES-T-MSC that can be used on a commercial scale.
- Disclosed herein is a method for generating and expanding mesenchymal-like stem cells (MSCs) from trophoblast derived from embryonic stem cells (hES). These resulting cells are designated T-MSC. These T-MSC can be isolated and/or purified.
- MSC-like cells have been derived from human embryonic stem cells by various methods (Barbieri et al. (2005); Olivier et al. (2006); Sanchez et al. (2011); Brown et al. (2009)). However, all of these methods involve co-culturing and hand-picking procedures that limit yield and purity and result in varying quality of cells.
- Although hESC express low levels of MHC antigens, it has been found that many cell types differentiated from hESC have increased expression of these antigens (Draper et al., 2002; Drukker et al., 2006; Drukker et al., 2002), thus, causing great concern for immunorejection of the differentiated cells if transplanted into patients. In contrast, MSC express low levels of costimulatory molecules and major MHC antigens, and have been used in allogeneic or xenograft models to treat autoimmune diseases (Gordon et al., 2008b; Grinnemo et al., 2004; Rafei et al., 2009a; Rafei et al., 2009b; Tse et al., 2003). T-MSC, like adult tissue-derived MSC, express low levels of the co-stimulatory molecules and MHC antigens, and do not require long-term engraftment to exert immunosuppressive effect, thus, there is no concern for immunorejection due to mismatch of MHC antigens between MSC and the recipient. One hESC line is sufficient to generate T-MSC at large scale, in an endless supply, and with easy quality control, suitable for industrial production as a potential therapy to treat patients with MS and other T cell-based autoimmune diseases.
- Human trophoblast can be generated from human embryonic stem cells. Such embryonic stem cells include embryonic stem cells derived from or using, for example, blastocysts, plated ICMs, one or more blastomeres, or other portions of a pre-implantation-stage embryo or embryo-like structure, regardless of whether produced by fertilization, somatic cell nuclear transfer (SCNT), parthenogenesis, androgenesis, or other sexual or asexual means.
- Additionally or alternatively, trophoblast can be generated from other embryo-derived cells. For example, trophoblast can be generated (without necessarily going through a step of embryonic stem cell derivation) from or using plated embryos, ICMs, blastocysts, one or more blastomeres, trophoblast stem cells, embryonic germ cells, or other portions of a pre-implantation-stage embryo or embryo-like structure, regardless of whether produced by fertilization, somatic cell nuclear transfer (SCNT), parthenogenesis, androgenesis, or other sexual or asexual means. Similarly, trophoblast can be generated using cells or cell lines partially differentiated from embryo-derived cells. For example, if a human embryonic stem cell line is used to produce cells that are more developmentally primitive than trophoblast, in terms of development potential and plasticity, such embryo-derived cells could then be used to generate trophoblast.
- Additionally or alternatively, trophoblast can be generated from other pre-natal or peri-natal sources including, without limitation, umbilical cord, umbilical cord blood, amniotic fluid, amniotic stem cells, and placenta.
- The human embryonic stem cells may be the starting material of this method. The embryonic stem cells may be cultured in any way known in the art such as in the presence or absence of feeder cells.
- In the examples set forth herein, eight hESC cell lines were used, H9 (derived from WiCell Research Institute) (Thomson et al. (1998), CT2 (derived from University of Connecticut Stem Cell Core (Lin et al. (2010)); and ES03-Envy (Envy, a GFP-labeled line, derived at ES International) (Costa et al. (2005)), ESI-017, ESI-053, ESI-049, ESI-035, and ESI-051.
- In the first step of this method to obtain T-MSC, human embryonic stem cells are grown in small clumps or single cells in serum-free media without bFGF. The cells are then re-plated and cultured with BMP4 (1-200 ng/ml) as the only cytokine for a short time (2-5 days) to obtain a highly homogenous population of trophoblasts as they express the typical trophoblast marker Trop2/TACSTD2 (Trp2). A TGFβ inhibitor (SB431542 (1-20 μM), A83-01 (0.2-5 μM) or ALK5 inhibitor (1-20 μM), etc.) can be used to increase the trophoblast forming efficiency. The cells will expand and differentiate into trophoblast cells in 2-5 days with trophoblast-like morphology, in certain embodiments, more than 90% of cells express Trop-2/TACSTD2 (Trp-2) (Xu et al., 2002). Trophoblasts may be isolated by size or purified with antibody, such as by immunoaffinity column chromatography.
- In one embodiment, trophoblast cells are digested to form single cells with TrypLE, Trypsin or collagenase B. The single cells are re-suspended in a medium optimized for mesenchymal stem cell growth such as alpha-MEM containing 2-20% of fetal bovine serum (FBS) or human AB serum (ABHS), DMEM-high glucose containing 2-20% of FBS or ABHS, the FBS can be replaced with 5-20% of knock-out serum replacement (KOSR) or bovine serum albumin (BSA), or any other commercial available serum free MSC culture mediums. In certain embodiments, Serum, KOSR or BSA is added in a concentration of from about 5-20%. In certain embodiments, fetal bovine serum is preferred. In certain embodiments, cells are cultured at a density of about 10-1000 cells/cm2. In certain embodiments, the cells are cultured in an environment that mimics the extracellular environment of tissues, such as gelatin, vitronectin, laminin, fibronectin, collagen I. In certain embodiments, the MSC culture medium comprises LIF (2-20 ng/ml), bFGF (2-100 ng/ml), or PDGF (1-50 ng/ml) to increase expansion efficiency.
- After approximately 24 hours, a number of cells (50-90%) attached to the culture plate and approximately 2-3 days later, pre-T-MSC begin to differentiate from the trophoblasts, cells were elongated and form clear cell border. In certain embodiment, the pre-T-MSC express both CD73 and Trop-2. After 8-10 days, more than 80-90% cells trophoblasts are differentiated into mesenchymal-like small cell with spindle-like morphology, so called T-MSC here. T-MSC can also be identified by the expression of certain markers, such as CD73, CD90, CD105, CD13, CD29, CD54, CD44, CD146 and CD166 and by the absence or low expression of certain markers such as CD31, CD34, and CD45. In certain embodiments, T-MSC do not express HOX and HLA-G. In certain embodiments, T-MSC express high level of CXCR7, CXCL2, CXCL12 but low level of HOXB2, HOXB3, HOXB5, HOXB7, HOXB9, HOXA5, HOXA9 and other HOX family genes. T-MSC are also characterized as multipotent and able to differentiate into adipocytes, chondrocytes, osteoblast cells, neurons, myoblasts, stromal cells and fibroblasts.
- Provided herein is an isolated cell population comprising a plurality of immunosuppressive T-MSC that expresses at least one of the following markers: CD73, CD90 and CD105.
- In a further embodiment of the present invention, an additional step of irradiating the T-MSCs is performed. This irradiation can be accomplished with the use of any method known in the at that emits radiation including but not limited to gamma irradiation e.g., Cesium-137 gamma irradiation, or photon radiation using X-ray. The preferred amount of radiation to be administered is about between 5 and 20000 gy, more preferably about between 50 and 100 gy, and most preferably 80 gy.
- In one embodiment, the method described herein is a novel process for deriving (also referred to herein as producing) T-MSC from hESCs. The method comprises the steps of:
-
- a. Culturing a cell culture comprising human embryonic stem cells in serum-free medium in the present of at least one growth factor in an amount sufficient to induce the differentiation of the embryonic stem cells to differentiate into trophoblast; in an embodiment, the time period of the differentiation into trophoblast is about 2-5 days; in an embodiment, the medium comprises BMP4, with or without the presence of an TGFb inhibitor (i.e., SB431542, A83-01 or ALK5 inhibitor etc.) to increase the differentiation efficiency;
- b. Adding at least one growth factor to the culture comprising the trophoblasts and continuing to culture in serum-free medium, wherein the growth factor is in an amount sufficient to expend the trophoblasts, in an embodiment, the medium comprises BMP4, (this step is optional);
- c. Isolating the trophoblasts and re-plating the trophoblasts onto gelatin, laminin, fibronectin, vitronectin, collagen or Matrigel-coated plates and cultured in a serum-containing or serum-free media in an amount sufficient to differentiate the trophoblast into T-MSC through pre-T-MSC, in an embodiment, the isolated trophoblast is cultured for 6-10 days to produce the T-MSC, wherein at least about 90%, 95%, 96%, 97%, 98%, 99% of the resulting T-MSC express cell surface markers for adult MSCs, in an embodiment, the medium comprises LIF, bFGF, PDGF to increase expansion efficiency,
wherein at least about 90%, 95%, 96%, 97%, 98%, 99% of the resulting T-MSC express cell surface markers for adult MSCs.
- As shown in
FIGS. 1 & 2 , the disclosed method starts with dispersal of hESC colonies into small clumps or single cells. The cells are then re-plated and cultured with BMP4 as the only cytokine, and a TGFβ inhibitor for a short time (2-5 days) to obtain a highly homogenous population of trophoblasts as they express the typical trophoblast marker Trop-2/TACSTD2 (Trp-2) (Xu et al., 2002). The trophoblasts ae then dissociated and re-plated onto a gelatin, laminin, fibronectin, vitronectin, collagen or matrigel-coated plate and cultured in a MSC growth medium for 4-10 days to generate spindle-like cells similar to the morphology of typical MSCs. - The method disclosed herein, unlike the other methods, does not require feeder cells, sorting or hand-picking of the cells. The initial trophoblast differentiation step is in a defined, serum-free medium without bFGF. The entire protocol only requires two steps of differentiation in a total of 6-14 days to generate T-MSC at high purity and high yield (
FIG. 1 ). This is the shortest differentiation protocol ever reported for MSC derivation from hESC. The yield and purity of the T-MSC are very high compared to those achieved using previously reported methods. Within 30 days, T-MSC at 5×105 fold the number of the original hESCs can be obtained and with a high percentage of CD73+ cells, a typical marker for MSCs, whereas the other methods can only yield less than 100 fold the original hESC number with a low percentage of CD73+ cells. The derivation of the T-MSC includes an intermediate stage of CD73/Trp-2 double positive cells, hereafter named pre-T-MSC. After 2-3 days of the BMP4 plus a TGFβ inhibitor treatment, the cells first express Trp-2 at a high percentage and demonstrate a homogenous morphology of trophoblasts (FIGS. 2 & 3 ). After 5-6 days, the cells express both Trp-2 and CD73; after 6-14 days, the cells no longer express Trp2 but express the typical MSC surface markers at high percentages including CD73 (>98%), CD90 (>95%), CD105 (>90%). CD44 (>95%), CD29 (>80%); and the cells are negative for the endothelial marker CD31 and hematopoiesis markers CD34 and CD45 (FIGS. 3& 4 ). - T-MSC produced by the method disclosed herein are capable of differentiating to downstream osteogenesis, chondrogenesis and adipogenesis lineages (
FIG. 7 ). Thus, the T-MSC are phenotypically and functionally similar to MSCs derived from the bone marrow (SM) and other sources. - Bone marrow-derived MSCs (BM-MSCs) have long been used to treat autoimmune disease in many animal models and clinical trials, however the efficacy of immunosuppression is not consistent with some reports showing BM-MSCs are unable to efficiently treat certain autoimmune diseases (Tyndall, 2011). Data is provided herein comparing the ability of BM-MSCs and T-MSC for their inhibition of T cell proliferation following T cell receptor stimulation. As shown in
FIG. 7 , BM-MSCs can inhibit proliferation of both CD4 and CD8 T cells induced by anti-CD3 antibody at a low dose (0.3 ug/ml), which is comparable to T-MSC. However, when the anti-CD3 antibody concentration increased to 1 ug/ml, BM-MSCs have less potency in suppressing proliferation of both CD4 and CD8 T cells than T-MSC. CFSE dilution assay was used here to evaluate the T cell proliferation: an increased percentage of T cells with decreased CFSE signal indicates an accelerated proliferation. As shown inFIG. 5 , when anti-CD3 antibody increased to 1 ug/ml, there were 59% of CD4 and 46% of CD8 T cells detected with decreased CFSE signal. T-MSC significantly decreased both the CD4 and CD8 T cells to 16%, whereas BM-MSCs only decreased CD4 and CD8 T cells to 32% and 36%, respectively. - Consistent with the in vitro immunosuppressive activity of the T-MSC, T-MSC produced by the method disclosed herein were shown to be effective to treat experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. As shown in
FIG. 6 , when T-MSC were injected 6 days post the EAE induction, the disease score of the EAE mice significantly declined, compared to vehicle injection controls. - In a further feature of cells produced by the disclosed methods, T-MSC also demonstrated much stronger immunosuppressive effect than BM-MSCs and hES-MSCs derived through SB431542 treatment (Chen et al., 2012) (
FIG. 6 ). In several repeated experiments, BM-MSCs consistently failed to attenuate the disease score of EAE mice, Thus, the replacement of BM-MSCs with T-MSC produced by the disclosed method for use in clinical applications would remove the need for risky, invasive procedures for bone marrow aspiration, reduce the time for waiting for BM donations, reduce the cost, and reduce batch to batch variations for preparing BM-MSCs on a per-patient basis. - In summary, disclosed herein is a highly efficient method to generate mesenchymal-like cells or MSCs from hESCs through an intermediate trophoblast stage, and the use of the T-MSC to treat autoimmune disease. Microarray analysis suggested that the T-MSC had a gene expression profile not identical to that of BM-MSCs (data not shown), although both can differentiate into the same downstream call lineages (
FIG. 7 ). In addition, the T-MSC have stronger immunosuppressive ability both in vitro and in vivo than BM-MSCs. - The available data suggest that T-MSC produced by the disclosed method are different from traditional, adult-derived MSCs. Due to their strong inhibition of T cell proliferation, T-MSC may be used to treat multiple sclerosis with much higher efficacy than BM-MSCs. To address potential safety concerns, T-MSC were injected into immunodeficient SCID-beige mice. No tumor or teratoma formation was observed in the mice.
- The T-MSC of the present invention are unique and have a variety of therapeutic and other uses. Thus, the present invention includes various preparations, including pharmaceutical preparations, and compositions comprising T-MSC.
- The term “T-MSC” refers to MSC or mesenchymal stem/stromal cells that are derived from human embryonic stem cells (hESC) or induced pluripotent stem cells (iPSC) through a trophoblast intermediate stage where cells express Trop-2 with trophoblast-like morphology. The term “hES-T-MSC” refers to T-MSC differentiated tom hESC. The term “iPS-T-MSC” and “iT-MSC” refer to T-MSC differentiated from iPSC, The term “T-MSC” as used herein does not refer to a trophoblast. A cell is considered a “stem cell” if the cell retains at least one attribute of a stem cell, e.g., the ability to differentiate into at least one other type of cell, or the like. These cells can be described based upon numerous structural and functional properties including but not limited to, expression or lack of expression of one or more markers. Specifically, T-MSC are characterized by small cell bodies with a fibroblast morphology. T-MSCs, including both hES-T-MSC and iT-MSC, are multipotent and capable of differentiating to give rise to other cell types and cell lineages. The term “T-MSC-DL” refers to all the cell types and cell lineages differentiated from T-MSC.
- The differentiation method described herein can achieve the differentiation of MSC from iPS cells within 6-14 days, the shortest time ever reported. Thus, these iT-MSC can be used for patient specific iPS based therapy under emergency conditions which requires the generation of MSC in very short time, such as acute heart infarction, acute heart failure, acute spinal cord injury, acute radiation/burning treatments, etc.
- T-MSC can be identified or characterized by the expression or lack of expression as assessed on the level of DNA, RNA or protein, of one or more cell markers. T-MSC can be identified as expressing cell surface marker CD73, or expressing at least one or more of the following cell surface markers: CD90, CD105, CD13, CD29, CD54, CD44, CD146 or CD166 or not expressing or expressing at a low level at least one of the following cell surface markers: CD34, CD31, or CD45.
- Alternatively or additionally, T-MSC can be identified or characterized based upon their low level of expression of one or more pro-inflammatory proteins, MMP2, RAGE, IFNGR2, TNFα, IL-12A, IL-6, and VCAM1. This profile of gene expression is in contrast to bone marrow derived mesenchymal stem cells. In particular, IL-6 was expressed much higher in BM-MSCs than in T-MSC. IL-6 is a pleiotropic cytokine involved in crosstalk between hematopoietic/immune cos and stromal cells, including the onset and resolution of inflammation.
- The T-MSC can also be characterized in their ability to inhibit T cell proliferation after stimulation in vitro. This characteristic is in contrast to BM-MSCs which do not inhibit T cell proliferation after stimulation in vitro.
- Thus, the T-MSC described herein have at least one of the following characteristics: (1) differentiate into adipocytes, chondrocytes, osteoblast cells, neurons, myoblasts, stromal cells and fibroblasts; (2) have a fibroblast-like morphology; (3) express CD73, CD90, CD105, CD13, CD29, CD54, CD44, CD146 and/or CD166; (4) express at low levels or do not express CD34, CD31, and/or C45; (5) express at low levels or do not express MMP2, RAGE, IFNγR1, IFNγR2, IL-2 TNFα, IL-6, and/or VCAM1, particularly IL-6; (6) express MHC antigen HLA-G and/or HLA-ABC and express at low levels or do not express HLA-DR and/or CD60; and (7) inhibit T cell proliferation after stimulation in vitro. In certain embodiments, the T-MSCs have at least two, at least three, at least four, at least five, at least six, or all seven characteristics.
- In certain embodiments, T-MSC is distinguishable with previously reported HB-MSC, T-MSC express at least one fold higher level of CXCR7, CXCL2 and/or CXCL12 than HB-MSC, but at least half of the level of HOXB2, HOXB3, HOXB5, HOXB7, HOX9, HOXA5, HOXA9 and other HOX family genes compared to HB-MSC.
- Additionally, the T-MSC have the unique ability to cross the blood-brain barrier (BBB) and the blood-spinal cord barrier (BSCB), making them uniquely suited for therapeutic and diagnostic applications. The T-MSC of the current invention have the ability to migrate in and out of the vessels of the spinal cord, across the BSCB, to fulfill functions in the CNS, including but not limited to the delivery of therapeutic and diagnostic agents. This is in contrast to BM-MSCs which do not have this ability.
- Another embodiment of the present invention is a T-MSC that is irradiated. This embodiment would include T-MSC with at least one of the following characteristics listed above, having at least two, at least three, at least four, at least five, at least six, or all seven characteristics that have been subject to irradiation.
- In another embodiment, the cell culture comprises T-MSC. In certain embodiments, the T-MSC differentiate into adipocytes, chondrocytes, osteoblast cells, neurons, myoblasts, stromal cells and fibroblasts. In certain embodiments, the T-MSC cells express CD73, CD90, CD105, CD13, CD29, CD54, CD44, CD146, and/or CD166. In certain embodiments, the cells express at low levels or do not express CD34, CD31, and/or CD45. In certain other embodiments, the cells express at low levels or do not express MMP2, RAGE, IFNγR1, IFNγR2, IL-12, TNFα, IL-6, and/or VCAM1, especially IL-6. In certain other embodiments, the cells express MHC antigen HLA-G and/or HLA-ABC and express at low levels or do not express HLA-DR and/or CD80. In certain other embodiments, the cells inhibit T cell proliferation after stimulation in vitro. In certain embodiments, the cells can cross the blood-brain barrier and the blood-spinal cord barrier. In certain embodiments, the cells have been irradiated.
- In another aspect, disclosed herein a pharmaceutical preparation comprising T-MSC. In certain embodiments, the T-MSC can differentiate into adipocytes, chondrocytes, osteoblast cells, neurons, myoblasts, stromal cells and fibroblasts. In certain embodiments, the cells express CD73, CD90. CD105, CD13, CD29, CD54, CD44, CD146 and/or CD166. In certain embodiments, the cells express at low levels or do not express CD34, CD31, and/or CD45. In certain other embodiments, the cells express at low levels or do not express MMP2, RAGE, IFNγR1, IFNγR2, TNFα, IL-12, IL-6, and/or VCAM1, especially IL-6. In certain other embodiments, the cells express MHC antigen HLA G and/or HLA-ABC and express at low levels or do not express HLA-DR and/or CD80. In certain other embodiments, the cells inhibit T cell proliferation after stimulation in vitro. In certain embodiments, the cells can cross the blood-brain barrier and the blood-spinal cord barrier. In certain embodiments, the cells have been irradiated. The pharmaceutical preparation can be prepared using any pharmaceutically acceptable carrier or excipient.
- In certain embodiments, the composition or pharmaceutical preparation comprises at least at least 10,000 T-MSC, at least 50,000 T-MSC, at least 100,000 T-MSC, at least 500,000 T-MSC, at least 1×106 T-MSC, at least 5×106 T-MSC, at least 1×107 T-MSC, at least 5×107 T-MSC, at least 1×108 T-MSC, at least 5×108 T-MSC, at least 1×109 T-MSC, at least 5×109 T-MSC, or at least 1×1010 T-MSC.
- Provided herein are pluralities of T-MSC that comprise T-MSC obtained and isolated directly from a human embryonic stem cell line that have been cultured and passaged at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30 or more times, or a combination thereof.
- In certain embodiments, provided herein is a cryopreserved preparation of T-MSC or cells partially or terminally differentiated therefrom.
- In certain embodiments, provided herein is a therapeutic use of T-MSC, or compositions or preparations of T-MSC, including irradiated T-MSC. Such cells and preparations can be used in the treatment of any of the conditions or diseases as described, as well as in a delivery system for agents across the blood-brain barrier and the blood-spinal cord barrier.
- In certain embodiments, the invention provides a cryopreserved preparation of trophoblasts, pre-T-MSC, or T-MSC cells partially or terminally differentiated therefrom.
- In certain embodiments, the invention provides the therapeutic use of T-MSCs, or compositions or preparations of T-MSCs, including irradiated T-MSCs. Such cells and preparations can be used in the treatment of any of the conditions or diseases detailed throughout the specification, as well as in a delivery system for agents across the blood-brain barrier and the blood-spinal cord barrier.
- Provided herein is a method of identifying highly immunosuppressive T-MSC by identifying a biomarker profile of the highly immunosuppressive T-MSC that are clinical grade for use in therapy. In certain embodiments, the clinical grade T-MSC have the following characteristics: (i) contain >95% of cells expressing group-1 markers; (ii) contain >80% of
cells expressing group 2 markers; (iii) contain <5% of cells expressing group-3 markers (iv) express IL-10 and TGFβ; (v) contain <2% of cells expressing IL-6, IL-12 and TNFα; and (vi) contains <0.001% of cells co-expressing al group-4 markers, wherein group-1 markers are CD73, CD90, CD105, CD146, CD166, and CD44, group-2 markers are CD13, CD29, CD54, CD49E, group-3 markers are CD45, CD34, CD31 and SSEA4, and group-4 markers are OCT4, NANOG, TRA-1-60 and SSEA4. - In certain embodiments, the method comprises measuring the differential expression of markers that encode anti-inflammatory factors (“AIF”) and pro-inflammatory factors (“PIF”). In certain embodiments, the AIF is IL-10, TGFβ2. In certain embodiments, the PIF is up regulated. In certain embodiments, T-MSC express at least 1.5 fold of the above markers as compared to BM-MSC. In certain embodiments, the PIF is IL-6, IL-12, TNFα, CCL2, VCAM1, RAGE, MMP2. In certain embodiments, the PIF is down regulated. In certain embodiments, T-MSC express at least half of the above markers as compared to BM-MSC In another embodiment, highly immunosuppressive T-MSC has a lower ratio of IL-6+ cells as compared to BM-MSC. In certain embodiments, highly immunosuppressive T-MSC have less than 5%, 4%, 3%, 2%, or 1% of IL-6 positive cells. In certain embodiments, T-MSC express low levels of IL12, TNFα, RAGE and other PIF. In certain embodiments, T-MSC may express high levels of TGFβ2 and IL-10. In certain embodiments, the expression of markers is compared to expression in BM-MSC.
- Provided herein is a qualification procedure for clinical grade T-MSC population. Expression of specific markers is measured in a population of T-MSC to determine whether they are suitable for therapeutic use. The markers include, for example, (1) MSC-specific markers (set 1): CD73, CD90, CD105, CD166, and CD44, (2) MSC-specific markers (set 2): CD13, CD29, CD54, CD49E, SCA-1, and STRO-1, (3) hematopoietic stem/progenitor markers: CD45 and CD34, and endothelial cell marker CD31, (4) immunogenic markers: HLA-ABC, HLA-G, CD80, and CD86, (5) cytokines: IL-10, TGFβ, IL-8, and IL-12, and (6) pluripotency markers: OCT4, NANOG, TRA-1-60, and SSEA-4. In certain embodiments, T-MSC population contains more than 95%, 96%, 97%, 98%, or 99% of cells that express at least one
group 1 markers. In certain embodiments, T-MSC population contains more than 80%, 85%, 90%, 95%, or 99% of cells that express at least onegroup 2 markers. In certain embodiments, T-MSC population contains less than 0.1%, 0.08%, 0.05%, 0.03%, 0.02%, or 0.01% of cells that express at least onegroup 3 marker. In certain embodiments, T-MSC population contains more than 80%, 85%, 90%, 95%, or 99% of cells that express IL-10 and/or TGFβ. In certain embodiments, T-MSC population contains less than 5%, 4%, 3%, 2%, 1% of cells that express IL-6 and/or IL-12. In certain embodiments, T-MSC population contains less 0.001% of cells that express at least onegroup 6 marker. The clinical-grade T-MSC is compared with the preclinical-grade T-MSC as a positive control. In certain embodiments, the T-MSC is characterized through multi-color flow cytometry analyses and/or immunofluoresence. In certain embodiments, T-MSC population express CCL2, CCL3, CCL4, CCL5, IL-1, IL-2, IL-4, IL-6, IL-8, IL-10, IL-17, TNFα, TGFβ, IFNγ, GM-CSF, G-CSF, bFGF, CXCL5, VEGF, TPO or a combination thereof. In certain embodiments, the T-MSC population will also be analyzed for (1) presence of exogenous materials such as endotoxin and residual cytokines/growth factors, and/or (2) genomic abnormalities (via karyotyping and whole-genome sequencing). - Provided herein is another qualification procedure for clinical grade T-MSC population. T-MSC with better regeneration potential and immunosuppressive function may express a lower level of CD9, where CD9 expression level of Passage 1-2 T-MSC will be recorded as basal level, if after certain passages and procedures, the CD9 expression level increases by 2 fold, the cells will be stopped for passaging.
- Methods for determining the expression profile of the T-MSC are known in the art, including but not limited to, flow cytometry, multiplex microarray, RT-PCT, Northern blot and Western blot. In certain embodiments, the expression profile of the MSC are determined by cytometric bead array based multiplex cytokine analysis, luminex system based multiplex cytokine analysis, microarray RNA-seq, quantitative RT-PCR, Elispot Elisa, Elisa cytokine array, flow cytometry luciferase reporter system, fluorescence reporter system, histology staining, and immunofluorescence staining.
- In specific embodiments, biomarkers in a biomarker profile are nucleic acids. Such biomarkers and corresponding features of the biomarker profile may be generated, for example, by detecting the expression product (e.g., a polynucleotide or polypeptide) of one or more markers. In a specific embodiment, the biomarkers and corresponding features in a biomarker profile are obtained by detecting and/or analyzing one or more nucleic acids expressed from a marker disclosed herein using any method well known to those skilled in the art including, but not limited to, hybridization, microarray analysis, RT-PCR, nuclease protection assays and Northern blot analysis.
- In certain embodiments, nucleic acids detected and/or analyzed by the methods and compositions of the invention include RNA molecules such as, for example, expressed RNA molecules which include messenger RNA (mRNA) molecules, mRNA spliced variants as well as regulatory RNA cRNA molecules (e.g., RNA molecules prepared from cDNA molecules that are transcribed in vitro) and discriminating fragments thereof.
- In specific embodiments, the nucleic acids are prepared in vitro from nucleic acids present in, or isolated or partially isolated from a cell culture, which are well known in the art, and are described generally, e.g., in Sambrook et al., 2001, Molecular Cloning: A Laboratory Manual. 3rd ed., Cold Spring Harbor Laboratory Press (Cold Spring Harbor, N.Y.), which is hereby incorporated by reference in its entirety.
- In certain embodiments, nucleic acid arrays are employed to generate features of biomarkers in a biomarker profile by detecting the expression of any one or more of the markers described herein. In one embodiment of the invention, a microarray such as a cDNA microarray is used to determine feature values of biomarkers in a biomarker profile. Exemplary methods for cDNA microarray analysis are described below, and in the examples.
- In certain embodiments, the feature values for biomarkers in a biomarker profile are obtained by hybridizing to the array detectably labeled nucleic acids representing or corresponding to the nucleic acid sequences in mRNA transcripts present in a biological sample (e.g., fluorescently labeled cDNA synthesized from the sample) to a microarray comprising one or more probe spots.
- Nucleic acid arrays, for example, microarrays, can be made in a number of ways, of which several are described herein below. Preferably, the arrays are reproducible, allowing multiple copies of a given array to be produced and results from the microarrays compared with each other. Preferably, the arrays are made from materials that are stable under binding (e.g., nucleic acid hybridization) conditions. Those skilled in the art will know of suitable supports, substrates or carriers for hybridizing test probes to probe spots on an army, or will be able to ascertain the same by use of routine experimentation.
- Arrays, for example, microarrays, used can include one or more test probes. In some embodiments, each such test probe comprises a nucleic acid sequence that is complementary to a subsequence of RNA or DNA to be detected. Each probe typically has a different nucleic acid sequence, and the position of each probe on the solid surface of the array is usually known or can be determined. Arrays useful in accordance with the invention can include, for example, oligonucleotide microarrays, cDNA based arrays, SNP arrays, spliced variant arrays and any other array able to provide a qualitative, quantitative or semi-quantitative measurement of expression of a marker described herein. Some types of microarrays are addressable arrays. More specifically, some microarrays are positionally addressable arrays. In some embodiments, each probe of the array is located at a known, predetermined position on the solid support so that the identity (e.g., the sequence) of each probe can be determined from its position on the array (e.g., on the support or surface). In some embodiments, the arrays are ordered arrays. Microarrays are generally described in Draghici, 2003, Data Analysis Tools for DNA Microarrays, Chapman & Hall/CRC, which is hereby incorporated by reference in its entirety.
- In certain embodiments, to determine the feature values of biomarkers in a biomarker profile of level of expression of one or more of the markers described herein, the feature values are measured by amplifying RNA from a sample using reverse transcription (RT) in combination with the polymerase chain reaction (PCR). In accordance with this embodiment, the reverse transcription may be quantitative or semi-quantitative. The RT-PCR methods taught herein may be used in conjunction with the microarray methods described above. For example, a bulk PCR reaction may be performed, and the PCR products may be resolved and used as probe spots on a microarray.
- Total RNA, or mRNA is used as a template and a primer specific to the transcribed portion of the marker(s) is used to initiate reverse transcription. Methods of reverse transcribing RNA into cDNA are well known and described in Sambrook et al., 2001, supra. Primer design can be accomplished based on known nucleotide sequences that have been published or available from any publicly available sequence database such as GenBank. For example, primers may be designed for any of the markers described herein. Further, primer design may be accomplished by utilizing commercially available software (e.g., Primer Designer 1.0, Scientific Software etc.). The product of the reverse transcription is subsequently used as a template for PCR.
- PCR provides a method for rapidly amplifying a particular nucleic acid sequence by using multiple cycles of DNA replication catalyzed by a thermostable, DNA-dependent DNA polymerase to amplify the target sequence of interest. PCR requires the presence of a nucleic acid to be amplified, two single-stranded oligonucleotide primers flanking the sequence to be amplified, a DNA polymerase, deoxyribonucleoside triphosphates, a buffer and salts. The method of PCR is well known in the at PCR, is performed, for example, as described in Mullis and Faloona, 1987, Methods Enzymol. 155:335, which is hereby incorporated by reference in its entirety.
- PCR can be performed using template DNA or cDNA (at least 10 fg; more usefully, 1-1000 ng) and at least 25 pmol of oligonucleotide primers. A typical reaction mixture includes: 2 μl of DNA, 25 pmol of oligonucleotide primer, 2.5 μl of 10 M PCR buffer 1 (Perkin-Elmer, Foster City, Calif.), 0.4 μl of 1.25 M dNTP, 0.15 μl (or 2.5 units) of Taq DNA polymerase (Perkin Elmer, Foster City, Calif.) and deionized water to a total volume of 25 μl. Mineral oil is overlaid and the PCR is performed using a programmable thermal cycler.
- Quantitative RT-PCR (“QRT-PCR”), which is quantitative in nature, can also be performed to provide a quantitative measure of marker expression levels. In QRT-PCR reverse transcription and PCR can be performed in two steps, or reverse transcription combined with PCR can be performed concurrently. One of these techniques, for which there are commercially available kits such as Taqman (Perkin Elmer, Foster City, Calif.) or as provided by Applied Biosystems (Foster City, Calif.) is performed with a transcript-specific antisense probe. This probe is specific for the PCR product (e.g. a nucleic acid fragment derived from a gene) and is prepared with a quencher and fluorescent reporter probe complexed to the 5′ end of the oligonucleotide. Different fluorescent markers are attached to different reporters, allowing for measurement of two products in one reaction. When Taq DNA polymerase is activated, it cleaves off the fluorescent reporters of the probe bound to the template by virtue of its 5′-to-3′ exonuclease activity. In the absence of the quenchers, the reporters now fluoresce. The color change in the reporters is proportional to the amount of each specific product and is measured by a fluorometer; therefore, the amount of each color is measured and the PCR product is quantified. The PCR reactions are performed in 96-well plates so that samples derived from many individuals are processed and measured simultaneously. The Taqman system has the additional advantage of not requiring gel electrophoresis and allows for quantification when used with a standard curve.
- A second technique useful for detecting PCR products quantitatively is to use an intercalating dye such as the commercially available QuantiTect SYBR Green PCR (Qiagen, Valencia Calif.). RT-PCR is performed using SYBR green as a fluorescent label which is incorporated into the PCR product during the PCR stage and produces a fluorescence proportional to the amount of PCR product.
- Both Taqman and QuantiTect SYBR systems can be used subsequent to reverse transcription of RNA. Reverse transcription can either be performed in the same reaction mixture as the PCR step (one-step protocol) or reverse transcription can be performed first prior to amplification utilizing PCR (two-step protocol). Additionally, other systems to quantitatively measure mRNA expression products are known, including Molecular Beacons®, which uses a probe having a fluorescent molecule and a quencher molecule, the probe capable of forming a hairpin structure such that when in the hairpin form, the fluorescence molecule is quenched, and when hybridized the fluorescence increases giving a quantitative measurement of gene expression.
- Any hybridization technique known to those of skill in the art can be used to generate feature values for biomarkers in a biomarker profile. In other particular embodiments, feature values for biomarkers in a biomarker profile can be obtained by Northern blot analysis (to detect and quantify specific RNA molecules. A standard Northern blot assay can be used to ascertain an RNA transcript size, identify alternatively spliced RNA transcripts, and the relative amounts of one or more genes described herein (in particular, mRNA) In a sample, in accordance with conventional Northern hybridization techniques known to those persons of ordinary skill in the art. In Northern blots, RNA samples are first separated by size via electrophoresis in an agarose gel under denaturing conditions. The RNA is then transferred to a membrane, cross-linked and hybridized with a labeled probe. Non-isotopic or high specific activity radiolabeled probes can be used including random-primed, nick-translated, or PCR-generated DNA probes, in vitro transcribed RNA probes, and oligonucleotides. Additionally, sequences with only partial homology (e.g., cDNA from a different species or genomic DNA fragments that might contain an exon) may be used as probes. The labeled probe, e.g., a radiolabelled cDNA, either containing the full-length, single stranded DNA or a fragment of that DNA sequence may be at least 20, at least 30, at least 50, or at least 100 consecutive nucleotides in length. The probe can be labeled by any of the many different methods known to those skilled in this art. The labels most commonly employed for these studies are radioactive elements, enzymes, chemicals that fluoresce when exposed to ultraviolet light, and others. A number of fluorescent materials are known and can be utilized as labels. These include, but are not limited to, fluorescein, rhodamine, auramine, Texas Red, AMCA blue and Lucifer Yellow. The radioactive label can be detected by any of the currently available counting procedures. Non-limiting examples of isotopes include 2H, 14C, 32P, 35S, 36Cl, 51Cr, 57Co, 58Co, 59Fe, 90Y, 125I, and 131I, and 186Re. Enzyme labels are likewise useful, and can be detected by any of the presently utilized colorimetric, spectrophotometric, fluorospectrophotometric, amperometric or gasometric techniques. The enzyme is conjugated to the selected particle by reaction with bridging molecules such as carbodiimides, diisocyanates, glutaraldehyde and the like. Any enzymes known to one of sill in the art can be utilized. Examples of such enzymes include, but are not limited to, peroxidase, beta-D-galactosidase, urease, glucose oxidase plus peroxidase and alkaline phosphatase. U.S. Pat. Nos. 3,654,090, 3,850,752, and 4,018,043 are referred to by way of example for their disclosure of alternate labeling material and methods.
- In specific embodiments of the invention, feature values of biomarkers in a biomarker profile can be obtained by detecting proteins, for example, by detecting the expression product (e.g. a nucleic acid or protein) of one or more markers described herein, or post-translationally modified, or otherwise modified, or processed forms of such proteins. In a specific embodiment, a biomarker profile is generated by detecting and/or analyzing one or more proteins and/or discriminating fragments thereof expressed from a marker disclosed herein using any method known to those skilled in the art for detecting proteins including, but not limited to protein microarray analysis, immunohistochemistry and mass spectrometry.
- Standard techniques may be utilized for determining the amount of the protein or proteins of interest present in a cell culture. For example, standard techniques can be employed using, e.g., immunoassays such as, for example, Western blot, immunoprecipitation followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, (SDS-PAGE), inmunocytochemistry, and the like to determine the amount of protein or proteins of interest present in a sample. One exemplary agent for detecting a protein of interest is an antibody capable of specifically binding to a protein of interest, preferably an antibody detectably labeled, either directly or indirectly.
- For such detection methods, if desired a protein from the cell culture to be analyzed can easily be isolated using techniques which are well known to those of skill in the art. Protein isolation methods can, for example, be such as those described in Harlow and Lane, 1988, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press (Cold Spring Harbor, N.Y.), which is hereby incorporated by reference in its entirety.
- In certain embodiments, methods of detection of the protein or proteins of interest involve their detection via interaction with a protein-specific antibody. For example, antibodies directed to a protein of interest. Antibodies can be generated utilizing standard techniques well known to those of skill in the art. In specific embodiments, antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or an antibody fragment (e.g., scFv, Fab or F(ab′)2) can, for example, be used.
- For example, antibodies, or fragments of antibodies, specific for a protein of interest can be used to quantitatively or qualitatively detect the presence of a protein. This can be accomplished, for example, by immunofluorescence techniques. Antibodies (or fragments thereof) can, additionally, be employed histologically, as in immunofluorescence or immunoelectron microscopy, for in situ detection of a protein of interest. In situ detection can be accomplished by removing a biological sample (e.g., a biopsy specimen) from a patient, and applying thereto a labeled antibody that is directed to a protein of interest. The antibody (or fragment) is preferably applied by overlaying the antibody (or fragment) onto a biological sample. Through the use of such a procedure, it is possible to determine not only the presence of the protein of interest, but also its distribution, in a particular sample. A wide variety of well-known histological methods (such as staining procedures) can be utilized to achieve such in situ detection.
- Immunoassays for a protein of interest typically comprise incubating a sample of a detectably labeled antibody capable of identifying a protein of interest, and detecting the bound antibody by any of a number of techniques well-known in the art. As discussed in more detail, below, the term “labeled” can refer to direct labeling of the antibody via, e.g., coupling (i.e., physically linking) a detectable substance to the antibody, and can also refer to indirect labeling of the antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently labeled secondary antibody.
- The sample can be brought in contact with and immobilized onto a solid phase support or carrier such as nitrocellulose, or other solid support which is capable of immobilizing cells, cell particles or soluble proteins. The support can then be washed with suitable buffers followed by treatment with the detectably labeled fingerprint gene-specific antibody. The solid phase support can then be washed with the buffer a second time to remove unbound antibody. The amount of bound label on solid support can then be detected by conventional methods.
- By “solid phase support or carrier” is intended any support capable of binding an antigen or an antibody. Well-known supports or carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides and magnetite. The nature of the carrier can be either soluble to some extent or insoluble for the purposes of the present invention. The support material can have virtually any possible structural configuration so long as the coupled molecule is capable of binding to an antigen or antibody. Thus, the support configuration can be spherical, as in a bead, or cylindrical, as in the inside surface of a test tube, or the external surface of a rod. Alternatively, the surface can be flat such as a sheet, test strip, etc. Preferred supports include polystyrene beads. Those skilled in the art will know many other suitable carriers for binding antibody or antigen, or will be able to ascertain the same by use of routine experimentation.
- One of the ways in which an antibody specific for a protein of interest can be detectably labeled is by linking the same to an enzyme and use in an enzyme immunoassay (EIA) (Voller, 1978, “The Enzyme Linked Immunosorbent Assay (ELISA)”, Diagnostic Horizons 2:1-7, Microbiological Associates Quarterly Publication, Walkersville. Md.; Voller et al., 1978, J. Clin. Pathol. 31:507-520; Butler, J. E., 1981, Meth. Enzymol. 73:482-523; Maggio (ed.), 1980, Enzyme Immunoassay, CRC Press, Boca Raton, Fla.; Ishikawa et al., (eds.), 1981, Enzyme Immunoassay, Kgaku Shoin, Tokyo, each of which is hereby incorporated by reference in its entirety). The enzyme which is bound to the antibody will react with an appropriate substrate, preferably a chromogenic substrate, in such a manner as to produce a chemical moiety which can be detected, for example, by spectrophotometric, fluorimetric or by visual means. Enzymes which can be used to detectably label the antibody include, but are not limited to, malate dehydrogenase, staphylococcal nuclease, delta-S-steroid isomerase, yeast alcohol dehydrogenase, alpha-glycerophosphate, dehydrogenase, triose phosphate isomerase, horseradish peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase and acetylcholinesterase. The detection can be accomplished by colorimetric methods which employ a chromogenic substrate for the enzyme. Detection can also be accomplished by visual comparison of the extent of enzymatic reaction of a substrate in comparison with similarly prepared standards.
- Detection can also be accomplished using any of a variety of other immunoassays. For example, by radioactively labeling the antibodies or antibody fragments, it is possible to detect a protein of interest through the use of a radioimmunoassay (RIA) (see, for example, Weintraub, 1986, Principles of Radioimmunoassays, Seventh Training Course on Radioligand Assay Techniques, The Endocrine Society, which is hereby incorporated by reference in its entirety). The radioactive isotope (e.g., 125I, 131I, 35S or 3H) can be detected by such means as the use of a gamma counter or a scintillation counter or by autoradiography.
- It is also possible to label the antibody with a fluorescent compound. When the fluorescently labeled antibody is exposed to light of the proper wavelength, its presence can then be detected due to fluorescence. Among the most commonly used fluorescent labeling compounds are fluorescein isothiocyanate, rhodamine, phycoerythrin, phycocyanin, allophycocyanin, o-phthaldehyde and fluorescamine.
- The antibody can also be detectably labeled using fluorescence emitting metals such as 152Eu, or others of the lanthanide series. These metals can be attached to the antibody using such metal chelating groups as diethylenetriaminepentacetic acid (DTPA) or ethylenediaminetetraacetic acid (EDTA).
- The antibody also can be detectably labeled by coupling it to a chemiluminescent compound. The presence of the chemiluminescent-tagged antibody is then determined by detecting the presence of luminescence that arises during the course of a chemical reaction. Examples of particularly useful chemiluminescent labeling compounds are luminol, isoluminol, theromatic acridinium ester, imidazole, acridinium sat and oxalate ester.
- Likewise, a bioluminescent compound can be used to label the antibody of the present invention. Bioluminescence is a type of chemiluminescence found in biological systems in, which a catalytic protein increases the efficiency of the chemiluminescent reaction. The presence of a bioluminescent protein is determined by detecting the presence of luminescence. Important bioluminescent compounds for purposes of labeling are luciferin, luciferase and aequorin.
- In another embodiment, specific binding molecules other than antibodies, such as aptamers, may be used to bind the biomarkers. In yet another embodiment, the biomarker profile may comprise a measurable aspect of an infectious agent (e.g., lipopolysaccharides or viral proteins) or a component thereof.
- In some embodiments, a protein chip assay (e.g., The ProteinChip® Biomarker System, Ciphergen, Fremont, Calif.) is used to measure feature values for the biomarkers in the biomarker profile. See also, for example, Lin, 2004, Modern Pathology, 1-9; Li, 2004, Journal of Urology 171, 1782-1787; Wadsworth, 2004, Clinical Cancer Research, 10, 1625-1632; Prieto, 2003, Journal of Liquid Chromatography &
Related Technologies 26, 2315-2328; Coombes, 2003, Clinical Chemistry 49, 1615-1623; Mian, 2003,Proteomics 3, 1725-1737; Lehre et al., 2003, BJU International 92, 223-225; and Diamond, 2003, Journal of the American Society forMass Spectrometry 14, 760-765, each of which is hereby incorporated by reference in its entirety. - In some embodiments, a bead assay is used to measure feature values for the biomarkers in the biomarker profile. One such bead assay is the Becton Dickinson Cytometric Bead Array (CBA). CBA employs a series of particles with discrete fluorescence intensities to simultaneously detect multiple soluble analytes. CBA is combined with flow cytometry to create a multiplexed assay. The Becton Dickinson CBA system, as embodied for example in the Becton Dickinson Human Inflammation Kit, uses the sensitivity of amplified fluorescence detection by flow cytometry measure soluble analytes in a particle-based immunoassay. Each bead in a CBA provides a capture surface for a specific protein and is analogous to an individually coated well in an ELISA plate. The BD CBA capture bead mixture is in suspension to allow for the detection of multiple analytes in a small volume sample.
- In some embodiments, the multiplex analysis method described in U.S. Pat. No. 5,981,180 (“the '180 patent”), hereby incorporated by reference in its entirety, and in particular for its teachings of the general methodology, bead technology, system hardware and antibody detection, is used to measure feature values for the biomarkers in a biomarker profile. For this analysis, a matrix of microparticles is synthesized, where the matrix consists of different sets of microparticles. Each set of microparticles can have thousands of molecules of a distinct antibody capture reagent immobilized on the microparticle surface and can be color-coded by incorporation of varying amounts of two fluorescent dyes. The ratio of the two fluorescent dyes provides a distinct emission spectrum for each set of microparticles, allowing the identification of a microparticle set following the pooling of the various sets of microparticles. U.S. Pat. Nos. 6,288,222 and 6,599,331 also are hereby incorporated by reference in their entirety, and in particular for their teachings of various methods of labeling microparticles for multiplex analysis.
- In some embodiments, a separation method may be used to determine feature values for biomarkers in a biomarker profile, such that only a subset of biomarkers within the sample is analyzed. For example, the biomarkers that are analyzed in a sample may be mRNA species from a cellular extract which has been fractionated to obtain only the nucleic acid biomarkers within the sample, or the biomarkers may be from a fraction of the total complement of proteins within the sample, which have been fractionated by chromatographic techniques.
- Feature values for biomarkers in a biomarker profile can also, for example, be generated by the use of one or more of the following methods described below. For example, methods may include nuclear magnetic resonance (NMR) spectroscopy, a mass spectrometry method, such as electrospray ionization mass spectrometry (ESI-MS), ESI-MS/MS, ESI-MS/(MS)n (n is an integer greater than zero), matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS), desorption/ionization on silicon (DIOS), secondary ion mass spectrometry (SIMS), quadrupole time-of-flight (Q-TOF), atmospheric pressure chemical ionization mass spectrometry (APCI-MS), APCI-MS/MS, APCI-(MS)n, atmospheric pressure photoionization mass spectrometry (APPI-MS), APPI-MS/MS, and APPI-(MS)n. Other mass spectrometry methods may include, inter alia, quadrupole. Fourier transform mass spectrometry (FTMS) and ion trap. Other suitable methods may include chemical extraction partitioning, column chromatography, ion exchange chromatography, hydrophobic (reverse phase) liquid chromatography, isoelectric focusing, one-dimensional polyacrylamide gel electrophoresis (PAGE), two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) or other chromatography, such as thin-layer, gas or liquid chromatography, or any combination thereof. In one embodiment, the biological sample may be fractionated prior to application of the separation method.
- In one embodiment, laser desorption/ionization time-of-flight mass spectrometry is used to determine feature values in a biomarker profile where the biomarkers are proteins or protein fragments that have been ionized and vaporized off an immobilizing support by incident laser radiation and the feature values are the presence or absence of peaks representing these fragments in the mass spectra profile. A variety of laser desorption/ionization techniques are known in the art (see, e.g., Guttman et al., 2001, Anal. Chem. 73:1252-62 and Wei et al., 1999. Nature 399:243-246, each of which is hereby incorporated by reference in its entirety).
- Laser desorption/ionization time-of-flight mass spectrometry allows the generation of large amounts of information in a relatively short period of time. A biological sample is applied to one of several varieties of a support that binds all of the biomarkers, or a subset thereof, in the sample. Cell lysates or samples are directly applied to these surfaces in volumes as small as 0.5 μL, with or without prior purification or fractionation. The lysates or sample can be concentrated or diluted prior to application onto the support surface. Laser desorption/ionization is then used to generate mass spectra of the sample, or samples, in as little as three hours.
- Biomarker expression profile of T-MSC are factors discriminating between clinical grade T-MSC and non-clinical grade T-MSC. The identity of these biomarkers and their corresponding features (e.g., expression levels) can be used to develop a decision rule, or plurality of decision rules, that discriminate between clinical grade and non-clinical grade T-MSC. Specific data analysis algorithms for building a decision rule, or plurality of decision rules, can discriminate between clinical grade T-MSC and non-clinical grade T-MSC. Once a decision rule has been built using these exemplary data analysis algorithms or other techniques known in the art, the decision rule can be used to classify a T-MSC population into one of the two or more phenotypic classes (e.g., a clinical grade or a non-clinical grade T-MSC). This is accomplished by applying the decision rule to a biomarker profile obtained from the cell culture. Such decision rules, therefore, have enormous value as defining the quality of T-MSC.
- In a certain embodiment, provided herein is a method for the evaluation of a biomarker profile from a test cell culture compared to biomarker profiles obtained from a cell culture in a control population. In some embodiments, each biomarker profile obtained from the control population, as well as the test cell culture, comprises a feature for each of a plurality of different biomarkers. In some embodiments, this comparison is accomplished by (i) developing a decision rule using the biomarker profiles from the control population and (ii) applying the decision rule to the biomarker profile from the test cell culture. As such, the decision rules applied in some embodiments of the present invention are used to determine whether a test cell culture is clinical grade or non-clinical grade. In certain embodiments, the control population is a clinical grade T-MSC. In other embodiments, the control population is BM-MSC.
- In some embodiments of the present invention, when the results of the application of a decision rule indicate that the test cell culture is clinical grade T-MSC, it is used for treatment. If the results of an application of a decision rule indicate that the test cell culture is non-clinical grade T-MSC, the test cell culture is not used for treatment.
- Provided herein is a method of modifying mesenchymal stem cells to produce a population of modified MSC that has improved immunosuppressive function. The MSC have the following characteristics: (i) contain >96% of cells expressing group-1 markers; (ii) contain >80% of
cells expressing group 2 markers; (iii) contain <5% of cells expressing group-3 markers: (iv) expresses IL-10 and TGFβ; (v) contain <2% of cells expressing IL-6, IL-12 and TNFα; and (vi) contains <0.001% of cells co-expressing all group-4 markers, wherein group-1 markers are CD73, CD90, CD105, CD146, CD166, and CD44, group-2 markers are CD13, CD29, CD54, CD49E, group-3 markers are CD45, CD34, CD31 and SSEA4, and group-4 markers are OCT4, NANOG, TRA-1-60 and SSEA4. - Provided herein is a method of increasing immunosuppressive function of T-MSC by increasing the expression of AIF. In an embodiment, the method comprises decreasing the expression of PIF. In an embodiment, the method comprises decreasing the expression of IL6, IL12, TNFα, RAGE and other PIF in T-MSC. In an embodiment, the method comprises increasing the expression of TGFβ and IL-10 in T-MSC.
- In certain embodiments, the method comprises genetic and epigenetic modifications of T-MSC that are known in the art. In certain embodiments, the genetic modification or epigenetic regulation includes, but is not limited to, knockout, small heir pin RNA (“shRNA”), micro RNA (“miRNA”), non-coding RNA (“ncRNA”), morpholino oligo, decoy RNA, DNA methylation regulation, histone methylation regulation, translation inhibition and/or antibody blocking. In certain embodiments, MSC are modified through transposomes, toll-like receptor ligands, or small molecules.
- In certain embodiments, small molecules are used to target any of the signaling pathway components of IL-6 signaling. In certain embodiments, the target includes, but is not limited to, gp130, STAT3, Cathepsin S, NFkappaB, IRF5. In certain embodiments, IL-12 expression is decreased in T-MSC by activation of the prostaglandin E2 pathway, by increasing intracellular cyclic AMP levels with cAMP agonists that include, but are not limited to, forskolin, cholera toxin, β1- and β2 adrenoreceptor agonists, by inhibition of the NF-κB Rel-B pathway, by treating T-MSC with apoptotic calls, by treatment with phosphatidylserine, by treatment with butyrate, by treatment with Triptolide or extracts from Tripterygium wilfordii or synthetic forms or Triptolide (i.e., Minnelide).
- In certain embodiments, MSC may be modified to express a certain marker using methods known in the art of recombinant DNA. In certain embodiments, MSC may be modified by transfection using the nucleotide sequence encoding the marker. The marker can be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for the transcription and translation of the inserted coding sequence. The necessary transcriptional and translational elements can also be present. The regulatory regions and enhancer elements can be of a variety of origins, both natural and synthetic. A variety of host-vector systems may be utilized to express the marker. These include, but are not limited to, mammalian cell systems infected with virus (e.g., vaccinia virus, adenovinis, etc.); insect cell systems infected with virus (e.g., baculovirus); microorganisms such as yeast containing yeast vectors, or bacteria transformed with bacteriophage, DNA, plasmid DNA, or cosmid DNA; and stable cell lines generated by transformation using a selectable marker. The expression elements of vectors vary in their strengths and specificities. Depending on the host-vector system utilized, any one of a number of suitable transcription and translation elements may be used.
- Once a vector encoding the appropriate marker has been synthesized, the MSC is transformed or transfected with the vector of interest.
- Standard methods of introducing a nucleic acid sequence of interest into the MSC can be used. Transformation may be by any known method for introducing polynucleotides into a host cell, including, for example packaging the polynucleotide in a virus and transducing a host cell with the virus, and by direct uptake of the polynucleotide. Mammalian transformations (i.e., transfections) by direct uptake may be conducted using the calcium phosphate precipitation method of Graham & Van der Eb. 1978, Virol. 52:546, or the various known modifications thereof. Other methods for introducing recombinant polynucleotides into cells, particularly into mammalian cells, include dextran-mediated transfection, calcium phosphate mediated transfection, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the polynucleotides into nuclei. Such methods are well-known to one of skill in the art.
- In a preferred embodiment, stable cell lines containing the constructs of interest are generated for high throughput screening. Such stable cells lines may be generated by introducing a construct comprising a selectable marker, allowing the cells to grow for 1-2 days in an enriched medium, and then growing the cells on a selective medium. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines.
- A number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler, et al., 1977, Cell 11:223), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, 1962, Proc. Natl. Acad. Sci. USA 48:2026), and adenine phosphoribosyltransferase (Lowy, et al, 1980, Cell 22:817) genes can be employed in tk-, hgprt- or aprt-cells, respectively. Also, anti-metabolite resistance can be used as the basis of selection for dhfr, which confers resistance to methotrexate (Wigler, et al., 1980, Natl. Acad. Sci. USA 77:3567; O'Hare, et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, 1981, Proc. Natl. Acad. Sci. USA 78:2072); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin, et al., 1981, J. Mol. Biol. 150:1); and hygro, which confers resistance to hygromycin (Santerre, et al., 1984, Gene 30:147) genes.
- The stem cell collection composition can comprise any physiologically-acceptable solution suitable for the collection and/or culture of stem cells, for example, a saline solution (e.g., phosphate-buffered saline, Kreb's solution, modified Kreb's solution, Eagle's solution, 0.9% NaCl, etc.), a culture medium (e.g., DMEM, H.DMEM, etc.), and the like.
- The stem cell collection composition can comprise one or more components that tend to preserve stem cells, that is, prevent the stem cells from dying, or delay the death of the stem cells, reduce the number of stem cells in a population of cells that die, or the like, from the time of collection to the time of culturing. Such components can be, e.g., an apoptosis inhibitor (e.g., a caspase inhibitor or JNK inhibitor); a vasodilator (e.g., magnesium sulfate, an antihypertensive drug, atrial natriuretic peptide (ANP), adrenocorticotropin, corticotropin-releasing hormone, sodium nitroprusside, hydralazine, adenosine triphosphate, adenosine, indomethacin or magnesium sulfate, a phosphodiesterase inhibitor, etc.); a necrosis inhibitor (e.g., 2-(1H-Indol-3-yl)-3-pentylamino-maleimide, pyrrolidine dithiocarbamate, or clonazepam); a TNF-α inhibitor; and/or an oxygen-carrying perfluorocarbon (e.g., perfluorooctyl bromide, perfluorodecyl bromide, etc.).
- The stem cell collection composition can comprise one or more tissue-degrading enzymes, e.g., a metalloprotease, a serine protease, a neutral protease, an RNase, or a DNase, or the like. Such enzymes include, but are not limited to, collagenases (e.g., collagenase I, II, III or IV, a collagenase from Clostridium histolyticum, etc.); dispase, thermolysin, elastase, trypsin, LIBERASE, hyaluronidase, and the like.
- The stem cell collection composition can comprise a bacteriocidally or bacteriostatically effective amount of an antibiotic. In certain non-limiting embodiments, the antibiotic is a macrolide (e.g., tobramycin), a cephalosporin (e.g., cephalexin, cephradine, cefuroxime, cefprozil, cefaclor, cefixime or cefadroxil), a clarithromycin, an erythromycin, a penicillin (e.g., penicillin V) or a quinolone (e.g., ofloxacin, ciprofloxacin or norfloxacin), a tetracycline, a streptomycin, etc. In a particular embodiment, the antibiotic is active against Gram(+) and/or Gram(−) bacteria, e.g., Pseudomonas aeruginosa, Staphylococcus aureus, and the like.
- The stem cell collection composition can also comprise one or more of the following compounds: adenosine (about 1 mM to about 50 mM); D-glucose (about 20 mM to about 100 mM); magnesium ions (about 1 mM to about 50 mM); a macromolecule of molecular weight greater than 20,000 daltons, in one embodiment, present in an amount sufficient to maintain endothelial integrity and cellular viability (e.g., a synthetic or naturally occurring colloid, a polysaccharide such as dextran or a polyethylene glycol present at about 25 g/l to about 100 g/l, or about 40 g/l to about 60 g/l); an antioxidant (e.g., butylated hydroxyanisole, butylated hydroxytoluene, glutathione, vitamin C or vitamin E present at about 25 μM to about 100 μM); a reducing agent (e.g., N-acetylcysteine present at about 0.1 mM to about 5 mM); an agent that prevents calcium entry into cells (e.g., verapamil present at about 2 μM to about 25 μM); nitroglycerin (e.g., about 0.05 g/L to about 0.2 g/L); an anticoagulant, in one embodiment, present in an amount sufficient to help prevent clotting of residual blood (e.g., heparin or hirudin present at a concentration of about 1000 units/1 to about 100,000 units/l); or an amiloride containing compound (e.g., amiloride, ethyl isopropyl amiloride, hexamethylene amiloride, dimethyl amiloride or isobutyl amiloride present at about 1.0 μM to about 5 μM).
- Provided herein is the modulation of the activity (e.g. reduced cell proliferation, reduced cell survival, impaired cell migration to sites of inflammation, reduced ability of the cells to promote or prolong inflammation or enhanced cell functions that promote the restoration of healthy tissue or organ homeostasis) of an immune cell, or plurality of immune cells, by contacting the immune cell(s) with a plurality of T-MSC or IT-MSC. In one embodiment, the method of modulating an immune response comprises contacting a plurality of immune cells with a plurality of T-MSC or iT-MSC for a time sufficient for the T-MSC or iT-MSC to detectably suppress an immune response, wherein the T-MSC or iT-MSC detectably suppress T cell proliferation in a mixed lymphocyte reaction (MLR) assay.
- Since BM-MSC or other adult tissue derived MSC have been used to treat many autoimmune diseases, BM-MSC are also used for tissue repairing by limiting inflammation and secret growth and protective factors, and replacing damaged tissues. As shown later in the examples, T-MSC have superior immunosuppressive function to BM-MSC, and thus T-MSC can be used in all areas and diseases that are currently targeted by BM-MSC.
- T-MSC or iPS-MSC used for immunomodulation may be derived or obtained from an embryonic stem cell line or induced pluripotent stem cell line, respectively. T-MSC or iPS-MSC used for immunomodulation may also be derived from the same species as the immune cells whose activity is to be modulated or from a different species as that of the immune cells whose activity is to be modulated.
- An “immune cell” in the context of this method means any cell of the immune system, particularly T cells and NK (natural killer) cells. Thus, in various embodiments of the method, T-MSC are contacted with a plurality of immune cells, wherein the plurality of immune cells are, or comprise, a plurality of T cells (e.g., a plurality of CD3+ T cells, CD4+ T cells and/or CD8+ T cells) and/or natural killer cells. An “immune response” in the context of the method can be any response by an immune cell to a stimulus normally perceived by an immune cell, e.g., a response to the presence of an antigen. In various embodiments, an immune response can be the proliferation of T cells (e.g., CD3+ T cells, CD4+ T cells and/or CD8+ T cells) in response to a foreign antigen, such as an antigen present in a transfusion or graft, or to a self-antigen, as in an autoimmune disease. The immune response can also be a proliferation of T cells contained within a graft. The immune response can also be any activity of a natural killer (NK) cell, the maturation of a dendritic cell, or the like. The immune response can also be a local, tissue- or organ-specific, or systemic effect of an activity of one or more classes of immune cells, e.g., the immune response can be graft versus host disease, inflammation, formation of inflammation-related scar tissue, an autoimmune condition (e.g., rheumatoid arthritis, Type I diabetes, lupus erythematosus, etc.), and the like.
- ‘Contacting’ in this context encompasses bringing the T-MSC and immune cells together in a single container (e.g., culture dish, flask, vial, etc.) or in vivo, for example, the same individual (e.g., mammal, for example, human). In a preferred embodiment, the contacting is for a time sufficient, and with a sufficient number of T-MSC and immune cells, that a change in an immune function of the immune cells is detectable. More preferably, in various embodiments, the contacting is sufficient to suppress immune function (e.g., T cell proliferation in response to an antigen) by at least 50%, 60%, 70%, 80%, 90% or 95%, compared to the immune function in the absence of the T-MSC. Such suppression in an in vivo context can be determined in an in vivo assay that is, the degree of suppression in the in vitro assay can be extrapolated, for a particular number of T-MSC and a number of immune cells in a recipient individual, to a degree of suppression in the individual.
- The invention in certain embodiments provides methods of using T-MSC to modulate an immune response, or the activity of a plurality of one or more types of immune cols, in vitro. Contacting the T-MSC and plurality of immune cells can comprise combining the T-MSC and immune cells in the same physical space such that at least a portion of the plurality of T-MSC interacts with at least a portion of the plurality of immune cells; maintaining the T-MSC and immune cells in separate physical spaces with common medium; or can comprise contacting medium from one or a culture of T-MSC or immune cells with the other type of cell (for example, obtaining culture medium from a culture of T-MSC and resuspending isolated immune cells in the medium). In a specific example, the contacting is a Mixed Lymphocyte Reaction (MLR).
- Such contacting can, for example, take place in an experimental setting designed to determine the extent to which a particular plurality of T-MSC is immunomodulatory, e.g., immunosuppressive. Such an experimental setting can be, for example, a mixed lymphocyte reaction (MLR) or regression assay. Procedures for performing the MLR and regression assays are well-known in the art. See, e.g., Schwarz, “The Mixed Lymphocyte Reaction: An In Vitro Test for Tolerance,” J. Exp. Med. 127(5):879-890 (1988); Lacerda et al, “Human Epstein-Barr Virus (EBV)-Specific Cytotoxic T Lymphocytes Home Preferentially to and Induce Selective Regressions of Autologous EBV-Induced B Lymphoproliferations in Xenografted C.B-17 Scid/Scid Mice,” J. Exp. Med. 183:1215-1228 (1996). In a preferred embodiment, an MLR is performed in which a plurality of T-MSC am contacted with a plurality of immune cells (e.g., lymphocytes, for example, CD3+ CD4+ and/or CD8+ T lymphocytes).
- The MLR can be used to determine the immunosuppressive capacity of a plurality of T-MSC. For example, a plurality of T-MSC can be tested in an MLR comprising combining CD4+ or CD8+ T cells, dendritic cells (DC) and T-MSC in a ratio of about 10:1:2, wherein the T cells are stained with a dye such as, e.g., CFSE that partitions into daughter cells, and wherein the T cells are allowed to proliferate for about 6 days. The plurality of T-MSC is immunosuppressive if the T cell proliferation at 6 days in the presence of T-MSC is detectably reduced compared to T cell proliferation in the presence of DC and absence of T-MSC. In such an MLR, T-MSC are either thawed or harvested from culture. About 10,000 T-MSC are resuspended in 100 μl of medium (
RPMI 1640, 1 mM HEPES buffer, antibiotics, and 5% pooled human serum), and allowed to attach to the bottom of a well for 2 hours. CD4+ and/or CD8+ T cells are isolated from whole peripheral blood mononuclear cells with Miltenyi magnetic beads. The cells are CFSE stained, and a total of 100,000 T cells (CD4+ T cells alone, CD8+ T cells alone, or equal amounts of CD4+ and CD8+ T cells) are added per well. The volume in the well is brought to 200 μl, and the MLR is allowed to proceed. - In one embodiment, therefore, the invention provides a method of suppressing an immune response comprising contacting a plurality of immune cells with a plurality of T-MSC for a time sufficient for the T-MSC to detectably suppress T cell proliferation in a mixed lymphocyte reaction (MLR) assay.
- Populations of T-MSC obtained from different embryonic stem cell lines, can differ in their ability to modulate an activity of an immune cell. e.g., can differ in their ability to suppress T cell activity or proliferation or NK cell activity. It is thus desirable to determine, prior to use, the capacity of a particular population of T-MSC for immunosuppression. Such a capacity can be determined, for example, by testing a sample of the stem cell population in an MLR or regression assay. In one embodiment, an MLR is performed with the sample, and a degree of immunosuppression in the assay attributable to the T-MSC is determined. This degree of immunosuppression can then be attributed to the stem cell population that was sampled. Thus, the MLR can be used as a method of determining the absolute and relative ability of a particular population of T-MSC to suppress immune function. The parameters of the MLR can be varied to provide more data or to best determine the capacity of a sample of T-MSC to immunosuppress. For example, because immunosuppression by T-MSC appears to increase roughly in proportion to the number of T-MSC present in the assay, the MLR can be performed with, in one embodiment, two or more numbers of stem cells, e.g., 1×103, 3×103, 1×104 and/or 3×104 T-MSC per reaction. The number of T-MSC relative to the number of T cells in the assay can also be varied. For example, T-MSC and T cells in the assay can be present in any ratio of, e.g., about 10:1 to about 1:10, preferably about 1:5, though a relatively greater number of T-MSC or T cells can be used.
- The invention also provides methods of using T-MSC to modulate an immune response, or the activity of a plurality of one or more types of immune cells, in vivo. T-MSC and immune cells can be contacted, e.g., in an individual that is a recipient of a plurality of T-MSC. Where the contacting is performed in an individual, in one embodiment, the contacting is between exogenous T-MSC (that is. T-MSC not derived from the individual) and a plurality of immune cells endogenous to the individual. In specific embodiments, the immune cells within the individual are CD3+ T cells, CD4+ T cells, CD8+ T cells, and/or NK cells.
- Such immunosuppression using T-MSC would be advantageous for any condition caused or worsened by, or related to, an inappropriate or undesirable immune response. T-MSC-mediated immunomodulation, e.g., immunosuppression, would, for example, be useful in the suppression of an inappropriate immune response raised by the individual's immune system against one or more of its own tissues. In various embodiments, therefore, the invention provides a method of suppressing an immune response, wherein the immune response is an autoimmune disease, e.g., lupus erythematosus, diabetes, rheumatoid arthritis, or multiple sclerosis.
- The contacting of the plurality of T-MSC with the plurality of one or more types of immune cells can occur in vivo in the context of, or as an adjunct to, for example, grafting or transplanting of one or more types of tissues to a recipient individual. Such tissues may be, for example, bone marrow or blood; an organ; a specific tissue (e.g., skin graft); composite tissue allograft (i.e., a graft comprising two or more different types of tissues); etc. In this regard, the T-MSC can be used to suppress one or more immune responses of one or more immune cells contained within the recipient individual, within the transplanted tissue or graft, or both. The contacting can occur before, during and/or after the grafting or transplanting. For example, T-MSC can be administered at the time of the transplant or graft. The T-MSC can also, or alternatively, be administered prior to the transplanting or grafting, e.g., about 1, 2, 3, 4, 5, 6 or 7 days prior to the transplanting or grafting. T-MSC can also, or alternatively, be administered to a transplant or graft recipient after the transplantation or grafting, for example, about 1, 2, 3, 4, 5, 6 or 7 days after the transplanting or grafting. Preferably, the plurality of T cells are contacted with the plurality of T-MSC before any detectable sign or symptom of an immune response, either by the recipient individual or the transplanted tissue or graft, e.g., a detectable sign or symptom of graft-versus-host disease or detectable inflammation, is detectable.
- In another embodiment, the contacting within an individual is primarily between exogenous T-MSC and exogenous progenitor cells or stem cells, e.g., exogenous progenitor cells or stem cells that differentiate into immune cells. For example, individuals undergoing partial or full immunoablation or myeloablation as an adjunct to cancer therapy can receive T-MSC in combination with one or more other types of stem or progenitor cells. For example, the T-MSC can be combined with a plurality of CD34+ cells, e.g., CD34+ hematopoietic stem cells. Such CD34+ cells can be, e.g., CD34+ cells from a tissue source such as peripheral blood, umbilical cord blood, placental blood, or bone marrow. The CD34+ cells can be isolated from such tissue sources, or the whole tissue source (e.g., units of umbilical cord blood or bone marrow) or a partially purified preparation from the tissue source (e.g., white blood cells from cord blood) can be combined with the T-MSC.
- The T-MSC are administered to the individual preferably in a ratio, with respect to the known or expected number of immune cells, e.g., T cells, in the individual, of from about 10:1 to about 1:10, preferably about 1:5. However, a plurality of T-MSC can be administered to an individual in a ratio of in non-limiting examples, about 10,000:1, about 1,000:1, about 100:1, about 10:1, about 1:1, about 1:10, about 1:100, about 1:1,000 or about 1:10,000. Generally, about 1×105 to about 1×108 T-MSC per recipient kilogram, preferably about 1×106 to about 1×107 T-MSC recipient kilogram can be administered to effect immunosuppression. In various embodiments, a plurality of T-MSC administered to an individual or subject comprises at least, about, or no more than, 1×105, 3×105, 1×106, 3×106, 1×107, 3×107, 1×108, 3×108, 1×109, 3×109 T-MSC, or more.
- The T-MSC can also be administered with one or more second types of stem calls, e.g., mesenchymal stem cells from bone marrow. Such second stem cells can be administered to an individual with T-MSC in a ratio of, e.g., about 1:10 to about 10:1.
- To facilitate contacting the T-MSC and immune cells in vivo, the T-MSC can be administered to the individual by any route sufficient to bring the T-MSC and immune cells into contact with each other. For example, the T-MSC can be administered to the individual, e.g., intravenously, intramuscularly, intraperitoneally, or directly into an organ, e.g., pancreas. For in vivo administration, the T-MSC can be formulated as a pharmaceutical composition.
- The method of immunosuppression can additionally comprise the addition of one or more immunosuppressive agents, particularly in the in vivo context. In one embodiment, the plurality of T-MSC are contacted with the plurality of immune cells in vivo in an individual, and a composition comprising an immunosuppressive agent is administered to the individual. Immunosuppressive agents are well known in the art and include, e.g., anti-T cell receptor antibodies (monoclonal or polyclonal, or antibody fragments or derivatives thereof), anti-IL-2 receptor antibodies (e.g., Basiliximab (SIMULECT®) or daclizumab (ZENAPAX®), anti T cell receptor antibodies (e.g., Muromonab-CD3), azathioprine, corticosteroids, cyclosporine, tacrolimus, mycophenolate mofetil, sirolimus, calcineurin inhibitors, and the like. In a specific embodiment, the immunosuppressive agent is a neutralizing antibody to macrophage inflammatory protein (MIP)-1α or MIP-1β.
- T-MSC and/or T-MSC-DL can be preserved, that is, placed under conditions that allow for long-term storage, or conditions that inhibit cell death by, e.g., apoptosis or necrosis. T-MSC and/or T-MSC-DL can be preserved using, e.g., a composition comprising an apoptosis inhibitor, necrosis inhibitor. In one embodiment, the invention provides a method of preserving a population of stem cells comprising contacting a population of stem cells with a stem cell collection composition comprising an inhibitor of apoptosis, wherein the inhibitor of apoptosis is present in an amount and for a time sufficient to reduce or prevent apoptosis in the population of stem cells, as compared to a population of stem cells not contacted with the inhibitor of apoptosis. In a specific embodiment, the inhibitor of apoptosis is a caspase inhibitor. In another specific embodiment, the inhibitor of apoptosis is a JNK inhibitor. In a more specific embodiment, the JNK inhibitor does not modulate differentiation or proliferation of the stem cells. In another embodiment, the stem cell collection composition comprises an inhibitor of apoptosis and an oxygen-carrying perfluorocarbon in separate phases. In another embodiment, the stem cell collection composition comprises an inhibitor of apoptosis and an oxygen-carrying perfluorocarbon in an emulsion. In another embodiment, the stem cell collection composition additionally comprises an emulsifier, e.g., lecithin. In another embodiment, the apoptosis inhibitor and the perfluorocarbon are between about 0° C. and about 25° C. at the time of contacting the stem cells. In another more specific embodiment, the apoptosis inhibitor and the perfluorocarbon are between about 2 and 10° C., or between about 2° C. and about 5, at the time of contacting the stem cells. In another more specific embodiment, the contacting is performed during transport of the population of stem cells. In another more specific embodiment, the contacting is performed during freezing and thawing of the population of stem cells.
- In another embodiment, the invention provides a method of preserving a population of T-MSC and/or T-MSC-DL comprising contacting the population of stem cells with an inhibitor of apoptosis and an organ-preserving compound, wherein the inhibitor of apoptosis is present in an amount and for a time sufficient to reduce or prevent apoptosis in the population of stem cells, as compared to a population of stem cells not contacted with the inhibitor of apoptosis.
- Typically, during T-MSC and/or T-MSC-DL collection, enrichment and isolation, it is preferable to minimize or eliminate cell stress due to hypoxia and mechanical stress. In another embodiment of the method, therefore, a stem cell, or population of stem cells, is exposed to a hypoxic condition during collection, enrichment or isolation for less than six hours during the preservation, wherein a hypoxic condition is a concentration of oxygen that is less than normal blood oxygen concentration. In a more specific embodiment, the population of stem cells is exposed to the hypoxic condition for less than two hours during the preservation. In another more specific embodiment, the population of stem cells is exposed to the hypoxic condition for less than one hour, or less than thirty minutes, or is not exposed to a hypoxic condition, during collection, enrichment or isolation. In another specific embodiment, the population of stem cells is not exposed to shear stress during collection, enrichment or isolation.
- The T-MSC and/or T-MSC-DL can be cryopreserved, e.g., in cryopreservation medium in small containers, e.g., ampoules. Suitable cryopreservation medium includes, but is not limited to, culture medium including, e.g., growth medium, or cell freezing medium, for example commercially available cell freezing medium, e.g., C2695, C2639 or C6039 (Sigma). Cryopreservation medium preferably comprises DMSO (dimethylsulfoxide), at a concentration of, e.g., about 10% (v/v) Cryopreservation medium may comprise additional agents, for example, methylcellulose and/or glycerol. T-MSC and/or T-MSC-DL are preferably cooled at about 1° C./min during cryopreservation. A preferred cryopreservation temperature is about −80° C. to about −180° C., preferably about −125° C. to about −140° C. Cryopreserved cells can be transferred to liquid nitrogen prior to thawing for use. In some embodiments, for example, once the ampoules have reached about −90° C., they are transferred to a liquid nitrogen storage area. Cryopreserved cells preferably are thawed at a temperature of about 25° C. to about 40° C., preferably to a temperature of about 37° C.
- The T-MSC and/or T-MSC-DL disclosed herein can be preserved, for example, cryopreserved for later use. Methods for cryopreservation of cells, such as stem cells, are well known in the art. T-MSC and/or T-MSC-DL can be prepared in a form that is easily administrable to an individual. For example, provided herein are T-MSC and/or T-MSC-DL that are contained within a container that is suitable for medical use. Such a container can be, for example, a sterile plastic bag, flask, jar, or other container from which the T-MSC and/or T-MSC-DL can be easily dispensed. For example, the container can be a blood bag or other plastic, medically-acceptable bag suitable for the intravenous administration of a liquid to a recipient. The container is preferably one that allows for cryopreservation of the combined stem cell population. Cryopreserved T-MSC and/or T-MSC-DL can comprise T-MSC and/or T-MSC-DL derived from a single donor, or from multiple donors. The T-MSC and/or T-MSC-DL can be completely HLA-matched to an intended recipient, or partially or completely HLA-mismatched.
- In another specific embodiment, the container is a beg, flask, or jar. In a more specific embodiment, the bag is a sterile plastic bag. In a more specific embodiment, the bag is suitable for, allows or facilitates intravenous administration of the T-MSC and/or T-MSC-DL. The bag can comprise multiple lumens or compartments that are interconnected to allow mixing of the T-MSC and/or T-MSC-DL and one or more other solutions, e.g., a drug, prior to, or during, administration. In another specific embodiment, the composition comprises one or more compounds that facilitate cryopreservation of the combined stem cell population. In another specific embodiment, the T-MSC and/or T-MSC-DL is contained within a physiologically-acceptable aqueous solution. In a more specific embodiment, the physiologically-acceptable aqueous solution is a 0.9% NaCl solution. In another specific embodiment, the hES-MSC are HLA-matched to a recipient of the stem cell population. In another specific embodiment, the combined stem cell population comprises hES-MSC that are at least partially HLA-mismatched to a recipient of the stem cell population.
- T-MSC may be differentiated into various cell lineages including neuronal lineage cells or neurons, or adipocytes, or myoblasts, or fibroblasts, or osteoblasts or chrondrocytes. Unless specifically indicated. T-MSC may be plated onto cell culture plates coated with gelatin, collagen, fibronectin, Matrigel, laminin, vitronectin, or poly(lysine). T-MSC may be plated at a concentration of 1×103 cells/cm2 to 1×104 cells/cm2 in serum free medium or serum-containing medium with bovine serum FBS or ABHS. T-MSCs plated according to the above mentioned conditions may be differentiated by one of the following methods.
- In one embodiment, T-MSC may be differentiated in medium containing 1-50 ng/mL Fibroblast Growth Factor (FGF)-2 (optimally 10 ng/ml) plus 1-50 ng/ml Epidermal Growth Factor (EGF) (optimally 10 ng/l) plus 0.5-5 ng/ml Platelet-Derived Growth Factor (PDGF) (optimally 1 ng/m). The medium is changed every 2 to 3 days and the cells are harvested after 2-4 weeks with an expected yield of 0.5×106-2×106 neuronal lineage cells per 1×106 T-MSC.
- In another embodiment, T-MSC may be differentiated into neuronal lineage cells by plating on Poly-L-ornithine and Laminin coated plates. T-MSCs will be differentiated in three stages. Stage 1: 1-50 ng/ml FGF-2 (optimally 10 ng/ml) and 1-50 ng/ml EGF (optimally 10 ng/ml), to prime hMSCs towards a neural fate. Stage 2: 10-200 ng/ml Sonic Hedgehog (SHH) (optimally 100 ng/ml), 1-50 ng/ml FGF-8 (human) (optimally 10 ng/ml) and 50-500 μM AAP (optimally 200 μM), for initiating midbrain specification. Stage 3: 5-500 ng/ml Glial-Derived Neurotrophic Factor (GDNF) (optimally 50 ng/ml) and 50-500 μM AAP (optimally 200 μM), for inducing differentiation and maturation towards a dopaminergic neuronal phenotype. Each stage is applied for 1 week and the adherent cells are passaged by disassociation with Trypsin or TrypLE/dispase between each stage. Growth factors are replenished every day and the medium is changed every 2 days. Expected yield is 0.5×106-4×106 neuronal lineage cells per 1×106 T-MSC.
- In another embodiment, T-MSC may be differentiated into neuronal lineage cells in Neurobasal medium (Gibco) containing 0.25×B-27 supplement plus 10-200 ng/ml Sonic Hedgehog (SHH) (optimally 100 ng/ml), plus 1-50 ng/ml FGF-8 (mouse) (optimally 10 ng/ml) plus 1-200 ng/ml FGF-2 (optimally 50 ng/ml). Cells are harvested after 6- and 12-days. Media is not replaced during this period. Expected yield is 0.5×106-4×106 neuronal lineage cells per 1×106 T-MSC.
- In another embodiment, T-MSC may be differentiated into neuron lineage cells in two stages. Stage 1: T-MSC are cultured in serum-free medium (DMEM) supplemented with 2 mM glutamine, 1-20 U/ml (optimally 12.5 U/ml) nystatin, N2 supplement, and 2-50 ng/ml (optimally 20 ng/m) fibroblast growth factor-2 (FGF-2) and 1-50 ng/mL EGF (optimally 10 ng/ml) for 48-72 hours. Stage 2: cells are cultured in Neurobasal medium plus B27 supplement plus 0.1-10 mM (optimally 1 mM) dibutyryl cyclic AMP (dbcAMP), 3-isobutyl-1-methylxanthine (IBMX), and 10-500 μM (optimally 200 μM) ascorbic acid plus 1-100 ng/ml BDNF (optimally 50 ng/ml), 1-50 ng/ml glial-derived neurotrophic factor (GDNF; optimally 10 ng/ml), 0.2-10 ng/ml transforming growth factor-β3 (TGF-β3, optimally 2 ng/ml), and 0.05-5 μM all-transretinoic acid (RA, optimally 0.1 μM). Each stage is applied for 1 week and the adherent cells are passaged by disassociation with Trypsin or TrypLE/dispase between each stage. The medium is changed every 2 days and the expected yield is 0.5×106-4×106 neuronal lineage cells per 1×106 T-MSC
- In another embodiment, T-MSC may be cultured to induce osteogenic differentiation. T-MSCs will be cultured in low glucose DMEM plus 10% FCS. 1-150 μM (optimally 80 μM) ascorbic acid 2-phosphate, 0.5-5 μM (optimally 1 μM) dexamethasone, and 1-100 mM (optimally 20 mM) beta-glycerophosphate. The medium is changed every 2 to 3 days and the expected yield is 0.5×106-4×106 neuronal lineage cells per 1×106 T-MSC after 2 weeks.
- In another embodiment, T-MSC may be cultured to induce adipogenic differentiation. T-MSCs will be grown in low glucose DMEM plus 20% FCS, 1-10 μg/m (optimally 5 μg/ml) insulin, 0.5-10 μM (optimally 2 μM) dexamethasone, 0.1-1 mM (optimally 0.5 mM) isobutymethylxanthine, and 1-100 μM (optimally 60 μM) indomethacin. The medium is changed every 2 to 3 days and the expected yield is 0.5×106-4×106 neuronal lineage cells per 1×106 T-MSC after 4 weeks.
- In another embodiment, T-MSC may be cultured to induce chondrogenic differentiation. T-MSC will be grown in a pellet in high glucose DMEM supplemented with 0.5-10 mM (optimally 1 mM) Sodium Pyruvate, 0.05-1 mM (optimally 0.1 mM) ascorbic acid 2-phosphate, 0.05-1 μM (optimally 0.1 μM) dexamethasone, 0.2-2% (optimally 1%) ITS, and 1-50 ng/ml (optimally 10 ng/mL) TGF-β3. The medium is changed every 2 to 3 days and the expected yield is 0.5×106-4×106 neuronal lineage cells per 1×106 T-MSC after 20 days.
- In another embodiment, T-MSC may be cultured to induce myogenic differentiation. T-MSC will be grown in low-glucose DMEM supplemented with 10% FBS, 1-20 μM (optimally 10 μM) 5-azacytidine, and 1-50 ng/ml (optimally 10 ng/ml) basic FGF. After 24 hours, the myogenic induction medium will be replaced with DMEM supplemented with 10% FBS plus 1-50 ng/m (optimally 10 ng/ml) basic FGF. The medium is changed every 2 to 3 days and the expected yield is 0.5×106-4×106 neuronal lineage cells per 1×106 T-MSC after 2 weeks.
- In another embodiment, T-MSC may be cultured to induce fibroblast differentiation. T-MSC will be grown in hMSCs that were treated with DMEM plus 10% FBS supplemented 50-200 ng/ml (optimally 100 ng/ml) of recombinant human Connective Tissue Growth Factor (CTGF) and 1-100 μg/ml (optimally 50 μg/ml) ascorbic acid. The medium is changed every 3 to 4 days and the expected yield is 0.5×106-4×106 neuronal lineage cells per 1×106 T-MSC after 4 weeks.
- All the cell lineages and cell types derived from T-MSC using any differentiation methods including, but not limited to, the methods above are called T-MSC-DL throughout.
- In one embodiment, provided herein is a pharmaceutical composition comprising a therapeutically effective amount of a T-MSC and a pharmaceutically acceptable carrier.
- The pharmaceutical compostions can comprise any number of T-MSC and/or T-MSC-DL. For example, a single unit dose of T-MSC can comprise, in various embodiments, about, at least, or no more than 1×105, 5×105, 1×105, 1×107, 5×107, 1×108, 5×108, 1×109, 5×109, 1×1010, 5×1010, 1×1011 or more T-MSC and/or T-MSC-DL.
- The pharmaceutical compostions disclosed herein comprise populations of cells that comprise 50% viable cells or more (that is, at least 50% of the cols in the population are functional or living). Preferably, at least 60% of the cells in the population are viable. More preferably, at least 70%, 80%, 90%, 95%, or 99% of the cells in the population in the pharmaceutical composition are viable.
- The pharmaceutical compositions disclosed herein can comprise one or more compounds that, e.g., facilitate engraftment (e.g., anti-T-cell receptor antibodies, an immunosuppressant, or the like); stabilizers such as albumin,
dextran 40, gelatin, hydroxyethyl starch, and the like. - The phrase “pharmaceutically acceptable” refers to molecular entities and compositions that are physiologically tolerable and do not typically produce an allergic or similar untoward reaction, such as gastric upset, dizziness and the like, when administered to a human, and approved by a regulatory agency of a Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans. “Carrier” refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered. Such pharmaceutical carriers can be sterile liquids, such as saline solutions in water and oils, including those of petroleum, animal, vegetable, or synthetic origin, such as peanut oil, soybean oi, mineral oil, sesame oil, and the like. A saline solution is a preferred carrier when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol, and the like. The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents.
- These compositions can take the form of solutions, suspensions, emulsions, tablets, pills, capsules, powders, sustained-release formulations, cachets, troches, lozenges, dispersions, suppositories, ointments, cataplasms (poultices), pastes, powders, dressings, creams, plasters, patches, aerosols, gels, liquid dosage forms suitable for parenteral administration to a patient, and sterile solids (e.g., crystalline or amorphous solids) that can be reconstituted to provide liquid dosage forms suitable for parenteral administration to a patient. Such compositions will contain a therapeutically effective amount of the compound, preferably in purified form, together with a suitable form of carrier so as to provide the form for proper administration to the patient. The formulation should suit the mode of administration.
- Pharmaceutical compositions adapted for oral administration may be capsules, tablets, powders, granules, solutions, syrups, suspensions (in non-aqueous or aqueous liquids), or emulsions. Tablets or herd gelatin capsules may comprise lactose, starch or derivatives thereof, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, stearic acid or salts thereof. Soft gelatin capsules may comprise vegetable oils, waxes, fats, semi-solid, or liquid polyols. Solutions and syrups may comprise water, polyols, and sugars. An active agent intended for oral administration may be coated with or admixed with a material that delays disintegration and/or absorption of the active agent in the gastrointestinal tract. Thus, the sustained release may be achieved over many hours and if necessary, the active agent can be protected from degradation within the stomach. Pharmaceutical compositions for oral administration may be formulated to facilitate release of an active agent at a particular gastrointestinal location due to specific pH or enzymatic conditions.
- Pharmaceutical compositions adapted for transdermal administration may be provided as discrete patches intended to remain in intimate contact with the epidermis of the recipient over a prolonged period of time.
- Pharmaceutical compositions adapted for nasal and pulmonary administration may comprise solid carriers such as powders which can be administered by rapid inhalation through the nose. Compositions for nasal administration may comprise liquid carriers, such as sprays or drops. Alternatively, inhalation directly through into the lungs may be accomplished by inhalation deeply or installation through a mouthpiece. These compositions may comprise aqueous or oil solutions of the active ingredient. Compositions for inhalation may be supplied in specially adapted devices including, but not limited to, pressurized aerosols, nebulizers or insufflators, which can be constructed so as to provide predetermined dosages of the active ingredient.
- Pharmaceutical compositions adapted for parenteral administration include aqueous and non-aqueous sterile injectable solutions or suspensions, which may contain anti-oxidants, buffers, bacteriostats, and solutes that render the compositions substantially isotonic with the blood of the subject. Other components which may be present in such compositions include water, alcohols, polyols, glycerine, and vegetable oils. Compositions adapted for parental administration may be presented in unit-dose or multi-dose containers, such as sealed ampules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of a sterile carrier, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules, and tablets. Suitable vehicles that can be used to provide parenteral dosage forms of the invention are well known to those skilled in the art. Examples include: Water for Injection USP; aqueous vehicles such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, and Lactated Ringer's Injection; water-miscible vehicles such as ethyl alcohol, polyethylene glycol, and polypropylene glycol; and non-aqueous vehicles such as corn oil, cottonseed oil, peanut oil, sesame oil, ethyl oleate, isopropyl myristate, and benzyl benzoate.
- Selection of a therapeutically effective dose will be determined by the skilled artisan considering several factors which will be known to one of ordinary skill in the art. Such factors include the particular form of the inhibitor, and its pharmacokinetic parameters such as bioavailability, metabolism, and half-life, which will have been established during the usual development procedures typically employed in obtaining regulatory approval for a pharmaceutical compound. Further factors in considering the dose include the condition or disease to be treated or the benefit to be achieved in a normal individual, the body mass of the patient, the route of administration, whether the administration is acute or chronic, concomitant medications, and other factors well known to affect the efficacy of administered pharmaceutical agents. Thus, the precise dose should be decided according to the judgment of the person of skill in the art, and each patient's circumstances, and according to standard clinical techniques.
- In certain embodiments, patients are treated with antipyretic and/or antihistamine (acetaminophen and diphenhydramine hydrochloride) to minimize any possible DMS infusion toxicity related to the cryopreserve component in the hES-MSC treatment.
- The T-MSC disclosed herein can be used to produce conditioned medium that is immunosuppressive, that is, medium comprising one or more biomolecules secreted or excreted by the stem cells that have a detectable immunosuppressive effect on a plurality of one or more types of immune cells. In various embodiments, the conditioned medium comprises medium in which T-MSC have grown for at least 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14 or more days. In other embodiments, the conditioned medium comprises medium in which T-MSC have grown to at least 30%, 40%, 50%, 60%, 70%, 80%, 90% confluence, or up to 100% confluence. Such conditioned medium can be used to support the culture of a separate population of T-MSC, or stem cells of another kind. In another embodiment, the conditioned medium comprises medium in which T-MSC have been differentiated into an adult cell type. In another embodiment, the conditioned medium of the invention comprises medium in which T-MSC and non-T-MSC have been cultured.
- Thus, in one embodiment, the invention provides a composition comprising culture medium, cell lysate and/or other derivatives from a culture of T-MSC, wherein the T-MSC (a) adhere to a substrate; (b) express CD73, CD105. CD90, CD29. CD44, CD146. IL-10, TGFb2, HGF, but do not express IL-6, TNFα, IL-12 and/or RAGE, In another specific embodiment, the composition comprises an anti-proliferative agent, e.g., an anti-MIP-1α or anti-MIP-1β antibody.
- Provided herein is a method of using T-MSC as described herein as feeder cells for bone marrow hematopoietic stem cell, peripheral blood hematopoietic stem cell and umbilical-cord hematopoietic stem cell expansion. In certain embodiments, the T-MSC suitable for the disclosed method express Stro-3, Stro-1, DL1, and/or Nestin. The T-MSC can also be modified or engineered to express high level of Stro-3, Stro-1, DL1, Nestin or Frizzle using the method disclosed herein in Section 5.5. In certain embodiments, T-MSC is co-cultured with bone marrow hematopoietic stem cells, peripheral blood hematopoietic stem cells and/or umbilical-cord hematopoietic stem cells. In certain embodiments, the T-MSC are mesenchymal stromal cells. Provided herein is a co-culture of T-MSC as described herein and bone marrow hematopoietic stem cells. Provided herein is a co-culture of T-MSC as described herein and umbilical-cord hematopoietic stem cells.
- The invention further comprises matrices, hydrogels, scaffolds, and the like that comprise T-MSC and/or T-MSC-DL. T-MSC and/or T-MSC-DL can be seeded onto a natural matrix, e.g., a biomaterial. In certain embodiments, the scaffold is obtained by 3D printing. The T-MSC and/or T-MSC-DL can be suspended in a hydrogel solution suitable for, e.g., injection. Suitable hydrogels for such compositions include self-assembling peptides, such as RAD16. In one embodiment, a hydrogel solution comprising the cells can be allowed to harden, for instance in a mold, to form a matrix having cells dispersed therein for implantation. T-MSC and/or T-MSC-DL in such a matrix can also be cultured so that the cells are mitotically expanded prior to implantation. The hydrogel is, e.g., an organic polymer (natural or synthetic) that is cross-linked via covalent, ionic, or hydrogen bonds to create a three-dimensional open-lattice structure that entraps water molecules to form a gel. Hydrogel-forming materials include polysaccharides such as alginate and salts thereof, peptides, polyphosphazines, and polyacrylates, which are cross-linked ionically, or block polymers such as polyethylene oxide-polypropylene glycol block copolymers which are cross-linked by temperature or pH, respectively. In some embodiments, the hydrogel or matrix of the invention is biodegradable. In some embodiments of the invention, the formulation comprises an in situ polymerizable gel (see, e.g., U.S. Patent Application Publication 2002/0022676; Anseth et al., J. Control Release, 78(1-3):199-209 (2002); Wang et al., Biomaterials, 24(22):3969-80 (2003).
- In some embodiments, the polymers are at least partially soluble in aqueous solutions, such as water, buffered salt solutions, or aqueous alcohol solutions, that have charged side groups, or a monovalent ionic salt thereof. Examples of polymers having acidic side groups that can be reacted with cations are poly(phosphazenes), poly(acrylic acids), poly(methacrylic acids), copolymers of acrylic acid and methacrylic acid, poly(vinyl acetate), and sulfonated polymers, such as sulfonated polystyrene. Copolymers having acidic side groups formed by reaction of acrylic or methacrylic acid and vinyl ether monomers or polymers can also be used. Examples of acidic groups are carboxylic acid groups, sulfonic acid groups, halogenated (preferably fluorinated) alcohol groups, phenolic OH groups, and acidic OH groups.
- The T-MSC, T-MSC-DL and/or co-cultures thereof can be seeded onto a three-dimensional framework or scaffold and implanted in vivo. Such a framework can be implanted in combination with any one or more growth factors, cells, drugs or other components that stimulate tissue formation or otherwise enhance or improve the practice of the invention.
- Examples of scaffolds that can be used in the present invention include nonwoven mats, porous foams, or self-assembling peptides. Nonwoven mats can be formed using fibers comprised of a synthetic absorbable copolymer of glycolic and lactic acids (e.g., PGA/PLA) (VICRYL, Ethicon, Inc., Somerville, N.J.). Foams, composed of, e.g., poly(s-caprolaclone)poly(glycolic acid) (PCL/PGA) copolymer, formed by processes such as freeze-drying, or lyophilization (see, e.g., U.S. Pat. No. 6,355,699), can also be used as scaffolds.
- The T-MSC and/or T-MSC-DL can also be seeded onto, or contacted with, a physiologically-acceptable ceramic material including, but not limited to, mono-, di-, tri-, alpha-tri-, beta-tri-, and tetra-calcium phosphate, hydroxyapatite, fluoroapatites, calcium sulfates, calcium fluorides, calcium oxides, calcium carbonates, magnesium calcium phosphates, biologically active glasses such as BIOGLASS®, and mixtures thereof. Porous biocompatible ceramic materials currently commercially available include SURGIBONE® (CanMedica Corp., Canada). ENDOBON® (Merck Biomaterial France, France), CEROS® (Mathys, AG, Bettach, Switzerland), and mineralized collagen bone grafting products such as HEALOS™ (DePuy, Inc., Raynham, Mass.) and VITOSS®, RHAKOSS™, and CORTOSS® (Orthovita, Malvern, Pa.). The framework can be a mixture, blend or composite of natural and/or synthetic materials.
- In another embodiment, T-MSC and/or T-MSC-DL can be seeded onto, or contacted with, a felt, which can be, e.g., composed of a multifilament yarn made from a bioabsorbable material such as PGA, PA, PCL copolymers or blends, or hyaluronic acid.
- The T-MSC and/or T-MSC-DL can, in another embodiment, be seeded onto foam scaffolds that may be composite structures. Such foam scaffolds can be molded into a useful shape, such as that of a portion of a specific structure in the body to be repaired, replaced or augmented. In some embodiments, the framework is treated, e.g., with 0.1M acetic acid followed by incubation in polylysine, PBS, and/or collagen, prior to inoculation of the cells of the invention in order to enhance cell attachment. External surfaces of a matrix may be modified to improve the attachment or growth of cells and differentiation of tissue, such as by plasma-coating the matrix, or addition of one or more proteins (e.g., collagens, elastic fibers, reticular fibers), glycoproteins, glycosaminoglycans (e.g., heparin sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, dermatan sulfate, keratin sulfate, etc.), a cellular matrix, and/or other materials such as, but not limited to, gelatin, alginates, agar, agarose, and plant gums, and the like.
- In some embodiments, the scaffold comprises, or is treated with, materials that render it non-thrombogenic. These treatments and materials may also promote and sustain endothelial growth, migration, and extracellular matrix deposition. Examples of these materials and treatments include but are not limited to natural materials such as basement membrane proteins such as laminin and Type IV collagen, synthetic materials such as EPTFE, and segmented polyurethaneurea silicones, such as PURSPAN™ (The Polymer Technology Group, Inc., Berkeley, Calif.). The scaffold can also comprise anti-thrombotic agents such as heparin; the scaffolds can also be treated to alter the surface charge (e.g., coating with plasma) prior to seeding with stem cells.
- Mammalian T-MSC and/or T-MSC-DL can be conditionaly immortalized by transfection with any suitable vector containing a growth-promoting gene, that is, a gene encoding a protein that, under appropriate conditions, promotes growth of the transfected cell, such that the production and/or activity of the growth-promoting protein is relatable by an external factor. In a preferred embodiment the growth-promoting gene is an oncogene such as, but not limited to, ν-myc, N-myc, c-myc, p53, SV40 large T antigen, polyoma large T antigen, E1a adenovirus or E7 protein of human papillomavirus.
- External regulation of the growth-promoting protein can be achieved by placing the growth-promoting gene under the control of an externally-regulatable promoter, e.g., a promoter the activity of which can be controlled by, for example, modifying the temperature of the transfected cells or the composition of the medium in contact with the cells. In one embodiment, a tetracycline (tet)-controlled gene expression system can be employed (see Gossen et al., Proc. Natl. Acad. Sci. USA 89:5547-5551, 1992; Hoshimaru et al., Proc. Natl. Acad. Sci. USA 93:1518-1523, 1996). In the absence of tet, a tet-controlled transactivator (tTA) within this vector strongly activates transcription from phCMV+-1, a minimal promoter from human cytomegalovirus fused to tet operator sequences. tTA is a fusion protein of the repressor (tetR) of the transposon-10-derived tet resistance operon of Escherichia col and the acidic domain of
VP 16 of herpes simplex virus. Low, non-toxic concentrations of tet (e.g., 0.01-1.0 μg/mL) almost completely abolish transactivation by tTA. - In one embodiment, the vector further contains a gene encoding a selectable marker, e.g., a protein that confers drug resistance. The bacterial neomycin resistance gene (neoR) is one such marker that may be employed within the present invention. Cells carrying neoR may be selected by means known to those of ordinary skill in the art, such as the addition of, e.g., 100-200 μg/mL G418 to the growth medium.
- Transfection can be achieved by any of a variety of means known to those of ordinary skill in the art including, but not limited to, retroviral infection. In general, a cell culture may be transfected by incubation with a mixture of conditioned medium collected from the producer cell line for the vector and DMEM/F12 containing N2 supplements. For example, a stem cell culture prepared as described above may be infected after, e.g., five days in vitro by incubation for about hours in one volume of conditioned medium and two volumes of DMEM/F12 containing N2 supplements. Transfected cells carrying a selectable marker may then be selected as described above.
- Following transfection, cultures are passaged onto a surface that permits proliferation, e.g., allows at least 30% of the cells to double in a 24 hour period. Preferably, the substrate is a polyornithine/laminin substrate, consisting of tissue culture plastic coated with polyornithine (10 μg/mL) and/or laminin (10 μg/m), a polylysine/laminin substrate or a surface treated with fibronectin. Cultures are then fed every 3-4 days with growth medium, which may or may not be supplemented with one or more proliferation-enhancing factors. Proliferation-enhancing factors may be added to the growth medium when cultures are less than 50% confluent.
- The conditionally-immortalized T-MSC and/or T-MSC-DL cell lines can be passaged using standard techniques, such as by trypsinization, when 80-95% confluent. Up to approximately the twentieth passage, it is, in some embodiments, beneficial to maintain selection (by, for example, the addition of G418 for cells containing a neomycin resistance gene). Cells may also be frozen in liquid nitrogen for long-term storage.
- Clonal cell lines can be isolated from a conditionally-immortalized human T-MSC cell line prepared as described above. In general, such clonal cell lines may be isolated using standard techniques, such as by limiting dilution or using cloning rings, and expanded. Clonal cell lines may generally be fed and passaged as described above.
- Conditionally-immortalized human T-MSC cell lines, which may, but need not, be clonal, may generally be induced to differentiate by suppressing the production and/or activity of the growth-promoting protein under culture conditions that facilitate differentiation. For example, if the gene encoding the growth-promoting protein is under the control of an externally-regulatable promoter, the conditions, e.g., temperature or composition of medium, may be modified to suppress transcription of the growth-promoting gene. For the tetracycline-controlled gene expression system discussed above, differentiation can be achieved by the addition of tetracycline to suppress transcription of the growth-promoting gene. In general, 1 μg/mL tetracycline for 4-5 days is sufficient to initiate differentiation. To promote further differentiation, additional agents may be included in the growth medium.
- The T-MSC and/or T-MSC-DL can be used in assays to determine the influence of culture conditions, environmental factors, molecules (e.g., biomolecules, small inorganic molecules, etc.) and the like on stem cell proliferation, expansion, and/or differentiation, compared to T-MSC and/or T-MSC-DL not exposed to such conditions.
- In a preferred embodiment, the T-MSC and/or T-MSC-DL are assayed for changes in proliferation, expansion or differentiation upon contact with a molecule. In one embodiment, for example, the invention provides a method of identifying a compound that modulates the proliferation of a plurality of T-MSC and/or T-MSC-DL, comprising contacting the plurality of T-MSC and/or T-MSC-DL with the compound under conditions that allow proliferation, wherein if the compound causes a detectable change in proliferation of the T-MSC and/or T-MSC-DL compared to a plurality of T-MSC and/or T-MSC-DL not contacted with the compound, the compound is identified as a compound that modulates proliferation of T-MSC and/or T-MSC-DL. In a specific embodiment, the compound is identified as an inhibitor of proliferation. In another specific embodiment, the compound is identified as an enhancer of proliferation.
- In another embodiment, the invention provides a method of identifying a compound that modulates the expansion of a plurality of T-MSC and/or T-MSC-DL, comprising contacting the plurality of T-MSC and/or T-MSC-DL with the compound under conditions that allow expansion, wherein if the compound causes a detectable change in expansion of the plurality of T-MSC and/or T-MSC-DL compared to a plurality of T-MSC and/or T-MSC-DL not contacted with the compound, the compound is identified as a compound that modulates expansion of T-MSC and/or T-MSC-DL. In a specific embodiment, the compound is identified as an inhibitor of expansion. In another specific embodiment, the compound is identified as an enhancer of expansion.
- In another embodiment, disclosed herein is a method of identifying a compound that modulates the differentiation of a T-MSC and/or T-MSC-DL, comprising contacting a T-MSC and/or T-MSC-DL with a compound under conditions that allow differentiation, wherein if the compound causes a detectable change in differentiation of the T-MSC and/or T-MSC-DL compared to a T-MSC and/or T-MSC-DL not contacted with the compound, the compound is identified as a compound that modulates proliferation of T-MSC and/or T-MSC-DL. In a specific embodiment, the compound is identified as an inhibitor of differentiation. In another specific embodiment, the compound is identified as an enhancer of differentiation.
- Mesenchymal stem cells derived from bone marrow (BM-MSCs) have been used as cell based therapy for T cell related autoimmune diseases, including multiple sclerosis (MS), but due to limited sources, unstable quality, and biosafety concerns of using cells derived from adult tissue, their use as a therapeutic aid has been limited.
- The novel method for generating mesenchymal stem cells from embryonic stem cells set forth herein, and the novel T-MSC generated from this method, provide new therapies for T cell related autoimmune disease, in particular multiple sclerosis.
- In certain embodiments, T-MSC given to mice pre-onset of EAE, remarkably attenuated the disease score of these animals. The decrease in score was accompanied by decreased demyelination, T cell infiltration, and microglial responses in the central nervous system, as well as repressed immune cell proliferation, and differentiation in vitro.
- In certain embodiments, a gradual decline of disease score in EAE mice after treatment with T-MSC, post disease onset, was observed. In certain embodiments, T-MSC have both prophylactic and therapeutic effects on the disease.
- In certain embodiments, the immunosuppressive activity of the T-MSC account for the prophylactic effect on the disease as irradiated T-MSC, which are unlikely to replace damage myelin, and were also effective in reducing disease score. In one embodiment, irradiation does not shorten the lifespan of the T-MSC.
- In certain embodiments, the therapeutic effect of the T-MSC involve immunosuppression as well as neural repair and regeneration.
- In certain embodiment, EAE mice treated with T-MSC have much fewer inflammatory T cells in their central nervous system and less T cells infiltrating the spinal cord. The T-MSC can reduce damage and symptoms caused by inflammatory T cells, making them useful in therapy and prevention of all T cell related autoimmune diseases. T-MSC also decreased demyelination.
- The characteristics of the T-MSC are all in marked contrast to the results obtained with bone marrow-derived mesenchymal stem cells. BM-MSCs only suppressed mouse T cell proliferation in response to anti-CD3 stimuli at low doses in vitro, and even enhanced Th1 and Th17 cell infiltration into the CNS. Autoreactive effector CD4 T cells have been associated with the pathogenesis of several autoimmune disorders, including multiple sclerosis, Crohn's disease, and rheumatoid arthritis. These CD4+ T cells include Th1 and Th17 cells. There are only mild or negligible effects of human BM-MSCs on EAE mice (Gordon et al. 2008a; Zhang et al. 2005; Payne et al. 2012). A recent report showed a reduction of disease score of only 3.5 to 3.0 of EAE mice treated with human umbilical-derived MSCs (Liu et al. 2012). The results herein and those from these studies highlight the novelty and usefulness of the disclosed T-MSC.
- Additionally, BM-MSC and T-MSC have very similar global transcriptional profiles, but differentially express some pro- and anti-inflammatory factors. Among them, IL-6 is expressed at a much higher level in BM-MSCs than T-MSC. Moreover, IL-6 expression in BM-MSCs was double upon IFNγ stimulation in vitro, whereas it remained low in the T-MSC.
- IL-6 is a pleiotropic cytokine involved in crosstalk between hematopoietic/immune cells and stromal cells, including the onset and resolution of inflammation. IL-6 can promote the differentiation and functions of Th17 cells (Dong, 2008). The levels of IL-6 are elevated in mononuclear cells in blood and in brain tissue from MS patients (Patanella et al., 2010), as well as in serum in aged humans (Sethe et al. 2006). Mice lacking IL-6 receptor a at the time of T cell priming are resistant to EAE (Leech et al., 2012). Site-specific production of IL-6 In the CNS can re-target and enhance the inflammatory response in EAE (Quintana et al., 2009), whereas IL-6-neutralizing antibody can reduce symptoms in EAE mice (Gijbels et al., 1995). Thus, IL-6 has become a promising therapeutic target for treatment of MS.
- Immunomodulation of peripheral T cell activity and regeneration and repair of neural cells are widely recognized modes of MSC therapeutic action in MS and in EAE (Al Jumah and Abumaree, 2012; Auletta et al., 2012; Morando et al., 2012). However, long-term functional neuronal recovery and sustained disease remission in MS needs repair of the damaged blood-brain barrier and blood-spinal cord barrier (Correale and Villa, 2007; Minagar et al., 2012). In other words, MS is an inflammatory, neurodegenerative, and vascular disease, and effective treatment need to target all three component.
- The characteristics of T-MSC make them uniquely suited for the treatment of T cell related autoimmune diseases especially multiple sclerosis. In particular, the T-MSC can decrease disease scores of EAE mice, but also decrease demyelination and decrease Th1 and Th17 proliferation, and have low expression of IL-6, These latter two characteristics make them suitable to treat other T cell related autoimmune diseases. Additionally, the ability of the T-MSC to cross the blood-brain barrier and blood-spinal cord barrier, makes them superior as a treatment and prevention of multiple sclerosis and other autoimmune diseases related to the central nervous system.
- One embodiment provided herein is a method of treating or preventing a T cell related autoimmune disease comprising the steps of administering a therapeutically effective amount of solution, cell culture or pharmaceutical preparation comprising T-MSC to the subject in need thereof. The T cell related autoimmune diseases would include but are not limited to multiple sclerosis, inflammatory bowel disease, Crohn's disease, graft versus host disease, systemic lupus erythematosus, and rheumatoid arthritis. The subject is preferably a mammal, and most preferably human. The solution, cell culture or pharmaceutical preparation can comprise irradiated or non-irradiated T-MSC. The solution, cell culture or pharmaceutical preparation is preferably administered by injection.
- Multiple sclerosis has been categorized into four subtypes: relapsing/remitting; secondary progressive; primary progressive; and progressive relapsing. The relapsing/remitting subtype is characterized by unpredictable relapses followed by long periods of remission. Secondary progressive MS often happens in individuals who start with relapsing/remitting MS and then have a progressive decline with no periods of remission. Primary progressive MS describes a small number of individuals who never have remission after their initial symptoms. Individuals with progressive relapsing, the least common subtype, have a steady neurologic decline, and suffer from acute attacks.
- Provided herein is a method for treating or preventing multiple sclerosis disease in a subject in need thereof, comprising the steps of administering a therapeutically effective amount of solution, cell culture or pharmaceutical preparation comprising T-MSC as described in the preceding paragraphs, to the subject in need thereof. The multiple sclerosis can be relapsing/remitting multiple sclerosis, progressive/relapsing multiple sclerosis, primary multiple sclerosis, or secondary multiple sclerosis. The subject is preferably a mammal, and most preferably human. The solution, cell culture or pharmaceutical preparation can comprise irradiated or non-irradiated T-ASC. The solution, cell culture or pharmaceutical preparation is preferably administered by injection.
- Multiple sclerosis manifests in a variety of symptoms including sensory disturbance of the limbs, optic nerve dysfunction, pyramidal tract dysfunction, bladder dysfunction, bowel dysfunction, sexual dysfunction, ataxia and diplopia attacks.
- A further embodiment of the present invention is a method of treating multiple sclerosis comprising the steps of administering a therapeutically effective amount of solution, cell culture or pharmaceutical preparation comprising T-MSC, to the subject in need thereof, wherein there is detectable improvement in at least one of these symptoms, at least two of these symptoms, at least four of these symptoms, at least five of these symptoms or all of these symptoms.
- The Expanded Disability Status Scale (EDSS) is the most commonly used rating scale to evaluate the clinical status of patients with multiple sclerosis. It measures disability along several separate parameters: strength, sensation, brainstem functions (speech and swallowing), coordination, vision, cognition, and bowel/bladder continence. It is a well-accepted measure of disability in MS and it is not particularly difficult or time consuming to perform. The EDSS quantifies disability in eight Functional Systems (FS) and allows neurologists to assign a Functional System Score (FSS) in each of these (Kurtzke 1983).
- Kurtzke defines functional systems as follows:
-
- pyramidal
- cerebellar
- brainstem
- sensory
- bowel and bladder
- visual
- cerebral
- other
- The EDSS steps 1.0 to 4.5 refer to people with multiple sclerosis who are fully ambulatory. EDSS steps 5.0 to 9.5 are defined by the impairment to ambulation. The clinical meaning of each possible result is the following:
-
- 0.0: Normal Neurological Exam
- 1.0: No disability, minimal signs on 1 FS
- 1.5: No disability, minimal signs on 2 of 7 FS
- 2.0: Minimal disability in 1 of 7 FS
- 2.5: Minimal disability in 2 FS
- 3.0: Moderate disability in 1 FS; or mild disability in 3-4 FS, though fully ambulatory
- 3.5: Fully ambulatory but with moderate disability in 1 FS and mild disability in 1 or 2 FS; or moderate disability in 2 FS; or mild disability in 5 FS
- 4.0: Fully ambulatory without aid, up and about 12 hrs a day despite relatively severe disability. Able to walk without aid 500 meters
- 4.5: Fully ambulatory without aid, up and about much of day, able to work a full day, may otherwise have some limitations of full activity or require minimal assistance. Relatively severe disability. Able to walk without
aid 300 meters - 5.0: Ambulatory without aid for about 200 meters. Disability impairs full daily activities
- 5.5: Ambulatory for 100 meters, disability precludes full daily activities
- 6.0: Intermittent or unilateral constant assistance (cane, crutch or brace) required to walk 100 meters with or without resting
- 6.5: Constant bilateral support (cane, crutch or braces) required to walk meters without resting
- 7.0: Unable to walk beyond 5 meters even with aid, essentially restricted to wheelchair, wheels self, transfers alone; active in wheelchair about 12 hours a day
- 7.5: Unable to take more than a few steps, restricted to wheelchair, may need aid to transfer; wheels self, but may require motorized chair for full day's activities
- 8.0: Essentially restricted to bed, chair, or wheelchair, but may be out of bed much of day; retains self-care functions, generally effective use of arms
- 8.5: Essentially restricted to bed much of day, some effective use of arms, retains some self-care functions
- 9.0: Helpless bed patient, can communicate and eat
- 9.5: Unable to communicate effectively or eat/swallow
- 10.0: Death due to MS
- Provided herein is a method for treating multiple sclerosis disease in a subject in need thereof, comprising the steps of administering a therapeutically effective amount of solution, cell culture or pharmaceutical preparation comprising T-MSC, to the subject in need thereof wherein the subject demonstrates improvement on the Expanded Disability Status Scale of at least one point, and preferably at least two points.
- There are other therapeutic agents that have been used to treat and prevent multiple sclerosis, including but not limited to, fingolimod, adrenocorticotropic hormone (ACTH), methylprednisolone, dexamethasone, IFNβ-1a, IFN-1b, gliatriamer acetate, cyclophosphamide, methotrexate, azathioprine, cladribine, cyclosporine, mitoxantrone, and sulfasalazine.
- Therefore, the method of the present invention can further comprise the administration of one or more additional therapeutic agents to the subject, including but not limited to, fingolimod, adrenocorticotropic hormone (ACTH), methylprednisolone, dexamethasone, IFNβ-1a, IFN-1b, gliatriamer acetate, cyclophosphamide, methotrexate, azathioprine, cladribine, cyclosporine, mitoxantrone, and sulfasalazine. In a further embodiment, these additional therapeutic agents can be administered prior to, after, or at the same time as the T-MSC, or can be conjugated or attached to the T-MSC.
- Other than T cells, T-MSC also have strong suppressive function on B cells, dendritic cells, neutrophils, NK cells, macrophage and other inflammatory and immunity related functions. Thus, T cell, B cell, inflammatory and/or innate immunity related autoimmune diseases that can all be treated by the disclosed T-MSC include, but are not limited to, Alopecia Areata, Ankosing Spondylitis, Antiphospholipid Syndrome, Autoimmune Addison's Disease, Autoimmune Hemolytic Anemia, Autoimmune Hepatitis, Autoimmune Inner Ear Disease, Autoimmune Lymphoproliferative Syndrome (ALPS), Autoimmune Thrombocytopenic Purpura (ATP), Behcet's Disease, Bullous Pemphigoid, Cardiomyopathy, Celiac Sprue-Dermatitis, Chronic Fatigue Syndrome Immune Deficiency Syndrome (CFIDS), Chronic Inflammatory Demyelinating Polyneuropathy, Chronic Obstructive Pulmonary Disease (COPD), Cicatricial Pemphigoid, Cold Agglutinin Disease, CREST Syndrome, Crohn's Disease, Dego's Disease, Dermatomyositis, Dermatomyositis—Juvenile, Discoid Lupus, Essential Mixed Cryoglobulinemia, Fibromyalgia—Fibromyositis, Grave's Disease, Guillain-Barre, Hashimoto's Thyroiditis, Idiopathic Pulmonary Fibrosis, Idiopathic Thrombocytopenia Purpura (ITP), IgA Nephropathy, Insulin Dependent Diabetes (Type I), Type II diabetes, Juvenile Arthritis, Lupus, Meniere's Disease, Mixed connective Tissue Disease, Multiple Sclerosis, Myasthenia Gravis, Pemphigus Vulgaris. Pernicious Anemia, Polyarteritis Nodosa, Polychondritis, Polyglancular Syndromes, Polymyalgia Rheumatica, Polymyositis and Dermatomyositis, Primary Agammaglobulinemia, Primary Biliary Cirrhosis, Psoriasis, Raynaud's Phenomenon, Reiter's Syndrome, Rheumatic Fever, Rheumatoid Arthritis, Sarcoidosis, Scleroderma, Sjogren's Syndrome, Stiff-Man Syndrome, Takayasu Arteritis, Temporal Arteritis/Giant Cell Arteritis. Ulcerative Colitis, Uveitis, Vasculitis, Vitiligo, Wegener's Granulomatosis, or any acute or chronic inflammation related to burning, surgery, injury, and allergy.
- T-MSC can be differentiated into multiple cell lineages including, but not limited to, adipocytes, myoblast cells, neural lineage cells, osteoblast cells, fibroblasts, chondrocytes, and stromal cells. These cells derived from T-MSC (T-MSC-DL) can be used to treat multiple tissue injury, and can be used for tissue engineering, tissue repair, tissue regeneration purposes like, joint healing, tendon healing, connective tissue healing, neural lineage tissue and cells healing, fat tissue healing, bone healing, skin healing, other wound healing, muscle healing, cartilage healing, smooth muscle healing, myocardiac healing, epithelia tissue healing, ligament healing, stroma repair, etc.
- Specifically, T-MSC can be differentiated into neural lineage cells, which can be used to treat many neural disease including but not limited to Agraphia, Alzheimer's disease, Amyotrophic lateral sclerosis, Aphasia, Apraxia, Arachnoiditis, Ataxia Telangiectasia, Attention deficit hyperactivity disorder, Auditory processing disorder, Autism, Alcoholism, Asperger's syndrome, Bipolar disorder, Bell's palsy, Brachial plexus injury, Brain damage, Brain injury, Brain tumor, Canavan disease, Capgras, Causalgia, Central pain syndrome, Central pontine myelinolysis, Centronuclear myopathy, Cephalic disorder, Cerebral aneurysm, Cerebral arteriosclerosis, Cerebral atrophy, Cerebral gigantism, Cerebral palsy. Cerebral vasculitis, Cervical spinal stenosis Charcot-Marie-Tooth disease. Chiari malformation, Chorea, Chronic fatigue syndrome, Chronic inflammatory demyelinating polyneuropathy (CIDP), Chronic pain, Coffin-Lowry syndrome, Coma, Complex regional pain syndrome, Compression neuropathy, Congenital facial diplegia, orticobasal degeneration, Cranial arteritis, Craniosynostosis, Creutzfeldt-Jakob disease, Cumulative trauma disorders, Cushing's syndrome, Cytomegalic inclusion body disease (CIBD), Cytomegalovirus Infection, Dandy-Walker syndrome, Dawson disease, De Morsier's syndrome, Dejerine-Klumpke palsy. Dejerine-Sottas disease, Delayed sleep phase syndrome, Dementia, Dermatomyositis, Developmental dyspraxia, Diabetic neuropathy, Diffuse sclerosis, Downs syndrome, Dravet syndrome, Dysautonomia, Dyscalculia, Dysgraphia, Dyslexia, Dystonia, Empty sella syndrome, Encephalitis, Encephalocele, Encephalotrigeminal angiomatosis, Encopresis, Epilepsy, Erb's palsy, Erythromelalgia, Essential tremor, Fabry's disease, Fahr's syndrome, Fainting, Familial spastic paralysis, Febrile seizures, Fisher syndrome, Friedreich's ataxia, Fibromyalgia, Foville's syndrome, Fetal Alcohol Effect, Gaucher's disease, Gerstmann's syndrome. Giant cell arteritis, Giant cell inclusion disease, Globoid Cell Leukodystrophy, Gray matter heterotopia, Guillain-Barré syndrome, HTLV-1 associated myelopathy, Hallervorden-Spatz disease, Head injury, Headache, Hemifacial Spasm, Hereditary Spastic Paraplegia, Heredopathia atactica polyneuritiformis, Herpes zoster oticus, Herpes zoster, Hirayama syndrome, Holoprosencephaly, Huntington's disease, Hydranencephaly, Hydrocephalus, Hypercortisolism, Hypoxia, Immune-Mediated encephalomyelitis, Inclusion body myositis, Incontinentia pigmenti, Infantile phytanic acid storage disease, Infantile Refsum disease, Infantile spasms, Inflammatory myopathy, Intracranial cyst, Intracranial hypertension, Joubert syndrome, Karak syndrome, Kearns-Sayre syndrome, Kennedy disease, Kinsbourne syndrome, Klippel Feil syndrome, Krabbe disease, Kugelberg-Welander disease, Lafora disease, Lambert-Eaton myasthenic syndrome, Landau-Kleffner syndrome, Lateral medullary (Wallenberg) syndrome, Learning disabilities, Leigh's disease, Lennox-Gestaut syndrome, Lesch-Nyhan syndrome, Leukodystrophy, Lewy body dementia, Lissencephaly, Locked-in syndrome, Lou Gehrig's disease (See amyotrophic lateral sclerosis), Lumber disc disease, Lumber spinal stenosis, Lyme disease—Neurological Sequelae, Machado-Joseph disease (Spinocerebellar ataxia type 3), Macrencephaly, Macropsia, Megalencephaly, Melkersson-Rosenthal syndrome, Menieres disease, Meningitis, Menkes disease, Metachromatic leukodystrophy, Microcephaly, Micropsia, Migraine, Miller Fisher syndrome, Mini-stoke (transient ischemic attack), Misophonia, Mitochondrial myopathy, Mobius syndrome, Monomelic amyotrophy, Motor Neurons Disease—see amyotrophic lateral sclerosis, Motor skills disorder, Moyamoya disease, Mucopolysaccharidoses, Mull-infarct dementia, Multifocal motor neuropathy, Multiple sclerosis, Multiple system atrophy, Muscular dystrophy, Myalgic encephalomyelitis, Myasthenia gravis, Myelinoclastic diffuse sclerosis, Myoclonic Encephalopathy of infants, Myoclonus, Myopathy, Myotubular myopathy, Myotonia congenita, Narcolepsy, Neurofibromatosis, Neuroleptc malignant syndrome, Neurological manifestations of AIDS, Neurological sequelae of lupus, Neuromyotonia, Neuronal ceroid lipofuscinosis, Neuronal migration disorders, Neurosis, Niemann-Pick disease, Non 24-hour sleep-wake syndrome, Nonverbal learning disorder, Naurological disorder, O'Sullivan-McLeod syndrome, Occipital Neuralgia, Occult Spinal Dysraphism Sequence, Ohtahara syndrome, Olivopontocerebellar atrophy, Opsoconus myoclonus syndrome, Optic neuritis, Orthostatic Hypotension, Otosclerosis, Overuse syndrome, Palinopsa, Paresthesia, Parkinson's disease, Paramyotonia Congenita, Paraneoplastic diseases, Paroxysmal attacks, Parry-Romberg syndrome, Pelizaeus-Merzbacher disease, Periodic Paralyses, Peripheral neuropathy, Pervasive developmental disorders, Photic sneeze reflex, Phytanic acid storage disease, Pick's disease, Pinched nerve, Pituitary tumors, PMG, Polyneuropathy, Polio, Polymicrogyria, Polymyositis, Porencephaly, Post-Polio syndrome, Postherpetic Neuralgia (PHN), Postural Hypotension, Prader-Willi syndrome, Primary Lateral Sclerosis, Prion diseases, Progressive hemifacial atrophy, Progressive multifocal leukoencephalopathy, Progressive Supranuclear Palsy, Pseudotumor cerebri, Quadriplegia, Rabies, Ramsay Hunt syndrome type I, Ramsay Hunt syndrome type II, Ramsay Hunt syndrome type III—see Ramsay-Hunt syndrome, Rasmussen's encephalitis, Reflex neurovascular dystrophy, Refsum disease, Repetitive stress injury, Restless legs syndrome, Retrovirus-associated myelopathy, Rett syndrome, Reye's syndrome, Rhythmic Movement Disorder, Romberg syndrome, Saint Vitus dance, Sandhoff disease, Schilder's disease [disambiguation needed], Schizencephaly, Sensory integration dysfunction, Septo-optic dysplasia, Shaken baby syndrome, Shingles, Shy-Drager syndrome, Sjögren's syndrome, Sleep apnea, Sleeping sickness, Snatiation, Sotos syndrome, Spasticity, Spina bifida, Spinal cord injury, Spinal cord tumors, Spinal muscular atrophy, Spinocerebellar ataxia, Split-brain, Steele-Richardson-Olszewski syndrome, Stiff-person syndrome, Stroke, Sturge-Weber syndrome, Subacute sclerosing panencephalitis, Subcortical arteriosclerotic encephalopathy, Superficial siderosis Sydenham's chorea, Syncope, Synesthesia, Syringomyelia, Tarsal tunnel syndrome, Tardive dyskinesia, Tardive dysphrenia, Tarlov cyst, Tay-Sachs disease, Temporal arteritis, Tetanus, Tethered spinal cord syndrome, Thomsen disease, Thoracic outlet syndrome, Tic Douloureux, Todd's paralysis, Tourette syndrome, Toxic encephalopathy, Transient ischemic attack, Transmissible spongiform encephalopathies, Transverse myelitis, Traumatic brain injury, Tremor, Trigeminal neuralgia, Tropical spastic paraparesis, Trypanosomiasis, Tuberous sclerosis, Ubisiosis, Template:Unipolar depression, Von Hippel-Lindau disease (VHL), Viliuisk Encephalomyelitis (VE), Wallenberg's syndrome, Werdnig-Hoffman disease, West syndrome, Whiplash, Williams syndrome, Wilson's disease.
- Because it has been shown that the T-MSC of the present invention have the unique ability to cross the blood-brain barrier and the blood-spinal cord barrier, a further embodiment of the present invention is a method of using T-MSC for delivery of agents through the blood brain barrier and/or the blood spinal cord barrier, by attaching or conjugating the agent to the T-MSC to form a complex; and administering the T-MSC-agent complex to a subject, wherein the T-MSC cross the blood-brain and/or the blood-spinal cord barrier and deliver the agent to the central nervous system. The T-MSC may be in the form of a single cell, a cell culture, a solution or a pharmaceutical preparation. Agents would include but are not limited to chemicals, drugs, proteins, DNA, RNA, antibodies, and small molecules.
- A further embodiment of the present invention is a delivery system for the delivery of agents through the blood brain barrier and/or the blood spinal cord barrier comprising T-MSC and an agent conjugated or attached to the T-MSC.
- The ability to permeate the blood-brain barrier and the blood-spinal cord barrier would be useful in the treatment and prevention of diseases including but not limited to neurological disorders, multiple sclerosis, cancer, Parkinson's Disease, Alzheimer's Disease, Huntington's Disease, meningitis, encephalitis, rabies, epilepsy, dementia, Lyme's Disease, stroke, and amyotrophic lateral sclerosis, as well as brain and spinal cord injury. Thus, a subject in need thereof would have a disease or be at risk for a disease in which the blood-brain barrier and/or blood-spinal cord barrier is involved. Thus, a further embodiment of the present invention is a method of eating a disease or injury, by attaching or conjugating an agent to the T-MSC to form a complex; and administering the T-MSC-agent complex to a subject in need thereof, wherein the T-MSC cross the blood-brain and/or the blood-spinal cord barrier and deliver the agent to the central nervous system, and the agent is used as a treatment or prevention of the disease or injury of the subject. Since the T-MSC have strong migration ability and infiltration ability, it can also been used as carrier for tumor/cancer therapy to carry anti-tumor drugs and proteins. The T-MSC may be in the form of a single cell, a cell culture, a solution or a pharmaceutical preparation. Agents include, but are not limited to, chemicals, drugs, proteins, DNA, RNA, micro-RNA, non-coding RNA, antibodies, small molecules and/or nano particles.
- Agents that are useful in the treatment and prevention of diseases include, but ARE not limited to, antibiotics, anti-viral agents, anti-fungal agents, steroids, chemotherapeutics, anti-inflammatories, cytokines, and/or synthetic peptides.
- Proteins and peptides would also be useful to conjugate to the T-MSC and would include erythropoietin (EPO), anti-beta-amyloid peptides, tissue plasminogen activator (TPA), granulocyte colony stimulating factor (G-CSF), interferon (IFN), growth factor/hormone, anti-VEGF peptides, anti-TNF peptides, NGF, HGF, IL-2, CX3CL1, GCV, CPT-11, cytosine deaminase, HSV-TK, carboxyesterase, oncolytic virus. TSP-1, TRAIL, FASL, IL-10, and TGFb. Proteins and peptides that bind to particular receptors and block these receptors would also be useful and are contemplated by the current invention to be attached to the T-MSCs.
- DNA and RNA that coded for therapeutic proteins and peptide would also be useful 1 conjugate to the T-MSC for delivery across the blood-brain barrier and/or the blood-spinal cord barrier.
- The terms “antibody” and “antibodies” include polyclonal antibodies, monoclonal antibodies, humanized or chimeric antibodies, single chain Fv antibody fragments, Fab fragments, and F(ab′)2 fragments. Polyclonal antibodies are heterogeneous populations of antibody molecules that are specific for a particular antigen, while monoclonal antibodies are homogeneous populations of antibodies to a particular epitope contained within an antigen. Monoclonal antibodies are particularly useful in the present invention.
- Any agent that would block the activation, expression and/or action of a molecule or the receptor of the molecule in the pathway related to any disease in which crossing the blood-brain barrier and/or blood-spinal cord barrier is useful could be attached or conjugated to the T-MSCs. Such agents include but are not limited to chemicals, phytochemicals, pharmaceuticals, biologics, small organic molecules, antibodies, nucleic acids, peptides, and proteins.
- Inhibiting a pathway can also be effected using “decoy” molecules which mimic the region of a target molecule in the pathway binds and activates. The activating molecule would bind to the decoy instead of the target, and activation could not occur.
- Inhibition can also be effected by the use of “dominantly interfering” molecule, or one in which the binding portion of activating molecule is retained but the molecule is truncated so that the activating domain is lacking. These molecules would bind to receptors in the pathway but be unproductive and block the receptors from binding to the activating molecule. Such decoy molecules and dominantly interfering molecule can be manufactured by methods known in the art, and attached or conjugated to the T-MSC for delivery across the blood-brain or blood-spinal cord barrier.
- A method for delivery of agents across the blood-brain and/or blood-spinal cord barrier is also useful for diagnostic agents, including but not limited to chemicals, antibodies, peptides, proteins, DNA, and RNA. Such agents in order to be useful for diagnosis must have a means of being visualized and/or quantified. Such means include, but are not limited to, fluorescence, biomarkers, dyes, radioactive isotypes labels and/or nanoparticles.
- Such a method for delivery and a delivery system would be useful for the diagnosis of neurological disorders, multiple sclerosis, cancer, Parkinson's Disease, Alzheimer's Disease, Huntington's Disease, meningitis, encephalitis, rabies, epilepsy, dementia, Lyme's Disease, stoke, and amyotrophic lateral sclerosis, as well as brain and spinal cord injury. Thus, a further embodiment of the present invention is a method of diagnosing a disease or injury, by attaching or conjugating the agent to the T-MSC to form a complex; and administering the T-MSC-agent complex to a subject in which a disease is suspected, wherein the T-MSC cross the blood-brain and/or the blood-spinal cord barrier and deliver the agent to the central nervous system. The T-MSC may be in the form of a single cell, a cell culture, a solution or a pharmaceutical preparation. Agents would include but are not limited to chemicals, drugs, proteins, DNA, RNA, antibodies, and small molecules.
- Agents, no matter the type and whether for treatment, prevention, or diagnosis, can be conjugated or attached to the T-MSC by any method known in the art including, but not limited to, synthetic extracellular matrix, alginate-poly-L-Lysine encapsulate and/or container.
- In certain embodiments, large scale production at industrial level of manufacturing is included in the present disclosure, methods of which are well known in the art. In certain embodiments, the large scale production includes the use of a Hyper-STACK 2D culture system and/or a Microcarrier 3D bioreactor.
- Materials and Methods
- The following reagents and materials were obtained from the below-described sources:
-
- Customed mTeSR1 Medium: Stem Cell Technology, Inc.
- BMP4: Stemgent or other vendors
- SB431542: Cayman Chemical or other vendors
- A83-01: Stemgent or other vendors.
- ALK5 inhibitor: Stemgent or other vendors
- DMEM/F12: GIBCO Life Technologies
- alpha-MEM: GIBCO Life Technologies
- Fetal Bovine Serum: GIBCO Life Technologies or other vendors
- CT2 hESC line derived at the University of Connecticut Stem Cell Core was cultured for two passages on irradiated mouse embryonic fibroblast (MEF) as feeders. The hESCs were then split on plates coated with Matrigel (BD Biosciences, San Jose, Calif.) and cultured in mTeSR1 (Ludwig et al., 2006) (Stem Cell Technologies, Vancouver, Canada). ESI-017, ESI-051, ESI-053, ESI-049, and ESI-35 human embryonic stem cells were purchased from BioTime, Inc. (CA).
- Derivation of T-MSC
- As shown in
FIG. 1 , hESCs at ˜80% confluency on the Matrigel-coated plates were digested with Dispase at 1 mg/ml for 5-10 min. The cells were then washed with mTESR1 medium once and split as small clumps or single cells onto Matrigel-coated plate and cultured in mTeSR1 for 12 hr. Then the culture medium was replaced by a trophoblast-formation medium containing BMP4 (2-100 ng/ml), or optional A83-01 (0.1-1 μM). After culture for 48-72 hr, the cells changed from hESC-like morphology into trophoblast-like morphology featured by flat, enlarged cell size, small nuclear/cytosol ratio, and diffuse cell borders. The cells were digested with Tryp-LE and washed with MSC growth medium (alpha-MEM containing 20% fetal bovine serum and non-essential amino acids). The cells were then plated onto Matrigel-coated plates at a density of 5,000 cells/cm2. The medium was changed after 24 hr, and then changed every 3-4 days. After 6 more days, the cells were differentiated into spindle-like cells similar to the morphology of typical MSCs. Morphology of Day2 Trophablast are shown inFIG. 2A , morphology ofDay 5 pre-T-MSC are shown inFIG. 2B , morphology of T-MSC are shown inFIG. 2C . - Derivation of HB-MSC
- CT2 hESC cells were differentiated into EB cells and then enriched for HB as previously described (Lu et al., 2008); Lu et al, 2007)). 50-80% confluent hEC cell on the Matrigel plate were digested with Dispose (1 mg/mi for 5 to 10 minutes) and then washed with EB formation basal medium, HPGM (Lonza, Walksville, Md.), or STEMLINE I/II Hematopoietic Stell Cell Expansion Medium (Sigma, St. Louis, Mo.), or StemSpan H3000 (Stem Cell Technologies, Vancouver, Canada), or IMDM with 10% FBS, or DMEDM/F12 with 10% FBS. Cells were then cultured in ES formation medium supplemented with 50 ng/ml of VEGF (Peprotech) and 50 ng/ml of BMP4 (Stemgent) for 48 hours on ultra-low plate at a density of about 2-3 million cells/ml. After 48 hours, half the culture medium was replaced with fresh EB formation medium plus 25-50 ng/ml of bFGF.
- Four days later, EB cells formed in the medium were harvested and dissociated into single cells with TrypLE (Invitrogen) at 37° C. for 2-3 minutes. Cells were washed and resuspended at 1-5 million cells/ml in EB formation basal medium. The single cell suspension was then mixed at 1:10 with Hemangioblast Growth Medium (Stem Cell Technologies, Vancouver, Canada).
- Blast cell growth medium (BGM) were made as follows: To 100 ml Serum-free methylcellulose CFU medium (Stem Cell Technologies, H4436 or H4536), added with VEGF, TPO and FLT3-Ligand to 50 ng/ml, bFGF to 20-50 ng/ml, 1 ml of EX-CYTE Growth Enhancement Media Supplement and 1 ml of Pen/Strap, mix well.
- The mixtures were vortexed and plated onto ultralow plates by passing through a 16 G needle and cultured for 5-9 days at 37° C. with 5% CO2.
- Single cells were then re-suspended in MSC medium containing: 1) 10-20% FBS in alpha-MEM (Invitrogen) or 2) 10-20% KOSR alpha-MEM, 3) 10-20% FBS DMEM high-glucose, or 4) 10-20% KOSR DMEM high-glucose, and cultured on either Matrigel, gelatin, vitronectin, laminin, fibronectin, or collagen I coated plates at a density of 100-5,000 cell/cm2. The medium was changed after 24 hours and refreshed every 2-4 days. After 6-12 days the cogs gradually differentiated into spindle-like cells similar to typical MSCs.
- Derivation of MSC Through SB431542
- This method was published previously (Chen et al., 2012).
- Results
- It was found that the method generated T-MSC that have superior efficiency, yield and purity. As shown in the bottom panel of
FIG. 1 , onDay 10, T-MSC already generated >90% purify of MSC with 10 fold cell number increase, whereas other methods either did not have any MSC or only had very low purity of MSCs. On Day20, T-MSC already had 3000 fold expansion with >99% purity of MSCs, whereas the other methods only expanded 20 fold at most. Byday 30, 0.1 million of hESC generated 50 billion of T-MSC, that is a 500,000 fold expansion of the original hESCs, whereas the other methods only expanded 3000 fold at most. - The T-MSC cells obtained in Example 1 were further analyzed using flow cytometry immunofluorescence staining.
- Materials and Methods
- Flow cytometry staining was used to characterize the T-MSCs. Cells were washed and blocked with 2% BSA in PBS, and stained with antibodies for various cell surface markers Trop-2 (Trp-2, eBioscience), CD31, CD34, CD29, CD73, C90, C105, CD44, CD45, CD146, CD166, HLA-ABC, HLA-DR, HLA-G (BD Bioscience or eBioscience) by following the manufacturers' instructions. Data were collected on FACS LSR II Flow Cytometer using FACSDiva software (BD Bioscience). Post-acquisition analysis was performed with the FlowJo software (Treestar).
- Results
- The attached cells obtained from
Day 2 trophoblast,Day 5 pre-T-MSC and Day 9 T-MSC were stained with CD73 and Trop-2. The trophoblast cells only expressed high levels of Trop-2 (greater than 95%), but less than 1% of CD73 (FIG. 3A ); the pre-T-MSC atday 5 has more than 50% of cells express both Trop-2 and CD73, 40% of the cells express only CD73 (FIG. 3B ); T-MSC atday 9 of hESC differentiation has less than 1% of the cells express Trop-2, and 99% of calls express only CD73 (FIG. 3C ). - Further characterization of the T-MSC by FACS staining of multiple cell surface makers show T-MSC express <3% of Trop-2, 1% of CD31, CD34, >99% of CD73, >95% of CD90, >90% of CD105, >99% of CD44 and >80% of CD29 (
FIGS. 4 A-H). - hEs-MSCs and BM-MSCs were compared for their ability to inhibit T cell proliferation in vitro following antigen stimulation.
- Materials and Methods
- Culture of BM-MSCs
- BM-MSCs were derived from BM mononuclear cells (BMMNCs) or obtained from AllCells, Inc. (Alameda) and Lonza (Basel, Switzerland) BMMNCs. For derivation, BMMNCs were thawed and plated onto tissue culture plastic dishes in DMEM+20% FBS. Adherent cells began to appear within the first 4-5 days and fed every 3 days until day ˜10-12, when cells were harvested and replated at 3,000-5,000 cells/cm2.
- The in vitro assay for T cell proliferation was performed using lymphocytes isolated from mouse peripheral lymph nodes. These lymphocytes were labeled with 5 μM of carboxyfluorescein succinimidyl ester (CFSE) to track their proliferation by monitoring CFSE dilution in their daughter cells, for 10 minutes at 37° C. 10,000 T-MSCs or BM-MSCs were mixed with 100,000 lymphocytes per well in a 96-well plate, and the cells were stimulated for proliferation with plate-bound anti-CD3 (at 0.3, 1 μg/ml) and soluble anti-CD28 antibodies (1 μg/ml, eBioscience, CA). The cells were collected 3 days after the stimulation, followed by FACS staining with anti-CD4 and anti-CD8 antibodies (BD Bioscience, CA). CFSE dilution was gated on CD4+ and CD8+ T cells, respectively.
- Results
- Using the in vitro assay with mouse lymphocytes, it was found T-MSCs inhibited the proliferation of mouse CD4+ and C8+ T cells when stimulated with anti-CD3 antibody at 0.3 and 1 μg/ml, whereas BM-MSC only did so when the T cells were stimulated with anti-CD3 antibody at low doses, i.e., 0.3 μg/ml (
FIG. 5 ) - Because it has been shown that BM-MSCs can attenuate the disease progression of the mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), the T-MSCs obtained in Example 1 were injected into mice with EAE to determine if they would have the same effect.
- Materials and Methods
- Derivation of MSC through SB431542: the MSC derived from this method will be called hES-MSC(SB), This Method was published previously (Chen et al., 2012).
- The mouse EAE model was induced as previously described (Stromnes and Goverman, 2006). C57BL/6 mice were subcutaneously injected with a mixture of myelin oligodendrocyte glycoprotein peptide 35-55 (MOG35-55), Freund's adjuvant, and pertussis toxin contained in the EAE induction Kit (Hooke Laboratories, Inc, MA. (Cat. #EK-0114)) following the manufacturer's protocol and as described in Ge et al. (2012).
- BM-MSC, T-MSC or hES-MSC(SB) at 106 cells/mouse or PBS (a vehicle control) was intraperitoneal (i.p.) injected on day 6 (for pre-onset) or 18 (for post-onset) after the immunization. The disease score was monitored on the mice every day for up to 31 days.
- The disease scoring system is as follows:
-
- 0: no sign of disease;
- 1: loss of tone in the tail;
- 2: partial hind limb paralysis;
- 3: complete hind limb paralysis;
- 4: front limb paralysis; and
- 5: moribund
- (Stromnes and Goverman, 2006).
- Results
- As shown in
FIG. 6 , the T-MSCs significantly attenuated the daily disease scores when injected at 6 days or pre-onset of disease, showing a prophylactic effect of the T-MSCs. Mice injected with BM-MSC did not attenuate the disease score, hES-MSC(SB) had a partial effect in attenuating the disease score but not as good as T-MSC. - Materials and Methods
- Osteogenesis, Chondrogenesis, and Adipogenesis of T-MSC
- STEMPRO Osteogenesis and Chondrogenesis Differentiation Kits (Invitrogen, Grand Island, N.Y.) were used for osteogenesis and chondrogenesis, and the Hyclone AdvanceSTEM Adipogenic Differentiation kit (Thermo Scientific, Logan, Utah) for adipogenesis, following the manufacturers' instructions.
- Results
- As shown in
FIG. 7 , T-MSC had good potency in differentiating into all the 3 lineages of mesoderm tissues, osteoblasts, chondrocyte and adipocytes. Thus, T-MSC can be used as source for tissue regeneration, tissue engineering and tissue repair. - Microarray analysis was performed to compare the gene expression profile of T-MSC, hES-HB-MSC and BM-MSCs.
- Materials and Methods
- For microarray analysis, RNA of hES-MSC at passages 2-4 or BM-MSC at
passage 3 were harvested with Trizol (Invitrogen, CA) following the manufacturer's protocol. The HumanHT-12 v4 Expression BeadChip (Illumina, San Diego, Calif.) was used to analyze the gene expression profile of the cells. Data were analyzed using Genome Studio V2011.1. Two BM-MSC cell lines from different sources were used, and two hES-MSC cell lines, derived from H9 and MA09, were used. - Results
- As shown in
FIG. 8 , the overall expressional profiles of some key cytokines, transcription factors, cell surface markers are very different between these 3 different MSCs. T-MSC may play different roles in immunosuppression and tissue regeneration. -
- Al Jumah, M. A., and Abumaree, M. H. (2012). The Immunomodulatory and Neuroprotective Effects of Mesenchymal Stem Cells (MSCs) in Experimental Autoimmune Encephalomyelitis (EAE): A Model of Multiple Sclerosis (MS). International journal of
molecular sciences 13, 9298-9331. - Anton, K. Banerjee, D., and Glod, J. (2012). Macrophage-associated mesenchymal stem cells assume an activated, migratory, pro-inflammatory phenotype with increased IL-8 and CXCL10 secretion. PLoS One 7, e35036.
- Auletta, J. J., Bartholomew, A. M., Maziarz, R. T., Deans, R. J., Miller, R. H., Lazarus, H. M., and Cohen, J. A. (2012). The potential of mesenchymal stromal cells as a novel cellular therapy for multiple sclerosis.
Immunotherapy 4, 529-547. - Barberi, T., Willis, L. M., Socci, N. D., and Studer, L. (2005). Derivation of multipotent mesenchymal precursors from human embryonic stem cells.
PLoS Med 2, e161. - Barry, F., Boynton, R. E., Liu, B., and Murphy, J. M. (2001). Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res 268, 189-200.
- Becher B, Durell B G, Noelle R J (2002) Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. The Journal of clinical investigation 110: 493-497.
- Benito-Leon, J. (2011). Are the prevalence and incidence of multiple sclerosis changing?
Neuroepidemiology 36, 148-149. - Brown, S. E., Tong. W., and Krebsbach, P. H. (2009). The derivation of mesenchymal stem cells from human embryonic stem cells. Cells Tissues Organs 189, 256-260.
- Chao, Y. X., He, B. P., and Tay, S. S. (2009). Mesenchymal stem cell transplantation attenuates blood brain barrier damage and neuroinflammation and protects dopaminergic neurons against MPTP toxicity in the substantia nigra in a model of Parkinson's disease. Journal of Neuroimmunology 216, 39-50.
- Chaudhary P, Marracci G H, Bourdette D N (2006) Lipoic acid inhibits expression of ICAM-1 and VCAM-1 by CNS endothelial cells and T cell migration into the spinal cord in experimental autoimmune encephalomyelitis. Journal of neuroimmunology 175: 87-96.
- Chen, Y. S., Pelekanos, R A, Ellis, R. L., Home, R., Wolvetang, E. J., and Fink, N. M. (2012). Small Molecule Mesengenic Induction of Human Induced Pluripotent Stem Cells to Generate Mesenchymal Stem/Stromal Cells. Stem Cells Translational Medicine.
- Chyou, S., Ekland, E. H., Carpenter, A. C., Tzeng, T. C., Tan, S., Michaud, M., Madri, J. A., and Lu, T. T. (2008). Fibroblast-type reticular stromal cells regulate the lymph node vasculature. J Immunol 181, 3887-3896.
- Connick, P., Kolappan, M., Crawley, C., Webber, D. J., Patani, R., Michell, A. W., Du, M. Q., Luan, S. L., Altmann, D. R., Thompson, A. J., et al. (2012). Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of concept study.
Lancet neurology 11, 150-16. - Correale, J., and Villa, A. (2007). The blood-brain-barrier in multiple sclerosis: functional roles and therapeutic targeting.
Autoimmunity 40, 148-160. - Costa, M., Dottori. M., Ng, E., Hawes, S. M., Sourris, K., Jamshidi, P., Pera, M. F, Elefanty, A. G., and Stanley, E. G. (2005). The hESC line Envy expresses high levels of GFP in all differentiated progeny.
Nat Methods 2, 259-260. - Crocker, S. J., Milner, R., Pham-Mitchel, N., and Campbell, I. L. (2006). Cell and agonist-specific regulation of genes for matrix metalloproteinases and their tissue inhibitors by primary glial cells. Journal of neurochemistry 98, 812-823.
- Cuccurullo C, Iezzi A, Fazia M L, De Cesare D. Di Francesco A, et al. (2006) Suppression of RAGE as a basis of simvastatin-dependent plaque stabilization in
type 2 diabetes. Arteriosclerosis, thrombosis, and vascular biology 26: 2716-2723. - Cunnea P, McMahon J, O'Connell E, Mashayekhi K, Fitzgerald U, et al. (2010) Gene expression analysis of the microvascular compartment in multiple sclerosis using laser microdissected blood vessels. Acta neuropathologica 119; 601-615.
- Dal H, Ciric B, Zhang G X, Rostami A (2012) Interleukin-10 plays a crucial role in suppression of experimental autoimmune encephalomyeitis by Bowman-Birk inhibitor. Journal of neuroimmunology 245:1-7.
- Dienz, O., and Rincon, M. (2009). The effects of IL-6 on CD4 T cell responses. Clinical immunology 130, 27-3.
- Djouad, F., Plence, P., Bony, C., Tropel, P., Apparailly, F., Sany. J., Noel, D., and Jorgensen, C. (2003). Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals.
Blood 102, 3837-3844. - Dong, C. (2008). TH17 cells in development: an updated view of their molecular identity and genetic programming.
Nat Rev Immunol 8, 337-448. - Draper, J. S., Pigott, C., Thomson, J. A., and Andrews, P. W. (2002). Surface antigens of human embryonic stem cells: changes upon differentiation in culture. Journal of anatomy 200, 249-258.
- Drukker, M., Katchman, H., Katz, G., Even-Tov Friedman, S., Shezen, E., Hornstein, E., Mandelboim, O., Reisner, Y., and Benvenisty, N. (2006). Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells.
Stem Cells 24, 221-229. - Drukker, M., Katz, G., Urbach, A., Schuldiner, M., Markel, G., Itskovitz-Eldor, J., Reubinoff, B., Mandelboim, O., and Benvenisty, N. (2002). Characterization of the expression of MHC proteins in human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of
America 99, 9864-9869. - English, K., Berry, F. P., Field-Corbett, C. P., and Mahon, B. P. (2007). IFN-gamma and TNF alpha differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol Lett 110, 91-100.
- Ge, S., Shrestha, B., Paul, D., Keating, C., Cone, R., Guglielmotti, A., and Pachter, J. S. (2012). The CCL2 synthesis inhibitor bindarit targets cells of the neurovascular unit, and suppresses experimental autoimmune encephalomyelitis.
J Neuroinflammation 9, 171. - Gijbels, K., Brocke, S., Abrams, J. S., and Steinman, L. (1995). Administration of neutralizing antibodies to interleukin-6 (IL-6) reduces experimental autoimmune encephalomyelitis and is associated with elevated levels of IL-6 bioactivity in central nervous system and circulation.
Mol Med 1, 795-805. - Gordon, D., Pavlovska, G., Glover, C. P., Uney, J. B., Wraith, D., and Scolding, N. J. (2008a). Human mesenchymal stem cells abrogate experimental allergic encephalomyelitis after intraperitoneal injection, and with sparse CNS infiltration. Neurosci Lett 448, 71-73.
- Gordon, D., Pavlovska, G., Glover, C. P., Uney, J. B., Wraith, D., and Scolding, N. J. (2008b). Human mesenchymal stem cells abrogate experimental allergic encephalomyelitis after intraperitoneal injection, and with sparse CNS infiltration. Neuroscience letters 448, 71-73.
- Gordon, D., Pavlovska, G., Uney, J. B., Wraith, D. C., and Scolding, N.J. (2010). Human mesenchymal stem cells infiltrate the spinal cord, reduce demyelination, and localize to white matter lesions in experimental autoimmune encephalomyelitis. J Neuropathol Exp Neurol 69, 1087-1096.
- Grinnemo, K. H., Mansson, A., Dellgren, G., Klingberg, D., Wardei, E., Drvota, V., Tammik, C., Holgerson, J., Ringden, O., Sylvan, C., et al. (2004). Xenoreactvity and engraftment of human mesenchymal stem cells transplanted into infarcted rat myocardium. J Thorac Cardiovasc Surg 127, 1293-1300.
- Hansen, W., Westendorf, A. M., and Buer, J. (2008), Regulatory T cells as targets for immunotherapy of autoimmunity and inflammation. Inflamm Allergy Drug Targets 7, 217-223.
- Hofstetter, C. P., Schwarz, E. J, Hess, D., Widenfalk, J., El Manira, A., Prockop, D. J., and Olson, L. (2002). Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proceedings of the National Academy of Sciences of the United States of
America 99, 2199-2204. - Huber, T. L., Kouskoff, V., Fehling, H. J., Palis, J., and Keller, G. (2004). Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 432, 625-630.
- Hwang, N. S., Varghese, S., Lee, H. J., Zhang, Z., Ye, Z., Bee, J., Cheng, L., and Elisseeff, J. (2008). In vivo commitment and functional tissue regeneration using human embryonic stem cell derived mesenchymal cells, Proc Natl
Acad Sci USA 105, 20641-20646. - Huss D J, Winger R C, Cox G M, Guerau-de-Arellano M, Yang Y, et al. (2011) TGF-beta signaling via Smad4 drives IL-10 production in effector Th1 cells and reduces T-ell trafficking EAE. European journal of immunology 41: 2987-2996.
- Javazon, E. H., Beggs, K. J., and Flake, A. W. (2004). Mesenchymal stem cells: paradoxes of passaging.
Exp Hematol 32, 414-425. - Johnston, J., and So, T. Y. (2012). First-line disease-modifying therapies in paediatric multiple sclerosis: a comprehensive overview. Drugs 72, 1195-1211
- Karlsson, C., Emanuelsson, K., Wessberg, F., Kajic, K., Axell, M. Z., Eriksson, P. S., Lindahl, A., Hyllner, J., and Strehl, R. (2009). Human embryonic stem cell-derived mesenchymal progenitors-Potential in regenerative medicine.
Stem Cell Res 3, 39-50. - Karussis, D., Karageorgiou, C., Vaknin-Dembinsky, A., Gowda-Kurkalli, B., Gomori, J. M., Kassis, I., Bulte, J. W., Petrou, P., Ben-Hur, T., Abramsky, O., et al. (2010). Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 67, 1187-1194.
- Klimanskaya, I., Chung, Y., Becker, S., Lu, S. J, and Lanza, R. (2006). Human embryonic stem cell lines derived from single blastomeres. Nature 444, 481-485.
- Kurtzke J F (1983). “Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS)”. Neurology 33 (11):1444-52
- Leech, M. D., Barr, T. A., Tuner, D. G., Brown, S., O'Connor, R. A., Gray, D., Mellanby, R. J., and Anderton, S. M. (2012). Cutting Edge: IL-6-Dependent Autoimmune Disease: Dendritic Cells as a Sufficient, but Transient. Source. J Immunol.
- Lin, G., Martins-Taylor, K., and Xu, R. H. (2010). Human embryonic stem cell derivation, maintenance, and differentiation to trophoblast. Methods in molecular biology 636, 1-24.
- Liu, R., Zhang, Z., Lu, Z., Borolongan, C., Pan, J., Chen, J., Qian, L., Liu, Z., Zhu, L., Zhang, J., at al. (2012). Human Umbilical Cord Stem Cells Ameliorate Experimental Autoimmune Encephalomyelits by Regulating immunoinflammation and Remyelination. Stem cells and development.
- Liu, Y., Goldberg, A. J., Dennis, J. E., Gronowicz, G. A., and Kuhn, L. T. (2012). One-step derivation of mesenchymal stem cell (MSC)-like cells from human pluripotent stem cells on a fibrillar collagen coating. PLoS One 7, e33225.
- Lu, S. J., Feng, Q., Caballero, S., Chen, Y., Moore, M. A., Grant, M. B., and Lanza, R. (2007). Generation of functional hemangioblasts from human embryonic stem cells.
Nat Methods 4, 501-509. - Lu, S., Ivanova, Y., Feng, Q., Luo, C., and Lanza, R. (2009). Hemangioblasts from human embryonic stem cells generate multilayered blood vessels with functional smooth muscle cells.
Regenerative medicine 4, 37-47. - Lu, S. J., Luo, C., Holton, K., Feng, Q., Ivanova, Y., and Lanza, R. (2008). Robust generation of hemangioblastic progenitors from human embryonic stem cells.
Regen Med 3, 693-704. - Ludwig, T. E., Levenstein, M. E., Jones, J. M., Berggren, W. T., Mitchen, E. R., Frane, J. L, Crandall, L. J., Daigh, C. A., Conard, K. R., Piekarczyk, M. S., et al. (2006). Derivation of human embryonic stem cells in defined conditions.
Nat Biotechnol 24, 185-187. - Mahad, D. J., and Ransohoff, R. M. (2003). The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE).
Semin Immunol 15, 23-32. - McFarland, H. F., and Martin, R. (2007). Multiple sclerosis: a complicated picture of autoimmunity.
Nat Immunol 8, 913-919. - Menge, T., Zhao, Y., Zhao, J., Wataha, K., Gerber, M., Zhang, J., Letourneau, P., Redell, J., Shen, L. Wang, J., et al. (2012). Mesenchymal Stem Cells Regulate Blood-Brain Barrier Integrity Through TIMP3 Release After Traumatic Brain Injury. Science
translational medicine 4, 161ra150. - Minagar, A., Maghzi, A. H., McGee, J. C., and Alexander, J. S. (2012). Emerging roles of endothelial cells in multiple sclerosis pathophysiology and therapy. Neurological research 34, 738-745.
- Mohyeddin Bonab, M., Yazdanbakhsh, S., Lotfi, J., Almoghaddorn, K. Talebian, F., Hooshmand, F., Ghavamzedeh, A., and Nikbin, B., (2007). Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iranian journal of immunology:
IJi 4, 50-57. - Moore, C. S., Milner, R., Nishyama, A., Frausto, R. F., Serwanski, D. R., Pagarigan, R. R., Whitton, J. L., Miller, R. H., and Crocker, S. J. (2011). Astrocytic tissue inhibitor of metalloproteinase-1 (TIMP-1) promotes oligodendrocyte differentiation and enhances CNS myelination. The Journal of neuroscience: the official Journal of the Society for Neuroscience 31, 6247-4254.
- Morando, S., Vigo, T., Esposito, M., Casazza, S., Novi, G., Principato, M. C., Furlan, R., and Uccelli, A. (2012). The therapeutic effect of mesenchymal stem cell transplantation in experimental autoimmune encephalomyelitis is mediated by peripheral and central mechanisms. Stem
Cell Res Ther - Ohtaki, H., Ylostalo, J. H., Foraker, J. E., Robinson, A. P., Reger, R. L., Shioda, S., and Prockop, D. J. (2008). Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses. Proc Natl Aced
Sci USA 105, 14638-14643. - Olivier, E. N., Rybicki, A. C., and Bouhassira, E. E. (2006). Differentiation of human embryonic stem cells into bipotent mesenchymal stem cells.
Stem Cells 24, 1914-1922. - Patanella, A K, Zinno, M., Quaranta, D., Nociti, V., Frisulo, G., Gainotti, G., Tonal, P. A., Batocchi, A. P., and Marra, C. (2010). Correlations between peripheral blood mononuclear cell production of BDNF, TNF-alpha, IL-6, IL-10 and cognitive performances in multiple sclerosis patients. J Neurosci Res 88, 1106-1112.
- Payne, N. L, Sun, G., McDonald, C., Layton, D., Moussa, L., Emerson-Webber, A. Veron, N., Siatskas, C., Herszfeld, D., Price, J., et al. (2012). Distinct immunomodulatory and migratory mechanisms underpin the therapeutic potential of human mesenchymal stem cells in autoimmune demyelination. Cell Transplant.
- Peron, J. P., Jazedje, T., Brandao, W. N., Perin, P. M., Maluf, M., Evangelista, L. P., Halpern, S., Nisenbaum, M. G., Czeresnia, C. E., Zatz, M., et al. (2012). Human endometrial-derived mesenchymal stem cell suppress inflammation in the central nervous system of EAE mice.
Stem Cell Rev 8, 940-952. - Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., and Marshak, D. R. (199). Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147.
- Pomper, M. G., Hammond, H., Yu, X., Ye, Z., Foss, C. A., Lin, D. D., Fox, J. J., and Cheng, L. (2009). Serial imaging of human embryonic stem-cell engraftment and teratoma formation in live mouse models.
Cell Res 19, 370-379. - Quintana, A., Muller, M., Frausto, R. F., Ramos, R., Getts, D. R., Sanz, E., Hofer, M. J., Krauthausen M., King, N. J., Hidalgo, J., et al. (2009). Site-specific production of IL-6 in the central nervous system retargets and enhances the inflammatory response in experimental autoimmune encephalomyelitis. Journal of immunology 183, 2079-2088.
- Rafei, M., Birman, E., Forner, K., and Galipeau, J. (2009a). Allogeneic mesenchymal stem cells for treatment of experimental autoimmune encephalomyelitis.
Mol Ther 17, 1799-1803. - Rafei, M., Campeau, P. M., Aguilar-Mahecha, A., Buchanan, M., Williams, P., Birman, E., Yuan, S., Young, Y. K., Bolvin, M. N., Forner, K., et al. (2009b). Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner J Immunol 182, 5994-6002.
- Rochman, I., Paul, W. E., and Ben-Sasson, S. Z. (2005). IL-6 increases primed cell expansion and survival. Journal of immunology 174, 4761-4767.
- Ryan, J. M., Barry, F., Murphy, J. M., and Mahon, B. P. (2007). Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol 149, 353-363.
- Sanchez, L., Gutierrez-Aranda, I., Ligero, G., Rubio, R., Munoz-Lopez, M., Garcia-Perez, J. L, Ramos, V., Real, P. J., Bueno, C., Rodriguez, R., et al. (2011). Enrichment of human ESC-derived multipotent mesenchymal stem cells with immunosuppressive and anti-inflammatory properties capable to protect against experimental inflammatory bowel disease. Stem cells (Dayton, Ohio) 29, 251-262.
- Seth, S., Scutt, A., and Stolzing, A. (2006). Aging of mesenchymal stem cells.
Ageing Res Rev 5, 91-116. - Solchaga, L. A., Penick, K. J., and Welter, J. F. (2011). Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells: tips and tricks. Methods in molecular biology 698, 253-278.
- Stromnes, I. M., and Goverman, J. M. (2006). Active induction of experimental allergic encephalomyelitis.
Nat Protoc 1, 1810-1819. - Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., and Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147.
- Tse, W. T., Pendleton, J. D., Beyer, W. M., Egalka, M. C., and Guinan, E. C. (2003). Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75, 389-397,
- Tyndall, A. (2011). Successes and failures of stem cell transplantation in autoimmune diseases. Hematology Am Soc Hematol Educ Program 2011, 280-284.
- Uccelli A. Prockop D J (2010a). Why should mesenchymal stem cells (MSCs) cure autoimmune diseases? Curr Opin Immunol 22: 768-774.
- Uccelli, A., and Prockop, D. J. (2010b). Why should mesenchymal stem cells (MSCs) cure autoimmune diseases? Curr Opin Immunol, 7.
- Waterman, R. S., Tomchuck, S. L., Henkle, S. L., and Betancourt, A. M. (2010). A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One 5, e10088.
- Weber, M. S., Menge, T., Lehmann-Horn, K, Kronsbein, H. C., Zetti, U., Sellner, J., Hemmer. B, and Stuve, O. (2012). Current treatment strategies for multiple sclerosis—efficacy versus neurological adverse effects. Current
pharmaceutical design 18, 209-219. - Wong, R. S. (2011). Mesenchymal stem cells: angels or demons? J Biomed Biotechnol 2011, 459510.
- Xu, R. H., Chen, X., Li, D. S., Li, R., Addicks, G. C., Glennon, C., Zwaka, T. P., and Thomson, J. A. (2002). BMP4 initiates human embryonic stem cell differentiation to trophoblast.
Nat Biotechnol 20, 1261-1264. - Xu, R. H., et al. 2002. “BMP4 initiates human embryonic stem cell differentiation to trophoblast.” Nat Biotechnol 20:1261-1264.
- Yamout, B., Hourani, R., Salti, H., Berade, W., El-Hajj, T., Al-Kutoubi, A., Heropian, A., Baz, E. K., Mahfouz, R., Khalil-Hamdan, R., et al. (2010). Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. J Neuroimmunol 227, 185-189.
- Zappia, E., Casazza, S., Pedemonte, E., Benvenuto, F., Bonanni, I., Gerdoni, E., Giunti, D., Ceravolo, A., Cazzanti, F., Frassoni, F., et al (2005). Mesenchymal stem cob ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106, 1755-1761.
- Zhang, J., Li, Y., Chen, J., Cui, Y., Lu, M., Elias, S. B., Mitchell, J. B., Hammil, L., Vangun, P., and Chopp, M. (2005). Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Exp Neurol 195, 16-26.
- While the disclosure has been described with reference to preferred embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for the elements thereof without departing from the scope of the disclosure. In addition, many modifications may be made to adapt the teaching to particular use, application, manufacturing conditions, use conditions, composition, medium size, and/or materials without departing from the essential scope and spirit of the disclosure. Therefore, it is intended that the disclosure not be limited to the particular embodiments and best mode contemplated for carrying out as described herein. Such modifications are intended to fall within the scope of the appended claims.
- All references cited herein are incorporated by reference in their entireties and for all purposes to the same extent as if each individual publication or patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety for all purposes.
Claims (23)
1-133. (canceled)
134. A method for treating or preventing an inflammatory disease comprising administering to a subject in need thereof an effective dose of human T-MSCs produced from human embryonic stem cells (hESCs) or human induced pluripotent stem cells (iPSCs), wherein the T-MSCs are produced by a method comprising the steps of:
(a) culturing hESCs or iPSCs in a medium comprising a bone morphogenetic protein-4 (BMP-4), and optionally a TGFβ inhibitor, for a first time period of 1 to 5 days sufficient for the hESC or iPSC to differentiate into trophoblast cells;
(b) dissociating the trophoblast cells into single trophoblast cells; and
(c) plating the single trophoblast cells from step (b) onto gelatin, vitronectin, laminin, fibronectin, extracellular matrix-coated or collagen-coated plates, and culturing said single trophoblast cells for a second time period of 4 to 10 days in a mesenchymal stem cell (MSC) growth medium containing LIF, bFGF, PDGF, or a combination thereof,
thereby producing a population of human T-MSCs.
135. The method of claim 134 , where the TGFβ inhibitor is an SB431542, A83-01 or ALK5 inhibitor.
136. The method of claim 134 , wherein, prior to step (a), hESCs are cultured by a method comprising the following steps:
(i) culturing the hESCs to about 80% confluency on extracellular matrix-coated plates;
(ii) dissociating the hESCs under suitable conditions;
(iii) isolating the hESCs; and
(iv) washing the hESCs.
137. The method of claim 134 , wherein the concentration of BMP4 is about 1 to about 100 ng/ml.
138. The method of claim 134 , wherein the population of human T-MSCs (i) comprises greater than 95% of cells expressing CD73, CD90, CD105, CD146, CD166, and CD44; (ii) comprises greater than 80% of cells expressing CD13, CD29, CD54, CD49E; (iii) comprises less than 5% of cells expressing CD45, CD34, CD31 and SSEA4; (iv) expresses IL-10 and TGFα; (v) comprises less than 2% of cells expressing IL-6, IL-12 and TNFa; and (vi) comprises less than 0.001% of cells coexpressing OCT4, NANOG, TRA-1-60 and SSEA4.
139. The method of claim 138 , wherein the human T-MSCs do not express MMP2 and RAGE.
140. The method of claim 138 , wherein the T-MSC cells have low expression of IFNγR1 and IFNγR2 compared to expression of IFNγR1 and IFNγR2 of bone marrow-derived mesenchymal stem cells (BM-MSC).
141. The method of claim 138 , wherein the human T-MSCs further express CD73 and do not express IL-6.
142. The method of claim 138 , wherein the human T-MSCs further express at least one cell marker selected from CD90, CD105, CD13, CD29, CD54, CD146, CD166 and CD44; do not express at least one marker selected from CD34, CD31, and CD45; and do not express at least one marker selected from the group consisting of MMP, RAGE, IFNγR1, IFNγR2, IL-12, TNFα and VCAM1.
143. The method of claim 138 , wherein the human T-MSCs are further subjected to irradiation.
144. The method of claim 143 , wherein the human TMSCs are irradiated with gamma-irradiation.
145. The method of claim 134 wherein the human T-MSCs is attached to an agent to form a T-MSC-agent complex prior to administering to the subject.
146. The method of claim 145 wherein the T-MSC-agent complex is delivered through a blood-brain barrier and/or the blood-spinal cord barrier.
147. The method of claim 134 wherein the inflammatory disease affected the lungs.
148. The method of claim 134 wherein the inflammatory disease comprises Chronic Obstructive Pulmonary Disease (COPD), transient ischemic attack, stroke, idiopathic pulmonary fibrosis or a combination thereof.
149. The method of claim 134 wherein the method ameliorates or alleviates at least one symptom of the inflammatory disease, minimizes the extent of the inflammatory disease or hinders the development of the inflammatory disease.
150. The method of claim 134 wherein the treatment of inflammatory disease is measured by a reduced level of pro-inflammatory factors (“PIF”).
151. The method of claim 150 wherein the PIF is IL-6, IL-12, TNFα, CCL2, VCAM1, RAGE, MMP2.
152. The method of claim 134 , wherein the T-MSC is administered through intravenous, intraarterial, intraperitoneal, intrathecal, intraventricular, intranasal, intrastriatal, intraurethral, intrasternal, intracranial, intramuscular, intrasynovial, subcutaneous or intrathecal infusion route.
153. The method of claim 152 wherein the T-MSC is administrated with at least 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011 or 1×1012 T-MSCs per dose.
154. The method of claim 153 wherein the T-MSC is administered in a frequency of q monthly (once a month), q 3 months (once every 3 months), q 6 months (once every 6 months), q 12 months (once every 12 months), or less frequently.
155. The method of claim 143 wherein the TGFβ inhibitor is an SB431542, A83-01 or ALK5 inhibitor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/066,642 US20210085725A1 (en) | 2012-07-11 | 2020-10-09 | Mesenchymal-like stem cells derived from human embryonic stem cells, methods and uses thereof |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261670192P | 2012-07-11 | 2012-07-11 | |
US201261684509P | 2012-08-17 | 2012-08-17 | |
PCT/US2013/050077 WO2014011881A2 (en) | 2012-07-11 | 2013-07-11 | Mesenchymal-like stem cells derived from human embryonic stem cells, methods and uses thereof |
US201514413297A | 2015-01-07 | 2015-01-07 | |
US15/635,022 US10226488B2 (en) | 2012-07-11 | 2017-06-27 | Mesenchymal-like stem cells derived from human embryonic stem cells, methods and uses thereof |
US16/254,986 US10842826B2 (en) | 2012-07-11 | 2019-01-23 | Mesenchymal-like stem cells derived from human embryonic stem cells, methods and uses thereof |
US17/066,642 US20210085725A1 (en) | 2012-07-11 | 2020-10-09 | Mesenchymal-like stem cells derived from human embryonic stem cells, methods and uses thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/254,986 Continuation US10842826B2 (en) | 2012-07-11 | 2019-01-23 | Mesenchymal-like stem cells derived from human embryonic stem cells, methods and uses thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210085725A1 true US20210085725A1 (en) | 2021-03-25 |
Family
ID=49916687
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/413,297 Active US9725698B2 (en) | 2012-07-11 | 2013-07-11 | Trophoblast-derived mesenchymal stem cells (T-MSCs) produced from human embryonic stem cells, methods and uses thereof |
US15/635,022 Active US10226488B2 (en) | 2012-07-11 | 2017-06-27 | Mesenchymal-like stem cells derived from human embryonic stem cells, methods and uses thereof |
US16/254,986 Active US10842826B2 (en) | 2012-07-11 | 2019-01-23 | Mesenchymal-like stem cells derived from human embryonic stem cells, methods and uses thereof |
US17/066,642 Abandoned US20210085725A1 (en) | 2012-07-11 | 2020-10-09 | Mesenchymal-like stem cells derived from human embryonic stem cells, methods and uses thereof |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/413,297 Active US9725698B2 (en) | 2012-07-11 | 2013-07-11 | Trophoblast-derived mesenchymal stem cells (T-MSCs) produced from human embryonic stem cells, methods and uses thereof |
US15/635,022 Active US10226488B2 (en) | 2012-07-11 | 2017-06-27 | Mesenchymal-like stem cells derived from human embryonic stem cells, methods and uses thereof |
US16/254,986 Active US10842826B2 (en) | 2012-07-11 | 2019-01-23 | Mesenchymal-like stem cells derived from human embryonic stem cells, methods and uses thereof |
Country Status (8)
Country | Link |
---|---|
US (4) | US9725698B2 (en) |
EP (1) | EP2872619B1 (en) |
JP (1) | JP6277187B2 (en) |
CN (1) | CN104487568B (en) |
AU (1) | AU2013290146B2 (en) |
CA (2) | CA2876512C (en) |
HK (1) | HK1208055A1 (en) |
WO (1) | WO2014011881A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023090589A1 (en) * | 2021-11-22 | 2023-05-25 | 주식회사 미래셀바이오 | Pluripotent stem cell-based composition for prevention or treatment of hypersensitive immune response-induced skin disease |
US12097218B2 (en) | 2017-05-26 | 2024-09-24 | Kite Pharma, Inc. | Methods of making and using embryonic mesenchymal progenitor cells |
Families Citing this family (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007120811A2 (en) | 2006-04-14 | 2007-10-25 | Advanced Cell Technology, Inc. | Hemangio-colony forming cells |
US20160095885A1 (en) * | 2014-10-01 | 2016-04-07 | WibiWorks Therapeutics, Inc. | Induction Medium & Methods for Stem Cell Culture & Therapy |
KR101779932B1 (en) * | 2015-09-15 | 2017-09-21 | 주식회사 스템랩 | Method for producing of composition for promoting hair growth from human amniotic fluid-derived mesenchymal stem cells with nanog |
CN105326864A (en) * | 2015-11-30 | 2016-02-17 | 奥思达干细胞有限公司 | Stem cell-based preparation for treating systemic lupus erythematosus and preparation method thereof |
US11318167B2 (en) | 2015-12-11 | 2022-05-03 | The Johns Hopkins University | Isolation of fusion-competent myoblasts and therapeutic applications thereof related to muscular dystrophy |
CN105754936B (en) * | 2016-02-25 | 2018-06-08 | 付清玲 | Method of people's inductive pluripotent stem cells induction for mescenchymal stem cell |
KR102388828B1 (en) | 2016-03-16 | 2022-04-21 | 시나타 세라퓨틱스 엘티디 | Colony forming medium and its use |
CN105769911A (en) * | 2016-03-23 | 2016-07-20 | 中国人民解放军第二军医大学 | Hair regeneration method for mesenchymal stem cell-induced alopecia areata and application |
US20200140851A1 (en) * | 2016-08-23 | 2020-05-07 | The Scripps Research Institute | Methods and Compositions Related to In Vivo Selection of Functional Molecules |
KR101971322B1 (en) * | 2016-10-17 | 2019-04-23 | 사회복지법인 삼성생명공익재단 | Methods for Selecting Improved Stem Cell Using SOCS Inhibition |
KR101971323B1 (en) * | 2016-10-17 | 2019-04-23 | 사회복지법인 삼성생명공익재단 | Methods for Selecting Improved Stem Cell for Treating Immune Disease |
CN108121161A (en) * | 2016-11-26 | 2018-06-05 | 中国科学院大连化学物理研究所 | A kind of preparation method of high-throughput micro-array chip for forming embryoid body and application |
WO2018119213A1 (en) * | 2016-12-23 | 2018-06-28 | StemBios Technologies, Inc. | Use of somatic stem cells for decreasing il-6 level |
CN106754715A (en) * | 2017-02-13 | 2017-05-31 | 四川新生命干细胞科技股份有限公司 | A kind of trophoblastic preparation method for candidate stem cell culture |
CN110612110A (en) * | 2017-03-17 | 2019-12-24 | 森迪生物科学公司 | Immunoregulatory cell circuit |
KR20180112547A (en) * | 2017-04-04 | 2018-10-12 | 경북대학교 산학협력단 | Method for differentiation of mesenchymal stem cells by continuous subculture of induced pluripotent stem cells |
SG10202111394XA (en) | 2017-04-13 | 2021-12-30 | Senti Biosciences Inc | Combinatorial cancer immunotherapy |
CN110799200A (en) * | 2017-05-26 | 2020-02-14 | 仲恩生医科技股份有限公司 | Treatment of polyglutamine acid (POLYQ) diseases |
US11773376B2 (en) | 2017-07-13 | 2023-10-03 | National University Corporation Tokyo Medical And Dental University | Artificial tendon or ligament tissue produced using three-dimensional mechanosignaling cell culture system |
CN107460169B (en) * | 2017-07-14 | 2020-12-11 | 中国科学院广州生物医药与健康研究院 | Application of vitamin C in preparation of culture medium |
CN111793608B (en) * | 2017-07-28 | 2022-05-17 | 杨涛 | HS5 conditioned medium for directionally inducing differentiation of hipscs into neural cell system |
CN109666630A (en) * | 2017-10-17 | 2019-04-23 | 澳门大学 | Pluripotent stem cell differentiation is the method and its culture medium of mescenchymal stem cell and application |
RU2730864C1 (en) * | 2017-11-10 | 2020-08-26 | Редженесис Сайенс Ко., Лтд. | Method of producing cultured cells and medicinal preparation for treating spinal injuries |
EP3717629A1 (en) * | 2017-11-28 | 2020-10-07 | Inno-Health Technology Co., Ltd. | Methods of producing populations of mesenchymal stem cells from peripheral blood and uses thereof |
CN108324993B (en) * | 2018-01-15 | 2020-11-03 | 朱剑虹 | Stem cell complex for inducing hair regeneration, preparation method and application thereof |
CN108570448B (en) * | 2018-01-26 | 2019-04-02 | 皓昇莱生物制药有限公司 | A kind of method that efficient hPSCs breaks up to MSCs |
CN108570447A (en) * | 2018-01-26 | 2018-09-25 | 皓昇莱生物制药有限公司 | A method of screening breaks up hPSCs to MSCs |
KR20200141447A (en) * | 2018-03-06 | 2020-12-18 | 오리그3엔, 인코포레이티드 | IPSC-derived cell compositions, and related systems and methods for cartilage repair |
CN110295145B (en) * | 2018-03-22 | 2020-10-16 | 苏州麦迪耐斯医药科技有限公司 | Culture solution and culture method for in vitro culture of brain tumor cells |
CN108504627A (en) * | 2018-04-02 | 2018-09-07 | 中国人民解放军陆军军医大学第二附属医院 | The extracting method of mankind ligamentum flavum stem cell |
CN108498452A (en) * | 2018-04-10 | 2018-09-07 | 上海交通大学医学院附属仁济医院 | A kind of injection aquagel containing stem cell and preparation method thereof for treating erectile dysfunction |
CN109055307B (en) * | 2018-08-26 | 2021-06-11 | 杭州爱唯生命科技有限公司 | BMP-2 activator and application thereof in stem cell induced differentiation |
US11419898B2 (en) | 2018-10-17 | 2022-08-23 | Senti Biosciences, Inc. | Combinatorial cancer immunotherapy |
KR20210094534A (en) | 2018-10-17 | 2021-07-29 | 센티 바이오사이언시스, 인코포레이티드 | Combination Cancer Immunotherapy |
CN110352951A (en) * | 2018-11-15 | 2019-10-22 | 崔磊 | A kind of serum-free is without DMSO tissue engineered bone frozen stock solution and its preparation and cryopreservation methods |
CN109536444B (en) * | 2018-12-11 | 2022-06-28 | 吉林省拓华生物科技有限公司 | Separation induction method suitable for malignant solid tumor infiltrating T lymphocytes |
US20220047778A1 (en) * | 2018-12-17 | 2022-02-17 | President And Fellows Of Harvard College | Bioengineered scaffolds for modulation of immune system and the uses thereof |
CA3127851A1 (en) * | 2019-02-27 | 2020-09-03 | Tigenix, S.A.U. | Improved stem cell populations for allogeneic therapy |
US20200318113A1 (en) * | 2019-03-05 | 2020-10-08 | MiRagen Therapeutics, Inc. | Polynucleotide conjugates and uses thereof |
AU2020284114A1 (en) * | 2019-05-31 | 2022-01-20 | Figene, Llc | Concurrent activation of regenerative and tolerogenic processes by fibroblast-based compositions for the treatment of multiple sclerosis |
CN112094804B (en) * | 2019-06-18 | 2024-05-14 | 中国医学科学院基础医学研究所 | Heterogeneous stem cell population, preparation method and application thereof |
EP4004191A4 (en) * | 2019-07-26 | 2022-10-12 | Brexogen Inc. | Precursor cells of induced pluripotent stem cell-derived mesenchymal stem cells and method for preparing the same |
CN110499282B (en) * | 2019-09-03 | 2021-05-11 | 广州赛莱拉干细胞科技股份有限公司 | Culture medium and application thereof, and method for inducing tendon stem cells to differentiate into adipocytes |
CN110713973B (en) * | 2019-09-30 | 2021-05-14 | 浙江大学 | Culture medium combination and method for inducing pluripotent stem cells to differentiate into mesenchymal stem cells |
CN110862983B (en) * | 2019-11-05 | 2021-04-06 | 桂林医学院 | sgRNA guide sequence of specific targeting mouse Gdf5 gene and application thereof |
WO2021104453A1 (en) * | 2019-11-28 | 2021-06-03 | The University Of Hong Kong | Mesenchymal stromal cells as a reprogramming source for ipsc induction |
CN113018316A (en) * | 2019-12-24 | 2021-06-25 | 厦门大学 | Application of mesenchymal stem cells derived from pluripotent stem cells in repairing skin injury |
CN111454892A (en) * | 2020-03-12 | 2020-07-28 | 成都世联康健生物科技有限公司 | Tooth mesenchymal stem cell culture medium and activity verification method in dental pulp stem cells |
CN111471648A (en) * | 2020-04-10 | 2020-07-31 | 南京大学 | Preparation method of pretreated and activated mesenchymal stem cells and application of pretreated and activated mesenchymal stem cells in treatment of myeloid leukemia |
TW202208613A (en) * | 2020-05-05 | 2022-03-01 | 美商加速生物科學有限公司 | Mortal pluripotent stem cells |
US20230242873A1 (en) * | 2020-05-13 | 2023-08-03 | Figene, Llc | Fibroblast based therapy for treatment of parkinson's disease |
US20210355444A1 (en) * | 2020-05-13 | 2021-11-18 | Ever Supreme Bio Technology Co., Ltd | Method for producing erythroid cells and/or erythrocytes |
CN111557952A (en) * | 2020-05-28 | 2020-08-21 | 澳门大学 | Application of mesenchymal stem cells in preparation of preparation for promoting fat transplantation |
US20230250394A1 (en) * | 2020-06-24 | 2023-08-10 | Syracuse University | Generation of perinatal-like mesenchymal stem cells from human induced pluripotent stem cells |
WO2022004938A1 (en) * | 2020-06-30 | 2022-01-06 | 주식회사 미래셀바이오 | Method for preparing mesenchymal-like stem cells |
CN112359012B (en) * | 2020-10-22 | 2022-11-25 | 中国科学院水生生物研究所 | Method for preparing heart valve endothelial cells by inducing differentiation of pluripotent stem cells and application thereof |
CN114504596A (en) * | 2020-10-23 | 2022-05-17 | 厦门大学 | Application of mesenchymal stem cells derived from pluripotent stem cells in treatment of psoriasis |
CN113462642A (en) * | 2021-08-12 | 2021-10-01 | 呈诺再生医学科技(珠海横琴新区)有限公司 | Rapid induced differentiation method and kit of mesenchymal stem cells and application of kit |
CN113975298A (en) * | 2021-11-29 | 2022-01-28 | 海南康盾生物制药有限公司 | Cell therapy medicine for infantile autism and preparation method thereof |
CN114438037B (en) * | 2022-01-25 | 2024-06-04 | 深圳市乐土生物医药有限公司 | Method for preparing induced mesenchymal stem cells |
CN114574436A (en) * | 2022-05-06 | 2022-06-03 | 深圳汉盛汇融再生医学科技有限公司 | Stem cell preparation for treating knee joint degenerative disease and preparation method thereof |
CN115785221B (en) * | 2022-07-11 | 2023-07-04 | 北京大学 | Specific antibody of transcription factor HOXB9 phosphorylation site, and preparation method and application thereof |
CN116376828B (en) * | 2023-06-02 | 2023-08-11 | 成都云测医学生物技术有限公司 | Method for inducing CD4+ T cells to generate Treg cells and application |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3654090A (en) | 1968-09-24 | 1972-04-04 | Organon | Method for the determination of antigens and antibodies |
NL154598B (en) | 1970-11-10 | 1977-09-15 | Organon Nv | PROCEDURE FOR DETERMINING AND DETERMINING LOW MOLECULAR COMPOUNDS AND PROTEINS THAT CAN SPECIFICALLY BIND THESE COMPOUNDS AND TEST PACKAGING. |
US4016043A (en) | 1975-09-04 | 1977-04-05 | Akzona Incorporated | Enzymatic immunological method for the determination of antigens and antibodies |
US5486359A (en) | 1990-11-16 | 1996-01-23 | Osiris Therapeutics, Inc. | Human mesenchymal stem cells |
US5981180A (en) | 1995-10-11 | 1999-11-09 | Luminex Corporation | Multiplexed analysis of clinical specimens apparatus and methods |
HUP0003986A3 (en) | 1997-10-14 | 2001-04-28 | Luminex Corp Austin | Precision fluorescently dyed particles and methods of making and using same |
WO1999037814A1 (en) | 1998-01-22 | 1999-07-29 | Luminex Corporation | Microparticles with multiple fluorescent signals |
AU4336599A (en) | 1998-06-08 | 1999-12-30 | Osiris Therapeutics, Inc. | (in vitro) maintenance of hematopoietic stem cells |
WO2000063268A1 (en) | 1999-04-16 | 2000-10-26 | Wm. Marsh Rice University | Poly(propylene fumarate) cross linked with poly(ethylene glycol) |
US6355699B1 (en) | 1999-06-30 | 2002-03-12 | Ethicon, Inc. | Process for manufacturing biomedical foams |
US7148062B2 (en) | 2002-03-15 | 2006-12-12 | Wicell Research Institute, Inc. | Method for generating primate trophoblasts |
US7642091B2 (en) * | 2005-02-24 | 2010-01-05 | Jau-Nan Lee | Human trophoblast stem cells and use thereof |
KR20080056182A (en) | 2005-09-02 | 2008-06-20 | 에이전시 포 사이언스, 테크놀로지 앤드 리서치 | Method of deriving mesenchymal stem cells |
US20090304647A1 (en) * | 2008-05-30 | 2009-12-10 | The Board Of Trustees Of The University Of Illinois | Production of Neural Stem Cells from Bone Marrow Tissue and Use Thereof |
JP2010094062A (en) | 2008-10-15 | 2010-04-30 | Saitama Medical Univ | Medium, culture method and differentiation method for maintaining pluripotency of mesenchymal stem cell |
CN102317442B (en) * | 2008-12-17 | 2014-08-13 | 斯克里普斯研究所 | Generation and maintenance of stem cells |
US20110088107A1 (en) * | 2009-04-24 | 2011-04-14 | Yaqub Hanna | Compositions and methods for deriving or culturing pluripotent cells |
EP2464723B1 (en) * | 2009-08-12 | 2016-06-22 | Kyoto University | Method for inducing differentiation of pluripotent stem cells into neural precursor cells |
KR101193541B1 (en) | 2009-08-24 | 2012-10-22 | 한국과학기술원 | Method of inducing differentiation of human embryonic stem cells into mesenchymal stem cells |
EP2640403A4 (en) * | 2010-11-15 | 2014-04-23 | Jua-Nan Lee | Generation of neural stem cells from human trophoblast stem cells |
US8961956B2 (en) | 2011-11-30 | 2015-02-24 | Ocata Therapeutics, Inc. | Mesenchymal stromal cells and uses related thereto |
KR20230059838A (en) | 2011-11-30 | 2023-05-03 | 아스텔라스 인스티튜트 포 리제너러티브 메디슨 | Mesenchymal stromal cells and uses related thereto |
-
2013
- 2013-07-11 US US14/413,297 patent/US9725698B2/en active Active
- 2013-07-11 JP JP2015521809A patent/JP6277187B2/en active Active
- 2013-07-11 CN CN201380036985.7A patent/CN104487568B/en active Active
- 2013-07-11 CA CA2876512A patent/CA2876512C/en active Active
- 2013-07-11 CA CA3176706A patent/CA3176706A1/en active Pending
- 2013-07-11 WO PCT/US2013/050077 patent/WO2014011881A2/en active Application Filing
- 2013-07-11 EP EP13816490.0A patent/EP2872619B1/en not_active Not-in-force
- 2013-07-11 AU AU2013290146A patent/AU2013290146B2/en active Active
-
2015
- 2015-09-07 HK HK15108692.7A patent/HK1208055A1/en unknown
-
2017
- 2017-06-27 US US15/635,022 patent/US10226488B2/en active Active
-
2019
- 2019-01-23 US US16/254,986 patent/US10842826B2/en active Active
-
2020
- 2020-10-09 US US17/066,642 patent/US20210085725A1/en not_active Abandoned
Non-Patent Citations (5)
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12097218B2 (en) | 2017-05-26 | 2024-09-24 | Kite Pharma, Inc. | Methods of making and using embryonic mesenchymal progenitor cells |
WO2023090589A1 (en) * | 2021-11-22 | 2023-05-25 | 주식회사 미래셀바이오 | Pluripotent stem cell-based composition for prevention or treatment of hypersensitive immune response-induced skin disease |
Also Published As
Publication number | Publication date |
---|---|
CA2876512A1 (en) | 2014-01-16 |
US20170290864A1 (en) | 2017-10-12 |
JP6277187B2 (en) | 2018-02-07 |
AU2013290146A1 (en) | 2015-02-05 |
US20150191699A1 (en) | 2015-07-09 |
WO2014011881A3 (en) | 2014-04-03 |
EP2872619A4 (en) | 2016-03-02 |
US9725698B2 (en) | 2017-08-08 |
CA3176706A1 (en) | 2014-01-16 |
US10842826B2 (en) | 2020-11-24 |
AU2013290146B2 (en) | 2018-01-18 |
JP2015523083A (en) | 2015-08-13 |
CN104487568A (en) | 2015-04-01 |
EP2872619A2 (en) | 2015-05-20 |
CA2876512C (en) | 2022-12-13 |
CN104487568B (en) | 2017-08-15 |
EP2872619B1 (en) | 2018-02-14 |
HK1208055A1 (en) | 2016-02-19 |
WO2014011881A2 (en) | 2014-01-16 |
US10226488B2 (en) | 2019-03-12 |
US20190167733A1 (en) | 2019-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210085725A1 (en) | Mesenchymal-like stem cells derived from human embryonic stem cells, methods and uses thereof | |
US20200392463A1 (en) | Mesenchymal-like stem cells derived from human embryonic stem cells, methods and uses thereof | |
US20220160778A1 (en) | Mesenchymal stromal cells and uses related thereto | |
KR101993027B1 (en) | Stem cell microparticles | |
CN107429232B (en) | Immunoregulatory enhanced cells and methods of use and production thereof | |
ES2927175T3 (en) | Microparticle production method | |
JP2019535691A (en) | Mesenchymal stem cell populations, their products and their use | |
US20090004661A1 (en) | Method of growing mesenchymal stem cells from bone marrow | |
KR102636786B1 (en) | Induction medium and methods for stem cell culture and therapy | |
AU2023282293A1 (en) | Priming Media and Methods for Stem Cell Culture and Therapy | |
US20080138319A1 (en) | Bone-marrow derived neurogenic cells and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION COUNTED, NOT YET MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |