US20210050465A1 - Device for Converting electromagnetic Radiation into Electricity, and Related Systems and Methods - Google Patents

Device for Converting electromagnetic Radiation into Electricity, and Related Systems and Methods Download PDF

Info

Publication number
US20210050465A1
US20210050465A1 US17/080,542 US202017080542A US2021050465A1 US 20210050465 A1 US20210050465 A1 US 20210050465A1 US 202017080542 A US202017080542 A US 202017080542A US 2021050465 A1 US2021050465 A1 US 2021050465A1
Authority
US
United States
Prior art keywords
expander
energy conversion
electromagnetic radiation
axis
conversion components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/080,542
Inventor
Jordin T. Kare
Thomas J. Nugent, JR.
David Bashford
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lasermotive Inc
Original Assignee
Lasermotive Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lasermotive Inc filed Critical Lasermotive Inc
Priority to US17/080,542 priority Critical patent/US20210050465A1/en
Assigned to LASERMOTIVE, INC reassignment LASERMOTIVE, INC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BASHFORD, DAVID, KARE, JORDIN T, NUGENT, THOMAS J, JR
Publication of US20210050465A1 publication Critical patent/US20210050465A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S11/00Non-electric lighting devices or systems using daylight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7861Solar tracking systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0836Catadioptric systems using more than three curved mirrors
    • G02B17/084Catadioptric systems using more than three curved mirrors on-axis systems with at least one of the mirrors having a central aperture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • G02B17/086Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors wherein the system is made of a single block of optical material, e.g. solid catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • G02B19/0023Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors) at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0038Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/009Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with infrared radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • G02B21/04Objectives involving mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0911Anamorphotic systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0977Reflective elements
    • G02B27/0983Reflective elements being curved
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/001Axicons, waxicons, reflaxicons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • H01L31/0521Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • Laser light or other monochromatic light sources can be converted into electricity using photovoltaic converters comprising an array of photovoltaic cells. Multiple cells or groups of cells may be connected in series, to raise the output voltage of the array compared to the output voltage of one cell.
  • photovoltaic receivers When laser power is transmitted through free space, photovoltaic receivers may be physically configured similarly to solar photovoltaic arrays, using essentially flat panels of cells. In some cases, reflectors or lenses may be used to concentrate the received light onto a smaller area, increasing the light intensity and reducing the size and/or number of cells needed.
  • a device for converting electromagnetic radiation into electricity comprises an expander that includes a conical shape having an axis and a curved surface that is configured to reflect electromagnetic radiation away from the axis to expand a beam of the electromagnetic radiation; and one or more energy conversion components configured to receive a beam of electromagnetic radiation expanded by the expander, and to generate electricity from the expanded beam of electromagnetic radiation.
  • an expander that includes a conical shape having an axis and a curved surface that is configured to reflect electromagnetic radiation away from the axis to expand a beam of the electromagnetic radiation
  • one or more energy conversion components configured to receive a beam of electromagnetic radiation expanded by the expander, and to generate electricity from the expanded beam of electromagnetic radiation.
  • a method for converting electromagnetic radiation into electricity comprises reflecting a beam of electromagnetic radiation from a curved surface of an expander's conical shape away from an axis of the expander's conical shape to expand the beam of electromagnetic radiation; one or more energy conversion components receiving the reflected electromagnetic radiation; and one or more energy conversion components absorbing some of the energy in the reflected electromagnetic radiation to generate an electric potential across the energy conversion component.
  • FIG. 1 illustrates a perspective, cutaway view of a device, according to an embodiment of the invention.
  • FIG. 2A illustrates a partial cross-section of a device, a partial cross-section of an electromagnetic radiation beam approaching the expander of the device, and a partial cross-section of the electromagnetic beam reflected by the expander, according to an embodiment of the invention.
  • FIG. 2B graphically illustrates the distribution of the radiation within the partial cross-section of the electromagnetic radiation approaching the expander in FIG. 2A , according to an embodiment of the invention.
  • FIG. 2C graphically illustrates the distribution of the radiation flux of the partial cross-section of the electromagnetic radiation approaching the expander in FIG. 2A , according to an embodiment of the invention.
  • FIG. 3A illustrates a partial cross-section of a device, a partial cross-section of an electromagnetic radiation beam approaching the expander of the device, and a partial cross-section of the electromagnetic beam reflected by the expander, according to another embodiment of the invention.
  • FIG. 3B graphically illustrates the distribution of the radiation within the partial cross-section of the electromagnetic radiation approaching the expander in FIG. 3A , according to an embodiment of the invention.
  • FIG. 3C graphically illustrates the distribution of the radiation flux of the partial cross-section of the electromagnetic radiation approaching the expander in FIG. 3A , according to an embodiment of the invention.
  • FIG. 4A illustrates a partial cross-section of a device, a partial cross-section of an electromagnetic radiation beam approaching the expander of the device, and a partial cross-section of the electromagnetic beam reflected by the expander, according to yet another embodiment of the invention.
  • FIG. 4B graphically illustrates the distribution of the radiation within the partial cross-section of the electromagnetic radiation approaching the expander in FIG. 4A , according to an embodiment of the invention.
  • FIG. 4C graphically illustrates the distribution of the radiation flux of the partial cross-section of the electromagnetic radiation approaching the expander in FIG. 4A , according to an embodiment of the invention.
  • FIG. 5A illustrates a partial cross-section of a device, a partial cross-section of an electromagnetic radiation beam approaching the expander of the device, and a partial cross-section of the electromagnetic beam reflected by the expander, according to still another embodiment of the invention.
  • FIG. 5B graphically illustrates the distribution of the radiation within the partial cross-section of the electromagnetic radiation approaching the expander in FIG. 5A , according to an embodiment of the invention.
  • FIG. 5C graphically illustrates the distribution of the radiation flux of the partial cross-section of the electromagnetic radiation approaching the expander in FIG. 5A , according to an embodiment of the invention.
  • FIGS. 6A-6D illustrates a partial view of a device that includes an optical component, each according to a respective embodiment of the invention.
  • FIG. 7 illustrates a partial cross-section of a device, according to another embodiment of the invention.
  • FIG. 8A illustrates a partial cross-section of a device, a partial cross-section of an electromagnetic radiation beam approaching the expander of the device, and a partial cross-section of the electromagnetic beam reflected by the expander, according to another embodiment of the invention.
  • FIG. 8B graphically illustrates the distribution of the radiation within the partial cross-section of the electromagnetic radiation approaching the expander in FIG. 8A , according to an embodiment of the invention.
  • FIG. 8C graphically illustrates the distribution of the radiation flux of the partial cross-section of the electromagnetic radiation approaching the expander in FIG. 8A , according to an embodiment of the invention.
  • FIGS. 9A and 9B illustrate a device that incorporates an optical component for transmitting or receiving a secondary wavelength of electromagnetic radiation, according to another embodiment of the invention.
  • FIG. 10 illustrates a device, according to another embodiment of the invention.
  • FIG. 11 illustrates a device, according to yet another embodiment of the invention.
  • FIG. 1 illustrates a perspective, cutaway view of a device 100 for converting electromagnetic radiation into electricity, according to an embodiment of the invention.
  • the device 100 comprises an expander 120 that includes a conical shape having an axis 122 (here an axis of symmetry for the conical shape) and a curved surface 124 that is configured to reflect a beam of electromagnetic radiation 132 (here emanating from the optical fiber 130 ) away from the axis 122 to expand the beam of electromagnetic radiation (also not shown).
  • the device 100 also includes one or more energy conversion components 110 configured to receive the expanded beam of electromagnetic radiation, and to generate electricity from the expanded beam.
  • the curved surface 124 can be configured to provide a substantially uniform distribution of radiation across the expanded cross-sectional area. With such an expanded beam the one or more energy conversion components 110 can efficiently convert some of the electromagnetic radiation into electricity.
  • the receiver 100 comprises a generally cylindrical array of energy conversion components 110 that include photovoltaic cells, arranged around a central reflective expander 120 .
  • the energy conversion components 110 may include other means of converting light to electricity, such as thermoelectric or thermo-photovoltaic converters.
  • the expander 120 receives light from an optical fiber 130 aligned with the axis 122 of the expander 120 and the photovoltaic array.
  • An input optical assembly 140 may be used to couple light out of the optical fiber 130 and/or to shape the beam from the fiber 130 , for example to increase its divergence.
  • the assembly 140 may also comprise a connector allowing the optical fiber 130 to be detached from the receiver, and/or a bearing to allow the optical fiber 130 to rotate about an axis such as the axis 122 without becoming twisted.
  • Photovoltaic cells operate most efficiently when the incident intensity of the electromagnetic radiation is even across the cell's surface.
  • Laser sources often deliver electromagnetic radiation with an intensity profile that is not uniform, for example a Gaussian profile.
  • the expander shape may be designed to modify the electromagnetic radiation to a desired intensity profile at the surface of the energy conversion component 110 , for example a flat (uniform) intensity profile.
  • Other profiles are possible, depending on the configuration of the energy conversion component 110 . For example, a gradient in intensity from top to bottom may be desired.
  • the expander 120 is configured to reflect the beam 132 from the fiber 130 onto the photovoltaic cells.
  • the receiver 100 may be enclosed in a housing 150 , which may comprise various elements such as the photovoltaic array support 152 , a heat sink 154 , and top and bottom covers 156 and 158 .
  • the energy conversion components 110 may be rigid, flat, and essentially rectangular, and the array of components may form a polygonal approximation to a section of a cylinder.
  • the components 110 may be rectangular and flexible, and may thus be curved into a true cylinder or close approximation thereto.
  • the components 110 may have other shapes, for example triangular or hexagonal, and may tile the inner surface of the receiver 100 to form an approximation of a cylinder segment.
  • the array of components 110 may approximate a segment of a cone or a sphere.
  • the components 110 may have shapes which efficiently cover the array area, e.g., trapezoidal shapes which fit into a section of a cone, or alternating rectangular and triangular components 110 .
  • the array area may be incompletely covered, e.g., by rectangular components 110 with triangular gaps between them.
  • the covers 156 and 158 are shown as conical but may be flat, dome-shaped, or some other shape suited to the optical and mechanical requirements of the receiver 100 .
  • Some fraction of electromagnetic radiation usually reflects off nearly any surface. In the case of an energy conversion device, reflected electromagnetic radiation would normally be lost and not available for conversion.
  • other surfaces in the vicinity of the expander 120 and energy conversion component 110 are reflective so that electromagnetic radiation which is not initially captured by the energy conversion component 110 can be reflected and have another chance to intersect the energy conversion component 110 .
  • the interiors of the covers 156 and 158 may be partly or entirely reflective, either specularly reflective or diffusely reflective at the electromagnetic radiation's wavelength.
  • part or all of the covers 156 and 158 may be covered with energy conversion components 110 , such as photovoltaic cells that are either of the same type as the main energy conversion components 110 , or of a different type, e.g., thin film photovoltaic cells.
  • energy conversion components 110 such as photovoltaic cells that are either of the same type as the main energy conversion components 110 , or of a different type, e.g., thin film photovoltaic cells.
  • These components may be connected electrically to the main receiver array of components 110 , or may be coupled to a separate electrical output, for example to drive a fan or cooling pump attached to the receiver 100 .
  • the conical shape of the expander 120 has a profile (height y as a function of radius r) which is selected to produce a desired vertical distribution of irradiance on the energy conversion components 110 , such as an approximately uniform distribution.
  • This profile may depend on the distribution of the electromagnetic radiation within the beam 132 striking the expander 120 , and the size, orientation, and location of the energy conversion components 110 .
  • typical dimensions for an energy conversion component 110 that includes a photovoltaic cell may range from 0.1 cm 2 (e.g., 3 mm ⁇ 3.3 mm) to 100 cm 2 (e.g., 10 ⁇ 10 cm), with the overall radius R between roughly 1 and 10 times the width of a photovoltaic cell.
  • the heat sink 154 is exemplary, and may be any desired heat sink capable of cooling the energy conversion components 110 , including forced-air cooling in a duct or ducts, liquid cooling, or cooling via heat pipes. Energy conversion devices often require cooling in order to maintain an appropriate temperature. Flat energy conversion receivers are limited in the amount of heat sink area per unit area of receiver because only the axis perpendicular to the plane of the receiver is available. In some embodiments of the current invention, the cylindrically symmetric receiver surface can be coupled to a heat sink that can extend in two dimensions (when the height of the cylinder is less than its diameter).
  • FIGS. 2A-4C illustrate the effect of a conical shape 128 of an expander 120 on the distribution of irradiance (flux) on the energy conversion components 110 .
  • Each of the conical shapes 128 shown in FIGS. 2A, 3A and 4A are half of the expander's conical shape; the half of the shape not show is simply a mirror image of the shape 128 shown about the axis 122 which in these embodiments also is an axis of symmetry for the expander's conical shape.
  • the electromagnetic radiation 133 shown approaching the expander 120 is half of the beam that the whole expander 120 expands.
  • FIG. 2A-2C show the effect of reflecting a uniform “top hat” beam from a uniform cone.
  • Each ring of radius r to r+dr illuminates an equal area of the energy conversion component 110 , so the irradiance on the array goes to zero for the part illuminated by the tip 127 of the cone and is highest for the base 125 of the cone.
  • FIGS. 3A-3C show the effect of reflecting a divergent, centrally-peaked beam (approximating a Gaussian or Airy beam) from a uniform cone 128 .
  • the irradiance still goes to zero for the energy conversion component area illuminated by the tip 127 of the cone, but also falls off for the base 125 of the cone, with a maximum in between.
  • FIGS. 4A-4C illustrate an approach to making the array irradiance more uniform.
  • the vertical distribution of the irradiance on the component 110 can be rearranged.
  • the irradiance from the upper conical segment 123 b (which decreases with height) can be overlaid with the irradiance from the lower conical segment 123 a .
  • the base 125 of the expander 120 may be positioned lower than the bottom 131 of the energy conversion component 110 .
  • the height of the energy conversion component 110 may be less than, equal to, or greater than the height of the expander 120 .
  • the expander 120 may have three or more conical segments, allowing greater control over the irradiance distribution on the energy conversion component 110 .
  • the conical segments may be made individually convex or concave, to increase or decrease the height of the illuminated region.
  • reflective surfaces may be used above and/or below the energy conversion component 110 to capture electromagnetic radiation, which would otherwise miss the component 110 , and redirect it toward the component 110 .
  • These surfaces may be specular or diffuse reflectors. In some embodiments they may be used only to capture stray electromagnetic radiation, i.e., radiation scattered by outside of the main ray paths, e.g., by surface roughness on the expander 120 .
  • the main beam 133 path may be deliberately arranged to illuminate areas above and below the actual energy conversion component 110 , and the reflectors may serve to redirect this light onto the components 110 . In some embodiments, this may serve to further improve the uniformity of the component 110 illumination.
  • these reflective surfaces may be part of the top and/or bottom covers of the receiver housing.
  • the height, angles, and (if desired) curvatures of the individual cone segments can be found by trial and error, or by any of a variety of optimization techniques known in the art. Such optimizations may consider constraints on, for example, maximum and minimum irradiance on the energy conversion components 110 , and may optimize for a variety of properties such as uniformity of illumination or insensitivity to misalignment of the input beam 133 .
  • FIGS. 5A-5C illustrate an alternative approach to defining the profile of the expander 120 .
  • the profile is locally curved to increase or decrease the vertical divergence of the radial beam 137 so that, at the energy conversion component 110 location, the irradiance is uniform ( FIG. 5C ) over the height of the component 110 .
  • this approach is capable of producing a precisely-uniform distribution of irradiance of any desired height, provided the incident beam 133 profile is known.
  • the profile of an ideal curved expander 120 is defined by a second order differential equation.
  • r e can be expressed as a function of y e , or vice versa.
  • the corresponding irradiance on the component 110 is a function of the input irradiance 133 striking the expander 120 at r e , and the vertical focusing or defocusing of the beam 137 by the expander 120 (corresponding to increasing or decreasing the irradiance at the component 110 ).
  • y′′ e d 2 y e /dr e 2
  • the conical-segment expander can be fabricated using conventional machining and polishing techniques suitable for flat-sided cylinders and cones.
  • the expander 120 can also be fabricated in two or more separate pieces, each with a flat or simply-curved profile, which are then fastened (e.g., glued and/or screwed) together.
  • the arbitrarily-curved expander 120 may be fabricated in a variety of ways, including separately fabricating and then stacking multiple disks with appropriate diameters and flat angled or simply-curved rims.
  • a single-piece expander 120 can also be readily fabricated using a computer-controlled lathe. The resulting part may be polished after cutting or it may have adequate surface quality as-cut.
  • An expander 120 may be molded in its entirety, or may be replicated using a layer of moldable material over a rigid core.
  • a single piece mold may be used, or a two-piece mold may be used, as small seams or other imperfections will in general have little effect on the overall operation of the receiver.
  • FIGS. 6A-6D the electromagnetic radiation from the optical fiber 130 may be coupled onto the expander 120 using a variety of optical configurations.
  • FIG. 6A illustrates an embodiment using a simple diverging lens 410 , which increases the divergence of the beam 400 from the fiber 405 and thereby shortens the distance between the fiber 405 and the expander 120 for a given expander diameter.
  • FIG. 6B illustrates an embodiment using a collimating lens 420 , which decreases the angle of incidence of the electromagnetic radiation on the base 125 of the expander 120 .
  • FIG. 6C illustrates an embodiment using a combination of a collimating lens 430 and a converging lens 440 which refocuses the electromagnetic radiation from the fiber, allowing the electromagnetic radiation to enter the receiver proper through a small aperture 445 .
  • FIG. 6D illustrates an embodiment using an optical element 450 fused directly to the end of the optical fiber, eliminating the exposed fiber end and the associated reflection of electromagnetic radiation back down the fiber, along with the risk of damage to or contamination of the fiber end.
  • element 450 may be butt-coupled to the fiber, or coupled via an index-matching fluid.
  • FIG. 7 illustrates an embodiment where the fiber 510 enters from the bottom of the receiver ( 100 in FIG. 1 ), and the beam 515 passes through a hole in the expander [0050] 520 . Electromagnetic radiation is reflected from a shallow conical reflector 550 to create a hole in the reflected beam, avoiding reflection of electromagnetic radiation back down the fiber or onto the fiber end. This also reduces the maximum intensity of electromagnetic radiation on the expander 520 itself.
  • the fiber may enter the receiver at a point other than the center of the bottom cover, and the reflector 550 may be, for example, a tilted flat reflector.
  • FIGS. 8A-8C illustrate an embodiment in which the beam of electromagnetic radiation is redistributed radially allowing the expander 120 to include a conical shape that is a simple straight-sided cone.
  • Any combination of optical elements and expander shaping may be used to produce the desired vertical distribution of flux on the energy conversion component 110 .
  • axicon optical elements 610 and 620 may be used.
  • lenses, mirrors, optical filters (wavelength filters or polarizing filters), diffusers, prisms (such as Risley prisms to steer the beam, or anamorphic prisms to change the beam diameter or shape), each of which may be fixed and/or adjustable, may be used.
  • this second wavelength may be separated from or combined with the first wavelength by a dichroic reflector 710 incorporated into some part of the beam path.
  • the second wavelength may be emitted or received by device 720 and focused by representative optical element 730 .
  • a portion of the expander itself may be a dichroic element 740 , which at least partly transmits the second wavelength while reflecting the first wavelength.
  • Other possible optical configurations for transmitting or receiving a second wavelength will be apparent to those skilled in the art.
  • FIG. 10 illustrates a top view of a non-circular array of energy conversion components 110 and a corresponding non-circular expander 120 .
  • a non-circular array may arise because the array comprises a small number of rigid cells, or due to other constraints, for example on the space available for the receiver.
  • the non-circular expander 120 has a radius which varies as a function of both height and rotational angle, typically with greater curvature where the array is closer to the axis, and smaller curvature where the array is farther from the axis, to provide a desired flux distribution on the energy conversion components.
  • Such complex shapes may be fabricated by, for example, computer-controlled milling.
  • FIG. 11 illustrates a receiver using a pyramidal expander 910 , which yields a high irradiance over a portion of the receiver circumference and negligible irradiance elsewhere.
  • a pyramidal expander 910 Such a configuration may be used with energy conversion components 930 which are optimized for comparatively high flux, and/or are high cost.
  • the generally circular or polygonal configuration of the receiver allows efficient cooling of such components 930 , and the expander profile may still be selected to provide uniform irradiance of the component array in the vertical direction.
  • the space between components 930 may be filled with reflective material 920 , so that light reflected or scattered from one component 930 will reflect within the receiver until it is absorbed by the same or another component 930 .
  • components 930 may be deliberately oriented away from perpendicular to the receiver axis so that electromagnetic radiation 935 reflected from one component 930 will strike another component 930 , or a wall of the receiver, rather than striking the expander 910 and being reflected back toward the optical fiber.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Lenses (AREA)

Abstract

A device for converting electromagnetic radiation into electricity comprises an expander that includes a conical shape having an axis and a curved surface that is configured to reflect electromagnetic radiation away from the axis to expand a beam of the electromagnetic radiation; and one or more energy conversion components configured to receive a beam of electromagnetic radiation expanded by the expander, and to generate electricity from the expanded beam of electromagnetic radiation. With the expander's curved surface, a beam of electromagnetic radiation that is highly concentrated—has a large radiation flux—may be converted into a beam that has a larger cross-sectional area. Moreover, one can configure, if desired, the curved surface to provide a substantially uniform distribution of radiation across the expanded cross-sectional area. With such an expanded beam the one or more energy conversion components can efficiently convert some of the electromagnetic radiation into electricity.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS AND PRIORITY CLAIMS
  • This application claims priority under 35 U.S.C. § 121 as a divisional of commonly owned U.S. patent application Ser. No. 14/263,858, filed Apr. 28, 2014, issuing Nov. 3, 2020 as U.S. Pat. No. 10,825,944, which claimed priority under 35 U.S.C. § 119(e) to commonly owned U.S. Provisional Patent Application No. 61/816,784, filed Apr. 28, 2013. Each of these previous patent applications is incorporated by reference herein.
  • BACKGROUND
  • Laser light or other monochromatic light sources can be converted into electricity using photovoltaic converters comprising an array of photovoltaic cells. Multiple cells or groups of cells may be connected in series, to raise the output voltage of the array compared to the output voltage of one cell.
  • When laser power is transmitted through free space, photovoltaic receivers may be physically configured similarly to solar photovoltaic arrays, using essentially flat panels of cells. In some cases, reflectors or lenses may be used to concentrate the received light onto a smaller area, increasing the light intensity and reducing the size and/or number of cells needed.
  • Transmission of laser power over an optical fiber to a photovoltaic receiver presents an additional challenge. The light emerging from an optical fiber is typically very intense, and forms a conical beam with a centrally-peaked, nonuniform brightness (power per unit solid angle). Systems which transmit low power (˜2 W or less electrical output) over fiber have used simple planar arrays of, typically, 1-4 photovoltaic cells arranged around the beam center, so that light is evenly divided among cells (but unevenly distributed over each cell). However, this approach is practical only for small numbers of cells which can be arranged radially around a point.
  • Various means of expanding a laser beam from a fiber to larger area and generating a uniform intensity “top hat” beam of a desired shape are known, using, for example, axicon lenses or lenslet arrays. However, these tend to require large transmissive optical elements and long optical paths within the receiver, and in many cases yield a circular beam which is not well matched to typically square or rectangular arrays of PV cells.
  • It is known to focus light through an aperture into an approximately spherical cavity lined with photovoltaic cells, such that light which is reflected from or re-emitted by one cell may be captured by another cell. However, this results in highly non-uniform illumination of cells, is bulky and difficult to fabricate, and tends to require a large number of cells to cover the inside of an entire sphere.
  • SUMMARY
  • In an aspect of the invention, a device for converting electromagnetic radiation into electricity comprises an expander that includes a conical shape having an axis and a curved surface that is configured to reflect electromagnetic radiation away from the axis to expand a beam of the electromagnetic radiation; and one or more energy conversion components configured to receive a beam of electromagnetic radiation expanded by the expander, and to generate electricity from the expanded beam of electromagnetic radiation. With the expander's curved surface, a beam of electromagnetic radiation that is highly concentrated—has a large radiation flux—may be converted into a beam that has a larger cross-sectional area. Moreover, one can configure, if desired, the curved surface to provide a substantially uniform distribution of radiation across the expanded cross-sectional area. With such an expanded beam the one or more energy conversion components can efficiently convert some of the electromagnetic radiation into electricity.
  • In another aspect of the invention a method for converting electromagnetic radiation into electricity comprises reflecting a beam of electromagnetic radiation from a curved surface of an expander's conical shape away from an axis of the expander's conical shape to expand the beam of electromagnetic radiation; one or more energy conversion components receiving the reflected electromagnetic radiation; and one or more energy conversion components absorbing some of the energy in the reflected electromagnetic radiation to generate an electric potential across the energy conversion component.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 illustrates a perspective, cutaway view of a device, according to an embodiment of the invention.
  • FIG. 2A illustrates a partial cross-section of a device, a partial cross-section of an electromagnetic radiation beam approaching the expander of the device, and a partial cross-section of the electromagnetic beam reflected by the expander, according to an embodiment of the invention.
  • FIG. 2B graphically illustrates the distribution of the radiation within the partial cross-section of the electromagnetic radiation approaching the expander in FIG. 2A, according to an embodiment of the invention.
  • FIG. 2C graphically illustrates the distribution of the radiation flux of the partial cross-section of the electromagnetic radiation approaching the expander in FIG. 2A, according to an embodiment of the invention.
  • FIG. 3A illustrates a partial cross-section of a device, a partial cross-section of an electromagnetic radiation beam approaching the expander of the device, and a partial cross-section of the electromagnetic beam reflected by the expander, according to another embodiment of the invention.
  • FIG. 3B graphically illustrates the distribution of the radiation within the partial cross-section of the electromagnetic radiation approaching the expander in FIG. 3A, according to an embodiment of the invention.
  • FIG. 3C graphically illustrates the distribution of the radiation flux of the partial cross-section of the electromagnetic radiation approaching the expander in FIG. 3A, according to an embodiment of the invention.
  • FIG. 4A illustrates a partial cross-section of a device, a partial cross-section of an electromagnetic radiation beam approaching the expander of the device, and a partial cross-section of the electromagnetic beam reflected by the expander, according to yet another embodiment of the invention.
  • FIG. 4B graphically illustrates the distribution of the radiation within the partial cross-section of the electromagnetic radiation approaching the expander in FIG. 4A, according to an embodiment of the invention.
  • FIG. 4C graphically illustrates the distribution of the radiation flux of the partial cross-section of the electromagnetic radiation approaching the expander in FIG. 4A, according to an embodiment of the invention.
  • FIG. 5A illustrates a partial cross-section of a device, a partial cross-section of an electromagnetic radiation beam approaching the expander of the device, and a partial cross-section of the electromagnetic beam reflected by the expander, according to still another embodiment of the invention.
  • FIG. 5B graphically illustrates the distribution of the radiation within the partial cross-section of the electromagnetic radiation approaching the expander in FIG. 5A, according to an embodiment of the invention.
  • FIG. 5C graphically illustrates the distribution of the radiation flux of the partial cross-section of the electromagnetic radiation approaching the expander in FIG. 5A, according to an embodiment of the invention.
  • Each of FIGS. 6A-6D illustrates a partial view of a device that includes an optical component, each according to a respective embodiment of the invention.
  • FIG. 7 illustrates a partial cross-section of a device, according to another embodiment of the invention.
  • FIG. 8A illustrates a partial cross-section of a device, a partial cross-section of an electromagnetic radiation beam approaching the expander of the device, and a partial cross-section of the electromagnetic beam reflected by the expander, according to another embodiment of the invention.
  • FIG. 8B graphically illustrates the distribution of the radiation within the partial cross-section of the electromagnetic radiation approaching the expander in FIG. 8A, according to an embodiment of the invention.
  • FIG. 8C graphically illustrates the distribution of the radiation flux of the partial cross-section of the electromagnetic radiation approaching the expander in FIG. 8A, according to an embodiment of the invention.
  • FIGS. 9A and 9B illustrate a device that incorporates an optical component for transmitting or receiving a secondary wavelength of electromagnetic radiation, according to another embodiment of the invention.
  • FIG. 10 illustrates a device, according to another embodiment of the invention.
  • FIG. 11 illustrates a device, according to yet another embodiment of the invention.
  • DETAILED DESCRIPTION
  • FIG. 1 illustrates a perspective, cutaway view of a device 100 for converting electromagnetic radiation into electricity, according to an embodiment of the invention. The device 100 comprises an expander 120 that includes a conical shape having an axis 122 (here an axis of symmetry for the conical shape) and a curved surface 124 that is configured to reflect a beam of electromagnetic radiation 132 (here emanating from the optical fiber 130) away from the axis 122 to expand the beam of electromagnetic radiation (also not shown). The device 100 also includes one or more energy conversion components 110 configured to receive the expanded beam of electromagnetic radiation, and to generate electricity from the expanded beam.
  • With the expander's curved surface 124, a beam of electromagnetic radiation that is highly concentrated—has a large radiation flux—can be converted into a beam that has a larger cross-sectional area. Moreover, one can configure, if desired, the curved surface 124 to provide a substantially uniform distribution of radiation across the expanded cross-sectional area. With such an expanded beam the one or more energy conversion components 110 can efficiently convert some of the electromagnetic radiation into electricity.
  • In this and other embodiments, the receiver 100 comprises a generally cylindrical array of energy conversion components 110 that include photovoltaic cells, arranged around a central reflective expander 120. In other embodiments, the energy conversion components 110 may include other means of converting light to electricity, such as thermoelectric or thermo-photovoltaic converters. The expander 120 receives light from an optical fiber 130 aligned with the axis 122 of the expander 120 and the photovoltaic array. An input optical assembly 140 may be used to couple light out of the optical fiber 130 and/or to shape the beam from the fiber 130, for example to increase its divergence. In some embodiments the assembly 140 may also comprise a connector allowing the optical fiber 130 to be detached from the receiver, and/or a bearing to allow the optical fiber 130 to rotate about an axis such as the axis 122 without becoming twisted.
  • Photovoltaic cells, as an example of an energy conversion component 110, operate most efficiently when the incident intensity of the electromagnetic radiation is even across the cell's surface. Laser sources often deliver electromagnetic radiation with an intensity profile that is not uniform, for example a Gaussian profile. In some embodiments, the expander shape may be designed to modify the electromagnetic radiation to a desired intensity profile at the surface of the energy conversion component 110, for example a flat (uniform) intensity profile. Other profiles are possible, depending on the configuration of the energy conversion component 110. For example, a gradient in intensity from top to bottom may be desired.
  • The expander 120 is configured to reflect the beam 132 from the fiber 130 onto the photovoltaic cells. The receiver 100 may be enclosed in a housing 150, which may comprise various elements such as the photovoltaic array support 152, a heat sink 154, and top and bottom covers 156 and 158.
  • In some embodiments, the energy conversion components 110 may be rigid, flat, and essentially rectangular, and the array of components may form a polygonal approximation to a section of a cylinder. In other embodiments, the components 110 may be rectangular and flexible, and may thus be curved into a true cylinder or close approximation thereto. In still other embodiments, the components 110 may have other shapes, for example triangular or hexagonal, and may tile the inner surface of the receiver 100 to form an approximation of a cylinder segment. In yet other embodiments, the array of components 110 may approximate a segment of a cone or a sphere. In such embodiments the components 110 may have shapes which efficiently cover the array area, e.g., trapezoidal shapes which fit into a section of a cone, or alternating rectangular and triangular components 110. Alternatively, the array area may be incompletely covered, e.g., by rectangular components 110 with triangular gaps between them.
  • Still referring to FIG. 1, the covers 156 and 158 are shown as conical but may be flat, dome-shaped, or some other shape suited to the optical and mechanical requirements of the receiver 100. Some fraction of electromagnetic radiation usually reflects off nearly any surface. In the case of an energy conversion device, reflected electromagnetic radiation would normally be lost and not available for conversion. In this and other embodiments, other surfaces in the vicinity of the expander 120 and energy conversion component 110 are reflective so that electromagnetic radiation which is not initially captured by the energy conversion component 110 can be reflected and have another chance to intersect the energy conversion component 110. For example, the interiors of the covers 156 and 158 may be partly or entirely reflective, either specularly reflective or diffusely reflective at the electromagnetic radiation's wavelength. Alternatively, part or all of the covers 156 and 158 may be covered with energy conversion components 110, such as photovoltaic cells that are either of the same type as the main energy conversion components 110, or of a different type, e.g., thin film photovoltaic cells. These components (or any sub-section of the components) may be connected electrically to the main receiver array of components 110, or may be coupled to a separate electrical output, for example to drive a fan or cooling pump attached to the receiver 100.
  • Still referring to FIG. 1, the conical shape of the expander 120 has a profile (height y as a function of radius r) which is selected to produce a desired vertical distribution of irradiance on the energy conversion components 110, such as an approximately uniform distribution. This profile may depend on the distribution of the electromagnetic radiation within the beam 132 striking the expander 120, and the size, orientation, and location of the energy conversion components 110. While the receiver 100 is not limited to any particular size, typical dimensions for an energy conversion component 110 that includes a photovoltaic cell may range from 0.1 cm2 (e.g., 3 mm×3.3 mm) to 100 cm2 (e.g., 10×10 cm), with the overall radius R between roughly 1 and 10 times the width of a photovoltaic cell.
  • The heat sink 154 is exemplary, and may be any desired heat sink capable of cooling the energy conversion components 110, including forced-air cooling in a duct or ducts, liquid cooling, or cooling via heat pipes. Energy conversion devices often require cooling in order to maintain an appropriate temperature. Flat energy conversion receivers are limited in the amount of heat sink area per unit area of receiver because only the axis perpendicular to the plane of the receiver is available. In some embodiments of the current invention, the cylindrically symmetric receiver surface can be coupled to a heat sink that can extend in two dimensions (when the height of the cylinder is less than its diameter).
  • FIGS. 2A-4C illustrate the effect of a conical shape 128 of an expander 120 on the distribution of irradiance (flux) on the energy conversion components 110. Each of the conical shapes 128 shown in FIGS. 2A, 3A and 4A are half of the expander's conical shape; the half of the shape not show is simply a mirror image of the shape 128 shown about the axis 122 which in these embodiments also is an axis of symmetry for the expander's conical shape. Also, in each of the FIGS. 2A, 3A and 4A, the electromagnetic radiation 133 shown approaching the expander 120 is half of the beam that the whole expander 120 expands.
  • FIG. 2A-2C show the effect of reflecting a uniform “top hat” beam from a uniform cone. Each ring of radius r to r+dr illuminates an equal area of the energy conversion component 110, so the irradiance on the array goes to zero for the part illuminated by the tip 127 of the cone and is highest for the base 125 of the cone.
  • FIGS. 3A-3C show the effect of reflecting a divergent, centrally-peaked beam (approximating a Gaussian or Airy beam) from a uniform cone 128. The irradiance still goes to zero for the energy conversion component area illuminated by the tip 127 of the cone, but also falls off for the base 125 of the cone, with a maximum in between.
  • FIGS. 4A-4C illustrate an approach to making the array irradiance more uniform. By making the expander's conical shape 128 out of two or more conical segments 123 a and 123 b, with a total height greater than the height of the energy conversion component 110, the vertical distribution of the irradiance on the component 110 can be rearranged. As an example, the irradiance from the upper conical segment 123 b (which decreases with height) can be overlaid with the irradiance from the lower conical segment 123 a. To minimize the angle of incidence of the light on the energy conversion component 110, the base 125 of the expander 120 may be positioned lower than the bottom 131 of the energy conversion component 110. Depending on the divergence of the input beam 133 and the radius of the receiver 100, the height of the energy conversion component 110 may be less than, equal to, or greater than the height of the expander 120.
  • Still referring to FIG. 4A, the expander 120 may have three or more conical segments, allowing greater control over the irradiance distribution on the energy conversion component 110. In addition, the conical segments may be made individually convex or concave, to increase or decrease the height of the illuminated region.
  • In some embodiments, reflective surfaces may be used above and/or below the energy conversion component 110 to capture electromagnetic radiation, which would otherwise miss the component 110, and redirect it toward the component 110. These surfaces may be specular or diffuse reflectors. In some embodiments they may be used only to capture stray electromagnetic radiation, i.e., radiation scattered by outside of the main ray paths, e.g., by surface roughness on the expander 120. In other embodiments the main beam 133 path may be deliberately arranged to illuminate areas above and below the actual energy conversion component 110, and the reflectors may serve to redirect this light onto the components 110. In some embodiments, this may serve to further improve the uniformity of the component 110 illumination. In some embodiments, these reflective surfaces may be part of the top and/or bottom covers of the receiver housing.
  • The height, angles, and (if desired) curvatures of the individual cone segments can be found by trial and error, or by any of a variety of optimization techniques known in the art. Such optimizations may consider constraints on, for example, maximum and minimum irradiance on the energy conversion components 110, and may optimize for a variety of properties such as uniformity of illumination or insensitivity to misalignment of the input beam 133.
  • FIGS. 5A-5C illustrate an alternative approach to defining the profile of the expander 120. In this approach, the profile is locally curved to increase or decrease the vertical divergence of the radial beam 137 so that, at the energy conversion component 110 location, the irradiance is uniform (FIG. 5C) over the height of the component 110. Unlike the conical-segment approach (FIG. 4A), this approach is capable of producing a precisely-uniform distribution of irradiance of any desired height, provided the incident beam 133 profile is known.
  • The profile of an ideal curved expander 120 is defined by a second order differential equation. For a continuous profile and a continuous distribution of irradiance on the energy conversion component 110 (and assuming a fixed radial position R for the component 110, i.e., the component 110 is vertical) a given segment of the expander's conical shape 128 at (re, ye) reflects electromagnetic radiation onto a segment of the component 110 at a height yecc=f1(re, ye, y′e) where y′e=dye/dre). For any particular expander profile, re can be expressed as a function of ye, or vice versa. The corresponding irradiance on the component 110 is a function of the input irradiance 133 striking the expander 120 at re, and the vertical focusing or defocusing of the beam 137 by the expander 120 (corresponding to increasing or decreasing the irradiance at the component 110). This focusing is a function of the local curvature of the expander 120, proportional to y″e=d2ye/dre 2, and of the distance between the point of reflection and the component 110, which depends on re. In general form,

  • ϕpv[f1(r e ,y e ,y′ e)]=ϕin(r e ,y e)*f2(r e ,y″ e)
  • Straightforward generalizations apply if the component 110 and/or the expander 120 are non-circular (R or r not constant with angle around the axis 122) or the component 110 is not vertical (R depends on yecc). This can be solved for any given expander 120 profile and input beam 133. However, inverting this to determine the expander 120 profile for a given input beam 133 and a desired ϕecc is complex, and must in general be done numerically.
  • Any suitable technique may be used to fabricate the expander 120. For example, the conical-segment expander can be fabricated using conventional machining and polishing techniques suitable for flat-sided cylinders and cones. The expander 120 can also be fabricated in two or more separate pieces, each with a flat or simply-curved profile, which are then fastened (e.g., glued and/or screwed) together.
  • The arbitrarily-curved expander 120 may be fabricated in a variety of ways, including separately fabricating and then stacking multiple disks with appropriate diameters and flat angled or simply-curved rims. A single-piece expander 120 can also be readily fabricated using a computer-controlled lathe. The resulting part may be polished after cutting or it may have adequate surface quality as-cut.
  • An expander 120 may be molded in its entirety, or may be replicated using a layer of moldable material over a rigid core. A single piece mold may be used, or a two-piece mold may be used, as small seams or other imperfections will in general have little effect on the overall operation of the receiver.
  • Referring now to FIGS. 6A-6D, the electromagnetic radiation from the optical fiber 130 may be coupled onto the expander 120 using a variety of optical configurations. FIG. 6A illustrates an embodiment using a simple diverging lens 410, which increases the divergence of the beam 400 from the fiber 405 and thereby shortens the distance between the fiber 405 and the expander 120 for a given expander diameter. FIG. 6B illustrates an embodiment using a collimating lens 420, which decreases the angle of incidence of the electromagnetic radiation on the base 125 of the expander 120. FIG. 6C illustrates an embodiment using a combination of a collimating lens 430 and a converging lens 440 which refocuses the electromagnetic radiation from the fiber, allowing the electromagnetic radiation to enter the receiver proper through a small aperture 445. FIG. 6D illustrates an embodiment using an optical element 450 fused directly to the end of the optical fiber, eliminating the exposed fiber end and the associated reflection of electromagnetic radiation back down the fiber, along with the risk of damage to or contamination of the fiber end. Alternatively, element 450 may be butt-coupled to the fiber, or coupled via an index-matching fluid.
  • FIG. 7 illustrates an embodiment where the fiber 510 enters from the bottom of the receiver (100 in FIG. 1), and the beam 515 passes through a hole in the expander [0050] 520. Electromagnetic radiation is reflected from a shallow conical reflector 550 to create a hole in the reflected beam, avoiding reflection of electromagnetic radiation back down the fiber or onto the fiber end. This also reduces the maximum intensity of electromagnetic radiation on the expander 520 itself. In other embodiments, the fiber may enter the receiver at a point other than the center of the bottom cover, and the reflector 550 may be, for example, a tilted flat reflector.
  • FIGS. 8A-8C illustrate an embodiment in which the beam of electromagnetic radiation is redistributed radially allowing the expander 120 to include a conical shape that is a simple straight-sided cone. Any combination of optical elements and expander shaping may be used to produce the desired vertical distribution of flux on the energy conversion component 110. For example, in some embodiments axicon optical elements 610 and 620 may be used. In other embodiments, lenses, mirrors, optical filters (wavelength filters or polarizing filters), diffusers, prisms (such as Risley prisms to steer the beam, or anamorphic prisms to change the beam diameter or shape), each of which may be fixed and/or adjustable, may be used.
  • Referring now to FIGS. 9A and 9B, in some cases it may be desirable to transmit or receive a second wavelength of electromagnetic radiation over the optical fiber, separate from the first wavelength being received by the energy conversion component, e.g., for communications or data transmission. In some embodiments, as shown in FIG. 9A, this second wavelength may be separated from or combined with the first wavelength by a dichroic reflector 710 incorporated into some part of the beam path. The second wavelength may be emitted or received by device 720 and focused by representative optical element 730. In other embodiments, as shown in FIG. 9B, a portion of the expander itself may be a dichroic element 740, which at least partly transmits the second wavelength while reflecting the first wavelength. Other possible optical configurations for transmitting or receiving a second wavelength will be apparent to those skilled in the art.
  • FIG. 10 illustrates a top view of a non-circular array of energy conversion components 110 and a corresponding non-circular expander 120. Such a non-circular array may arise because the array comprises a small number of rigid cells, or due to other constraints, for example on the space available for the receiver. The non-circular expander 120 has a radius which varies as a function of both height and rotational angle, typically with greater curvature where the array is closer to the axis, and smaller curvature where the array is farther from the axis, to provide a desired flux distribution on the energy conversion components. Such complex shapes may be fabricated by, for example, computer-controlled milling.
  • FIG. 11 illustrates a receiver using a pyramidal expander 910, which yields a high irradiance over a portion of the receiver circumference and negligible irradiance elsewhere. Such a configuration may be used with energy conversion components 930 which are optimized for comparatively high flux, and/or are high cost. The generally circular or polygonal configuration of the receiver allows efficient cooling of such components 930, and the expander profile may still be selected to provide uniform irradiance of the component array in the vertical direction. The space between components 930 may be filled with reflective material 920, so that light reflected or scattered from one component 930 will reflect within the receiver until it is absorbed by the same or another component 930. In some embodiments, components 930 may be deliberately oriented away from perpendicular to the receiver axis so that electromagnetic radiation 935 reflected from one component 930 will strike another component 930, or a wall of the receiver, rather than striking the expander 910 and being reflected back toward the optical fiber.
  • Combinations of the different expander configurations discussed above may also be used.
  • The preceding discussion is presented to enable a person skilled in the art to make and use the invention. Various modifications to the embodiments will be readily apparent to those skilled in the art, and the generic principles herein may be applied to other embodiments and applications without departing from the spirit and scope of the present invention. Thus, the present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.

Claims (19)

What is claimed is:
1. A device for converting electromagnetic radiation into electricity, the device comprising:
an expander having an axis and a curved surface that is configured to reflect electromagnetic radiation away from the axis to expand a beam of the electromagnetic radiation, the curved surface including at least two conical segments each shaped as a truncated cone and having a common axis, each conical segment having a selected angle of incidence to the common axis, wherein the at least two conical segments have different angles of incidence to the common axis; and
an energy conversion component disposed to receive the expanded beam and configured to generate electricity from the expanded beam.
2. The device of claim 1, further comprising a reflective surface disposed between the expander and the energy conversion component and configured to further reflect electromagnetic radiation reflected from the expander toward the energy conversion component.
3. The device of claim 1, further comprising a heat sink configured to conduct heat away from the energy conversion component.
4. The device of claim 1, wherein:
the energy conversion component includes a height measured along the direction of the common axis, and
the expander includes a height measured along the direction of the common axis that is longer than the height of the energy conversion component.
5. The device of claim 1, further comprising one or more additional energy conversion components, wherein the energy conversion component and the additional energy conversion components are disposed symmetrically around the common axis.
6. The device of claim 5, wherein the energy conversion component and the additional energy conversion components, together, form a polygonal prism shape that surrounds the expander.
7. The device of claim 1, further comprising an optical component configured to modify electromagnetic radiation before the expander expands the electromagnetic radiation.
8. The device of claim 7, wherein the optical component includes at least one of the following: a lens, a prism, a diffuser, a filter, and a mirror.
9. The device of claim 1, wherein the selected angles of incidence of the at least two conical segments are selected to create an overlapping vertical distribution of irradiance at the energy conversion component.
10. A device for converting electromagnetic radiation into electricity, comprising:
an expander having a shape symmetric about a rotational axis and a reflective surface, wherein the reflective surface includes multiple angles relative to a line parallel to the axis, the multiple angles selected to expand a beam of electromagnetic radiation into an expanded beam; and
a plurality of energy conversion components disposed to receive the expanded beam and configured to generate electricity from the expanded beam,
wherein the multiple angles are selected to change a spatial distribution of electromagnetic energy of the beam between the reflective surface and a member of the plurality of energy conversion components.
11. The device of claim 10, wherein the multiple angles are selected to cause two portions of the expanded beam to overlap at the member of the plurality of energy conversion components.
12. The device of claim 10, wherein a cross-section of the expander through the axis has a shape including curved sides, the curved sides being part of the reflective surface.
13. The device of claim 10, wherein a cross-section of the expander through the axis has a shape including sides having a plurality of straight line segments, the sides having a plurality of straight line segments being part of the reflective surface.
14. The device of claim 10, further comprising a reflective surface disposed between the expander and the plurality of energy conversion components and configured to further reflect electromagnetic radiation reflected from the expander toward the plurality of energy conversion components.
15. The device of claim 10, further comprising a heat sink configured to conduct heat away from at least one of the plurality of energy conversion components.
16. The device of claim 10, wherein the expander is shaped to compress the height of the reflected light beam transverse to its direction of travel between leaving the expander and reaching a member of the plurality of energy conversion components.
17. The device of claim 10, wherein the plurality of energy conversion components are arranged in a polygonal prism shape.
18. The device of claim 10, further comprising an optical component configured to modify electromagnetic radiation before the expander expands the electromagnetic radiation.
19. The device of claim 18, wherein the optical component includes at least one of the following: a lens, a prism, a diffuser, a filter, and a mirror.
US17/080,542 2013-04-28 2020-10-26 Device for Converting electromagnetic Radiation into Electricity, and Related Systems and Methods Abandoned US20210050465A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/080,542 US20210050465A1 (en) 2013-04-28 2020-10-26 Device for Converting electromagnetic Radiation into Electricity, and Related Systems and Methods

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361816784P 2013-04-28 2013-04-28
US14/263,858 US10825944B2 (en) 2013-04-28 2014-04-28 Device for converting electromagnetic radiation into electricity, and related systems and methods
US17/080,542 US20210050465A1 (en) 2013-04-28 2020-10-26 Device for Converting electromagnetic Radiation into Electricity, and Related Systems and Methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/263,858 Division US10825944B2 (en) 2013-04-28 2014-04-28 Device for converting electromagnetic radiation into electricity, and related systems and methods

Publications (1)

Publication Number Publication Date
US20210050465A1 true US20210050465A1 (en) 2021-02-18

Family

ID=51788218

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/263,858 Active 2037-04-29 US10825944B2 (en) 2013-04-28 2014-04-28 Device for converting electromagnetic radiation into electricity, and related systems and methods
US17/080,542 Abandoned US20210050465A1 (en) 2013-04-28 2020-10-26 Device for Converting electromagnetic Radiation into Electricity, and Related Systems and Methods

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/263,858 Active 2037-04-29 US10825944B2 (en) 2013-04-28 2014-04-28 Device for converting electromagnetic radiation into electricity, and related systems and methods

Country Status (1)

Country Link
US (2) US10825944B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9920706B1 (en) 2015-02-02 2018-03-20 Dmitriy Yavid Methods of laser powering unmanned aerial vehicles with heat engines
US10352271B1 (en) 2015-02-02 2019-07-16 Dmitriy Yavid Laser powered, air breathing, open-cycle heat engines
US20170093227A1 (en) * 2015-09-30 2017-03-30 Apple Inc. Corrosion resistant optical connector with accompanying circuitry
WO2017172841A1 (en) 2016-03-28 2017-10-05 The Administrators Of The Tulane Educational Fund Transmissive concentrated photovoltaic module with cooling system
AU2018224292B2 (en) * 2017-02-24 2022-12-08 The Administrators Of The Tulane Educational Fund Concentrated solar photovoltaic and photothermal system
US10673375B2 (en) * 2017-07-12 2020-06-02 Lasermotive, Inc. Power-over-fiber receiver
US10580921B2 (en) 2017-07-12 2020-03-03 Lasermotive, Inc. Power-over-fiber safety system
EP3973646A4 (en) 2019-05-21 2023-06-14 Lasermotive Inc. Remote power beam-splitting
WO2020237107A1 (en) 2019-05-21 2020-11-26 Lasermotive, Inc. Safe power beam startup
JP7370186B2 (en) * 2019-08-05 2023-10-27 京セラ株式会社 optical transmission system
US11870390B2 (en) 2021-02-02 2024-01-09 Raymond Hoheisel Receiver for free-space optical power beaming
WO2023248372A1 (en) * 2022-06-22 2023-12-28 株式会社京都セミコンダクター Optical power feed converter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120174966A1 (en) * 2011-01-07 2012-07-12 Bradford Joel Snipes Concentrating tracking solar energy collector

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023368A (en) * 1975-08-26 1977-05-17 Kelly Donald A High density-third dimension geometry solar panels
US4643545A (en) * 1984-07-02 1987-02-17 The United States Of America As Represented By The Secretary Of The Army Reflecting aspheres of revolution for forming certain beams
US4909589A (en) * 1988-12-11 1990-03-20 Morris Robert K Rotatable photonic coupling
JPH02224375A (en) * 1989-02-27 1990-09-06 Toshiba Corp Solar cell module
GB9321408D0 (en) * 1993-10-16 1993-12-08 British Aerospace Optical apparatus
US7639423B2 (en) * 2005-08-10 2009-12-29 University of Central Florida, Research Foundation, Inc. Direct beam solar lighting system
US8264101B2 (en) 2008-09-30 2012-09-11 The Invention Science Fund I, Llc Beam power with multiple power zones
US8238042B2 (en) * 2009-06-05 2012-08-07 CVI Melles Griot, Inc. Reflective axicon systems and methods
US8842995B2 (en) 2010-05-11 2014-09-23 The Invention Science Fund I, Llc Optical power transmission systems and methods
TW201319489A (en) * 2011-11-10 2013-05-16 Hon Hai Prec Ind Co Ltd Solar collecting device and solar cell assembly
US9236516B2 (en) * 2013-03-01 2016-01-12 Glenn M. Goldsby Solar energy collector apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120174966A1 (en) * 2011-01-07 2012-07-12 Bradford Joel Snipes Concentrating tracking solar energy collector

Also Published As

Publication number Publication date
US10825944B2 (en) 2020-11-03
US20140318620A1 (en) 2014-10-30

Similar Documents

Publication Publication Date Title
US20210050465A1 (en) Device for Converting electromagnetic Radiation into Electricity, and Related Systems and Methods
US20210373196A1 (en) Diffusion safety system
EP2516921B1 (en) Light collector with complementing rotationally asymmetric central and peripheral lenses
JP6671377B2 (en) Optical device having collimator and lenslet array
US6102552A (en) Laser-array based digital illuminator
JP5678354B2 (en) REFLAXICON apparatus and assembly method thereof
KR101953087B1 (en) Device for converting the profile of a laser beam into a laser beam with a rotationally symmetrical intensity distribution
EP1753996B1 (en) An apparatus and method for improved illumination area fill
US8339716B2 (en) Illumination lenses including light redistributing surfaces
JP4647029B2 (en) Irradiation method and irradiation device
US6639733B2 (en) High efficiency non-imaging optics
EP2517066B1 (en) Projecting illumination device with multiple light sources
JP2013502716A (en) Vertical cavity surface emitting laser device with angle selective feedback
US20080251112A1 (en) Concentrating photovoltaic kaleidoscope and method
CA2957343C (en) Device for shaping laser radiation
Udage et al. Optimizing 3D printable refractive spherical arrays for application-specific custom lenses
US4039816A (en) Arrangement for transmitting light energy
JP2020123797A (en) Light radiation device and wireless microphone
US11149920B2 (en) Oval-condenser zoom with independent axis adjustment
CN213715620U (en) Facula focus plastic lens cone
EP3485521B1 (en) Collimating on-die optic, light-emitting diode package with the same and method for manufacturing the same
JP7210000B2 (en) Receiver module and optical power supply system
JP6301337B2 (en) Beam converting element, apparatus for converting electromagnetic radiation, method for manufacturing a beam converting element, and method for converting electromagnetic radiation
CN114509878A (en) Light spot focusing and shaping lens cone and method and application thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: LASERMOTIVE, INC, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KARE, JORDIN T;NUGENT, THOMAS J, JR;BASHFORD, DAVID;REEL/FRAME:054169/0720

Effective date: 20140428

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STCB Information on status: application discontinuation

Free format text: ABANDONMENT FOR FAILURE TO CORRECT DRAWINGS/OATH/NONPUB REQUEST