US20210040034A1 - Compounds, pharmaceutical composition and their use in treating neurodegenerative diseases - Google Patents
Compounds, pharmaceutical composition and their use in treating neurodegenerative diseases Download PDFInfo
- Publication number
- US20210040034A1 US20210040034A1 US17/077,530 US202017077530A US2021040034A1 US 20210040034 A1 US20210040034 A1 US 20210040034A1 US 202017077530 A US202017077530 A US 202017077530A US 2021040034 A1 US2021040034 A1 US 2021040034A1
- Authority
- US
- United States
- Prior art keywords
- benzylmethylamino
- propyl
- aro
- chlorobenzamide
- butyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 218
- 208000015122 neurodegenerative disease Diseases 0.000 title claims description 10
- 230000004770 neurodegeneration Effects 0.000 title claims description 9
- 239000008194 pharmaceutical composition Substances 0.000 title description 6
- 150000003839 salts Chemical class 0.000 claims abstract description 59
- 239000012453 solvate Substances 0.000 claims abstract description 45
- 238000000034 method Methods 0.000 claims description 88
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 73
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 71
- -1 4-(benzylmethylamino)-N-(4-chlorophenyl)butanamide Chemical compound 0.000 claims description 48
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 41
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 36
- 229910052739 hydrogen Inorganic materials 0.000 claims description 36
- 239000001257 hydrogen Substances 0.000 claims description 36
- 125000001424 substituent group Chemical group 0.000 claims description 34
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 32
- 229910052736 halogen Inorganic materials 0.000 claims description 30
- 239000000203 mixture Substances 0.000 claims description 30
- 102100028656 Sigma non-opioid intracellular receptor 1 Human genes 0.000 claims description 28
- 150000002367 halogens Chemical class 0.000 claims description 28
- 101710104750 Sigma non-opioid intracellular receptor 1 Proteins 0.000 claims description 26
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 24
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 24
- 201000010099 disease Diseases 0.000 claims description 22
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 18
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 18
- 125000000623 heterocyclic group Chemical group 0.000 claims description 17
- 230000000694 effects Effects 0.000 claims description 16
- 125000004122 cyclic group Chemical group 0.000 claims description 14
- 125000003118 aryl group Chemical group 0.000 claims description 13
- 201000006417 multiple sclerosis Diseases 0.000 claims description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims description 12
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 12
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 11
- 125000001316 cycloalkyl alkyl group Chemical group 0.000 claims description 11
- 125000004765 (C1-C4) haloalkyl group Chemical group 0.000 claims description 10
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 claims description 10
- 125000000217 alkyl group Chemical group 0.000 claims description 10
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 10
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 claims description 10
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 10
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 10
- 208000024827 Alzheimer disease Diseases 0.000 claims description 8
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 8
- 239000003085 diluting agent Substances 0.000 claims description 7
- 239000003937 drug carrier Substances 0.000 claims description 7
- TVEZSZAKGLHZOD-UHFFFAOYSA-N n-[3-[benzyl(methyl)amino]propyl]-4-chlorobenzamide Chemical compound C=1C=CC=CC=1CN(C)CCCNC(=O)C1=CC=C(Cl)C=C1 TVEZSZAKGLHZOD-UHFFFAOYSA-N 0.000 claims description 7
- USTJOKQGVKRZCI-UHFFFAOYSA-N n-[3-[benzyl(methyl)amino]propyl]-4-fluorobenzamide Chemical compound C=1C=CC=CC=1CN(C)CCCNC(=O)C1=CC=C(F)C=C1 USTJOKQGVKRZCI-UHFFFAOYSA-N 0.000 claims description 7
- DJEAVYPAPNVIRK-UHFFFAOYSA-N n-[3-[benzyl(methyl)amino]propyl]-4-methoxybenzamide Chemical compound C1=CC(OC)=CC=C1C(=O)NCCCN(C)CC1=CC=CC=C1 DJEAVYPAPNVIRK-UHFFFAOYSA-N 0.000 claims description 7
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 claims description 6
- ALIWKUJNIHTPIZ-UHFFFAOYSA-N 4-chloro-N-[3-(2-phenylethylamino)propyl]benzenesulfonamide Chemical compound C(C1=CC=CC=C1)CNCCCNS(=O)(=O)C1=CC=C(C=C1)Cl ALIWKUJNIHTPIZ-UHFFFAOYSA-N 0.000 claims description 6
- YWPSNNQVCNRFAG-UHFFFAOYSA-N 4-chloro-N-[3-[methyl(2-phenylethyl)amino]propyl]benzamide Chemical compound CN(CCCNC(C1=CC=C(C=C1)Cl)=O)CCC1=CC=CC=C1 YWPSNNQVCNRFAG-UHFFFAOYSA-N 0.000 claims description 6
- ZVTTUTCRXOMKJP-UHFFFAOYSA-N CN(CCCNC(=O)c1ccc(cc1)C(C)(C)C)Cc1ccccc1 Chemical compound CN(CCCNC(=O)c1ccc(cc1)C(C)(C)C)Cc1ccccc1 ZVTTUTCRXOMKJP-UHFFFAOYSA-N 0.000 claims description 6
- HLNYWGVTKKMJCB-UHFFFAOYSA-N CN(CCCNC(=O)c1ccc(cc1)C(F)(F)F)Cc1ccccc1 Chemical compound CN(CCCNC(=O)c1ccc(cc1)C(F)(F)F)Cc1ccccc1 HLNYWGVTKKMJCB-UHFFFAOYSA-N 0.000 claims description 6
- SMBAOURHXAGUDO-UHFFFAOYSA-N CNc1ccccc1CNCCCNC(=O)c1ccc(Cl)cc1 Chemical compound CNc1ccccc1CNCCCNC(=O)c1ccc(Cl)cc1 SMBAOURHXAGUDO-UHFFFAOYSA-N 0.000 claims description 6
- YHYQTDAIBNQKCW-UHFFFAOYSA-N N'-[(4-chlorophenyl)methyl]-N-(2-phenylethyl)propane-1,3-diamine Chemical compound ClC1=CC=C(CNCCCNCCC2=CC=CC=C2)C=C1 YHYQTDAIBNQKCW-UHFFFAOYSA-N 0.000 claims description 6
- ZGOIBKXEWZAJOC-UHFFFAOYSA-N N-[(2,4-dichlorophenyl)methyl]-3-(2-phenylethylamino)propanamide Chemical compound ClC1=C(CNC(CCNCCC2=CC=CC=C2)=O)C=CC(=C1)Cl ZGOIBKXEWZAJOC-UHFFFAOYSA-N 0.000 claims description 6
- ZPUMMQAQZJFBBE-UHFFFAOYSA-N N-[(3-chlorophenyl)methyl]-3-(2-phenylethylamino)propanamide Chemical compound ClC=1C=C(CNC(CCNCCC2=CC=CC=C2)=O)C=CC=1 ZPUMMQAQZJFBBE-UHFFFAOYSA-N 0.000 claims description 6
- YHDPPNMBAHMLTA-UHFFFAOYSA-N N-[(4-chlorophenyl)methyl]-3-(2-phenylethylamino)propanamide Chemical compound ClC1=CC=C(CNC(CCNCCC2=CC=CC=C2)=O)C=C1 YHDPPNMBAHMLTA-UHFFFAOYSA-N 0.000 claims description 6
- OVSNKMCWONPLPK-UHFFFAOYSA-N N-[(4-cyanophenyl)methyl]-3-(2-phenylethylamino)propanamide Chemical compound C(#N)C1=CC=C(CNC(CCNCCC2=CC=CC=C2)=O)C=C1 OVSNKMCWONPLPK-UHFFFAOYSA-N 0.000 claims description 6
- CCEPTFOFYUGYIQ-UHFFFAOYSA-N N-[(4-nitrophenyl)methyl]-3-(2-phenylethylamino)propanamide Chemical compound [N+](=O)([O-])C1=CC=C(CNC(CCNCCC2=CC=CC=C2)=O)C=C1 CCEPTFOFYUGYIQ-UHFFFAOYSA-N 0.000 claims description 6
- XNLDYYAFHJJNIA-UHFFFAOYSA-N N-[2-[benzyl(methyl)amino]ethyl]-2,4-dichlorobenzamide Chemical compound C(C1=CC=CC=C1)N(CCNC(C1=C(C=C(C=C1)Cl)Cl)=O)C XNLDYYAFHJJNIA-UHFFFAOYSA-N 0.000 claims description 6
- PQFUXAYPYNMTDK-UHFFFAOYSA-N N-[2-[benzyl(methyl)amino]ethyl]-3-chlorobenzamide Chemical compound C(C1=CC=CC=C1)N(CCNC(C1=CC(=CC=C1)Cl)=O)C PQFUXAYPYNMTDK-UHFFFAOYSA-N 0.000 claims description 6
- YMUGOAUDWIAQBS-UHFFFAOYSA-N N-[2-[benzyl(methyl)amino]ethyl]-4-cyanobenzamide Chemical compound C(C1=CC=CC=C1)N(CCNC(C1=CC=C(C=C1)C#N)=O)C YMUGOAUDWIAQBS-UHFFFAOYSA-N 0.000 claims description 6
- SKTMHNRJFMSGMD-UHFFFAOYSA-N N-[2-[benzyl(methyl)amino]ethyl]-4-nitrobenzamide Chemical compound C(C1=CC=CC=C1)N(CCNC(C1=CC=C(C=C1)[N+](=O)[O-])=O)C SKTMHNRJFMSGMD-UHFFFAOYSA-N 0.000 claims description 6
- NXKFVTNHLNZYJK-UHFFFAOYSA-N N-[3-[benzyl(methyl)amino]propyl]-2,3-dichlorobenzamide Chemical compound CN(CCCNC(=O)c1cccc(Cl)c1Cl)Cc1ccccc1 NXKFVTNHLNZYJK-UHFFFAOYSA-N 0.000 claims description 6
- YBHXONPJHWVDCG-UHFFFAOYSA-N N-[3-[benzyl(methyl)amino]propyl]-2,4-dichlorobenzamide Chemical compound CN(CCCNC(=O)c1ccc(Cl)cc1Cl)Cc1ccccc1 YBHXONPJHWVDCG-UHFFFAOYSA-N 0.000 claims description 6
- XCARQHWTCVZGLN-UHFFFAOYSA-N N-[3-[benzyl(methyl)amino]propyl]-2-bromobenzamide Chemical compound C=1C=CC=CC=1CN(C)CCCNC(=O)C1=CC=CC=C1Br XCARQHWTCVZGLN-UHFFFAOYSA-N 0.000 claims description 6
- UWURADRAHYSONT-UHFFFAOYSA-N N-[3-[benzyl(methyl)amino]propyl]-2-chlorobenzamide Chemical compound C=1C=CC=CC=1CN(C)CCCNC(=O)C1=CC=CC=C1Cl UWURADRAHYSONT-UHFFFAOYSA-N 0.000 claims description 6
- BJMSSYYAXURYLB-UHFFFAOYSA-N N-[3-[benzyl(methyl)amino]propyl]-3,4-dichlorobenzamide Chemical compound C(C1=CC=CC=C1)N(C)CCCNC(C1=CC(=C(C=C1)Cl)Cl)=O BJMSSYYAXURYLB-UHFFFAOYSA-N 0.000 claims description 6
- KXRBNMSGFUSFLX-UHFFFAOYSA-N N-[3-[benzyl(methyl)amino]propyl]-3,5-dichlorobenzamide Chemical compound C(C1=CC=CC=C1)N(C)CCCNC(C1=CC(=CC(=C1)Cl)Cl)=O KXRBNMSGFUSFLX-UHFFFAOYSA-N 0.000 claims description 6
- ZJUIXZLQJIZZJN-UHFFFAOYSA-N N-[3-[benzyl(methyl)amino]propyl]-3-(dimethylamino)benzamide Chemical compound C=1C=CC=CC=1CN(C)CCCNC(=O)C1=CC=CC(N(C)C)=C1 ZJUIXZLQJIZZJN-UHFFFAOYSA-N 0.000 claims description 6
- LZHHVXKFUFAKDI-UHFFFAOYSA-N N-[3-[benzyl(methyl)amino]propyl]-3-chlorobenzamide Chemical compound C=1C=CC=CC=1CN(C)CCCNC(=O)C1=CC=CC(Cl)=C1 LZHHVXKFUFAKDI-UHFFFAOYSA-N 0.000 claims description 6
- QHTZTRVKDYEVCN-UHFFFAOYSA-N N-[3-[benzyl(methyl)amino]propyl]-4-butylbenzamide Chemical compound CCCCc1ccc(cc1)C(=O)NCCCN(C)Cc1ccccc1 QHTZTRVKDYEVCN-UHFFFAOYSA-N 0.000 claims description 6
- FKTFOSFQTJFKJX-UHFFFAOYSA-N N-[3-[benzyl(methyl)amino]propyl]-4-nitrobenzamide Chemical compound C=1C=CC=CC=1CN(C)CCCNC(=O)C1=CC=C([N+]([O-])=O)C=C1 FKTFOSFQTJFKJX-UHFFFAOYSA-N 0.000 claims description 6
- FZTAXYPIZMGGRY-UHFFFAOYSA-N N-[3-[benzyl(methyl)amino]propyl]-4-propylbenzamide Chemical compound C1=CC(CCC)=CC=C1C(=O)NCCCN(C)CC1=CC=CC=C1 FZTAXYPIZMGGRY-UHFFFAOYSA-N 0.000 claims description 6
- YUDTTWNDIWVWMJ-UHFFFAOYSA-N N-[4-[benzyl(methyl)amino]butyl]-4-chlorobenzamide Chemical compound CN(CCCCNC(=O)c1ccc(Cl)cc1)Cc1ccccc1 YUDTTWNDIWVWMJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000002671 adjuvant Substances 0.000 claims description 6
- ITUAAGUADXVGBR-UHFFFAOYSA-N n-[3-[benzyl(methyl)amino]propyl]-4-cyanobenzamide Chemical compound C=1C=CC=CC=1CN(C)CCCNC(=O)C1=CC=C(C#N)C=C1 ITUAAGUADXVGBR-UHFFFAOYSA-N 0.000 claims description 6
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 6
- LERQNAUSMXSDPN-UHFFFAOYSA-N Clc1ccc(cc1)C(=O)NCCCNCN1Cc2ccccc2C1 Chemical compound Clc1ccc(cc1)C(=O)NCCCNCN1Cc2ccccc2C1 LERQNAUSMXSDPN-UHFFFAOYSA-N 0.000 claims description 5
- 208000023105 Huntington disease Diseases 0.000 claims description 5
- BUZMANQQSWHHCG-UHFFFAOYSA-N N-[3-[benzyl(methyl)amino]propyl]-3-methoxybenzamide Chemical compound COC1=CC=CC(C(=O)NCCCN(C)CC=2C=CC=CC=2)=C1 BUZMANQQSWHHCG-UHFFFAOYSA-N 0.000 claims description 5
- 208000018737 Parkinson disease Diseases 0.000 claims description 5
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 claims description 5
- 238000002059 diagnostic imaging Methods 0.000 claims description 3
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 148
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 141
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 138
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 59
- 238000000746 purification Methods 0.000 description 46
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 44
- 238000005160 1H NMR spectroscopy Methods 0.000 description 38
- 230000015572 biosynthetic process Effects 0.000 description 38
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 38
- 238000003786 synthesis reaction Methods 0.000 description 38
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 37
- 238000002360 preparation method Methods 0.000 description 33
- 238000004440 column chromatography Methods 0.000 description 31
- XXBDWLFCJWSEKW-UHFFFAOYSA-N CN(C)CC1=CC=CC=C1 Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 30
- AICOOMRHRUFYCM-ZRRPKQBOSA-N oxazine, 1 Chemical compound C([C@@H]1[C@H](C(C[C@]2(C)[C@@H]([C@H](C)N(C)C)[C@H](O)C[C@]21C)=O)CC1=CC2)C[C@H]1[C@@]1(C)[C@H]2N=C(C(C)C)OC1 AICOOMRHRUFYCM-ZRRPKQBOSA-N 0.000 description 29
- 239000000243 solution Substances 0.000 description 28
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 26
- 238000011282 treatment Methods 0.000 description 26
- 241001465754 Metazoa Species 0.000 description 22
- 125000001153 fluoro group Chemical group F* 0.000 description 22
- OUMFCTFGJYRXRG-UHFFFAOYSA-N n'-benzyl-n'-methylpropane-1,3-diamine;dihydrochloride Chemical compound Cl.Cl.NCCCN(C)CC1=CC=CC=C1 OUMFCTFGJYRXRG-UHFFFAOYSA-N 0.000 description 21
- 238000004587 chromatography analysis Methods 0.000 description 20
- 239000010410 layer Substances 0.000 description 20
- 0 *N([1*])C*CC1=C(C)C(C)=C(C)C(C)=C1C Chemical compound *N([1*])C*CC1=C(C)C(C)=C(C)C(C)=C1C 0.000 description 17
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 16
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 15
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 14
- 239000000556 agonist Substances 0.000 description 13
- 239000003814 drug Substances 0.000 description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 12
- 201000002491 encephalomyelitis Diseases 0.000 description 12
- 150000002431 hydrogen Chemical class 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 241000699670 Mus sp. Species 0.000 description 11
- 125000004663 dialkyl amino group Chemical group 0.000 description 11
- LBOJYSIDWZQNJS-CVEARBPZSA-N dizocilpine Chemical compound C12=CC=CC=C2[C@]2(C)C3=CC=CC=C3C[C@H]1N2 LBOJYSIDWZQNJS-CVEARBPZSA-N 0.000 description 11
- 229950004794 dizocilpine Drugs 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 11
- 230000002829 reductive effect Effects 0.000 description 11
- 239000003981 vehicle Substances 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- 208000035475 disorder Diseases 0.000 description 10
- RIWRFSMVIUAEBX-UHFFFAOYSA-N n-methyl-1-phenylmethanamine Chemical compound CNCC1=CC=CC=C1 RIWRFSMVIUAEBX-UHFFFAOYSA-N 0.000 description 10
- 125000001246 bromo group Chemical group Br* 0.000 description 9
- 108020003175 receptors Proteins 0.000 description 9
- 102000005962 receptors Human genes 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 229910000027 potassium carbonate Inorganic materials 0.000 description 8
- 230000002265 prevention Effects 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 239000004480 active ingredient Substances 0.000 description 7
- 238000003556 assay Methods 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- ADEBPBSSDYVVLD-UHFFFAOYSA-N donepezil Chemical compound O=C1C=2C=C(OC)C(OC)=CC=2CC1CC(CC1)CCN1CC1=CC=CC=C1 ADEBPBSSDYVVLD-UHFFFAOYSA-N 0.000 description 7
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 7
- 235000019341 magnesium sulphate Nutrition 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 238000000159 protein binding assay Methods 0.000 description 7
- FEQOLYDPQKHFTD-UHFFFAOYSA-N 1-(2,2-diphenyloxolan-3-yl)-n,n-dimethylmethanamine;hydrochloride Chemical compound Cl.CN(C)CC1CCOC1(C=1C=CC=CC=1)C1=CC=CC=C1 FEQOLYDPQKHFTD-UHFFFAOYSA-N 0.000 description 6
- CJINUSIFYWTQPJ-UHFFFAOYSA-N 3-chloro-n-[(4-chlorophenyl)methyl]propanamide Chemical compound ClCCC(=O)NCC1=CC=C(Cl)C=C1 CJINUSIFYWTQPJ-UHFFFAOYSA-N 0.000 description 6
- RKIDDEGICSMIJA-UHFFFAOYSA-N 4-chlorobenzoyl chloride Chemical compound ClC(=O)C1=CC=C(Cl)C=C1 RKIDDEGICSMIJA-UHFFFAOYSA-N 0.000 description 6
- 102100037651 AP-2 complex subunit sigma Human genes 0.000 description 6
- 101000806914 Homo sapiens AP-2 complex subunit sigma Proteins 0.000 description 6
- ZHGMDXSHODHWHV-UHFFFAOYSA-N N-{2-[4-methoxy-3-(2-phenylethoxy)phenyl]ethyl}-N-propylpropan-1-amine hydrochloride Chemical compound Cl.CCCN(CCC)CCC1=CC=C(OC)C(OCCC=2C=CC=CC=2)=C1 ZHGMDXSHODHWHV-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 6
- 239000012043 crude product Substances 0.000 description 6
- 238000003745 diagnosis Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine hydrate Chemical compound O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- IOKGWQZQCNXXLD-UHFFFAOYSA-N tert-butyl n-(3-bromopropyl)carbamate Chemical compound CC(C)(C)OC(=O)NCCCBr IOKGWQZQCNXXLD-UHFFFAOYSA-N 0.000 description 5
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 230000003542 behavioural effect Effects 0.000 description 4
- 210000003169 central nervous system Anatomy 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 235000019439 ethyl acetate Nutrition 0.000 description 4
- 125000005843 halogen group Chemical group 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- 150000003840 hydrochlorides Chemical class 0.000 description 4
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- NHWKHNPRDPAXLM-UHFFFAOYSA-N n-(2-aminoethyl)benzamide Chemical compound NCCNC(=O)C1=CC=CC=C1 NHWKHNPRDPAXLM-UHFFFAOYSA-N 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 230000002269 spontaneous effect Effects 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 238000011803 SJL/J (JAX™ mice strain) Methods 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 210000001744 T-lymphocyte Anatomy 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 230000003496 anti-amnesic effect Effects 0.000 description 3
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 208000015114 central nervous system disease Diseases 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000009109 curative therapy Methods 0.000 description 3
- 125000000753 cycloalkyl group Chemical group 0.000 description 3
- 230000006735 deficit Effects 0.000 description 3
- 229960003530 donepezil Drugs 0.000 description 3
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 230000003551 muscarinic effect Effects 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- 239000012044 organic layer Substances 0.000 description 3
- 238000011302 passive avoidance test Methods 0.000 description 3
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 3
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical compound C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- 239000004800 polyvinyl chloride Substances 0.000 description 3
- 238000002600 positron emission tomography Methods 0.000 description 3
- 230000003449 preventive effect Effects 0.000 description 3
- 239000002287 radioligand Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000002603 single-photon emission computed tomography Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 238000010200 validation analysis Methods 0.000 description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- AMVCMSPVJGQNFF-UHFFFAOYSA-N 1-(5,5-diphenyloxolan-3-yl)-n,n-dimethylmethanamine Chemical compound C1C(CN(C)C)COC1(C=1C=CC=CC=1)C1=CC=CC=C1 AMVCMSPVJGQNFF-UHFFFAOYSA-N 0.000 description 2
- CEOCVKWBUWKBKA-UHFFFAOYSA-N 2,4-dichlorobenzoyl chloride Chemical compound ClC(=O)C1=CC=C(Cl)C=C1Cl CEOCVKWBUWKBKA-UHFFFAOYSA-N 0.000 description 2
- AJNBFTRYRJLXPT-UHFFFAOYSA-N 2-[2-[methyl(2-phenylethyl)amino]ethyl]isoindole-1,3-dione Chemical compound CN(CCN1C(=O)C2=CC=CC=C2C1=O)CCC1=CC=CC=C1 AJNBFTRYRJLXPT-UHFFFAOYSA-N 0.000 description 2
- RTSLIXBWXGFKKQ-UHFFFAOYSA-N 3-chloro-n-(2-phenylethyl)propan-1-amine Chemical compound ClCCCNCCC1=CC=CC=C1 RTSLIXBWXGFKKQ-UHFFFAOYSA-N 0.000 description 2
- WHIHIKVIWVIIER-UHFFFAOYSA-N 3-chlorobenzoyl chloride Chemical compound ClC(=O)C1=CC=CC(Cl)=C1 WHIHIKVIWVIIER-UHFFFAOYSA-N 0.000 description 2
- BNZXIXIKAVPDJW-UHFFFAOYSA-N 4-chloro-n-(4-chlorophenyl)butanamide Chemical compound ClCCCC(=O)NC1=CC=C(Cl)C=C1 BNZXIXIKAVPDJW-UHFFFAOYSA-N 0.000 description 2
- BBYDXOIZLAWGSL-UHFFFAOYSA-N 4-fluorobenzoic acid Chemical compound OC(=O)C1=CC=C(F)C=C1 BBYDXOIZLAWGSL-UHFFFAOYSA-N 0.000 description 2
- ZEYHEAKUIGZSGI-UHFFFAOYSA-N 4-methoxybenzoic acid Chemical compound COC1=CC=C(C(O)=O)C=C1 ZEYHEAKUIGZSGI-UHFFFAOYSA-N 0.000 description 2
- SKDHHIUENRGTHK-UHFFFAOYSA-N 4-nitrobenzoyl chloride Chemical compound [O-][N+](=O)C1=CC=C(C(Cl)=O)C=C1 SKDHHIUENRGTHK-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 201000011240 Frontotemporal dementia Diseases 0.000 description 2
- 206010027925 Monoparesis Diseases 0.000 description 2
- 102000014415 Muscarinic acetylcholine receptor Human genes 0.000 description 2
- 108050003473 Muscarinic acetylcholine receptor Proteins 0.000 description 2
- MGVRNMUKTZOQOW-UHFFFAOYSA-N N'-[2-(3,4-dichlorophenyl)ethyl]-N,N,N'-trimethylethane-1,2-diamine Chemical compound CN(C)CCN(C)CCC1=CC=C(Cl)C(Cl)=C1 MGVRNMUKTZOQOW-UHFFFAOYSA-N 0.000 description 2
- YECZUUMIZHELRL-UHFFFAOYSA-N N'-benzyl-N'-(2-phenylethyl)propane-1,3-diamine dihydrochloride Chemical compound Cl.Cl.NCCCN(CCc1ccccc1)Cc1ccccc1 YECZUUMIZHELRL-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- HOKKHZGPKSLGJE-GSVOUGTGSA-N N-Methyl-D-aspartic acid Chemical compound CN[C@@H](C(O)=O)CC(O)=O HOKKHZGPKSLGJE-GSVOUGTGSA-N 0.000 description 2
- 208000002193 Pain Diseases 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000001270 agonistic effect Effects 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 239000005557 antagonist Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 125000002619 bicyclic group Chemical group 0.000 description 2
- 230000027455 binding Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 2
- 238000002648 combination therapy Methods 0.000 description 2
- 230000002939 deleterious effect Effects 0.000 description 2
- ODCCJTMPMUFERV-UHFFFAOYSA-N ditert-butyl carbonate Chemical compound CC(C)(C)OC(=O)OC(C)(C)C ODCCJTMPMUFERV-UHFFFAOYSA-N 0.000 description 2
- QLTXKCWMEZIHBJ-PJGJYSAQSA-N dizocilpine maleate Chemical compound OC(=O)\C=C/C(O)=O.C12=CC=CC=C2[C@]2(C)C3=CC=CC=C3C[C@H]1N2 QLTXKCWMEZIHBJ-PJGJYSAQSA-N 0.000 description 2
- 206010013663 drug dependence Diseases 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 230000005021 gait Effects 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 210000003141 lower extremity Anatomy 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- SWPSQCPYDBULTG-UHFFFAOYSA-N n'-benzyl-n'-methylbutane-1,4-diamine;dihydrochloride Chemical compound Cl.Cl.NCCCCN(C)CC1=CC=CC=C1 SWPSQCPYDBULTG-UHFFFAOYSA-N 0.000 description 2
- ARVAJXRJADAQOW-UHFFFAOYSA-N n'-benzyl-n'-methylethane-1,2-diamine;dihydrochloride Chemical compound Cl.Cl.NCCN(C)CC1=CC=CC=C1 ARVAJXRJADAQOW-UHFFFAOYSA-N 0.000 description 2
- WWEAHUHMEHELLH-UHFFFAOYSA-N n-[3-[benzyl(methyl)amino]propyl]-4-bromobenzamide Chemical compound C=1C=CC=CC=1CN(C)CCCNC(=O)C1=CC=C(Br)C=C1 WWEAHUHMEHELLH-UHFFFAOYSA-N 0.000 description 2
- SASNBVQSOZSTPD-UHFFFAOYSA-N n-methylphenethylamine Chemical compound CNCCC1=CC=CC=C1 SASNBVQSOZSTPD-UHFFFAOYSA-N 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Chemical group 0.000 description 2
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 208000020016 psychiatric disease Diseases 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 108010080097 sigma-1 receptor Proteins 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 239000012279 sodium borohydride Substances 0.000 description 2
- 229910000033 sodium borohydride Inorganic materials 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- BSILDTBRBLKGHU-UHFFFAOYSA-N tert-butyl n-[3-(1,3-dihydroisoindol-2-yl)propyl]carbamate Chemical compound C1=CC=C2CN(CCCNC(=O)OC(C)(C)C)CC2=C1 BSILDTBRBLKGHU-UHFFFAOYSA-N 0.000 description 2
- 238000004809 thin layer chromatography Methods 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- VOKSWYLNZZRQPF-CCKFTAQKSA-N (+)-pentazocine Chemical compound C1C2=CC=C(O)C=C2[C@]2(C)[C@H](C)[C@H]1N(CC=C(C)C)CC2 VOKSWYLNZZRQPF-CCKFTAQKSA-N 0.000 description 1
- SJUKJZSTBBSGHF-UHFFFAOYSA-N (2,4-dichlorophenyl)methanamine Chemical compound NCC1=CC=C(Cl)C=C1Cl SJUKJZSTBBSGHF-UHFFFAOYSA-N 0.000 description 1
- SUYJXERPRICYRX-UHFFFAOYSA-N (3-bromophenyl)methanamine Chemical compound NCC1=CC=CC(Br)=C1 SUYJXERPRICYRX-UHFFFAOYSA-N 0.000 description 1
- BJFPYGGTDAYECS-UHFFFAOYSA-N (3-chlorophenyl)methanamine Chemical compound NCC1=CC=CC(Cl)=C1 BJFPYGGTDAYECS-UHFFFAOYSA-N 0.000 description 1
- YMVFJGSXZNNUDW-UHFFFAOYSA-N (4-chlorophenyl)methanamine Chemical compound NCC1=CC=C(Cl)C=C1 YMVFJGSXZNNUDW-UHFFFAOYSA-N 0.000 description 1
- MZIQKELNJVAZDS-UHFFFAOYSA-N 1-(5,5-diphenyloxolan-3-yl)-n,n-dimethylmethanamine;hydrochloride Chemical compound Cl.C1C(CN(C)C)COC1(C=1C=CC=CC=1)C1=CC=CC=C1 MZIQKELNJVAZDS-UHFFFAOYSA-N 0.000 description 1
- 125000006083 1-bromoethyl group Chemical group 0.000 description 1
- YBONBWJSFMTXLE-UHFFFAOYSA-N 2,3-dichlorobenzoyl chloride Chemical compound ClC(=O)C1=CC=CC(Cl)=C1Cl YBONBWJSFMTXLE-UHFFFAOYSA-N 0.000 description 1
- NHSMWDVLDUDINY-UHFFFAOYSA-N 2-(2-cyanoethoxy)ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCC#N NHSMWDVLDUDINY-UHFFFAOYSA-N 0.000 description 1
- UXFWTIGUWHJKDD-UHFFFAOYSA-N 2-(4-bromobutyl)isoindole-1,3-dione Chemical compound C1=CC=C2C(=O)N(CCCCBr)C(=O)C2=C1 UXFWTIGUWHJKDD-UHFFFAOYSA-N 0.000 description 1
- YGTUPRIZNBMOFV-UHFFFAOYSA-N 2-(4-hydroxybenzoyl)benzoic acid Chemical compound OC(=O)C1=CC=CC=C1C(=O)C1=CC=C(O)C=C1 YGTUPRIZNBMOFV-UHFFFAOYSA-N 0.000 description 1
- CVYFQSLQPKOFNB-UHFFFAOYSA-N 2-[2-(2-phenylethylamino)ethyl]isoindole-1,3-dione Chemical compound O=C1N(CCNCCC2=CC=CC=C2)C(=O)C2=CC=CC=C12 CVYFQSLQPKOFNB-UHFFFAOYSA-N 0.000 description 1
- UUNTYTISUDJKHC-UHFFFAOYSA-N 2-[2-[benzyl(methyl)amino]ethyl]isoindole-1,3-dione Chemical compound O=C1C2=CC=CC=C2C(=O)N1CCN(C)CC1=CC=CC=C1 UUNTYTISUDJKHC-UHFFFAOYSA-N 0.000 description 1
- STJYUDOHLYFSEN-UHFFFAOYSA-N 2-[4-(2-phenylethylamino)butyl]isoindole-1,3-dione Chemical compound O=C1C2=CC=CC=C2C(=O)N1CCCCNCCC1=CC=CC=C1 STJYUDOHLYFSEN-UHFFFAOYSA-N 0.000 description 1
- OKFVAOMPCAHXHX-UHFFFAOYSA-N 2-[4-[benzyl(methyl)amino]butyl]isoindole-1,3-dione Chemical compound O=C1C2=CC=CC=C2C(=O)N1CCCCN(C)CC1=CC=CC=C1 OKFVAOMPCAHXHX-UHFFFAOYSA-N 0.000 description 1
- NZCKTGCKFJDGFD-UHFFFAOYSA-N 2-bromobenzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1Br NZCKTGCKFJDGFD-UHFFFAOYSA-N 0.000 description 1
- ONIKNECPXCLUHT-UHFFFAOYSA-N 2-chlorobenzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1Cl ONIKNECPXCLUHT-UHFFFAOYSA-N 0.000 description 1
- JMTMSDXUXJISAY-UHFFFAOYSA-N 2H-benzotriazol-4-ol Chemical compound OC1=CC=CC2=C1N=NN2 JMTMSDXUXJISAY-UHFFFAOYSA-N 0.000 description 1
- VPHHJAOJUJHJKD-UHFFFAOYSA-N 3,4-dichlorobenzoic acid Chemical compound OC(=O)C1=CC=C(Cl)C(Cl)=C1 VPHHJAOJUJHJKD-UHFFFAOYSA-N 0.000 description 1
- CXKCZFDUOYMOOP-UHFFFAOYSA-N 3,5-dichlorobenzoic acid Chemical compound OC(=O)C1=CC(Cl)=CC(Cl)=C1 CXKCZFDUOYMOOP-UHFFFAOYSA-N 0.000 description 1
- KDJWINGKYLVIRJ-UHFFFAOYSA-N 3-(1,3-dihydroisoindol-2-yl)propan-1-amine;dihydrochloride Chemical compound Cl.Cl.C1=CC=C2CN(CCCN)CC2=C1 KDJWINGKYLVIRJ-UHFFFAOYSA-N 0.000 description 1
- CUECQYFYMGJLJD-UHFFFAOYSA-N 3-(dimethylamino)benzoyl chloride Chemical compound CN(C)C1=CC=CC(C(Cl)=O)=C1 CUECQYFYMGJLJD-UHFFFAOYSA-N 0.000 description 1
- PBOOZQFGWNZNQE-UHFFFAOYSA-N 3-bromobenzoyl chloride Chemical compound ClC(=O)C1=CC=CC(Br)=C1 PBOOZQFGWNZNQE-UHFFFAOYSA-N 0.000 description 1
- ZTGQZSKPSJUEBU-UHFFFAOYSA-N 3-bromopropan-1-amine Chemical compound NCCCBr ZTGQZSKPSJUEBU-UHFFFAOYSA-N 0.000 description 1
- PQIYSSSTRHVOBW-UHFFFAOYSA-N 3-bromopropan-1-amine;hydron;bromide Chemical compound Br.NCCCBr PQIYSSSTRHVOBW-UHFFFAOYSA-N 0.000 description 1
- YULIOQXLKNFWAF-UHFFFAOYSA-N 3-chloro-n-[(3-chlorophenyl)methyl]propanamide Chemical compound ClCCC(=O)NCC1=CC=CC(Cl)=C1 YULIOQXLKNFWAF-UHFFFAOYSA-N 0.000 description 1
- YDXMMFKVJQTZLV-UHFFFAOYSA-N 3-chloro-n-[(4-cyanophenyl)methyl]propanamide Chemical compound ClCCC(=O)NCC1=CC=C(C#N)C=C1 YDXMMFKVJQTZLV-UHFFFAOYSA-N 0.000 description 1
- GPMGYHOCGKNOCQ-UHFFFAOYSA-N 3-chloro-n-[(4-nitrophenyl)methyl]propanamide Chemical compound [O-][N+](=O)C1=CC=C(CNC(=O)CCCl)C=C1 GPMGYHOCGKNOCQ-UHFFFAOYSA-N 0.000 description 1
- INUNLMUAPJVRME-UHFFFAOYSA-N 3-chloropropanoyl chloride Chemical compound ClCCC(Cl)=O INUNLMUAPJVRME-UHFFFAOYSA-N 0.000 description 1
- SYTHCUSTCXFJLE-UHFFFAOYSA-N 3-isoindol-2-ylpropan-1-amine;dihydrochloride Chemical compound Cl.Cl.C1=CC=CC2=CN(CCCN)C=C21 SYTHCUSTCXFJLE-UHFFFAOYSA-N 0.000 description 1
- RUQIUASLAXJZIE-UHFFFAOYSA-N 3-methoxybenzoyl chloride Chemical compound COC1=CC=CC(C(Cl)=O)=C1 RUQIUASLAXJZIE-UHFFFAOYSA-N 0.000 description 1
- LFIWXXXFJFOECP-UHFFFAOYSA-N 4-(aminomethyl)benzonitrile Chemical compound NCC1=CC=C(C#N)C=C1 LFIWXXXFJFOECP-UHFFFAOYSA-N 0.000 description 1
- OXZYBOLWRXENKT-UHFFFAOYSA-N 4-(trifluoromethyl)benzoyl chloride Chemical compound FC(F)(F)C1=CC=C(C(Cl)=O)C=C1 OXZYBOLWRXENKT-UHFFFAOYSA-N 0.000 description 1
- PCFIABOQFAFDAU-UHFFFAOYSA-N 4-bromo-2-fluorobenzoyl chloride Chemical compound FC1=CC(Br)=CC=C1C(Cl)=O PCFIABOQFAFDAU-UHFFFAOYSA-N 0.000 description 1
- OUOWCSJYDCPVDM-UHFFFAOYSA-N 4-butylbenzoyl chloride Chemical compound CCCCC1=CC=C(C(Cl)=O)C=C1 OUOWCSJYDCPVDM-UHFFFAOYSA-N 0.000 description 1
- QSNSCYSYFYORTR-UHFFFAOYSA-N 4-chloroaniline Chemical compound NC1=CC=C(Cl)C=C1 QSNSCYSYFYORTR-UHFFFAOYSA-N 0.000 description 1
- AVPYQKSLYISFPO-UHFFFAOYSA-N 4-chlorobenzaldehyde Chemical compound ClC1=CC=C(C=O)C=C1 AVPYQKSLYISFPO-UHFFFAOYSA-N 0.000 description 1
- GJNGXPDXRVXSEH-UHFFFAOYSA-N 4-chlorobenzonitrile Chemical compound ClC1=CC=C(C#N)C=C1 GJNGXPDXRVXSEH-UHFFFAOYSA-N 0.000 description 1
- CDIIZULDSLKBKV-UHFFFAOYSA-N 4-chlorobutanoyl chloride Chemical compound ClCCCC(Cl)=O CDIIZULDSLKBKV-UHFFFAOYSA-N 0.000 description 1
- USEDMAWWQDFMFY-UHFFFAOYSA-N 4-cyanobenzoyl chloride Chemical compound ClC(=O)C1=CC=C(C#N)C=C1 USEDMAWWQDFMFY-UHFFFAOYSA-N 0.000 description 1
- OZRGLPAXIYOWIG-HZPUXBNGSA-N 4-nitrobenzylamine Chemical compound CC(C)C(CC[C@@H](C)[C@H]1CC[C@H]2[C@@H]3CCC4=CCCC[C@]4(C)[C@H]3CC[C@]12C)=O OZRGLPAXIYOWIG-HZPUXBNGSA-N 0.000 description 1
- NZYPCJXREKMMCJ-UHFFFAOYSA-N 4-propylbenzoyl chloride Chemical compound CCCC1=CC=C(C(Cl)=O)C=C1 NZYPCJXREKMMCJ-UHFFFAOYSA-N 0.000 description 1
- WNLMYNASWOULQY-UHFFFAOYSA-N 4-tert-butylbenzoyl chloride Chemical compound CC(C)(C)C1=CC=C(C(Cl)=O)C=C1 WNLMYNASWOULQY-UHFFFAOYSA-N 0.000 description 1
- ODHCTXKNWHHXJC-VKHMYHEASA-N 5-oxo-L-proline Chemical compound OC(=O)[C@@H]1CCC(=O)N1 ODHCTXKNWHHXJC-VKHMYHEASA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229940100578 Acetylcholinesterase inhibitor Drugs 0.000 description 1
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 208000032116 Autoimmune Experimental Encephalomyelitis Diseases 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 241000588832 Bordetella pertussis Species 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- OBGZHUISZWZAHE-UHFFFAOYSA-N C(C)(C)(C)OC(NCCCN(CCC1=CC=CC=C1)C)=O Chemical compound C(C)(C)(C)OC(NCCCN(CCC1=CC=CC=C1)C)=O OBGZHUISZWZAHE-UHFFFAOYSA-N 0.000 description 1
- XJYFWECDSBNCLV-UHFFFAOYSA-N CC.CN(CCC(=O)NCC1=CC=CC=C1)CC1=CC=CC=C1 Chemical compound CC.CN(CCC(=O)NCC1=CC=CC=C1)CC1=CC=CC=C1 XJYFWECDSBNCLV-UHFFFAOYSA-N 0.000 description 1
- HJDCMRYOECSRDT-UHFFFAOYSA-N CC1(C2)C2C(C2)C2CC1 Chemical compound CC1(C2)C2C(C2)C2CC1 HJDCMRYOECSRDT-UHFFFAOYSA-N 0.000 description 1
- IBAIILOKUFNBRT-UHFFFAOYSA-N CC1=C(C)C(C)=C(C(=O)Cl)C(C)=C1C.CC1=C(C)C(C)=C(C(=O)NCBr)C(C)=C1C.CC1=C(C)C(C)=C(CC(=O)CCl)C(C)=C1C.CC1=C(C)C(C)=C(CN)C(C)=C1C.CC1=C(C)C(C)=C(CNC(=O)CCl)C(C)=C1C.CC1=C(C)C(C)=C(N)C(C)=C1C Chemical compound CC1=C(C)C(C)=C(C(=O)Cl)C(C)=C1C.CC1=C(C)C(C)=C(C(=O)NCBr)C(C)=C1C.CC1=C(C)C(C)=C(CC(=O)CCl)C(C)=C1C.CC1=C(C)C(C)=C(CN)C(C)=C1C.CC1=C(C)C(C)=C(CNC(=O)CCl)C(C)=C1C.CC1=C(C)C(C)=C(N)C(C)=C1C IBAIILOKUFNBRT-UHFFFAOYSA-N 0.000 description 1
- XGGXZMSPTAOQHS-UHFFFAOYSA-N CC1=C(C)C(C)=C(C(=O)NCCCN(C)CC2=CC=CC=C2)C(C)=C1C Chemical compound CC1=C(C)C(C)=C(C(=O)NCCCN(C)CC2=CC=CC=C2)C(C)=C1C XGGXZMSPTAOQHS-UHFFFAOYSA-N 0.000 description 1
- DUIKWFYITZYMAY-UHFFFAOYSA-N CC1=C(C)C(C)=C(C(=O)NCN(C)CC2=CC=CC=C2)C(C)=C1C Chemical compound CC1=C(C)C(C)=C(C(=O)NCN(C)CC2=CC=CC=C2)C(C)=C1C DUIKWFYITZYMAY-UHFFFAOYSA-N 0.000 description 1
- OBXKVRBHDODTTD-UHFFFAOYSA-N CC1=C(C)C(C)=C(CNC(=O)CCN(C)CC2=CC=CC=C2)C(C)=C1C Chemical compound CC1=C(C)C(C)=C(CNC(=O)CCN(C)CC2=CC=CC=C2)C(C)=C1C OBXKVRBHDODTTD-UHFFFAOYSA-N 0.000 description 1
- TYWLNTKAVRKXRX-UHFFFAOYSA-N CC1=C(C)C(C)=C(CNC(=O)CN(C)CC2=CC=CC=C2)C(C)=C1C Chemical compound CC1=C(C)C(C)=C(CNC(=O)CN(C)CC2=CC=CC=C2)C(C)=C1C TYWLNTKAVRKXRX-UHFFFAOYSA-N 0.000 description 1
- XAZKFISIRYLAEE-UHFFFAOYSA-N CC1CC(C)CC1 Chemical compound CC1CC(C)CC1 XAZKFISIRYLAEE-UHFFFAOYSA-N 0.000 description 1
- TXOFSCODFRHERQ-UHFFFAOYSA-N CN(C)CCC1=CC=CC=C1 Chemical compound CN(C)CCC1=CC=CC=C1 TXOFSCODFRHERQ-UHFFFAOYSA-N 0.000 description 1
- AXIIEOPSQHRYCU-UHFFFAOYSA-N CN1CC2=C(C=CC=C2)C1 Chemical compound CN1CC2=C(C=CC=C2)C1 AXIIEOPSQHRYCU-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 108010062745 Chloride Channels Proteins 0.000 description 1
- 102000011045 Chloride Channels Human genes 0.000 description 1
- 108010009685 Cholinergic Receptors Proteins 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- GEJNKRZGBAKPGR-UHFFFAOYSA-N Cl.Cl.C1(=CC=CC=C1)CCN(CCN)C Chemical compound Cl.Cl.C1(=CC=CC=C1)CCN(CCN)C GEJNKRZGBAKPGR-UHFFFAOYSA-N 0.000 description 1
- HVXCCSAYSWPPDG-UHFFFAOYSA-N ClC1=C(CNC(CCCl)=O)C=CC(=C1)Cl Chemical compound ClC1=C(CNC(CCCl)=O)C=CC(=C1)Cl HVXCCSAYSWPPDG-UHFFFAOYSA-N 0.000 description 1
- 208000022497 Cocaine-Related disease Diseases 0.000 description 1
- DSLZVSRJTYRBFB-LLEIAEIESA-N D-glucaric acid Chemical compound OC(=O)[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O DSLZVSRJTYRBFB-LLEIAEIESA-N 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- AEMOLEFTQBMNLQ-AQKNRBDQSA-N D-glucopyranuronic acid Chemical compound OC1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-AQKNRBDQSA-N 0.000 description 1
- 206010012289 Dementia Diseases 0.000 description 1
- 206010067889 Dementia with Lewy bodies Diseases 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 208000037357 HIV infectious disease Diseases 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 206010021118 Hypotonia Diseases 0.000 description 1
- MFESCIUQSIBMSM-UHFFFAOYSA-N I-BCP Chemical compound ClCCCBr MFESCIUQSIBMSM-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 201000002832 Lewy body dementia Diseases 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-L Malonate Chemical compound [O-]C(=O)CC([O-])=O OFOBLEOULBTSOW-UHFFFAOYSA-L 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 108010006519 Molecular Chaperones Proteins 0.000 description 1
- 102000005431 Molecular Chaperones Human genes 0.000 description 1
- 208000007379 Muscle Hypotonia Diseases 0.000 description 1
- 241001049988 Mycobacterium tuberculosis H37Ra Species 0.000 description 1
- 102000055324 Myelin Proteolipid Human genes 0.000 description 1
- 101710094913 Myelin proteolipid protein Proteins 0.000 description 1
- CYOAKAJZFCMXHY-UHFFFAOYSA-N N-[3-[benzyl(methyl)amino]propyl]-3-bromobenzamide Chemical compound C=1C=CC=CC=1CN(C)CCCNC(=O)C1=CC=CC(Br)=C1 CYOAKAJZFCMXHY-UHFFFAOYSA-N 0.000 description 1
- VWZWORFVAMBTRI-UHFFFAOYSA-N N-[3-[benzyl(methyl)amino]propyl]-4-bromo-2-fluorobenzamide Chemical compound CN(CCCNC(=O)c1ccc(Br)cc1F)Cc1ccccc1 VWZWORFVAMBTRI-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 1
- 102000019315 Nicotinic acetylcholine receptors Human genes 0.000 description 1
- 108050006807 Nicotinic acetylcholine receptors Proteins 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 206010033892 Paraplegia Diseases 0.000 description 1
- 108010081690 Pertussis Toxin Proteins 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- 206010037714 Quadriplegia Diseases 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 208000018642 Semantic dementia Diseases 0.000 description 1
- 229940124264 Sigma 1 receptor antagonist Drugs 0.000 description 1
- 102100028662 Sigma intracellular receptor 2 Human genes 0.000 description 1
- 101710109012 Sigma intracellular receptor 2 Proteins 0.000 description 1
- 108010052164 Sodium Channels Proteins 0.000 description 1
- 102000018674 Sodium Channels Human genes 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229920002253 Tannate Polymers 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 1
- 201000004810 Vascular dementia Diseases 0.000 description 1
- BBHJZXFARWIQHB-UHFFFAOYSA-N [3-[benzyl(methyl)amino]-4,4-dimethylpentyl] carbamate Chemical compound C(N)(OCCC(N(C)CC1=CC=CC=C1)C(C)(C)C)=O BBHJZXFARWIQHB-UHFFFAOYSA-N 0.000 description 1
- 102000034337 acetylcholine receptors Human genes 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 1
- 125000004103 aminoalkyl group Chemical group 0.000 description 1
- WGQKYBSKWIADBV-UHFFFAOYSA-N aminomethyl benzene Natural products NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000001430 anti-depressive effect Effects 0.000 description 1
- 239000000935 antidepressant agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000009227 behaviour therapy Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical class ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 1
- 150000003939 benzylamines Chemical class 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M bisulphate group Chemical group S([O-])(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 125000006367 bivalent amino carbonyl group Chemical group [H]N([*:1])C([*:2])=O 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- MIOPJNTWMNEORI-UHFFFAOYSA-N camphorsulfonic acid Chemical compound C1CC2(CS(O)(=O)=O)C(=O)CC1C2(C)C MIOPJNTWMNEORI-UHFFFAOYSA-N 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000012754 cardiac puncture Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- PBAYDYUZOSNJGU-UHFFFAOYSA-N chelidonic acid Natural products OC(=O)C1=CC(=O)C=C(C(O)=O)O1 PBAYDYUZOSNJGU-UHFFFAOYSA-N 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- 229960003920 cocaine Drugs 0.000 description 1
- 201000006145 cocaine dependence Diseases 0.000 description 1
- 239000002475 cognitive enhancer Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229940109275 cyclamate Drugs 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000004210 cyclohexylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- HCAJEUSONLESMK-UHFFFAOYSA-N cyclohexylsulfamic acid Chemical compound OS(=O)(=O)NC1CCCCC1 HCAJEUSONLESMK-UHFFFAOYSA-N 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 239000007933 dermal patch Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-M dihydrogenphosphate Chemical compound OP(O)([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-M 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 208000012997 experimental autoimmune encephalomyelitis Diseases 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 1
- 229940044170 formate Drugs 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229940050411 fumarate Drugs 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 229960001731 gluceptate Drugs 0.000 description 1
- KWMLJOLKUYYJFJ-VFUOTHLCSA-N glucoheptonic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O)C(O)=O KWMLJOLKUYYJFJ-VFUOTHLCSA-N 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- 229940097042 glucuronate Drugs 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 229960003878 haloperidol Drugs 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- 229950000177 hibenzate Drugs 0.000 description 1
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 1
- 125000004594 isoindolinyl group Chemical group C1(NCC2=CC=CC=C12)* 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000000366 juvenile effect Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005567 liquid scintillation counting Methods 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N malic acid Chemical compound OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 208000029790 metamphetamine dependence Diseases 0.000 description 1
- OKKJLVBELUTLKV-VMNATFBRSA-N methanol-d1 Chemical compound [2H]OC OKKJLVBELUTLKV-VMNATFBRSA-N 0.000 description 1
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 description 1
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 1
- 125000006362 methylene amino carbonyl group Chemical group [H]N(C([*:2])=O)C([H])([H])[*:1] 0.000 description 1
- 210000000274 microglia Anatomy 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- FHDBCFMWQMCVRI-UHFFFAOYSA-N n'-benzyl-n-[(4-chlorophenyl)methyl]-n'-methylpropane-1,3-diamine Chemical compound C=1C=CC=CC=1CN(C)CCCNCC1=CC=C(Cl)C=C1 FHDBCFMWQMCVRI-UHFFFAOYSA-N 0.000 description 1
- JLCAABNHGDLUFT-UHFFFAOYSA-N n-(3-bromopropyl)-4-chlorobenzamide Chemical compound ClC1=CC=C(C(=O)NCCCBr)C=C1 JLCAABNHGDLUFT-UHFFFAOYSA-N 0.000 description 1
- MIPRBPDMJDWUIX-UHFFFAOYSA-N n-[(3-bromophenyl)methyl]-3-chloropropanamide Chemical compound ClCCC(=O)NCC1=CC=CC(Br)=C1 MIPRBPDMJDWUIX-UHFFFAOYSA-N 0.000 description 1
- PDUZVDHILNOQIA-UHFFFAOYSA-N n-[3-[benzyl(methyl)amino]propyl]-4-chlorobenzenesulfonamide Chemical compound C=1C=CC=CC=1CN(C)CCCNS(=O)(=O)C1=CC=C(Cl)C=C1 PDUZVDHILNOQIA-UHFFFAOYSA-N 0.000 description 1
- DDSXTSOVLFUCEC-UHFFFAOYSA-N n-[3-[benzyl(methyl)amino]propyl]benzamide Chemical compound C=1C=CC=CC=1CN(C)CCCNC(=O)C1=CC=CC=C1 DDSXTSOVLFUCEC-UHFFFAOYSA-N 0.000 description 1
- 125000005487 naphthalate group Chemical group 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 230000000324 neuroprotective effect Effects 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000012316 non-parametric ANOVA Methods 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 210000004248 oligodendroglia Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- PXQPEWDEAKTCGB-UHFFFAOYSA-N orotic acid Chemical compound OC(=O)C1=CC(=O)NC(=O)N1 PXQPEWDEAKTCGB-UHFFFAOYSA-N 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 238000002638 palliative care Methods 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- VOKSWYLNZZRQPF-GDIGMMSISA-N pentazocine Chemical compound C1C2=CC=C(O)C=C2[C@@]2(C)[C@@H](C)[C@@H]1N(CC=C(C)C)CC2 VOKSWYLNZZRQPF-GDIGMMSISA-N 0.000 description 1
- 229960005301 pentazocine Drugs 0.000 description 1
- 229960001412 pentobarbital Drugs 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 238000009520 phase I clinical trial Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- NGVDGCNFYWLIFO-UHFFFAOYSA-N pyridoxal 5'-phosphate Chemical compound CC1=NC=C(COP(O)(O)=O)C(C=O)=C1O NGVDGCNFYWLIFO-UHFFFAOYSA-N 0.000 description 1
- 229940043131 pyroglutamate Drugs 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 125000006413 ring segment Chemical group 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 201000000980 schizophrenia Diseases 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 108010085082 sigma receptors Proteins 0.000 description 1
- 238000009097 single-agent therapy Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 230000007596 spatial working memory Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 208000011117 substance-related disease Diseases 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- PHYKDXNNDOTLOW-UHFFFAOYSA-N tert-butyl n-[3-(2-phenylethylamino)propyl]carbamate Chemical compound CC(C)(C)OC(=O)NCCCNCCC1=CC=CC=C1 PHYKDXNNDOTLOW-UHFFFAOYSA-N 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000007492 two-way ANOVA Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/64—Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
- C07C233/77—Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups
- C07C233/78—Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/132—Amines having two or more amino groups, e.g. spermidine, putrescine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/135—Amines having aromatic rings, e.g. ketamine, nortriptyline
- A61K31/137—Arylalkylamines, e.g. amphetamine, epinephrine, salbutamol, ephedrine or methadone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/165—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
- A61K31/167—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/02—Muscle relaxants, e.g. for tetanus or cramps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/01—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
- C07C211/26—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring
- C07C211/27—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring having amino groups linked to the six-membered aromatic ring by saturated carbon chains
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/01—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
- C07C211/26—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring
- C07C211/29—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/01—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C233/02—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
- C07C233/11—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to carbon atoms of an unsaturated carbon skeleton containing six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C235/00—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
- C07C235/42—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton
- C07C235/44—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring
- C07C235/50—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C237/00—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
- C07C237/02—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
- C07C237/04—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
- C07C237/10—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C237/00—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
- C07C237/02—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
- C07C237/20—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton containing six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C237/00—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
- C07C237/28—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton
- C07C237/34—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton having the nitrogen atom of the carboxamide group bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
- C07C255/49—Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
- C07C255/57—Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and carboxyl groups, other than cyano groups, bound to the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
- C07C255/49—Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
- C07C255/58—Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the carbon skeleton
- C07C255/60—Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the carbon skeleton at least one of the singly-bound nitrogen atoms being acylated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C311/00—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/30—Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/37—Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups having the sulfur atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/02—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
- C07D209/04—Indoles; Hydrogenated indoles
- C07D209/08—Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/02—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
- C07D209/44—Iso-indoles; Hydrogenated iso-indoles
Definitions
- the present invention relates to novel compounds including their pharmaceutically acceptable salts and solvates, which are modulators, advantageously agonists of sigma-1 receptor (sigma-1, G1R or Sig-1R) and are useful as therapeutic compounds, particularly in the treatment, prevention and/or diagnosis of neurodegenerative diseases.
- sigma-1 receptor sigma-1, G1R or Sig-1R
- the sigma-1 receptor is an intracellular chaperone protein that resides specifically at the endoplasmic reticulum (ER)-mitochondrion interface, referred to as the mitochondrion-associated ER membrane (MAM). It is expressed in the central nervous system (CNS) in microglia, lymphocytes, neurons, and oligodendrocytes and is known to be implicated in the regulation of numerous neurotransmitters.
- ER endoplasmic reticulum
- MAM mitochondrion-associated ER membrane
- Sig-1Rs play a part in complex biological processes, which include cocaine or methamphetamine addiction, learning and memory, pain and depression.
- Some reports using the molecular biological silencing approach have implicated these receptors in neurodegenerative disorders such as Alzheimer's disease, stroke, and neural degeneration due to HIV infection.
- Sig-1Rs are thus potential therapeutic targets in multiple CNS diseases and a variety of Sig-1R agonists and antagonists have been described.
- Anavex 2-73 (1-(2,2-diphenyltetrahydrofuran-3-yl)-N,N-dimethylmethanamine hydrochloride) exhibits high affinity and selectivity to sigma-1 receptors and synergistic action with muscarinic and cholinergic receptors. Additional activities have been demonstrated on N-methyl-D-aspartate (NMDA) receptors.
- NMDA N-methyl-D-aspartate
- Anavex 2-73 demonstrated neuroprotective and anti-amnesic properties. Anavex 2-73 has been shown to provide protection from oxidative stress, which damages and destroys neurons and is believed to be a primary cause of Alzheimer's disease. Anavex 2-73 is currently under Phase I clinical trials.
- Anavex 1-41 (1-(5,5-diphenyltetrahydrofuran-3-yl)-N,N-dimethylmethanamine hydrochloride) presents a mixed pharmacological activity involving the modulation of both sigma-1 and muscarinic components showing prominent anti-amnesic, anti-depressant at low sigma-1 agonistic doses. In addition, it presents mixed pharmacological activity involving the modulation of sodium and chloride channels.
- Donepezil ((RS)-2-[(1-benzyl-4-piperidyl)methyl]-5,6-dimethoxy-2,3-dihydroinden-1-one) is an acetylcholine esterase inhibitor having non-selective sigma-1 agonistic activity.
- Donepezil is also an agonist of muscarinic and nicotinic receptors, and is a marketed drug used in the palliative treatment of Alzheimer's disease.
- Sig-1R affinity Other molecules having Sig-1R affinity are known but they either lack subtype selectivity over Sig-2R or they have high affinity for other receptors sites as do Anavex 1-41 and 2-73, and donepezil.
- Drugs having poor selectivity are more susceptible to inducing deleterious side effects, in particular to patients who are already under other medications.
- the invention encompasses compounds of general Formula I, their pharmaceutically acceptable salts and solvates as well as methods of use of such compounds or compositions comprising such compounds as modulators, especially agonists of sigma-1 receptor activity.
- the invention provides compounds of general Formula I:
- the compound of Formula I is not one, more or all of the following:
- the present invention provides a pharmaceutical composition
- a pharmaceutical composition comprising at least one compound according to the invention or a pharmaceutically acceptable salt or solvate thereof and at least one pharmaceutically acceptable carrier, diluent, excipient and/or adjuvant.
- the invention also relates to the use of the above compounds or their pharmaceutically acceptable salts and solvates as modulators of sigma-1 receptor activity, preferably as agonists of sigma-1 receptors.
- the invention further provides the use of a compound according to the invention or a pharmaceutically acceptable salt or solvate thereof as a medicament.
- the medicament is used for the treatment and/or prevention of sigma-1 related diseases.
- the invention relates to compounds of Formula I, as well as their pharmaceutically acceptable salts and solvates.
- Preferred compounds of Formula I and pharmaceutically acceptable salts and solvates thereof are those wherein one or more of X 1 , X 2 , X 3 , X 4 , X 5 , L, n, m, R′, and R 2 are defined as follows:
- n 1 and L is —NH— or —NHC(O)—;
- R 1 is H or C1-C4-alkyl, preferably R 1 is H or C1-C2 alkyl, more preferably R 1 is C1-C2 alkyl, still more preferably R 1 is methyl;
- R 2 is 5- or 6-membered aryl-C1-C2-alkyl, 5- or 6-membered cycloalkyl-C1-C2-alkyl, wherein the cyclic moiety of said arylalkyl or cycloalkylalkyl group is optionally substituted by one or more substituents independently selected from halogen, preferably fluoro, preferably R 2 is benzyl, phenylethyl, or cyclohexylmethyl, wherein the cyclic moiety of each of said substituents is optionally substituted by one or more substituents independently selected from halogen, preferably fluoro, more preferably R 2 is benzyl or phenylethyl,
- X 1 , X 2 , X 4 , X 5 are hydrogen and X 3 is chloro, C1-C4-alkyl, C1-C2-haloalkyl, C1-C2-alkoxy, cyano, nitro, or dialkylamino, preferably X 3 is chloro, C3-C4-alkyl, trifluoromethyl, methoxy, cyano, nitro, or dimethylamino, more preferably X 3 is chloro, n-propyl, n-butyl, I-butyl, trifluoromethyl or methoxy, more preferably X 3 is chloro, or trifluoromethyl, even more preferably X 3 is chloro;
- X 2 , X 3 , X 4 , X 5 are hydrogen and X 1 is fluoro, chloro, bromo, iodo, C1-C4-alkyl, C1-C2-haloalkyl, cyano, nitro, or dialkylamino, preferably X 1 is fluoro, chloro, bromo, C3-C4-alkyl, trifluoromethyl, cyano, nitro, or dimethylamino, more preferably X 1 is fluoro, chloro, bromo, n-propyl, n-butyl, t-butyl, trifluoromethyl, and dimethylamino, more preferably X 1 is chloro, bromo, trifluoromethyl, or dimethylamino, even more preferably X 1 is chloro or bromo;
- X 1 , X 3 , X 4 , X 5 are hydrogen and X 2 is chloro, C1-C4-alkyl, C1-C2-haloalkyl, C1-C2-alkoxy, cyano, nitro, or dialkylamino, preferably X 2 is chloro, C3-C4-alkyl, trifluoromethyl, methoxy, cyano, nitro, or dimethylamino, more preferably X 2 is chloro, n-propyl, n-butyl, 1-butyl, trifluoromethyl, methoxy, and dimethylamino, more preferably X 2 is chloro, trifluoromethyl, methoxy, or dimethylamino, even more preferably X 2 is chloro, or dimethylamino;
- X 3 , X 4 , and X 5 are hydrogen and X 1 and X 2 are independently selected from the group consisting of chloro, C1-C4-alkyl, C1-C2-haloalkyl, cyano, nitro, and dialkylamino, preferably X 1 and X 2 are independently selected from the group consisting of chloro, C3-C4-alkyl, trifluoromethyl, cyano, nitro, or dimethylamino, more preferably X 1 and X 2 are independently selected from the group consisting of chloro, n-propyl, n-butyl, t-butyl, trifluoromethyl, and dimethylamino, more preferably X 1 and X 2 are independently selected from the group consisting of chloro, trifluoromethyl, and dimethylamino, even more preferably X 1 and X 2 are both chloro;
- X 2 , X 4 , and X 5 are hydrogen and X 1 and X 3 are independently selected from the group consisting of chloro, C1-C4-alkyl, C1-C2-haloalkyl, cyano, nitro, and dialkylamino, preferably X 1 and X 3 are independently selected from the group consisting of chloro, C3-C4-alkyl, trifluoromethyl, cyano, nitro, or dimethylamino, more preferably X 1 and X 3 are independently selected from the group consisting of chloro, n-propyl, n-butyl, t-butyl, trifluoromethyl, and dimethylamino, still more preferably X 1 and X 3 are independently selected from the group consisting of chloro, trifluoromethyl, and dimethylamino, even more preferably X 1 and X 3 are both chloro;
- X 1 , X 4 , and X 5 are hydrogen and X 2 and X 3 are independently selected from the group consisting of chloro, C1-C4-alkyl, C1-C2-haloalkyl, C1-C2-alkoxy, cyano, nitro, and dialkylamino, preferably X 2 and X 3 are independently selected from the group consisting of chloro, C3-C4-alkyl, trifluoromethyl, methoxy, cyano, nitro, or dimethylamino, more preferably X 2 and X 3 are independently selected from the group consisting of chloro, n-propyl, n-butyl, t-butyl, trifluoromethyl, methoxy, and dimethylamino, more preferably X 2 and X 3 are independently selected from the group consisting of chloro, trifluoromethyl, and dimethylamino, even more preferably X 2 and X 3 are both chloro; or
- X 1 , X 3 , and X 5 are hydrogen and X 2 and X 4 are independently selected from the group consisting of chloro, C1-C4-alkyl, C1-C2-haloalkyl, C1-C2-alkoxy, cyano, nitro, and dialkylamino, preferably X 2 and X 4 are independently selected from the group consisting of chloro, C3-C4-alkyl, trifluoromethyl, methoxy, cyano, nitro, or dimethylamino, more preferably X 2 and X 4 are independently selected from the group consisting of chloro, n-propyl, n-butyl, t-butyl, trifluoromethyl, methoxy, and dimethylamino, more preferably X 2 and X 4 are independently selected from the group consisting of chloro, trifluoromethyl, and dimethylamino, even more preferably X 2 and X 4 are both chloro.
- preferred compounds of Formula I are those of Formula II:
- the compounds of Formula II are those wherein X 3 is chloro, C1-C4-alkyl, C1-C2-haloalkyl, C1-C2-alkoxy, cyano, nitro, or dialkylamino, preferably X 3 is chloro, C3-C4-alkyl, trifluoromethyl, methoxy, cyano, nitro, or dimethylamino, more preferably X 3 is chloro, n-propyl, n-butyl, !-butyl, trifluoromethyl, methoxy, or dimethylamino, more preferably X 3 is chloro, trifluoromethyl, or dimethylamino, even more preferably X 3 is chloro, and/or m is 2, 3 or 4, preferably 2 or 3, and/or R 1 is methyl, and/or R 2 is benzyl optionally substituted by one or more substituents selected from the group consisting of halogen, preferably fluoro.
- preferred compounds of Formula I are those of Formula III:
- X 1 , X 2 , X 3 , X 4 , X 5 , L, n and m are as defined above with respect to Formula I and any of its embodiments; p is 1 or 2, preferably 1; and X 6 , X 7 , X 8 , X 9 , X 10 are independently selected from H, halogen preferably fluoro, preferably X 6 , X 7 , X 8 , X 9 , X 10 are all H.
- the compounds of Formula III are those of Formula III-a:
- the compounds of Formula III-a are those of Formula III-a-1:
- X 3 is chloro, C1-C4-alkyl, C1-C2-haloalkyl, C1-C2-alkoxy, cyano, nitro, or dialkylamino, preferably X 3 is chloro, C3-C4-alkyl, trifluoromethyl, methoxy, cyano, nitro, or dimethylamino, more preferably X 3 is chloro, n-propyl, n-butyl, t-butyl, trifluoromethyl, methoxy, or dimethylamino, more preferably X 3 is chloro, trifluoromethyl, or dimethylamino, even more preferably X 3 is chloro; m is 1, 2, 3 or 4, preferably 1 or 3, more preferably 3; and/or p is 1 or 2, preferably 1.
- the compounds of Formula III-a are those of Formula III-a-2:
- X 3 is chloro, C1-C4-alkyl, C1-C2-haloalkyl, C1-C2-alkoxy, cyano, nitro, or dialkylamino, preferably X 3 is chloro, C3-C4-alkyl, trifluoromethyl, methoxy, cyano, nitro, or dimethylamino, more preferably X 3 is chloro, n-propyl, n-butyl, t-butyl, trifluoromethyl, methoxy, or dimethylamino, more preferably X 3 is chloro, trifluoromethyl, or dimethylamino, even more preferably X 3 is chloro;
- L is —NHC(O)— or —SO 2 NH—; and/or m is 2 or 3, preferably 3.
- the compounds of Formula III-a are those of Formula III-a-3:
- X 3 is chloro, C1-C4-alkyl, C1-C2-haloalkyl, C1-C2-alkoxy, cyano, nitro, or dialkylamino, preferably X 3 is chloro, C3-C4-alkyl, trifluoromethyl, methoxy, cyano, nitro, or dimethylamino, more preferably X 3 is chloro, n-propyl, n-butyl, !-butyl, trifluoromethyl, methoxy, or dimethylamino, more preferably X 3 is chloro, trifluoromethyl, or dimethylamino, even more preferably X 3 is chloro; L is —NHC(O)— or —NH—; and/or m is 1, 2 or 3, preferably 2 or 3.
- Preferred compounds of Formula III-a-3 are those wherein L is —NHC(O)— and m is 2, or L is —NH— and m is 3.
- the compounds of Formula I are those of Formula IV:
- X 1 , X 2 , X 3 , X 5 , and m are as defined above with respect to Formula I and any of its embodiments.
- Preferred compounds of formula IV are those of Formula IV-a:
- X 1 , X 2 , X 3 , X 4 , and X 5 are as defined above with respect to Formula IV.
- Preferred compounds of formulae IV and IV-a are those wherein X 1 , X 2 , X 3 , X 4 , X 5 are independently selected from hydrogen, chloro, nitro, and trifluoromethyl; with the proviso that at least one of X 2 , X 3 , X 4 , and X 5 is not hydrogen.
- the compounds of Formula I are those of Formula V:
- X 1 , X 2 , X 3 , X 4 , and X 5 are as defined above with respect to Formula V.
- Preferred compounds of formulae V and V-a are those wherein X 2 , X 3 , X 4 , are independently selected from hydrogen, chloro, nitro, and trifluoromethyl; with the proviso that at least one of X 1 , X 2 , X 3 , X 4 , and X 5 is not hydrogen.
- the compounds of the invention can be prepared by different ways with reactions known by the person skilled in the art. Reaction schemes as described in the example section illustrate by way of example different possible approaches.
- the compounds of the invention are indeed modulators, preferably agonists of sigma-1 receptor. They further have the advantage of being selective over the sigma-2 receptor.
- the invention thus also provides the use of the compounds of the invention or pharmaceutically acceptable salts, or solvates thereof as agonists of sigma-1 receptor.
- the invention relates to the use of compounds of Formula I and subformulae in particular those of Table 1 above, or pharmaceutically acceptable salts and solvates thereof, as sigma-1 agonists.
- the compounds of the invention are therefore useful in the prevention and/or treatment of sigma-1 receptor related diseases or disorders.
- the invention thus also relates to a compound of the invention or a pharmaceutically acceptable salt or solvate thereof for use in treating and/or preventing a sigma-1 receptor related disease or disorder.
- the invention also relates to a method of treating and/or preventing a sigma-1 receptor related disease or disorder, comprising the administration of a therapeutically effective amount of a compound or pharmaceutically acceptable salt or solvate of the invention, to a patient in need thereof.
- the patient is a warm-blooded animal, more preferably a human.
- Sigma-1 receptor related diseases or disorders within the meaning of the invention include, but are not limited to, neurodegenerative diseases, psychiatric disorders, drug addiction, pain and cancer.
- Neurodegenerative diseases within the meaning of the present invention include, but are not limited to multiple sclerosis (MS), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), stroke and dementia, the latter including, without being limited thereto, Alzheimer's disease (AD), vascular dementia, frontotemporal dementia, semantic dementia and dementia with Lewy bodies.
- Preferred neurodegenerative diseases are multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and stroke.
- the neurodegenerative disease is multiple sclerosis.
- Psychiatric disorders within the meaning of the invention include, but are not limited to, schizophrenia, depression, and anxiety disorders,
- the invention further provides the use of a compound of the invention or a pharmaceutically acceptable salt or solvates thereof for the manufacture of a medicament for use in treating and/or preventing a sigma-1 receptor related disease or disorder.
- the patient is a warm-blooded animal, more preferably a human.
- the sigma-1 receptor related diseases or disorders are preferably those defined above.
- a compound of the invention or a pharmaceutically acceptable salt or solvate for use in modulating sigma-1 receptor activity in a patient in need of such treatment comprising administering to said patient an effective amount of a compound of the present invention, or a pharmaceutically acceptable salt or solvate thereof.
- the invention also provides a method for modulating sigma-1 receptor activity, in a patient in need of such treatment, which comprises administering to said patient an effective amount of a compound of the present invention, or a pharmaceutically acceptable salt or solvate thereof.
- the patient is a warm blooded animal, and even more preferably a human.
- the compounds of the invention may be administered as part of a combination therapy.
- a combination therapy comprising coadministration of, and compositions and medicaments which contain, in addition to a compound of the present invention, a pharmaceutically acceptable salt or solvate thereof as active ingredient, additional therapeutic agents and/or active ingredients.
- Such multiple drug regimens often referred to as combination therapy, may be used in the treatment and/or prevention of any sigma-1 receptor related disease or disorder, particularly those defined above.
- the methods of treatment and pharmaceutical compositions of the present invention may employ the compounds of the invention or their pharmaceutical acceptable salts or solvates thereof in the form of monotherapy, but said methods and compositions may also be used in the form of multiple therapy in which one or more compounds of Formula I or their pharmaceutically acceptable salts or solvates are coadministered in combination with one or more other therapeutic agents.
- the invention also provides pharmaceutical compositions comprising a compound of the invention or a pharmaceutically acceptable salt or solvate thereof and at least one pharmaceutically acceptable carrier, diluent, excipient and/or adjuvant.
- the invention also covers pharmaceutical compositions which contain, in addition to a compound of the present invention, a pharmaceutically acceptable salt or solvate thereof as active ingredient, additional therapeutic agents and/or active ingredients.
- Another object of this invention is a medicament comprising at least one compound of the invention, or a pharmaceutically acceptable salt or solvate thereof, as active ingredient.
- the compounds of the invention may be formulated as a pharmaceutical preparation comprising at least one compound of the invention and at least one pharmaceutically acceptable carrier, diluent, excipient and/or adjuvant, and optionally one or more further pharmaceutically active compounds.
- such a formulation may be in a form suitable for oral administration, for parenteral administration (such as by intravenous, intramuscular or subcutaneous injection or intravenous infusion), for topical administration (including ocular), cerebral administration, for administration by inhalation, by a skin patch, by an implant, by a suppository, etc.
- parenteral administration such as by intravenous, intramuscular or subcutaneous injection or intravenous infusion
- topical administration including ocular
- cerebral administration for administration by inhalation, by a skin patch, by an implant, by a suppository, etc.
- suitable administration forms which may be solid, semi-solid or liquid, depending on the manner of administration as well as methods and carriers, diluents and excipients for use in the preparation thereof, will be clear to the skilled person; reference is made to the latest edition of Remington's Pharmaceutical Sciences.
- the compounds of the invention are also useful as diagnostic agents for diagnosing sigma-1 receptor related diseases or disorders.
- Sigma-1 receptor related diseases or disorders that may be diagnosed using the compounds, pharmaceutically acceptable salts or solvates of the invention are those described above.
- the invention thus also relates to a compound of the invention or a pharmaceutically acceptable salt or solvate thereof for use in the diagnosis, especially the in vivo diagnosis of a sigma-1 receptor related disease or disorder.
- the diagnosis is an in vivo diagnosis performed by positron emission tomography (PET) or single-photon emission computed tomography (SPECT).
- PET positron emission tomography
- SPECT single-photon emission computed tomography
- the compounds of the invention or pharmaceutically acceptable salts or solvates thereof used in these methods are isotopically radiolabelled, preferably with an isotope selected from the group consisting of 11 C, 13 C, 15 O, and 18 F, more preferably with 18 F.
- the compounds, pharmaceutically acceptable salts and solvates of the invention are those of Formula I and subformulae above, wherein the cyclic moiety of R 2 is optionally substituted by one or more substituents independently selected from radioactive halogen isotopes, preferably 18 F or wherein when R 1 and R 2 form together with the nitrogen atom they are attached to a 5- or 6-membered heterocyclyl group, which is optionally fused to a 5- or 6-membered aryl group and which is optionally substituted by one or more substituents independently selected from C1-C3 alkyl, preferably methyl, the resulting heterocyclic moiety is substituted by one or more substituents independently selected from radioactive halogen isotopes, preferably 15 F.
- the invention also provides a diagnostic composition, especially a diagnostic imaging composition, comprising a compound of the invention or a pharmaceutically acceptable salt or solvate thereof and at least one pharmaceutically acceptable carrier, diluent, excipient and/or adjuvant.
- the diagnostic composition is a diagnostic composition for positron emission tomography (PET) or single-photon emission computed tomography (SPECT).
- PET positron emission tomography
- SPECT single-photon emission computed tomography
- Compounds that are particularly useful in this embodiment are those described above with respect to the use of the compounds, pharmaceutically acceptable salts and solvates of the invention in the in vivo diagnosis performed by PET or SPECT.
- any reference to compounds of the invention herein means the compounds as such as well as their pharmaceutically acceptable salts and solvates.
- halo or “halogen” means fluoro, chloro, bromo, or iodo. Preferred halo groups are fluoro and chloro, fluoro being particularly preferred.
- alkyl by itself or as part of another substituent refers to a hydrocarbyl radical of Formula C n H 2n+1 wherein n is a number greater than or equal to 1.
- haloalkyl alone or in combination, refers to an alkyl radical having the meaning as defined above wherein one or more hydrogens are replaced with a halogen as defined above.
- haloalkyl radicals include chloromethyl, 1-bromoethyl, fluoromethyl, difluoromethyl, trifluoromethyl, 1,1,1-trifluoroethyl and the like.
- a preferred haloalkyl radical is trifluoromethyl.
- cycloalkyl as used herein is a monovalent, saturated, or unsaturated monocyclic or bicyclic hydrocarbyl group. Cycloalkyl groups may comprise 3 or more carbon atoms in the ring and generally, according to this invention comprise from 3 to 10, more preferably from 3 to 8 carbon atoms still more preferably from 3 to 6 carbon atoms. Examples of cycloalkyl groups include but are not limited to cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.
- heterocyclyl refers to non-aromatic, fully saturated or partially unsaturated cyclic groups (for example, 3 to 7 member monocyclic, 7 to 11 member bicyclic, or containing a total of 3 to 10 ring atoms) which have at least one heteroatom in at least one carbon atom-containing ring.
- Each ring of the heterocyclic group containing a heteroatom may have 1, 2, 3 or 4 heteroatoms selected from nitrogen, oxygen and/or sulfur atoms, where the nitrogen and sulfur heteroatoms may optionally be oxidized and the nitrogen heteroatoms may optionally be quaternized.
- the heterocyclic group may be attached at any heteroatom or carbon atom of the ring or ring system, where valence allows.
- aryl refers to a polyunsaturated, aromatic hydrocarbyl group having a single ring (i.e. phenyl) or multiple aromatic rings fused together (e.g. naphtyl), typically containing 5 to 12 atoms; preferably 6 to 10, wherein at least one ring is aromatic.
- heteroaryl refers but is not limited to 5 to 12 carbon-atom aromatic rings or ring systems containing 1 to 2 rings which are fused together, typically containing 5 to 6 atoms; at least one of which is aromatic, in which one or more carbon atoms in one or more of these rings is replaced by oxygen, nitrogen and/or sulfur atoms where the nitrogen and sulfur heteroatoms may optionally be oxidized and the nitrogen heteroatoms may optionally be quaternized.
- the compounds of the invention containing a basic functional group may be in the form of pharmaceutically acceptable salts.
- Pharmaceutically acceptable salts of the compounds of the invention containing one or more basic functional groups include in particular the acid addition salts thereof. Suitable acid addition salts are formed from acids which form non-toxic salts.
- Examples include the acetate, adipate, aspartate, benzoate, besylate, bicarbonate/carbonate, bisulphate/sulphate, borate, camsylate, citrate, cyclamate, edisylate, esylate, formate, fumarate, gluceptate, gluconate, glucuronate, hexafluorophosphate, hibenzate, hydrochloride/chloride, hydrobromide/bromide, hydroiodide/iodide, isethionate, lactate, malate, maleate, malonate, mesylate, methylsulphate, naphthylate, 2-napsylate, nicotinate, nitrate, orotate, oxalate, palmitate, pamoate, phosphate/hydrogen phosphate/dihydrogen phosphate, pyroglutamate, saccharate, stearate, succinate, tannate, tartrate, tosy
- the salt may precipitate from solution and be collected by filtration or may be recovered by evaporation of the solvent.
- the degree of ionization in the salt may vary from completely ionized to almost non-ionized.
- solvate is used herein to describe a molecular complex comprising the compound of the invention and one or more pharmaceutically acceptable solvent molecules, for example, ethanol.
- solvent molecules for example, ethanol.
- hydrate is employed when said solvent is water.
- the compounds of the invention include compounds of the invention as hereinbefore defined, including all polymorphs and crystal habits thereof, prodrugs and isomers thereof (including optical, geometric and tautomeric isomers) and isotopically-labeled compounds of the invention.
- salts of the compounds of the invention are preferred, it should be noted that the invention in its broadest sense also includes non-pharmaceutically acceptable salts, which may for example be used in the isolation and/or purification of the compounds of the invention.
- non-pharmaceutically acceptable salts which may for example be used in the isolation and/or purification of the compounds of the invention.
- salts formed with optically active acids or bases may be used to form diastereoisomeric salts that can facilitate the separation of optically active isomers of the compounds of the invention.
- patient refers to a warm-blooded animal, more preferably a human, who/which is awaiting or receiving medical care or is or will be the object of a medical procedure.
- human refers to subjects of both genders and at any stage of development (i.e. neonate, infant, juvenile, adolescent, adult). In one embodiment, the human is an adolescent or adult, preferably an adult.
- treat is meant to include alleviating or abrogating a condition or disease and/or its attendant symptoms.
- prevent refers to a method of delaying or precluding the onset of a condition or disease and/or its attendant symptoms, barring a patient from acquiring a condition or disease, or reducing a patient's risk of acquiring a condition or disease.
- terapéuticaally effective amount means the amount of active agent or active ingredient (e.g. 61R agonist) which is sufficient to achieve the desired therapeutic or prophylactic effect in the individual to which it is administered.
- administration means providing the active agent or active ingredient (e. g. a cylR agonist), alone or as part of a pharmaceutically acceptable composition, to the patient in whom/which the condition, symptom, or disease is to be treated or prevented.
- active agent or active ingredient e. g. a cylR agonist
- pharmaceutically acceptable is meant that the ingredients of a pharmaceutical composition are compatible with each other and not deleterious to the patient thereof.
- agonist means a ligand that activates an intracellular response when it binds to a receptor.
- pharmaceutical vehicle means a carrier or inert medium used as solvent or diluent in which the pharmaceutically active agent is formulated and/or administered.
- pharmaceutical vehicles include creams, gels, lotions, solutions, and liposomes.
- FIG. 1 Results of the spontaneous alternation (a) and passive avoidance assays (b) for compound 3.1.10.
- FIG. 2 Validation of al action of compound 3.1.10. Data are presented as mean ⁇ sem.
- FIG. 3 Amelioration of EAE by compound 3.1.10, preventive treatment model. Data are presented as mean ⁇ sem.
- FIG. 4 Amelioration of EAE by compound 3.1.10, curative treatment model. Data are presented as mean ⁇ sem.
- Solvents, reagents and starting materials were purchased from well known chemical suppliers such as for example Sigma Aldrich, Acros Organics, Fluorochem, Eurisotop, VWR International, Sopachem and Polymer labs and the following abbreviations are used:
- HOBt Hydroxybenzotriazole
- HBtu 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate
- LCMS Liquid chromatographymass spectrometry
- TLC Thin layer chromatography
- MW Molecular weight
- Reagents (a): di-tert-butylcarbonate, triethylamine, CH 2 Cl 2 ; (b): HNR 1 R 2 , potassium carbonate, DMF or CH 3 CN; (c): 3M HCl in dry dioxane; (d): HNR 1 R 2 , potassium carbonate, DMF; (e): H 2 NNH 2 .H 2 O, EtOH 96°; (f): bromochloroalkyl derivative, potassium carbonate, CH 3 CN; (g): HNCH 3 40%, potassium carbonate, CH 3 CN.
- Reagents (a): bromoalkylamine, CH 2 Cl 2 ; (b): chloroalkylacyl chloride, CH 2 Cl 2 .
- Reagents (a): triethylamine, CH 2 Cl 2 (Y ⁇ Cl), Procedure E1; (b): HOBt, HBtu, DIEA, CH 2 Cl 2 (Y ⁇ OH), Procedure E2; (c): HNR 1 R 2 , Procedure E3 (d): NaBH 4 , MeOH, Procedure E4.
- the compound 1.3a was synthesized according to the procedure by using tert-butyl-3-bromopropylcarbamate 1.2 (8.44 mmol, 2.0 g) and N-methylbenzylamine (6.50 mmol, 0.9 mL). Yield: 74%.
- the compound 1.3b was synthesized according to the procedure by using tert-butyl-3-bromopropylcarbamate 1.2 (8.44 mmol, 2.0 g) and N-methylphenylethylamine (6.50 mmol, 1.0 mL). Yield: 81%.
- the compound 1.3c was synthesized according to the procedure by using tert-butyl-3-bromopropylcarbamate 1.2 (8.44 mmol, 2.0 g) and 2-isoindoline (6.50 mmol, 0.9 mL). Yield: 65%.
- the compound 1.4a was synthesized according to the procedure by using tert-butyl-3-[benzylmethylamino]propylcarbamate 1.3a (7.18 mmol, 1.8 g). Yield 98%.
- the compound 1.4c was synthesized according to the procedure by using tert-butyl-3-(isoindolin-2-yl)propylcarbamate 1.3c (7.18 mmol, 2.0 g). Yield: 83%.
- the compound 1.5a was synthesized according to the procedure by using N-(2-bromoethyl)phtalimide (5.9 mmol, 1.50 g) and N-methylbenzylamine (7.1 mmol, 0.9 mL). Yield 52%.
- the compound 1.5b was synthesized according to the procedure by using N-(4-bromobutyl)phtalimide (5.9 mmol, 1.66 g) and N-methylbenzylamine (7.1 mmol, 0.9 mL). Yield 53%.
- the compound 1.5c was synthesized according to the procedure by using N-(2-bromoethyl)phtalimide (5.9 mmol, 1.50 g) and N-methyl-N-(2-phenylethyl)amine (7.1 mmol, 0.9 mL). Yield 64%.
- the compound 1.4d was synthesized according to the procedure by using 2-[2-(benzyl(methyl)amino)ethyl]-2,3-dihydro-1H-isoindole-1,3-dione (3.06 mmol, 0.9 g) and hydrazine hydrate (30.60 mmol, 1.5 mL). Yield 55%.
- the compound 1.4e was synthesized according to the procedure by using 2-[4-(benzyl(methyl)amino)butyl]-2,3-dihydro-1H-isoindole-1,3-dione (6.2 mmol, 2.0 g) and hydrazine hydrate (62.0 mmol, 3.1 mL). Yield 73%.
- the compound 1.4f was synthesized according to the procedure by using 2-[2-(N-methyl-N-(2-phenylethyl)amino)ethyl]-2,3-dihydro-1H-isoindole-1,3-dione (3.06 mmol, 0.94 g) and hydrazine hydrate (30.60 mmol, 1.5 mL). Yield 67%.
- LCMS m/z 179.09 [M+H] + .
- the compound 1.6a was synthesized according to the procedure by using N-methylbenzylamine (33.0 mmol, 4.0 mL) and 1-bromo-3-chloropropane (33.0 mmol, 9.7 mL). Yield: 95%.
- the compound 1.7a was synthesized according to the procedure by using 3-chloropropyl-N-benzylmethylamine (10.1 mmol, 2.0 g) and methylamine 40% (202.0 mmol, 15.6 mL). Yield 88%.
- the compound 2.3.a was synthesized according to the procedure by using 4-chlorobenzylamine (6.5 mmol, 0.92 g). Yield: 60%.
- the compound 2.3.b was synthesized according to the procedure by using 4-nitrobenzylamine (6.5 mmol, 1.00 g). Yield: 69%.
- the compound 2.3.f was synthesized according to the procedure by using 3-bromobenzylamine (6.5 mmol, 1.21 g). Yield: 67%.
- the compound 3.1.2 was synthesized according to the procedure E1 by using N 1 -benzyl-N 1 -methylpropane-1,3-diamine dihydrochloride 1.4a (0.55 mmol, 138 mg), and 4-propylbenzoylchloride (0.55 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH 3 ), 9:1 (v/v)) was performed. Yield: 61%.
- the compound 3.1.3 was synthesized according to the procedure E1 by using N 1 -benzyl-N 1 -methylpropane-1,3-diamine dihydrochloride 1.4a (0.65 mmol, 163 mg), and 4-butylbenzoylchloride (0.65 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH 3 ), 9:1 (v/v)) was performed. Yield: 30%.
- the compound 3.1.4 was synthesized according to the procedure E1 by using N 1 -benzyl-N 1 -methylpropane-1,3-diamine dihydrochloride 1.4a (0.60 mmol, 150 mg), and 4-tertbutylbenzoylchloride (0.60 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH 3 ), 9:1 (v/v)) was performed. Yield: 27%.
- the compound 3.1.5 was synthesized according to the procedure E1 by using N 1 -benzyl-N 1 -methylpropane-1,3-diamine dihydrochloride 1.4a (0.48 mmol, 120 mg), and 4-trifluoromethylbenzoylchloride (0.48 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH 3 ), 9:1 (v/v)) was performed. Yield: 57%.
- the compound 3.1.6 was synthesized according to the procedure E2 by using N 1 -benzyl-N 1 -methylpropane-1,3-diamine dihydrochloride 1.4a (0.67 mmol, 170 mg), and 4-fluorobenzoic acid (0.67 mmol, 90 mg). Purification by thick layer chromatography (DCM:MeOH(NH 3 ), 9:1 (v/v)) was performed. Yield: 58%.
- the compound 3.1.7 was synthesized according to the procedure E1 by using N 1 -benzyl-N 1 -methylpropane-1,3-diamine dihydrochloride 1.4a (0.57 mmol, 143 mg), and 2-chlorobenzoylchloride (0.57 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH 3 ), 9:1 (v/v)) was performed. Yield: 46%.
- the compound 3.1.8 was synthesized according to the procedure E1 by using N 1 -benzyl-N 1 -methylpropane-1,3-diamine dihydrochloride 1.4a (0.57 mmol, 143 mg), and 3-chlorobenzoylchloride (0.57 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH 3 ), 9:1 (v/v)) was performed. Yield: 8%.
- the compound 3.1.9 was synthesized according to the procedure E1 by using N 1 -benzyl-N 1 -methylethane-1,2-diamine dihydrochloride 1.4d (0.57 mmol, 135 mg), and 4-chlorobenzoylchloride (0.57 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH 3 ), 9:1 (v/v)) was performed. Yield: 20%.
- the compound 3.1.10 was synthesized according to the procedure E1 by using N 1 -benzyl-N 1 -methylpropane-1,3-diamine dihydrochloride 1.4a (0.57 mmol, 143 mg), and 4-chlorobenzoylchloride (0.57 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH 3 ), 9:1 (v/v)) was performed. Yield: 55%.
- the compound 3.1.11 was synthesized according to the procedure E1 by using N 1 -benzyl-N 1 -methylbutane-1,4-diamine dihydrochloride 1.4e (0.57 mmol, 151 mg), and 4-chlorobenzoylchloride (0.57 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH 3 ), 9:1 (v/v)) was performed. Yield: 25%.
- the compound 3.1.12 was synthesized according to the procedure E1 by using N 1 -benzyl-N 1 -(2-phenylethyl)propane-1,3-diamine dihydrochloride 1.4b (0.57 mmol, 151 mg), and 4-chlorobenzoylchloride (0.57 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH 3 ), 9:1 (v/v)) was performed. Yield: 69%.
- the compound 3.1.15 was synthesized according to the procedure E1 by using 3-(isoindolin-2-yl)propane-1-amine dihydrochloride 1.4c (0.57 mmol, 140 mg), and 4-chlorobenzoylchloride (0.57 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH 3 ), 9:1 (v/v)) was performed. Yield: 36%.
- the compound 3.1.20 was synthesized according to the procedure E1 by using N 1 -benzyl-N 1 -methylpropane-1,3-diamine dihydrochloride 1.4a (0.45 mmol, 113 mg), and 2-bromobenzoylchloride (0.45 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH 3 ), 9:1 (v/v)) was performed. Yield: 52%.
- the compound 3.1.21 was synthesized according to the procedure E1 by using N 1 -benzyl-N 1 -methylpropane-1,3-diamine dihydrochloride 1.4a (0.45 mmol, 113 mg), and 3-bromobenzoylchloride (0.45 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH 3 ), 9:1 (v/v)) was performed. Yield: 53%.
- the compound 3.1.22 was synthesized according to the procedure E2 by using N 1 -benzyl-N 1 -methylpropane-1,3-diamine dihydrochloride 1.4a (0.65 mmol, 164 mg), and 4-fluorobenzoic acid (0.65 mmol, 130 mg). Purification by thick layer chromatography (DCM:MeOH(NH 3 ), 9:1 (v/v)) was performed. Yield: 67%.
- the compound 3.1.23 was synthesized according to the procedure E1 by using N 1 -benzyl-N 1 -methylpropane-1,3-diamine dihydrochloride 1.4a (0.48 mmol, 120 mg), and 2,3-dichlorobenzoylchloride (0.48 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH 3 ), 9:1 (v/v)) was performed. Yield: 66%.
- the compound 3.1.24 was synthesized according to the procedure E1 by using N 1 -benzyl-N 1 -methylpropane-1,3-diamine dihydrochloride 1.4a (0.48 mmol, 120 mg), and 2,4-dichlorobenzoylchloride (0.48 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH 3 ), 9:1 (v/v)) was performed. Yield: 41%.
- the compound 3.1.25 was synthesized according to the procedure E2 by using N 1 -benzyl-N 1 -methylpropane-1,3-diamine dihydrochloride 1.4a (0.78 mmol, 197 mg), and 3,4-dichlorobenzoic acid (0.78 mmol, 150 mg). Purification by thick layer chromatography (DCM:MeOH(NH 3 ), 9:1 (v/v)) was performed. Yield: 31%.
- the compound 3.1.26 was synthesized according to the procedure E2 by using N 1 -benzyl-N 1 -methylpropane-1,3-diamine dihydrochloride 1.4a (0.78 mmol, 197 mg), and 3,5-dichlorobenzoic acid (0.78 mmol, 150 mg). Purification by thick layer chromatography (DCM:MeOH(NH 3 ), 9:1 (v/v)) was performed. Yield: 34%.
- the compound 3.1.27 was synthesized according to the procedure E1 by using N 1 -benzyl-N 1 -methylpropane-1,3-diamine dihydrochloride 1.4a (0.42 mmol, 105 mg), and 4-bromo-2-fluorobenzoylchloride (0.42 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH 3 ), 9:1 (v/v)) was performed. Yield: 22%.
- the compound 3.1.28 was synthesized according to the procedure E1 by using N 1 -benzyl-N 1 -methylpropane-1,3-diamine dihydrochloride 1.4a (0.59 mmol, 148 mg), and 3-methoxybenzoylchloride (0.59 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH 3 ), 9:1 (v/v)) was performed. Yield: 35%.
- the compound 3.1.29 was synthesized according to the procedure E2 by using N 1 -benzyl-N 1 -methylpropane-1,3-diamine dihydrochloride 1.4a (0.98 mmol, 247 mg), and 4-methoxybenzoic acid (0.98 mmol, 150 mg). Purification by thick layer chromatography (DCM:MeOH(NH 3 ), 9:1 (v/v)) was performed. Yield: 73%.
- the compound 3.1.30 was synthesized according to the procedure E1 by using N 1 -benzyl-N 1 -methylpropane-1,3-diamine dihydrochloride 1.4a (0.55 mmol, 138 mg), and 3-dimethylaminobenzoylchloride (0.55 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH 3 ), 9:1 (v/v)) was performed. Yield: 11%.
- the compound 3.1.31 was synthesized according to the procedure E1 by using N 1 -benzyl-N 1 -methylpropane-1,3-diamine dihydrochloride 1.4a (0.60 mmol, 150 mg), and 4-cyanobenzoylchloride (0.60 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH 3 ), 9:1 (v/v)) was performed. Yield: 7%.
- the compound 3.1.32 was synthesized according to the procedure E1 by using N 1 -dihydrochloride 1.4a (0.53 mmol, 133 mg), and 4-nitrobenzoylchloride (0.53 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH 3 ), 9:1 (v/v)) was performed. Yield: 50%.
- the compound 3.2a was synthesized according to the procedure E1 by using of M-benzyl-N 1 -methylpropane-1,3-diamine dihydrochloride 1.4a (0.47 mmol, 118 mg), and 4-chlorobenzo sulfonamide chloride (0.47 mmol, 100 mg). Purification by column chromatography (petroleum ether:DCM:MeOH(NH 3 ), 5:4:1 (v/v)) was performed. Yield: 60%.
- the compound 3.3a was synthesized according to the procedure E3 by using of 4-chloro-N-(4-chlorophenyl)butyramide 2.2 (1.29 mmol, 300 mg) and N-benzylmethylamine (7.75 mmol, 1 mL). Purification by thick layer chromatography (cyclohexane:ethyl acetate:MeOH(NH 3 ), 4.5:4.5:1 (v/v)) was performed. Yield: 70%.
- the compound 3.4a was synthesized according to the procedure E3 by using of N-(4-chlorobenzyl)-3-chloropropanamide 2.3 (0.21 mmol, 50 mg) and N-benzylmethylamine (1.29 mmol, 166 ⁇ L). Purification by thick layer chromatography (cyclohexane:ethyl acetate:MeOH(NH 3 ), 4.5:4.5:1 (v/v)). Yield: 67%.
- the compound 3.5a was synthesized according to the procedure E4 by using commercially 4-chlorobenzaldehyde (0.55 mmol, 77 mg) and N 1 -benzyl-/V-methylpropane-1,3-diamine 1.4a (0.55 mmol, 100 mg). Purification by thick layer chromatography (DCM:MeOH(NH 3 ), 9:1 (v/v)). Yield: 35%.
- the compound 3.1.33 was synthesized according to the procedure E3 by using N-(2-aminoethyl)benzamide (0.91 mmol, 150 mg) and 3-chlorobenzoyl chloride (0.91 mmol, 117 ⁇ L). Purification by thick layer chromatography (DCM:MeOH(NH 3 ), 9.1:1 (v/v)). Yield 35%.
- the compound 3.1.34 was synthesized according to the procedure E3 by using N-(2-aminoethyl)benzamide (0.91 mmol, 150 mg) and 2,4-dichlorobenzoyl chloride (0.91 mmol, 107 ⁇ L). Purification by thick layer chromatography (DCM:MeOH(NH 3 ), 9.1:1 (v/v)). Yield 35%.
- the compound 3.1.36 was synthesized according to the procedure E3 by using N-(2-aminoethyl)benzamide (0.91 mmol, 150 mg) and 4-cyanobenzolyl chloride (0.91 mmol, 150 mg). Purification by thick layer chromatography (DCM:MeOH(NH 3 ), 9.1:1 (v/v)). Yield 33%.
- the compound 3.1.37 was synthesized according to the procedure E3 by using N-(2-aminoethyl)benzamide (0.91 mmol, 150 mg) and 4-nitrobenzoyl chloride (0.91 mmol, 110 mg). Purification by thick layer chromatography (DCM:MeOH(NH 3 ), 9.1:1 (v/v)). Yield 52%.
- the compound 3.4b was synthesized according to the procedure E3 by using N-(4-chlorobenzyl)-3-chloropropanamide 2.3b (0.41 mmol, 100 mg) and N-benzylmethylamine (4.1 mmol, 531 ⁇ L). Purification by thick layer chromatography (DCM:MeOH(NH 3 ), 9.7:0.3 (v/v)). Yield: 37%.
- the compound 3.4c was synthesized according to the procedure E3 by using N-(4-chlorobenzyl)-3-chloropropanamide 2.3c (0.44 mmol, 100 mg) and N-benzylmethylamine (4.4 mmol, 579 ⁇ L). Purification by thick layer chromatography (DCM:MeOH(NH 3 ), 9.7:0.3 (v/v)). Yield: 80%.
- the compound 3.4d was synthesized according to the procedure E3 by using N-(4-chlorobenzyl)-3-chloropropanamide 2.3d (0.37 mmol, 100 mg) and N-benzylmethylamine (3.7 mmol, 483 ⁇ L). Purification by thick layer chromatography (DCM:MeOH(NH 3 ), 9.7:0.3 (v/v)). Yield: 80%.
- the compound 3.4e was synthesized according to the procedure E3 by using N-(4-chlorobenzyl)-3-chloropropanamide 2.3e (0.43 mmol, 100 mg) and N-benzylmethylamine (4.3 mmol, 555 ⁇ L). Purification by thick layer chromatography (DCM:MeOH(NH 3 ), 9.7:0.3 (v/v)). Yield: 68%.
- the ⁇ binding assays were performed according to Ganapathy et al. (Ganapathy, M. E.; Prasad, P. D.; Huang, W.; Seth, P.; Leibach, F. H.; Ganapathy, V. Molecular and ligand-binding characterization of the sigma-receptor in the Jurkat human T lymphocyte cell line. J. Pharmacol. Exp. Ther. 1999, 289, 251-260).
- the ⁇ 1 binding assay was carried out by incubating Jurkat cell membranes (10-20 mg protein per tube) with [ 3 H](+)-pentazocine (15 nM) and a range of concentrations of tested compounds, at 37° C.
- the final assay volume was 0.5 mL.
- Binding was terminated by rapid filtration through Wathman GF/B filters, which were then washed with 5 ⁇ 1 mL ice-cold NaCl solution and allowed to dry before bound radioactivity was measured using liquid scintillation counting. Nonspecific binding was determined, in both assays, under similar conditions, but in presence of 10 ⁇ M unlabeled haloperidol.
- Inhibition constants were calculated from the IC 50 values according to the method of Cheng and Prusoff (Cheng, Y.; Prusoff, W. H. Relationship between the inhibition constant (KO and the concentration of inhibitor which causes 50 percent inhibition (IC 50 ) of an enzymatic reaction. Biochem Pharmacol. 1973, 22 (23), 3099-108):
- the activity of compound 3.1.10 was evaluated on the prevention of the dizocilpine-induced learning deficits measured using two behavioral tests.
- the present experiment tested if its anti-amnesic activity could be blocked by pre-treatment with the reference sigma-1 receptor antagonist NE-100.
- mice Male Swiss mice, 6 weeks old and weighing 30-35 g, from JANVIER (Saint Berthevin, France), were housed in groups with access to food and water ad libitum, except during experiments. They were kept in a temperature and humidity controlled animal facility on a 12 h/12 h light:dark cycle (lights on at 7:00 am). Behavioral experiments were carried out between 09:00 am and 05:00 pm, in a sound attenuated and air-regulated experimental room, to which mice were habituated at least 30 min. Mice were numbered by marking their tail using permanent markers ad sacrificed immediately after the passive avoidance retention session.
- All compounds were injected intraperitoneally (i.p.) in a volume of 100 ⁇ L, per 20 g of body weight, corresponding to 5 mL/kg.
- the Y-maze is made of grey polyvinylchloride. Each arm is 40 cm long, 13 cm high, 3 cm wide at the bottom, 10 cm wide at the top, and converging at an equal angle. Each mouse was placed at the end of one arm and allowed to move freely through the maze during an 8 min session. The series of arm entries, including possible returns into the same arm, were checked visually. An alternation was defined as entries into all three arms on consecutive occasions. The number of maximum alternations was therefore the total number of arm entries minus two and the percentage of alternation was calculated as: (actual alternations/maximum alternations) ⁇ 100. Parameters included the percentage of alternation (memory index) and total number of arm entries (exploration index).
- the apparatus is a two-compartments (15 ⁇ 20 ⁇ 15 cm high) box with one illuminated with white polyvinylchloride walls and the other darkened with black polyvinylchloride walls and a grid floor.
- a guillotine door separates each compartment.
- a 60 W lamp positioned 40 cm above the apparatus lights up the white compartment during the experiment.
- Scrambled footshocks (0.3 mA for 3 s) could be delivered to the grid floor using a shock generator scrambler (Lafayette Instruments, Lafayette, USA).
- the guillotine door is initially closed during the training session. Each mouse was placed into the white compartment. After 5 s, the door was raised.
- FIGS. 1 a and 1 b The results of the spontaneous alternation and passive avoidance assays are represented in FIGS. 1 a and 1 b.
- Compound 3.1.10 significantly attenuated the dizocilpine-induced learning deficits, at 0.5 mg/kg in the Y-maze test and in the passive avoidance test.
- the beneficial effect of compound 3.1.10 in the two tests was prevented by treatment with the sigma-1 antagonist NE-100 at 3 mg/kg, devoid of effect by itself.
- EAE Experimental autoimmune encephalomyelitis
- MS multiple sclerosis
- mice SJL/J mice were purchased from Janvier (Le Genest-St-Isle, France) and bred under conventional barrier protection at the Pasteur Institute (Lille, France). All experiment protocols and procedures were in compliance with the European Communities Council Directives of 24 Nov. 1986 (86/609/EEC) and were approved by the local ethical committee (CEEA 102009R). Efforts were made to minimize the number of animals used and their suffering. Animals that reached severe hind limb paresis (clinical grade 3) were isolated, and hydration and food access were facilitated.
- EAE induction and treatment The method of EAE induction was similar to previously published methods (Lee-Chang et al., Immunol Lett. 2011 Mar. 30; 135(1-2):108-17).
- Randomized 9-week-old female SJL/J mice were inoculated subcutaneously (s.c.) in the neck with an emulsion containing 100 ⁇ g of myelin proteolipid protein (PLP) 139-151 peptide and an equal volume of Freund's complete adjuvant (FCA) containing 4 mg/ml of heat-inactivated Mycobacterium tuberculosis H37RA (Difco Laboratories, Detroit, Mich., USA) on day 0.
- PDP myelin proteolipid protein
- FCA Freund's complete adjuvant
- mice received 0.3 ⁇ g of Bordetella pertussis toxin (BPT) (Sigma-Aldrich, Saint Louis, Mich., USA) intraperitoneally (i.p.) on days 0 and 3. Sham animals only received saline injection. SJL/J mice that only received FCA and BPT were also included in the experiments.
- BPT Bordetella pertussis toxin
- Compound 3.1.10 was dissolved in physiological saline. Control animals received one administration of saline solution (vehicle).
- pretreatment BD1047 N′-[2-(3,4-dichlorophenyl)ethyl]-N,N,N′-trimethylethane-1,2-diamine; Costa B. R., Radesca L., Di Paolo L., Bowen W. D. J. Med. Chem. 1992, 35, 38-47) or saline, i.p.
- saline i.p.
- Three different groups, EAE-vehicle, EAE-compound 3.1.10 (1 mg/kg), and EAE-DB1047 (10 mg/kg) compound 3.1.10 (1 mg/kg) were used per experiment with 7 animals per treatment group.
- EAE-vehicle 0.5 mg/kg
- EAE-compound 3.1.10 1 mg/kg
- Serum anti-PLP enzyme-linked immunosorbent assay ELISA
- Mice were deeply anesthetized with an i.p. injection of pentobarbital.
- Serum samples were prepared from peripheral blood obtained by cardiac puncture immediately before perfusion. Active immunizations were verified by measuring anti-PLP 139-151 IgG antibody (Ab), as previously described (El Behi et al., (2007), J Neuroimmunol 182:80-8).
- the assay using compound 3.1.10 in preventive treatment demonstrates that compounds of the invention are useful in delaying the onset of EAE in mice.
- the results are represented in FIG. 3 .
- EAE being an unequivocal animal model of multiple sclerosis (MS), a demyelitating disabling disease of the central nervous system characterized by the inappropriate effect of reactive T and B cells
- MS multiple sclerosis
- the above results show the usefulness of the compounds of the invention, especially of compound 3.1.10, in the treatment and prevention of multiple sclerosis (MS) in particular and 61 receptor related diseases in general.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Neurology (AREA)
- Biomedical Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Neurosurgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Epidemiology (AREA)
- Pain & Pain Management (AREA)
- Psychology (AREA)
- Emergency Medicine (AREA)
- Hospice & Palliative Care (AREA)
- Physical Education & Sports Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Psychiatry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Indole Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pyridine Compounds (AREA)
Abstract
Description
- The present invention relates to novel compounds including their pharmaceutically acceptable salts and solvates, which are modulators, advantageously agonists of sigma-1 receptor (sigma-1, G1R or Sig-1R) and are useful as therapeutic compounds, particularly in the treatment, prevention and/or diagnosis of neurodegenerative diseases.
- The sigma-1 receptor is an intracellular chaperone protein that resides specifically at the endoplasmic reticulum (ER)-mitochondrion interface, referred to as the mitochondrion-associated ER membrane (MAM). It is expressed in the central nervous system (CNS) in microglia, lymphocytes, neurons, and oligodendrocytes and is known to be implicated in the regulation of numerous neurotransmitters.
- In the central nervous system (CNS), Sig-1Rs play a part in complex biological processes, which include cocaine or methamphetamine addiction, learning and memory, pain and depression. Some reports using the molecular biological silencing approach have implicated these receptors in neurodegenerative disorders such as Alzheimer's disease, stroke, and neural degeneration due to HIV infection.
- Sig-1Rs are thus potential therapeutic targets in multiple CNS diseases and a variety of Sig-1R agonists and antagonists have been described.
- Anavex 2-73 (1-(2,2-diphenyltetrahydrofuran-3-yl)-N,N-dimethylmethanamine hydrochloride) exhibits high affinity and selectivity to sigma-1 receptors and synergistic action with muscarinic and cholinergic receptors. Additional activities have been demonstrated on N-methyl-D-aspartate (NMDA) receptors. During in vitro and in vivo preclinical studies in mice, Anavex 2-73 demonstrated neuroprotective and anti-amnesic properties. Anavex 2-73 has been shown to provide protection from oxidative stress, which damages and destroys neurons and is believed to be a primary cause of Alzheimer's disease. Anavex 2-73 is currently under Phase I clinical trials.
- Anavex 1-41 (1-(5,5-diphenyltetrahydrofuran-3-yl)-N,N-dimethylmethanamine hydrochloride) presents a mixed pharmacological activity involving the modulation of both sigma-1 and muscarinic components showing prominent anti-amnesic, anti-depressant at low sigma-1 agonistic doses. In addition, it presents mixed pharmacological activity involving the modulation of sodium and chloride channels.
- Donepezil ((RS)-2-[(1-benzyl-4-piperidyl)methyl]-5,6-dimethoxy-2,3-dihydroinden-1-one) is an acetylcholine esterase inhibitor having non-selective sigma-1 agonistic activity. Donepezil is also an agonist of muscarinic and nicotinic receptors, and is a marketed drug used in the palliative treatment of Alzheimer's disease.
- Other molecules having Sig-1R affinity are known but they either lack subtype selectivity over Sig-2R or they have high affinity for other receptors sites as do Anavex 1-41 and 2-73, and donepezil.
- Drugs having poor selectivity (i.e. modulating the activity of multiple receptors) are more susceptible to inducing deleterious side effects, in particular to patients who are already under other medications.
- There is therefore still a need for new selective modulators, especially agonists, of sigma-1 receptor activity of therapeutic value for the treatment and/or prevention of sigma-1 receptor related diseases, especially neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis.
- The invention encompasses compounds of general Formula I, their pharmaceutically acceptable salts and solvates as well as methods of use of such compounds or compositions comprising such compounds as modulators, especially agonists of sigma-1 receptor activity.
- In a general aspect, the invention provides compounds of general Formula I:
- and pharmaceutically acceptable salts and solvates thereof,
wherein
X1 and X5 are independently selected from the group consisting of hydrogen, halogen, C1-C4-alkyl, C1-C4-haloalkyl, cyano, nitro, di(C1-C4-alkyl)amino, —NHCOOR′, and —COOR′, wherein R′ is methyl, ethyl, n-propyl, n-butyl, iso-propyl, iso-butyl or tert-butyl;
X2, X3, X4 are independently selected from the group consisting of hydrogen, chloro, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy, cyano, nitro, di(C1-C4-alkyl)amino, —NHCOOR′, and —COOR′, wherein R′ is methyl, ethyl, n-propyl, n-butyl, iso-propyl, iso-butyl or tert-butyl; with the proviso that at least one of X1, X2, X3, X4, X5 is not hydrogen and that at least one of X2, X3, X4 is not C1-C4-alkoxy;
L is —C(O)NH—, —NHC(O)—, —SO2NH—, —NHSO2—, or —NH—;
n is 0, 1 or 2;
m is 1, 2, 3, 4 or 5;
R1 is H or alkyl, and
R2 is 5- or 6-membered arylalkyl, 5- or 6-membered cycloalkylalkyl, wherein the cyclic moiety of said arylalkyl or cycloalkylalkyl is optionally substituted by one or more substituents independently selected from halogen, preferably fluoro; or
R1 and R2 form together with the nitrogen atom they are attached to a 5-membered heterocyclyl group, which is fused to a 5- or 6-membered aryl group and which is optionally substituted by one or more substituents independently selected from C1-C3 alkyl, preferably methyl, and wherein the resulting heterocyclic moiety is optionally substituted by one or more substituents independently selected from halogen, preferably fluoro. - In one embodiment, the compound of Formula I is not one, more or all of the following:
- N-[3-[benzyl(methyl)amino]propyl]-4-chlorobenzamide;
- N-[3-[benzyl(methyl)amino]propyl]benzamide;
- N-[3-[benzyl(methyl)amino]propyl]-4-fluorobenzamide;
- N-[3-[benzyl(methyl)amino]propyl]-4-bromobenzamide;
- N-[3-[benzyl(methyl)amino]propyl]-4-methoxybenzamide;
- N′-benzyl-N-[(4-chlorophenyl)methyl]-N′-methylpropane-1,3-diamine; and
- N-[3-[benzyl(methyl)amino]propyl]-4-chlorobenzenesulfonamide.
- In another aspect, the present invention provides a pharmaceutical composition comprising at least one compound according to the invention or a pharmaceutically acceptable salt or solvate thereof and at least one pharmaceutically acceptable carrier, diluent, excipient and/or adjuvant.
- The invention also relates to the use of the above compounds or their pharmaceutically acceptable salts and solvates as modulators of sigma-1 receptor activity, preferably as agonists of sigma-1 receptors.
- The invention further provides the use of a compound according to the invention or a pharmaceutically acceptable salt or solvate thereof as a medicament. Preferably, the medicament is used for the treatment and/or prevention of sigma-1 related diseases.
- As noted above, the invention relates to compounds of Formula I, as well as their pharmaceutically acceptable salts and solvates.
- Preferred compounds of Formula I and pharmaceutically acceptable salts and solvates thereof are those wherein one or more of X1, X2, X3, X4, X5, L, n, m, R′, and R2 are defined as follows:
- X1 and X5 are independently selected from the group consisting of hydrogen, fluoro, chloro, bromo, iodo, C1-C4-alkyl, C1-C2-haloalkyl, cyano, nitro, and di(C1-C2-alkyl)amino, preferably X1 and X5 are independently selected from the group consisting of hydrogen, fluoro, chloro, bromo, C3-C4-alkyl, trifluoromethyl, cyano, nitro, and dimethylamino, more preferably X1 and X5 are independently selected from the group consisting of hydrogen, fluoro, chloro, n-propyl, n-butyl, t-butyl, trifluoromethyl, and dimethylamino, still more preferably X1 and X5 are independently selected from the group consisting of hydrogen, chloro, trifluoromethyl, and dimethylamino;
X2, X3, X4 are independently selected from the group consisting of hydrogen, chloro, C1-C4-alkyl, C1-C2-halo alkyl, C1-C2-alkoxy, cyano, nitro, and di(C1-C2-alkyl)amino, preferably X2, X3, X4 are independently selected from the group consisting of hydrogen, chloro, C3-C4-alkyl, trifluoromethyl, methoxy, cyano, nitro, and dimethylamino, more preferably X2, X3, X4 are independently selected from the group consisting of hydrogen, chloro, n-propyl, n-butyl, t-butyl, trifluoromethyl, methoxy, and dimethylamino, still more preferably X2, X3, X4, X5 are independently selected from the group consisting of hydrogen, chloro, trifluoromethyl, and dimethylamino; always with the proviso that at least one of X1, X2, X3, X4, X5 is not hydrogen and that at least one of X2, X3, X4 is not C1-C2-alkoxy/methoxy;
n is 0 and L is selected from —C(O)NH—, —NHC(O)—, —SO2NH—, preferably L is C(O)NH—; - m is 2, 3 or 4, preferably m is 2 or 3;
R1 is H or C1-C4-alkyl, preferably R1 is H or C1-C2 alkyl, more preferably R1 is C1-C2 alkyl, still more preferably R1 is methyl;
R2 is 5- or 6-membered aryl-C1-C2-alkyl, 5- or 6-membered cycloalkyl-C1-C2-alkyl, wherein the cyclic moiety of said arylalkyl or cycloalkylalkyl group is optionally substituted by one or more substituents independently selected from halogen, preferably fluoro, preferably R2 is benzyl, phenylethyl, or cyclohexylmethyl, wherein the cyclic moiety of each of said substituents is optionally substituted by one or more substituents independently selected from halogen, preferably fluoro, more preferably R2 is benzyl or phenylethyl, wherein the cyclic moiety of each of said substituents is optionally substituted by one or more substituents independently selected from halogen, preferably fluoro, even more preferably R2 is benzyl, optionally substituted by one or more substituents independently selected from halogen, preferably fluoro; advantageously R2 is 5- or 6-membered aryl-C1-C2-alkyl, wherein the cyclic moiety of each of said substituents optionally substituted by one or more substituents independently selected from halogen, preferably fluoro, preferably R2 is benzyl or phenylethyl, wherein the cyclic moiety of each of said substituents is optionally substituted by one or more substituents independently selected from halogen, preferably fluoro, more preferably R2 is benzyl, optionally substituted by one or more substituents independently selected from halogen, preferably fluoro;
R1 and R2 form together with the nitrogen atom they are attached to a 5-membered heterocyclyl group, which is fused to a phenyl group and which is optionally substituted by one or more substituents independently selected from C1-C2 alkyl, preferably methyl, and wherein the resulting heterocyclic moiety is optionally substituted by one or more substituents independently selected from halogen, preferably fluoro, preferably R1 and R2 form together with the nitrogen atom they are attached to a isoindolinyl group optionally substituted by one or more substituents independently selected from C1-C2 alkyl, preferably methyl, and halogen, preferably fluoro. - Other preferred compounds of Formula I as defined above and pharmaceutically acceptable salts and solvates thereof are those wherein X1, X2, X3, X4, X5 are as defined as follows:
- X1, X2, X4, X5 are hydrogen and X3 is chloro, C1-C4-alkyl, C1-C2-haloalkyl, C1-C2-alkoxy, cyano, nitro, or dialkylamino, preferably X3 is chloro, C3-C4-alkyl, trifluoromethyl, methoxy, cyano, nitro, or dimethylamino, more preferably X3 is chloro, n-propyl, n-butyl, I-butyl, trifluoromethyl or methoxy, more preferably X3 is chloro, or trifluoromethyl, even more preferably X3 is chloro;
- X2, X3, X4, X5 are hydrogen and X1 is fluoro, chloro, bromo, iodo, C1-C4-alkyl, C1-C2-haloalkyl, cyano, nitro, or dialkylamino, preferably X1 is fluoro, chloro, bromo, C3-C4-alkyl, trifluoromethyl, cyano, nitro, or dimethylamino, more preferably X1 is fluoro, chloro, bromo, n-propyl, n-butyl, t-butyl, trifluoromethyl, and dimethylamino, more preferably X1 is chloro, bromo, trifluoromethyl, or dimethylamino, even more preferably X1 is chloro or bromo;
- X1, X3, X4, X5 are hydrogen and X2 is chloro, C1-C4-alkyl, C1-C2-haloalkyl, C1-C2-alkoxy, cyano, nitro, or dialkylamino, preferably X2 is chloro, C3-C4-alkyl, trifluoromethyl, methoxy, cyano, nitro, or dimethylamino, more preferably X2 is chloro, n-propyl, n-butyl, 1-butyl, trifluoromethyl, methoxy, and dimethylamino, more preferably X2 is chloro, trifluoromethyl, methoxy, or dimethylamino, even more preferably X2 is chloro, or dimethylamino;
- X3, X4, and X5 are hydrogen and X1 and X2 are independently selected from the group consisting of chloro, C1-C4-alkyl, C1-C2-haloalkyl, cyano, nitro, and dialkylamino, preferably X1 and X2 are independently selected from the group consisting of chloro, C3-C4-alkyl, trifluoromethyl, cyano, nitro, or dimethylamino, more preferably X1 and X2 are independently selected from the group consisting of chloro, n-propyl, n-butyl, t-butyl, trifluoromethyl, and dimethylamino, more preferably X1 and X2 are independently selected from the group consisting of chloro, trifluoromethyl, and dimethylamino, even more preferably X1 and X2 are both chloro;
- X2, X4, and X5 are hydrogen and X1 and X3 are independently selected from the group consisting of chloro, C1-C4-alkyl, C1-C2-haloalkyl, cyano, nitro, and dialkylamino, preferably X1 and X3 are independently selected from the group consisting of chloro, C3-C4-alkyl, trifluoromethyl, cyano, nitro, or dimethylamino, more preferably X1 and X3 are independently selected from the group consisting of chloro, n-propyl, n-butyl, t-butyl, trifluoromethyl, and dimethylamino, still more preferably X1 and X3 are independently selected from the group consisting of chloro, trifluoromethyl, and dimethylamino, even more preferably X1 and X3 are both chloro;
- X1, X4, and X5 are hydrogen and X2 and X3 are independently selected from the group consisting of chloro, C1-C4-alkyl, C1-C2-haloalkyl, C1-C2-alkoxy, cyano, nitro, and dialkylamino, preferably X2 and X3 are independently selected from the group consisting of chloro, C3-C4-alkyl, trifluoromethyl, methoxy, cyano, nitro, or dimethylamino, more preferably X2 and X3 are independently selected from the group consisting of chloro, n-propyl, n-butyl, t-butyl, trifluoromethyl, methoxy, and dimethylamino, more preferably X2 and X3 are independently selected from the group consisting of chloro, trifluoromethyl, and dimethylamino, even more preferably X2 and X3 are both chloro; or
- X1, X3, and X5 are hydrogen and X2 and X4 are independently selected from the group consisting of chloro, C1-C4-alkyl, C1-C2-haloalkyl, C1-C2-alkoxy, cyano, nitro, and dialkylamino, preferably X2 and X4 are independently selected from the group consisting of chloro, C3-C4-alkyl, trifluoromethyl, methoxy, cyano, nitro, or dimethylamino, more preferably X2 and X4 are independently selected from the group consisting of chloro, n-propyl, n-butyl, t-butyl, trifluoromethyl, methoxy, and dimethylamino, more preferably X2 and X4 are independently selected from the group consisting of chloro, trifluoromethyl, and dimethylamino, even more preferably X2 and X4 are both chloro.
- In one embodiment, preferred compounds of Formula I are those of Formula II:
- and pharmaceutically acceptable salts and solvates thereof,
wherein
X3, m, R1, and R2 are as defined above with respect to Formula I and any of its embodiments, with the proviso that X3 is not hydrogen. - In one embodiment, the compounds of Formula II are those wherein X3 is chloro, C1-C4-alkyl, C1-C2-haloalkyl, C1-C2-alkoxy, cyano, nitro, or dialkylamino, preferably X3 is chloro, C3-C4-alkyl, trifluoromethyl, methoxy, cyano, nitro, or dimethylamino, more preferably X3 is chloro, n-propyl, n-butyl, !-butyl, trifluoromethyl, methoxy, or dimethylamino, more preferably X3 is chloro, trifluoromethyl, or dimethylamino, even more preferably X3 is chloro, and/or m is 2, 3 or 4, preferably 2 or 3, and/or R1 is methyl, and/or R2 is benzyl optionally substituted by one or more substituents selected from the group consisting of halogen, preferably fluoro.
- In one embodiment, preferred compounds of Formula I are those of Formula III:
- and pharmaceutically acceptable salts and solvates thereof,
wherein
X1, X2, X3, X4, X5, L, n and m are as defined above with respect to Formula I and any of its embodiments;
p is 1 or 2, preferably 1; and
X6, X7, X8, X9, X10 are independently selected from H, halogen preferably fluoro, preferably X6, X7, X8, X9, X10 are all H. - In one embodiment, the compounds of Formula III are those of Formula III-a:
- and pharmaceutically acceptable salts and solvates thereof,
wherein
X1, X2, X3, X4, X5, L, n, m and p are as defined above with respect to Formula III. - In one embodiment, the compounds of Formula III-a are those of Formula III-a-1:
- and pharmaceutically acceptable salts and solvates thereof,
wherein
X3 is chloro, C1-C4-alkyl, C1-C2-haloalkyl, C1-C2-alkoxy, cyano, nitro, or dialkylamino, preferably X3 is chloro, C3-C4-alkyl, trifluoromethyl, methoxy, cyano, nitro, or dimethylamino, more preferably X3 is chloro, n-propyl, n-butyl, t-butyl, trifluoromethyl, methoxy, or dimethylamino, more preferably X3 is chloro, trifluoromethyl, or dimethylamino, even more preferably X3 is chloro;
m is 1, 2, 3 or 4, preferably 1 or 3, more preferably 3; and/or
p is 1 or 2, preferably 1. - In one embodiment, the compounds of Formula III-a are those of Formula III-a-2:
- wherein
X3 is chloro, C1-C4-alkyl, C1-C2-haloalkyl, C1-C2-alkoxy, cyano, nitro, or dialkylamino, preferably X3 is chloro, C3-C4-alkyl, trifluoromethyl, methoxy, cyano, nitro, or dimethylamino, more preferably X3 is chloro, n-propyl, n-butyl, t-butyl, trifluoromethyl, methoxy, or dimethylamino, more preferably X3 is chloro, trifluoromethyl, or dimethylamino, even more preferably X3 is chloro; - L is —NHC(O)— or —SO2NH—; and/or m is 2 or 3, preferably 3.
- In one embodiment, the compounds of Formula III-a are those of Formula III-a-3:
- wherein
X3 is chloro, C1-C4-alkyl, C1-C2-haloalkyl, C1-C2-alkoxy, cyano, nitro, or dialkylamino, preferably X3 is chloro, C3-C4-alkyl, trifluoromethyl, methoxy, cyano, nitro, or dimethylamino, more preferably X3 is chloro, n-propyl, n-butyl, !-butyl, trifluoromethyl, methoxy, or dimethylamino, more preferably X3 is chloro, trifluoromethyl, or dimethylamino, even more preferably X3 is chloro;
L is —NHC(O)— or —NH—; and/or
m is 1, 2 or 3, preferably 2 or 3. - Preferred compounds of Formula III-a-3 are those wherein L is —NHC(O)— and m is 2, or L is —NH— and m is 3.
- In one embodiment, the compounds of Formula I are those of Formula IV:
- wherein X1, X2, X3, X5, and m are as defined above with respect to Formula I and any of its embodiments.
Preferred compounds of formula IV are those of Formula IV-a: - wherein X1, X2, X3, X4, and X5 are as defined above with respect to Formula IV.
Preferred compounds of formulae IV and IV-a are those wherein X1, X2, X3, X4, X5 are independently selected from hydrogen, chloro, nitro, and trifluoromethyl; with the proviso that at least one of X2, X3, X4, and X5 is not hydrogen.
In one embodiment, the compounds of Formula I are those of Formula V: - wherein X1, X2, X3, X4, X5, and m are as defined above with respect to Formula I and any of its embodiments.
Preferred compounds of formula V are those of Formula V-a: - wherein X1, X2, X3, X4, and X5 are as defined above with respect to Formula V.
Preferred compounds of formulae V and V-a are those wherein X2, X3, X4, are independently selected from hydrogen, chloro, nitro, and trifluoromethyl; with the proviso that at least one of X1, X2, X3, X4, and X5 is not hydrogen. - Particularly preferred compounds of the invention are those listed in Table 1 hereafter:
-
TABLE 1 Cpd no. Chemical name 3.1.2 N-[3-(benzylmethylamino)propyl]-4-propylbenzamide 3.1.3 N-[3-(benzylmethylamino)propyl]-4-butylbenzamide 3.1.4 N-[3-(benzylmethylamino)propyl]-4-tertbutylbenzamide 3.1.5 N-[3-(benzylmethylamino)propyl]-4-trifluoromethylbenzamide 3.1.6 N-[3-(benzylmethylamino)propyl]-4-fluorobenzamide 3.1.7 N-[3-(benzylmethylamino)propyl]-2-chlorobenzamide 3.1.8 N-[3-(benzylmethylamino)propyl]-3-chlorobenzamide 3.1.9 N-[3-(2-(N-methylbenzyl)amino)ethyl]-4-chlorobenzamide 3.1.10 N-[3-(benzylmethylamino)propyl]-4-chlorobenzamide 3.1.11 N-[4-(benzylmethylamino)butyl]-4-chlorobenzamide 3.1.12 N-[3-(N-methyl-2-phenylethylamino)propyl]-4-chlorobenzamide 3.1.15 N-[3-(is oindolin-2-yl)methylamino)propyl]-4-chlorobenzamide 3.1.20 N-[3-(benzylmethylamino)propyl]-2-bromobenzamide 3.1.23 N-[3-(benzylmethylamino)propyl]-2,3-dichlorobenzamide 3.1.24 N-[3-(benzylmethylamino)propyl]-2,4-dichlorobenzamide 3.1.25 N-[3-(benzylmethylamino)propyl]-3,4-dichlorobenzamide 3.1.26 N-[3-(benzylmethylamino)propyl]-3,5-dichlorobenzamide 3.1.28 N-[3-(benzylmethylamino)propyl]-3-methoxybenzamide 3.1.29 N-[3-(benzylmethylamino)propyl]-4-methoxybenzamide 3.1.30 N-[3-(benzylmethylamino)propyl]-3-dimethylaminobenzamide 3.1.31 N-[3-(benzylmethylamino)propyl]-4-cyanobenzamide 3.1.32 N-[3-(benzylmethylamino)propyl]-4-nitrobenzamide 3.1.33 N-(2-(benzyl(methyl)amino)ethyl)-3-chlorobenzamide 3.1.34 N-(2-(benzyl(methyl)amino)ethyl)-2,4-dichlorobenzamide 3.1.36 N-(2-(benzyl(methyl)amino)ethyl)-4-cyanobenzamide 3.1.37 N-(2-(benzyl(methyl)amino)ethyl)-4-nitrobenzamide 3.2a N-[3-(benzylmethylamino)propyl]-4-chlorobenzensulfonamide 3.3a 4-(benzylmethylamino)-N-(4-chlorophenyl)butanamide 3.4a N-(4-chlorobenzyl)-3-(benzylmethylamino)propanamide 3.4b N-(4-nitrobenzyl)-3-(benzylmethylamino)propanamide 3.4c N-(4-cyanobenzyl)-3-(benzylmethylamino)propanamide 3.4d N-(2,4-dichlorobenzyl)-3-(benzylmethylamino)propanamide 3.4e N-(3-chlorobenzyl)-3-(benzylmethylamino)propanamide 3.5a N-(4-chlorobenzyl)-3-(benzylmethylamino)propanamine - The compounds of the invention can be prepared by different ways with reactions known by the person skilled in the art. Reaction schemes as described in the example section illustrate by way of example different possible approaches.
- The compounds of the invention are indeed modulators, preferably agonists of sigma-1 receptor. They further have the advantage of being selective over the sigma-2 receptor. The invention thus also provides the use of the compounds of the invention or pharmaceutically acceptable salts, or solvates thereof as agonists of sigma-1 receptor.
- Accordingly, in a particularly preferred embodiment, the invention relates to the use of compounds of Formula I and subformulae in particular those of Table 1 above, or pharmaceutically acceptable salts and solvates thereof, as sigma-1 agonists.
- The compounds of the invention are therefore useful in the prevention and/or treatment of sigma-1 receptor related diseases or disorders.
- The invention thus also relates to a compound of the invention or a pharmaceutically acceptable salt or solvate thereof for use in treating and/or preventing a sigma-1 receptor related disease or disorder. Or in other terms, the invention also relates to a method of treating and/or preventing a sigma-1 receptor related disease or disorder, comprising the administration of a therapeutically effective amount of a compound or pharmaceutically acceptable salt or solvate of the invention, to a patient in need thereof. Preferably the patient is a warm-blooded animal, more preferably a human.
- Sigma-1 receptor related diseases or disorders within the meaning of the invention include, but are not limited to, neurodegenerative diseases, psychiatric disorders, drug addiction, pain and cancer.
- Neurodegenerative diseases within the meaning of the present invention include, but are not limited to multiple sclerosis (MS), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), stroke and dementia, the latter including, without being limited thereto, Alzheimer's disease (AD), vascular dementia, frontotemporal dementia, semantic dementia and dementia with Lewy bodies. Preferred neurodegenerative diseases are multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and stroke. In a particular preferred embodiment the neurodegenerative disease is multiple sclerosis.
- Psychiatric disorders within the meaning of the invention include, but are not limited to, schizophrenia, depression, and anxiety disorders,
- The invention further provides the use of a compound of the invention or a pharmaceutically acceptable salt or solvates thereof for the manufacture of a medicament for use in treating and/or preventing a sigma-1 receptor related disease or disorder. Preferably the patient is a warm-blooded animal, more preferably a human. The sigma-1 receptor related diseases or disorders are preferably those defined above.
- According to a further feature of the present invention, there is provided a compound of the invention or a pharmaceutically acceptable salt or solvate for use in modulating sigma-1 receptor activity in a patient in need of such treatment, comprising administering to said patient an effective amount of a compound of the present invention, or a pharmaceutically acceptable salt or solvate thereof. In other terms, the invention also provides a method for modulating sigma-1 receptor activity, in a patient in need of such treatment, which comprises administering to said patient an effective amount of a compound of the present invention, or a pharmaceutically acceptable salt or solvate thereof. Preferably, the patient is a warm blooded animal, and even more preferably a human.
- According to one embodiment, the compounds of the invention, their pharmaceutical acceptable salts or solvates may be administered as part of a combination therapy. Thus, are included within the scope of the present invention embodiments comprising coadministration of, and compositions and medicaments which contain, in addition to a compound of the present invention, a pharmaceutically acceptable salt or solvate thereof as active ingredient, additional therapeutic agents and/or active ingredients. Such multiple drug regimens, often referred to as combination therapy, may be used in the treatment and/or prevention of any sigma-1 receptor related disease or disorder, particularly those defined above.
- Thus, the methods of treatment and pharmaceutical compositions of the present invention may employ the compounds of the invention or their pharmaceutical acceptable salts or solvates thereof in the form of monotherapy, but said methods and compositions may also be used in the form of multiple therapy in which one or more compounds of Formula I or their pharmaceutically acceptable salts or solvates are coadministered in combination with one or more other therapeutic agents.
- The invention also provides pharmaceutical compositions comprising a compound of the invention or a pharmaceutically acceptable salt or solvate thereof and at least one pharmaceutically acceptable carrier, diluent, excipient and/or adjuvant. As indicated above, the invention also covers pharmaceutical compositions which contain, in addition to a compound of the present invention, a pharmaceutically acceptable salt or solvate thereof as active ingredient, additional therapeutic agents and/or active ingredients.
- Another object of this invention is a medicament comprising at least one compound of the invention, or a pharmaceutically acceptable salt or solvate thereof, as active ingredient.
- Generally, for pharmaceutical use, the compounds of the invention may be formulated as a pharmaceutical preparation comprising at least one compound of the invention and at least one pharmaceutically acceptable carrier, diluent, excipient and/or adjuvant, and optionally one or more further pharmaceutically active compounds.
- By means of non-limiting examples, such a formulation may be in a form suitable for oral administration, for parenteral administration (such as by intravenous, intramuscular or subcutaneous injection or intravenous infusion), for topical administration (including ocular), cerebral administration, for administration by inhalation, by a skin patch, by an implant, by a suppository, etc. Such suitable administration forms which may be solid, semi-solid or liquid, depending on the manner of administration as well as methods and carriers, diluents and excipients for use in the preparation thereof, will be clear to the skilled person; reference is made to the latest edition of Remington's Pharmaceutical Sciences.
- The compounds of the invention are also useful as diagnostic agents for diagnosing sigma-1 receptor related diseases or disorders. Sigma-1 receptor related diseases or disorders that may be diagnosed using the compounds, pharmaceutically acceptable salts or solvates of the invention are those described above.
- The invention thus also relates to a compound of the invention or a pharmaceutically acceptable salt or solvate thereof for use in the diagnosis, especially the in vivo diagnosis of a sigma-1 receptor related disease or disorder.
- In one embodiment, the diagnosis is an in vivo diagnosis performed by positron emission tomography (PET) or single-photon emission computed tomography (SPECT). The compounds of the invention or pharmaceutically acceptable salts or solvates thereof used in these methods are isotopically radiolabelled, preferably with an isotope selected from the group consisting of 11C, 13C, 15O, and 18F, more preferably with 18F.
- In a variant of this embodiment, the compounds, pharmaceutically acceptable salts and solvates of the invention are those of Formula I and subformulae above, wherein the cyclic moiety of R2 is optionally substituted by one or more substituents independently selected from radioactive halogen isotopes, preferably 18F or wherein when R1 and R2 form together with the nitrogen atom they are attached to a 5- or 6-membered heterocyclyl group, which is optionally fused to a 5- or 6-membered aryl group and which is optionally substituted by one or more substituents independently selected from C1-C3 alkyl, preferably methyl, the resulting heterocyclic moiety is substituted by one or more substituents independently selected from radioactive halogen isotopes, preferably 15F.
- The invention also provides a diagnostic composition, especially a diagnostic imaging composition, comprising a compound of the invention or a pharmaceutically acceptable salt or solvate thereof and at least one pharmaceutically acceptable carrier, diluent, excipient and/or adjuvant.
- In one embodiment, the diagnostic composition is a diagnostic composition for positron emission tomography (PET) or single-photon emission computed tomography (SPECT). Compounds that are particularly useful in this embodiment are those described above with respect to the use of the compounds, pharmaceutically acceptable salts and solvates of the invention in the in vivo diagnosis performed by PET or SPECT.
- The definitions and explanations below are for the terms as used throughout the entire application, including both the specification and the claims.
- Unless otherwise stated any reference to compounds of the invention herein, means the compounds as such as well as their pharmaceutically acceptable salts and solvates.
- When describing the compounds of the invention, the terms used are to be construed in accordance with the following definitions, unless indicated otherwise.
- The term “halo” or “halogen” means fluoro, chloro, bromo, or iodo. Preferred halo groups are fluoro and chloro, fluoro being particularly preferred.
- The term “alkyl” by itself or as part of another substituent refers to a hydrocarbyl radical of Formula CnH2n+1 wherein n is a number greater than or equal to 1.
- The term “haloalkyl” alone or in combination, refers to an alkyl radical having the meaning as defined above wherein one or more hydrogens are replaced with a halogen as defined above. Non-limiting examples of such haloalkyl radicals include chloromethyl, 1-bromoethyl, fluoromethyl, difluoromethyl, trifluoromethyl, 1,1,1-trifluoroethyl and the like. A preferred haloalkyl radical is trifluoromethyl.
- The term “cycloalkyl” as used herein is a monovalent, saturated, or unsaturated monocyclic or bicyclic hydrocarbyl group. Cycloalkyl groups may comprise 3 or more carbon atoms in the ring and generally, according to this invention comprise from 3 to 10, more preferably from 3 to 8 carbon atoms still more preferably from 3 to 6 carbon atoms. Examples of cycloalkyl groups include but are not limited to cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.
- The terms “heterocyclyl”, “heterocycloalkyl” or “heterocyclo” as used herein by itself or as part of another group refer to non-aromatic, fully saturated or partially unsaturated cyclic groups (for example, 3 to 7 member monocyclic, 7 to 11 member bicyclic, or containing a total of 3 to 10 ring atoms) which have at least one heteroatom in at least one carbon atom-containing ring. Each ring of the heterocyclic group containing a heteroatom may have 1, 2, 3 or 4 heteroatoms selected from nitrogen, oxygen and/or sulfur atoms, where the nitrogen and sulfur heteroatoms may optionally be oxidized and the nitrogen heteroatoms may optionally be quaternized. The heterocyclic group may be attached at any heteroatom or carbon atom of the ring or ring system, where valence allows.
- The term “aryl” as used herein refers to a polyunsaturated, aromatic hydrocarbyl group having a single ring (i.e. phenyl) or multiple aromatic rings fused together (e.g. naphtyl), typically containing 5 to 12 atoms; preferably 6 to 10, wherein at least one ring is aromatic.
- The term “heteroaryl” as used herein by itself or as part of another group refers but is not limited to 5 to 12 carbon-atom aromatic rings or ring systems containing 1 to 2 rings which are fused together, typically containing 5 to 6 atoms; at least one of which is aromatic, in which one or more carbon atoms in one or more of these rings is replaced by oxygen, nitrogen and/or sulfur atoms where the nitrogen and sulfur heteroatoms may optionally be oxidized and the nitrogen heteroatoms may optionally be quaternized.
- The compounds of the invention containing a basic functional group may be in the form of pharmaceutically acceptable salts. Pharmaceutically acceptable salts of the compounds of the invention containing one or more basic functional groups include in particular the acid addition salts thereof. Suitable acid addition salts are formed from acids which form non-toxic salts. Examples include the acetate, adipate, aspartate, benzoate, besylate, bicarbonate/carbonate, bisulphate/sulphate, borate, camsylate, citrate, cyclamate, edisylate, esylate, formate, fumarate, gluceptate, gluconate, glucuronate, hexafluorophosphate, hibenzate, hydrochloride/chloride, hydrobromide/bromide, hydroiodide/iodide, isethionate, lactate, malate, maleate, malonate, mesylate, methylsulphate, naphthylate, 2-napsylate, nicotinate, nitrate, orotate, oxalate, palmitate, pamoate, phosphate/hydrogen phosphate/dihydrogen phosphate, pyroglutamate, saccharate, stearate, succinate, tannate, tartrate, tosylate, trifluoroacetate and xinofoate salts.
- Pharmaceutically acceptable salts of compounds of Formulae I and subformulae may for example be prepared as follows:
- (i) reacting the compound of Formula I or any of its subformulae with the desired acid; or
- (ii) converting one salt of the compound of Formula I or any of its subformulae to another by reaction with an appropriate acid or by means of a suitable ion exchange column.
- All these reactions are typically carried out in solution. The salt, may precipitate from solution and be collected by filtration or may be recovered by evaporation of the solvent. The degree of ionization in the salt may vary from completely ionized to almost non-ionized.
- The term “solvate” is used herein to describe a molecular complex comprising the compound of the invention and one or more pharmaceutically acceptable solvent molecules, for example, ethanol. The term ‘hydrate’ is employed when said solvent is water.
- The compounds of the invention include compounds of the invention as hereinbefore defined, including all polymorphs and crystal habits thereof, prodrugs and isomers thereof (including optical, geometric and tautomeric isomers) and isotopically-labeled compounds of the invention.
- In addition, although generally, with respect to the salts of the compounds of the invention, pharmaceutically acceptable salts are preferred, it should be noted that the invention in its broadest sense also includes non-pharmaceutically acceptable salts, which may for example be used in the isolation and/or purification of the compounds of the invention. For example, salts formed with optically active acids or bases may be used to form diastereoisomeric salts that can facilitate the separation of optically active isomers of the compounds of the invention.
- The term “patient” refers to a warm-blooded animal, more preferably a human, who/which is awaiting or receiving medical care or is or will be the object of a medical procedure.
- The term “human” refers to subjects of both genders and at any stage of development (i.e. neonate, infant, juvenile, adolescent, adult). In one embodiment, the human is an adolescent or adult, preferably an adult.
- The terms “treat”, “treating” and “treatment, as used herein, are meant to include alleviating or abrogating a condition or disease and/or its attendant symptoms.
- The terms “prevent”, “preventing” and “prevention”, as used herein, refer to a method of delaying or precluding the onset of a condition or disease and/or its attendant symptoms, barring a patient from acquiring a condition or disease, or reducing a patient's risk of acquiring a condition or disease.
- The term “therapeutically effective amount” (or more simply an “effective amount”) as used herein means the amount of active agent or active ingredient (e.g. 61R agonist) which is sufficient to achieve the desired therapeutic or prophylactic effect in the individual to which it is administered.
- The term “administration”, or a variant thereof (e.g., “administering”), means providing the active agent or active ingredient (e. g. a cylR agonist), alone or as part of a pharmaceutically acceptable composition, to the patient in whom/which the condition, symptom, or disease is to be treated or prevented.
- By “pharmaceutically acceptable” is meant that the ingredients of a pharmaceutical composition are compatible with each other and not deleterious to the patient thereof.
- The term “agonist” as used herein means a ligand that activates an intracellular response when it binds to a receptor.
- The term “pharmaceutical vehicle” as used herein means a carrier or inert medium used as solvent or diluent in which the pharmaceutically active agent is formulated and/or administered. Non-limiting examples of pharmaceutical vehicles include creams, gels, lotions, solutions, and liposomes.
- The present invention will be better understood with reference to the following examples and figures. These examples are intended to representative of specific embodiments of the invention, and are not intended as limiting the scope of the invention.
-
FIG. 1 . Results of the spontaneous alternation (a) and passive avoidance assays (b) for compound 3.1.10. -
FIG. 2 . Validation of al action of compound 3.1.10. Data are presented as mean±sem. -
FIG. 3 . Amelioration of EAE by compound 3.1.10, preventive treatment model. Data are presented as mean±sem. -
FIG. 4 . Amelioration of EAE by compound 3.1.10, curative treatment model. Data are presented as mean±sem. - All temperatures are expressed in ° C. and all reactions were carried out at room temperature (RT) unless otherwise stated.
- 1H-, and 13C spectra were recorded on a 300 MHz Bruker spectrometer. Chemical shifts (6) are given in ppm relative to the internal standard solvent. LC/MS chromatograms were recorded on a Waters Alliance 2695 system (X-Terra column, ionization mass spectrometer). For some compounds mass spectra were recorded on a MALDI-TOF Voyager-DE-STR (Applied Biosystems) apparatus.
- Solvents, reagents and starting materials were purchased from well known chemical suppliers such as for example Sigma Aldrich, Acros Organics, Fluorochem, Eurisotop, VWR International, Sopachem and Polymer labs and the following abbreviations are used:
- RT: Room temperature,
- HBtu: 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate,
LCMS: Liquid chromatographymass spectrometry,
TLC: Thin layer chromatography,
MW: Molecular weight, -
- Reagents: (a): di-tert-butylcarbonate, triethylamine, CH2Cl2; (b): HNR1R2, potassium carbonate, DMF or CH3CN; (c): 3M HCl in dry dioxane; (d): HNR1R2, potassium carbonate, DMF; (e): H2NNH2.H2O, EtOH 96°; (f): bromochloroalkyl derivative, potassium carbonate, CH3CN; (g): HNCH3 40%, potassium carbonate, CH3CN.
- Reagents: (a): bromoalkylamine, CH2Cl2; (b): chloroalkylacyl chloride, CH2Cl2.
- Reagents: (a): triethylamine, CH2Cl2 (Y═Cl), Procedure E1; (b): HOBt, HBtu, DIEA, CH2Cl2 (Y═OH), Procedure E2; (c): HNR1R2, Procedure E3 (d): NaBH4, MeOH, Procedure E4.
- 3-Bromopropylamine (13.70 mmol, 3.0 g) was dissolved in 80 mL of dichloromethane. After addition of triethylamine (16.4 mmol, 2.32 mL) and di-tert-butylcarbonate (13.70 mmol, 3.0 g) the resulting mixture was stirred at room temperature overnight. Then, it was washed with 2×60 mL of a citric acid solution (5%) and 50 mL of saturated brine solution. The organic fraction was dried over magnesium sulphate and concentrated to give the desired product as yellow oil of sufficient purity for use without purification in the next step. Yield: 97%.
- To a mixture of tert-butyl-3-bromopropylcarbamate 1.2 (5.6 mmol, 1.3 eq, 1.3 g) and N,N-disubstituted amine (4.3 mmol, 1 eq) in 30 mL of DMF was added potassium carbonate (13.0 mmol, 3 eq, 1.8 g). The resulting mixture was heated at 70° C. for 24 hours. Then, the solvent was removed under reduced pressure and water (80 mL) added to the residue. The crude product was extracted with 3×60 mL of dichloromethane. The combined organic fractions were washed with 60 mL of water and dried over magnesium sulphate. The solvent was evaporated and the crude product collected as yellow oil. Purification by column chromatography (DCM:MeOH(NH3), 9.7:0.3 (v/v)) was performed.
- The compound 1.3a was synthesized according to the procedure by using tert-butyl-3-bromopropylcarbamate 1.2 (8.44 mmol, 2.0 g) and N-methylbenzylamine (6.50 mmol, 0.9 mL). Yield: 74%. LCMS m/z 279.1 [M+H]+, 223.1 [M+H−tertBut]+.
- The compound 1.3b was synthesized according to the procedure by using tert-butyl-3-bromopropylcarbamate 1.2 (8.44 mmol, 2.0 g) and N-methylphenylethylamine (6.50 mmol, 1.0 mL). Yield: 81%. LCMS (ESI+−tertBut): 237.0.
- The compound 1.3c was synthesized according to the procedure by using tert-butyl-3-bromopropylcarbamate 1.2 (8.44 mmol, 2.0 g) and 2-isoindoline (6.50 mmol, 0.9 mL). Yield: 65%. LCMS m/z 221.0 [M+H−tertBut]+.
- The compound 1.3 (1 eq) was dissolved in 72 mL of 3M HCl in dry 1,4-dioxane. The resulting mixture was stirred at room temperature overnight. Then, the solvent was removed under reduced pressure to give the desired product of sufficient purity for use without purification in the next step.
- The compound 1.4a was synthesized according to the procedure by using tert-butyl-3-[benzylmethylamino]propylcarbamate 1.3a (7.18 mmol, 1.8 g). Yield 98%. LCMS m/z 179.0 [M+H]
- The compound 1.4b was synthesized according to the procedure by using tert-butyl-3-[N-methyl-N-(2-phenylethyl)amino]propylcarbamate 1.3b (7.18 mmol, 2.1 g). Yield: 88%. LCMS m/z 193.0 [M+H]+
- The compound 1.4c was synthesized according to the procedure by using tert-butyl-3-(isoindolin-2-yl)propylcarbamate 1.3c (7.18 mmol, 2.0 g). Yield: 83%. LCMS m/z 177.0 [M+H]+.
- To a mixture of N-(bromoalkyl)phtalimide (1 eq) and N,N-disubstituted amine (1.2 eq) in 30 mL of DMF was added potassium carbonate (11.80 mmol, 2 eq, 1.6 g). The resulting mixture was heated at 90° C. for 16 hours. Then, inorganics were eliminated by filtration and the solvent was removed under reduced pressure. Purification by column chromatography (DCM:MeOH(NH3), 9.9:0.1 (v/v)) was performed.
- The compound 1.5a was synthesized according to the procedure by using N-(2-bromoethyl)phtalimide (5.9 mmol, 1.50 g) and N-methylbenzylamine (7.1 mmol, 0.9 mL). Yield 52%. LCMS m/z 295.0 [M+H]+.
- The compound 1.5b was synthesized according to the procedure by using N-(4-bromobutyl)phtalimide (5.9 mmol, 1.66 g) and N-methylbenzylamine (7.1 mmol, 0.9 mL). Yield 53%. LCMS m/z 323.0 [M+H]
- The compound 1.5c was synthesized according to the procedure by using N-(2-bromoethyl)phtalimide (5.9 mmol, 1.50 g) and N-methyl-N-(2-phenylethyl)amine (7.1 mmol, 0.9 mL). Yield 64%. LCMS m/z 308.98 [M+H]+.
- In 50 mL of ethanol 96°, was added a mixture of 2-[N,N-disubstituted amino alkyl]-2,3-dihydro-1H-isoindole-1,3-dione (1 eq) and hydrazine hydrate (10 eq). The resulting mixture was heated at reflux for 16 hours. The solution was removed under reduced pressure. The mineral was eliminated by filtration and washed with ethyl acetate. The filtrate was evaporated under reduced pressure to give an oily residue. Purification by column chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. Oily purified product was dissolved in EtOAc and ether saturated with gaseous HCl was added. The corresponding hydrochloride product was filtered.
- The compound 1.4d was synthesized according to the procedure by using 2-[2-(benzyl(methyl)amino)ethyl]-2,3-dihydro-1H-isoindole-1,3-dione (3.06 mmol, 0.9 g) and hydrazine hydrate (30.60 mmol, 1.5 mL).
Yield 55%. LCMS mz 165.0 [M-F1-1]+. - The compound 1.4e was synthesized according to the procedure by using 2-[4-(benzyl(methyl)amino)butyl]-2,3-dihydro-1H-isoindole-1,3-dione (6.2 mmol, 2.0 g) and hydrazine hydrate (62.0 mmol, 3.1 mL). Yield 73%. LCMS m/z 193.0 [M+H]
- The compound 1.4f was synthesized according to the procedure by using 2-[2-(N-methyl-N-(2-phenylethyl)amino)ethyl]-2,3-dihydro-1H-isoindole-1,3-dione (3.06 mmol, 0.94 g) and hydrazine hydrate (30.60 mmol, 1.5 mL). Yield 67%. LCMS m/z 179.09 [M+H]+.
- To a mixture of N,N-disubstituted amine (1 eq) and bromochloroalkyl (1 eq) in 40 mL of DMF was added potassium carbonate (1 eq). The resulting mixture was stirred at room temperature for 1 day. Then, inorganics were eliminated by filtration and the solvent was removed under reduced pressure to give an oily residue. Purification by column chromatography (DCM:MeOH(NH3), 9.8:0.2 (v/v)) was performed.
- The compound 1.6a was synthesized according to the procedure by using N-methylbenzylamine (33.0 mmol, 4.0 mL) and 1-bromo-3-chloropropane (33.0 mmol, 9.7 mL). Yield: 95%. LCMS m/z 196.0, 198.0 [M+H]+.
- In 5 mL of CH3CN was added a mixture of chloroalkyl-N,N-disubstituted amine (1 eq) and
methylamine 40% (20 eq). The resulting mixture was heated at reflux for 18 hours. The solution was removed under reduced pressure to give an oily residue. Purification by column chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. - The compound 1.7a was synthesized according to the procedure by using 3-chloropropyl-N-benzylmethylamine (10.1 mmol, 2.0 g) and
methylamine 40% (202.0 mmol, 15.6 mL). Yield 88%. LCMS m/z 193.0 [M+H]+. - To a solution of 3-bromopropylamine hydrobromide (2.86 mmol, 625 mg) in 10 mL of dichloromethane at 0° C. was added slowly a solution of 4-chlorobenzoyl chloride (2.86 mmol, 363 μL) in 5 mL of dichloromethane. The resulting mixture was stirred at room temperature for 12 hours. Then the solution was diluted with dichloromethane and washed successively with HCl (2M) solution, NaHCO3 saturated solution and NaCl solution. The organic layer was dried over magnesium sulfate and evaporated. The crude product 2.1 was purified by column chromatography (DCM:cyclohexane, 5:5 (v/v)). Yield: 65%.
- To a solution of 4-chloroaniline (7.8 mmol, 1.0 g) in 15 mL of dichloromethane at 0° C. was added slowly a solution of 4-chlorobutyryl chloride (7.8 mmol, 878 μL) in 5 mL of dichloromethane. The resulting mixture was stirred at room temperature for 12 hours. Then the reaction was quenched with 25 mL of water and the product extract with 3×25 mL of DCM. The combined organic fractions were dried over magnesium sulphate and concentrated to give the desired product 2.2 with sufficient purity to be used without purification in the next step. Yield: 87%.
- To a solution of substituted benzylamine (6.5 mmol, 1 eq) in AcOEt/H2O (20 mL/15 mL), was added potassium carbonate (13.1 mmol, 1.8 g, 2 eq) and 3-chloropropionyl chloride (7.8 mmol, 753 μL). The resulting mixture was stirred at room temperature for 1 hour. The organic layer was washed successively with HCl (2M) solution (20 mL), water (20 mL) and dried over magnesium sulphate. The solution was removed under reduced pressure. The crude product 2.3 was washed with heptane and used in the next step.
- The compound 2.3.a was synthesized according to the procedure by using 4-chlorobenzylamine (6.5 mmol, 0.92 g). Yield: 60%. 1H NMR (300 MHz, CDCl3), δ: 7.35-7.30 (m, 2H, Haro); 7.25-7.20 (m, 2H, Haro); 5.94 (br s, 1H, NH); 4.45 (d, J=6 Hz, 2H, CH2); 3.84 (t, J=6 Hz, 2H, CH2); 2.67 (t, J=6 Hz, 2H, CH2).
- The compound 2.3.b was synthesized according to the procedure by using 4-nitrobenzylamine (6.5 mmol, 1.00 g). Yield: 69%. LCMS m/z 240.8 [M−H]−.
- The compound 2.3.c was synthesized according to the procedure by using 4-cyanobenzylamine (6.5 mmol, 0.86 g). Yield: 65%. LCMS m/z 220.9 [M−H]−.
- The compound 2.3.d was synthesized according to the procedure by using 2,4-dichlorobenzylamine (6.5 mmol, 1.14 g). Yield: 79%. LCMS m/z 263.8, 265.8, 267.9 [M−H]−.
- The compound 2.3.e was synthesized according to the procedure by using 3-chlorobenzylamine (6.5 mmol, 0.92 g). Yield: 73%. LCMS m/z 231.9, 233.9, 235.9 [M+H]+.
- The compound 2.3.f was synthesized according to the procedure by using 3-bromobenzylamine (6.5 mmol, 1.21 g). Yield: 67%. LCMS m/z 275.8, 277.8, 279.8 [M+H]+.
- A solution of N,N-disubstituted alkyldiamine 1.4 (1 eq), and triethylamine (3 eq) in 10 mL of dichloromethane was cooled at 0° C. A solution of substituted-benzoylchloride (1 eq) in 5 mL of dichloromethane was added slowly. The resulting mixture was stirred at room temperature overnight. The solution was evaporated under reduced pressure. An aqueous solution of 3% sodium hydroxide (20 mL) was added and the mixture was stirred for 1 hour. The solution was extracted with dichloromethane. The organic fraction was dried over magnesium sulphate and concentrated to give an oily product. The residue was purified by thick layer chromatography or column chromatography.
- Reaction was carried out under nitrogen atmosphere. In 10 mL of dichloromethane, benzoic acid (1 eq), HOBt (1.2 eq) and HBtu (1.2 eq) were added and stirred at room temperature for 10 minutes. A solution of N,N-disubstituted alkyldiamine 1.4 (1 eq) and DIEA (15 eq) in dichloromethane was added to the reacting mixture. After stirring at room temperature for 24 hours, the solvent was removed under reduced pressure and dichloromethane was added to the residue. The solution was washed with a solution of NaHCO3 (5%) then saturated NaCl solution. The organic layer was dried over magnesium sulfate and evaporated under reduced pressure. The crude product was purified by thick layer chromatography or column chromatography.
- A solution of compound 2.2 or 2.3 (1 eq) in disubstituted amine HNR1R2 (6 eq) was stirred at room temperature for 12 hours. A 5 mL amount of hexane was added and the white solid, identified as disubstituted amine hydrochloride, was filtered. The filtrate was concentrated and purified by thick layer chromatography or column chromatography.
- A solution of substituted benzoylchloride (1 eq) and N,N-disubstituted alkyldiamine 1.4 (1 eq) in MeOH (10 mL) was stirred at room temperature for 16 hours. Then, sodium borohydride (1.5 eq) was added and stirred for 3 hours. The mixture was quenched with water (5 mL) and evaporated under reduce pressure. The crude product was purified by thick layer chromatography or column chromatography.
- The compound 3.1.2 was synthesized according to the procedure E1 by using N1-benzyl-N1-methylpropane-1,3-diamine dihydrochloride 1.4a (0.55 mmol, 138 mg), and 4-propylbenzoylchloride (0.55 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. Yield: 61%. 1H NMR (300 MHz, CDCl3), δ: 7.90 (br s, 1H, NH); 7.60 (d, J=8.2 Hz, 2H, H2, H6); 7.29-7.20 (m, 5H, Haro); 7.13 (d, J=8.1 Hz, 2H, H3, H5); 3.55 (t, J=6.0 Hz, 2H, CH2); 3.50 (s, 2H, CH2); 2.60 (m, 4H, 2 CH2); 2.23 (s, 3H, CH3); 1.80 (p, J=6.0 Hz, 2H, CH2); 1.62 (s, J=7.5 Hz, 2H, CH2); 0.95 (t, J=7.3 Hz, 2H, CH3). 13C NMR (75 MHz, CDCl3) δ: 167.2 (CO); 146.1 (Caro); 138.4 (Caro); 132.2 (Caro); 129.3 (Caro); 128.5 (Caro); 128.4 (Caro); 127.2 (Caro); 126.9 (Caro); 63.3 (CH2); 57.1 (CH2); 42.1 (CH3); 40.2 (CH2); 37.9 (CH2); 25.5 (CH2); 24.3 (CH2); 14.2 (CH3). LCMS m/z 325.0 [M-EH]+.
- The compound 3.1.3 was synthesized according to the procedure E1 by using N1-benzyl-N1-methylpropane-1,3-diamine dihydrochloride 1.4a (0.65 mmol, 163 mg), and 4-butylbenzoylchloride (0.65 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. Yield: 30%. 1H NMR (300 MHz, CDCl3), δ: 7.97 (br s, 1H, NH); 7.60 (d, J=8.2 Hz, 2H, H2, H6); 7.29-7.23 (m, 5H, Haro); 7.13 (d, J=8.2 Hz, 2H, H3, H5); 3.56 (m, 4H, 2CH2); 2.64 (m, 4H, 2CH2); 2.28 (s, 3H, CH3); 1.83 (p, J=6.1 Hz, 2H, CH2); 1.62 (m, 2H, CH2); 1.35 (m, 2H, CH2); 0.97 (t, J=7.1 Hz, 2H, CH3). 13C NMR (75 MHz, CDCl3) δ: 167.7 (CO); 146.7 (Caro); 138.0 (Caro); 132.5 (Caro); 129.8 (2 Caro); 128.8 (4 Caro); 127.9 (Caro); 127.3 (2 Caro); 63.5 (CH2); 57.1 (CH2); 41.9 (CH3); 40.3 (CH2); 35.9 (CH2); 33.7 (CH2); 25.7 (CH2); 22.6 (CH2); 14.3 (CH3). LCMS m/z 339.0 [M+H]+.
- The compound 3.1.4 was synthesized according to the procedure E1 by using N1-benzyl-N1-methylpropane-1,3-diamine dihydrochloride 1.4a (0.60 mmol, 150 mg), and 4-tertbutylbenzoylchloride (0.60 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. Yield: 27%. 1H NMR (300 MHz, CDCl3), δ: 8.03 (br s, 1H, NH); 7.63 (d, J=8.5 Hz, 2H, H2, H6); 7.37 (d, J=8.5 Hz, 2H, H3, H5); 7.29-7.24 (m, 5H, Haro); 3.57 (m, 4H, 2CH2); 2.63 (t, J=6.0 Hz, 2H, CH2); 2.28 (s, 3H, NCH3); 1.84 (p, J=5.9 Hz, 2H, CH2); 1.32 (s, 9H, 3CH3). 13C NMR (75 MHz, CDCl3) δ: 167.1 (CO); 154.4 (Caro); 137.8 (Caro); 131.8 (Caro); 129.5 (2 Caro); 128.4 (2 Caro); 127.4 (Caro); 126.8 (2 Caro); 125.3 (2 Caro); 63.1 (CH2); 56.9 (CH2); 41.5 (CH3); 40.1 (CH2); 34.8 (C); 31.2 (CH3); 25.3 (CH2). LCMS m/z 339.0 [M-F1-1]+.
- The compound 3.1.5 was synthesized according to the procedure E1 by using N1-benzyl-N1-methylpropane-1,3-diamine dihydrochloride 1.4a (0.48 mmol, 120 mg), and 4-trifluoromethylbenzoylchloride (0.48 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. Yield: 57%. 1H NMR (300 MHz, CDCl3), δ: 8.50 (br s, 1H, NH); 7.78 (d, J=8.2 Hz, 2H, H2, H6); 7.59 (d, J=8.2 Hz, 2H, H3, H5); 7.28-7.21 (m, 5H, Haro); 3.63-3.55 (m, 4H, 2 CH2); 2.68 (t, J=5.8 Hz, 2H, CH2); 2.30 (s, 3H, CH3); 1.85 (p, J=5.7 Hz, 2H, CH2). 13C NMR (75 MHz, CDCl3) δ: 165.8 (CO); 138.0 (Caro); 129.5 (2 Caro); 128.5 (2 Caro); 127.7 (Caro); 127.4 (2 Caro); 125.5 (2 Caro); 125.4 (2 Caro); 62.9 (CH2); 57.1 (CH2); 41.3 (CH3); 40.5 (CH2); 24.8 (CH2). LCMS mz 351.0, 352.0 [M+H]+.
- The compound 3.1.6 was synthesized according to the procedure E2 by using N1-benzyl-N1-methylpropane-1,3-diamine dihydrochloride 1.4a (0.67 mmol, 170 mg), and 4-fluorobenzoic acid (0.67 mmol, 90 mg). Purification by thick layer chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. Yield: 58%. 1H NMR (300 MHz, CDCl3), δ: 8.20 (br s, 1H, NH); 7.66 (m, 2H, H2, H6); 7.28-7.24 (m, 5H, Haro); 7.00 (t, J=9.1 Hz, 2H, H3, H5); 3.60-3.52 (m, 4H, 2 CH2); 2.65 (t, J=6.1 Hz, 2H, CH2); 2.28 (s, 3H, CH3); 1.83 (p, J=6.0 Hz, 2H, CH2). 13C NMR (75 MHz, CDCl3) δ: 166.1 (CO); 164.5 (Caro); 137.6 (Caro); 130.8 (Caro); 129.5 (2 Caro); 129.2 (2 Caro); 128.5 (2 Caro); 127.6 (Caro); 115.3 (2 Caro); 63.1 (CH2); 57.1 (CH2); 41.4 (CH3); 40.3 (CH2); 25.0 (CH2). LCMS m/z 301.1, 302.1 [M+H]+.
- The compound 3.1.7 was synthesized according to the procedure E1 by using N1-benzyl-N1-methylpropane-1,3-diamine dihydrochloride 1.4a (0.57 mmol, 143 mg), and 2-chlorobenzoylchloride (0.57 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. Yield: 46%. 1H NMR (300 MHz, CDCl3), δ: 7.52 (dd, J=7.0 Hz, J=1.9 Hz, 1H, H6); 7.39-7.25 (m, 4H, NH, H3, H4, H5); 7.17-7.09 (m, 5H, Haro); 3.54 (q, J=6.2 Hz, 2H, CH2); 3.49 (s, 2H, CH2); 2.58 (t, J=6.3 Hz, 2H, CH2); 2.21 (s, 3H, NCH3); 1.83 (p, J=6.2 Hz, 2H, CH2). 13C NMR (75 MHz, CDCl3) δ: 166.7 (CO); 137.9 (Caro); 136.0 (Caro); 130.8 (Caro); 130.7 (Caro); 130.1 (Caro); 129.5 (Caro); 128.9 (2 Caro); 128.3 (2 Caro); 127.2 (Caro); 126.9 (Caro); 62.6 (CH2); 56.0 (CH2); 41.8 (CH3); 39.7 (CH2); 25.3 (CH2). LCMS m/z 317.0, 319.0 [M+H]+.
- The compound 3.1.8 was synthesized according to the procedure E1 by using N1-benzyl-N1-methylpropane-1,3-diamine dihydrochloride 1.4a (0.57 mmol, 143 mg), and 3-chlorobenzoylchloride (0.57 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. Yield: 8%. 1H NMR (300 MHz, CDCl3), δ: 8.22 (br s, 1H, NH); 7.78 (dd, J=1.5 Hz, J=2.0 Hz, 1H, H2); 7.68 (d, J=8.0 Hz, 1H, H6); 7.52 (d, J=7.8 Hz, 1H, H4); 7.52 (t, J=7.3 Hz, 1H, H5); 7.32-7.22 (m, 5H, Haro); 3.58-3.51 (m, 4H, 2CH2); 2.63 (t, J=7.5 Hz, 2H, CH2); 2.30 (s, 3H, CH3); 1.84 (p, J=6.4 Hz, 2H, CH2). 13C NMR (75 MHz, CDCl3) δ: 165.8 (CO); 136.5 (Caro); 134.6 (Caro); 131.2 (Caro); 129.7 (Caro); 129.4 (2 Caro); 128.5 (2 Caro); 127.7 (2 Caro); 127.5 (Caro); 125.0 (Caro); 63.1 (CH2); 56.7 (CH2); 41.6 (CH3); 40.4 (CH2); 24.8 (CH2). LCMS m/z 317.0, 319.0 [M+H]+.
- The compound 3.1.9 was synthesized according to the procedure E1 by using N1-benzyl-N1-methylethane-1,2-diamine dihydrochloride 1.4d (0.57 mmol, 135 mg), and 4-chlorobenzoylchloride (0.57 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. Yield: 20%. 1H NMR (300 MHz, CDCl3), δ: 7.67 (d, J=8.6 Hz, 2H, H2, H6); 7.41 (d, J=8.6 Hz, 2H, H3, H5); 7.23-7.33 (m, 5H, Haro); 6.78 (br s, 1H, NH); 3.56 (s, 2H, CH2); 3.51 (q, J=5.2 Hz, 2H, CH2); 2.62 (t, J=5.9 Hz, 2H, CH2); 2.31 (s, 3H, NCH3). 13C NMR (75 MHz, CDCl3) δ: 166.4 (CO); 138.6 (Caro); 137.5 (Caro); 133.1 (Caro); 129.4 (2 Caro); 129.1 (2 Caro); 128.9 (2 Caro); 128.7 (2 Caro); 127.4 (Caro); 62.3 (CH2); 54.9 (CH2); 42.1 (CH3); 37.1 (CH2). LCMS m/z 303.0, 305.0 [M+H]+.
- The compound 3.1.10 was synthesized according to the procedure E1 by using N1-benzyl-N1-methylpropane-1,3-diamine dihydrochloride 1.4a (0.57 mmol, 143 mg), and 4-chlorobenzoylchloride (0.57 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. Yield: 55%. 1H NMR (300 MHz, CDCl3), δ: 8.25 (br s, 1H, NH); 7.60 (d, J=9 Hz, 2H, H2, H6); 7.33-7.21 (m, 7H, H3, H5, Haro); 3.62-3.51 (m, 4H, 2CH2); 2.65 (t, J=5.4 Hz, 2H, CH2); 2.27 (s, 3H, NCH3); 1.83 (p, J=5.5 Hz, 2H, CH2). 13C NMR (75 MHz, CDCl3) δ: 166.0 (CO); 137.8 (Caro); 137.3 (Caro); 133.1 (Caro); 129.4 (2 Caro); 128.6 (2 Caro); 128.5 (2 Caro); 128.4 (2 Caro); 127.5 (Caro); 63.2 (CH2); 57.2 (CH2); 41.5 (CH3); 40.5 (CH2); 25.0 (CH2). LCMS m/z 316.9, 318.9 [M+H]+.
- The compound 3.1.11 was synthesized according to the procedure E1 by using N1-benzyl-N1-methylbutane-1,4-diamine dihydrochloride 1.4e (0.57 mmol, 151 mg), and 4-chlorobenzoylchloride (0.57 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. Yield: 25%. 1H NMR (300 MHz, CDCl3), δ: 7.60 (d, J=9.2 Hz, 2H, H2, H6); 7.41 (br s, 1H, NH); 7.33-7.26 (m, 7H, H3, H5, Haro); 3.53 (s, 2H, CH2); 3.45 (q, J=6.2 Hz, 2H, CH2); 2.45 (t, J=6.4 Hz, 2H, CH2); 2.17 (s, 3H, NCH3); 1.73-1.62 (m, 4H, 2CH2). 13C NMR (75 MHz, CDCl3) δ: 166.6 (CO); 137.7 (Caro); 137.3 (Caro); 133.3 (Caro); 129.3 (2 Caro); 128.6 (2 Caro); 128.5 (2 Caro); 128.4 (2 Caro); 127.4 (Caro); 61.8 (CH2); 56.7 (CH2); 42.1 (CH3); 39.9 (CH2); 27.1 (CH2); 24.8 (CH2). LCMS m/z 331.0, 333.0 [M+H]+.
- The compound 3.1.12 was synthesized according to the procedure E1 by using N1-benzyl-N1-(2-phenylethyl)propane-1,3-diamine dihydrochloride 1.4b (0.57 mmol, 151 mg), and 4-chlorobenzoylchloride (0.57 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. Yield: 69%. 1H NMR (300 MHz, CDCl3), δ: 8.25 (br s, 1H, NH); 7.58 (d, J=8.3 Hz, 2H, H2, H6); 7.34 (d, J=8.4 Hz, 2H, H3, H5); 7.26-7.12 (m, 5H, Haro); 3.53 (q, J=6.2 Hz, 2H, CH2); 2.82 (m, 2H, CH2); 2.75 (m, 2H, CH2); 2.66 (t, J=6.0 Hz, 2H, CH2); 2.35 (s, 3H, NCH3); 1.80 (p, J=5.9 Hz, 2H, CH2). 13C NMR (75 MHz, CDCl3) δ: 165.9 (CO); 139.5 (Caro); 137.2 (Caro); 133.1 (Caro); 128.6 (4 Caro); 128.5 (2 Caro); 128.3 (2 Caro); 126.3 (Caro); 59.6 (CH2); 57.1 (CH2); 41.7 (CH3); 40.4 (CH2); 33.3 (CH2); 24.3 (CH2). LCMS mz 331.0, 333.0 [M+H]+.
- The compound 3.1.15 was synthesized according to the procedure E1 by using 3-(isoindolin-2-yl)propane-1-amine dihydrochloride 1.4c (0.57 mmol, 140 mg), and 4-chlorobenzoylchloride (0.57 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. Yield: 36%. 1H NMR (300 MHz, CDCl3), δ: 9.00 (br s, 1H, NH); 7.48 (d, J=8.6 Hz, 2H, H2, H6); 7.31-7.21 (m, 4H, Haro); 7.03 (d, J=8.5 Hz, 2H, H3, H5); 4.02 (s, 4H, 2CH2); 3.63 (q, J=5.0 Hz, 2H, CH2); 3.05 (t, J=5.8 Hz, 2H, CH2); 1.89 (p, J=5.8 Hz, 2H, CH2). 13C NMR (75 MHz, CDCl3) δ: 165.6 (CO); 139.2 (2 Caro); 137.1 (Caro); 132.6 (Caro); 128.4 (2 Caro); 128.2 (2 Caro); 127.2 (2 Caro); 122.4 (2 Caro); 58.6 (2 CH2); 55.3 (CH2); 40.8 (CH2); 25.9 (CH2). LCMS m/z 315.0, 317.0 [M-EH]+.
- The compound 3.1.20 was synthesized according to the procedure E1 by using N1-benzyl-N1-methylpropane-1,3-diamine dihydrochloride 1.4a (0.45 mmol, 113 mg), and 2-bromobenzoylchloride (0.45 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. Yield: 52%. 1H NMR (300 MHz, CDCl3), δ: 7.56 (dd, J=7.8 Hz, J=1.3 Hz, 1H, H6); 7.47 (br s, 1H, NH); 7.37 (dd, J=7.4 Hz, J=2.0 Hz, 1H, H3); 7.31 (td, J=7.3 Hz, J=1.2 Hz, 1H, Haro); 7.24 (td, J=7.4 Hz, J=1.9 Hz, 1H, Haro); 7.16-7.07 (m, 5H, Haro); 3.52 (q, J=6.2 Hz, 2H, CH2); 3.48 (s, 2H, CH2); 2.57 (t, J=6.1 Hz, 2H, CH2); 2.19 (s, 3H, NCH3); 1.80 (p, J=6.2 Hz, 2H, CH2). 13C NMR (75 MHz, CDCl3) δ: 167.8 (CO); 138.6 (Caro); 138.0 (Caro); 133.2 (Caro); 130.8 (Caro); 129.0 (2 Caro); 128.9 (2 Caro); 128.3 (Caro); 127.4 (Caro); 127.1 (Caro); 119.5 (Caro); 62.6 (CH2); 56.1 (CH2); 41.8 (CH3); 39.6 (CH2); 25.3 (CH2). LCMS m/z 361.0, 363.0 [M+H]+.
- The compound 3.1.21 was synthesized according to the procedure E1 by using N1-benzyl-N1-methylpropane-1,3-diamine dihydrochloride 1.4a (0.45 mmol, 113 mg), and 3-bromobenzoylchloride (0.45 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. Yield: 53%. 1H NMR (300 MHz, CDCl3), δ: 8.27 (br s, 1H, NH); 7.82 (t, J=1.8 Hz, 2H, H2); 7.55 (m, 1H, H5); 7.28-7.17 (m, 7H, H4, H6, Haro); 3.55 (m, 4H, 2CH2); 2.62 (t, J=6.0 Hz, 2H, CH2); 2.30 (s, 3H, NCH3); 1.83 (p, J=5.9 Hz, 2H, CH2). 13C NMR (75 MHz, CDCl3) δ: 165.7 (CO); 137.6 (Caro); 136.7 (Caro); 134.0 (Caro); 130.3 (Caro); 129.9 (Caro); 129.4 (2 Caro); 128.5 (2 Caro); 127.6 (Caro); 125.4 (Caro); 122.6 (Caro); 63.1 (CH2); 56.8 (CH2); 41.8 (CH3); 40.4 (CH2); 24.9 (CH2). LCMS m/z 361.0, 363.0 [M+H]+.
- The compound 3.1.22 was synthesized according to the procedure E2 by using N1-benzyl-N1-methylpropane-1,3-diamine dihydrochloride 1.4a (0.65 mmol, 164 mg), and 4-fluorobenzoic acid (0.65 mmol, 130 mg). Purification by thick layer chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. Yield: 67%. 1H NMR (300 MHz, CDCl3), δ: 8.29 (br s, 1H, NH); 7.54 (d, J=9.1 Hz, 2H, H2, H6); 7.46 (d, J=9.2 Hz, 2H, H3, H5); 7.33-7.20 (m, 5H, Haro); 3.65-3.47 (m, 4H, 2 CH2); 2.66 (t, J=5.9 Hz, 2H, CH2); 2.29 (s, 3H, CH3); 1.84 (p, J=5.8 Hz, 2H, CH2). 13C NMR (75 MHz, CDCl3) δ: 166.2 (CO); 137.5 (Caro); 133.5 (Caro); 131.6 (2 Caro); 129.5 (2 Caro); 128.6 (2 Caro); 128.5 (2 Caro); 127.7 (Cm); 125.7 (Caro); 63.0 (CH2); 57.0 (CH2); 41.4 (CH3); 40.3 (CH2); 24.9 (CH2). LCMS m/z 360.9, 362.9 [M+H]+.
- The compound 3.1.23 was synthesized according to the procedure E1 by using N1-benzyl-N1-methylpropane-1,3-diamine dihydrochloride 1.4a (0.48 mmol, 120 mg), and 2,3-dichlorobenzoylchloride (0.48 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. Yield: 66%. 1H NMR (300 MHz, CDCl3), δ: 7.58 (br s, 1H, NH); 7.51 (dd, J=7.9 Hz, J=1.6 Hz, 1H, H6); 7.32 (dd, J=7.7 Hz, J=1.6 Hz, 1H, H4); 7.25 (m, 1H, H5); 7.17-7.07 (m, 5H, Haro); 3.55 (q, J=6.7 Hz, 2H, CH2); 3.48 (s, 2H, CH2); 2.58 (t, J=5.9 Hz, 2H, CH2); 2.21 (s, 3H, NCH3); 1.82 (p, J=6.0 Hz, 2H, CH2). 13C NMR (75 MHz, CDCl3) δ: 166.2 (CO); 138.6 (Caro); 137.8 (Caro); 133.7 (Caro); 131.3 (Caro); 128.9 (Caro); 128.3 (2 Caro); 127.6 (2 Caro); 127.5 (Caro); 127.3 (Caro); 127.0 (Caro); 62.7 (CH2); 56.0 (CH2); 41.8 (CH3); 39.7 (CH2); 25.1 (CH2). LCMS m/z 351.0, 353.0 [M+H]+.
- The compound 3.1.24 was synthesized according to the procedure E1 by using N1-benzyl-N1-methylpropane-1,3-diamine dihydrochloride 1.4a (0.48 mmol, 120 mg), and 2,4-dichlorobenzoylchloride (0.48 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. Yield: 41%. 1H NMR (300 MHz, CDCl3), δ: 7.70 (br s, 1H, NH); 7.45 (d, J=8.3 Hz, 1H, H6); 7.38 (d, J=2.0 Hz, 1H, H3); 7.26 (dd, J=8.3 Hz, J=2.0 Hz 1H, H5); 7.19-7.07 (m, 5H, Haro); 3.53 (q, J=5.6 Hz, 2H, CH2); 3.47 (s, 2H, CH2); 2.56 (t, J=6.2 Hz, 2H, CH2); 2.20 (s, 3H, NCH3); 1.81 (p, J=6.0 Hz, 2H, CH2). 13C NMR (75 MHz, CDCl3) δ: 165.7 (CO); 137.9 (Caro); 136.1 (Caro); 134.5 (Caro); 131.6 (Caro); 130.5 (Caro); 129.9 (Caro); 128.9 (2 Caro); 128.3 (2 Caro); 127.3 (Caro); 127.2 (Caro); 62.6 (CH2); 56.2 (CH2); 41.8 (CH3); 39.9 (CH2); 25.1 (CH2). LCMS mz 351.0, 353.0 [M+H]+.
- The compound 3.1.25 was synthesized according to the procedure E2 by using N1-benzyl-N1-methylpropane-1,3-diamine dihydrochloride 1.4a (0.78 mmol, 197 mg), and 3,4-dichlorobenzoic acid (0.78 mmol, 150 mg). Purification by thick layer chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. Yield: 31%. 1H NMR (300 MHz, CDCl3), δ: 8.44 (br s, 1H, NH); 7.82 (d, 0.1=2.0 Hz, 1H, H2); 7.47 (dd, J=8.2 Hz, J=2.0 Hz, 1H, H6); 7.38 (d, J=8.3 Hz, 1H, H5); 7.31-7.22 (m, 5H, Haro); 3.60 (s, 2H, CH2); 3.56 (q, J=6.1 Hz, 2H, CH2); 2.68 (t, J=6.1 Hz, 2H, CH2); 2.33 (s, 3H, CH3); 1.86 (p, J=6.2 Hz, 2H, CH2). 13C NMR (75 MHz, CDCl3) δ: 164.9 (CO); 135.4 (Caro); 134.5 (Caro); 132.9 (Caro); 130.4 (2 Caro); 129.5 (2 Caro); 129.3 (Caro); 128.6 (2 Caro); 127.8 (Caro); 126.1 (Caro); 62.8 (CH2); 56.7 (CH2); 41.4 (CH3); 40.3 (CH2); 24.7 (CH2). LCMS m/z 350.9, 352.9 [M+H]+.
- The compound 3.1.26 was synthesized according to the procedure E2 by using N1-benzyl-N1-methylpropane-1,3-diamine dihydrochloride 1.4a (0.78 mmol, 197 mg), and 3,5-dichlorobenzoic acid (0.78 mmol, 150 mg). Purification by thick layer chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. Yield: 34%. 1H NMR (300 MHz, CDCl3), δ: 8.42 (br s, 1H, NH); 7.55 (m, 2H, H2, H6); 7.44 (m, 1H, H4); 7.28-7.20 (m, 5H, Haro); 3.57-3.51 (m, 4H, 2 CH2); 2.63 (t, J=6.1 Hz, 2H, CH2); 2.32 (s, 3H, CH3); 1.82 (p, J=6.0 Hz, 2H, CH2). 13C NMR (75 MHz, CDCl3) δ: 164.6 (CO); 137.7 (Caro); 137.5 (Caro); 135.3 (Caro); 130.9 (2 Caro); 129.3 (2 Caro); 128.5 (2 Caro); 127.6 (Caro); 125.7 (2 Caro); 63.0 (CH2); 56.7 (CH2); 41.8 (CH3); 40.7 (CH2); 24.8 (CH2). LCMS m/z 351.0, 353.0 [M+H]+.
- The compound 3.1.27 was synthesized according to the procedure E1 by using N1-benzyl-N1-methylpropane-1,3-diamine dihydrochloride 1.4a (0.42 mmol, 105 mg), and 4-bromo-2-fluorobenzoylchloride (0.42 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. Yield: 22%. 1H NMR (300 MHz, MeOD), δ: 7.60 (d, J=8.2 Hz, 1H, H6); 7.50 (m, 1H, Haro); 7.44 (m, 1H, Haro); 7.22-7.34 (m, 5H, Haro); 3.59 (s, 2H, CH2); 3.43 (t, J=6.7 Hz, 2H, CH2); 2.56 (t, J=7.1 Hz, 2H, CH2); 2.28 (s, 3H, CH3); 1.85 (p, J=7.0 Hz, 2H, CH2). 13C NMR (75 MHz, CDCl3) δ: 162.5 (CO); 132.9 (Caro); 129.5 (Caro); 128.7 (Caro); 128.4 (2 Caro); 128.1 (2 Caro); 125.1 (Caro); 119.8 (Caro); 119.4 (Caro); 62.4 (CH2); 55.3 (CH2); 41.4 (CH3); 29.7 (CH2); 25.4 (CH2). LCMS m/z 379.0, 381.0 [M+H]+.
- The compound 3.1.28 was synthesized according to the procedure E1 by using N1-benzyl-N1-methylpropane-1,3-diamine dihydrochloride 1.4a (0.59 mmol, 148 mg), and 3-methoxybenzoylchloride (0.59 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. Yield: 35%. 1H NMR (300 MHz, CDCl3), δ: 8.10 (br s, 1H, NH); 7.35 (m, 1H, H2); 7.28-7.14 (m, 7H, H5, H6, Haro); 7.11 (m, 1H, H4); 3.78 (s, 3H, OCH3); 3.55 (m, 4H, 2CH2); 2.63 (t, 0.1=6.2 Hz, 2H, CH2); 2.28 (s, 3H, NCH3); 1.83 (p, J=6.4 Hz, 2H, CH2). 13C NMR (75 MHz, CDCl3) δ: 165.3 (CO); 159.7 (Caro); 137.6 (Caro); 136.2 (Caro); 129.4 (3 Caro); 128.4 (2 Caro); 127.4 (Caro); 118.8 (Caro); 117.6 (Caro); 112.1 (Caro); 63.0 (CH2); 56.8 (CH2); 55.3 (OCH3); 41.5 (NCH3); 40.2 (CH2); 25.2 (CH2). LCMS m/z 313.0 [M+H]+.
- The compound 3.1.29 was synthesized according to the procedure E2 by using N1-benzyl-N1-methylpropane-1,3-diamine dihydrochloride 1.4a (0.98 mmol, 247 mg), and 4-methoxybenzoic acid (0.98 mmol, 150 mg). Purification by thick layer chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. Yield: 73%. 1H NMR (300 MHz, CDCl3), δ: 7.97 (br s, 1H, NH); 7.67 (m, 2H, H2, H6); 7.32-7.24 (m, 5H, Haro); 6.84 (m, 2H, H3, H5); 3.84 (s, 3H, OCH3); 3.60-3.52 (m, 4H, 2 CH2); 2.65 (t, J=6.0 Hz, 2H, CH2); 2.29 (s, 3H, CH3); 1.85 (p, J=6.1 Hz, 2H, CH2). 13C NMR (75 MHz, CDCl3) δ: 166.9 (CO); 162.0 (Caro); 137.2 (Caro); 129.6 (2 Caro); 128.8 (2 Caro); 128.5 (2 Caro); 127.7 (Caro); 125.0 (Caro); 113.6 (2 Caro); 62.9 (CH2); 56.7 (CH2); 55.4 (OCH3); 41.4 (CH3); 39.9 (CH2); 25.3 (CH2). LCMS m/z 313.1 [M+1-1]+.
- The compound 3.1.30 was synthesized according to the procedure E1 by using N1-benzyl-N1-methylpropane-1,3-diamine dihydrochloride 1.4a (0.55 mmol, 138 mg), and 3-dimethylaminobenzoylchloride (0.55 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. Yield: 11%. 1H NMR (300 MHz, CDCl3), δ: 7.90 (br s, 1H, NH); 7.28-7.24 (m, 5H, Haro); 7.22-7.19 (m, 2H, H2, H5); 6.92 (d, J=7.5 Hz, 1H, H6); 6.82 (dd, J=8.1 Hz, J=2.2 Hz, 1H, H4); 3.62-3.51 (m, 4H, 2 CH2); 2.95 (s, 6H, 2 CH3); 2.64 (t, =6.0 Hz, 2H, CH2); 2.31 (s, 3H, CH3); 1.85 (p, J=5.8 Hz, 2H, CH2). 13C NMR (75 MHz, CDCl3) δ: 162.4 (CO); 138.5 (Caro); 133.1 (2 Caro); 129.0 (2 Caro); 128.2 (2 Caro); 128.0 (2 Caro); 127.1 (Caro); 119.7 (Caro); 119.4 (Caro); 63.0 (CH2); 55.9 (CH2); 50.9 (CH2); 41.9 (3 CH3); 39.9 (CH2); 25.6 (CH2). LCMS m/z 326.0 [M-F1-1]+.
- The compound 3.1.31 was synthesized according to the procedure E1 by using N1-benzyl-N1-methylpropane-1,3-diamine dihydrochloride 1.4a (0.60 mmol, 150 mg), and 4-cyanobenzoylchloride (0.60 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. Yield: 7%. 1H NMR (300 MHz, CDCl3), δ: 8.61 (br s, 1H, NH); 7.71 (d, J=8.2 Hz, 2H, H2, H6); 7.61 (d, J=8.3 Hz, 2H, H3, H5); 7.30-7.20 (m, 5H, Haro); 3.62 (q, J=6.4 Hz, 2H, CH2); 3.55 (s, 2H, CH2); 2.69 (t, J=5.8 Hz, 2H, CH2); 2.27 (s, 3H, CH3); 1.84 (p, J=6.0 Hz, 2H, CH2). 13C NMR (75 MHz, CDCl3) δ: 165.3 (CO); 138.4 (Caro); 136.8 (Caro); 132.2 (2 Caro); 129.6 (2 Caro); 128.6 (2 Caro); 127.7 (2 Caro); 118.2 (Caro); 114.6 (Caro); 63.3 (CH2); 57.6 (CH2); 41.5 (CH3); 40.9 (CH2); 25.1 (CH2). LCMS m/z 308.0 [M+H]+.
- The compound 3.1.32 was synthesized according to the procedure E1 by using N1-dihydrochloride 1.4a (0.53 mmol, 133 mg), and 4-nitrobenzoylchloride (0.53 mmol, 100 mg). Purification by column chromatography (DCM:MeOH(NH3), 9:1 (v/v)) was performed. Yield: 50%. 1H NMR (300 MHz, CDCl3), δ: 8.68 (br s, 1H, NH); 8.17 (d, J=8.8 Hz, 2H, H2, H6); 7.79 (d, J=8.8 Hz, 2H, H3, H5); 7.32-7.22 (m, 5H, Haro); 3.65-3.56 (m, 4H, 2CH2); 2.72 (t, J=5.6 Hz, 2H, CH2); 2.32 (s, 3H, NCH3); 1.88 (p, J=5.7 Hz, 2H, CH2). 13C NMR (75 MHz, CDCl3) δ: 166.7 (CO); 149.3 (Caro); 140.1 (Caro); 137.1 (Caro); 129.6 (2 Caro); 128.6 (2 Caro); 128.1 (2 Caro); 127.8 (Caro); 123.6 (2 Caro); 63.5 (CH2); 57.6 (CH2); 41.7 (CH3); 41.1 (CH2); 25.0 (CH2). LCMS m/z 328.0 [M+H]+.
- The compound 3.2a was synthesized according to the procedure E1 by using of M-benzyl-N1-methylpropane-1,3-diamine dihydrochloride 1.4a (0.47 mmol, 118 mg), and 4-chlorobenzo sulfonamide chloride (0.47 mmol, 100 mg). Purification by column chromatography (petroleum ether:DCM:MeOH(NH3), 5:4:1 (v/v)) was performed. Yield: 60%. 1H NMR (300 MHz, CDCl3), δ: 7.76 (d, J=9.1 Hz, 2H, H2, H6); 7.47 (d, J=9.2 Hz, 2H, H3, H5); 7.36-7.22 (m, 5H, Haro); 3.46 (s, 2H, CH2); 3.05 (t, J=7.2 Hz, 2H, CH2); 2.45 (t, J=7.1 Hz, 2H, CH2); 2.18 (s, 3H, CH3); 1.67 (p, J=7.0 Hz, 2H, CH2). 13C NMR (75 MHz, CDCl3) δ: 138.8 (Caro); 138.7 (Caro); 137.9 (Caro); 129.3 (2 Caro); 129.0 (2 Caro); 128.6 (2 Caro); 128.5 (2 Caro); 127.4 (Caro); 62.8 (CH2); 56.8 (CH2); 44.0 (CH3); 41.9 (CH2); 24.7 (CH2). LCMS m/z 353.0, 355.0 [M+H]+.
- The compound 3.3a was synthesized according to the procedure E3 by using of 4-chloro-N-(4-chlorophenyl)butyramide 2.2 (1.29 mmol, 300 mg) and N-benzylmethylamine (7.75 mmol, 1 mL). Purification by thick layer chromatography (cyclohexane:ethyl acetate:MeOH(NH3), 4.5:4.5:1 (v/v)) was performed. Yield: 70%. 1H NMR (300 MHz, CDCl3), 9.63 (br s, 1H, NH); 7.45 (d, J=9.1 Hz, 2H, H2, H6); 7.34-7.27 (m, 5H, Haro); 7.21 (d, J=9.0 Hz, 2H, H3, H5); 3.69 (s, 2H, CH2); 2.62 (t, 0.1=6.2 Hz, 2H, CH2); 2.51 (t, 0.1=7.0 Hz, 2H, CH2); 2.35 (s, 3H, CH3); 1.96 (p, J=6.1 Hz, 2H, CH2). 13C NMR (75 MHz, CDCl3) δ: 171.4 (CO); 137.2 (Caro); 135.9 (Caro); 129.7 (2 Caro); 128.8 (2 Caro); 128.7 (2 Caro); 128.5 (2 Caro); 128.0 (Caro); 120.8 (Caro); 62.2 (CH2); 56.5 (CH2); 41.4 (CH3); 36.2 (CH2); 22.2 (CH2). LCMS m/z 317.2, 319.2 [M+H]+.
- The compound 3.4a was synthesized according to the procedure E3 by using of N-(4-chlorobenzyl)-3-chloropropanamide 2.3 (0.21 mmol, 50 mg) and N-benzylmethylamine (1.29 mmol, 166 μL). Purification by thick layer chromatography (cyclohexane:ethyl acetate:MeOH(NH3), 4.5:4.5:1 (v/v)). Yield: 67%. 1H NMR (300 MHz, CDCl3), δ: 8.65 (br s, 1H, NH); 7.34-7.19 (m, 7H, H2, H6, Haro); 7.09 (d, J=9.3 Hz, 2H, H3, H5); 4.38 (d, J=6.1 Hz, 2H, CH2); 3.57 (s, 2H, CH2); 2.79 (t, J=6.2 Hz, 2H, CH2); 2.56 (t, J=6.0 Hz, 2H, CH2); 2.25 (s, 3H, CH3). 13C NMR (75 MHz, CDCl3) δ: 171.9 (CO); 137.2 (Caro); 133.1 (Caro); 129.3 (2 Caro); 129.2 (3 Caro); 128.8 (2 Caro); 128.6 (2 Caro); 127.9 (Caro); 62.0 (CH2); 53.0 (CH2); 42.6 (CH2); 40.7 (CH3); 32.4 (CH2). LCMS m/z 316.9, 318.9 [M+H]+.
- The compound 3.5a was synthesized according to the procedure E4 by using commercially 4-chlorobenzaldehyde (0.55 mmol, 77 mg) and N1-benzyl-/V-methylpropane-1,3-diamine 1.4a (0.55 mmol, 100 mg). Purification by thick layer chromatography (DCM:MeOH(NH3), 9:1 (v/v)). Yield: 35%. 1H NMR (300 MHz, CDCl3), δ: 7.80 (br s, 1H, NH); 7.48 (d, J=8.4 Hz, 2H, H2, H6); 7.33 (d, J=8.5 Hz, 2H, H3, H5); 7.30-7.26 (m, 3H, Haro); 7.13 (m, 2H, Haro); 4.00 (s, 2H, CH2); 3.53 (s, 2H, CH2); 2.94 (t, J=6.5 Hz, 2H, CH2); 2.60 (t, J=6.3 Hz, 2H, CH2); 2.27 (s, 3H, CH3); 2.02 (p, J=6.2 Hz, 2H, CH2). 13C NMR (75 MHz, CDCl3) δ: 136.5 (Caro); 135.3 (Caro); 131.2 (2 Caro); 130.3 (Caro); 129.4 (2 Caro); 129.3 (2 Caro); 128.6 (2 Caro); 127.8 (Caro); 62.2 (CH2); 55.4 (CH2); 50.9 (CH2); 47.3 (CH2); 41.5 (CH3); 22.6 (CH2). LCMS m/z 303.0, 305.0 [M+H]+.
- The compound 3.1.33 was synthesized according to the procedure E3 by using N-(2-aminoethyl)benzamide (0.91 mmol, 150 mg) and 3-chlorobenzoyl chloride (0.91 mmol, 117 μL). Purification by thick layer chromatography (DCM:MeOH(NH3), 9.1:1 (v/v)).
Yield 35%. 1H NMR (300 MHz, CDCl3) δ: 2.26 (s, 3H), 2.56 (t, 2H, J=7.1 Hz), 3.56 (q, 2H, J=5.0 Hz, J=7.5 Hz), 3.60 (s, 2H), 6.85 (s, 1H), 7.31 (m, 5H), 7.35 (t, 1H, J=7.5 Hz, J=7.5 Hz), 7.74 (m, 1H), 7.56 (d, 1H, J=1.5 Hz), 7.93 (m, 2H)13C NMR (75 MHz, CDCl3) δ: 44.1, 57.6, 57.9, 64.9, 127.1, 127.8, 128.6, 128.2, 129.7, 130.0, 132.2, 134.4, 135.6, 138.6, 167.3 LCMS m/z 302.1; 303.1 [M+H]+. - The compound 3.1.34 was synthesized according to the procedure E3 by using N-(2-aminoethyl)benzamide (0.91 mmol, 150 mg) and 2,4-dichlorobenzoyl chloride (0.91 mmol, 107 μL). Purification by thick layer chromatography (DCM:MeOH(NH3), 9.1:1 (v/v)).
Yield 35%. 1H NMR (300 MHz, CDCl3) δ: 2.26 (s, 3H), 2.56 (t, 2H, J=7.1 Hz), 3.56 (q, 2H, J=5.0 Hz, J=7.5 Hz), 3.60 (s, 2H), 6.85 (s, 1H), 7.31 (m, 5H), 7.35 (t, 1H, J=7.5 Hz, J=7.5 Hz), 7.74 (m, 1H), 7.56 (d, 1H, J=1.5 Hz), 7.93 (m, 2H)13C NMR (75 MHz, CDCl3) δ: 44.1, 57.6, 57.9, 64.9, 127.1, 127.8, 128.6, 128.2, 129.7, 130.0, 132.2, 134.4, 135.6, 138.6, 167.3 LCMS m/z 302.1; 303.1 [M+H]+. - The compound 3.1.36 was synthesized according to the procedure E3 by using N-(2-aminoethyl)benzamide (0.91 mmol, 150 mg) and 4-cyanobenzolyl chloride (0.91 mmol, 150 mg). Purification by thick layer chromatography (DCM:MeOH(NH3), 9.1:1 (v/v)). Yield 33%. 1H NMR (300 MHz, CDCl3) δ: 2.34 (s, 3H), 2.65 (t, 2H, J=5.7 Hz), 3.55 (q, 2H, J=5.1 Hz, J=6.3 Hz), 3.59 (s, 2H), 6.96 (s, 1H), 7.35 (m, 5H), 7.52 (d, 2H, J=4.8 Hz), 8.29 (d, 2H, J=9 Hz)13C NMR (75 MHz, CDCl3) δ: 43.9, 57.5, 58.0, 64.7, 115.7, 118.0, 126.9, 128.0, 128.5, 131.7, 139.1, 167.9 LCMS m/z 294.1[M+H]+.
- The compound 3.1.37 was synthesized according to the procedure E3 by using N-(2-aminoethyl)benzamide (0.91 mmol, 150 mg) and 4-nitrobenzoyl chloride (0.91 mmol, 110 mg). Purification by thick layer chromatography (DCM:MeOH(NH3), 9.1:1 (v/v)). Yield 52%. 1H NMR (300 MHz, CDCl3) δ: 2.34 (s, 3H), 2.65 (t, 2H, J=5.7 Hz), 3.55 (q, 2H, J=5.1 Hz, J=6.3 Hz), 3.59 (s, 2H), 6.96 (s, 1H), 7.35 (m, 5H), 7.52 (d, 2H, J=4.8 Hz), 8.29 (d, 2H, J=9 Hz)13C NMR (75 MHz, CDCl3) δ: 43.9, 57.5, 58.0, 64.7, 115.7, 118.0, 126.9, 128.0, 128.5, 131.7, 139.1, 167.9 LCMS m/z 294.1[M+H]+.
- The compound 3.4b was synthesized according to the procedure E3 by using N-(4-chlorobenzyl)-3-chloropropanamide 2.3b (0.41 mmol, 100 mg) and N-benzylmethylamine (4.1 mmol, 531 μL). Purification by thick layer chromatography (DCM:MeOH(NH3), 9.7:0.3 (v/v)). Yield: 37%. 1H NMR (300 MHz, CDCl3), δ: 9.00 (br s, 1H, NH); 8.15 (d, J=8.7 Hz, 2H, Haro); 7.40 (d, J=8.4 Hz, 2H, Haro); 7.20 (m, 3H, Haro); 7.10 (m, 2H, Haro); 4.50 (d, J=6.0 Hz, 2H, CH2); 3.50 (s, 2H, CH2); 2.70 (t, J=6.2 Hz, 2H, CH2); 2.50 (t, J=6.2 Hz, 2H, CH2); 2.25 (s, 3H, CH3). 13C NMR (75 MHz, CDCl3) δ: 172.6 (CO); 146.5 (Caro); 146.2 (Caro); 137.3 (Caro); 129.1 (Caro); 128.5 (Caro); 128.1 (Caro); 127.6 (Caro); 123.8 (Caro); 62.2 (CH2); 52.8 (CH2); 42.3 (CH3); 41.1 (CH2); 32.5 (CH2); 29.7 (CH2). LCMS m/z 328.9 [M+H]+.
- The compound 3.4c was synthesized according to the procedure E3 by using N-(4-chlorobenzyl)-3-chloropropanamide 2.3c (0.44 mmol, 100 mg) and N-benzylmethylamine (4.4 mmol, 579 μL). Purification by thick layer chromatography (DCM:MeOH(NH3), 9.7:0.3 (v/v)). Yield: 80%. 1H NMR (300 MHz, CDCl3), δ: 8.90 (br s, 1H, NH); 7.58 (d, J=6.3 Hz, 2H, Haro); 7.32 (d, J=8.1 Hz, 2H, Haro); 7.21 (m, 3H, Haro); 7.07 (m, 2H, Haro); 4.43 (d, J=5.9 Hz, 2H, CH2); 3.48 (s, 2H, CH2); 2.68 (t, J=5.6 Hz, 2H, CH2); 2.47 (t, J=5.5 Hz, 2H, CH2); 2.21 (s, 3H, CH3). 13C NMR (75 MHz, CDCl3) δ: 172.7 (CO); 144.4 (Caro); 137.5 (Caro); 132.4 (Caro); 129.0 (Caro); 128.5 (Caro); 128.1 (Caro); 127.5 (Caro); 118.8 (Caro); 110.9 (Caro); 62.2 (CH2); 52.9 (CH2); 42.5 (CH3); 41.1 (CH2); 32.6 (CH2). LCMS m/z 308.0 [M+H]+.
- The compound 3.4d was synthesized according to the procedure E3 by using N-(4-chlorobenzyl)-3-chloropropanamide 2.3d (0.37 mmol, 100 mg) and N-benzylmethylamine (3.7 mmol, 483 μL). Purification by thick layer chromatography (DCM:MeOH(NH3), 9.7:0.3 (v/v)). Yield: 80%. 1H NMR (300 MHz, CDCl3), δ: 8.90 (br s, 1H, NH); 7.38 (d, J=1.9 Hz, 1H, Haro); 7.28 (d, J=8.3 Hz, 1H, Haro); 7.27-7.15 (m, 4H, Haro); 7.10 (m, 2H, Haro); 4.45 (d, J=5.8 Hz, 2H, CH2); 3.50 (s, 2H, CH2); 2.70 (t, J=6.1 Hz, 2H, CH2); 2.45 (t, J=5.6 Hz, 2H, CH2); 2.18 (s, 3H, CH3). 13C NMR (75 MHz, CDCl3) δ: 172.5 (CO); 137.5 (Caro); 134.8 (Caro); 134.3 (Caro); 133.7 (Caro); 131.1 (Caro); 129.2 (Caro); 129.0 (Caro); 128.4 (Caro); 127.5 (Caro); 127.3 (Caro); 62.2 (CH2); 53.1 (CH2); 41.0 (CH3); 40.5 (CH2); 32.6 (CH2). LCMS m/z 350.97, 354.96, 352.93 [M+H]+.
- The compound 3.4e was synthesized according to the procedure E3 by using N-(4-chlorobenzyl)-3-chloropropanamide 2.3e (0.43 mmol, 100 mg) and N-benzylmethylamine (4.3 mmol, 555 μL). Purification by thick layer chromatography (DCM:MeOH(NH3), 9.7:0.3 (v/v)). Yield: 68%. 1H NMR (300 MHz, CDCl3), δ: 8.80 (br s, 1H, NH); 7.30-7.00 (m, 9H, Haro); 4.40 (d, =5.6 Hz, 2H, CH2); 3.50 (s, 2H, CH2); 2.70 (t, J=6.0 Hz, 2H, CH2); 2.48 (t, J=5.6 Hz, 2H, CH2); 2.20 (s, 3H, CH3). 13C NMR (75 MHz, CDCl3) δ: 172.5 (CO); 140.8 (Caro); 137.5 (Caro); 134.4 (Caro); 129.9 (Caro); 129.0 (Caro); 128.5 (Caro); 127.8 (Caro); 127.5 (Caro); 127.4 (Caro); 125.9 (Caro); 62.2 (CH2); 53.1 (CH2); 42.5 (CH3); 40.1 (CH2); 32.6 (CH2). LCMS m/z 317.1, 319.1 [M+H]+.
- Compounds have been transformed into their hydrochloride salts by solubilizing in MeOH, treating with HCl 1M until pH=1 and then lyophilizing.
- The σ binding assays were performed according to Ganapathy et al. (Ganapathy, M. E.; Prasad, P. D.; Huang, W.; Seth, P.; Leibach, F. H.; Ganapathy, V. Molecular and ligand-binding characterization of the sigma-receptor in the Jurkat human T lymphocyte cell line. J. Pharmacol. Exp. Ther. 1999, 289, 251-260). The σ1 binding assay was carried out by incubating Jurkat cell membranes (10-20 mg protein per tube) with [3H](+)-pentazocine (15 nM) and a range of concentrations of tested compounds, at 37° C. for 2 hours, in 5 mM Tris/HCl buffer (pH=7.4). The σ2 binding assay was performed by incubating Jurkat cell membranes (10-20 mg protein per tube) with [3H]-DTG (25 nM) in presence of (+)-pentazocine (1 μM) to saturate σ1 receptors, and a range of concentrations of tested compounds, at room temperature for 1 hour in 5 mM Tris/HCl buffer (pH=7.4). The final assay volume was 0.5 mL. Binding was terminated by rapid filtration through Wathman GF/B filters, which were then washed with 5×1 mL ice-cold NaCl solution and allowed to dry before bound radioactivity was measured using liquid scintillation counting. Nonspecific binding was determined, in both assays, under similar conditions, but in presence of 10 μM unlabeled haloperidol. Inhibition constants (KO were calculated from the IC50 values according to the method of Cheng and Prusoff (Cheng, Y.; Prusoff, W. H. Relationship between the inhibition constant (KO and the concentration of inhibitor which causes 50 percent inhibition (IC50) of an enzymatic reaction. Biochem Pharmacol. 1973, 22 (23), 3099-108):
-
- Where IC50=Inhibitory concentration at 50%
-
- L=Concentration of radioligand
- Kd=Affinity constant of radioligand
- The σ1 binding assay was carried out with [3H](±)-pentazocine (L=15 nM, Kd=16 nM) as radioligand and the σ2 binding assay with [3H]-DTG (L=25 nM, Kd=80.84 nM).
- The results of the sigma-1 and sigma-2 binding assays (i.e. the mean Ki values for 2 or 3 independent experiments with less than 10% deviation) are shown in Tables 2, 3 and 4 hereafter:
-
TABLE 2 Com- Sigma 1Sigma 2pound Ki Ki Ratio No.* X m —NR1R2 (nM) (nM) σ2/σ1 3.1.2 4-n- Pr 3 3.7 160 43 3.1.3 4-n- Bu 3 7.3 49 7 3.1.4 4-t- Bu 3 1.6 nd 3.1.5 4- CF 33 1.4 98 70 3.1.6 4- F 3 20 470 24 3.1.7 2- Cl 3 47 >1200 >26 3.1.8 3- Cl 3 10 340 34 3.1.9 4- Cl 2 3.6 850 236 3.1.10 4- Cl 3 3.2 190 60 3.1.11 4- Cl 4 1.7 20 12 3.1.12 4- Cl 3 4.3 200 47 3.1.15 4- Cl 3 19 nd 3.1.20 2- Br 3 42 >1200 >29 3.1.21 3- Br 3 3.9 350 90 3.1.22 4- Br 3 2.1 160 76 3.1.23 2,3- Cl 3 10 310 31 3.1.24 2,4- Cl 3 1.3 310 238 3.1.25 3,4- Cl 3 1.1 59 54 3.1.26 3,5- Cl 3 23 48 2 3.1.27 2-F-4- Br 3 2.9 Nd 3.1.28 3- OCH 33 40 >1200 >30 3.1.29 4- OCH 33 37 >1000 >27 3.1.30 3-N(CH3)2 3 1.9 3.1.31 4- CN 3 24 >1200 >50 3.1.32 4- NO 23 4.3 360 84 3.1.34 3,4- Cl 2 6.5 110 17 3.1.36 4- CN 2 1.2 170 142 3.1.37 4- NO 22 3.6 1400 389 *compounds are evaluated as their hydrochloride salts. - The present study shows that the compounds of the invention have good signal affinities and are selective over
sigma 2. Especially compounds 3.1.9, 3.1.24, 3.4b and 3.5ahave sigma 1 affinities in the nanomolecular range (1.3 to 3.6 nM) andexcellent sigma 2/sigma 1 selectivities between 236 and 2826. - The activity of compound 3.1.10 was evaluated on the prevention of the dizocilpine-induced learning deficits measured using two behavioral tests. The present experiment tested if its anti-amnesic activity could be blocked by pre-treatment with the reference sigma-1 receptor antagonist NE-100.
-
-
- Sixty (60) mice were used. Behavioral testing started one week after the arrival of the animals in the AMYLGEN animal facility.
- 5 treatment groups were designed and used as follows:
-
Treatment group n 1. vehicle 1 +vehicle 212 2. dizocilpine + vehicle 212 3. dizocilpine (0.15 mg/kg i.p.) + Cpd. 3.1.10 (0.5 mg/kg) 12 4. dizocilpine (0.15 mg/kg i.p.) + Cpd. 3.1.10 (0.5 mg/kg) + 12 5. dizocilpine (0.15 mg/kg i.p.) + NE-100 (3 mg/kg) 12 Total mice 60 -
-
Vehicle 1 was physiological saline for dizocilpine,DMSO 2% in water for compound 3.1.10 - Animals were used at
day 1 in the Y-maze test and atdays day 2 and retention atday 3. - Test compounds, compound 3.1.10 and/or NE-100 were administered 10 min before dizocilpine (at 0.15 mg/kg i.p.) or vehicle.
- Dizocilpine or
vehicle 1 was administered 20 min before the Y-maze test session onday 1. - Dizocilpine or
vehicle 1 was administered 20 min before the passive avoidance training session onday 2. - Drugs were not injected before the retention session on
day 3. - The whole experiment program was performed in a single series experiment.
- Treatments were randomized.
-
- Male Swiss mice, 6 weeks old and weighing 30-35 g, from JANVIER (Saint Berthevin, France), were housed in groups with access to food and water ad libitum, except during experiments. They were kept in a temperature and humidity controlled animal facility on a 12 h/12 h light:dark cycle (lights on at 7:00 am). Behavioral experiments were carried out between 09:00 am and 05:00 pm, in a sound attenuated and air-regulated experimental room, to which mice were habituated at least 30 min. Mice were numbered by marking their tail using permanent markers ad sacrificed immediately after the passive avoidance retention session.
- 2.1.3. Test compounds
-
- Compound 3.1.10 of Example 10 above.
- Dizocilpine ((+)-MK-801 maleate, CAS #77086-22-7, batch 9A/124751) was from Tocris Bioscience.
- NE-100 hydrochloride (CAS #149409-57-4, batch 1B/124951) was from Tocris Bioscience.
- All compounds were injected intraperitoneally (i.p.) in a volume of 100 μL, per 20 g of body weight, corresponding to 5 mL/kg.
- Treatment received by animals tested in series were conterbalanced.
- No animal deceased following injection or during the behavioral testing.
- Animals were tested for spontaneous alternation performance in the Y-maze, an index of spatial working memory. The Y-maze is made of grey polyvinylchloride. Each arm is 40 cm long, 13 cm high, 3 cm wide at the bottom, 10 cm wide at the top, and converging at an equal angle. Each mouse was placed at the end of one arm and allowed to move freely through the maze during an 8 min session. The series of arm entries, including possible returns into the same arm, were checked visually. An alternation was defined as entries into all three arms on consecutive occasions. The number of maximum alternations was therefore the total number of arm entries minus two and the percentage of alternation was calculated as: (actual alternations/maximum alternations)×100. Parameters included the percentage of alternation (memory index) and total number of arm entries (exploration index).
- Animals showing an extreme behavior (alternation <20% or >90% or number of arm entries <10) are usually discarded from the calculations. 2 animals were discarded accordingly.
- The apparatus is a two-compartments (15×20×15 cm high) box with one illuminated with white polyvinylchloride walls and the other darkened with black polyvinylchloride walls and a grid floor. A guillotine door separates each compartment. A 60 W lamp positioned 40 cm above the apparatus lights up the white compartment during the experiment. Scrambled footshocks (0.3 mA for 3 s) could be delivered to the grid floor using a shock generator scrambler (Lafayette Instruments, Lafayette, USA). The guillotine door is initially closed during the training session. Each mouse was placed into the white compartment. After 5 s, the door was raised. When the mouse entered the dark compartment and placed all its paws on the grid floor, the door was closed and the footshock delivered for 3 s. The step-through latency (the latency spent to enter the dark compartment) and the number of vocalizations was recorded. The retention test was carried out after 24 h. Each mouse was placed again into the white compartment. After 5 s, the door was opened. The step-through latency was recorded up to 300 s. When the mouse entered the dark compartment or 300 s has elapsed (they were therefore manually placed in it), the escape latency (latency to exit from the dark compartment) was recorded up to 300 s.
- All values, except passive avoidance latencies, were expressed as mean±S.E.M. Statistical analyses were performed using two-way ANOVA (F value), with genotype and peptide treatment as independent factors, followed by a Dunn's post-hoc multiple comparison test.
- Passive avoidance latencies do not follow a Gaussian distribution, since upper cut-off times are set. They were therefore analyzed using a Kruskal-Wallis non-parametric ANOVA (H value), followed by a Dunn's multiple comparison test.
- p<0.05 was considered as statistically significant.
- The results of the spontaneous alternation and passive avoidance assays are represented in
FIGS. 1a and 1 b. - Compound 3.1.10 significantly attenuated the dizocilpine-induced learning deficits, at 0.5 mg/kg in the Y-maze test and in the passive avoidance test. The beneficial effect of compound 3.1.10 in the two tests was prevented by treatment with the sigma-1 antagonist NE-100 at 3 mg/kg, devoid of effect by itself.
- These results thus demonstrate the sigma-1 receptor effect of compound 3.1.10.
- Experimental autoimmune encephalomyelitis (EAE) is an unequivocal animal model of multiple sclerosis (MS), a demyelitating disabling disease of the central nervous system characterized by the inappropriate effect of reactive T and B cells.
- Animals. SJL/J mice were purchased from Janvier (Le Genest-St-Isle, France) and bred under conventional barrier protection at the Pasteur Institute (Lille, France). All experiment protocols and procedures were in compliance with the European Communities Council Directives of 24 Nov. 1986 (86/609/EEC) and were approved by the local ethical committee (CEEA 102009R). Efforts were made to minimize the number of animals used and their suffering. Animals that reached severe hind limb paresis (clinical grade 3) were isolated, and hydration and food access were facilitated.
- EAE induction and treatment. The method of EAE induction was similar to previously published methods (Lee-Chang et al., Immunol Lett. 2011 Mar. 30; 135(1-2):108-17). Randomized 9-week-old female SJL/J mice were inoculated subcutaneously (s.c.) in the neck with an emulsion containing 100 μg of myelin proteolipid protein (PLP)139-151 peptide and an equal volume of Freund's complete adjuvant (FCA) containing 4 mg/ml of heat-inactivated Mycobacterium tuberculosis H37RA (Difco Laboratories, Detroit, Mich., USA) on
day 0. Additionally, mice received 0.3 μg of Bordetella pertussis toxin (BPT) (Sigma-Aldrich, Saint Louis, Mich., USA) intraperitoneally (i.p.) ondays - Compound 3.1.10 was dissolved in physiological saline. Control animals received one administration of saline solution (vehicle).
- For validation of the σ1 action, pretreatment BD1047 (N′-[2-(3,4-dichlorophenyl)ethyl]-N,N,N′-trimethylethane-1,2-diamine; Costa B. R., Radesca L., Di Paolo L., Bowen W. D. J. Med. Chem. 1992, 35, 38-47) or saline, i.p.) was administered 20 min prior to receiving compound 3.1.10 (i.p.). Injections were performed on the onset of EAE (i.e. grade=2) and continued for the following 14 days. The clinical course was followed for 35 days. Three different groups, EAE-vehicle, EAE-compound 3.1.10 (1 mg/kg), and EAE-DB1047 (10 mg/kg) compound 3.1.10 (1 mg/kg) were used per experiment with 7 animals per treatment group.
- For preventive treatment, single compound 3.1.10 i.p. injection was performed on day 0 (D0). Three different groups, EAE-vehicle, EAE-compound 3.1.10 (0.5 mg/kg), and EAE-compound 3.1.10 (1 mg/kg), were used per experiment with 13-15 animals per treatment group.
- For curative treatment, p.o. administrations were performed on the onset of EAE (i.e. grade=2) and treatment was continued for the following 14 days. The clinical course was followed for 70 days. Three different groups, EAE-vehicle, EAE-compound 3.1.10 (0.5 mg/kg), and EAE-compound 3.1.10 (1 mg/kg), were used per experiment with 7 animals per treatment group.
- Mice showed no apparent toxic side effects of any treatment protocols.
- Clinical evaluation. Body weight and clinical signs of EAE were monitored daily. The severity of clinical symptoms was scored based on a standard neurological scoring system for EAE, as follows:
grade 0, no disease;grade 1, moderate tail hypotonia and/or slight clumsy gait;grade 2, tail atony and/or clumsy gait;grade 3, severe hind limb paresis;grade 4, paraplegia;grade 5, tetraplegia. Scoring was performed in a blind fashion. - Serum anti-PLP enzyme-linked immunosorbent assay (ELISA). Mice were deeply anesthetized with an i.p. injection of pentobarbital. Serum samples were prepared from peripheral blood obtained by cardiac puncture immediately before perfusion. Active immunizations were verified by measuring anti-PLP139-151 IgG antibody (Ab), as previously described (El Behi et al., (2007), J Neuroimmunol 182:80-8).
- The validation of al action assay confirms that compounds of the invention are active via the al receptor. The results are represented in
FIG. 2 . - The assay using compound 3.1.10 in preventive treatment demonstrates that compounds of the invention are useful in delaying the onset of EAE in mice. The results are represented in
FIG. 3 . - The assay using compound 3.1.10 in curative treatment demonstrates that compounds of the invention are useful in alleviating the symptoms of EAE in mice. The results are represented in
FIG. 4 . - EAE being an unequivocal animal model of multiple sclerosis (MS), a demyelitating disabling disease of the central nervous system characterized by the inappropriate effect of reactive T and B cells, the above results show the usefulness of the compounds of the invention, especially of compound 3.1.10, in the treatment and prevention of multiple sclerosis (MS) in particular and 61 receptor related diseases in general.
- While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation ant it is understood that various changes may be made without departing from the spirit and scope of the invention.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/077,530 US20210040034A1 (en) | 2014-06-16 | 2020-10-22 | Compounds, pharmaceutical composition and their use in treating neurodegenerative diseases |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14305919.4 | 2014-06-16 | ||
EP14305919 | 2014-06-16 | ||
PCT/EP2015/063370 WO2015193255A1 (en) | 2014-06-16 | 2015-06-15 | Compounds, pharmaceutical composition and their use in treating neurodegenerative diseases |
US201615317742A | 2016-12-09 | 2016-12-09 | |
US16/205,637 US10844008B2 (en) | 2014-06-16 | 2018-11-30 | Compounds, pharmaceutical composition and their use in treating neurodegenerative diseases |
US17/077,530 US20210040034A1 (en) | 2014-06-16 | 2020-10-22 | Compounds, pharmaceutical composition and their use in treating neurodegenerative diseases |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/205,637 Division US10844008B2 (en) | 2014-06-16 | 2018-11-30 | Compounds, pharmaceutical composition and their use in treating neurodegenerative diseases |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210040034A1 true US20210040034A1 (en) | 2021-02-11 |
Family
ID=50982878
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/317,742 Active US10179761B2 (en) | 2014-06-16 | 2015-06-15 | Compounds, pharmaceutical composition and their use in treating neurodegenerative diseases |
US16/205,637 Active US10844008B2 (en) | 2014-06-16 | 2018-11-30 | Compounds, pharmaceutical composition and their use in treating neurodegenerative diseases |
US17/077,530 Abandoned US20210040034A1 (en) | 2014-06-16 | 2020-10-22 | Compounds, pharmaceutical composition and their use in treating neurodegenerative diseases |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/317,742 Active US10179761B2 (en) | 2014-06-16 | 2015-06-15 | Compounds, pharmaceutical composition and their use in treating neurodegenerative diseases |
US16/205,637 Active US10844008B2 (en) | 2014-06-16 | 2018-11-30 | Compounds, pharmaceutical composition and their use in treating neurodegenerative diseases |
Country Status (29)
Country | Link |
---|---|
US (3) | US10179761B2 (en) |
EP (1) | EP3154934B1 (en) |
JP (1) | JP6704355B2 (en) |
KR (1) | KR20170041662A (en) |
CN (1) | CN106795100B (en) |
AU (1) | AU2015276256B2 (en) |
BR (1) | BR112016029571A2 (en) |
CA (1) | CA2951438C (en) |
CL (1) | CL2016003230A1 (en) |
CO (1) | CO2017000211A2 (en) |
CR (1) | CR20160581A (en) |
DO (1) | DOP2016000325A (en) |
EA (1) | EA031123B1 (en) |
EC (1) | ECSP16094286A (en) |
ES (1) | ES2880313T3 (en) |
GT (1) | GT201600255A (en) |
IL (1) | IL249440B (en) |
MA (1) | MA39533B1 (en) |
MX (1) | MX2016016769A (en) |
MY (1) | MY183757A (en) |
PE (2) | PE20170518A1 (en) |
PH (1) | PH12016502480A1 (en) |
PL (1) | PL3154934T4 (en) |
PT (1) | PT3154934T (en) |
SG (1) | SG11201610478YA (en) |
TN (1) | TN2016000550A1 (en) |
UA (1) | UA123041C2 (en) |
WO (1) | WO2015193255A1 (en) |
ZA (1) | ZA201608558B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI744300B (en) * | 2016-03-23 | 2021-11-01 | 里爾中央醫學中心 | Use of a modified heat-treated platelet pellet lysate in manufacturing a composition for the treatment of neurological disorders |
WO2024033399A1 (en) | 2022-08-10 | 2024-02-15 | Institut National de la Santé et de la Recherche Médicale | Sigmar1 ligand for the treatment of pancreatic cancer |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2241498A (en) * | 1940-11-25 | 1941-05-13 | Champ Items Inc | Method of manufacturing oil shields for internal combustion engines |
US2441498A (en) * | 1943-07-15 | 1948-05-11 | Astra Apotekarnes Kem Fab | Alkyl glycinanilides |
GB1307250A (en) * | 1970-06-16 | 1973-02-14 | May & Baker Ltd | Benzene derivatives |
DE2438288A1 (en) * | 1974-08-09 | 1976-02-19 | Knoll Ag | NEW ANTIARRHYTHMICS |
US4448776A (en) * | 1981-02-12 | 1984-05-15 | Karl Bucher | Method of using certain substituted aliphatic secondary amines or their salts for easing breathing |
JPH02138162A (en) * | 1988-11-19 | 1990-05-28 | Mitsubishi Kasei Corp | N-phenylalkyl substituted-beta-amino acid amide derivative |
AU2159692A (en) * | 1991-06-06 | 1993-01-12 | G.D. Searle & Co. | N-(arylethyl)-n-alkyl-2-(1-pyrrolidinyl)ethylamine derivatives for cns disorders |
JPH07188139A (en) * | 1993-12-24 | 1995-07-25 | Kirin Brewery Co Ltd | Amide compound |
FR2729146A1 (en) * | 1995-01-06 | 1996-07-12 | Smithkline Beecham Lab | New arylamine derivs. are antiarrhythmic agents |
JP4629657B2 (en) * | 2003-04-11 | 2011-02-09 | ハイ・ポイント・ファーマスーティカルズ、エルエルシー | 11β-hydroxysteroid dehydrogenase type 1 active compound |
SE0301446D0 (en) * | 2003-05-16 | 2003-05-16 | Astrazeneca Ab | New Compounds |
JP2008524139A (en) | 2004-12-15 | 2008-07-10 | バイエル・シエーリング・ファーマ アクチエンゲゼルシャフト | Meta-substituted thiazolinones, their production and use as pharmaceuticals |
EP2234615A1 (en) * | 2007-12-19 | 2010-10-06 | Wyeth LLC | 4-imidazolidinones as kv1.5 potassium channel inhibitors |
US9518044B2 (en) * | 2011-06-20 | 2016-12-13 | Emory University | Prostaglandin receptor EP2 antagonists, derivatives, compositions, and uses related thereto |
US20130274233A1 (en) | 2012-04-03 | 2013-10-17 | President And Fellow Of Harvard College | Modulators of hedgehog signaling pathway |
-
2015
- 2015-06-15 US US15/317,742 patent/US10179761B2/en active Active
- 2015-06-15 EA EA201790020A patent/EA031123B1/en not_active IP Right Cessation
- 2015-06-15 KR KR1020167036029A patent/KR20170041662A/en not_active Application Discontinuation
- 2015-06-15 EP EP15730461.9A patent/EP3154934B1/en active Active
- 2015-06-15 AU AU2015276256A patent/AU2015276256B2/en not_active Ceased
- 2015-06-15 MA MA39533A patent/MA39533B1/en unknown
- 2015-06-15 CN CN201580032317.6A patent/CN106795100B/en active Active
- 2015-06-15 BR BR112016029571A patent/BR112016029571A2/en not_active Application Discontinuation
- 2015-06-15 ES ES15730461T patent/ES2880313T3/en active Active
- 2015-06-15 WO PCT/EP2015/063370 patent/WO2015193255A1/en active Application Filing
- 2015-06-15 TN TN2016000550A patent/TN2016000550A1/en unknown
- 2015-06-15 JP JP2016573483A patent/JP6704355B2/en active Active
- 2015-06-15 PE PE2016002712A patent/PE20170518A1/en not_active Application Discontinuation
- 2015-06-15 PT PT157304619T patent/PT3154934T/en unknown
- 2015-06-15 UA UAA201700333A patent/UA123041C2/en unknown
- 2015-06-15 PL PL15730461T patent/PL3154934T4/en unknown
- 2015-06-15 MY MYPI2016002188A patent/MY183757A/en unknown
- 2015-06-15 CA CA2951438A patent/CA2951438C/en active Active
- 2015-06-15 MX MX2016016769A patent/MX2016016769A/en unknown
- 2015-06-15 CR CR20160581A patent/CR20160581A/en unknown
- 2015-06-15 SG SG11201610478YA patent/SG11201610478YA/en unknown
-
2016
- 2016-12-07 IL IL249440A patent/IL249440B/en active IP Right Grant
- 2016-12-08 GT GT201600255A patent/GT201600255A/en unknown
- 2016-12-12 PH PH12016502480A patent/PH12016502480A1/en unknown
- 2016-12-12 ZA ZA2016/08558A patent/ZA201608558B/en unknown
- 2016-12-13 DO DO2016000325A patent/DOP2016000325A/en unknown
- 2016-12-14 EC ECIEPI201694286A patent/ECSP16094286A/en unknown
- 2016-12-15 CL CL2016003230A patent/CL2016003230A1/en unknown
-
2017
- 2017-01-10 CO CONC2017/0000211A patent/CO2017000211A2/en unknown
-
2018
- 2018-03-13 PE PE2018000386A patent/PE20181053A1/en unknown
- 2018-11-30 US US16/205,637 patent/US10844008B2/en active Active
-
2020
- 2020-10-22 US US17/077,530 patent/US20210040034A1/en not_active Abandoned
Non-Patent Citations (2)
Title |
---|
Cleveland Clinic (Creutzfeldt-Jakob Disease (CJD): Symptoms & Treatment (clevelandclinic.org), 2022) * |
Hayashi (Cholesterol at the Endoplasmic Reticulum: Roles of the Sigma-1 Receptor Chaperone and Implications thereof in Human Diseases, Subcell Biochem. 2010 ; 51: 381–398)(renumbered pages 1-17) * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112689629B (en) | For inhibiting Nav1.8 Pyridazine Compounds | |
US10221167B2 (en) | Hydroxyalkylamine- and hydroxycycloalkylamine-substituted diamine-arylsulfonamide compounds with selective activity in voltage-gated sodium channels | |
US20210040034A1 (en) | Compounds, pharmaceutical composition and their use in treating neurodegenerative diseases | |
CA2199621A1 (en) | Substituted aryl piperazines as neurokinin antagonists | |
US9359346B2 (en) | Benzamide derivative and use thereof | |
US20220185798A1 (en) | Dopamine d3 receptor selective antagonists/partial agonists; method of making; and use thereof | |
US20230364082A1 (en) | Muscarinic acetylcholine m1 receptor antagonists | |
US20210236470A1 (en) | Prodrugs of riluzole and their method of use | |
US20210024523A1 (en) | Atypical inhibitors of monoamine transporters; method of making; and use thereof | |
US8680279B2 (en) | Compounds for the treatment of neurological disorders | |
US20210228549A1 (en) | Riluzole prodrugs and their use | |
US20230226195A1 (en) | Targeted aberrant alpha-synuclein species and induced ubiquitination and proteosomal clearance via co-recruitment of an e3-ligase system | |
US20230331683A1 (en) | Inhibitors of spinster homolog 2 (spns2) for use in therapy | |
US20210230131A1 (en) | Polyamino biaryl compounds and their use | |
US11299476B2 (en) | Dopamine D3 receptor selective antagonists/partial agonists; method of making; and use thereof | |
US20170305862A1 (en) | Methyl-1h-pyrazole alkylamine compounds having multimodal activity against pain | |
TW201811761A (en) | Compounds for therapeutic use | |
US20140275060A1 (en) | Compounds for the treatment of neurologic disorders |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |