US20210016101A1 - Systems and Methods of Modulating Electrical Impulses in an Animal Brain Using Arrays of Planar Coils Configured to Generate Pulsed Electromagnetic Fields and Integrated into Clothing - Google Patents

Systems and Methods of Modulating Electrical Impulses in an Animal Brain Using Arrays of Planar Coils Configured to Generate Pulsed Electromagnetic Fields and Integrated into Clothing Download PDF

Info

Publication number
US20210016101A1
US20210016101A1 US17/065,412 US202017065412A US2021016101A1 US 20210016101 A1 US20210016101 A1 US 20210016101A1 US 202017065412 A US202017065412 A US 202017065412A US 2021016101 A1 US2021016101 A1 US 2021016101A1
Authority
US
United States
Prior art keywords
planar
array
arrays
planar microcoil
electromagnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US17/065,412
Other versions
US11020603B2 (en
Inventor
Kamran Ansari
Nadia Ansari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/867,130 external-priority patent/US11517760B2/en
Priority to US17/065,412 priority Critical patent/US11020603B2/en
Application filed by Individual filed Critical Individual
Publication of US20210016101A1 publication Critical patent/US20210016101A1/en
Priority to US29/770,198 priority patent/USD999388S1/en
Priority to US29/770,199 priority patent/USD966539S1/en
Priority to US17/308,426 priority patent/US20210346711A1/en
Priority to PCT/US2021/030826 priority patent/WO2021226197A1/en
Publication of US11020603B2 publication Critical patent/US11020603B2/en
Application granted granted Critical
Priority to US29/866,619 priority patent/USD1006241S1/en
Priority to US29/866,618 priority patent/USD1006240S1/en
Priority to US18/063,598 priority patent/US20230104434A1/en
Priority to US29/911,943 priority patent/USD1041016S1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/004Magnetotherapy specially adapted for a specific therapy
    • A61N2/006Magnetotherapy specially adapted for a specific therapy for magnetic stimulation of nerve tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/004Magnetotherapy specially adapted for a specific therapy
    • A61N2/008Magnetotherapy specially adapted for a specific therapy for pain treatment or analgesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0476Array electrodes (including any electrode arrangement with more than one electrode for at least one of the polarities)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0484Garment electrodes worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37235Aspects of the external programmer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/002Magnetotherapy in combination with another treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/02Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the selection of materials, e.g. to avoid wear during transport through the machine
    • G06K19/027Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the selection of materials, e.g. to avoid wear during transport through the machine the material being suitable for use as a textile, e.g. woven-based RFID-like labels designed for attachment to laundry items
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07777Antenna details the antenna being of the inductive type
    • G06K19/07779Antenna details the antenna being of the inductive type the inductive antenna being a coil
    • G06K19/07783Antenna details the antenna being of the inductive type the inductive antenna being a coil the coil being planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/064Circuit arrangements for actuating electromagnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures

Definitions

  • U.S. patent application Ser. No. 16/867,130 relies on U.S. Patent Provisional No. 62/892,751, entitled “Systems and Methods of Treating Medical Conditions Using Arrays of Planar Coils Configured to Generate Pulsed Electromagnetic Fields” and filed on Aug. 28, 2019, for priority and relies on U.S. Patent Provisional No. 62/843,727, entitled “Systems and Methods of Treating Medical Conditions Using Arrays of Planar Coils Configured to Generate Pulsed Electromagnetic Fields” and filed on May 6, 2019, for priority.
  • the present invention is directed toward modulating electrical impulses, and thereby modulating brain waves, generated by the brain of an animal, such as a human being, using planar coils. More specifically, the present invention is directed toward the design, creation and use of clothing products, and other devices, that integrate configurations of arrays of planar coils to generate pulsed electromagnetic fields to treat various medical conditions, such as anxiety, insomnia, depression, pain, food cravings, drug dependency, drug addiction, dementia, and/or memory loss and to effectuate improved mood, increased feelings of well-being, increased energy levels, increased memory, increased creative thinking, and/or improved sleep quality of an animal.
  • various medical conditions such as anxiety, insomnia, depression, pain, food cravings, drug dependency, drug addiction, dementia, and/or memory loss and to effectuate improved mood, increased feelings of well-being, increased energy levels, increased memory, increased creative thinking, and/or improved sleep quality of an animal.
  • EEGs electroencephalograms
  • Certain brain wave profiles are indicative of healthy brain function and may be measured, tracking, and quantified using EEGs.
  • beta waves or rhythms which are in the range of 13 to 35 Hz, are associated with consciousness, brain activities, and motor behaviors.
  • Alpha waves or rhythms which are in the range of 7 to 13 Hz, originate from occipital lobes during wakeful relaxation and are associated with relaxation or a meditative state.
  • Theta waves or rhythms, which are in the range of 4 to 7 Hz are typically recorded when an individual is experiencing low brain activity, sleep, or drowsiness.
  • Delta waves or rhythms which are in the range of 0 to 4 Hz, are typically recorded during very low activities of the brain and deep sleep.
  • Gamma waves or rhythms which are in the range of 30 to 100 Hz, are produced by different populations of neurons firing together in a neural network during certain motor or cognitive functions.
  • mental disorders such as obsessive-compulsive disorder (OCD) can be detected through an EEG, and studies have revealed a decrease in alpha and beta rhythms and an increase in the theta wave in the EGG of OCD patients
  • anxiety has EEG manifestations including an increased activity of rapid brain waves (beta rhythm), especially in the central part of frontal cortex and the activity of the alpha rhythm is decreased in patients with chronic anxiety
  • PTSD posttraumatic stress disorder
  • ADHD patients show a decreased beta activity in comparison with normal children, an increase in theta to beta ( ⁇ / ⁇ ) rhythm and missing alpha
  • TENS units which require a patient to attach leads to his or her ear, connect to an external stimulator, and periodically apply a current.
  • the application of a current particularly to the vagus nerve of the patient, may modulate electrical impulses in the brain and, accordingly, modulate brain wave activity.
  • this is intimidating, impractical (particularly in public situations or on the job), and psychologically difficult to do on a regular basis.
  • PEMF pulsed electromagnetic field therapy
  • patient compliance is low and extended treatment periods, such as one or more hours, tends to be unrealistic for most active patients.
  • they generate highly localized magnetic fields which tend to only over a small portion of the brain or are substantially non-homogenous across their surface areas.
  • the surface areas of the devices have regions with very low, non-therapeutic magnetic field dose levels interspersed with regions with sufficiently high, therapeutic doses of magnetic fields, often yielding asymmetrical responses in the patient's anatomy. This can be particularly problematic in the brain where asymmetrically modulating brain wave activity may hurt, rather than help, a patient.
  • these devices often fail to inconspicuously conform to particular body parts, are difficult to position or wear for long periods of time and are challenging to use consistently.
  • a pulse electromagnetic field device that can be comfortably worn for long periods of time, thereby increasing patient compliance and allowing active patients to get the necessary treatment. It would also be desirable to have a pulse electromagnetic field device where the therapeutically effective dose regions are known and/or predictable. Finally, it would also be desirable to have a pulse electromagnetic field device designed to treat a wide range of disorders, particularly disorders with a locus of dysfunction in the brain.
  • chronic pain affects more than 100 million people in the US.
  • the most common underlying biological causes for chronic pain include decreased blood circulation, damaged nerves, and/or increased inflammation.
  • opioids have been a widely used way of alleviating chronic pain, the medical community now recognizes the substantial disadvantages of prescribing opioids.
  • the Centers for Disease Control and Prevention estimates that the total economic burden of prescription opioid misuse alone in the United States is $78.5 billion a year, including the costs of healthcare, lost productivity, addiction treatment, and criminal justice involvement. Therefore, the search is on for a better way to treat pain without relying on highly addictive drugs.
  • PEMF low frequency electromagnetic fields
  • One conventional approach to treating pain is applying pulsing, low frequency electromagnetic fields (PEMF), non-invasively, to the area of the patient's skin where the patient is feeling pain.
  • PEMF therapy uses bursts of low-level electromagnetic radiation to heal damaged tissues and bone and to relieve injury-related pain.
  • the idea is that, when low frequency pulses pass through the skin and penetrate into muscle, nerves, bone and/or tendons, the body's natural repair mechanisms are activated, possibly by normalizing electrical charge distribution in cells, increasing blood perfusion in the affected areas, or improving signaling and/or conduction in nerves.
  • PEMF therapy has been shown to be effective in regenerating nerves, treating back pain, improving wound healing, countering the effects of Parkinson's disease, and treating peripheral neuropathy, using magnetic fields ranging from picoTesla to Tesla levels.
  • PEMF is a recognized therapy for treating pseudoarthrosis, diabetes mellitus induced complications, delayed wound healing, pain and neurodegenerative disorders and arthritis, and for regenerating musculoskeletal tissues such as cartilage, bone, tendon and ligaments.
  • PEMF therapy is delivered by a mat, ring or a small disc device that generates a pulsing electromagnetic field using large cylindrically shaped, non-planar coils, such as Helmholtz coils or butterfly coils, where the winding or turns of the coils extend outward from the surface of the first coil in a Z axis.
  • large cylindrically shaped, non-planar coils such as Helmholtz coils or butterfly coils, where the winding or turns of the coils extend outward from the surface of the first coil in a Z axis.
  • the surface areas of the devices have regions with very low, non-therapeutic magnetic field dose levels interspersed with regions with sufficiently high, therapeutic doses of magnetic fields.
  • Patients are unaware of what surface areas emit therapeutic doses and what surface areas emit non-therapeutic doses, resulting in suboptimal therapy. For example, a patient with a need for PEMF therapy in his or her feet may lay on a mat in a way that the feet are not sufficiently exposed to the requisite magnetic field dose levels.
  • these devices are not specifically designed to treat, or be applied to, specific parts of the body. As such, they often fail to conform to particular body parts, are difficult to position or wear for long periods of time and are to use consistently.
  • PEMF devices designed for at home use, to treat anxiety disorders, obsessive compulsive disorder, post-traumatic stress disorder, memory degeneration, schizophrenia, Parkinson's disease, stroke rehabilitation, drug addiction, including addiction to, or cravings for, nicotine, cocaine, alcohol, heroine, methamphetamines, stimulants, and/or sedatives, depression and depression-related conditions, such as post-partum depression or bipolar depression, auditory hallucinations, multiple sclerosis, fibromyalgia, Alzheimer's disease, spinocerebellar degeneration, epilepsy, urinary incontinence, movement disorders, chronic tinnitus, and sleep apnea are simply not available and have generally been deemed to be untreatable using PEMF devices.
  • a pulse electromagnetic field device that can generate substantially homogenous magnetic fields across large surface areas. It is further desirable to have a pulse electromagnetic field device that can be comfortably worn for long periods of time, thereby increasing patient compliance and allowing active patients to get the necessary treatment. It would also be desirable to have a pulse electromagnetic field device where the therapeutically effective dose regions are known and/or predictable. Finally, it would also be desirable to have a pulse electromagnetic field device designed to treat a wide range of disorders, particularly disorders with a locus of dysfunction in the brain.
  • a pulsed electromagnetic field device comprising: a hat comprising a crown having an internal surface configured to receive a human head; a controller configured to be attached to an external surface of the hat; and a plurality of planar microcoil arrays, wherein each array of the plurality of planar microcoil arrays comprises at least one planar microcoil positioned on a substrate, wherein each array of the plurality of planar microcoil arrays is coupled to the internal surface of the crown and wherein each array of the plurality of planar microcoil arrays is in electrical communication with the controller.
  • each array of the plurality of planar microcoil arrays is physically separate and configured to independently receive an electrical current from the controller.
  • the controller is adapted to generate an electrical pulse train having a frequency and to deliver the electrical pulse train to each array of the plurality of planar microcoil arrays.
  • the electrical pulse train comprises at least two pulses having different peak levels of current and wherein the different peak levels of current are in a range of 5 mA to 500 mA.
  • a shape of each of the at least two pulses may be rectangular.
  • the frequency may be in a range of 1 Hz to 60 Hz.
  • each array of the plurality of planar microcoil arrays comprises at least 4 spiral-shaped microcoils.
  • the controller is adapted to generate an electrical pulse train that is currently delivered to each of the at least 4 microcoils concurrently.
  • the plurality of planar microcoil arrays comprises at least 5 planar microcoil arrays wherein: a first array of the at least 5 planar microcoil arrays is positioned at a front portion of the crown such that, when the hat is worn on the human head, the first array of the at least 5 planar microcoil arrays is positioned adjacent a frontal lobe of a brain within the human head; a second array of the at least 5 planar microcoil arrays is positioned at a right side portion of the crown such that, when the hat is worn on the human head, the second array of the at least 5 planar microcoil arrays is positioned adjacent a right temporal lobe of the brain within the human head; a third array of the at least 5 planar microcoil arrays is positioned at a left side portion of the crown such that, when the hat is worn on the human head, the third array of the at least 5 planar microcoil arrays is positioned adjacent a left temporal lobe of the brain within the
  • the controller may be adapted to generate an electrical pulse train having a frequency in a range of 1 Hz to 100 Hz and to sequentially deliver the electrical pulse train to each of the at least 5 planar microcoil arrays.
  • the controller may be adapted to generate an electrical pulse train having a frequency in a range of 1 Hz to 100 Hz and to concurrently deliver the electrical pulse train to at least 2 of each of the at least 5 planar microcoil arrays.
  • the hat comprises two or more layers of material and the plurality of planar microcoil arrays is positioned between the two or more layers of material.
  • the controller is adapted to generate an electrical pulse train having a frequency and to deliver the electrical pulse train to each array of the plurality of planar microcoil arrays, wherein the electrical pulse train comprises a first pulse having a first amplitude, a second pulse having a second amplitude, and a third pulse having a third amplitude, wherein the first amplitude is less than the second amplitude and the second amplitude is less than the third amplitude.
  • Each of the first pulse, second pulse, and third pulse may have a substantially rectangular shape.
  • each array of the plurality of planar microcoil arrays is configured to generate a magnetic field in a range of 100 microTesla to 300 microTesla as measured 1 mm or less from a surface of the each array of the plurality of planar microcoils arrays.
  • the generated magnetic field may be adapted to degrade in air to less than 80 microTesla over a distance of at least 10 mm.
  • each array of the plurality of planar microcoil arrays comprises an input terminal configured to receive current from the controller, an output terminal, and at least two traces to electrically connect each of the microcoils positioned on each array of the plurality of planar microcoil arrays to the input terminal and the output terminal.
  • a first set of each of the microcoils may be configured to direct current clockwise and a second set of each of the microcoils may be configured to direct current counterclockwise.
  • Each of the microcoils may be configured to direct current in a same direction.
  • Each of the microcoils may be at least one of a spiral circular planar microcoil, a rectangular circular planar microcoil, a non-spiral circular planar microcoil, or a non-spiral rectangular planar microcoil.
  • the pulsed electromagnetic field device further comprises a set of programmatic instructions stored on a separate computing device, wherein, when executed by the separate computing device, the programmatic instructions generate a display for prompting a user to input data indicative of a physiological state, wherein the physiological state is representative of at least one of the user's state of stress, state of anxiety, state of relaxation or whether the user has a headache.
  • the controller is adapted to generate an electrical pulse train having a frequency, to deliver the electrical pulse train to each array of the plurality of planar microcoil arrays in accordance with a programmed time period, and to automatically terminate generating the electrical pulse train after the programmed time period elapses.
  • the pulsed electromagnetic field device further comprises a liner configured to be attached to the internal surface of the crown, wherein the liner comprises a plurality of cells and wherein each cell of the plurality of cells is defined by a pocket made of a first material bounded by a second material, and wherein the first material is more flexible than the second material.
  • the plurality of cells may be divided into a first set of cells and a second set of cells, wherein each cell of the first set of cells comprises one array of the plurality of planar microcoils arrays and a cushioning material, and wherein each cell of the second set of cells comprises cushioning material without any array of the plurality of planar microcoils arrays.
  • the substrate is flexible and each of the at least one planar microcoil is embedded, layered, or printed on the flexible substrate.
  • the hat further comprises a brim attached to the crown and the controller is adapted to be coupled to a portion of the brim.
  • the pulsed electromagnetic field device further comprises a set of programmatic instructions stored on a separate computing device, wherein, when executed by the separate computing device, the programmatic instructions generate a display for prompting a user to input data indicative of a desired type of treatment, wherein the desired type of treatment includes at least one of relaxation, improved sleep, improved memory, or improved mental acuity.
  • the controller may be adapted to receive the data indicative of the desired type of treatment from the separate computing device, to generate an electrical pulse train having a frequency based on the data indicative of the desired type of treatment, to deliver the generated electrical pulse train to each array of the plurality of planar microcoil arrays, and to automatically terminate generating the electrical pulse train after a programmed time period elapses.
  • the programmed time period may be based on the data indicative of the desired type of treatment.
  • the controller comprises a switch, wherein a position of the switch is representative of a desired type of treatment, wherein the desired type of treatment includes at least one of relaxation, improved sleep, improved memory, or improved mental acuity, and wherein the controller is adapted to generate an electrical pulse train having a frequency based on the position of the switch, to deliver the generated electrical pulse train to each array of the plurality of planar microcoil arrays, and to automatically terminate generating the electrical pulse train after a programmed time period elapses.
  • the present specification also discloses a pulsed electromagnetic field device comprising: an article of clothing; a controller removably attachable to the article of clothing; and a plurality of planar microcoil arrays, wherein each of the plurality of planar microcoil arrays comprises two or more planar microcoils positioned on a flexible substrate, wherein each of the plurality of planar microcoil arrays is integrated into the article of clothing; and wherein each of the plurality of planar microcoil arrays is in electrical communication with the controller.
  • the pulsed electromagnetic field device further comprises a docking station, wherein the docking station is configured to releasably receive the controller.
  • the docking station comprises a first mechanical connector and a first electrical interface
  • the controller comprises a second mechanical connector and a second electrical interface, and wherein, upon the first mechanical connector and the second mechanical connector latching, the first electrical interface is automatically placed in electrical communication with the second electrical interface.
  • the article of clothing comprises two or more layers of material and the plurality of planar microcoil arrays is positioned between the two or more layers of material.
  • the article of clothing is at least one of a sock, a shoe, a shirt, a pant, a glove, a mask, a neck covering, a head covering, a headband, a sleeve, or a brace configured to fit over an elbow, an ankle, or a knee.
  • the controller is configured to generate a pulse train, wherein each pulse train comprises a plurality of pulses having an amplitude in a range of 1 mA to 200 mA.
  • the pulse train comprises a first pulse having a first amplitude, a second pulse having a second amplitude, and a third pulse having a third amplitude, wherein the first amplitude is less than the second amplitude and the second amplitude is less than the third amplitude.
  • Each of the first pulse, second pulse, and third pulse may have a square shape.
  • Each of the two or more planar microcoils may be configured to generate a magnetic field in a range of 1 microTesla to 100 microTesla upon receiving the pulse train.
  • each of the plurality of planar microcoil arrays comprises at least six planar microcoils.
  • Each of the plurality of planar microcoil arrays may comprise an input terminal configured to receive current from the controller, an output terminal, and at least two traces to electrically connect each of the at least six planar microcoils to the input terminal and the output terminal.
  • a first set of the at least six planar microcoils is configured to direct current clockwise and a second set of the at least six planar microcoils is configured to direct current counterclockwise.
  • the first set of the at least six planar microcoils is less than the second set of the at least six planar microcoils.
  • the first set of the at least six planar microcoils is equal to the second set of the at least six planar microcoils. All of the at least six planar microcoils may be configured to direct current in a same direction.
  • each of the two or more planar microcoils is at least one of a spiral circular planar microcoil, a rectangular circular planar microcoil, a non-spiral circular planar microcoil, or a non-spiral rectangular planar microcoil.
  • each of the plurality of planar microcoil arrays is physically separate and a first subset of the plurality of planar microcoil arrays has a different surface area than a second subset of the plurality of planar microcoil arrays.
  • each of the plurality of planar microcoil arrays is physically separate and has a same surface area.
  • the controller may be configured to generate a time varying current in order to create a time varying magnetic field at each of the plurality of planar microcoil arrays.
  • the time varying current is defined by square waves having substantially equal peak amplitude values.
  • the time varying current is defined by sinusoidal waves having substantially equal peak amplitude values.
  • the time varying current is defined by square waves having substantially different peak amplitude values.
  • the time varying current is defined by a train of square waves wherein, in each train, the square waves have peak values that ramp from a low peak amplitude value to a higher peak amplitude value.
  • the controller may be configured to cause an electrical current to be concurrently transmitted to all of the plurality of planar microcoil arrays.
  • the controller may be configured to cause an electrical current to be transmitted to all of the plurality of planar microcoil arrays at different times.
  • the pulsed electromagnetic field device further comprises a set of programmatic instructions stored on a separate computing device, wherein, when executed by the separate computing device, the programmatic instructions generate a display for prompting a user to input a pain level and a locus of pain.
  • the programmatic instructions determine which of the plurality of planar microcoil arrays should receive an electrical current based on at least one of the pain level or the locus of pain.
  • the programmatic instructions when executed by the separate computing device, the programmatic instructions generate data indicative of which of the plurality of planar microcoil arrays should receive an electrical current based on at least one of the pain level or the locus of pain and transmit the data to the controller.
  • the controller generates an electrical current based on the data and in a predefined pattern based on at least one of the pain level or the locus of pain.
  • the pulsed electromagnetic field device further comprises a plurality of traces integrated into the article of clothing and extending from each of the plurality of planar microcoil arrays to the controller.
  • the present specification also discloses a method of treating a condition, comprising: attaching an article of clothing to a portion of a patient's body, wherein the article of clothing comprises a plurality of planar microcoil arrays, wherein each of the plurality of planar microcoil arrays comprises two or more planar microcoils positioned on a flexible substrate, wherein each of the plurality of planar microcoil arrays is integrated into the article of clothing; and wherein each of the plurality of planar microcoil arrays is in electrical communication with a docking station integrated into the article of clothing; attaching a controller to the docking station, wherein the controller comprises a circuit and a power source; and activating the controller to cause a time varying current to be transmitted to each of the plurality of planar microcoil arrays.
  • the method condition may be at least one of an anxiety disorder, an obsessive compulsive disorder, a post-traumatic stress disorder, memory degeneration, schizophrenia, Parkinson's disease, stroke rehabilitation, drug addiction, drug cravings, depression, depression-related conditions, post-partum depression, bipolar depression, auditory hallucinations, multiple sclerosis, fibromyalgia, Alzheimer's disease, spinocerebellar degeneration, epilepsy, urinary incontinence, movement disorders, chronic tinnitus, or sleep apnea.
  • the method further comprises attaching the article of clothing such that at least one of the two or more planar microcoils in at least one of the plurality of planar microcoil arrays is positioned over an acupoint of the patient's body.
  • the circuit upon attaching the controller to the docking station, automatically electrically interfaces with at least one of the plurality of planar microcoil arrays.
  • the present specification also discloses a pulsed electromagnetic field system comprising: a plurality of planar microcoil arrays, wherein each of the plurality of planar microcoil arrays comprises two or more planar microcoils positioned on a flexible substrate and wherein one of the plurality of planar microcoil arrays is connected to another of the plurality of planar microcoil arrays; and a controller configured to generate an electrical current and transmit that electrical current, in accordance with a particular stimulation protocol, to each of the plurality of planar microcoil arrays.
  • the planar microcoil is at least one of a spiral circular planar microcoil, a rectangular circular planar microcoil, a non-spiral circular planar microcoil, or a non-spiral rectangular planar microcoil.
  • a first subset of the plurality of planar microcoil arrays has a different surface area than a second subset of the plurality of planar microcoil arrays.
  • each of the plurality of planar microcoil arrays has a same surface area.
  • the stimulation protocol comprises a time varying magnetic field.
  • the time varying magnetic field is defined by square waves having substantially equal peak values.
  • the time varying magnetic field is defined by a sinusoidal wave.
  • the time varying magnetic field is defined by square waves having different peak values.
  • the time varying magnetic field is defined by a train of square waves wherein, in each train, the square waves have peak values that ramp from a low peak value to a higher peak value.
  • the controller is configured to cause an electrical current to be transmitted substantially currently to all of the plurality of planar microcoil arrays.
  • the controller is configured to cause an electrical current to be transmitted to the plurality of planar microcoil arrays at different times.
  • the pulsed electromagnetic field system further comprises a set of programmatic instructions stored on a separate computing device, wherein, when executed by the separate computing device, the programmatic instructions generate a display for prompting a user to input a pain level and a locus of pain.
  • the programmatic instructions determine which of the plurality of planar microcoil arrays should receive an electrical current based on the pain level and/or locus of pain.
  • the programmatic instructions when executed by the separate computing device, the programmatic instructions generate data indicative of which of the plurality of planar microcoil arrays should receive an electrical current based on the pain level and/or locus of pain and transmit said data to the controller.
  • the controller generates an electrical current based on said data and in a predefined pattern based on the pain level and/or locus of pain.
  • the present specification also discloses a sock, shirt, pant, glove, head covering, head band, helmet, mask, neck covering, sleeve, and garment comprising the pulsed electromagnetic field system described above.
  • FIG. 1A depicts an exemplary planar microcoil in a first circular configuration
  • FIG. 1B depicts an exemplary planar microcoil in a first rectangular configuration
  • FIG. 2A depicts an exemplary planar microcoil in a second circular configuration
  • FIG. 2B depicts an exemplary planar microcoil in a second rectangular configuration
  • FIG. 3A depicts an exemplary planar microcoil in a third circular configuration
  • FIG. 3B depicts an exemplary planar microcoil in a third rectangular configuration
  • FIG. 3C depicts an exemplary planar microcoil in a fourth configuration
  • FIG. 4A depicts an exemplary planar microcoil in a first alternative configuration
  • FIG. 4B depicts an exemplary planar microcoil in a second alternative configuration
  • FIG. 4C depicts an exemplary planar microcoil in a third alternative configuration
  • FIG. 5A depicts a first exemplary set of dimensions associated with an exemplary rectangular planar microcoil
  • FIG. 5B depicts a second exemplary set of dimensions associated with an exemplary rectangular planar microcoil
  • FIG. 6 depicts an exemplary planar microcoil system with multiple arrays of microcoils
  • FIG. 7A depicts an exemplary planar microcoil positioned on a substrate
  • FIG. 7B depicts an exemplary set of planar microcoils positioned on a substrate
  • FIG. 8 depicts exemplary planar microcoils positioned on a second substrate
  • FIG. 9 depicts an exemplary planar microcoil circuit diagram
  • FIG. 10A depicts a first pulsed electromagnetic frequency signal which may be implemented to administer the therapies described herein;
  • FIG. 10B depicts a second pulsed electromagnetic frequency signal which may be implemented to administer the therapies described herein;
  • FIG. 10C depicts a third pulsed electromagnetic frequency signal which may be implemented to administer the therapies described herein;
  • FIG. 10D depicts a fourth pulsed electromagnetic frequency signal which may be implemented to administer the therapies described herein;
  • FIG. 10E depicts a fifth pulsed electromagnetic frequency signal which may be implemented to administer the therapies described herein;
  • FIG. 10F depicts a sixth pulsed electromagnetic frequency signal which may be implemented to administer the therapies described herein;
  • FIG. 10G depicts a seventh pulsed electromagnetic frequency signal which may be implemented to administer the therapies described herein;
  • FIG. 11A depicts a shirt with embedded planar microcoil arrays, in accordance with some embodiments of the present specification
  • FIG. 11B depicts a pair of socks with embedded planar microcoil arrays, in accordance with some embodiments of the present specification
  • FIG. 11C depicts a head covering with embedded planar microcoil arrays, in accordance with some embodiments of the present specification.
  • FIG. 11D depicts a pair of pants or leggings with embedded planar microcoil arrays, in accordance with some embodiments of the present specification
  • FIG. 11E depicts a glove with embedded planar microcoil arrays, in accordance with some embodiments of the present specification.
  • FIG. 12A depicts a shirt with embedded planar microcoil arrays, in accordance with other embodiments of the present specification.
  • FIG. 12B depicts a pair of socks with embedded planar microcoil arrays, in accordance with other embodiments of the present specification.
  • FIG. 12C depicts a head covering with embedded planar microcoil arrays, in accordance with other embodiments of the present specification.
  • FIG. 12D depicts a pair of pants or leggings with embedded planar microcoil arrays, in accordance with other embodiments of the present specification.
  • FIG. 12E depicts a glove with embedded planar microcoil arrays, in accordance with other embodiments of the present specification.
  • FIG. 13 is a flowchart showing an exemplary use of the system
  • FIG. 14 is an exemplary footwear system
  • FIG. 15 is an exemplary array of planar coils
  • FIG. 16 is an exemplary current directionality of a coil array
  • FIG. 17 is an exemplary docking station configured to interface with a controller
  • FIG. 18A is an exemplary head covering with planar microcoil arrays integrated therein;
  • FIG. 18B is another exemplary head covering with planar microcoil arrays integrated therein;
  • FIG. 19 is a side view of an article of clothing with planar microcoil arrays integrated therein;
  • FIG. 20 shows an exemplary method of using the PEMF device
  • FIG. 21A shows an exemplary EEG profile of a human brain without exposure to an pulsed electromagnetic field using planar coils
  • FIG. 21B shows an exemplary EEG profile of a human brain during exposure to an pulsed electromagnetic field using planar coils
  • FIG. 22A shows a magnetic field profile of a preferred planar microcoil array approximately 1 mm from the surface of the array
  • FIG. 22B shows a magnetic field profile of a preferred planar microcoil array approximately 3 mm from the surface of the array
  • FIG. 22C shows a magnetic field profile of a preferred planar microcoil array approximately 5 mm from the surface of the array
  • FIG. 22D shows a magnetic field profile of a preferred planar microcoil array approximately 7 mm from the surface of the array
  • FIG. 22E shows a magnetic field profile of a preferred planar microcoil array approximately 9 mm from the surface of the array
  • FIG. 22F shows a magnetic field profile of a preferred planar microcoil array approximately 11 mm from the surface of the array
  • FIG. 23 shows an exemplary method of treating a person's brain
  • FIG. 24 shows an exemplary method of treating pain in various parts of a person's body
  • FIG. 25A shows a first view of an exemplary liner configured to be positioned between headwear and a patient's head
  • FIG. 25B shows a second view of an exemplary liner configured to be positioned between headwear and a patient's head.
  • each of the words “comprise” “include” and “have”, and forms thereof, are not necessarily limited to members in a list with which the words may be associated. It should be noted herein that any feature or component described in association with a specific embodiment may be used and implemented with any other embodiment unless clearly indicated otherwise.
  • planar coil or “planar microcoil” both refer to a conductive pathway with curves or turns where the entirety of the conductive pathway is substantially positioned within the same plane. Stated differently, the turns, curves, or coils of the conductive pathway occupy varied positions within an X-Y plane but are of the same thickness or have a thickness within a range of 20% of each other. Accordingly, such a planar microcoil is differentiated from conventional coil structures because the windings or turns of the coil do not extend substantially upward or outward from the innermost or first coil in the Z direction or normal to the X-Y plane defined by the innermost or first coil.
  • planar footprint area of a “planar coil” or “planar microcoil” is preferably greater than 1 cm 2 , more preferably between 1 cm 2 and 9 cm 2 , and even more preferably between 2 cm 2 and 4 cm 2 .
  • magnetic flux refers to a quantity or strength of magnetic lines produced by a current passing through one or more planar coils and the term “magnetic flux density” refers to the amount of that magnetic flux in an area taken perpendicular to the magnetic flux's direction, typically measured in Tesla. It should be appreciated that, throughout this specification and in each embodiment taught here, all magnetic fields, and corresponding magnetic flux and magnetic flux densities, are generated by a current passing through one or more planar coils and are not generated by one or more permanent magnets unless otherwise stated. It should further be appreciated that each embodiment described herein may further include an optional version which expressly does not include, incorporate, or otherwise use permanent magnets but, yet, which still generate magnetic fields.
  • the planar microcoils may have a plurality of different shapes and dimensions.
  • FIG. 1A shows a spiral circular planar microcoil 100 a having six turns where the conductive pathway follows a spiral shape from a first part of the circuit 102 a , or where the spiral coil conductive pathway begins, to a second part of the circuit 104 a , or where the spiral coil conductive pathway terminates. Each turn forms a circle, except that the beginning and end of the circle are offset from each other, thereby creating a spiral across all turns.
  • the spiral shaped conductive pathway 106 a is substantially entirely positioned within the same X-Y plane.
  • FIG. 1B shows a spiral rectangular planar microcoil 100 b having 10 turns where the conductive pathway follows a spiral shape from a first part of the circuit 102 b , or where the spiral coil conductive pathway begins, to a second part of the circuit 104 b , or where the spiral coil conductive pathway terminates.
  • Each turn forms a rectangle, except that the beginning and end of the circle are offset from each other, thereby creating a spiral across all turns.
  • the spiral shaped conductive pathway 106 b is substantially entirely positioned within the same X-Y plane.
  • the present invention is directed toward any spiral shaped planar microcoil, including polygonal, elliptical, or other shapes, having a plurality of turns where the conductive pathway follows a spiral shape from a first part of the circuit, or where the spiral coil conductive pathway begins, to a second part of the circuit, or where the spiral coil conductive pathway terminates.
  • each turn would form the same polygonal, elliptical, or other shape, except that the beginning and end of the shape are offset from each other, thereby creating a spiral across all turns.
  • the spiral shaped conductive pathway would also be substantially entirely positioned within the same X-Y plane.
  • FIG. 2A shows a non-spiral circular planar microcoil 200 a having three turns where the conductive pathway follows a curved, or circular, shape from a first part of the circuit 202 a , or where the coil conductive pathway begins, to a second part of the circuit 204 a , or where the coil conductive pathway terminates.
  • Each turn forms an incomplete circle and shares a common electrical input and electrical output with the adjacent turns, thereby creating a set of nested incomplete circles, each in electrical communication with a common electrical input 202 a and electrical output 204 a and each having a progressively smaller (or larger) radius.
  • the conductive pathway of nested incomplete circles 206 a is substantially entirely positioned within the same X-Y plane.
  • FIG. 2B shows a non-spiral rectangular planar microcoil 200 b having four turns where the conductive pathway follows a polygonal, or rectangular, shape from a first part of the circuit 202 b , or where the coil conductive pathway begins, to a second part of the circuit 204 b , or where the coil conductive pathway terminates.
  • Each turn forms an incomplete rectangle and shares a common electrical input and electrical output with the adjacent turns, thereby creating a set of nested incomplete rectangles, each in electrical communication with a common electrical input 202 b and electrical output 204 b and each having a progressively smaller (or larger) length and width.
  • the conductive pathway of nested incomplete rectangles 206 b is substantially entirely positioned within the same X-Y plane.
  • the present invention is directed toward any non-spiral shaped planar microcoil, including polygonal, elliptical, or other shapes, having a plurality of turns where the conductive pathway follows a polygonal, elliptical, or other shape from a first part of the circuit, or where the coil conductive pathway begins, to a second part of the circuit, or where the coil conductive pathway terminates.
  • each turn would form the same incomplete polygonal, elliptical, or other shape and would share a common electrical input and electrical output with the adjacent turns, thereby creating a set of nested incomplete polygonal, elliptical, or other shapes, each in electrical communication with a common electrical input and electrical output and each having a progressively smaller (or larger) length and width or radius.
  • the conductive pathway of nested incomplete polygonal, elliptical, or other shapes would be substantially entirely positioned within the same X-Y plane
  • FIGS. 3A, 3B, 3C, 4A, 4B, 4C, 5A, 5B, 7A, 7B and 8 show additional exemplary microcoil embodiments and configurations.
  • a circular spiral coil is shown 300 a with a current input 305 a and current output 310 a on the same side and parallel to each other.
  • FIG. 3B shows a rectangular spiral coil 300 b with a current input or output 305 b in the interior of the coil 300 b .
  • FIG. 3C shows a high-density spiral coil with an interior, wireless region 320 c that is rectangular with curved corners.
  • FIGS. 3A, 3B, 3C, 4A, 4B, 4C, 5A, 5B, 7A, 7B and 8 show additional exemplary microcoil embodiments and configurations.
  • FIG. 3A a circular spiral coil is shown 300 a with a current input 305 a and current output 310 a on the same side and parallel to each other.
  • FIG. 3B shows
  • a multi-coil planar array 800 may include two or more pronged coils 810 with the two ends of the coil separated by a zig-zag coil 805 .
  • FIG. 5A shows a side perspective view of a planar coil 500 a with coil depth in the Z the direction, as denoted by the variable “h”.
  • the variable D denotes a dimension indicative of the distance from one exterior side of the coil to the opposing exterior side of the coil.
  • the variable b denotes a dimension indicative of the thickness of the coil.
  • the variable p denotes a dimension indicative of the distance between coils, referred to as a pitch.
  • the variable Di denotes a dimension indicative of the distance from one interior side of the innermost coil to the opposing interior side of the innermost coil.
  • the variable g also shows a spacing between coils.
  • the arrow indicates a flow of current from an outside current coil connection to an inside current coil output.
  • FIG. 7A a single coil 700 a mounted on a substrate 730 a , where the coil is rectangular and has an input/output, 720 a , 725 a , on the exterior of the coil and in the interior of the coil.
  • FIG. 7B six coil 700 a mounted on a substrate 730 a , where the coil is rectangular and has an input/output, 720 a , 725 a , on the exterior of the coil and in the interior of the coil.
  • FIG. 7B represents the preferred embodiment of a planar multi-coil array 700 b and is discussed in greater detail with respect to FIG. 15 .
  • Six circular planar coils, 740 b , 741 b are mounted on a flexible substrate 730 b .
  • Three coils 740 b are on a top side and three coils 741 b are on a bottom side. All coils are electrically connected, via traces 750 b which run across the substrate, and 760 b which connect from trace 750 b to an individual coil, to a current input 720 b and a current output 725 b .
  • the current input 720 b and output 725 b are on the same side of the substrate 730 b .
  • the current input 720 b and output 725 b may be on the different sides of the substrate 730 b.
  • Table 1 has a list of preferred attributes of each of the spiral circular coil ( FIG. 1A ), spiral rectangular coil ( FIG. 1B ), non-spiral circular coil ( FIG. 2A ), and non-spiral rectangular coil ( FIG. 2B ). It should be appreciated that one or more of the other coils, as described herein, may have one or more of the preferred attributes described in Table 1 below.
  • FIG. 1a coil FIG. 1b coil FIG. 2a coil FIG. 2b Width of the coil 1 to 200 microns 1 to 200 1 to 200 microns 1 to 200 microns segments (note that (preferably 25 to microns (preferably 25 to (preferably 25 to 100 the widths may be 100 microns, (preferably 25 100 microns, microns, preferably constant or preferably 50 to 100 microns, preferably 50 50 microns) variable) microns) preferably 50 microns) microns) Distance from 10 to 500 10 to 500 10 to 500 microns 10 to 500 microns center of coil to microns microns (preferably 100 (preferably 100 innermost coil (preferably 100 (preferably 100 microns) microns) segment microns) microns) Distance from 43 to 800250 43 to 800250 43 to 800250 43 to 800250 center to the microns, where microns, where microns, where microns,
  • a copper coil 305 c that is substantially circular with a substantially rectangular inner air core (having rounded internal edges) is provided. In one embodiment, it has the following attributes:
  • the coil including any hard-plastic backing, has a footprint no greater than 2 cm by 2 cm, preferably no greater than 1.65 by 1.65 centimeters.
  • the coil comprises a plurality of wire turns, where the diameter of the coil in the plane of the coil is 0.04 mm.
  • the coil will have a minimum of 100 turns, preferably 175 windings, and even more preferably greater than 150 windings.
  • Each corner of the coil will have 1 quarter-circle with a radius of 0.18125 cm.
  • the inductance is in a range of 200 to 700 ⁇ H, preferably around 373 ⁇ H and the resistance is in a range of 50 to 800 ohms, preferably around 144 ohms.
  • the inner air core has dimensions in a range of 0.2 cm by 0.2 cm with each corner of the inner air core being 1 quarter-circle with a radius of 0.00625 cm.
  • preferred planar microcoil arrays preferably generate high intensity, sharply peaking fields at a small vertical distance from the surface of the planar microcoil that rapidly flatten and decrease in intensity as the vertical distance from the surface of the planar microcoil array increases.
  • each coil on the planar microcoil array concurrently generates a field which, at a 40 mA current and measured using an AC field measurement of 1 kHz, that decreases in a non-linear manner as the vertical distance increases from the surface of the array.
  • each of the coils generates a field 2230 A in a range of 120 to 160 microTesla approximately 1 mm above the array and coil surface.
  • the field of each coil initially decreases at a first rate and then, over 2-4 mm, decreases to a second rate, where the second rate is less than the first rate. Additionally, over 5-8 mm, decreases to a third rate, where the third rate is less than the first and second rates. It should be appreciated that, while a six coil configuration is shown, other numbers of coils (collectively integrated onto a single contiguous substrate) may be used, in a range of 2 to 1000 and every whole number increment therein.
  • each coil on the planar microcoil array concurrently, yet independently, generates a field having a peak intensity that is within 0.01% to 20% of the average peak intensity of all the coils measured at the same given distance. More preferably, each coil on the planar microcoil array concurrently, yet independently, generates a field having a peak intensity that is within 0.01% to 10%, or any whole number increment therein, of the average peak intensity of all the coils measured at the same given distance.
  • the peak intensity generated by each coil on the planar microcoil array concurrently, yet independently, decreases at a certain rate as the distance increases from the surface of the planar microcoil array.
  • the average peak intensity of the magnetic field measured 1 mm normal to the surface of the planar microcoil array decreases from a first value, such as in a range of 200 to 300 microTesla, to a second value measured 2 mm normal to the surface of the planar microcoil array, such as in a range of 80 to 130 microTesla, to a third value measured 3 mm normal to the surface of the planar microcoil array, such as in a range of 50 to 90 microTesla, to a fourth value measured 4 mm normal to the surface of the planar microcoil array, such as in a range of 30 to 70 microTesla, to a fifth value measured 5 mm normal to the surface of the planar microcoil array, such as in a range of 20 to 50 microTesla, to a sixth value measured 6 mm normal to the surface of the planar microcoil array, such as in a range of 10 to 40 microTesla, to a seventh value measured 7 mm normal
  • the magnitude of the decrease lessens as one moves further away from the planar microcoil array.
  • A is in a range of 100 to 600, and more preferably 300 to 400, and every whole number increment therein and where B is in a range of 1 to 2.5 (and every 0.1 decimal increment therein).
  • the preferred magnetic field generated by the planar microcoil arrays are defined by four different vectors: a) the frequency of the pulse train or burst, b) the shape of each pulse in the pulse train or burst itself, c) the relative peak intensities of each pulse in the pulse train or burst itself, and d) the degradation profile from the surface of the planar microcoil arrays.
  • each embodiment described herein generates a magnetic field by:
  • the preferred embodiments generate a magnetic field having at least four vectors of variation, resulting in a rapidly changing magnetic field profile across human tissue: a) the individual pulse shape in a given pulse train (rectangular, sinusoidal or other shaped pulse), b) the ramping (or decreasing) peak intensity between individual pulses in a pulse train, c) the frequency of the pulse train/bursts, and d) the degradation profile of the field from each of the coils over a distance.
  • the combination of these various vectors results in a rapidly varying magnetic field profile (over both time and distance) that results in the beneficial therapeutic effects described herein.
  • the magnetic field vectors defining the dominant direction of the magnetic fields of the plurality of planar microcoil arrays be non-coplanar. Specifically, it is preferred that:
  • the therapeutic system 600 comprises a flexible patch or substrate 620 having one or more planar microcoils 620 positioned thereon.
  • the flexible patch or substrate 620 comprises a flexible material, such as Kapton, polyimide, or any other suitable non-conductive flexible material.
  • a single patch 620 comprising a plurality of planar microcoils 615 constitutes a planar microcoil array 630 , as shown in FIGS. 7 b and 15 .
  • Each of the arrays is connected in parallel or in series to a controller 605 .
  • the set of patches 620 in column 603 may be connected serially, while the patches in columns adjacent to column 603 may be connected in parallel to the patches in column 603 via wires, or electrical communication pathways, 610 .
  • the single patch 620 comprises two or more planar microcoils 615 or between 2 and 100 microcoils or more than 2 planar microcoils.
  • the set of patches used in any specific application, including in any piece of clothing may have different sizes (e.g. surface areas), and therefore different numbers of planar microcoils, in order to better fit or suit different parts of a person's anatomy.
  • clothing positioned adjacent to the patient's torso may have larger patches, and more planar microcoils, integrated into a single patch than clothing positioned near the patient's toes or fingers, which may have smaller patches to better contour to the curves and crevices near the patient's toes or fingers, as further discussed in relation to FIGS. 12 a to 12 e.
  • Controller 605 may be programmed to concurrently stimulate all the planar microcoils in all the patches, all planar microcoils on a subset of the patches, or a subset of planar microcoils on a subset of the patches. Further, the controller 605 may be optionally configured to removably interface with a docking station 675 . Referring to FIG.
  • a docking system 1700 is comprised of a controller 1705 having circuitry 1710 configured to generate current signals in accordance with the stimulation protocols described herein, a first mechanical connection 1722 , and a power source, such as a battery 1720 , and a docking station 1730 , having an electrical connection 1740 configured to mate to the circuitry 1710 and a second mechanical connection 1745 configured to mate with the first mechanical connection 1722 .
  • the electrical connection 1740 comprises one or more pins having data stored therein indicative of the type of clothing, device, or application the docking station 1730 is integrated into.
  • the planar microcoil arrays are integrated into clothing and, preferably, the docking station 1730 is as well.
  • the controller 1705 is removably attachable to the docking station 1730 such, upon connecting the first mechanical connection 1722 to the second mechanical connection 1745 , the circuit 1710 is automatically placed in electrical communication with, and is therefore capable of driving a current through, electrical interface 1740 . Further, upon being automatically interfaced with electrical interface 1740 , the circuit 1710 is configured to read the data indicative of the type of clothing or planar array configuration to which the docking station 1730 is connected, thereby allowing a user to use one controller 1705 with multiple different clothing types and further allowing the controller 1705 to be charged or serviced separate from the docking station 1730 , planar microcoil arrays, and clothing into which both are integrated.
  • the mechanical connection may be a male/female latch combination, a male/female snap combination, or any other male/female mechanical combination.
  • programmatic instructions on a separate computing device are executed to capture pain data from the patient, analyze the pain data to determine which areas of the patient's anatomy requires pulsed electromagnetic field therapy, and, depending on the garment being worn by the patient, activate one or more planar microcoils on one or more patches to target the determined areas requiring pulsed electromagnetic field therapy.
  • a patient first acquires a specific piece of clothing with the patches and planar microcoil arrays integrated therein, as further described below.
  • the patient downloads an app onto his or her phone 635 , creates an account, and inputs a clothing identifier, using a QR code, RFID tag, serial number or another identifier.
  • the app determines the type of clothing (shirt, pant, sock, etc.) and generates a set of clearance questions specific to that type of clothing 1305 . Clearance questions may be directed toward making sure the device is not used proximate to implanted devices, metal or other structures that, if positioned on the patient's skin, could experience induced electrical currents if pulsed electromagnetic fields are applied thereto.
  • the app After receiving the user's response to the clearance questions, the app determines if there are any contraindications to use (i.e. a pacemaker, spinal implants, pins, or other implanted devices) 1310 and, depending upon the determination, generates an activation code which is transmitted to the controller 605 . If the user inputted data is contraindicated for use with the specific piece of clothing, the app recommends the user first activate the device under the supervision of a physician. An override code, which would require the user to actively acknowledge the risks involved, may be provided by the app and either wirelessly transmitted to the controller 605 or displayed to the user who may manually input it into the controller 605 .
  • a pacemaker i.e. a pacemaker, spinal implants, pins, or other implanted devices 1310
  • an activation code which is transmitted to the controller 605 .
  • the app then prompts the user to input data indicative of the patient's pain level and location of the pain 1315 .
  • the app may do so by generating a visual analog scale that the user may use to indicate a level of pain being experienced (i.e. on a scale of 1 to 10 or using graphical emojis) and a graphical image of a human body, or portions thereof, to allow the user to identify, by pointing to the right location on the graphical image, the locus of pain.
  • the graphical image used is specific to the type of clothing identified using the original code indicative of the clothing acquired.
  • the app may determine which set of patches and/or set of planar microcoils should be energized in order to treat the inputted level and location of pain 1320 and transmit such data to the controller. For other conditions, other questions may be posed, such as degree and timing of memory lapses, degree and timing of tremors, or degree and timing of other symptoms.
  • FIG. 9 describes an exemplary circuit 900 configured to generate electrical currents, in accordance with stimulation protocols described below.
  • the exemplary circuit may be in the controller 605 or distributed between the controller 605 and patches 620 .
  • the coil array 1500 may comprise a flexible substrate 1502 upon which a plurality of coil pieces 1504 are attached.
  • Each coil piece 1504 comprises a backing, such as a hard-plastic backing 1506 , upon which a coil 1508 is wound or molded.
  • the coils may be any of the rectangular spiral, rectangular non-spiral, circular spiral, circular non-spiral or other shaped coils.
  • the coil pieces 1504 are preferably spaced from each other in a range of 0.1 cm to 10 cm, preferably 0.5 cm to 2 cm, and preferably less than 15 cm, or any numerical increment therein.
  • Each coil 1508 comprises an input lead and an output lead.
  • each coil 1508 may be routed to one side of the array 1510 and may be kept separate from each other by one or more layers of insulation tape 1512 .
  • the input leads of all the coils 1508 of the array 1500 are integrated or multiplexed together to form an input terminal 1522 to which electrical current from the controller and energy source may be directed. Accordingly, all the coils 1508 of the array 1500 may be concurrently energized by directing current from a single energy or battery source to just one input terminal 1522 .
  • each coil 1508 may be routed to one side of the array 1514 and may be kept separate from each other by one or more layers of insulation tape 1512 .
  • the output leads of all the coils 1508 of the array 1500 are integrated or multiplexed together to form an output terminal 1524 to which electrical current from the controller and energy source may be directed. Accordingly, the output leads of all the coils 1508 of the array 1500 are integrated or multiplexed together to form an output terminal 1524 to which electrical current may be directed from the array to the controller and energy source. Further, all the coils 1508 of the array 1500 may form a closed circuit by directing current from the array to the single energy or battery source via the one output terminal 1524 .
  • each coil piece 1504 or coil 1508 is a material that may act as a cushion, barrier, or padding 1518 that functions to both prevent the coil pieces from 1504 shifting and to gently position the array 1500 against the user's skin.
  • area 1518 may include an adhesive to attach, secure, or otherwise fixedly position the array 1500 against the user's skin.
  • area 1518 may include an attachment mechanism, such as Velcro or snaps, to attach area 1518 , and therefore array 1500 , to another substrate or material to form a piece of clothing, as further discussed below.
  • the directionality of the current of each coil may be modified to achieve a desired magnetic flux level by properly routing its input lead or output lead to the input or output side of the array 1500 .
  • the top coils 1632 and the bottom coils 1636 have counterclockwise currents.
  • the directionality of the current of a coil may be modified by changing which lead, extending from that coil, is routed to the input terminal and is routed to the output terminal. For example, if lead A is directed to the input terminal and lead B is directed to the output terminal, the current directionality of the corresponding coil may be clockwise. That current directionality may be switched to become counterclockwise by routing lead A to the output terminal and lead B to the input terminal
  • the form factor and range of coil sizes and relative separation between coil pieces are important to achieving two core objectives.
  • the coil footprint should not be too large, and the coil separation should not be too small, otherwise the array will not be flexible enough to conform to uneven or non-planar portions of a user's body.
  • the coil footprint should not be too small, and the coil separation should not be too large, otherwise the array will not generate a sufficiently large magnetic flux for therapeutic purposes.
  • the dimensions and distances disclosed herein have a distinct utility and are not merely aesthetic in nature.
  • the controller is configured to generate an electrical current, and selectively transmit the electrical current to all of the plurality of planar microcoils, or a subset of the plurality of planar microcoils, in order to generate pulsed electromagnetic fields in accordance with one or more of FIGS. 10A to 10G .
  • the electrical current may be a sinusoidal curve 1000 a defined by a first period, a sinusoidal curve 1000 b defined by a second period, or a sinusoidal curve 1000 c defined by a third period where each of the three periods are of different lengths.
  • the electrical current may also be a sinusoidal curve 1000 d having a varying amplitude.
  • the electrical current pulse may be a trapezoidal 1000 e , a spike 1000 f , or square shaped 1000 g .
  • the stimulation pulse, or shape of the electrical current pulse may comprise a series of pulse trains 1000 g , each defined by a set of ramping square pulses, 1005 g , 1015 g , 1020 g .
  • each pulse train 1000 g may be initiated at a frequency in a range from 5 Hz to 200 Hz, preferably in a range of 8 to 30 Hz.
  • Each pulse train 1000 g comprises at least 1 square pulse, typically having an amplitude of between 20 and 100 mA.
  • each pulse train 1000 g comprises a series of ramping square pulses, 1005 g , 1015 g , 1020 g , that increase in amplitude from a first pulse in a range of 20 to 50 mA, to a second pulse in a range of 40 to 70 mA, to a third pulse in a range of 60 to 100 mA.
  • ramping configurations could be implemented, including a down ramping pulse that, in the course of the pulse train, decreases in amplitude.
  • a stimulation session may go from 1 minute to 24 hours. As described above, within a given stimulations session, you may have a series of pulse bursts.
  • a pulse burst may have one or more pulses. Each pulse in the pulse burst may have the same or different pulse shapes, as shown in FIGS. 10A-10F . Each pulse in the pulse burst may have the same or different amplitude.
  • there are multiple pulses in a pulse burst where the amplitude of each pulse burst ramps from low to high or ramps from high to low.
  • Each pulse amplitude causes a generation of a field in the range of 1 to 10000 microTesla, preferably 3 to 500 microTesla, preferably 10 to 200 microTesla.
  • the frequency of the pulse burst is in a range of 1 to 500 Hz, preferably 5 to 30 Hz, and more preferably 6 to 15 Hz. Amperage is dependent on the selected planar microcoil design but is in a range of 1 mAmp to 5 Amp. In embodiments, the pulse bursts may have characteristics as described with reference to Table 2 below:
  • the treatment systems disclosed herein including the coils, coil arrays, and controller circuit configured to generate and deliver electrical current to the coils and coil arrays, are controlled by a software application configured to be installed and execute on a separate computing device, such as a mobile phone, laptop, or external controller, that is in wired or wireless communication with the controller circuit.
  • a software application configured to be installed and execute on a separate computing device, such as a mobile phone, laptop, or external controller, that is in wired or wireless communication with the controller circuit.
  • the software application is configured to identify a type of coil system being used by a patient.
  • the controller application may be installed on a mobile phone and be configured to use a camera functionality of the mobile phone to capture a bar code, QR code, or other identification or be configured to generate a graphical user interface to receive an alphanumeric identifier of the coil system.
  • the controller application may 1) validate the coil system as being a legitimate, authorized, or otherwise acceptable coil system, 2) determine what type of coil system is being used and whether that coil system is specific to a particular anatomical region, e.g.
  • the generated graphical user interfaces visually display a neck
  • the generated graphical user interfaces visually display a torso
  • the generated graphical user interfaces visually display a torso
  • the generated graphical user interfaces visually display a back region
  • the generated graphical user interfaces visually display a back region
  • the coil system is specific to a leg region
  • the generated graphical user interfaces visually display a leg region
  • the coil system is specific to a foot region the generated graphical user interfaces visually display one or more feet
  • the coil system is specific to an arm region the generated graphical user interfaces visually display one or more arms
  • the generated graphical user interfaces visually display a head region.
  • the generated GUIs are configured to receive an input from a patient as to a locus or loci of pain relative to the displayed anatomical region. For example, upon displaying the anatomical region in a GUI, a patient may paint, using a stylet or finger pressed upon a display, an area of the anatomical region that may be in pain. One or more GUIs may then be presented to prompt from a patient, and receive from the patient, an indication of the level of the pain via, for example, a visual analog scale where a user may indicate using numbers or icons a degree of the pain.
  • the controller software determines 1) a desired level of magnetic flux to be delivered, 2) a corresponding set of coils to be energized in what order and at what frequency, and 3) a level of current to be delivered to each coil or coil array to generate the desired level of magnetic flux in the right location and at the right frequency.
  • different locus or loci of pain may require an increased or decreased intensity or frequency of magnetic flux to be delivered at nerves located upstream or downstream from the locus or loci of pain.
  • the controller software therefore comprises programmatic instructions, and supporting data, that correlates anatomical locations of pain with nerve areas that are co-located with the locus or loci of pain, upstream from the locus or loci of pain and/or downstream from the locus or loci of pain.
  • the controller software becomes aware of the location of specific coils or coil arrays based on at least one of 1) a preset relationship of the coils/coil arrays that is stored and known to the controller software based on identifying the type of coil system or 2) input by a user that indicates to the controller software where each of the coils are being positioned on a patient—such an indication being provided through a GUI that presents possible anatomical locations either through text or graphically.
  • the software application or controller application, is configured to generate instructions that, when communicated to and executed by the controller circuit, causes the controller circuit to generate electrical current and deliver that electrical current to different coils and/or coil arrays based on the desired frequency, intensity level, order, and location, as described above.
  • the controller software may determine that coil arrays positioned on top of his or her right foot need to generate a magnetic flux in a range of 100 microTesla at a frequency of 10 Hz while coils positioned in the sole of the footwear, proximate the bottom of the patient's foot, need only be activated to generate a magnetic flux in a range of 20 microTesla at a frequency of 30 Hz.
  • the controller circuit may be configured to electrically connect with a coil array or coils and upon making such a connection, to detect and store an identifier of the coil array or coil.
  • the controller circuit preferably stores each of the identifiers and communicates it to the controller software upon connecting. These identifiers may be further used to identify the validity and/or type of coils or coil arrays being used.
  • the controller software may include a set of programmatic instructions for dose training.
  • the controller software operates in a training mode in which 1) a user is prompted to provide real-time feedback on pain levels using a visual analog scale, 2) the controller software modulates, over predefined periods of time, the frequency of pulse signals, the amount of current (and therefore magnetic flux intensity level) and/or the shape of the pulse signals in various combinations over the predefined period of time, and 3) as the parameters change, the user is prompted to input feedback on pain levels through the visual analog scale.
  • a user identifies a locus of loci of pain, it initiates a cycling process starting with a set of frequency and modulating the current level and therefore the magnetic flux level up and down, prompting the user for feedback on pain levels during the cycling process.
  • the controller software may then change frequency settings and repeat the up and down modulation of current level and magnetic flux level, again concurrently prompting the user for feedback on pain levels during the cycling process.
  • the controller software analyzes the user's feedback to determine an optimal combination of frequency and current level for a given locus or loci of pain.
  • the controller may be programmed by a) inputting data into a separate computing device configured to execute a set of programmatic instructions that, when executed by the separate computing device, generate a display for prompting a user to input data indicative of a desired type of treatment, wherein the desired type of treatment includes at least one of relaxation, improved sleep, improved memory, weight loss, or improved mental acuity, b) wirelessly transmitting the inputted data to the controller, c) receiving, in the controller, the inputted data and generating an electrical pulse train having a frequency based on the data indicative of the desired type of treatment, d) delivering the generated electrical pulse train to each of the plurality of planar microcoil arrays, and e) automatically terminating the electrical pulse train after a programmed time period elapses, wherein the programmed time period is based on the data indicative of the desired type of treatment.
  • the controller may comprise a switch (which could be a button, slide switch, or any physical input means), where a position of the switch is representative of a desired type of treatment, where the desired type of treatment includes at least one of relaxation, improved sleep, improved memory, or improved mental acuity, and where the controller is adapted to generate an electrical pulse train having a frequency based on the position of the switch, to deliver the generated electrical pulse train to each of the plurality of planar microcoil arrays, and to automatically terminate generating the electrical pulse train after a programmed time period elapses.
  • a switch which could be a button, slide switch, or any physical input means
  • the patches comprising planar microcoil arrays are integrated into clothing.
  • the patches 1105 , 1205 are sandwiched between a first outer layer and a second inner layer (closer to body) where the second layer is the same material as the first layer but thinner or is of a different material and thicker or thinner than the first layer.
  • the patches are connected to a controller strip 1115 , 1215 positioned at the base of the shirt ( 11 A, 12 A), top of the socks ( 11 B, 12 B), the base of a mask or neck covering ( 11 C, 12 C), top of pants ( 11 D, 12 D), or base of a glove ( 11 E, 12 E).
  • the controller comprises a rechargeable battery.
  • the patches may be connected to a docking station to which a controller may be removably attached, as described above.
  • the array sizes may be variable.
  • one may have a plurality of planar microcoils integrated onto a small substrate surface area 1207 , i.e. in a range of 0.5 in 2 to 2 in 2 , or onto a larger substrate surface area 1209 , i.e. in a range of 2.01 in 2 to 120 in 2 .
  • the smaller substrate surface areas 1207 are designed to be positioned near crevices, curves, or other non-planar anatomical areas of the patient, such as the areas in or around the toes.
  • the larger substrate surface areas 1209 are designed to be positioned on substantially planar surface areas, such as portions of the arms, legs, and back.
  • planar microcoil arrays are preferably integrated into a layer of the clothing and are not directly exposed to the user's skin or to the outside environment.
  • the planar microcoil arrays and associated traces may be incorporated into a layer positioned between an innermost layer of clothing, which touches the user's skin, and an outermost layer of clothing, which is exposed to the outside environment.
  • the present invention is directed toward the integration of coils and/or coil arrays into footwear, such as a shoe, boot, sock, or other foot covering.
  • the sole or base of the footwear 1401 comprises a plurality of individual coils, such as Coil S 1 , Coil S 2 , and Coil S 3 , and/or coil arrays, such as Array S 1 that are distributed on a surface of the sole or base.
  • the individual coils, such as Coil S 1 , Coil S 2 , and Coil S 3 , and/or coil arrays, such as Array S 1 may be of the type described herein or
  • the individual coils such as Coil S 1 , Coil S 2 , and Coil S 3 , and/or coil arrays, such as Array S 1 are configured to be of different sizes with Coil S 1 being larger or having more windings than Coil S 2 or Coil S 3 and where a distance between the Coil S 1 , Coil S 2 , and Coil S 3 is between 1 cm and 3 cm, preferably around 2 cm.
  • Each of the Coil S 1 , Coil S 2 , and Coil S 3 are in electrical communication with the controller 1403 .
  • the controller 1403 is also in electrical communication with a plurality of coil arrays U 1 , U 2 , U 3 , U 4 , U 5 , and/or U 6 1402 that are integrated into the upper of the footwear and configured to cover the entirety of the user's foot. As discussed above, each of the coil arrays may be energized and/or controller as described above to address a user's foot pain.
  • the ankle region of the footwear device may comprise two large coils which are positioned on opposing sides of the ankle region and are spaced and sized to function as Helmholtz coils.
  • a PEMF device 1800 a configured to comfortably conform to a patient's head is shown.
  • a flexible material 1880 a configured as a headband and made out of cotton, terry cloth, polyester, or other materials.
  • Integrated into a layer of the headband 1880 a are a plurality of planar microcoil arrays 1805 a which are in electrical communication with a docking station and controller 1870 a , as described above.
  • the headband may be adjustable by having an attachment mechanism 1890 a which permits for the relative circumferential extent of the headband to be adjusted.
  • the attachment mechanism 1890 a can use, for example, a Velcro connection which can thereby adjust to the size of the user's head.
  • a plurality of planar microcoil arrays 1805 b is positioned in distributed positions around headwear 1885 b , shown as a cap.
  • headwear 1885 b is shown as a baseball cap, it may also be any of form of headwear, including a head scarf, cowboy hat, fedora hat, sun hat, flat cap hat, newsboy hat, trilby hat, pork pie hat, homburg hat, bowler hat, panama hat, western hat, stockman hat, watch cap, trapper hat, Stormy Kromer® hat, astrakhan hat, hijab scarf, beanie hat, beret hat, bucket hat, cloche hat, cocktail hat, deerstalker hat, cocktail hat, fascinator hat, gatsby hat, visor, or pillbox hat or any other configurations of material adapted to cover portions of a person's
  • the plurality of planar microcoil arrays 1805 b are positioned about the crown of the headwear 1885 b such that, when worn, at least one of the plurality of planar microcoil arrays 1805 b is externally positioned proximate at least one or more of the frontal bone, sphenoid bone, coronal suture, parietal bone, squamous suture, lambdoid suture, occipital bone and/or temporal bone of the wearer's skull.
  • the plurality of planar microcoil arrays 1805 b are positioned about the crown of the headwear 1885 b such that, when worn, at least one of the plurality of planar microcoil arrays 1805 b is externally positioned proximate at least two or more of the frontal bone, sphenoid bone, coronal suture, parietal bone, squamous suture, lambdoid suture, occipital bone and/or temporal bone of the wearer's skull.
  • the plurality of planar microcoil arrays 1805 b are positioned about the crown of the headwear 1885 b such that, when worn, at least one of the plurality of planar microcoil arrays 1805 b is externally positioned proximate at least the frontal bone and the parietal bone of the wearer's skull.
  • the plurality of planar microcoil arrays 1805 b are positioned about the crown of the headwear 1885 b such that, when worn, at least one of the plurality of planar microcoil arrays 1805 b is externally positioned proximate at least the frontal bone and the parietal bone and at least one of the sphenoid bone and/or temporal bone of the wearer's skull.
  • the plurality of planar microcoil arrays 1805 b are positioned such that they are symmetrically distributed about the crown of the headwear 1885 b such that, when worn, at least one of the plurality of planar microcoil arrays 1805 b is externally positioned proximate a left side of the wearer's frontal bone, at least one of the plurality of planar microcoil arrays 1805 b is externally positioned proximate a right side of the wearer's frontal bone, at least one of the plurality of planar microcoil arrays 1805 b is externally positioned proximate at a top side of the wearer's parietal bone, at least one of the plurality of planar microcoil arrays 1805 b is externally positioned proximate a left side of the wearer's parietal bone, and at least one of the plurality of planar microcoil arrays 1805 b is externally positioned proximate a right side of the
  • the plurality of planar microcoil arrays 1805 b is positioned such that they are symmetrically distributed about the crown of the headwear 1885 b such that, when worn, at least two of the plurality of planar microcoil arrays 1805 b are externally positioned proximate the wearer's frontal bone and at least three of the plurality of planar microcoil arrays 1805 b are externally positioned proximate the wearer's parietal bone.
  • the plurality of planar microcoil arrays 1805 b is positioned such that they are symmetrically distributed about the crown of the headwear 1885 b such that, when worn, at least four (and preferably between 4 and 10) of the plurality of planar microcoil arrays 1805 b are externally positioned proximate at least the wearer's frontal bone and the wearer's parietal bone and optionally the temporal bone and occipital bone.
  • the plurality of planar microcoil arrays 1805 b is positioned such that one or more arrays are a) positioned between the front of the crown of the headwear 1885 b and the right and/or left frontal lobe, b) positioned between the right side of the crown of the headwear 1885 b and the right temporal lobe, c) positioned between the left side of the crown of the headwear 1885 b and the left temporal lobe, d) positioned between the top side of the crown of the headwear 1885 b and the cerebral cortex, e) positioned between the top side of the crown of the headwear 1885 b and the parietal lobe, and/or f) positioned between the back side of the crown of the headwear 1885 b and the occipital lobe,
  • the plurality of planar microcoil arrays are integrated into a liner 2500 having a plurality of cells 2505 wherein each cell is defined by a protrusion from a base material 2525 extending toward a patient's head and where the base material positioned between cells comprises plastic, cardboard, or other rigid non-metallic material to which the material covering the protrusion is attached.
  • a microcoil array 2525 is positioned with the emitting coil surface 2526 directed inward toward the patient's head.
  • cushioning material 2535 such as cotton or foam, to keep the microcoil array in place.
  • Each cell 2505 is distributed around the liner such that, when the liner is attached to the crown 2510 of the head garment and the head garment plus liner is worn, at least one cell 2505 with an array 2525 is positioned between the front of the crown 2510 of the headwear and the right and/or left frontal lobe, at least one cell 2505 with an array 2525 is positioned between the right side of the crown 2510 of the headwear and the right temporal lobe, at least one cell 2505 with an array 2525 is positioned between the left side of the crown 2510 of the headwear and the left temporal lobe, at least one cell 2505 with an array 2525 is positioned between the top side of the crown 2510 of the headwear and the cerebral cortex, at least one cell 2505 with an array 2525 is positioned between the top side of the crown 2510 of the headwear and the parietal lobe, and/or at least one cell 2505 with an array
  • one cell 2505 with an array 2525 is positioned in the front of the crown, 2510 adjacent the frontal lobe when worn; one cell 2505 with an array 2525 is positioned in the top, forward right section of the crown 2510 , adjacent the right top portion of the frontal lobe when worn; one cell 2505 with an array 2525 is positioned in the top, forward left section of the crown 2510 , adjacent the left top portion of the frontal lobe when worn; one cell 2505 with an array 2525 is positioned in the top, back right section of the crown 2510 , adjacent the right top portion of the parietal lobe when worn; one cell 2505 with an array 2525 is positioned in the top, back left section of the crown 2510 , adjacent the left top portion of the parietal lobe when worn; one cell 2505 with an array 2525 is positioned in the right-side section of the crown 2510 , adjacent the right temporal lobe when worn; one cell 2505 with an array 2525 is positioned in the left-
  • a controller 1870 b is in electrical communication with each of the plurality of planar microcoil arrays 1805 b and is programmed to direct an electrical current to each of the plurality of planar microcoil arrays 1805 b in accordance with a certain frequency, a certain current intensity, a certain pulse width or shape, and a certain sequence, as described throughout this specification. More specifically, the controller 1870 b directs an electrical current from an energy source, such as a battery, to each of the plurality of planar microcoil arrays 1805 b in accordance with stored programmatic instructions.
  • an energy source such as a battery
  • the stored programmatic instructions define a current level (preferably in a range of 5 mA to 200 mA), define a pulse shape (preferably rectangular, sinusoidal, or a flat pulse with a sloped activation and deactivation), define a pulse frequency (preferably in a range of 0.1 Hz to 200 Hz), and define a sequence of activating each of the plurality of planar microcoil arrays 1805 b such as clockwise around the wearer's skull, counterclockwise around the wearer's skull, sequentially such that only one of the plurality of planar microcoil arrays 1805 b has current driven thereto at one time, concurrently such that at least two of the plurality of planar microcoil arrays 1805 b has current driven thereto at one time, concurrently such that at least three of the plurality of planar microcoil arrays 1805 b has current driven thereto at one time, concurrently such that all of the plurality of planar microcoil arrays 1805 b has current driven thereto at one time, concurrently such that
  • the controller is programmed to generate a magnetic field via the planar microcoil arrays by four different vectors: a) the frequency of the pulse train or burst, b) the shape of each pulse in the pulse train or burst itself, c) the relative peak intensities of each pulse in the pulse train or burst itself, and d) the degradation profile from the surface of the planar microcoil arrays.
  • each embodiment described herein generates a magnetic field by:
  • A is in a range of 100 to 600, and more preferably 300 to 400, and every whole number increment therein and where B is in a range of 1 to 2.5 (and every 0.1 decimal increment therein).
  • magnetic fields are generated in accordance with the stimulation protocols described above. Conventionally, it is believed that very large magnetic fields have to be directed into the brain to have any tangible therapeutic effects on certain conditions, such as depression. However, it is believed that, by modulating a position, configuration, orientation, or movement, of magnetite chains in one or more brain cells or neurons, which may be effectuated by magnetic fields less than 200 microTesla or by applying a sufficient magnetic field gradient, which is determined by the frequency and shape of pulse, one can cause a normalization of brain function, at least during the application of the magnetic fields.
  • Normalization of brain function may thereby enable at least a partial alleviation of symptoms associated with anxiety disorders, obsessive compulsive disorder, post-traumatic stress disorder, memory degeneration, schizophrenia, attention deficient disorder, autism, Parkinson's disease, stroke rehabilitation, drug addiction, including addiction to, or cravings for, nicotine, cocaine, alcohol, heroine, methamphetamines, stimulants, and/or sedatives, depression and depression-related conditions, such as post-partum depression or bipolar depression, auditory hallucinations, multiple sclerosis, fibromyalgia, Alzheimer's disease, spinocerebellar degeneration, epilepsy, urinary incontinence, movement disorders, chronic tinnitus, or sleep apnea while the magnetic fields are being applied to the brain.
  • a software program configured to execute on a mobile device, as further described herein, is adapted to generate one or more graphical user interfaces.
  • the one or more graphical user interfaces is configured to receive data inputted from a wearer, wherein the data is indicative of a health state of the wearer.
  • the graphical user interfaces preferably prompts the wearer to input data indicative of whether the wearer:
  • the software program configured to execute on the mobile device is adapted to generate a plurality of programmatic instructions that define one or more of a current level, a pulse shape, a pulse frequency, and/or a selection of, or sequence of, which microcoil arrays actually receive the current.
  • the programmatic instructions are adapted to be transmitted, whether by a wired connection or wirelessly, to the controller integrated into the headwear 1885 b and the controller is adapted to modify the generation and transmission of current in accordance with the plurality of programmatic instructions that define one or more of a current level, a pulse shape, a pulse frequency, and/or a selection of, or sequence of, which microcoil arrays actually receive the current.
  • Exemplary combinations of current level, pulse shape, pulse frequency, and/or a selection of, or sequence of, which microcoil arrays actually receive the current are provided below:
  • the headwear embodiment disclosed herein may be used to treat Parkinson's disease by applying the stimulation protocols, using the hat and integrated planar microcoils, described above to direct magnetic fields toward the substantia nigra of a patient.
  • a patient with Parkinson's disease may be treated by placing a hat, as described above, on a user's head, programming the controller to deliver a series of pulses (preferably rectangular, ramping pulse bursts) at a frequency of 0.1 Hz to 60 Hz, preferably 0.1 to 50 Hz 2310 , wear the hat for 10 to 30 minutes (preferably with eyes closed, blocking out auditory stimulus, and/or taking deep breaths), having the controller shut off the pulse train automatically after the treatment period, and repeating the process daily or weekly.
  • a series of pulses preferably rectangular, ramping pulse bursts
  • this treatment causes the user's brain to decrease or increase alpha wave generation, to increase blood circulation, decrease or increase beta wave generation, to decrease or increase delta wave generation, to decrease or increase theta wave generation, to decrease or increase gamma wave generation, to increase coherence in theta wave generation, to increase coherence in delta wave generation, to increase coherence in alpha wave generation, to increase coherence in beta wave generation, to increase coherence in gamma wave generation, to modulate dopamine production in the substantia nigra and/or any combination of the above.
  • embodiments may be specifically designed to be directed toward 1) treating osteoporosis by, for example, positioning a plurality of arrays along a length of substrate configured to extend over an entire length of a user's spine, each of said arrays being in electrical communication with a controller, 2) effectuating an activation of acupoints that may be distributed over various areas of the user's body, where at each acupoint an array is positioned and where all of the arrays are in electrical communication with a controller; optionally, a coil that aligns with an acupoint may be configured to receive a higher level of current and generate a higher magnetic flux than the rest of the coils which are not aligned with an acupoint, 3) treating a neck region to reduce increase and increase a collagen framework, where a plurality of arrays are configured to extend around a neck region of the user, each of the arrays being in electrical communication with a controller, and 4) treating one or more broken bones by providing a plurality of arrays configured to be positioned
  • an article of clothing with a set of planar microcoils integrated therein 1900 A layer of clothing 1910 b , which faces the outside environment, has, positioned on top of it, and opposing the outside layer, a set of planar microcoil arrays 1920 that are connected by traces.
  • a layer of clothing 1910 a configured to face the skin of a user, is positioned on top of the set of planar microcoil arrays 1920 .
  • the layer of clothing 1910 a is contiguous and uniform.
  • the layer of clothing 1910 a has a window that exposes the coils of the arrays, and therefore the generated magnetic fields, to the skin of the user.
  • the window may be just a space or made of a different material, such as a clear plastic or a thinner material than the rest of layer 1910 a .
  • a buffer material 1930 may be positioned between the arrays to keep the arrays 1920 in position and physically separated from each other.
  • the buffer material may be any non-conductive material, including cotton, polyester, or wool.
  • a method 2000 of treating a condition is provided.
  • An article of clothing is attached 2005 to a portion of a patient's body.
  • the article of clothing comprises a plurality of planar microcoil arrays, wherein each of the plurality of planar microcoil arrays comprises two or more planar microcoils positioned on a flexible substrate, wherein each of the plurality of planar microcoil arrays is integrated into the article of clothing; and wherein each of the plurality of planar microcoil arrays is in electrical communication with a docking station integrated into the article of clothing.
  • a controller is attached 2010 to the docking station, wherein the controller comprises a circuit and a power source.
  • the circuit upon attaching the controller to the docking station, automatically electrically interfaces with at least one of the plurality of planar microcoil arrays.
  • the docking station is optional.
  • the controller may be directly integrated into the article of clothing.
  • the controller is activated 2015 to cause a time varying current to be transmitted to each of the plurality of planar microcoil arrays.
  • the condition is at least one of an anxiety disorder, an obsessive compulsive disorder, a post-traumatic stress disorder, memory degeneration, schizophrenia, Parkinson's disease, stroke rehabilitation, drug addiction, drug cravings, depression, depression-related conditions, post-partum depression, bipolar depression, auditory hallucinations, multiple sclerosis, fibromyalgia, Alzheimer's disease, spinocerebellar degeneration, epilepsy, urinary incontinence, movement disorders, dementia, autism, attention deficient disorder, pain, chronic tinnitus, or sleep apnea.
  • the article of clothing may be attached such that at least one of the two or more planar microcoils in at least one of the plurality of planar microcoil arrays is positioned over an acupoint of the patient's body. Additionally, prior to attaching the article of clothing, a skin impedance measurement may be made and, based on the level of impedance, the article of clothing may be attached such that at least one of the two or more planar microcoils in at least one of the plurality of planar microcoil arrays is positioned over an area of impedance that exceeds a predefined threshold value. Accordingly, an impedance measurement sensor and circuit may also be integrated into the article of clothing.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Neurology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Hospice & Palliative Care (AREA)
  • Medicinal Chemistry (AREA)
  • Pain & Pain Management (AREA)
  • Textile Engineering (AREA)
  • Magnetic Treatment Devices (AREA)

Abstract

The present specification discloses a pulsed electromagnetic field system having planar microcoil arrays integrated into clothing. Preferably, each of the planar microcoil arrays has two or more planar microcoils positioned on a substrate. The planar microcoil arrays are connected to a controller configured to generate an electrical current and transmit that electrical current, in accordance with a particular stimulation protocol, to each of the planar microcoil arrays.

Description

    CROSS-REFERENCE
  • The present application is a continuation-in-part of U.S. patent application Ser. No. 16/867,130, entitled “Systems and Methods of Treating Medical Conditions Using Arrays of Planar Coils Configured to Generate Pulsed Electromagnetic Fields and Integrated into Clothing” and filed on May 5, 2020.
  • U.S. patent application Ser. No. 16/867,130 relies on U.S. Patent Provisional No. 62/892,751, entitled “Systems and Methods of Treating Medical Conditions Using Arrays of Planar Coils Configured to Generate Pulsed Electromagnetic Fields” and filed on Aug. 28, 2019, for priority and relies on U.S. Patent Provisional No. 62/843,727, entitled “Systems and Methods of Treating Medical Conditions Using Arrays of Planar Coils Configured to Generate Pulsed Electromagnetic Fields” and filed on May 6, 2019, for priority.
  • All of the above listed applications are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention is directed toward modulating electrical impulses, and thereby modulating brain waves, generated by the brain of an animal, such as a human being, using planar coils. More specifically, the present invention is directed toward the design, creation and use of clothing products, and other devices, that integrate configurations of arrays of planar coils to generate pulsed electromagnetic fields to treat various medical conditions, such as anxiety, insomnia, depression, pain, food cravings, drug dependency, drug addiction, dementia, and/or memory loss and to effectuate improved mood, increased feelings of well-being, increased energy levels, increased memory, increased creative thinking, and/or improved sleep quality of an animal.
  • BACKGROUND OF THE INVENTION
  • One recognized approach to treating a number of conditions, including anxiety and depression, is modulating the electrical impulses in a person's brain, typically by electrical stimulation. Electrical stimulation by a transcutaneous electrical stimulation unit (TENS) attached, for example, to a patient's ear has been shown to modulate electrical impulses in the patient's brain, thereby resulting in a modulation of brain wave activity, as shown in electroencephalograms (EEGs).
  • Certain brain wave profiles are indicative of healthy brain function and may be measured, tracking, and quantified using EEGs. For example, beta waves or rhythms, which are in the range of 13 to 35 Hz, are associated with consciousness, brain activities, and motor behaviors. Alpha waves or rhythms, which are in the range of 7 to 13 Hz, originate from occipital lobes during wakeful relaxation and are associated with relaxation or a meditative state. Theta waves or rhythms, which are in the range of 4 to 7 Hz, are typically recorded when an individual is experiencing low brain activity, sleep, or drowsiness. Delta waves or rhythms, which are in the range of 0 to 4 Hz, are typically recorded during very low activities of the brain and deep sleep. Gamma waves or rhythms, which are in the range of 30 to 100 Hz, are produced by different populations of neurons firing together in a neural network during certain motor or cognitive functions. In particular: 1) mental disorders such as obsessive-compulsive disorder (OCD) can be detected through an EEG, and studies have revealed a decrease in alpha and beta rhythms and an increase in the theta wave in the EGG of OCD patients; 2) anxiety has EEG manifestations including an increased activity of rapid brain waves (beta rhythm), especially in the central part of frontal cortex and the activity of the alpha rhythm is decreased in patients with chronic anxiety; 3) posttraumatic stress disorder (PTSD), which is commonly observed in soldiers and sexual abuse survivors, shows an asymmetry of the alpha rhythm and increased activity of the right parietal lobe, a decrease in alpha rhythms, and an increase in beta rhythms in patients with a long history of PTSD; 4) ADHD patients show a decreased beta activity in comparison with normal children, an increase in theta to beta (θ/β) rhythm and missing alpha wave activity which would otherwise reflect a normal wakeful state; and 5) when a patient's eyes are open, he or she shows a decrease in delta and theta amplitude and frequency waves of alpha and beta in autism spectrum disorder (ASD).
  • Conventional approaches to beneficially modulating brain wave activity require the use of conspicuous, and often intimidating, medical devices. For example, TENS units exist which require a patient to attach leads to his or her ear, connect to an external stimulator, and periodically apply a current. The application of a current, particularly to the vagus nerve of the patient, may modulate electrical impulses in the brain and, accordingly, modulate brain wave activity. For many people, however, this is intimidating, impractical (particularly in public situations or on the job), and psychologically difficult to do on a regular basis.
  • Attempts at using pulsed electromagnetic field therapy (PEMF) therapy are equally conspicuous and undesirable for patients who wish to make treatment a seamless part of daily life. Conventionally, PEMF is delivered by a mat, ring or a small disc device that generates a pulsing electromagnetic field using large cylindrically shaped, non-planar coils, such as Helmholtz coils or butterfly coils, where the winding or turns of the coils extend outward from the surface of the first coil in a Z axis. There are numerous disadvantages with these conventional devices. First, they are difficult to use for long periods of time because they require patients to either lay on a mat or attach a special bulky device to their body, making “therapy” a prominent, conspicuous issue. Therefore, patient compliance is low and extended treatment periods, such as one or more hours, tends to be unrealistic for most active patients. Second, they generate highly localized magnetic fields which tend to only over a small portion of the brain or are substantially non-homogenous across their surface areas. As a result, the surface areas of the devices have regions with very low, non-therapeutic magnetic field dose levels interspersed with regions with sufficiently high, therapeutic doses of magnetic fields, often yielding asymmetrical responses in the patient's anatomy. This can be particularly problematic in the brain where asymmetrically modulating brain wave activity may hurt, rather than help, a patient. Third, these devices often fail to inconspicuously conform to particular body parts, are difficult to position or wear for long periods of time and are challenging to use consistently.
  • It is therefore desirable to modulate an animal's brain wave activity using a pulse electromagnetic field device that can be comfortably worn for long periods of time, thereby increasing patient compliance and allowing active patients to get the necessary treatment. It would also be desirable to have a pulse electromagnetic field device where the therapeutically effective dose regions are known and/or predictable. Finally, it would also be desirable to have a pulse electromagnetic field device designed to treat a wide range of disorders, particularly disorders with a locus of dysfunction in the brain.
  • Additionally, chronic pain affects more than 100 million people in the US. The most common underlying biological causes for chronic pain include decreased blood circulation, damaged nerves, and/or increased inflammation. While opioids have been a widely used way of alleviating chronic pain, the medical community now recognizes the substantial disadvantages of prescribing opioids. According to the National Institute of Health, more than 130 people in the United States die every day after overdosing on opioids, 21 to 29 percent of patients prescribed opioids for pain misuse them, and between 8 and 12 percent develop an opioid use disorder. The Centers for Disease Control and Prevention estimates that the total economic burden of prescription opioid misuse alone in the United States is $78.5 billion a year, including the costs of healthcare, lost productivity, addiction treatment, and criminal justice involvement. Therefore, the search is on for a better way to treat pain without relying on highly addictive drugs.
  • One conventional approach to treating pain is applying pulsing, low frequency electromagnetic fields (PEMF), non-invasively, to the area of the patient's skin where the patient is feeling pain. PEMF therapy uses bursts of low-level electromagnetic radiation to heal damaged tissues and bone and to relieve injury-related pain. The idea is that, when low frequency pulses pass through the skin and penetrate into muscle, nerves, bone and/or tendons, the body's natural repair mechanisms are activated, possibly by normalizing electrical charge distribution in cells, increasing blood perfusion in the affected areas, or improving signaling and/or conduction in nerves.
  • PEMF therapy has been shown to be effective in regenerating nerves, treating back pain, improving wound healing, countering the effects of Parkinson's disease, and treating peripheral neuropathy, using magnetic fields ranging from picoTesla to Tesla levels. PEMF is a recognized therapy for treating pseudoarthrosis, diabetes mellitus induced complications, delayed wound healing, pain and neurodegenerative disorders and arthritis, and for regenerating musculoskeletal tissues such as cartilage, bone, tendon and ligaments.
  • As discussed above, conventionally, PEMF therapy is delivered by a mat, ring or a small disc device that generates a pulsing electromagnetic field using large cylindrically shaped, non-planar coils, such as Helmholtz coils or butterfly coils, where the winding or turns of the coils extend outward from the surface of the first coil in a Z axis. There numerous disadvantages with these conventional devices discussed above also apply to the treatment of these conditions.
  • First, they generate highly localized magnetic fields which tend to only over a small portion of the body or are substantially non-homogenous across their surface areas. As a result, the surface areas of the devices have regions with very low, non-therapeutic magnetic field dose levels interspersed with regions with sufficiently high, therapeutic doses of magnetic fields. Patients, however, are unaware of what surface areas emit therapeutic doses and what surface areas emit non-therapeutic doses, resulting in suboptimal therapy. For example, a patient with a need for PEMF therapy in his or her feet may lay on a mat in a way that the feet are not sufficiently exposed to the requisite magnetic field dose levels.
  • Second, for patients with extensive peripheral neuropathies, it is very difficult to get all over body PEMF therapy in an efficient manner. For example, a patient with pain all around his or her torso would have to lay on a mat in the right alignment with the surface areas emitting the right therapeutic doses, assuming such areas can be identified, for at least a period of time ranging from 20 minutes to 3 hours and then have to flip over and repeat the process. Again, this is highly inefficient for active patients.
  • Third, these devices are not specifically designed to treat, or be applied to, specific parts of the body. As such, they often fail to conform to particular body parts, are difficult to position or wear for long periods of time and are to use consistently.
  • Fourth, commercial PEMF devices, designed for at home use, to treat anxiety disorders, obsessive compulsive disorder, post-traumatic stress disorder, memory degeneration, schizophrenia, Parkinson's disease, stroke rehabilitation, drug addiction, including addiction to, or cravings for, nicotine, cocaine, alcohol, heroine, methamphetamines, stimulants, and/or sedatives, depression and depression-related conditions, such as post-partum depression or bipolar depression, auditory hallucinations, multiple sclerosis, fibromyalgia, Alzheimer's disease, spinocerebellar degeneration, epilepsy, urinary incontinence, movement disorders, chronic tinnitus, and sleep apnea are simply not available and have generally been deemed to be untreatable using PEMF devices.
  • It is therefore desirable to have a pulse electromagnetic field device that can generate substantially homogenous magnetic fields across large surface areas. It is further desirable to have a pulse electromagnetic field device that can be comfortably worn for long periods of time, thereby increasing patient compliance and allowing active patients to get the necessary treatment. It would also be desirable to have a pulse electromagnetic field device where the therapeutically effective dose regions are known and/or predictable. Finally, it would also be desirable to have a pulse electromagnetic field device designed to treat a wide range of disorders, particularly disorders with a locus of dysfunction in the brain.
  • SUMMARY OF THE INVENTION
  • The present specification discloses a pulsed electromagnetic field device comprising: a hat comprising a crown having an internal surface configured to receive a human head; a controller configured to be attached to an external surface of the hat; and a plurality of planar microcoil arrays, wherein each array of the plurality of planar microcoil arrays comprises at least one planar microcoil positioned on a substrate, wherein each array of the plurality of planar microcoil arrays is coupled to the internal surface of the crown and wherein each array of the plurality of planar microcoil arrays is in electrical communication with the controller.
  • Optionally, each array of the plurality of planar microcoil arrays is physically separate and configured to independently receive an electrical current from the controller.
  • Optionally, the controller is adapted to generate an electrical pulse train having a frequency and to deliver the electrical pulse train to each array of the plurality of planar microcoil arrays. Optionally, the electrical pulse train comprises at least two pulses having different peak levels of current and wherein the different peak levels of current are in a range of 5 mA to 500 mA. A shape of each of the at least two pulses may be rectangular. The frequency may be in a range of 1 Hz to 60 Hz.
  • Optionally, each array of the plurality of planar microcoil arrays comprises at least 4 spiral-shaped microcoils. Optionally, the controller is adapted to generate an electrical pulse train that is currently delivered to each of the at least 4 microcoils concurrently.
  • Optionally, the plurality of planar microcoil arrays comprises at least 5 planar microcoil arrays wherein: a first array of the at least 5 planar microcoil arrays is positioned at a front portion of the crown such that, when the hat is worn on the human head, the first array of the at least 5 planar microcoil arrays is positioned adjacent a frontal lobe of a brain within the human head; a second array of the at least 5 planar microcoil arrays is positioned at a right side portion of the crown such that, when the hat is worn on the human head, the second array of the at least 5 planar microcoil arrays is positioned adjacent a right temporal lobe of the brain within the human head; a third array of the at least 5 planar microcoil arrays is positioned at a left side portion of the crown such that, when the hat is worn on the human head, the third array of the at least 5 planar microcoil arrays is positioned adjacent a left temporal lobe of the brain within the human head; a fourth array of the at least 5 planar microcoil arrays is positioned at a top side portion of the crown such that, when the hat is worn on the human head, the fourth array of the at least 5 planar microcoil arrays is positioned adjacent the frontal lobe or a parietal lobe of the brain within the human head; and a fifth array of the at least 5 planar microcoil arrays is positioned at a back side portion of the crown such that, when the hat is worn on the human head, the fifth array of the at least 5 planar microcoil arrays is positioned adjacent a occipital lobe of the brain within the human head. The controller may be adapted to generate an electrical pulse train having a frequency in a range of 1 Hz to 100 Hz and to sequentially deliver the electrical pulse train to each of the at least 5 planar microcoil arrays. The controller may be adapted to generate an electrical pulse train having a frequency in a range of 1 Hz to 100 Hz and to concurrently deliver the electrical pulse train to at least 2 of each of the at least 5 planar microcoil arrays.
  • Optionally, the hat comprises two or more layers of material and the plurality of planar microcoil arrays is positioned between the two or more layers of material.
  • Optionally, the controller is adapted to generate an electrical pulse train having a frequency and to deliver the electrical pulse train to each array of the plurality of planar microcoil arrays, wherein the electrical pulse train comprises a first pulse having a first amplitude, a second pulse having a second amplitude, and a third pulse having a third amplitude, wherein the first amplitude is less than the second amplitude and the second amplitude is less than the third amplitude. Each of the first pulse, second pulse, and third pulse may have a substantially rectangular shape. Optionally, upon receiving the electrical pulse train, each array of the plurality of planar microcoil arrays is configured to generate a magnetic field in a range of 100 microTesla to 300 microTesla as measured 1 mm or less from a surface of the each array of the plurality of planar microcoils arrays. The generated magnetic field may be adapted to degrade in air to less than 80 microTesla over a distance of at least 10 mm.
  • Optionally, each array of the plurality of planar microcoil arrays comprises an input terminal configured to receive current from the controller, an output terminal, and at least two traces to electrically connect each of the microcoils positioned on each array of the plurality of planar microcoil arrays to the input terminal and the output terminal. A first set of each of the microcoils may be configured to direct current clockwise and a second set of each of the microcoils may be configured to direct current counterclockwise. Each of the microcoils may be configured to direct current in a same direction. Each of the microcoils may be at least one of a spiral circular planar microcoil, a rectangular circular planar microcoil, a non-spiral circular planar microcoil, or a non-spiral rectangular planar microcoil.
  • Optionally, the pulsed electromagnetic field device further comprises a set of programmatic instructions stored on a separate computing device, wherein, when executed by the separate computing device, the programmatic instructions generate a display for prompting a user to input data indicative of a physiological state, wherein the physiological state is representative of at least one of the user's state of stress, state of anxiety, state of relaxation or whether the user has a headache.
  • Optionally, the controller is adapted to generate an electrical pulse train having a frequency, to deliver the electrical pulse train to each array of the plurality of planar microcoil arrays in accordance with a programmed time period, and to automatically terminate generating the electrical pulse train after the programmed time period elapses.
  • Optionally, the pulsed electromagnetic field device further comprises a liner configured to be attached to the internal surface of the crown, wherein the liner comprises a plurality of cells and wherein each cell of the plurality of cells is defined by a pocket made of a first material bounded by a second material, and wherein the first material is more flexible than the second material. The plurality of cells may be divided into a first set of cells and a second set of cells, wherein each cell of the first set of cells comprises one array of the plurality of planar microcoils arrays and a cushioning material, and wherein each cell of the second set of cells comprises cushioning material without any array of the plurality of planar microcoils arrays.
  • Optionally, the substrate is flexible and each of the at least one planar microcoil is embedded, layered, or printed on the flexible substrate.
  • Optionally, the hat further comprises a brim attached to the crown and the controller is adapted to be coupled to a portion of the brim.
  • Optionally, the pulsed electromagnetic field device further comprises a set of programmatic instructions stored on a separate computing device, wherein, when executed by the separate computing device, the programmatic instructions generate a display for prompting a user to input data indicative of a desired type of treatment, wherein the desired type of treatment includes at least one of relaxation, improved sleep, improved memory, or improved mental acuity. The controller may be adapted to receive the data indicative of the desired type of treatment from the separate computing device, to generate an electrical pulse train having a frequency based on the data indicative of the desired type of treatment, to deliver the generated electrical pulse train to each array of the plurality of planar microcoil arrays, and to automatically terminate generating the electrical pulse train after a programmed time period elapses. The programmed time period may be based on the data indicative of the desired type of treatment.
  • Optionally, the controller comprises a switch, wherein a position of the switch is representative of a desired type of treatment, wherein the desired type of treatment includes at least one of relaxation, improved sleep, improved memory, or improved mental acuity, and wherein the controller is adapted to generate an electrical pulse train having a frequency based on the position of the switch, to deliver the generated electrical pulse train to each array of the plurality of planar microcoil arrays, and to automatically terminate generating the electrical pulse train after a programmed time period elapses.
  • The present specification also discloses a pulsed electromagnetic field device comprising: an article of clothing; a controller removably attachable to the article of clothing; and a plurality of planar microcoil arrays, wherein each of the plurality of planar microcoil arrays comprises two or more planar microcoils positioned on a flexible substrate, wherein each of the plurality of planar microcoil arrays is integrated into the article of clothing; and wherein each of the plurality of planar microcoil arrays is in electrical communication with the controller.
  • Optionally, the pulsed electromagnetic field device further comprises a docking station, wherein the docking station is configured to releasably receive the controller. Optionally, the docking station comprises a first mechanical connector and a first electrical interface, wherein the controller comprises a second mechanical connector and a second electrical interface, and wherein, upon the first mechanical connector and the second mechanical connector latching, the first electrical interface is automatically placed in electrical communication with the second electrical interface.
  • Optionally, the article of clothing comprises two or more layers of material and the plurality of planar microcoil arrays is positioned between the two or more layers of material.
  • Optionally, the article of clothing is at least one of a sock, a shoe, a shirt, a pant, a glove, a mask, a neck covering, a head covering, a headband, a sleeve, or a brace configured to fit over an elbow, an ankle, or a knee.
  • Optionally, the controller is configured to generate a pulse train, wherein each pulse train comprises a plurality of pulses having an amplitude in a range of 1 mA to 200 mA. Optionally, the pulse train comprises a first pulse having a first amplitude, a second pulse having a second amplitude, and a third pulse having a third amplitude, wherein the first amplitude is less than the second amplitude and the second amplitude is less than the third amplitude. Each of the first pulse, second pulse, and third pulse may have a square shape. Each of the two or more planar microcoils may be configured to generate a magnetic field in a range of 1 microTesla to 100 microTesla upon receiving the pulse train.
  • Optionally, each of the plurality of planar microcoil arrays comprises at least six planar microcoils. Each of the plurality of planar microcoil arrays may comprise an input terminal configured to receive current from the controller, an output terminal, and at least two traces to electrically connect each of the at least six planar microcoils to the input terminal and the output terminal. Optionally, a first set of the at least six planar microcoils is configured to direct current clockwise and a second set of the at least six planar microcoils is configured to direct current counterclockwise. Optionally, the first set of the at least six planar microcoils is less than the second set of the at least six planar microcoils. Optionally, the first set of the at least six planar microcoils is equal to the second set of the at least six planar microcoils. All of the at least six planar microcoils may be configured to direct current in a same direction.
  • Optionally, each of the two or more planar microcoils is at least one of a spiral circular planar microcoil, a rectangular circular planar microcoil, a non-spiral circular planar microcoil, or a non-spiral rectangular planar microcoil.
  • Optionally, each of the plurality of planar microcoil arrays is physically separate and a first subset of the plurality of planar microcoil arrays has a different surface area than a second subset of the plurality of planar microcoil arrays.
  • Optionally, each of the plurality of planar microcoil arrays is physically separate and has a same surface area.
  • The controller may be configured to generate a time varying current in order to create a time varying magnetic field at each of the plurality of planar microcoil arrays. Optionally, the time varying current is defined by square waves having substantially equal peak amplitude values. Optionally, the time varying current is defined by sinusoidal waves having substantially equal peak amplitude values. Optionally, the time varying current is defined by square waves having substantially different peak amplitude values. Optionally, the time varying current is defined by a train of square waves wherein, in each train, the square waves have peak values that ramp from a low peak amplitude value to a higher peak amplitude value.
  • The controller may be configured to cause an electrical current to be concurrently transmitted to all of the plurality of planar microcoil arrays.
  • The controller may be configured to cause an electrical current to be transmitted to all of the plurality of planar microcoil arrays at different times.
  • Optionally, the pulsed electromagnetic field device further comprises a set of programmatic instructions stored on a separate computing device, wherein, when executed by the separate computing device, the programmatic instructions generate a display for prompting a user to input a pain level and a locus of pain. Optionally, when executed by the separate computing device, the programmatic instructions determine which of the plurality of planar microcoil arrays should receive an electrical current based on at least one of the pain level or the locus of pain. Optionally, when executed by the separate computing device, the programmatic instructions generate data indicative of which of the plurality of planar microcoil arrays should receive an electrical current based on at least one of the pain level or the locus of pain and transmit the data to the controller. Optionally, the controller generates an electrical current based on the data and in a predefined pattern based on at least one of the pain level or the locus of pain.
  • Optionally, the pulsed electromagnetic field device further comprises a plurality of traces integrated into the article of clothing and extending from each of the plurality of planar microcoil arrays to the controller.
  • The present specification also discloses a method of treating a condition, comprising: attaching an article of clothing to a portion of a patient's body, wherein the article of clothing comprises a plurality of planar microcoil arrays, wherein each of the plurality of planar microcoil arrays comprises two or more planar microcoils positioned on a flexible substrate, wherein each of the plurality of planar microcoil arrays is integrated into the article of clothing; and wherein each of the plurality of planar microcoil arrays is in electrical communication with a docking station integrated into the article of clothing; attaching a controller to the docking station, wherein the controller comprises a circuit and a power source; and activating the controller to cause a time varying current to be transmitted to each of the plurality of planar microcoil arrays.
  • The method condition may be at least one of an anxiety disorder, an obsessive compulsive disorder, a post-traumatic stress disorder, memory degeneration, schizophrenia, Parkinson's disease, stroke rehabilitation, drug addiction, drug cravings, depression, depression-related conditions, post-partum depression, bipolar depression, auditory hallucinations, multiple sclerosis, fibromyalgia, Alzheimer's disease, spinocerebellar degeneration, epilepsy, urinary incontinence, movement disorders, chronic tinnitus, or sleep apnea.
  • Optionally, the method further comprises attaching the article of clothing such that at least one of the two or more planar microcoils in at least one of the plurality of planar microcoil arrays is positioned over an acupoint of the patient's body.
  • Optionally, upon attaching the controller to the docking station, the circuit automatically electrically interfaces with at least one of the plurality of planar microcoil arrays.
  • The present specification also discloses a pulsed electromagnetic field system comprising: a plurality of planar microcoil arrays, wherein each of the plurality of planar microcoil arrays comprises two or more planar microcoils positioned on a flexible substrate and wherein one of the plurality of planar microcoil arrays is connected to another of the plurality of planar microcoil arrays; and a controller configured to generate an electrical current and transmit that electrical current, in accordance with a particular stimulation protocol, to each of the plurality of planar microcoil arrays.
  • Optionally, the planar microcoil is at least one of a spiral circular planar microcoil, a rectangular circular planar microcoil, a non-spiral circular planar microcoil, or a non-spiral rectangular planar microcoil.
  • Optionally, a first subset of the plurality of planar microcoil arrays has a different surface area than a second subset of the plurality of planar microcoil arrays.
  • Optionally, each of the plurality of planar microcoil arrays has a same surface area.
  • Optionally, the stimulation protocol comprises a time varying magnetic field. Optionally, the time varying magnetic field is defined by square waves having substantially equal peak values. Optionally, the time varying magnetic field is defined by a sinusoidal wave. Optionally, the time varying magnetic field is defined by square waves having different peak values. Optionally, the time varying magnetic field is defined by a train of square waves wherein, in each train, the square waves have peak values that ramp from a low peak value to a higher peak value.
  • Optionally, the controller is configured to cause an electrical current to be transmitted substantially currently to all of the plurality of planar microcoil arrays.
  • Optionally, the controller is configured to cause an electrical current to be transmitted to the plurality of planar microcoil arrays at different times.
  • Optionally, the pulsed electromagnetic field system further comprises a set of programmatic instructions stored on a separate computing device, wherein, when executed by the separate computing device, the programmatic instructions generate a display for prompting a user to input a pain level and a locus of pain. Optionally, when executed by the separate computing device, the programmatic instructions determine which of the plurality of planar microcoil arrays should receive an electrical current based on the pain level and/or locus of pain. Optionally, when executed by the separate computing device, the programmatic instructions generate data indicative of which of the plurality of planar microcoil arrays should receive an electrical current based on the pain level and/or locus of pain and transmit said data to the controller. Optionally, the controller generates an electrical current based on said data and in a predefined pattern based on the pain level and/or locus of pain.
  • The present specification also discloses a sock, shirt, pant, glove, head covering, head band, helmet, mask, neck covering, sleeve, and garment comprising the pulsed electromagnetic field system described above.
  • The aforementioned and other embodiments of the present specification shall be described in greater depth in the drawings and detailed description provided below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other features and advantages of the present specification will be further appreciated, as they become better understood by reference to the following detailed description when considered in connection with the accompanying drawings:
  • FIG. 1A depicts an exemplary planar microcoil in a first circular configuration;
  • FIG. 1B depicts an exemplary planar microcoil in a first rectangular configuration;
  • FIG. 2A depicts an exemplary planar microcoil in a second circular configuration;
  • FIG. 2B depicts an exemplary planar microcoil in a second rectangular configuration;
  • FIG. 3A depicts an exemplary planar microcoil in a third circular configuration;
  • FIG. 3B depicts an exemplary planar microcoil in a third rectangular configuration;
  • FIG. 3C depicts an exemplary planar microcoil in a fourth configuration;
  • FIG. 4A depicts an exemplary planar microcoil in a first alternative configuration;
  • FIG. 4B depicts an exemplary planar microcoil in a second alternative configuration;
  • FIG. 4C depicts an exemplary planar microcoil in a third alternative configuration;
  • FIG. 5A depicts a first exemplary set of dimensions associated with an exemplary rectangular planar microcoil;
  • FIG. 5B depicts a second exemplary set of dimensions associated with an exemplary rectangular planar microcoil;
  • FIG. 6 depicts an exemplary planar microcoil system with multiple arrays of microcoils;
  • FIG. 7A depicts an exemplary planar microcoil positioned on a substrate;
  • FIG. 7B depicts an exemplary set of planar microcoils positioned on a substrate;
  • FIG. 8 depicts exemplary planar microcoils positioned on a second substrate;
  • FIG. 9 depicts an exemplary planar microcoil circuit diagram;
  • FIG. 10A depicts a first pulsed electromagnetic frequency signal which may be implemented to administer the therapies described herein;
  • FIG. 10B depicts a second pulsed electromagnetic frequency signal which may be implemented to administer the therapies described herein;
  • FIG. 10C depicts a third pulsed electromagnetic frequency signal which may be implemented to administer the therapies described herein;
  • FIG. 10D depicts a fourth pulsed electromagnetic frequency signal which may be implemented to administer the therapies described herein;
  • FIG. 10E depicts a fifth pulsed electromagnetic frequency signal which may be implemented to administer the therapies described herein;
  • FIG. 10F depicts a sixth pulsed electromagnetic frequency signal which may be implemented to administer the therapies described herein;
  • FIG. 10G depicts a seventh pulsed electromagnetic frequency signal which may be implemented to administer the therapies described herein;
  • FIG. 11A depicts a shirt with embedded planar microcoil arrays, in accordance with some embodiments of the present specification;
  • FIG. 11B depicts a pair of socks with embedded planar microcoil arrays, in accordance with some embodiments of the present specification;
  • FIG. 11C depicts a head covering with embedded planar microcoil arrays, in accordance with some embodiments of the present specification;
  • FIG. 11D depicts a pair of pants or leggings with embedded planar microcoil arrays, in accordance with some embodiments of the present specification;
  • FIG. 11E depicts a glove with embedded planar microcoil arrays, in accordance with some embodiments of the present specification;
  • FIG. 12A depicts a shirt with embedded planar microcoil arrays, in accordance with other embodiments of the present specification;
  • FIG. 12B depicts a pair of socks with embedded planar microcoil arrays, in accordance with other embodiments of the present specification;
  • FIG. 12C depicts a head covering with embedded planar microcoil arrays, in accordance with other embodiments of the present specification;
  • FIG. 12D depicts a pair of pants or leggings with embedded planar microcoil arrays, in accordance with other embodiments of the present specification;
  • FIG. 12E depicts a glove with embedded planar microcoil arrays, in accordance with other embodiments of the present specification;
  • FIG. 13 is a flowchart showing an exemplary use of the system;
  • FIG. 14 is an exemplary footwear system;
  • FIG. 15 is an exemplary array of planar coils;
  • FIG. 16 is an exemplary current directionality of a coil array;
  • FIG. 17 is an exemplary docking station configured to interface with a controller;
  • FIG. 18A is an exemplary head covering with planar microcoil arrays integrated therein;
  • FIG. 18B is another exemplary head covering with planar microcoil arrays integrated therein;
  • FIG. 19 is a side view of an article of clothing with planar microcoil arrays integrated therein;
  • FIG. 20 shows an exemplary method of using the PEMF device;
  • FIG. 21A shows an exemplary EEG profile of a human brain without exposure to an pulsed electromagnetic field using planar coils;
  • FIG. 21B shows an exemplary EEG profile of a human brain during exposure to an pulsed electromagnetic field using planar coils;
  • FIG. 22A shows a magnetic field profile of a preferred planar microcoil array approximately 1 mm from the surface of the array;
  • FIG. 22B shows a magnetic field profile of a preferred planar microcoil array approximately 3 mm from the surface of the array;
  • FIG. 22C shows a magnetic field profile of a preferred planar microcoil array approximately 5 mm from the surface of the array;
  • FIG. 22D shows a magnetic field profile of a preferred planar microcoil array approximately 7 mm from the surface of the array;
  • FIG. 22E shows a magnetic field profile of a preferred planar microcoil array approximately 9 mm from the surface of the array;
  • FIG. 22F shows a magnetic field profile of a preferred planar microcoil array approximately 11 mm from the surface of the array;
  • FIG. 23 shows an exemplary method of treating a person's brain;
  • FIG. 24 shows an exemplary method of treating pain in various parts of a person's body;
  • FIG. 25A shows a first view of an exemplary liner configured to be positioned between headwear and a patient's head; and
  • FIG. 25B shows a second view of an exemplary liner configured to be positioned between headwear and a patient's head.
  • DETAILED DESCRIPTION
  • The present specification is directed towards multiple embodiments. The following disclosure is provided in order to enable a person having ordinary skill in the art to practice the invention. Language used in this specification should not be interpreted as a general disavowal of any one specific embodiment or used to limit the claims beyond the meaning of the terms used therein. The general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the invention. Also, the terminology and phraseology used is for the purpose of describing exemplary embodiments and should not be considered limiting. Thus, the present invention is to be accorded the widest scope encompassing numerous alternatives, modifications and equivalents consistent with the principles and features disclosed. For purpose of clarity, details relating to technical material that is known in the technical fields related to the invention have not been described in detail so as not to unnecessarily obscure the present invention.
  • In the description and claims of the application, each of the words “comprise” “include” and “have”, and forms thereof, are not necessarily limited to members in a list with which the words may be associated. It should be noted herein that any feature or component described in association with a specific embodiment may be used and implemented with any other embodiment unless clearly indicated otherwise.
  • As used herein, the indefinite articles “a” and “an” mean “at least one” or “one or more” unless the context clearly dictates otherwise.
  • As used herein, the term “planar coil” or “planar microcoil” both refer to a conductive pathway with curves or turns where the entirety of the conductive pathway is substantially positioned within the same plane. Stated differently, the turns, curves, or coils of the conductive pathway occupy varied positions within an X-Y plane but are of the same thickness or have a thickness within a range of 20% of each other. Accordingly, such a planar microcoil is differentiated from conventional coil structures because the windings or turns of the coil do not extend substantially upward or outward from the innermost or first coil in the Z direction or normal to the X-Y plane defined by the innermost or first coil. The terms “extend substantially upward or outward”, “within the same plane”, or “within the same X-Y plane” are defined as within +/−20 mm, within +/−15 mm, within +/−10 mm, or more preferably within +/−5 mm of a 0 point on the Z axis. The planar footprint area of a “planar coil” or “planar microcoil” is preferably greater than 1 cm2, more preferably between 1 cm2 and 9 cm2, and even more preferably between 2 cm2 and 4 cm2.
  • As used herein, the term “magnetic flux” refers to a quantity or strength of magnetic lines produced by a current passing through one or more planar coils and the term “magnetic flux density” refers to the amount of that magnetic flux in an area taken perpendicular to the magnetic flux's direction, typically measured in Tesla. It should be appreciated that, throughout this specification and in each embodiment taught here, all magnetic fields, and corresponding magnetic flux and magnetic flux densities, are generated by a current passing through one or more planar coils and are not generated by one or more permanent magnets unless otherwise stated. It should further be appreciated that each embodiment described herein may further include an optional version which expressly does not include, incorporate, or otherwise use permanent magnets but, yet, which still generate magnetic fields.
  • Planar Microcoil Structure
  • Referring to FIGS. 1A, 1B, 2A, and 2B, the planar microcoils may have a plurality of different shapes and dimensions. FIG. 1A shows a spiral circular planar microcoil 100 a having six turns where the conductive pathway follows a spiral shape from a first part of the circuit 102 a, or where the spiral coil conductive pathway begins, to a second part of the circuit 104 a, or where the spiral coil conductive pathway terminates. Each turn forms a circle, except that the beginning and end of the circle are offset from each other, thereby creating a spiral across all turns. The spiral shaped conductive pathway 106 a is substantially entirely positioned within the same X-Y plane.
  • Similarly, FIG. 1B shows a spiral rectangular planar microcoil 100 b having 10 turns where the conductive pathway follows a spiral shape from a first part of the circuit 102 b, or where the spiral coil conductive pathway begins, to a second part of the circuit 104 b, or where the spiral coil conductive pathway terminates. Each turn forms a rectangle, except that the beginning and end of the circle are offset from each other, thereby creating a spiral across all turns. The spiral shaped conductive pathway 106 b is substantially entirely positioned within the same X-Y plane.
  • It should be appreciated that the present invention is directed toward any spiral shaped planar microcoil, including polygonal, elliptical, or other shapes, having a plurality of turns where the conductive pathway follows a spiral shape from a first part of the circuit, or where the spiral coil conductive pathway begins, to a second part of the circuit, or where the spiral coil conductive pathway terminates. In such embodiments, each turn would form the same polygonal, elliptical, or other shape, except that the beginning and end of the shape are offset from each other, thereby creating a spiral across all turns. The spiral shaped conductive pathway would also be substantially entirely positioned within the same X-Y plane.
  • FIG. 2A shows a non-spiral circular planar microcoil 200 a having three turns where the conductive pathway follows a curved, or circular, shape from a first part of the circuit 202 a, or where the coil conductive pathway begins, to a second part of the circuit 204 a, or where the coil conductive pathway terminates. Each turn forms an incomplete circle and shares a common electrical input and electrical output with the adjacent turns, thereby creating a set of nested incomplete circles, each in electrical communication with a common electrical input 202 a and electrical output 204 a and each having a progressively smaller (or larger) radius. The conductive pathway of nested incomplete circles 206 a is substantially entirely positioned within the same X-Y plane.
  • Similarly, FIG. 2B shows a non-spiral rectangular planar microcoil 200 b having four turns where the conductive pathway follows a polygonal, or rectangular, shape from a first part of the circuit 202 b, or where the coil conductive pathway begins, to a second part of the circuit 204 b, or where the coil conductive pathway terminates. Each turn forms an incomplete rectangle and shares a common electrical input and electrical output with the adjacent turns, thereby creating a set of nested incomplete rectangles, each in electrical communication with a common electrical input 202 b and electrical output 204 b and each having a progressively smaller (or larger) length and width. The conductive pathway of nested incomplete rectangles 206 b is substantially entirely positioned within the same X-Y plane.
  • It should be appreciated that the present invention is directed toward any non-spiral shaped planar microcoil, including polygonal, elliptical, or other shapes, having a plurality of turns where the conductive pathway follows a polygonal, elliptical, or other shape from a first part of the circuit, or where the coil conductive pathway begins, to a second part of the circuit, or where the coil conductive pathway terminates. In such embodiments, each turn would form the same incomplete polygonal, elliptical, or other shape and would share a common electrical input and electrical output with the adjacent turns, thereby creating a set of nested incomplete polygonal, elliptical, or other shapes, each in electrical communication with a common electrical input and electrical output and each having a progressively smaller (or larger) length and width or radius. The conductive pathway of nested incomplete polygonal, elliptical, or other shapes would be substantially entirely positioned within the same X-Y plane
  • FIGS. 3A, 3B, 3C, 4A, 4B, 4C, 5A, 5B, 7A, 7B and 8 show additional exemplary microcoil embodiments and configurations. Referring to FIG. 3A, a circular spiral coil is shown 300 a with a current input 305 a and current output 310 a on the same side and parallel to each other. FIG. 3B shows a rectangular spiral coil 300 b with a current input or output 305 b in the interior of the coil 300 b. FIG. 3C shows a high-density spiral coil with an interior, wireless region 320 c that is rectangular with curved corners. FIGS. 4A-4C show less preferred embodiments where 400 a shows a two pronged coil with the two parallel ends of the coil separated by an open space 405 a, 400 b shows a two pronged coil with the two parallel ends of the coil separated by a zig- zag coil 405 b, and 400 c shows a two pronged coil with the two parallel ends of the coil separated by a zig-zag coil and having a conductive material positioned therein 405 c. Referring to FIG. 8, a multi-coil planar array 800 may include two or more pronged coils 810 with the two ends of the coil separated by a zig-zag coil 805.
  • FIG. 5A shows a side perspective view of a planar coil 500 a with coil depth in the Z the direction, as denoted by the variable “h”. The variable D denotes a dimension indicative of the distance from one exterior side of the coil to the opposing exterior side of the coil. The variable b denotes a dimension indicative of the thickness of the coil. The variable p denotes a dimension indicative of the distance between coils, referred to as a pitch. The variable Di denotes a dimension indicative of the distance from one interior side of the innermost coil to the opposing interior side of the innermost coil. Referring to FIG. 5B, the variable g also shows a spacing between coils. The arrow indicates a flow of current from an outside current coil connection to an inside current coil output. Referring to FIG. 7A, a single coil 700 a mounted on a substrate 730 a, where the coil is rectangular and has an input/output, 720 a, 725 a, on the exterior of the coil and in the interior of the coil. Referring to FIG. 7B, six coil 700 a mounted on a substrate 730 a, where the coil is rectangular and has an input/output, 720 a, 725 a, on the exterior of the coil and in the interior of the coil. FIG. 7B represents the preferred embodiment of a planar multi-coil array 700 b and is discussed in greater detail with respect to FIG. 15. Six circular planar coils, 740 b, 741 b, are mounted on a flexible substrate 730 b. Three coils 740 b are on a top side and three coils 741 b are on a bottom side. All coils are electrically connected, via traces 750 b which run across the substrate, and 760 b which connect from trace 750 b to an individual coil, to a current input 720 b and a current output 725 b. In one embodiment, the current input 720 b and output 725 b are on the same side of the substrate 730 b. In another embodiment, the current input 720 b and output 725 b may be on the different sides of the substrate 730 b.
  • Table 1 has a list of preferred attributes of each of the spiral circular coil (FIG. 1A), spiral rectangular coil (FIG. 1B), non-spiral circular coil (FIG. 2A), and non-spiral rectangular coil (FIG. 2B). It should be appreciated that one or more of the other coils, as described herein, may have one or more of the preferred attributes described in Table 1 below.
  • TABLE 1
    Coil Attributes
    Spiral circular Spiral rectangular Non-spiral circular Non-spiral rectangular
    Variables coil FIG. 1a coil FIG. 1b coil FIG. 2a coil FIG. 2b
    Width of the coil 1 to 200 microns 1 to 200 1 to 200 microns 1 to 200 microns
    segments (note that (preferably 25 to microns (preferably 25 to (preferably 25 to 100
    the widths may be 100 microns, (preferably 25 100 microns, microns, preferably
    constant or preferably 50 to 100 microns, preferably 50 50 microns)
    variable) microns) preferably 50 microns)
    microns)
    Distance from 10 to 500 10 to 500 10 to 500 microns 10 to 500 microns
    center of coil to microns microns (preferably 100 (preferably 100
    innermost coil (preferably 100 (preferably 100 microns) microns)
    segment microns) microns)
    Distance from 43 to 800250 43 to 800250 43 to 800250 43 to 800250
    center to the microns, where microns, where microns, where microns, where the
    outermost coil the max distance the max the max distance max distance is
    segment is calculated distance is is calculated calculated using 100
    using 100 calculated using using 100 microns for the width
    microns for the 100 microns for microns for the of the coil segment,
    width of the coil the width of the width of the coil 250 microns for the
    segment, 250 coil segment, segment, 250 distance from the
    microns for the 250 microns for microns for the center of the coil to
    distance from the the distance distance from the the innermost coil
    center of the coil from the center center of the coil segment, pitch is
    to the innermost of the coil to the to the innermost 1500 microns,
    coil segment, innermost coil coil segment, number of turns is
    pitch is 1500 segment, pitch pitch is 1500 500
    microns, number is 1500 microns, number
    of turns is 500 microns, of turns is 500
    number of turns
    is 500
    Distance between 10 to 3000 10 to 3000 10 to 3000 10 to 3000 microns
    each coil segment, microns microns microns (preferably 50, 200,
    referred to as pitch (preferably 50, (preferably 50, (preferably 50, 650, 1150 microns)
    (note that the pitch 200, 650, 1150 200, 650, 1150 200, 650, 1150
    may be constant or microns) microns) microns)
    variable)
    Height of the coil 0.1 to 20 0.1 to 20 0.1 to 20 microns 0.1 to 20 microns
    segments microns microns (preferably 1 (preferably 1 micron)
    (preferably 1 (preferably 1 micron)
    micron) micron)
    Number of turns 3 to 500 3 to 500 3 to 500 3 to 500 (preferably
    (defined as the (preferably 5, 20, (preferably 5, (preferably 5, 20, 5, 20, 48, 94)
    number of times a 48, 94) 20, 48, 94) 48, 94)
    coil travels around
    the center of the
    coil at least 270
    degrees)
    Support structure SiO2/Si, wafer, SiO2/Si, wafer, SiO2/Si, wafer, SiO2/Si, wafer,
    Kapton, flexible Kapton, flexible Kapton, flexible Kapton, flexible
  • Referring back to FIG. 3C, in another embodiment, a copper coil 305 c that is substantially circular with a substantially rectangular inner air core (having rounded internal edges) is provided. In one embodiment, it has the following attributes:
  • 1. The coil, including any hard-plastic backing, has a footprint no greater than 2 cm by 2 cm, preferably no greater than 1.65 by 1.65 centimeters.
  • 2. The coil comprises a plurality of wire turns, where the diameter of the coil in the plane of the coil is 0.04 mm.
  • 3. The coil will have a minimum of 100 turns, preferably 175 windings, and even more preferably greater than 150 windings.
  • 4. Each corner of the coil will have 1 quarter-circle with a radius of 0.18125 cm.
  • 5. The inductance is in a range of 200 to 700 μH, preferably around 373 μH and the resistance is in a range of 50 to 800 ohms, preferably around 144 ohms.
  • 6. The inner air core has dimensions in a range of 0.2 cm by 0.2 cm with each corner of the inner air core being 1 quarter-circle with a radius of 0.00625 cm.
  • Profile of the Magnetic Field
  • Referring to FIGS. 22A-22F, preferred planar microcoil arrays preferably generate high intensity, sharply peaking fields at a small vertical distance from the surface of the planar microcoil that rapidly flatten and decrease in intensity as the vertical distance from the surface of the planar microcoil array increases.
  • More specifically, each coil on the planar microcoil array concurrently generates a field which, at a 40 mA current and measured using an AC field measurement of 1 kHz, that decreases in a non-linear manner as the vertical distance increases from the surface of the array. As shown in FIG. 22A, each of the coils generates a field 2230A in a range of 120 to 160 microTesla approximately 1 mm above the array and coil surface. Concurrently referring to FIGS. 22B-22F, that field decreases to 50-80 microTesla (at 3 mm, 2230B), to 25-40 microTesla (at 5 mm, 2230C), to 14-20 microTesla (at 7 mm, 2230D), to 8-12 microTesla (at 9 mm, 2230E), and to 5-7 microTesla (at 11 mm, 2230F). Accordingly, as measured vertically from the surface of array, the field of each coil initially decreases at a first rate and then, over 2-4 mm, decreases to a second rate, where the second rate is less than the first rate. Additionally, over 5-8 mm, decreases to a third rate, where the third rate is less than the first and second rates. It should be appreciated that, while a six coil configuration is shown, other numbers of coils (collectively integrated onto a single contiguous substrate) may be used, in a range of 2 to 1000 and every whole number increment therein.
  • Furthermore, at a given distance normal to the surface of the planar microcoil array, each coil on the planar microcoil array concurrently, yet independently, generates a field having a peak intensity that is within 0.01% to 20% of the average peak intensity of all the coils measured at the same given distance. More preferably, each coil on the planar microcoil array concurrently, yet independently, generates a field having a peak intensity that is within 0.01% to 10%, or any whole number increment therein, of the average peak intensity of all the coils measured at the same given distance.
  • Furthermore, at a given distance normal to the surface of the planar microcoil array, the peak intensity generated by each coil on the planar microcoil array concurrently, yet independently, decreases at a certain rate as the distance increases from the surface of the planar microcoil array. For example, in one embodiment, the average peak intensity of the magnetic field measured 1 mm normal to the surface of the planar microcoil array decreases from a first value, such as in a range of 200 to 300 microTesla, to a second value measured 2 mm normal to the surface of the planar microcoil array, such as in a range of 80 to 130 microTesla, to a third value measured 3 mm normal to the surface of the planar microcoil array, such as in a range of 50 to 90 microTesla, to a fourth value measured 4 mm normal to the surface of the planar microcoil array, such as in a range of 30 to 70 microTesla, to a fifth value measured 5 mm normal to the surface of the planar microcoil array, such as in a range of 20 to 50 microTesla, to a sixth value measured 6 mm normal to the surface of the planar microcoil array, such as in a range of 10 to 40 microTesla, to a seventh value measured 7 mm normal to the surface of the planar microcoil array, such as in a range of 5 to 35 microTesla, to a eighth value measured 8 mm normal to the surface of the planar microcoil array, such as in a range of 5 to 30 microTesla, to a ninth value measured 9 mm normal to the surface of the planar microcoil array, such as in a range of 1 to 25 microTesla, to a tenth value measured 10 mm normal to the surface of the planar microcoil array, such as in a range of 1 to 20 microTesla, and to an eleventh value measured 11 mm normal to the surface of the planar microcoil array, such as in a range of 1 to 20 microTesla.
  • Stated differently, the peak intensity generated by each coil on the planar microcoil array concurrently, yet independently, decreases rapidly, such as 70% to 30%, within the first 4 mm of the surface of planar microcoil array. The magnitude of the decrease lessens as one moves further away from the planar microcoil array. For example, the peak intensity generated by each coil on the planar microcoil array concurrently, yet independently, decreases less rapidly, such as 40% to 14%, within the next 4 mm of the surface of planar microcoil array. In a preferred embodiment, the peak intensity generated by each coil on the planar microcoil array concurrently, yet independently, decreases according to the following equation:

  • y=Ax −B
  • where A is in a range of 100 to 600, and more preferably 300 to 400, and every whole number increment therein and where B is in a range of 1 to 2.5 (and every 0.1 decimal increment therein).
  • Taken together, the preferred magnetic field generated by the planar microcoil arrays are defined by four different vectors: a) the frequency of the pulse train or burst, b) the shape of each pulse in the pulse train or burst itself, c) the relative peak intensities of each pulse in the pulse train or burst itself, and d) the degradation profile from the surface of the planar microcoil arrays. In a preferred embodiment, each embodiment described herein generates a magnetic field by:
      • a) Using a planar microcoil array having at least one coil positioned thereon, from 2 to 100 coils positioned thereon, and preferably from 4-10 coils where each of the coils may be one or more of the embodiments described herein;
      • b) Driving a current to the coils positioned on a single array where the current is in the form of a pulse train, where the pulse train may be one or more of the embodiments described herein, and, more preferably, where the pulse train may be a ramping rectangular or sinusoidal pulse having a first pulse, a first time interval, a second pulse, and optionally a second time interval and a third (or more) pulses, as follows:
        • a. the first pulse and second pulse (and the optional third or more pulses) have pulse widths in a range of 0.001 to 0.2 seconds and preferably in a range of 0.01 to 0.02 seconds. where the first time interval and optional additional time intervals are in a range of 0.01 to 0.04 seconds (preferably a 0.025 second interval), and where the second pulse is greater than the first pulse (or vice-versa) and have current levels in a range of 5 mA to 200 mA; or
        • b. each pulse width may be defined as a function of the period (which is the inverse of the frequency) where each pulse width is in a range of ½ to 1/50 the period length (preferably ⅕ to 1/7 the period length), where each interval between the pulses in the pulse train is in a range of ½ to 1/50 the period length (preferably ⅕ to 1/9), where the dead time between each pulse burst or train is in a range of ½ to 1/20 the period length (preferably ⅓ to ⅕), and where the second pulse is greater than the first pulse (or vice-versa) and have current levels in a range of 5 mA to 200 mA;
      • c) Activating the pulse train in accordance with a programmed frequency, where the programmed frequency is in a range of 0.01 Hz to 200 Hz and preferably in a range of 1 Hz to 60 Hz; and
      • d) Activating each of the microcoil arrays in parallel or in series (or a combination thereof) such that the peak intensity generated by each coil on the planar microcoil array concurrently, yet independently, decreases according to the following equation:

  • y=Ax −B
  • where A is in a range of 100 to 600, and more preferably 300 to 400, and every whole number increment therein and where B is in a range of 1 to 2.5 (and every 0.1 decimal increment therein). Accordingly, the preferred embodiments generate a magnetic field having at least four vectors of variation, resulting in a rapidly changing magnetic field profile across human tissue: a) the individual pulse shape in a given pulse train (rectangular, sinusoidal or other shaped pulse), b) the ramping (or decreasing) peak intensity between individual pulses in a pulse train, c) the frequency of the pulse train/bursts, and d) the degradation profile of the field from each of the coils over a distance. The combination of these various vectors results in a rapidly varying magnetic field profile (over both time and distance) that results in the beneficial therapeutic effects described herein.
  • Additionally, it is preferred to have the magnetic field vectors defining the dominant direction of the magnetic fields of the plurality of planar microcoil arrays be non-coplanar. Specifically, it is preferred that:
      • 1. A first of a plurality of planar microcoil arrays generates a first magnetic field defined by a first vector extending in a first direction, a second of the plurality of planar microcoil arrays generates a second magnetic field defined by a second vector extending in a second direction, and a third of the plurality of planar microcoil arrays generates a third magnetic field defined by a third vector extending in a third direction, wherein the first direction, second direction, and third direction are different directions.
      • 2. A first of a plurality of planar microcoil arrays generates a first magnetic field defined by a first vector extending in a first direction, a second of the plurality of planar microcoil arrays generates a second magnetic field defined by a second vector extending in a second direction, and a third of the plurality of planar microcoil arrays generates a third magnetic field defined by a third vector extending in a third direction, wherein the first direction, second direction, and third direction are transverse to each other.
      • 3. A first of a plurality of planar microcoil arrays generates a first magnetic field defined by a first vector extending in a first direction, a second of the plurality of planar microcoil arrays generates a second magnetic field defined by a second vector extending in a second direction, and a third of the plurality of planar microcoil arrays generates a third magnetic field defined by a third vector extending in a third direction, wherein if the first vector and second vector were to intersect each other, they would form an angle having a value greater than 15 degrees and if the second vector and third vector were to intersect each other, they would form an angle having a value greater than 15 degrees.
      • 4. A first of a plurality of planar microcoil arrays generates a first magnetic field defined by a first vector extending in a first direction, a second of the plurality of planar microcoil arrays generates a second magnetic field defined by a second vector extending in a second direction, and a third of the plurality of planar microcoil arrays generates a third magnetic field defined by a third vector extending in a third direction, wherein the first direction, second direction, and third direction are non-parallel and intersect each other.
    Planar Microcoil Arrays and Controllers
  • Referring to FIG. 6, the therapeutic system 600 comprises a flexible patch or substrate 620 having one or more planar microcoils 620 positioned thereon. The flexible patch or substrate 620 comprises a flexible material, such as Kapton, polyimide, or any other suitable non-conductive flexible material. A single patch 620 comprising a plurality of planar microcoils 615 constitutes a planar microcoil array 630, as shown in FIGS. 7b and 15. Each of the arrays is connected in parallel or in series to a controller 605. For example, the set of patches 620 in column 603 may be connected serially, while the patches in columns adjacent to column 603 may be connected in parallel to the patches in column 603 via wires, or electrical communication pathways, 610.
  • In one embodiment, the single patch 620 comprises two or more planar microcoils 615 or between 2 and 100 microcoils or more than 2 planar microcoils. In one embodiment, the set of patches used in any specific application, including in any piece of clothing, may have different sizes (e.g. surface areas), and therefore different numbers of planar microcoils, in order to better fit or suit different parts of a person's anatomy. For example, clothing positioned adjacent to the patient's torso may have larger patches, and more planar microcoils, integrated into a single patch than clothing positioned near the patient's toes or fingers, which may have smaller patches to better contour to the curves and crevices near the patient's toes or fingers, as further discussed in relation to FIGS. 12a to 12 e.
  • Controller 605 may be programmed to concurrently stimulate all the planar microcoils in all the patches, all planar microcoils on a subset of the patches, or a subset of planar microcoils on a subset of the patches. Further, the controller 605 may be optionally configured to removably interface with a docking station 675. Referring to FIG. 17, a docking system 1700 is comprised of a controller 1705 having circuitry 1710 configured to generate current signals in accordance with the stimulation protocols described herein, a first mechanical connection 1722, and a power source, such as a battery 1720, and a docking station 1730, having an electrical connection 1740 configured to mate to the circuitry 1710 and a second mechanical connection 1745 configured to mate with the first mechanical connection 1722. In one embodiment, the electrical connection 1740 comprises one or more pins having data stored therein indicative of the type of clothing, device, or application the docking station 1730 is integrated into. As described below, the planar microcoil arrays are integrated into clothing and, preferably, the docking station 1730 is as well. The controller 1705 is removably attachable to the docking station 1730 such, upon connecting the first mechanical connection 1722 to the second mechanical connection 1745, the circuit 1710 is automatically placed in electrical communication with, and is therefore capable of driving a current through, electrical interface 1740. Further, upon being automatically interfaced with electrical interface 1740, the circuit 1710 is configured to read the data indicative of the type of clothing or planar array configuration to which the docking station 1730 is connected, thereby allowing a user to use one controller 1705 with multiple different clothing types and further allowing the controller 1705 to be charged or serviced separate from the docking station 1730, planar microcoil arrays, and clothing into which both are integrated. The mechanical connection may be a male/female latch combination, a male/female snap combination, or any other male/female mechanical combination.
  • In one embodiment, programmatic instructions on a separate computing device, such as a phone, 635, are executed to capture pain data from the patient, analyze the pain data to determine which areas of the patient's anatomy requires pulsed electromagnetic field therapy, and, depending on the garment being worn by the patient, activate one or more planar microcoils on one or more patches to target the determined areas requiring pulsed electromagnetic field therapy.
  • More specifically, referring to FIG. 13, a patient first acquires a specific piece of clothing with the patches and planar microcoil arrays integrated therein, as further described below. The patient downloads an app onto his or her phone 635, creates an account, and inputs a clothing identifier, using a QR code, RFID tag, serial number or another identifier. In response to inputting the clothing identifier, the app determines the type of clothing (shirt, pant, sock, etc.) and generates a set of clearance questions specific to that type of clothing 1305. Clearance questions may be directed toward making sure the device is not used proximate to implanted devices, metal or other structures that, if positioned on the patient's skin, could experience induced electrical currents if pulsed electromagnetic fields are applied thereto.
  • After receiving the user's response to the clearance questions, the app determines if there are any contraindications to use (i.e. a pacemaker, spinal implants, pins, or other implanted devices) 1310 and, depending upon the determination, generates an activation code which is transmitted to the controller 605. If the user inputted data is contraindicated for use with the specific piece of clothing, the app recommends the user first activate the device under the supervision of a physician. An override code, which would require the user to actively acknowledge the risks involved, may be provided by the app and either wirelessly transmitted to the controller 605 or displayed to the user who may manually input it into the controller 605.
  • If user, relative to the identified piece of clothing, is cleared for use and the controller 605 is activated, the app then prompts the user to input data indicative of the patient's pain level and location of the pain 1315. The app may do so by generating a visual analog scale that the user may use to indicate a level of pain being experienced (i.e. on a scale of 1 to 10 or using graphical emojis) and a graphical image of a human body, or portions thereof, to allow the user to identify, by pointing to the right location on the graphical image, the locus of pain. In one embodiment, the graphical image used is specific to the type of clothing identified using the original code indicative of the clothing acquired. Once the degree and/or locus of pain has been identified, the app may determine which set of patches and/or set of planar microcoils should be energized in order to treat the inputted level and location of pain 1320 and transmit such data to the controller. For other conditions, other questions may be posed, such as degree and timing of memory lapses, degree and timing of tremors, or degree and timing of other symptoms.
  • FIG. 9 describes an exemplary circuit 900 configured to generate electrical currents, in accordance with stimulation protocols described below. The exemplary circuit may be in the controller 605 or distributed between the controller 605 and patches 620.
  • Referring to FIG. 15, the coil array 1500 may comprise a flexible substrate 1502 upon which a plurality of coil pieces 1504 are attached. Each coil piece 1504 comprises a backing, such as a hard-plastic backing 1506, upon which a coil 1508 is wound or molded. The coils may be any of the rectangular spiral, rectangular non-spiral, circular spiral, circular non-spiral or other shaped coils. The coil pieces 1504 are preferably spaced from each other in a range of 0.1 cm to 10 cm, preferably 0.5 cm to 2 cm, and preferably less than 15 cm, or any numerical increment therein. Each coil 1508 comprises an input lead and an output lead. The input lead of each coil 1508 may be routed to one side of the array 1510 and may be kept separate from each other by one or more layers of insulation tape 1512. The input leads of all the coils 1508 of the array 1500 are integrated or multiplexed together to form an input terminal 1522 to which electrical current from the controller and energy source may be directed. Accordingly, all the coils 1508 of the array 1500 may be concurrently energized by directing current from a single energy or battery source to just one input terminal 1522.
  • Similarly, the output lead of each coil 1508 may be routed to one side of the array 1514 and may be kept separate from each other by one or more layers of insulation tape 1512. The output leads of all the coils 1508 of the array 1500 are integrated or multiplexed together to form an output terminal 1524 to which electrical current from the controller and energy source may be directed. Accordingly, the output leads of all the coils 1508 of the array 1500 are integrated or multiplexed together to form an output terminal 1524 to which electrical current may be directed from the array to the controller and energy source. Further, all the coils 1508 of the array 1500 may form a closed circuit by directing current from the array to the single energy or battery source via the one output terminal 1524.
  • Preferably, positioned between each coil piece 1504 or coil 1508 is a material that may act as a cushion, barrier, or padding 1518 that functions to both prevent the coil pieces from 1504 shifting and to gently position the array 1500 against the user's skin. Additionally, or alternatively, area 1518 may include an adhesive to attach, secure, or otherwise fixedly position the array 1500 against the user's skin. Additionally, or alternatively, area 1518 may include an attachment mechanism, such as Velcro or snaps, to attach area 1518, and therefore array 1500, to another substrate or material to form a piece of clothing, as further discussed below.
  • It should be appreciated that the directionality of the current of each coil may be modified to achieve a desired magnetic flux level by properly routing its input lead or output lead to the input or output side of the array 1500. Referring to FIG. 16, in this array 1600, the top coils 1632 and the bottom coils 1636 have counterclockwise currents. The directionality of the current of a coil may be modified by changing which lead, extending from that coil, is routed to the input terminal and is routed to the output terminal. For example, if lead A is directed to the input terminal and lead B is directed to the output terminal, the current directionality of the corresponding coil may be clockwise. That current directionality may be switched to become counterclockwise by routing lead A to the output terminal and lead B to the input terminal
  • It should further be appreciated that the form factor and range of coil sizes and relative separation between coil pieces are important to achieving two core objectives. First, the coil footprint should not be too large, and the coil separation should not be too small, otherwise the array will not be flexible enough to conform to uneven or non-planar portions of a user's body. Second, the coil footprint should not be too small, and the coil separation should not be too large, otherwise the array will not generate a sufficiently large magnetic flux for therapeutic purposes. Hence, the dimensions and distances disclosed herein have a distinct utility and are not merely aesthetic in nature.
  • Stimulation Protocols
  • The controller is configured to generate an electrical current, and selectively transmit the electrical current to all of the plurality of planar microcoils, or a subset of the plurality of planar microcoils, in order to generate pulsed electromagnetic fields in accordance with one or more of FIGS. 10A to 10G. The electrical current may be a sinusoidal curve 1000 a defined by a first period, a sinusoidal curve 1000 b defined by a second period, or a sinusoidal curve 1000 c defined by a third period where each of the three periods are of different lengths. The electrical current may also be a sinusoidal curve 1000 d having a varying amplitude. In other embodiments, the electrical current pulse may be a trapezoidal 1000 e, a spike 1000 f, or square shaped 1000 g. Referring to FIG. 10G, in one embodiment, the stimulation pulse, or shape of the electrical current pulse, may comprise a series of pulse trains 1000 g, each defined by a set of ramping square pulses, 1005 g, 1015 g, 1020 g. In particular, within a stimulation session, each pulse train 1000 g may be initiated at a frequency in a range from 5 Hz to 200 Hz, preferably in a range of 8 to 30 Hz. Each pulse train 1000 g comprises at least 1 square pulse, typically having an amplitude of between 20 and 100 mA. More preferably, each pulse train 1000 g comprises a series of ramping square pulses, 1005 g, 1015 g, 1020 g, that increase in amplitude from a first pulse in a range of 20 to 50 mA, to a second pulse in a range of 40 to 70 mA, to a third pulse in a range of 60 to 100 mA. It should be appreciated that other ramping configurations could be implemented, including a down ramping pulse that, in the course of the pulse train, decreases in amplitude.
  • A stimulation session may go from 1 minute to 24 hours. As described above, within a given stimulations session, you may have a series of pulse bursts. A pulse burst may have one or more pulses. Each pulse in the pulse burst may have the same or different pulse shapes, as shown in FIGS. 10A-10F. Each pulse in the pulse burst may have the same or different amplitude. In one preferred stimulation, there are multiple pulses in a pulse burst where the amplitude of each pulse burst ramps from low to high or ramps from high to low. Each pulse amplitude causes a generation of a field in the range of 1 to 10000 microTesla, preferably 3 to 500 microTesla, preferably 10 to 200 microTesla. The frequency of the pulse burst is in a range of 1 to 500 Hz, preferably 5 to 30 Hz, and more preferably 6 to 15 Hz. Amperage is dependent on the selected planar microcoil design but is in a range of 1 mAmp to 5 Amp. In embodiments, the pulse bursts may have characteristics as described with reference to Table 2 below:
  • TABLE 2
    Pulse Burst Characteristics
    Amplitude of 1 mAmp to 1 Amp 1 mAmp to 1 Amp 1 mAmp to 1 Amp 1 mAmp to 1 Amp
    electrical signal (preferably 0.1, (preferably 0.1, (preferably 0.1, (preferably 0.1,
    generated by the 0.2, 0.4 0.5, 0.2, 0.4 0.5, 0.2, 0.4 0.5, 0.2, 0.4 0.5,
    controller 0.55 Amps) 0.55 Amps) 0.55 Amps) 0.55 Amps)
    Frequency of 1 Hz to 500 Hz 1 Hz to 500 Hz 1 Hz to 500 Hz 1 Hz to 500 Hz
    electrical pulse (preferably 5 to (preferably 5 to (preferably 5 to (preferably 5 to
    bursts (each burst 30 Hz, more 30 Hz, more 30 Hz, more 30 Hz, more
    contains one or preferably 5 to preferably 5 to preferably 5 to preferably 5 to
    more pulses) 15 Hz) 15 Hz) 15 Hz) 15 Hz)
    Number of pulses 1 to 20 1 to 20 1 to 20 1 to 20
    in each burst
    Ramping No ramping (all No ramping (all No ramping (all No ramping (all
    pulses are equal pulses are equal pulses are equal pulses are equal
    in amplitude), in amplitude), in amplitude), in amplitude),
    ramping up (first ramping up (first ramping up (first ramping up (first
    pulse is less than pulse is less than pulse is less than pulse is less than
    the last pulse in the last pulse in the last pulse in the last pulse in
    the burst), the burst), the burst), the burst),
    ramping down ramping down ramping down ramping down
    (first pulse is (first pulse is (first pulse is (first pulse is
    more than the last more than the last more than the last more than the last
    pulse in the pulse in the pulse in the pulse in the
    burst) burst) burst) burst)
    Shape of each Square, Square, Square, Square,
    pulse in the pulse Trapezoidal, Trapezoidal, Trapezoidal, Trapezoidal,
    burst Sinusoidal Sinusoidal Sinusoidal Sinusoidal
    Generated EMF 1 microTesla to 1 microTesla to 1 microTesla to 1 microTesla to
    field over the 10 milliTesla 10 milliTesla 10 milliTesla 10 milliTesla
    surface area of the
    coil and extending
    outward from the
    surface of the coil
    in a range of 0 mm
    to 20 mm
  • Controller Software
  • In one embodiment, the treatment systems disclosed herein, including the coils, coil arrays, and controller circuit configured to generate and deliver electrical current to the coils and coil arrays, are controlled by a software application configured to be installed and execute on a separate computing device, such as a mobile phone, laptop, or external controller, that is in wired or wireless communication with the controller circuit.
  • In one embodiment, the software application, or controller application, is configured to identify a type of coil system being used by a patient. Operationally, the controller application may be installed on a mobile phone and be configured to use a camera functionality of the mobile phone to capture a bar code, QR code, or other identification or be configured to generate a graphical user interface to receive an alphanumeric identifier of the coil system. Based on the data provided, the controller application may 1) validate the coil system as being a legitimate, authorized, or otherwise acceptable coil system, 2) determine what type of coil system is being used and whether that coil system is specific to a particular anatomical region, e.g. a coil system specific to a neck region, torso region, back region, leg region, foot region, arm region, head region, or other anatomical region, and 3) based upon that determination, generate graphical user interfaces that display anatomical regions specific to the coil system being used, e.g. if the coil system is specific to a neck region the generated graphical user interfaces visually display a neck, if the coil system is specific to a torso region the generated graphical user interfaces visually display a torso, if the coil system is specific to a back region the generated graphical user interfaces visually display a back region, if the coil system is specific to a leg region the generated graphical user interfaces visually display a leg region, if the coil system is specific to a foot region the generated graphical user interfaces visually display one or more feet, if the coil system is specific to an arm region the generated graphical user interfaces visually display one or more arms, and if the coil system is specific to a head region the generated graphical user interfaces (GUIs) visually display a head region.
  • In one embodiment, the generated GUIs are configured to receive an input from a patient as to a locus or loci of pain relative to the displayed anatomical region. For example, upon displaying the anatomical region in a GUI, a patient may paint, using a stylet or finger pressed upon a display, an area of the anatomical region that may be in pain. One or more GUIs may then be presented to prompt from a patient, and receive from the patient, an indication of the level of the pain via, for example, a visual analog scale where a user may indicate using numbers or icons a degree of the pain.
  • Based upon the highlighted anatomical region and the level of pain, the controller software determines 1) a desired level of magnetic flux to be delivered, 2) a corresponding set of coils to be energized in what order and at what frequency, and 3) a level of current to be delivered to each coil or coil array to generate the desired level of magnetic flux in the right location and at the right frequency. In particular, different locus or loci of pain may require an increased or decreased intensity or frequency of magnetic flux to be delivered at nerves located upstream or downstream from the locus or loci of pain. The controller software therefore comprises programmatic instructions, and supporting data, that correlates anatomical locations of pain with nerve areas that are co-located with the locus or loci of pain, upstream from the locus or loci of pain and/or downstream from the locus or loci of pain. In one embodiment, the controller software becomes aware of the location of specific coils or coil arrays based on at least one of 1) a preset relationship of the coils/coil arrays that is stored and known to the controller software based on identifying the type of coil system or 2) input by a user that indicates to the controller software where each of the coils are being positioned on a patient—such an indication being provided through a GUI that presents possible anatomical locations either through text or graphically.
  • In one embodiment, the software application, or controller application, is configured to generate instructions that, when communicated to and executed by the controller circuit, causes the controller circuit to generate electrical current and deliver that electrical current to different coils and/or coil arrays based on the desired frequency, intensity level, order, and location, as described above. For example, if a patient is suffering from acute pain on top of his or her right foot, the controller software may determine that coil arrays positioned on top of his or her right foot need to generate a magnetic flux in a range of 100 microTesla at a frequency of 10 Hz while coils positioned in the sole of the footwear, proximate the bottom of the patient's foot, need only be activated to generate a magnetic flux in a range of 20 microTesla at a frequency of 30 Hz.
  • In another embodiment, the controller circuit may be configured to electrically connect with a coil array or coils and upon making such a connection, to detect and store an identifier of the coil array or coil. The controller circuit preferably stores each of the identifiers and communicates it to the controller software upon connecting. These identifiers may be further used to identify the validity and/or type of coils or coil arrays being used.
  • To determine desired dosing levels, in another embodiment, the controller software may include a set of programmatic instructions for dose training. In one embodiment, the controller software operates in a training mode in which 1) a user is prompted to provide real-time feedback on pain levels using a visual analog scale, 2) the controller software modulates, over predefined periods of time, the frequency of pulse signals, the amount of current (and therefore magnetic flux intensity level) and/or the shape of the pulse signals in various combinations over the predefined period of time, and 3) as the parameters change, the user is prompted to input feedback on pain levels through the visual analog scale. For example, once a user identifies a locus of loci of pain, it initiates a cycling process starting with a set of frequency and modulating the current level and therefore the magnetic flux level up and down, prompting the user for feedback on pain levels during the cycling process. The controller software may then change frequency settings and repeat the up and down modulation of current level and magnetic flux level, again concurrently prompting the user for feedback on pain levels during the cycling process. Once the cycling processes are completed, the controller software analyzes the user's feedback to determine an optimal combination of frequency and current level for a given locus or loci of pain.
  • In another embodiment, the controller may be programmed by a) inputting data into a separate computing device configured to execute a set of programmatic instructions that, when executed by the separate computing device, generate a display for prompting a user to input data indicative of a desired type of treatment, wherein the desired type of treatment includes at least one of relaxation, improved sleep, improved memory, weight loss, or improved mental acuity, b) wirelessly transmitting the inputted data to the controller, c) receiving, in the controller, the inputted data and generating an electrical pulse train having a frequency based on the data indicative of the desired type of treatment, d) delivering the generated electrical pulse train to each of the plurality of planar microcoil arrays, and e) automatically terminating the electrical pulse train after a programmed time period elapses, wherein the programmed time period is based on the data indicative of the desired type of treatment. Alternatively, the controller may comprise a switch (which could be a button, slide switch, or any physical input means), where a position of the switch is representative of a desired type of treatment, where the desired type of treatment includes at least one of relaxation, improved sleep, improved memory, or improved mental acuity, and where the controller is adapted to generate an electrical pulse train having a frequency based on the position of the switch, to deliver the generated electrical pulse train to each of the plurality of planar microcoil arrays, and to automatically terminate generating the electrical pulse train after a programmed time period elapses.
  • Integration of Planar Microcoils with Clothing
  • To improve patient compliance and provide for ease of use, the patches comprising planar microcoil arrays are integrated into clothing. Referring to FIGS. 11A to 11E and 12A to 12E, the patches 1105, 1205 are sandwiched between a first outer layer and a second inner layer (closer to body) where the second layer is the same material as the first layer but thinner or is of a different material and thicker or thinner than the first layer. The patches are connected to a controller strip 1115, 1215 positioned at the base of the shirt (11A, 12A), top of the socks (11B, 12B), the base of a mask or neck covering (11C, 12C), top of pants (11D, 12D), or base of a glove (11E, 12E). Preferably, the controller comprises a rechargeable battery. Alternatively, the patches may be connected to a docking station to which a controller may be removably attached, as described above.
  • It should be appreciated that the array sizes may be variable. For example, as shown in each of the FIGS. 12A to 12E, one may have a plurality of planar microcoils integrated onto a small substrate surface area 1207, i.e. in a range of 0.5 in2 to 2 in2, or onto a larger substrate surface area 1209, i.e. in a range of 2.01 in2 to 120 in2. The smaller substrate surface areas 1207 are designed to be positioned near crevices, curves, or other non-planar anatomical areas of the patient, such as the areas in or around the toes. The larger substrate surface areas 1209 are designed to be positioned on substantially planar surface areas, such as portions of the arms, legs, and back.
  • It should further be appreciated that the planar microcoil arrays are preferably integrated into a layer of the clothing and are not directly exposed to the user's skin or to the outside environment. Referring to the shirt, head covering, foot covering, and hand coverings shown in FIGS. 12A-12E and further including elbow, knee, leg, ankle, shoulder, or neck braces made from materials ranging from polyester to Lycra or spandex, the planar microcoil arrays and associated traces may be incorporated into a layer positioned between an innermost layer of clothing, which touches the user's skin, and an outermost layer of clothing, which is exposed to the outside environment.
  • Footwear
  • In one embodiment, the present invention is directed toward the integration of coils and/or coil arrays into footwear, such as a shoe, boot, sock, or other foot covering. The sole or base of the footwear 1401 comprises a plurality of individual coils, such as Coil S1, Coil S2, and Coil S3, and/or coil arrays, such as Array S1 that are distributed on a surface of the sole or base. The individual coils, such as Coil S1, Coil S2, and Coil S3, and/or coil arrays, such as Array S1 may be of the type described herein or
      • 1. Coil S1: 6 by 5 cm, inner air core: 0.2 by 1.2 cm, 800 to 1,500 turns (preferably 1200-1300 turns), 0.04 mm wire thickness or larger.
      • 2. Coil S2: 7 by 5.1 cm, inner air core: 0.2 by 2.3 cm, 800 to 1500 turns (preferably 1200-1300 turns), 0.04 mm wire thickness or larger.
      • 3. Coil S3: 3 by 4.5 cm, inner air core: 0.2 by 1.7 cm, 700 turns, 0.04 mm wire thickness
  • Preferably, the individual coils, such as Coil S1, Coil S2, and Coil S3, and/or coil arrays, such as Array S1 are configured to be of different sizes with Coil S1 being larger or having more windings than Coil S2 or Coil S3 and where a distance between the Coil S1, Coil S2, and Coil S3 is between 1 cm and 3 cm, preferably around 2 cm. Each of the Coil S1, Coil S2, and Coil S3 are in electrical communication with the controller 1403. The controller 1403 is also in electrical communication with a plurality of coil arrays U1, U2, U3, U4, U5, and/or U 6 1402 that are integrated into the upper of the footwear and configured to cover the entirety of the user's foot. As discussed above, each of the coil arrays may be energized and/or controller as described above to address a user's foot pain.
  • Optionally, the ankle region of the footwear device may comprise two large coils which are positioned on opposing sides of the ankle region and are spaced and sized to function as Helmholtz coils.
  • Headwear
  • Referring to FIG. 18A, a PEMF device 1800 a configured to comfortably conform to a patient's head is shown. A flexible material 1880 a configured as a headband and made out of cotton, terry cloth, polyester, or other materials. Integrated into a layer of the headband 1880 a are a plurality of planar microcoil arrays 1805 a which are in electrical communication with a docking station and controller 1870 a, as described above. The headband may be adjustable by having an attachment mechanism 1890 a which permits for the relative circumferential extent of the headband to be adjusted. The attachment mechanism 1890 a can use, for example, a Velcro connection which can thereby adjust to the size of the user's head. Preferably there are enough planar microcoil arrays to extend along the template region of the user's head. More preferably there are enough planar microcoil arrays to extend along the entire circumferential extent of the headband.
  • In another embodiment, referring to FIG. 18B, a plurality of planar microcoil arrays 1805 b is positioned in distributed positions around headwear 1885 b, shown as a cap. It should be appreciated that, while the headwear 1885 b is shown as a baseball cap, it may also be any of form of headwear, including a head scarf, cowboy hat, fedora hat, sun hat, flat cap hat, newsboy hat, trilby hat, pork pie hat, homburg hat, bowler hat, panama hat, western hat, stockman hat, watch cap, trapper hat, Stormy Kromer® hat, astrakhan hat, hijab scarf, beanie hat, beret hat, bucket hat, cloche hat, cocktail hat, deerstalker hat, cocktail hat, fascinator hat, gatsby hat, visor, or pillbox hat or any other configurations of material adapted to cover portions of a person's skull, including at least one or more (or preferably two or more) of the frontal bone, sphenoid bone, coronal suture, parietal bone, squamous suture, lambdoid suture, occipital bone and/or temporal bone (collectively referred to as headwear).
  • In one embodiment, the plurality of planar microcoil arrays 1805 b are positioned about the crown of the headwear 1885 b such that, when worn, at least one of the plurality of planar microcoil arrays 1805 b is externally positioned proximate at least one or more of the frontal bone, sphenoid bone, coronal suture, parietal bone, squamous suture, lambdoid suture, occipital bone and/or temporal bone of the wearer's skull. In another embodiment, the plurality of planar microcoil arrays 1805 b are positioned about the crown of the headwear 1885 b such that, when worn, at least one of the plurality of planar microcoil arrays 1805 b is externally positioned proximate at least two or more of the frontal bone, sphenoid bone, coronal suture, parietal bone, squamous suture, lambdoid suture, occipital bone and/or temporal bone of the wearer's skull.
  • In another embodiment, the plurality of planar microcoil arrays 1805 b are positioned about the crown of the headwear 1885 b such that, when worn, at least one of the plurality of planar microcoil arrays 1805 b is externally positioned proximate at least the frontal bone and the parietal bone of the wearer's skull. In another embodiment, the plurality of planar microcoil arrays 1805 b are positioned about the crown of the headwear 1885 b such that, when worn, at least one of the plurality of planar microcoil arrays 1805 b is externally positioned proximate at least the frontal bone and the parietal bone and at least one of the sphenoid bone and/or temporal bone of the wearer's skull.
  • In another embodiment, the plurality of planar microcoil arrays 1805 b are positioned such that they are symmetrically distributed about the crown of the headwear 1885 b such that, when worn, at least one of the plurality of planar microcoil arrays 1805 b is externally positioned proximate a left side of the wearer's frontal bone, at least one of the plurality of planar microcoil arrays 1805 b is externally positioned proximate a right side of the wearer's frontal bone, at least one of the plurality of planar microcoil arrays 1805 b is externally positioned proximate at a top side of the wearer's parietal bone, at least one of the plurality of planar microcoil arrays 1805 b is externally positioned proximate a left side of the wearer's parietal bone, and at least one of the plurality of planar microcoil arrays 1805 b is externally positioned proximate a right side of the wearer's parietal bone.
  • In another embodiment, the plurality of planar microcoil arrays 1805 b is positioned such that they are symmetrically distributed about the crown of the headwear 1885 b such that, when worn, at least two of the plurality of planar microcoil arrays 1805 b are externally positioned proximate the wearer's frontal bone and at least three of the plurality of planar microcoil arrays 1805 b are externally positioned proximate the wearer's parietal bone. In another embodiment, the plurality of planar microcoil arrays 1805 b is positioned such that they are symmetrically distributed about the crown of the headwear 1885 b such that, when worn, at least four (and preferably between 4 and 10) of the plurality of planar microcoil arrays 1805 b are externally positioned proximate at least the wearer's frontal bone and the wearer's parietal bone and optionally the temporal bone and occipital bone.
  • In another embodiment, the plurality of planar microcoil arrays 1805 b is positioned such that one or more arrays are a) positioned between the front of the crown of the headwear 1885 b and the right and/or left frontal lobe, b) positioned between the right side of the crown of the headwear 1885 b and the right temporal lobe, c) positioned between the left side of the crown of the headwear 1885 b and the left temporal lobe, d) positioned between the top side of the crown of the headwear 1885 b and the cerebral cortex, e) positioned between the top side of the crown of the headwear 1885 b and the parietal lobe, and/or f) positioned between the back side of the crown of the headwear 1885 b and the occipital lobe,
  • Referring to FIGS. 25a and 25b , in another embodiment, the plurality of planar microcoil arrays are integrated into a liner 2500 having a plurality of cells 2505 wherein each cell is defined by a protrusion from a base material 2525 extending toward a patient's head and where the base material positioned between cells comprises plastic, cardboard, or other rigid non-metallic material to which the material covering the protrusion is attached. Within at least some of the cells, a microcoil array 2525 is positioned with the emitting coil surface 2526 directed inward toward the patient's head. Positioned behind the array is cushioning material 2535, such as cotton or foam, to keep the microcoil array in place. Preferably, there is a minimal amount of material or additional layers between the array and the patient's head. Each cell 2505 is distributed around the liner such that, when the liner is attached to the crown 2510 of the head garment and the head garment plus liner is worn, at least one cell 2505 with an array 2525 is positioned between the front of the crown 2510 of the headwear and the right and/or left frontal lobe, at least one cell 2505 with an array 2525 is positioned between the right side of the crown 2510 of the headwear and the right temporal lobe, at least one cell 2505 with an array 2525 is positioned between the left side of the crown 2510 of the headwear and the left temporal lobe, at least one cell 2505 with an array 2525 is positioned between the top side of the crown 2510 of the headwear and the cerebral cortex, at least one cell 2505 with an array 2525 is positioned between the top side of the crown 2510 of the headwear and the parietal lobe, and/or at least one cell 2505 with an array 2525 is positioned between the back side of the crown 2510 of the headwear and the occipital lobe.
  • More preferably, one cell 2505 with an array 2525 is positioned in the front of the crown, 2510 adjacent the frontal lobe when worn; one cell 2505 with an array 2525 is positioned in the top, forward right section of the crown 2510, adjacent the right top portion of the frontal lobe when worn; one cell 2505 with an array 2525 is positioned in the top, forward left section of the crown 2510, adjacent the left top portion of the frontal lobe when worn; one cell 2505 with an array 2525 is positioned in the top, back right section of the crown 2510, adjacent the right top portion of the parietal lobe when worn; one cell 2505 with an array 2525 is positioned in the top, back left section of the crown 2510, adjacent the left top portion of the parietal lobe when worn; one cell 2505 with an array 2525 is positioned in the right-side section of the crown 2510, adjacent the right temporal lobe when worn; one cell 2505 with an array 2525 is positioned in the left-side section of the crown 2510, adjacent the left temporal lobe when worn; and one cell 2505 with an array 2525 is positioned in the back of the crown 2510, adjacent the occipital lobe when worn. The use of a cushioned matrix of cells has several benefits, including a) providing a degree of flexibility to accommodate different sized heads and b) insuring a constant directional orientation of the array relative to the patient's head.
  • A controller 1870 b is in electrical communication with each of the plurality of planar microcoil arrays 1805 b and is programmed to direct an electrical current to each of the plurality of planar microcoil arrays 1805 b in accordance with a certain frequency, a certain current intensity, a certain pulse width or shape, and a certain sequence, as described throughout this specification. More specifically, the controller 1870 b directs an electrical current from an energy source, such as a battery, to each of the plurality of planar microcoil arrays 1805 b in accordance with stored programmatic instructions. The stored programmatic instructions define a current level (preferably in a range of 5 mA to 200 mA), define a pulse shape (preferably rectangular, sinusoidal, or a flat pulse with a sloped activation and deactivation), define a pulse frequency (preferably in a range of 0.1 Hz to 200 Hz), and define a sequence of activating each of the plurality of planar microcoil arrays 1805 b such as clockwise around the wearer's skull, counterclockwise around the wearer's skull, sequentially such that only one of the plurality of planar microcoil arrays 1805 b has current driven thereto at one time, concurrently such that at least two of the plurality of planar microcoil arrays 1805 b has current driven thereto at one time, concurrently such that at least three of the plurality of planar microcoil arrays 1805 b has current driven thereto at one time, concurrently such that all of the plurality of planar microcoil arrays 1805 b has current driven thereto at one time, concurrently such that planar microcoil arrays 1805 b on opposing sides of the wearer's skull has current driven thereto at one time, or concurrently such that planar microcoil arrays 1805 b separated by at least 2 inches across the wearer's skull has current driven thereto at one time.
  • As described above, the controller is programmed to generate a magnetic field via the planar microcoil arrays by four different vectors: a) the frequency of the pulse train or burst, b) the shape of each pulse in the pulse train or burst itself, c) the relative peak intensities of each pulse in the pulse train or burst itself, and d) the degradation profile from the surface of the planar microcoil arrays. In a preferred embodiment, each embodiment described herein generates a magnetic field by:
      • a) Using a planar microcoil array having at least one coil positioned thereon, from 2 to 100 coils positioned thereon, and preferably from 4-10 coils where each of the coils may be one or more of the embodiments described herein;
      • b) Driving a current to the coils positioned on a single array where the current is in the form of a pulse train, where the pulse train may be one or more of the embodiments described herein, and, more preferably, where the pulse train may be a ramping rectangular or sinusoidal pulse having a first pulse, a first time interval, a second pulse, and optionally a second time interval and a third (or more) pulses, as follows:
        • a. the first pulse and second pulse (and the optional third or more pulses) have pulse widths in a range of 0.001 to 0.2 seconds and preferably in a range of 0.01 to 0.02 seconds. where the first time interval and optional additional time intervals are in a range of 0.01 to 0.04 seconds (preferably a 0.025 second interval), and where the second pulse is greater than the first pulse (or vice-versa) and have current levels in a range of 5 mA to 200 mA; or
        • b. each pulse width may be defined as a function of the period (which is the inverse of the frequency) where each pulse width is in a range of ½ to 1/50 the period length (preferably ⅕ to 1/7 the period length), where each interval between the pulses in the pulse train is in a range of ½ to 1/50 the period length (preferably ⅕ to 1/9), where the dead time between each pulse burst or train is in a range of ½ to 1/20 the period length (preferably ⅓ to ⅕), and where the second pulse is greater than the first pulse (or vice-versa) and have current levels in a range of 5 mA to 200 mA;
      • c) Activating the pulse train in accordance with a programmed frequency, where the programmed frequency is in a range of 0.01 Hz to 200 Hz and preferably in a range of 1 Hz to 60 Hz; and
      • d) Activating each of the microcoil arrays in parallel or in series (or a combination thereof) such that the peak intensity generated by each coil on the planar microcoil array concurrently, yet independently, decreases according to the following equation:

  • y=Ax −B
  • where A is in a range of 100 to 600, and more preferably 300 to 400, and every whole number increment therein and where B is in a range of 1 to 2.5 (and every 0.1 decimal increment therein).
  • It should be appreciated that, upon activation, magnetic fields are generated in accordance with the stimulation protocols described above. Conventionally, it is believed that very large magnetic fields have to be directed into the brain to have any tangible therapeutic effects on certain conditions, such as depression. However, it is believed that, by modulating a position, configuration, orientation, or movement, of magnetite chains in one or more brain cells or neurons, which may be effectuated by magnetic fields less than 200 microTesla or by applying a sufficient magnetic field gradient, which is determined by the frequency and shape of pulse, one can cause a normalization of brain function, at least during the application of the magnetic fields. Normalization of brain function may thereby enable at least a partial alleviation of symptoms associated with anxiety disorders, obsessive compulsive disorder, post-traumatic stress disorder, memory degeneration, schizophrenia, attention deficient disorder, autism, Parkinson's disease, stroke rehabilitation, drug addiction, including addiction to, or cravings for, nicotine, cocaine, alcohol, heroine, methamphetamines, stimulants, and/or sedatives, depression and depression-related conditions, such as post-partum depression or bipolar depression, auditory hallucinations, multiple sclerosis, fibromyalgia, Alzheimer's disease, spinocerebellar degeneration, epilepsy, urinary incontinence, movement disorders, chronic tinnitus, or sleep apnea while the magnetic fields are being applied to the brain. Accordingly, it is within the scope of this invention to treat symptoms related to disorders having a loci of dysfunction in the brain by normalizing at least one of a position, configuration, orientation, or movement of magnetite chains in one or more brain cells or neurons by applying magnetic fields less than 200 microTesla, as measured within 1 cm from the surface of the planar microcoil surface, or by applying a sufficient magnetic field gradient.
  • More specifically, each of the conditions listed in this specification may be treated by having a patient wear headwear 1885 b and be subjected to magnetic fields that help entrain the frequency and/or magnitude of brain waves. In one embodiment, a software program configured to execute on a mobile device, as further described herein, is adapted to generate one or more graphical user interfaces. The one or more graphical user interfaces is configured to receive data inputted from a wearer, wherein the data is indicative of a health state of the wearer. The graphical user interfaces preferably prompts the wearer to input data indicative of whether the wearer:
      • 1. Has one or more contraindications of use, including having had a seizure, headache or migraine within the last 48 hours, having a history of seizures, having ferromagnetic or metallic material in or around his or her head;
      • 2. Suffers from one or more conditions that may be contraindicated by the use of pulsed electromagnetic field therapy; and
      • 3. Wishes to have the degree of intensity of the treatment be set to one or more levels, such as mild, medium, strong or very strong.
  • Based on the data inputted above, the software program configured to execute on the mobile device is adapted to generate a plurality of programmatic instructions that define one or more of a current level, a pulse shape, a pulse frequency, and/or a selection of, or sequence of, which microcoil arrays actually receive the current. The programmatic instructions are adapted to be transmitted, whether by a wired connection or wirelessly, to the controller integrated into the headwear 1885 b and the controller is adapted to modify the generation and transmission of current in accordance with the plurality of programmatic instructions that define one or more of a current level, a pulse shape, a pulse frequency, and/or a selection of, or sequence of, which microcoil arrays actually receive the current. Exemplary combinations of current level, pulse shape, pulse frequency, and/or a selection of, or sequence of, which microcoil arrays actually receive the current are provided below:
      • 1. Referring to FIG. 23, in one embodiment, any of the aforementioned conditions may be treated by placing a hat, as described above, on a user's head 2305, programming the controller to deliver a series of rectangular, ramping pulse bursts at a frequency of 1 Hz to 60 Hz, preferably 6 to 12 Hz 2310, wear the hat for 10 to 30 minutes (preferably with eyes closed, blocking out auditory stimulus, and/or taking deep breaths) 2315, having the controller shut off the pulse train automatically after the treatment period 2320, and repeating the process daily or weekly over several months 2330. In one embodiment, this treatment causes the user's brain to decrease or increase alpha wave generation, to increase blood circulation, decrease or increase beta wave generation, to decrease or increase delta wave generation, to decrease or increase theta wave generation, to decrease or increase gamma wave generation, to increase coherence in theta wave generation, to increase coherence in delta wave generation, to increase coherence in alpha wave generation, to increase coherence in beta wave generation, to increase coherence in gamma wave generation, and/or any combination of the above.
      • 2. Referring to FIG. 24, in one embodiment, chronic pain, peripheral neuropathy, in a person's feet, legs, back, chest, torso, arms, hands, shoulders, or any other body part other than the person's head can be treated by a) placing a hat, as described above, on a user's head 2405, programming the controller to deliver a series of rectangular, ramping pulse bursts at a frequency of 1 Hz to 100 Hz, preferably 4 to 50 Hz 2410, wear the hat for 10 to 30 minutes (preferably with eyes closed, blocking out auditory stimulus, and/or taking deep breaths) 2415, having the controller shut off the pulse train automatically after the treatment period 2420, and repeating the process daily or weekly over several months 2430 while concurrently, or partially concurrently, b) placing another piece of clothing with integrated microcoil arrays, as described herein, on the portion of the user's body with pain 2455, programming the controller to deliver a series of rectangular, ramping pulse bursts at a frequency of 1 Hz to 100 Hz, preferably 4 to 50 Hz 2460, wear the hat for 5 to 300 minutes 2465, having the controller shut off the pulse train automatically after the treatment period 2470, and repeating the process daily or weekly over several months 2480. In one embodiment, this treatment causes the user's brain to increase blood circulation, decrease or increase alpha wave generation, to decrease or increase beta wave generation, to decrease or increase delta wave generation, to decrease or increase theta wave generation, to decrease or increase gamma wave generation, to increase coherence in theta wave generation, to increase coherence in delta wave generation, to increase coherence in alpha wave generation, to increase coherence in beta wave generation, to increase coherence in gamma wave generation, and/or any combination of the above while concurrently causing in the other body part with pain a decrease in the level of pain and/or increasing blood circulation.
  • The headwear embodiment disclosed herein may be used to treat Parkinson's disease by applying the stimulation protocols, using the hat and integrated planar microcoils, described above to direct magnetic fields toward the substantia nigra of a patient. In one embodiment, a patient with Parkinson's disease may be treated by placing a hat, as described above, on a user's head, programming the controller to deliver a series of pulses (preferably rectangular, ramping pulse bursts) at a frequency of 0.1 Hz to 60 Hz, preferably 0.1 to 50 Hz 2310, wear the hat for 10 to 30 minutes (preferably with eyes closed, blocking out auditory stimulus, and/or taking deep breaths), having the controller shut off the pulse train automatically after the treatment period, and repeating the process daily or weekly. In one embodiment, this treatment causes the user's brain to decrease or increase alpha wave generation, to increase blood circulation, decrease or increase beta wave generation, to decrease or increase delta wave generation, to decrease or increase theta wave generation, to decrease or increase gamma wave generation, to increase coherence in theta wave generation, to increase coherence in delta wave generation, to increase coherence in alpha wave generation, to increase coherence in beta wave generation, to increase coherence in gamma wave generation, to modulate dopamine production in the substantia nigra and/or any combination of the above.
  • Other Applications
  • It should further be appreciated that other embodiments may be specifically designed to be directed toward 1) treating osteoporosis by, for example, positioning a plurality of arrays along a length of substrate configured to extend over an entire length of a user's spine, each of said arrays being in electrical communication with a controller, 2) effectuating an activation of acupoints that may be distributed over various areas of the user's body, where at each acupoint an array is positioned and where all of the arrays are in electrical communication with a controller; optionally, a coil that aligns with an acupoint may be configured to receive a higher level of current and generate a higher magnetic flux than the rest of the coils which are not aligned with an acupoint, 3) treating a neck region to reduce increase and increase a collagen framework, where a plurality of arrays are configured to extend around a neck region of the user, each of the arrays being in electrical communication with a controller, and 4) treating one or more broken bones by providing a plurality of arrays configured to be positioned on a user's skin and between a cast and the user's skin, each of the arrays being electrical communication with a controller.
  • Referring to FIG. 19, an article of clothing with a set of planar microcoils integrated therein 1900. A layer of clothing 1910 b, which faces the outside environment, has, positioned on top of it, and opposing the outside layer, a set of planar microcoil arrays 1920 that are connected by traces. A layer of clothing 1910 a, configured to face the skin of a user, is positioned on top of the set of planar microcoil arrays 1920. In one embodiment, the layer of clothing 1910 a is contiguous and uniform. In another embodiment, the layer of clothing 1910 a has a window that exposes the coils of the arrays, and therefore the generated magnetic fields, to the skin of the user. The window may be just a space or made of a different material, such as a clear plastic or a thinner material than the rest of layer 1910 a. A buffer material 1930 may be positioned between the arrays to keep the arrays 1920 in position and physically separated from each other. The buffer material may be any non-conductive material, including cotton, polyester, or wool.
  • Referring to FIG. 20, in one embodiment, a method 2000 of treating a condition is provided. An article of clothing is attached 2005 to a portion of a patient's body. The article of clothing comprises a plurality of planar microcoil arrays, wherein each of the plurality of planar microcoil arrays comprises two or more planar microcoils positioned on a flexible substrate, wherein each of the plurality of planar microcoil arrays is integrated into the article of clothing; and wherein each of the plurality of planar microcoil arrays is in electrical communication with a docking station integrated into the article of clothing. A controller is attached 2010 to the docking station, wherein the controller comprises a circuit and a power source. Preferably, upon attaching the controller to the docking station, the circuit automatically electrically interfaces with at least one of the plurality of planar microcoil arrays. The docking station is optional. The controller may be directly integrated into the article of clothing. The controller is activated 2015 to cause a time varying current to be transmitted to each of the plurality of planar microcoil arrays.
  • The condition is at least one of an anxiety disorder, an obsessive compulsive disorder, a post-traumatic stress disorder, memory degeneration, schizophrenia, Parkinson's disease, stroke rehabilitation, drug addiction, drug cravings, depression, depression-related conditions, post-partum depression, bipolar depression, auditory hallucinations, multiple sclerosis, fibromyalgia, Alzheimer's disease, spinocerebellar degeneration, epilepsy, urinary incontinence, movement disorders, dementia, autism, attention deficient disorder, pain, chronic tinnitus, or sleep apnea.
  • The article of clothing may be attached such that at least one of the two or more planar microcoils in at least one of the plurality of planar microcoil arrays is positioned over an acupoint of the patient's body. Additionally, prior to attaching the article of clothing, a skin impedance measurement may be made and, based on the level of impedance, the article of clothing may be attached such that at least one of the two or more planar microcoils in at least one of the plurality of planar microcoil arrays is positioned over an area of impedance that exceeds a predefined threshold value. Accordingly, an impedance measurement sensor and circuit may also be integrated into the article of clothing.
  • While the exemplary embodiments of the present invention are described and illustrated herein, it will be appreciated that they are merely illustrative. It will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from or offending the spirit and scope of the invention.

Claims (30)

We claim:
1. A pulsed electromagnetic field device comprising:
a hat comprising a crown having an internal surface configured to receive a human head;
a controller configured to be attached to an external surface of the hat; and
a plurality of planar microcoil arrays, wherein each array of the plurality of planar microcoil arrays comprises at least one planar microcoil positioned on a substrate, wherein each array of the plurality of planar microcoil arrays is coupled to the internal surface of the crown and wherein each array of the plurality of planar microcoil arrays is in electrical communication with the controller.
2. The pulsed electromagnetic field device of claim 1, wherein each array of the plurality of planar microcoil arrays is physically separate and configured to independently receive an electrical current from the controller.
3. The pulsed electromagnetic field device of claim 1, wherein the controller is adapted to generate an electrical pulse train having a frequency and to deliver the electrical pulse train to each array of the plurality of planar microcoil arrays.
4. The pulsed electromagnetic field device of claim 1, wherein the electrical pulse train comprises at least two pulses having different peak levels of current and wherein the different peak levels of current are in a range of 5 mA to 500 mA.
5. The pulsed electromagnetic field device of claim 4, wherein a shape of each of the at least two pulses is rectangular.
6. The pulsed electromagnetic field device of claim 3, wherein the frequency is in a range of 1 Hz to 60 Hz.
7. The pulsed electromagnetic field device of claim 1, wherein each array of the plurality of planar microcoil arrays comprises at least 4 spiral-shaped microcoils.
8. The pulsed electromagnetic field device of claim 7, wherein the controller is adapted to generate an electrical pulse train that is currently delivered to each of the at least 4 microcoils concurrently.
9. The pulsed electromagnetic field device of claim 1, wherein the plurality of planar microcoil arrays comprises at least 5 planar microcoil arrays and wherein:
a first array of the at least 5 planar microcoil arrays is positioned at a front portion of the crown such that, when the hat is worn on the human head, the first array of the at least 5 planar microcoil arrays is positioned adjacent a frontal lobe of a brain within the human head;
a second array of the at least 5 planar microcoil arrays is positioned at a right side portion of the crown such that, when the hat is worn on the human head, the second array of the at least 5 planar microcoil arrays is positioned adjacent a right temporal lobe of the brain within the human head;
a third array of the at least 5 planar microcoil arrays is positioned at a left side portion of the crown such that, when the hat is worn on the human head, the third array of the at least 5 planar microcoil arrays is positioned adjacent a left temporal lobe of the brain within the human head;
a fourth array of the at least 5 planar microcoil arrays is positioned at a top side portion of the crown such that, when the hat is worn on the human head, the fourth array of the at least 5 planar microcoil arrays is positioned adjacent the frontal lobe or a parietal lobe of the brain within the human head; and
a fifth array of the at least 5 planar microcoil arrays is positioned at a back side portion of the crown such that, when the hat is worn on the human head, the fifth array of the at least 5 planar microcoil arrays is positioned adjacent a occipital lobe of the brain within the human head.
10. The pulsed electromagnetic field device of claim 9, wherein the controller is adapted to generate an electrical pulse train having a frequency in a range of 1 Hz to 100 Hz and to sequentially deliver the electrical pulse train to each of the at least 5 planar microcoil arrays.
11. The pulsed electromagnetic field device of claim 9, wherein the controller is adapted to generate an electrical pulse train having a frequency in a range of 1 Hz to 100 Hz and to concurrently deliver the electrical pulse train to at least 2 of each of the at least 5 planar microcoil arrays.
12. The pulsed electromagnetic field device of claim 1, wherein the hat comprises two or more layers of material and wherein the plurality of planar microcoil arrays is positioned between the two or more layers of material.
13. The pulsed electromagnetic field device of claim 1, wherein the controller is adapted to generate an electrical pulse train having a frequency and to deliver the electrical pulse train to each array of the plurality of planar microcoil arrays, wherein the electrical pulse train comprises a first pulse having a first amplitude, a second pulse having a second amplitude, and a third pulse having a third amplitude, wherein the first amplitude is less than the second amplitude and the second amplitude is less than the third amplitude.
14. The pulsed electromagnetic field device of claim 13, wherein each of the first pulse, second pulse, and third pulse has a substantially rectangular shape.
15. The pulsed electromagnetic field device of claim 14, wherein, upon receiving the electrical pulse train, each array of the plurality of planar microcoil arrays is configured to generate a magnetic field in a range of 100 microTesla to 300 microTesla as measured 1 mm or less from a surface of the each array of the plurality of planar microcoils arrays.
16. The pulsed electromagnetic field device of claim 15, wherein the generated magnetic field is adapted to degrade in air to less than 80 microTesla over a distance of at least 10 mm.
17. The pulsed electromagnetic field device of claim 1, wherein each array of the plurality of planar microcoil arrays comprises an input terminal configured to receive current from the controller, an output terminal, and at least two traces to electrically connect each of the microcoils positioned on each array of the plurality of planar microcoil arrays to the input terminal and the output terminal.
18. The pulsed electromagnetic field device of claim 17, wherein a first set of each of the microcoils is configured to direct current clockwise and wherein a second set of each of the microcoils is configured to direct current counterclockwise.
19. The pulsed electromagnetic field device of claim 17, wherein each of the microcoils is configured to direct current in a same direction.
20. The pulsed electromagnetic field device of claim 17, wherein each of the microcoils is at least one of a spiral circular planar microcoil, a rectangular circular planar microcoil, a non-spiral circular planar microcoil, or a non-spiral rectangular planar microcoil.
21. The pulsed electromagnetic field device of claim 1, further comprising a set of programmatic instructions stored on a separate computing device, wherein, when executed by the separate computing device, the programmatic instructions generate a display for prompting a user to input data indicative of a physiological state, wherein the physiological state is representative of at least one of the user's state of stress, state of anxiety, state of relaxation or whether the user has a headache.
22. The pulsed electromagnetic field device of claim 1, wherein the controller is adapted to generate an electrical pulse train having a frequency, to deliver the electrical pulse train to each array of the plurality of planar microcoil arrays in accordance with a programmed time period, and to automatically terminate generating the electrical pulse train after the programmed time period elapses.
23. The pulsed electromagnetic field device of claim 1, further comprising a liner configured to be attached to the internal surface of the crown, wherein the liner comprises a plurality of cells and wherein each cell of the plurality of cells is defined by a pocket made of a first material bounded by a second material, and wherein the first material is more flexible than the second material.
24. The pulsed electromagnetic field device of claim 23, wherein the plurality of cells is divided into a first set of cells and a second set of cells, wherein each cell of the first set of cells comprises one array of the plurality of planar microcoils arrays and a cushioning material, and wherein each cell of the second set of cells comprises cushioning material without any array of the plurality of planar microcoils arrays.
25. The pulsed electromagnetic field device of claim 1, wherein the substrate is flexible and wherein each of the at least one planar microcoil is embedded, layered, or printed on the flexible substrate.
26. The pulsed electromagnetic field device of claim 1, wherein the hat further comprises a brim attached to the crown and wherein the controller is adapted to be coupled to a portion of the brim.
27. The pulsed electromagnetic field device of claim 1, further comprising a set of programmatic instructions stored on a separate computing device, wherein, when executed by the separate computing device, the programmatic instructions generate a display for prompting a user to input data indicative of a desired type of treatment, wherein the desired type of treatment includes at least one of relaxation, improved sleep, improved memory, or improved mental acuity.
28. The pulsed electromagnetic field device of claim 27, wherein the controller is adapted to receive the data indicative of the desired type of treatment from the separate computing device, to generate an electrical pulse train having a frequency based on the data indicative of the desired type of treatment, to deliver the generated electrical pulse train to each array of the plurality of planar microcoil arrays, and to automatically terminate generating the electrical pulse train after a programmed time period elapses.
29. The pulsed electromagnetic field device of claim 28, wherein the programmed time period is based on the data indicative of the desired type of treatment.
30. The pulsed electromagnetic field device of claim 1, wherein the controller comprises a switch, wherein a position of the switch is representative of a desired type of treatment, wherein the desired type of treatment includes at least one of relaxation, improved sleep, improved memory, or improved mental acuity, and wherein the controller is adapted to generate an electrical pulse train having a frequency based on the position of the switch, to deliver the generated electrical pulse train to each array of the plurality of planar microcoil arrays, and to automatically terminate generating the electrical pulse train after a programmed time period elapses.
US17/065,412 2019-05-06 2020-10-07 Systems and methods of modulating electrical impulses in an animal brain using arrays of planar coils configured to generate pulsed electromagnetic fields and integrated into clothing Active US11020603B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US17/065,412 US11020603B2 (en) 2019-05-06 2020-10-07 Systems and methods of modulating electrical impulses in an animal brain using arrays of planar coils configured to generate pulsed electromagnetic fields and integrated into clothing
US29/770,198 USD999388S1 (en) 2020-05-05 2021-02-10 Transcranial stimulation device
US29/770,199 USD966539S1 (en) 2020-05-05 2021-02-10 Head covering for use as a repetitive transcranial magnetic stimulation device
US17/308,426 US20210346711A1 (en) 2019-05-06 2021-05-05 Systems and Methods of Modulating Functionality of an Animal Brain Using Arrays of Planar Coils Configured to Generate Pulsed Electromagnetic Fields and Integrated into Headwear
PCT/US2021/030826 WO2021226197A1 (en) 2020-05-05 2021-05-05 Systems and methods of modulating functionality of an animal brain using arrays of planar coils
US29/866,618 USD1006240S1 (en) 2019-05-06 2022-09-20 Transcranial magnetic stimulation device
US29/866,619 USD1006241S1 (en) 2020-05-05 2022-09-20 Transcranial magnetic stimulation device
US18/063,598 US20230104434A1 (en) 2019-05-06 2022-12-08 Pulsed Electromagnetic Field Devices Integrated into Adjustable Clothing
US29/911,943 USD1041016S1 (en) 2020-05-05 2023-09-11 Transcranial stimulation device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962843727P 2019-05-06 2019-05-06
US201962892751P 2019-08-28 2019-08-28
US16/867,130 US11517760B2 (en) 2019-05-06 2020-05-05 Systems and methods of treating medical conditions using arrays of planar coils configured to generate pulsed electromagnetic fields and integrated into clothing
US17/065,412 US11020603B2 (en) 2019-05-06 2020-10-07 Systems and methods of modulating electrical impulses in an animal brain using arrays of planar coils configured to generate pulsed electromagnetic fields and integrated into clothing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/867,130 Continuation-In-Part US11517760B2 (en) 2019-05-06 2020-05-05 Systems and methods of treating medical conditions using arrays of planar coils configured to generate pulsed electromagnetic fields and integrated into clothing

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US29770197 Continuation-In-Part 2019-05-06 2021-02-10
US29/770,199 Continuation-In-Part USD966539S1 (en) 2019-05-06 2021-02-10 Head covering for use as a repetitive transcranial magnetic stimulation device
US29/770,198 Continuation-In-Part USD999388S1 (en) 2019-05-06 2021-02-10 Transcranial stimulation device
US17/308,426 Continuation-In-Part US20210346711A1 (en) 2019-05-06 2021-05-05 Systems and Methods of Modulating Functionality of an Animal Brain Using Arrays of Planar Coils Configured to Generate Pulsed Electromagnetic Fields and Integrated into Headwear

Publications (2)

Publication Number Publication Date
US20210016101A1 true US20210016101A1 (en) 2021-01-21
US11020603B2 US11020603B2 (en) 2021-06-01

Family

ID=74343302

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/065,412 Active US11020603B2 (en) 2019-05-06 2020-10-07 Systems and methods of modulating electrical impulses in an animal brain using arrays of planar coils configured to generate pulsed electromagnetic fields and integrated into clothing

Country Status (1)

Country Link
US (1) US11020603B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022261172A1 (en) * 2021-06-09 2022-12-15 Regenesis Biomedical, Inc. Method and apparatus for providing pulsed electromagnetic field therapy

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3594925B1 (en) * 2018-07-13 2022-09-28 Wolfgang Vogel Device, system and method for entrainment and training of the human brain
USD966539S1 (en) * 2020-05-05 2022-10-11 Kamran Ansari Head covering for use as a repetitive transcranial magnetic stimulation device
USD1006240S1 (en) * 2019-05-06 2023-11-28 Kamran Ansari Transcranial magnetic stimulation device
USD999388S1 (en) * 2020-05-05 2023-09-19 Kamran Ansari Transcranial stimulation device
USD1041016S1 (en) * 2020-05-05 2024-09-03 Kamran Ansari Transcranial stimulation device
USD1006241S1 (en) * 2020-05-05 2023-11-28 Kamran Ansari Transcranial magnetic stimulation device

Family Cites Families (197)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050043994A1 (en) 1996-09-04 2005-02-24 Walker Jay S. Method for allowing a customer to obtain a discounted price for a transaction and terminal for performing the method
US20020032667A1 (en) 1997-03-21 2002-03-14 Walker Jay S. System and method providing a restaurant menu dynamically generated based on revenue management information
US6341268B2 (en) 1997-03-21 2002-01-22 Walker Digital, Llc System and method providing a restaurant menu dynamically generated based on revenue management information
US20040039639A1 (en) 1997-07-08 2004-02-26 Walker Jay S. Method and apparatus for identifying potential buyers
US7711604B1 (en) 1997-07-08 2010-05-04 Walker Digital, Llc Retail system for selling products based on a flexible product description
US8799100B2 (en) 1997-07-08 2014-08-05 Groupon, Inc. Retail system for selling products based on a flexible product description
US6820968B2 (en) 1997-07-15 2004-11-23 Silverbrook Research Pty Ltd Fluid-dispensing chip
US8096872B2 (en) 1998-06-22 2012-01-17 Igt Method and apparatus for providing electronic credits at a gaming device without first requiring payment therefor
EP1100582B1 (en) 1998-08-03 2005-06-15 Amei Technologies Inc. Pemf treatment for osteoporosis and tissue growth stimulation
WO2001003087A1 (en) 1999-06-30 2001-01-11 Walker Digital, Llc Vending machine system and method for encouraging the purchase of profitable items
US6267720B1 (en) * 1999-07-07 2001-07-31 Jo Rodney Knox System and method for hair loss reduction and re-growth
US6561968B1 (en) 1999-08-31 2003-05-13 Biofields Aps Method and an apparatus for stimulating/ modulating biochemical processes using pulsed electromagnetic fields
AU7492600A (en) 1999-09-29 2001-04-30 Walker Digital, Llc Systems and methods to provide a product to a customer before a final transaction term value is established
US20060129456A1 (en) 2000-02-16 2006-06-15 Walker Jay S Systems and methods for processing a rebate
WO2001061610A2 (en) 2000-02-18 2001-08-23 Walker Digital, Llc Method and apparatus for conducting or facilitating a promotion
US20020066702A1 (en) 2000-02-22 2002-06-06 Jinfang Liu Antibacterial and antibiofilm bonded permanent magnets
US20020036367A1 (en) 2000-02-22 2002-03-28 Marlin Walmer Method for producing & manufacturing density enhanced, DMC, bonded permanent magnets
US7376580B1 (en) 2000-06-13 2008-05-20 Walker Digital, Llc Method and apparatus for providing a benefit during a transaction for use during a later transaction
US20020043301A1 (en) 2000-02-22 2002-04-18 Marlin Walmer Density enhanced, DMC, bonded permanent magnets
US20020165771A1 (en) 2001-05-07 2002-11-07 Walker Jay S. Method and apparatus for establishing prices for a plurality of products
US6688976B1 (en) 2000-05-01 2004-02-10 Walker Digital, Llc Systems and methods wherein a lottery number combination is associated with a limited number of occurrences
AU2001261232A1 (en) 2000-05-08 2001-11-20 Walker Digital, Llc Method and system for providing a link in an electronic file being presented to a user
US20020035358A1 (en) 2000-05-09 2002-03-21 Ming Wang Pulsed electromagnetic field therapy for treatment of corneal disorders and injuries
JP2003533276A (en) 2000-05-16 2003-11-11 レンセラール ポリテクニック インスティチュート Electrically conductive nanocomposites for biomedical applications
US7390264B2 (en) 2000-05-17 2008-06-24 Walker Digital, Llc Method and system to incorporate game play into product transactions
US7168617B2 (en) 2000-06-07 2007-01-30 Walker Digital, Llc Game presentation in a retail establishment
AU2002227147A1 (en) 2000-11-02 2002-05-15 Keith L March Method and system for modulation of oscillating signals to enhance biologic effects
US6506148B2 (en) 2001-06-01 2003-01-14 Hendricus G. Loos Nervous system manipulation by electromagnetic fields from monitors
US6936971B2 (en) 2001-11-21 2005-08-30 Chukanov Quantum Energy, L.L.C. Methods and systems for generating high energy photons or quantum energy
US6701185B2 (en) 2002-02-19 2004-03-02 Daniel Burnett Method and apparatus for electromagnetic stimulation of nerve, muscle, and body tissues
US20030158585A1 (en) 2002-02-19 2003-08-21 Burnett Daniel R. Method and apparatus for electromagnetic stimulation of nerve, muscle, and body tissues
US20070067004A1 (en) 2002-05-09 2007-03-22 Boveja Birinder R Methods and systems for modulating the vagus nerve (10th cranial nerve) to provide therapy for neurological, and neuropsychiatric disorders
US20040034388A1 (en) 2002-06-14 2004-02-19 Healing Machines, Inc. Apparatus and method for physiological treatment with electromagnetic energy
US20030233122A1 (en) 2002-06-14 2003-12-18 Healing Machines, Inc. Apparatus and method for physiological treatment with electromagnetic energy
WO2004011631A2 (en) 2002-07-26 2004-02-05 Ebi, L.P. Methods and compositions for treating tissue defects using pulsed electromagnetic field stimulus
CN1483487A (en) 2002-09-19 2004-03-24 吉林跨利国际电子有限公司 Electromagnetic induction acupoint physiotherapy apparatus
US7551957B2 (en) 2003-03-06 2009-06-23 Bioelectronics Corp. Electromagnetic therapy device and methods
US20050049640A1 (en) 2003-05-12 2005-03-03 Gurtner Geoffrey C. Electromagnetic fields increase in vitro and in vivo angiogenesis through endothelial release of FGF-2
WO2004103098A2 (en) 2003-05-16 2004-12-02 The Board Of Trustees Of The University Of Illinois Methods and apparatus for treating plant products using electromagnetic fields
US20050024260A1 (en) 2003-07-30 2005-02-03 Johnston Gary P. E-field monitor for broadband pulsed
US6906663B2 (en) 2003-07-30 2005-06-14 The Boeing Company E-field monitor for pulsed signals
US7744869B2 (en) 2003-08-20 2010-06-29 Ebi, Llc Methods of treatment using electromagnetic field stimulated mesenchymal stem cells
US20050084962A1 (en) 2003-08-20 2005-04-21 Bruce Simon Methods of treatment using electromagnetic field stimulated stem cells
DE10346055B8 (en) 2003-10-04 2005-04-14 Forschungszentrum Karlsruhe Gmbh Construction of an electrodynamic fractionation plant
US20110112352A1 (en) * 2003-12-05 2011-05-12 Pilla Arthur A Apparatus and method for electromagnetic treatment
US20200094068A1 (en) 2003-12-05 2020-03-26 Endonovo Therapeutics, Inc. Method for treatment of non-alcoholic steatohepatitis using pulsed electromagnetic field therapy
US10350428B2 (en) 2014-11-04 2019-07-16 Endonovo Therapetics, Inc. Method and apparatus for electromagnetic treatment of living systems
US8961385B2 (en) 2003-12-05 2015-02-24 Ivivi Health Sciences, Llc Devices and method for treatment of degenerative joint diseases with electromagnetic fields
US7758490B2 (en) 2005-09-10 2010-07-20 Ivivi Health Sciences, Llc Integrated coil apparatus for therapeutically treating human and animal cells, tissues and organs with electromagnetic fields and method for using same
US9440089B2 (en) 2003-12-05 2016-09-13 Rio Grande Neurosciences, Inc. Apparatus and method for electromagnetic treatment of neurological injury or condition caused by a stroke
US9656096B2 (en) 2003-12-05 2017-05-23 Rio Grande Neurosciences, Inc. Method and apparatus for electromagnetic enhancement of biochemical signaling pathways for therapeutics and prophylaxis in plants, animals and humans
US9433797B2 (en) 2003-12-05 2016-09-06 Rio Grande Neurosciences, Inc. Apparatus and method for electromagnetic treatment of neurodegenerative conditions
US9415233B2 (en) 2003-12-05 2016-08-16 Rio Grande Neurosciences, Inc. Apparatus and method for electromagnetic treatment of neurological pain
US7744524B2 (en) 2003-12-05 2010-06-29 Ivivi Health Sciences, Llc Apparatus and method for electromagnetic treatment of plant, animal, and human tissue, organs, cells, and molecules
GB0407329D0 (en) 2004-03-31 2004-05-05 Danisco Process
US20050238539A1 (en) 2004-04-01 2005-10-27 Gal Shafirstein Apparatus for automated fresh tissue sectioning
JP2007532284A (en) 2004-04-19 2007-11-15 アイヴィヴィ テクノロジーズ,インク. Electromagnetic therapy apparatus and method
JP2007535978A (en) 2004-04-26 2007-12-13 アイヴィヴィ テクノロジーズ,インク. Electromagnetic induction processing apparatus and method
US20070066995A1 (en) 2004-06-10 2007-03-22 Ndi Medical, Llc Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
EP1761792A2 (en) 2004-06-17 2007-03-14 Koninklijke Philips Electronics N.V. Flexible and wearable radio frequency coil garments for magnetic resonance imaging
US20060030896A1 (en) 2004-07-09 2006-02-09 Simon Bruce J Pulsed electromagnetic field method of treatment of degenerative disc disease
CA2482310A1 (en) 2004-09-22 2006-03-22 Henry Brunelle Electromagnetic conditioning system for bathtub or shower enclosures
DE102005021891B4 (en) 2005-05-04 2011-12-22 Evgenij Sterling Method of making pigs and pigs
EP1723985B1 (en) 2005-05-19 2008-03-12 Medithera Medizinische Systeme AG Magnetic field therapy device for generating a time varying electromagnetic field by means of a train of current pulses
JP2009504776A (en) 2005-08-18 2009-02-05 アクセラロクス, インコーポレイテッド Methods for treating bone by modulating arachidonic acid metabolic or signaling pathways
US20070105769A1 (en) 2005-11-07 2007-05-10 Ebi, L.P. Methods of treating tissue defects
US20070104694A1 (en) 2005-11-07 2007-05-10 Quijano Rodolfo C Breast stimulation and augmentation system
US20070167990A1 (en) 2006-01-17 2007-07-19 Theranova, Llc Method and apparatus for low frequency induction therapy for the treatment of urinary incontinence and overactive bladder
EA015636B1 (en) 2006-01-31 2011-10-31 Парсрус Ко. Method for preparing a herbal extract for the preparation of a pharmaceutical composition useful in the treatment of hiv infection and/or aids, and use thereof
US20090163762A1 (en) 2006-05-12 2009-06-25 Stefania Setti Device for the regeneration and prevention of degeneration of the cartilaginous tissue and subchrondral bone, the proliferation of chondrocytes and for blocking or reducing the fibroblastic evolution of chondrocytes and mesenchymal cells by means of a pulsed electromagnetic field
ITTO20060344A1 (en) 2006-05-12 2007-11-13 Igea Srl DEVICE FOR THE REGENERATION AND PREVENTION OF DEGENERATION OF CARTILAGINEO FABRIC AND OF SUBCONDRAL BONE AND THE PROLIFERATION OF CONDROCITIS BY AN ELECTROMAGNETIC BUTTON FIELD
US20070282388A1 (en) 2006-06-01 2007-12-06 Reuven Sandyk Method and apparatus for treatment of amyotrophic lateral sclerosis patients
DE102006041365B4 (en) 2006-08-28 2010-09-02 Peter Gleim Device for generating a pulsed electromagnetic field with pulse control
WO2008064272A2 (en) 2006-11-20 2008-05-29 Promedtek, Inc. Method of treating a severe diabetic ulcer
US8034014B2 (en) 2007-03-06 2011-10-11 Biomet Biologics, Llc Angiogenesis initation and growth
US20080229795A1 (en) 2007-03-20 2008-09-25 Toeniskoetter James B Sheet metal trimming, flanging and forming using EMP
MX2009011042A (en) 2007-04-12 2010-07-05 Ivivi Technologies Inc Electromagnetic field treatment apparatus and method for using same.
US9968797B2 (en) 2007-05-03 2018-05-15 Orthocor Medical, Inc. Electromagnetic thermal therapy
US8768454B2 (en) 2007-05-03 2014-07-01 Orthocor Medical, Inc. Electromagnetic thermal therapy
US7783348B2 (en) 2007-05-03 2010-08-24 Orthocor Medical, Inc. Stimulation device for treating osteoarthritis
US7722218B2 (en) 2007-06-14 2010-05-25 Wing Fai Leung Method of and device for attracting aquatic life forms using an electromagnetic field generation
EP2052733A1 (en) 2007-10-26 2009-04-29 Parsroos Co. Herbal extracts for treatment of chronic wounds
US20090171417A1 (en) 2008-01-02 2009-07-02 Philipson Benjamin J System and methods for emg-triggered neuromuscular electrical stimulation
WO2009105723A2 (en) 2008-02-22 2009-08-27 Accelalox, Inc. Novel methods for bone treatment by modulating an arachidonic acid metabolic or signaling pathway
US20090254531A1 (en) 2008-04-03 2009-10-08 Walker Jay S Method and apparatus for collecting and categorizing data at a terminal
US8944985B2 (en) * 2008-04-03 2015-02-03 The General Hospital Corporation Deep brain stimulation implant with microcoil array
US9981143B2 (en) 2008-06-29 2018-05-29 Venus Concept Ltd. Esthetic apparatus useful for increasing skin rejuvenation and methods thereof
CA2729592C (en) 2008-06-29 2017-08-08 Venus Concept Ltd An esthetic apparatus useful for increasing skin rejuvenation and methods thereof
US20100121131A1 (en) 2008-11-11 2010-05-13 Mathes Richard A Apparatus and methods for stimulating a body's natural healing mechanisms
WO2010069110A1 (en) 2008-12-18 2010-06-24 Mass Technology (H.K.) Limited Method for treating hydrocarbon fluids using pulsating electromagnetic wave in combination with induction heating
CA2750468A1 (en) 2009-01-29 2010-08-05 Peter Gleim Apparatus for modulating perfusion in the microcirculation of the blood
EP2391200A1 (en) 2009-01-29 2011-12-07 Peter Gleim Method for the treatment of plants using electromagnetic fields
US20100211174A1 (en) 2009-02-19 2010-08-19 Tyco Healthcare Group Lp Method For Repairing A Rotator Cuff
US9694193B2 (en) 2009-03-03 2017-07-04 Technische Universiteit Eindhoven Device and method for treating cells
US20100274177A1 (en) 2009-04-24 2010-10-28 Regenesis Biomedical, Inc. Pulsed electromagnetic field and negative pressure therapy wound treatment method and system
WO2010149164A2 (en) 2009-06-22 2010-12-29 Re5 Aps Apparatus and method for pulsed electrical field treatment
US10507333B2 (en) 2009-07-14 2019-12-17 Pulse, Llc Immersive, flux-guided, micro-coil apparatus and method
US11191975B2 (en) 2009-07-14 2021-12-07 Pulse, Llc Micro-coil wristband
US9498639B2 (en) 2014-05-13 2016-11-22 Pulse, Llc Immersive, flux-guided, micro-coil apparatus and method
EP2470265B1 (en) 2009-08-25 2014-12-17 BEMER International AG Device for stimulating autoregulative local and superordinate mechanisms of the homeostasis in the organism
EP2470266B1 (en) 2009-08-25 2014-12-17 BEMER International AG Device for stimulating autoregulative mechanisms of the homeostasis in the organism
US8827886B2 (en) 2009-09-14 2014-09-09 Minnesota Medical Physics Llc Thermally assisted pulsed electro-magnetic field stimulation device and method for treatment of osteoarthritis
US8932196B2 (en) 2009-09-14 2015-01-13 Minnesota Medical Physics Llc Thermally assisted pulsed electro-magnetic field stimulation device and method for treatment of osteoarthritis
US8460167B2 (en) 2009-09-14 2013-06-11 Minnesota Medical Physics Llc Thermally assisted pulsed electro-magnetic field stimulation device and method for treatment of osteoarthritis
US8690960B2 (en) 2009-11-24 2014-04-08 Covidien Lp Reinforced tissue patch
EP2338559B1 (en) 2009-12-22 2015-03-04 BIOTRONIK CRM Patent AG MRI gradient field detector
EP2338564B1 (en) 2009-12-22 2013-03-27 BIOTRONIK CRM Patent AG MRI optocoupler
EP2338565B1 (en) 2009-12-22 2020-09-16 BIOTRONIK SE & Co. KG Switched protective device against electromagnetic interference
EP2338560B1 (en) 2009-12-22 2015-11-04 Biotronik CRM Patent AG Implantable cardioverter defibrillator (ICD) with MRI interference detection unit
ES2371820B1 (en) 2010-02-10 2013-01-30 Pneuma Research, S.L. PROGRAMMABLE PORTABLE DIGITAL TRANSDUCER DEVICE WITH HIGH DISCRIMINATION IN LOW FREQUENCY AND LOW INTENSITY.
WO2011116187A1 (en) 2010-03-17 2011-09-22 Rf Thummim Technologies, Inc. Method and apparatus for electromagnetically producing a disturbance in a medium with simultaneous resonance of acoustic waves created by the disturbance
FR2962221A1 (en) 2010-07-02 2012-01-06 Biofilm Control METHOD FOR DETECTING MOLECULAR INTERACTIONS
WO2012030593A2 (en) 2010-09-03 2012-03-08 Biomet Biologics, Llc Methods and compositions for delivering interleukin-1 receptor antagonist
WO2012029065A2 (en) 2010-09-05 2012-03-08 Venus Concept Ltd A self operated esthetic device with a substrate
EP2613846B1 (en) 2010-09-08 2022-05-11 BioMagnetic Sciences, LLC Thermally assisted pulsed electro-magnetic field stimulation devices for treatment of osteoarthritis
WO2012034110A2 (en) 2010-09-10 2012-03-15 Fibralign Corp. Biodegradable multilayer constructs
CA2813036A1 (en) 2010-10-01 2012-04-05 Ivivi Health Sciences, Llc Method and apparatus for electromagnetic treatment of head, cerebral and neural injury in animals and humans
US20120143285A1 (en) 2010-10-07 2012-06-07 Jian Wang Handheld excitation terminal and emf emitter providing dynamic optimization of emission and therapeutic effect and remote therapeutic system
DE102010056378A1 (en) 2010-12-20 2012-06-21 Keiper Gmbh & Co. Kg Method for connecting two components of a vehicle seat
US8972019B2 (en) 2011-01-25 2015-03-03 Kenneth L. Willeford Method and device for treating osteoarthritis noninvasively
US8399868B2 (en) 2011-02-15 2013-03-19 Sematech Inc. Tools, methods and devices for mitigating extreme ultraviolet optics contamination
CN102155968B (en) 2011-03-08 2012-02-22 陈益华 Electromagnetic pushing-beating-type object-detecting device
US20130035539A1 (en) 2011-08-05 2013-02-07 Andrew Kornstein System and method for treating hair loss
WO2013022752A1 (en) 2011-08-08 2013-02-14 Bpw Sciences, Lp Methods and devices for extraction of bioactive polyelectrolytes from humified organic materials
DE102011110667B4 (en) 2011-08-19 2018-11-15 Omar Omar-Pasha Apparatus for applying a pulsed radiofrequency therapy in the vascular system or other body cavities or tissue of the human or animal body, as well as a catheter, a probe and an insertion aid for such a device
EP2564895B1 (en) 2011-09-05 2015-11-18 Venus Concept Ltd An improved esthetic device for beautifying skin
US8560077B2 (en) 2011-10-04 2013-10-15 Feinstein Patents Llc Universal musculoskeletal rehab device (brace, sleeve, or pad) for electrical treatment modalities and biofeedback response monitoring
US20140249355A1 (en) 2011-10-20 2014-09-04 Bioelectronics Corp. Pulsed electromagnetic field device with adhesive applicator
RU2615291C2 (en) 2011-11-25 2017-04-04 Улла Скётт Юуль-Хансен Fossil fuel with water mixture processing device before burning in internal combustion engines
US8343027B1 (en) 2012-01-30 2013-01-01 Ivivi Health Sciences, Llc Methods and devices for providing electromagnetic treatment in the presence of a metal-containing implant
WO2013152355A1 (en) * 2012-04-06 2013-10-10 Newport Brain Research Laboratory Inc. Rtms device
WO2014006616A1 (en) 2012-07-03 2014-01-09 Atidron Ltd. Relativistic ponderomotive force generator
US8986003B2 (en) 2012-09-13 2015-03-24 Orthoaccel Technologies, Inc. Pearlescent white aligners
US9480991B2 (en) 2012-10-12 2016-11-01 Elwha Llc Radiofrequency particle separator
US10946196B2 (en) 2012-11-16 2021-03-16 Stimscience Inc. System for variably configurable, adaptable electrode arrays and effectuating software
DE102012223418B4 (en) 2012-12-17 2022-02-03 Siemens Healthcare Gmbh Device and method for determining the position of a medical instrument
US11813076B2 (en) 2013-03-15 2023-11-14 Sleepme Inc. Stress reduction and sleep promotion system
US9758806B2 (en) 2013-03-15 2017-09-12 Biomet Biologics, Llc Acellular compositions for treating inflammatory disorders
US10208095B2 (en) 2013-03-15 2019-02-19 Biomet Manufacturing, Llc Methods for making cytokine compositions from tissues using non-centrifugal methods
US11013883B2 (en) 2013-03-15 2021-05-25 Kryo, Inc. Stress reduction and sleep promotion system
US9950035B2 (en) 2013-03-15 2018-04-24 Biomet Biologics, Llc Methods and non-immunogenic compositions for treating inflammatory disorders
US10322063B2 (en) 2013-03-19 2019-06-18 Genovus Biotechnologies Inc. Muscle optimization device and method
US10888707B2 (en) 2013-03-19 2021-01-12 Genovus Biotechnologies Inc. Muscle optimization device and method
US9994814B2 (en) 2013-04-09 2018-06-12 Advanced ReGen Medical Technologies, LLC Method for cellular restoration
FR3007892B1 (en) 2013-06-27 2015-07-31 Commissariat Energie Atomique METHOD FOR TRANSFERRING A THIN LAYER WITH THERMAL ENERGY SUPPLY TO A FRAGILIZED AREA VIA AN INDUCTIVE LAYER
US20150342661A1 (en) 2013-10-09 2015-12-03 Venus Concept Ltd Integrated Treatment System
WO2015063534A1 (en) 2013-10-30 2015-05-07 Mohamed Hossam Abdel Salam El Sayed Uni-polar pulsed electromagnetic medical apparatus and methods of use
US9498638B2 (en) 2013-12-04 2016-11-22 Monty L. Ruetenik Equine hoof pulsed electromagnetic field therapy system and apparatus
AU2014100006A4 (en) 2014-01-03 2014-02-13 Wearable Experiments Pty Ltd Fan Garment
US9821420B2 (en) 2014-01-16 2017-11-21 Whirlpool Corporation Method of forming a refrigeration heat exchanger
US9801905B2 (en) 2014-03-13 2017-10-31 Hossam Abdel Salam El Sayed Mohamed Use of organic sulphur, antioxidants, and amino acids in conjunction with exercise and electromagnetic stimulation to treat osteoporosis
EP3131628A4 (en) 2014-04-16 2017-11-22 Ivivi Health Sciences, LLC A two-part pulsed electromagnetic field applicator for application of therapeutic energy
US20150315539A1 (en) 2014-05-05 2015-11-05 Alpha Theta Center, Inc. Method for stimulating cell growth
US9410143B1 (en) 2014-06-10 2016-08-09 Endonovo Therapeutics, Inc. Biological molecules produced by electromagnetically stimulating living mammalian cells
US20150366999A1 (en) 2014-06-22 2015-12-24 Amod Amritphale Nanomagnetic modification of angiography contrast dye and a novel process for its removal using intravascular catheter based electromagnet system.
US9884199B2 (en) 2014-08-11 2018-02-06 Minnesota Medical Physics Llc Methods and apparatus for treatment of chronic kidney disease
US9757583B2 (en) 2014-09-12 2017-09-12 Hossam Abdel Salam El Sayed Mohamed Method of use of hybrid infra-red laser and pulsed electromagnetic medical apparatus
WO2016038410A1 (en) 2014-09-12 2016-03-17 Hossam Abdel Salam El Sayed Mohamed Hybrid infra-red laser and pulsed electromagnetic medical apparatus and methods of use
US20160129273A1 (en) 2014-11-07 2016-05-12 Sam Boong Park Pulsed electromagnetic therapy device with combined energy delivery
US20160129274A1 (en) 2014-11-10 2016-05-12 Sam Boong Park Wearable energy delivery system
WO2016081952A1 (en) 2014-11-21 2016-05-26 Regenesis Biomedical, Inc. Treatment of conditions susceptible to pulsed electromagnetic field therapy
US9456723B2 (en) 2015-01-30 2016-10-04 Sharkninja Operating Llc Surface cleaning head including openable agitator chamber and a removable rotatable agitator
US10556121B2 (en) 2015-02-20 2020-02-11 Endonovo Therapeutics, Inc. Method and apparatus for electromagnetic treatment of multiple sclerosis
GB201504328D0 (en) 2015-03-13 2015-04-29 Sequessome Technology Holdings Ltd Pulsed electromagnetic field
CA2985037A1 (en) 2015-05-05 2016-11-10 National University Of Singapore System and method for applying pulsed electromagnetic fields
US20170151442A1 (en) 2015-11-05 2017-06-01 Warren Winslow Walborn Hair loss regrowth and hair treatment device
US10335538B2 (en) 2015-12-08 2019-07-02 Priya Visweswaran Balakrishnan System and treatment method to increase circulation and pluripotency of stem and progenitor cells within a patient
US10344592B2 (en) 2015-12-21 2019-07-09 Schlumberger Technology Corporation Flushing microfluidic sensor systems
US10307607B2 (en) 2016-02-09 2019-06-04 Palo Alto Research Center Incorporated Focused magnetic stimulation for modulation of nerve circuits
GB201609254D0 (en) 2016-05-25 2016-07-06 Isis Innovation Wireless power transfer system
US10449371B2 (en) 2016-08-15 2019-10-22 Boston Scientific Neuromodulation Corporation Patient-guided programming algorithms and user interfaces for neurostimulator programming
KR20180024571A (en) 2016-08-30 2018-03-08 주식회사 바디프랜드 Massage Apparatus Having Pulsed Electro Magnetic Field Therapy
US10369043B2 (en) 2016-09-12 2019-08-06 Mikhail Sheydin Multi-layer heating mat for providing therapeutic heat to an area of the body
US10238867B2 (en) 2016-10-17 2019-03-26 Orthofix Inc. Pulsed electromagnetic field tissue stimulation treatment and compliance monitoring
US10806942B2 (en) 2016-11-10 2020-10-20 Qoravita LLC System and method for applying a low frequency magnetic field to biological tissues
DE102016122691A1 (en) 2016-11-24 2018-05-24 Bemer Int. AG Device for influencing biological processes in a living tissue
US10653881B2 (en) 2017-01-13 2020-05-19 Orthofix, Inc. Systems and methods for musculoskeletal tissue treatment
US10744338B2 (en) * 2017-01-25 2020-08-18 Darin Cook Brassiere apparatus for propagating therapeutic electromagnetic fields
US20190021277A1 (en) 2017-04-18 2019-01-24 Daniel H. Godfrey Animal bed with removable therapy device
WO2018208673A1 (en) 2017-05-08 2018-11-15 Aah Holdings, Llc Multi-coil electromagnetic apparatus
US11458327B2 (en) 2017-07-24 2022-10-04 Regenesis Biomedical, Inc. High-power pulsed electromagnetic field applicator system
US20190054308A1 (en) 2017-08-18 2019-02-21 Sandhya Verma Pulsed Electromagnetic Field (PEMF) Therapy Whole Body Wellness Device to increase cells energy, strengthen immune system and promote cell regeneration
US11723579B2 (en) 2017-09-19 2023-08-15 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement
CN107648732A (en) 2017-09-28 2018-02-02 京东方科技集团股份有限公司 A kind of method and system for preventing motion sickness
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
US10596384B2 (en) 2018-03-21 2020-03-24 Garwood Medical Devices, Llc Method and system for bone regeneration
US11666775B2 (en) 2018-03-29 2023-06-06 Minnesota Medical Physics Llc Method and apparatus for treatment of benign prostatic hyperplasia (BPH)
WO2019212972A1 (en) 2018-04-29 2019-11-07 Gandel Brian A Device and method for inducing lypolysis in humans
US10967194B2 (en) 2018-05-02 2021-04-06 Shealy-Sorin Wellness, Llc Pulsed electromagnetic field device and methods of use
US11439553B2 (en) 2018-05-09 2022-09-13 André Hugo Smith Multimodal device for transdermal treatments
US20190365803A1 (en) 2018-06-04 2019-12-05 Nicholas A. Melosh Nanostraws methods and apparatuses
US11547848B2 (en) 2018-06-21 2023-01-10 Regenesis Biomedical, Inc. High-power pulsed electromagnetic field applicator systems
US20200094066A1 (en) 2018-09-20 2020-03-26 Stephan HEATH SYSTEMS, APPARATUS, AND/OR METHODS UTILIZING LASER GENERATING PULSES OF LIGHT, PULSED SOUND FREQUENCIES AND/OR PULSED ELECTROMAGNETIC FIELDS (EMFs) FOR IMPROVING PROPER SYSTEMS, APPARATUS, AND/OR METHODS UTILIZING LASER GENERATING PULSES OF LIGHT, PULSED SOUND FREQUENCIES AND/OR PULSED ELECTROMAGNETIC FIELDS (EMFs) FOR IMPROVING PROPERTIES OR FUNCTIONS OF CELLS, TISSUES, PROTEINS, FATS, OR ORGANS IN VITRO, IN VIVO, OR IN SITU
KR20210099620A (en) 2018-12-03 2021-08-12 에이에이에이치 홀딩스 엘엘씨 Devices and methods for the treatment of mental and behavioral conditions and disorders with electromagnetic fields
US11129999B2 (en) 2019-01-29 2021-09-28 Minnesota Medical Physics Llc Thermally assisted pulsed electro-magnetic field stimulation apparatus and method for treatment of osteoarthritis of the knee
US11226538B2 (en) 2019-03-07 2022-01-18 California Institute Of Technology Thin-film optical parametric oscillators
US20200289841A1 (en) 2019-03-13 2020-09-17 Michael L. McIntyre System and method for therapeutic treatment using light and pulse modulation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022261172A1 (en) * 2021-06-09 2022-12-15 Regenesis Biomedical, Inc. Method and apparatus for providing pulsed electromagnetic field therapy

Also Published As

Publication number Publication date
US11020603B2 (en) 2021-06-01

Similar Documents

Publication Publication Date Title
US11020603B2 (en) Systems and methods of modulating electrical impulses in an animal brain using arrays of planar coils configured to generate pulsed electromagnetic fields and integrated into clothing
US11517760B2 (en) Systems and methods of treating medical conditions using arrays of planar coils configured to generate pulsed electromagnetic fields and integrated into clothing
US20210346711A1 (en) Systems and Methods of Modulating Functionality of an Animal Brain Using Arrays of Planar Coils Configured to Generate Pulsed Electromagnetic Fields and Integrated into Headwear
US11911609B1 (en) Wearable, unsupervised transcranial direct current stimulation (tDCS) device for movement disorder or memory therapy
US20220266012A1 (en) Systems, methods and devices for peripheral neuromodulation
CN108697890B (en) System and method for treating various neurological diseases by synchronously activating nerves
US12083334B2 (en) Methods and devices for performing electrical stimulation to treat dysmenorrhea or menstrual cramps
US20140303425A1 (en) Method and apparatus for electromagnetic treatment of cognition and neurological injury
US9757584B2 (en) Methods and devices for performing electrical stimulation to treat various conditions
US7988613B2 (en) Method and apparatus for the treatment of physical and mental disorders with low frequency, low flux density magnetic fields
US10765879B2 (en) Electromagnetic treatment of brain and body disorders
US20180050216A9 (en) Methods and devices for treating migraines with electromagnetic stimulation
US20130204315A1 (en) Systems for and methods of transcranial direct current electrical stimulation
US20160228325A1 (en) Motorized Muscle Relaxing Therapy System
KR20190101633A (en) Method and apparatus for stimulating vagus nerve using pulsed electromagnetic field
US20230055962A1 (en) Methods and systems for providing rhythmic sensory stimulus for administration with external neuromodulation
KR102422546B1 (en) Ear stimulation apparatus and method for controlling the same
US20230104434A1 (en) Pulsed Electromagnetic Field Devices Integrated into Adjustable Clothing
WO2021226197A1 (en) Systems and methods of modulating functionality of an animal brain using arrays of planar coils
US20220001190A1 (en) Method and apparatus for the treatment of physical and mental disorders with low frequency, low flux density magnetic fields

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE