US20210005339A1 - Radiation delivery devices and applications thereof - Google Patents

Radiation delivery devices and applications thereof Download PDF

Info

Publication number
US20210005339A1
US20210005339A1 US16/933,641 US202016933641A US2021005339A1 US 20210005339 A1 US20210005339 A1 US 20210005339A1 US 202016933641 A US202016933641 A US 202016933641A US 2021005339 A1 US2021005339 A1 US 2021005339A1
Authority
US
United States
Prior art keywords
collimator
radiation
delivery device
additional
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/933,641
Inventor
Xiao Ran ZHENG
Endre TAKACS
Mark LEISING
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clemson University Research Foundation (CURF)
Original Assignee
Clemson University Research Foundation (CURF)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clemson University Research Foundation (CURF) filed Critical Clemson University Research Foundation (CURF)
Priority to US16/933,641 priority Critical patent/US20210005339A1/en
Publication of US20210005339A1 publication Critical patent/US20210005339A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/025Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using multiple collimators, e.g. Bucky screens; other devices for eliminating undesired or dispersed radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1084Beam delivery systems for delivering multiple intersecting beams at the same time, e.g. gamma knives
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1094Shielding, protecting against radiation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators

Definitions

  • the present invention relates to apparatus for delivering radiation from multiple sources to a common focal point and, in particular, to radiation delivery devices for therapies including stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT).
  • SRS stereotactic radiosurgery
  • SBRT stereotactic body radiotherapy
  • SRS and SBRT are advanced therapies employing many precisely focused radiation beams to treat tumors and various abnormalities in the brain, neck and other regions of the body. Each radiation beam has very little effect on the tissue the beam passes through. However, when the beams are collectively focused at a common point or area, the radiation dosage is sufficient to destroy or damage the diseased tissue.
  • Photon beam or linear accelerator (LINAC) machines use a single X-ray source for treating diseased brain and/or body tissue.
  • Proton beam or heavy charged particle radiosurgery is another single source device. Access to proton beam radiosurgery is generally limited due to extreme costs associated with building and installation of proton beam apparatus.
  • multi-source devices are also available.
  • Gamma Knife® apparatus employs multiple (e.g. up to 201) individual gamma ray sources compartmentalized at uniform radial positions in a conical or hemispherical source body.
  • a collimator body is positioned within the source body to direct the gamma ray beams to a common focal point in the patient's brain or body.
  • the source body is arranged in a shielding body to preclude radiation exposure to the external environment.
  • Shielding apparatus is generally very large and bulky, often weighing up to 20 tons. Such weight complicates installation of Gamma Knife® apparatus and can require updates to facility infrastructure to ensure proper load support. Additionally, shielding apparatus requires the patient be moved into a closed cylindrical treatment chamber, which can cause discomfort for patients suffering from claustrophobia.
  • a radiation delivery device comprises a source body including a plurality of radiation sources and a collimator component for directing radiation from the radiation sources to a common focal area, wherein the radiation sources are arranged within the collimator component.
  • the source body is positioned within an interior cavity of the collimator component. Having the radiation sources arranged within the collimator component marks a fundamental departure from prior radiation delivery devices where the source body surrounds the collimators.
  • Radiation delivery devices described herein can be configured for integration with SRS and/or SBRT apparatus.
  • a method of directing radiation from a plurality of radiation sources comprises positioning a source body comprising the radiation sources within an interior cavity of a collimator component and directing the radiation to the common focal area with the collimator component.
  • the collimator component can comprise a primary collimator body including one or more sets of primary collimator passages for directing the radiation.
  • the source body and/or primary collimator body can be rotated to align the radiation sources with the primary collimator passages.
  • the collimator component may also comprise at least one additional collimator body having one or more sets of additional collimator passages for directing the radiation to the common focal point.
  • the additional collimator body is rotated to align a set of additional collimator passages with the primary collimator passages.
  • FIG. 1 illustrates a source body according to some embodiments described herein.
  • FIG. 2 illustrates a cross-sectional view of a source body according to some embodiments described herein.
  • FIG. 3 illustrates a perspective view of a primary collimator body according to some embodiments described herein.
  • FIG. 4 illustrates a cross-sectional view of a primary collimator body according to some embodiments described herein.
  • FIG. 5 illustrates an additional collimator body according to some embodiments described herein.
  • FIG. 6 illustrates a cross-sectional view of an additional collimator body according to some embodiments described herein.
  • FIG. 7 illustrates assembly of a source body, primary collimator body and secondary collimator body according to some embodiments.
  • FIG. 8A illustrates a cross-sectional view of a radiation delivery device wherein the source body is rotated to the off position.
  • FIG. 8B illustrates a cross-sectional view of a radiation delivery device wherein the source body is rotated to the on position.
  • FIGS. 9A and 9B illustrate non-concentric arrangement of the source body according to some embodiments.
  • FIGS. 10A and 10B illustrate attachment of the radiation delivery device to a translation apparatus for movement of the delivery device to various bodily locations.
  • FIG. 11 illustrates a perspective view of a source body according some embodiments described herein.
  • FIG. 12 illustrates a cross-sectional view of a source body according to some embodiments described herein.
  • FIG. 13 illustrates a perspective view of a primary collimator body according to some embodiments described herein.
  • FIG. 14 illustrates a cross-sectional view of a primary collimator body according to some embodiments described herein.
  • FIG. 15 illustrates an additional collimator body according to some embodiments described herein.
  • FIG. 16 illustrates a cross-sectional view of an additional collimator body according to some embodiments described herein.
  • a radiation delivery device comprises a source body including a plurality of radiation sources and a collimator component for directing radiation from the radiation sources to a common focal area, wherein the radiation sources are arranged within the collimator component.
  • the source component and associated radiation sources are positioned within an interior cavity of the collimator component.
  • the source body can have any design and any number of individual radiation sources permitted by the surrounding collimator component.
  • the source body comprises a surface extending along the longitudinal axis of the body. Individual radiation sources can be arranged in apertures or capsules along the surface. In some embodiments, the radiation sources are arranged in a line or linear array along the longitudinal surface.
  • the longitudinal surface comprising the apertures or capsules exhibits curvature.
  • the surface can have any curvature consistent with delivery of radiation to a common focal area in conjunction with the collimator component.
  • the longitudinal curved surface can exhibit an arcuate shape, such as a hyperbolic arc.
  • surface does not exhibit curvature in the longitudinal direction.
  • the common focal area of radiation delivery devices described herein can have any diameter and/or shape not inconsistent with the objectives of the present invention.
  • the common focal area has a diameter of 2 mm to 60 mm.
  • the common focal area can also exhibit a circular, elliptical or polygonal shape.
  • FIG. 1 illustrates a perspective view of a source body according to some embodiments described herein.
  • the source body 10 generally follows the shape of a hyperbolic cylinder.
  • a plurality of individual radiation sources 11 are arranged in apertures 12 along the longitudinal axis 13 of the source body 10 .
  • the source body 10 further comprises cylindrical protrusions for engaging drive apparatus for rotating the source body 10 between on and off positions as described further herein.
  • FIG. 2 illustrates a cross-sectional view of the source body 10 in FIG. 1 .
  • apertures 12 are arranged in the hyperbolic cylindrical surface and extend in a line along the longitudinal axis 13 of the source body 10 .
  • Radiation sources 11 are positioned in the apertures 12 .
  • the remainder of the source body 10 can be of a solid construction to assist in shield radioactive radiations sources.
  • FIG. 11 illustrates a perspective view of a source body according additional embodiments described herein.
  • the source body 110 is in the shape of a cylinder.
  • the cylinder does not exhibit a hyperbolic shape.
  • the longitudinal surface 111 comprising individual radiation sources 112 arranged in apertures 113 is flat or otherwise does not exhibit curvature in the longitudinal direction.
  • the remainder of the source body 110 can be of a solid construction to assist in shielding the radioactive radiation sources.
  • FIG. 12 illustrates a cross-sectional view of the source body 110 in FIG. 11 .
  • apertures 113 are arranged in the cylindrical surface and extend in a line along the longitudinal axis 114 of the source body 110 .
  • Radiation sources 112 are positioned in the apertures 113 .
  • the apertures 113 are angled for delivery of radiation to a common focal area in conjunction with the collimator component.
  • Angled apertures 113 can permit use of a cylindrical source body that is not curved in a direction extending along the longitudinal axis 114 . Such embodiments can simplify source body construction by obviating hyperbolic cylinders and/or other complex shapes.
  • specific angle of an individual aperture 113 can be dependent on the position of the aperture 113 along the cylinder. As illustrated in FIG. 12 , apertures 113 located proximate the cylinder ends can exhibit greater angles relative to apertures 113 positioned at the center of the cylinder.
  • the source body can employ any radiation sources not inconsistent with the objectives of the present invention.
  • the individual radiation sources are radioactive material exhibiting gamma emission.
  • one or more of cobalt- 60 , iridium- 192 and cesium 137 can find application as individual radiation sources.
  • radiation sources can have emission in other regions of the electromagnetic spectrum, such as in the X-ray region.
  • the source component and associated radiation sources are positioned within the collimator component.
  • the collimator component comprises a primary collimator body.
  • the primary collimator body comprises an interior cavity or compartment for housing the source body.
  • a set of primary collimator passages for directing radiation from the radiation sources is positioned along the wall of the primary collimator body.
  • the primary collimator body comprises multiple sets of primary collimator passages. The sets of primary collimator passages can differ from one another in diameter and/or shape permitting variation in size and/or shape of the focal area. Sets of differing primary collimator passages can be radially spaced around the wall of the primary collimator body.
  • the primary collimator body can have any shape not inconsistent with the objectives of the present invention.
  • the primary collimator body comprises a curved surface extending along the longitudinal axis of the body.
  • the curved surface can exhibit an arcuate shape matching or substantially matching the arcuate shape of the source body.
  • the primary collimator body and source body are both hyperbolic cylinders.
  • the primary collimator body may also comprise gearing or other apparatus for engaging a drive. The drive can rotate the collimator body relative to the source body and/or additional collimator bodies.
  • FIG. 3 illustrates a perspective view of a primary collimator body according to some embodiments described herein.
  • the primary collimator body 30 is a hollow hyperbolic cylinder for receiving the source body therein.
  • a set of primary collimator passages 31 is positioned along the curved surface 32 extending along the longitudinal axis 33 of the primary collimator body 30 .
  • the primary collimator body of FIG. 3 also comprises gears 34 for engaging rotational drive apparatus.
  • FIG. 4 illustrates a cross-sectional view of the primary collimator body of FIG. 3 .
  • the primary collimator passages 31 extend through the curved wall 32 of the body 30 .
  • curvature of the primary collimator body 30 matches or substantially matches curvature of the source body 10 of FIG. 2 permitting proper alignment of the radiation sources 11 and collimator passages 31 .
  • FIG. 13 illustrates a perspective view of a primary collimator body according to additional embodiments described herein.
  • the primary collimator body 300 is a hollow cylinder for receiving the source body therein.
  • the cylindrical primary collimator does not exhibit a hyperbolic shape or other curved shape along the longitudinal axis. Ends of the primary collimator body 300 are configured for coupling to or engaging rotational drive apparatus.
  • FIG. 14 illustrates a cross-sectional view of the primary collimator body of FIG. 13 .
  • the primary collimator body 300 comprises collimator passages 310 extending through the cylinder wall 320 . Angles of the collimator passages can match or substantially match angles of the apertures 113 of FIG. 12 , thereby permitting proper alignment of the radiation sources 112 and collimator passages 310 .
  • the radiation delivery device further comprises at least one additional collimator body including one or more sets of additional collimator passages for directing radiation from the radiation sources to the common focal area.
  • the additional collimator body comprises multiple sets of additional collimator passages. The multiple sets may be radially spaced around the wall of the additional collimator body. Sets of additional collimator passages may differ from one another in size and/or shape, thereby permitting variation of focal area size and/or shape according to the specific set selected for directing the radiation.
  • an additional collimator body may have 2-15 sets of additional collimator passages.
  • Sets of additional collimator passages may also differ from primary collimator passages in size and/or shape. Further, the number of additional collimator passages in a set may be equal or unequal to the number of primary collimator passages. In some embodiments, the number of additional collimator passages is less than the number of primary collimator passages. Fewer additional collimator passages can preclude radiation from all the radiation sources from reaching the focal area. In such embodiments, the radiation dose level can be varied. Moreover radiation entry points into the patient can be altered to avoid irradiation of sensitive organs or tissue.
  • An additional collimator body can have any shape not inconsistent with the objectives of the present invention.
  • the additional collimator body for example, can comprise an interior cavity for receiving an adjacent collimator body such as the primary collimator body and associated source body.
  • the additional collimator body comprises a curved surface extending along the longitudinal axis of the body.
  • the curved surface can exhibit an arcuate shape matching or substantially matching the arcuate shape of an adjacent collimator body, such as the primary collimator body.
  • the additional collimator body and primary body are both hyperbolic cylinders.
  • the additional collimator body may also comprise gearing or other apparatus for engaging a drive. The drive can rotate the collimator body relative to an adjacent collimator body and/or source body for directing the radiation to the focal area.
  • FIG. 5 illustrates an additional collimator body according to some embodiments described herein.
  • the additional collimator body 50 is a hollow hyperbolic cylinder for receiving the primary collimator body and associated source body contained in the primary collimator body. By receiving the primary collimator body, the additional collimator body can be considered a secondary collimator body. As described herein, any number of additional collimator bodies is contemplated including tertiary, quaternary, quinary collimator bodies and so on.
  • the additional collimator body 50 comprises sets 51 of additional collimator passages 52 .
  • the sets 51 are radially spaced around the collimator body 50 , with each set 51 extending in a line along the longitudinal axis 53 of the body 50 .
  • Each set 51 of additional collimator passages 52 can offer a different focal area size and/or shape permitting tailoring of the radiation dose.
  • the additional collimator body may further comprise apparatus for engaging a drive. The drive may rotate the additional collimator body to penult selection of the desired set 51 of additional collimator passages 52 .
  • FIG. 6 illustrates a cross-sectional view of the additional collimator body of FIG. 5 . As provided in FIG. 6 , a set 51 of additional collimator passages 52 is arranged along the arcuate surface of the collimator body 50 .
  • FIG. 7 illustrates assembly of the source body, primary collimator body and additional (secondary) collimator body according to some embodiments.
  • Drive gearing 71 is provided at one end of the assembly 70 for rotation of the source body and primary collimator body contained within the secondary collimator body 72 .
  • FIG. 15 illustrates an additional collimator body according to other embodiments described herein.
  • the additional collimator body 500 is a hollow cylinder for receiving the primary collimator body and associated source body contained in the primary collimator body. In the embodiment of FIG. 15 , the cylinder does not exhibit a hyperbolic shape or other curved shape along the longitudinal axis.
  • the additional collimator body 500 can be considered a secondary collimator body.
  • the additional collimator body 500 can be tertiary, quaternary, quinary and so on.
  • the additional collimator body 500 comprises sets 510 of additional collimator passages 520 .
  • the sets 510 are radially spaced around the collimator body 500 , with each set 510 extending in a line along the longitudinal axis 530 of the body 500 .
  • Each set 510 of additional collimator passages 520 can offer a different focal area size and/or shape permitting tailoring of the radiation dose.
  • the additional collimator body may further comprise apparatus for engaging a drive. The drive may rotate the additional collimator body to permit selection of the desired set 510 of additional collimator passages 520 .
  • FIG. 16 illustrates a cross-sectional view of the additional collimator body of FIG. 15 .
  • a set 510 of additional collimator passages 520 is arranged along the flat or non-curved surface 530 of the collimator body 500 and extend through the wall 540 of the body 500 .
  • the source body, primary collimator body and/or additional collimator body can be rotated. Rotation of these components can be in concert or independent of one another.
  • the source body can be rotated into an “off” position wherein the radiation sources face a shielding body of the radiation delivery apparatus.
  • the source body can be rotated into position where the radiation sources face collimator passages of the primary collimator body and any additional collimator body.
  • the primary collimator body can also be rotated to serve as a beam shutter.
  • the primary collimator body for example, can be rotated to preclude alignment of the primary collimator passages and radiation sources, thereby shuttering the radiation sources.
  • An additional collimator body may also be rotated in a similar manner to shutter the radiation sources.
  • An additional collimator body is also rotated for selection of the desired set of collimator passages as described above.
  • FIG. 8A illustrates a cross-sectional view of a radiation delivery device wherein the source body is rotated to the off position.
  • the radiation delivery device 80 comprises a source body 81 with individual radiation sources 82 .
  • the radiation delivery device 80 also comprises a primary collimator body 83 , a secondary collimator body 84 , a shielding body 85 and drive apparatus 86 .
  • the source body and individual radiation sources 82 face the shielding body 85 .
  • the drive apparatus 86 can rotate the source body 81 into the “on” position as illustrated in FIG. 8B . In the “on” position, the radiation sources 82 are aligned with the primary collimator passages 87 and secondary collimator passages 88 for providing radiation to a common focal area.
  • the source body, primary collimator body and/or additional collimator body in some embodiments, have a non-concentric or eccentric arrangement.
  • the source body for example, can have an off-centric arrangement relative to the primary collimator body and/or additional collimator body. This off-centric arrangement can position the source body closer to the shielding body and further away from the emitting face of the radiation delivery device. Such positioning can provide enhanced shielding of the radiation sources when the device is not in operation.
  • FIGS. 9A and 9B illustrate non-concentric arrangement of the source body according to some embodiments. In the axial cross-sectional views of FIGS. 9A and 9B , the source body 91 exhibits a non-concentric arrangement relative to the primary collimator body 93 and secondary collimator body 94 .
  • This non-concentric arrangement places the source body 91 at a further distance from the emitting face 95 of the radiation delivery device 90 .
  • the source body 91 is rotated to the off position, as in FIG. 9A , this increased distance provides additional shielding of the radiation sources.
  • the source body 91 can be subsequently rotated to the on position, as in FIG. 9B , where radiation passes through the primary 96 and secondary 97 collimator passages to the emitting face 95 .
  • Multiple sets 97 of secondary collimator passages are also illustrated in FIGS. 9A and 9B .
  • the source body, primary collimator body and/or additional collimator body can be made of one or more materials exhibiting desirable radiation shielding properties. In some embodiments, for example, these component parts of the radiation delivery device are made of tungsten or tungsten composite.
  • the compact design of radiation delivery devices described herein permit flexibility to treat diseased tissue at multiple locations in the body.
  • the radiation delivery device can be attached to apparatus for translating the device to various body locations for radiation therapy.
  • the radiation delivery device can be easily moved from a head location to a thoracic location or extremity location in the arm and/or leg.
  • FIGS. 10A and 10B illustrate attachment of the radiation delivery device to a translation apparatus for movement of the delivery device to various bodily locations.
  • a method of directing radiation from a plurality of radiation sources comprises positioning a source body comprising the radiation sources within an interior cavity of a collimator component and directing the radiation to the common focal area with the collimator component.
  • the collimator component can comprise a primary collimator body including one or more sets of primary collimator passages for directing the radiation.
  • the source body and/or primary collimator body can be rotated to align the radiation sources with the primary collimator passages.
  • the collimator component may also comprise at least one additional collimator body having one or more sets of additional collimator passages for directing the radiation to the common focal point.
  • the additional collimator body is rotated to align a set of additional collimator passages with the primary collimator passages.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation-Therapy Devices (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

Radiation delivery devices are described herein having compact and lightweight design in comparison to existing architectures. A radiation delivery device comprises a source body including a plurality of radiation sources and a collimator component for directing radiation from the radiation sources to a common focal area, wherein the radiation sources are arranged within the collimator component. In some embodiments, for example, the source body is positioned within an interior cavity of the collimator component.

Description

    RELATED APPLICATION DATA
  • The present application is a continuation application of U.S. patent application Ser. No. 15/643,076 filed Jul. 6, 2017 which claims priority pursuant to 35 U.S.C. § 119(e) to U.S. Provisional Patent Application 62/359,051, filed Jul. 6, 2016, which is incorporated herein by reference in its entirety.
  • FIELD
  • The present invention relates to apparatus for delivering radiation from multiple sources to a common focal point and, in particular, to radiation delivery devices for therapies including stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT).
  • BACKGROUND
  • A number of radiation therapies have been developed over the years for treating various diseased tissues, such as cancerous tissues. Significant efforts have been devoted to improving radiation therapies by increasing the accuracy and precision of delivered radiation, thereby limiting damage to neighboring healthy tissue. SRS and SBRT, for example, are advanced therapies employing many precisely focused radiation beams to treat tumors and various abnormalities in the brain, neck and other regions of the body. Each radiation beam has very little effect on the tissue the beam passes through. However, when the beams are collectively focused at a common point or area, the radiation dosage is sufficient to destroy or damage the diseased tissue.
  • Several SRS machines of differing construction and radiation source are currently available. Photon beam or linear accelerator (LINAC) machines use a single X-ray source for treating diseased brain and/or body tissue. Proton beam or heavy charged particle radiosurgery is another single source device. Access to proton beam radiosurgery is generally limited due to extreme costs associated with building and installation of proton beam apparatus. Alternatively, multi-source devices are also available. Gamma Knife® apparatus, for example, employs multiple (e.g. up to 201) individual gamma ray sources compartmentalized at uniform radial positions in a conical or hemispherical source body. A collimator body is positioned within the source body to direct the gamma ray beams to a common focal point in the patient's brain or body. Moreover, the source body is arranged in a shielding body to preclude radiation exposure to the external environment. Shielding apparatus is generally very large and bulky, often weighing up to 20 tons. Such weight complicates installation of Gamma Knife® apparatus and can require updates to facility infrastructure to ensure proper load support. Additionally, shielding apparatus requires the patient be moved into a closed cylindrical treatment chamber, which can cause discomfort for patients suffering from claustrophobia.
  • SUMMARY
  • In view of the foregoing disadvantages, radiation delivery devices having new architectures are provided. In some embodiments, radiation delivery devices described herein have compact and lightweight design in comparison to existing architectures. A compact and lightweight design can facilitate installation of the device and simplify use of the device to treat diseased tissues at various body locations. Briefly, a radiation delivery device comprises a source body including a plurality of radiation sources and a collimator component for directing radiation from the radiation sources to a common focal area, wherein the radiation sources are arranged within the collimator component. In some embodiments, for example, the source body is positioned within an interior cavity of the collimator component. Having the radiation sources arranged within the collimator component marks a fundamental departure from prior radiation delivery devices where the source body surrounds the collimators. Radiation delivery devices described herein can be configured for integration with SRS and/or SBRT apparatus.
  • In another aspect, methods of directing radiation are provided. In some embodiments, a method of directing radiation from a plurality of radiation sources comprises positioning a source body comprising the radiation sources within an interior cavity of a collimator component and directing the radiation to the common focal area with the collimator component. As described further herein, the collimator component can comprise a primary collimator body including one or more sets of primary collimator passages for directing the radiation. The source body and/or primary collimator body can be rotated to align the radiation sources with the primary collimator passages. The collimator component may also comprise at least one additional collimator body having one or more sets of additional collimator passages for directing the radiation to the common focal point. In some embodiments, the additional collimator body is rotated to align a set of additional collimator passages with the primary collimator passages.
  • These and other embodiments are further described in the following detailed description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a source body according to some embodiments described herein.
  • FIG. 2 illustrates a cross-sectional view of a source body according to some embodiments described herein.
  • FIG. 3 illustrates a perspective view of a primary collimator body according to some embodiments described herein.
  • FIG. 4 illustrates a cross-sectional view of a primary collimator body according to some embodiments described herein.
  • FIG. 5 illustrates an additional collimator body according to some embodiments described herein.
  • FIG. 6 illustrates a cross-sectional view of an additional collimator body according to some embodiments described herein.
  • FIG. 7 illustrates assembly of a source body, primary collimator body and secondary collimator body according to some embodiments.
  • FIG. 8A illustrates a cross-sectional view of a radiation delivery device wherein the source body is rotated to the off position.
  • FIG. 8B illustrates a cross-sectional view of a radiation delivery device wherein the source body is rotated to the on position.
  • FIGS. 9A and 9B illustrate non-concentric arrangement of the source body according to some embodiments.
  • FIGS. 10A and 10B illustrate attachment of the radiation delivery device to a translation apparatus for movement of the delivery device to various bodily locations.
  • FIG. 11 illustrates a perspective view of a source body according some embodiments described herein.
  • FIG. 12 illustrates a cross-sectional view of a source body according to some embodiments described herein.
  • FIG. 13 illustrates a perspective view of a primary collimator body according to some embodiments described herein.
  • FIG. 14 illustrates a cross-sectional view of a primary collimator body according to some embodiments described herein.
  • FIG. 15 illustrates an additional collimator body according to some embodiments described herein.
  • FIG. 16 illustrates a cross-sectional view of an additional collimator body according to some embodiments described herein.
  • DETAILED DESCRIPTION
  • Embodiments described herein can be understood more readily by reference to the following detailed description and examples and their previous and following descriptions. Elements, apparatus and methods described herein, however, are not limited to the specific embodiments presented in the detailed description and examples. It should be recognized that these embodiments are merely illustrative of the principles of the present invention. Numerous modifications and adaptations will be readily apparent to those of skill in the art without departing from the spirit and scope of the invention.
  • In one aspect, radiation delivery devices are provided. A radiation delivery device comprises a source body including a plurality of radiation sources and a collimator component for directing radiation from the radiation sources to a common focal area, wherein the radiation sources are arranged within the collimator component. In some embodiments, for example, the source component and associated radiation sources are positioned within an interior cavity of the collimator component. The source body can have any design and any number of individual radiation sources permitted by the surrounding collimator component. In some embodiments, for example, the source body comprises a surface extending along the longitudinal axis of the body. Individual radiation sources can be arranged in apertures or capsules along the surface. In some embodiments, the radiation sources are arranged in a line or linear array along the longitudinal surface. In some embodiments, the longitudinal surface comprising the apertures or capsules exhibits curvature. The surface can have any curvature consistent with delivery of radiation to a common focal area in conjunction with the collimator component. For example, the longitudinal curved surface can exhibit an arcuate shape, such as a hyperbolic arc. Alternatively, surface does not exhibit curvature in the longitudinal direction. Moreover, the common focal area of radiation delivery devices described herein can have any diameter and/or shape not inconsistent with the objectives of the present invention. In some embodiments, the common focal area has a diameter of 2 mm to 60 mm. The common focal area can also exhibit a circular, elliptical or polygonal shape.
  • FIG. 1 illustrates a perspective view of a source body according to some embodiments described herein. The source body 10 generally follows the shape of a hyperbolic cylinder. A plurality of individual radiation sources 11 are arranged in apertures 12 along the longitudinal axis 13 of the source body 10. In the embodiment of FIG. 1, the source body 10 further comprises cylindrical protrusions for engaging drive apparatus for rotating the source body 10 between on and off positions as described further herein. FIG. 2 illustrates a cross-sectional view of the source body 10 in FIG. 1. As provided in FIG. 2, apertures 12 are arranged in the hyperbolic cylindrical surface and extend in a line along the longitudinal axis 13 of the source body 10. Radiation sources 11 are positioned in the apertures 12. The remainder of the source body 10 can be of a solid construction to assist in shield radioactive radiations sources.
  • FIG. 11 illustrates a perspective view of a source body according additional embodiments described herein. The source body 110 is in the shape of a cylinder. In contrast to FIG. 1, the cylinder does not exhibit a hyperbolic shape. Accordingly, the longitudinal surface 111 comprising individual radiation sources 112 arranged in apertures 113 is flat or otherwise does not exhibit curvature in the longitudinal direction. The remainder of the source body 110 can be of a solid construction to assist in shielding the radioactive radiation sources. FIG. 12 illustrates a cross-sectional view of the source body 110 in FIG. 11. As provided in FIG. 12, apertures 113 are arranged in the cylindrical surface and extend in a line along the longitudinal axis 114 of the source body 110. Radiation sources 112 are positioned in the apertures 113. Notably, the apertures 113 are angled for delivery of radiation to a common focal area in conjunction with the collimator component. Angled apertures 113 can permit use of a cylindrical source body that is not curved in a direction extending along the longitudinal axis 114. Such embodiments can simplify source body construction by obviating hyperbolic cylinders and/or other complex shapes. Moreover, specific angle of an individual aperture 113 can be dependent on the position of the aperture 113 along the cylinder. As illustrated in FIG. 12, apertures 113 located proximate the cylinder ends can exhibit greater angles relative to apertures 113 positioned at the center of the cylinder.
  • The source body can employ any radiation sources not inconsistent with the objectives of the present invention. In some embodiments, the individual radiation sources are radioactive material exhibiting gamma emission. For example, one or more of cobalt-60, iridium-192 and cesium 137 can find application as individual radiation sources. In other embodiments, radiation sources can have emission in other regions of the electromagnetic spectrum, such as in the X-ray region.
  • Contrary to prior designs, the source component and associated radiation sources are positioned within the collimator component. The collimator component comprises a primary collimator body. In some embodiments, the primary collimator body comprises an interior cavity or compartment for housing the source body. A set of primary collimator passages for directing radiation from the radiation sources is positioned along the wall of the primary collimator body. In some embodiments, the primary collimator body comprises multiple sets of primary collimator passages. The sets of primary collimator passages can differ from one another in diameter and/or shape permitting variation in size and/or shape of the focal area. Sets of differing primary collimator passages can be radially spaced around the wall of the primary collimator body. Further, the primary collimator body can have any shape not inconsistent with the objectives of the present invention. In some embodiments, the primary collimator body comprises a curved surface extending along the longitudinal axis of the body. For example, the curved surface can exhibit an arcuate shape matching or substantially matching the arcuate shape of the source body. In one embodiment, the primary collimator body and source body are both hyperbolic cylinders. The primary collimator body may also comprise gearing or other apparatus for engaging a drive. The drive can rotate the collimator body relative to the source body and/or additional collimator bodies.
  • FIG. 3 illustrates a perspective view of a primary collimator body according to some embodiments described herein. The primary collimator body 30 is a hollow hyperbolic cylinder for receiving the source body therein. A set of primary collimator passages 31 is positioned along the curved surface 32 extending along the longitudinal axis 33 of the primary collimator body 30. The primary collimator body of FIG. 3 also comprises gears 34 for engaging rotational drive apparatus. FIG. 4 illustrates a cross-sectional view of the primary collimator body of FIG. 3. As provided in FIG. 4, the primary collimator passages 31 extend through the curved wall 32 of the body 30. Moreover, curvature of the primary collimator body 30 matches or substantially matches curvature of the source body 10 of FIG. 2 permitting proper alignment of the radiation sources 11 and collimator passages 31.
  • FIG. 13 illustrates a perspective view of a primary collimator body according to additional embodiments described herein. The primary collimator body 300 is a hollow cylinder for receiving the source body therein. In the embodiment of FIG. 13, the cylindrical primary collimator does not exhibit a hyperbolic shape or other curved shape along the longitudinal axis. Ends of the primary collimator body 300 are configured for coupling to or engaging rotational drive apparatus. FIG. 14 illustrates a cross-sectional view of the primary collimator body of FIG. 13. The primary collimator body 300 comprises collimator passages 310 extending through the cylinder wall 320. Angles of the collimator passages can match or substantially match angles of the apertures 113 of FIG. 12, thereby permitting proper alignment of the radiation sources 112 and collimator passages 310.
  • The radiation delivery device, in some embodiments, further comprises at least one additional collimator body including one or more sets of additional collimator passages for directing radiation from the radiation sources to the common focal area. In some embodiments, the additional collimator body comprises multiple sets of additional collimator passages. The multiple sets may be radially spaced around the wall of the additional collimator body. Sets of additional collimator passages may differ from one another in size and/or shape, thereby permitting variation of focal area size and/or shape according to the specific set selected for directing the radiation. In some embodiments, an additional collimator body may have 2-15 sets of additional collimator passages.
  • Sets of additional collimator passages may also differ from primary collimator passages in size and/or shape. Further, the number of additional collimator passages in a set may be equal or unequal to the number of primary collimator passages. In some embodiments, the number of additional collimator passages is less than the number of primary collimator passages. Fewer additional collimator passages can preclude radiation from all the radiation sources from reaching the focal area. In such embodiments, the radiation dose level can be varied. Moreover radiation entry points into the patient can be altered to avoid irradiation of sensitive organs or tissue.
  • An additional collimator body can have any shape not inconsistent with the objectives of the present invention. The additional collimator body, for example, can comprise an interior cavity for receiving an adjacent collimator body such as the primary collimator body and associated source body. In some embodiments, the additional collimator body comprises a curved surface extending along the longitudinal axis of the body. For example, the curved surface can exhibit an arcuate shape matching or substantially matching the arcuate shape of an adjacent collimator body, such as the primary collimator body. In one embodiment, the additional collimator body and primary body are both hyperbolic cylinders. The additional collimator body may also comprise gearing or other apparatus for engaging a drive. The drive can rotate the collimator body relative to an adjacent collimator body and/or source body for directing the radiation to the focal area.
  • FIG. 5 illustrates an additional collimator body according to some embodiments described herein. The additional collimator body 50 is a hollow hyperbolic cylinder for receiving the primary collimator body and associated source body contained in the primary collimator body. By receiving the primary collimator body, the additional collimator body can be considered a secondary collimator body. As described herein, any number of additional collimator bodies is contemplated including tertiary, quaternary, quinary collimator bodies and so on. The additional collimator body 50 comprises sets 51 of additional collimator passages 52. The sets 51 are radially spaced around the collimator body 50, with each set 51 extending in a line along the longitudinal axis 53 of the body 50. Each set 51 of additional collimator passages 52 can offer a different focal area size and/or shape permitting tailoring of the radiation dose. The additional collimator body may further comprise apparatus for engaging a drive. The drive may rotate the additional collimator body to penult selection of the desired set 51 of additional collimator passages 52. FIG. 6 illustrates a cross-sectional view of the additional collimator body of FIG. 5. As provided in FIG. 6, a set 51 of additional collimator passages 52 is arranged along the arcuate surface of the collimator body 50.
  • FIG. 7 illustrates assembly of the source body, primary collimator body and additional (secondary) collimator body according to some embodiments. Drive gearing 71 is provided at one end of the assembly 70 for rotation of the source body and primary collimator body contained within the secondary collimator body 72.
  • FIG. 15 illustrates an additional collimator body according to other embodiments described herein. The additional collimator body 500 is a hollow cylinder for receiving the primary collimator body and associated source body contained in the primary collimator body. In the embodiment of FIG. 15, the cylinder does not exhibit a hyperbolic shape or other curved shape along the longitudinal axis. By receiving the primary collimator body, the additional collimator body 500 can be considered a secondary collimator body. Alternatively, the additional collimator body 500 can be tertiary, quaternary, quinary and so on. The additional collimator body 500 comprises sets 510 of additional collimator passages 520. The sets 510 are radially spaced around the collimator body 500, with each set 510 extending in a line along the longitudinal axis 530 of the body 500. Each set 510 of additional collimator passages 520 can offer a different focal area size and/or shape permitting tailoring of the radiation dose. The additional collimator body may further comprise apparatus for engaging a drive. The drive may rotate the additional collimator body to permit selection of the desired set 510 of additional collimator passages 520. FIG. 16 illustrates a cross-sectional view of the additional collimator body of FIG. 15. As provided in FIG. 16, a set 510 of additional collimator passages 520 is arranged along the flat or non-curved surface 530 of the collimator body 500 and extend through the wall 540 of the body 500.
  • As described herein, the source body, primary collimator body and/or additional collimator body can be rotated. Rotation of these components can be in concert or independent of one another. For example, the source body can be rotated into an “off” position wherein the radiation sources face a shielding body of the radiation delivery apparatus. When desired, the source body can be rotated into position where the radiation sources face collimator passages of the primary collimator body and any additional collimator body. Moreover, the primary collimator body can also be rotated to serve as a beam shutter. The primary collimator body, for example, can be rotated to preclude alignment of the primary collimator passages and radiation sources, thereby shuttering the radiation sources. An additional collimator body may also be rotated in a similar manner to shutter the radiation sources. An additional collimator body is also rotated for selection of the desired set of collimator passages as described above.
  • FIG. 8A illustrates a cross-sectional view of a radiation delivery device wherein the source body is rotated to the off position. The radiation delivery device 80 comprises a source body 81 with individual radiation sources 82. The radiation delivery device 80 also comprises a primary collimator body 83, a secondary collimator body 84, a shielding body 85 and drive apparatus 86. As illustrated in FIG. 8A, the source body and individual radiation sources 82 face the shielding body 85. The drive apparatus 86 can rotate the source body 81 into the “on” position as illustrated in FIG. 8B. In the “on” position, the radiation sources 82 are aligned with the primary collimator passages 87 and secondary collimator passages 88 for providing radiation to a common focal area.
  • The source body, primary collimator body and/or additional collimator body, in some embodiments, have a non-concentric or eccentric arrangement. The source body, for example, can have an off-centric arrangement relative to the primary collimator body and/or additional collimator body. This off-centric arrangement can position the source body closer to the shielding body and further away from the emitting face of the radiation delivery device. Such positioning can provide enhanced shielding of the radiation sources when the device is not in operation. FIGS. 9A and 9B illustrate non-concentric arrangement of the source body according to some embodiments. In the axial cross-sectional views of FIGS. 9A and 9B, the source body 91 exhibits a non-concentric arrangement relative to the primary collimator body 93 and secondary collimator body 94. This non-concentric arrangement places the source body 91 at a further distance from the emitting face 95 of the radiation delivery device 90. When the source body 91 is rotated to the off position, as in FIG. 9A, this increased distance provides additional shielding of the radiation sources. The source body 91 can be subsequently rotated to the on position, as in FIG. 9B, where radiation passes through the primary 96 and secondary 97 collimator passages to the emitting face 95. Multiple sets 97 of secondary collimator passages are also illustrated in FIGS. 9A and 9B. Importantly, the source body, primary collimator body and/or additional collimator body can be made of one or more materials exhibiting desirable radiation shielding properties. In some embodiments, for example, these component parts of the radiation delivery device are made of tungsten or tungsten composite.
  • The compact design of radiation delivery devices described herein permit flexibility to treat diseased tissue at multiple locations in the body. The radiation delivery device can be attached to apparatus for translating the device to various body locations for radiation therapy. For example, the radiation delivery device can be easily moved from a head location to a thoracic location or extremity location in the arm and/or leg. FIGS. 10A and 10B illustrate attachment of the radiation delivery device to a translation apparatus for movement of the delivery device to various bodily locations.
  • In another aspect, methods of directing radiation are provided. In some embodiments, a method of directing radiation from a plurality of radiation sources comprises positioning a source body comprising the radiation sources within an interior cavity of a collimator component and directing the radiation to the common focal area with the collimator component. As described herein, the collimator component can comprise a primary collimator body including one or more sets of primary collimator passages for directing the radiation. The source body and/or primary collimator body can be rotated to align the radiation sources with the primary collimator passages. The collimator component may also comprise at least one additional collimator body having one or more sets of additional collimator passages for directing the radiation to the common focal point. In some embodiments, the additional collimator body is rotated to align a set of additional collimator passages with the primary collimator passages. Methods of delivering radiation described herein can be radiation therapy methods including, but not limited to, SRS and SBRT.
  • Various embodiments of the invention have been described in fulfillment of the various objects of the invention. It should be recognized that these embodiments are merely illustrative of the principles of the present invention. Numerous modifications and adaptations thereof will be readily apparent to those skilled in the art without departing from the spirit and scope of the invention.

Claims (20)

1. A radiation delivery device comprising:
a source component including a plurality of radiation sources; and
a collimator component for directing radiation from the radiation sources to a common focal area, wherein the radiation sources are arranged within the collimator component.
2. The radiation delivery device of claim 1, wherein the source component is positioned within an interior cavity of the collimator component.
3. The radiation delivery device of claim 2, wherein the collimator component comprises a primary collimator body including one or more sets of primary collimator passages for directing the radiation from the radiation sources.
4. The radiation delivery device of claim 3, wherein the source component and primary collimator body are rotatable relative to one another.
5. The radiation delivery device of claim 3, wherein the source component is rotatable to a position wherein the radiation sources face a shielding body.
6. The radiation delivery device of claim 3, wherein the collimator component further comprises at least one additional collimator body including one or more sets of additional collimator passages for directing the radiation from the radiation sources.
7. The radiation delivery device of claim 6, wherein the additional collimator passages are different than the primary collimator passages in shape and/or size.
8. The radiation delivery device of claim 6, wherein the primary collimator body is arranged within an interior cavity of the additional collimator body.
9. The radiation delivery device of claim 8, wherein the source component, primary collimator body and additional collimator body are rotatable relative to one another.
10. The radiation delivery device of claim 8, wherein sets of additional collimator passages are arranged at differing radial positions on the additional collimator body.
11. The radiation delivery device of claim 10, wherein the additional collimator passages arranged at differing radial positions have different shape and/or size.
12. The radiation delivery device of claim 8, wherein the source component exhibits a non-concentric arrangement with the primary collimator body and/or additional collimator body.
13. The radiation delivery device of claim 1, wherein the common focal area has a diameter or width of 2 mm to 60 mm.
14. The radiation delivery device of claim 1, wherein the radiation sources are arranged along a curved or non-curved surface extending along the source component longitudinal axis.
15. The radiation delivery device of claim 1, wherein the radiation sources comprise radioactive material.
16. The radiation delivery device of claim 15, wherein the radioactive material is selected from the group consisting of cobalt-60, cesium-137 and iridium-192.
17. The radiation delivery device of claim 1 configured for integration in stereotactic radiosurgery apparatus.
18. A method of directing radiation from a plurality of radiation sources to a common focal area comprising:
positioning a source component comprising the radiation sources within an interior cavity of a collimator component; and
directing the radiation to the common focal area with the collimator component.
19. The method of claim 18, wherein the collimator component comprises a primary collimator body including one or more sets of primary collimator passages for directing the radiation.
20. The method of claim 19, wherein the source component and/or primary collimator body are rotated to align the radiation sources with the primary collimator passages.
US16/933,641 2016-07-06 2020-07-20 Radiation delivery devices and applications thereof Abandoned US20210005339A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/933,641 US20210005339A1 (en) 2016-07-06 2020-07-20 Radiation delivery devices and applications thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662359051P 2016-07-06 2016-07-06
US15/643,076 US10720255B2 (en) 2016-07-06 2017-07-06 Radiation delivery devices and applications thereof
US16/933,641 US20210005339A1 (en) 2016-07-06 2020-07-20 Radiation delivery devices and applications thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/643,076 Continuation US10720255B2 (en) 2016-07-06 2017-07-06 Radiation delivery devices and applications thereof

Publications (1)

Publication Number Publication Date
US20210005339A1 true US20210005339A1 (en) 2021-01-07

Family

ID=60911170

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/643,076 Active US10720255B2 (en) 2016-07-06 2017-07-06 Radiation delivery devices and applications thereof
US16/933,641 Abandoned US20210005339A1 (en) 2016-07-06 2020-07-20 Radiation delivery devices and applications thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/643,076 Active US10720255B2 (en) 2016-07-06 2017-07-06 Radiation delivery devices and applications thereof

Country Status (8)

Country Link
US (2) US10720255B2 (en)
EP (1) EP3482401B1 (en)
CN (1) CN109791810B (en)
BR (1) BR112019000270B1 (en)
ES (1) ES2871555T3 (en)
HU (1) HUE054949T2 (en)
PL (1) PL3482401T3 (en)
WO (1) WO2018009665A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109011217A (en) * 2018-08-24 2018-12-18 西安大医集团有限公司 A kind of radiotherapy system and its control driving method
CN109011218A (en) * 2018-08-24 2018-12-18 西安大医集团有限公司 Load source body, radiotherapy apparatus and its control driving method

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE453156B (en) 1986-04-30 1988-01-18 Elekta Instr Sa RADIATION KNIFE INCLUDING A LARGE NUMBER WITHIN A PROTECTION PROTECTED
FR2694504B1 (en) 1992-08-04 1994-09-16 Joel Kerjean Method and apparatus for the treatment of lesions by high energy radiation.
CN1126622A (en) 1995-06-08 1996-07-17 宋世鹏 Method of changing ray beam diameter and radiation unit
AU2189497A (en) * 1996-02-09 1997-08-28 Mayo Foundation For Medical Education And Research Radiotherapy treatment using medial access transformation
FR2765009B1 (en) * 1997-06-23 1999-09-10 Ch & U Lille METHOD FOR AUTOMATICALLY DETERMINING THE CONFIGURATION OF A STEREOTAXIC RADIOSURGERY HELMET ON WHICH A PLURALITY OF FOCUSED COLLIMATORS CAN BE ADAPTED ON AN IRRADIATION ISOCENTER
IL128363A (en) * 1999-02-03 2003-06-24 Moshe Ein Gal Moving collimator system
US6512813B1 (en) * 1999-05-03 2003-01-28 Franz Krispel Rotating stereotactic treatment system
CN1137739C (en) 1999-05-31 2004-02-11 深圳市海博科技有限公司 Multi-source radioactive ray whole body therapeutic apparatus
US6914959B2 (en) 2001-08-09 2005-07-05 Analogic Corporation Combined radiation therapy and imaging system and method
WO2003018132A1 (en) 2001-08-24 2003-03-06 Mitsubishi Heavy Industries, Ltd. Radiotherapeutic device
US6865254B2 (en) 2002-07-02 2005-03-08 Pencilbeam Technologies Ab Radiation system with inner and outer gantry parts
SE522710C2 (en) * 2002-07-05 2004-03-02 Elekta Ab Radiation therapy apparatus with multiple sets of holes in the collimator ring where slidable plates determine which hole sets the radiation sources should use, as well as the method of varying the radiation field
SE522709C2 (en) * 2002-07-05 2004-03-02 Elekta Ab Radiation therapy device with multiple sets of holes in the collimator helmet where slidable plates determine which hole sets the radiation sources should use, as well as the method of varying the beam field
US20040018577A1 (en) 2002-07-29 2004-01-29 Emerson Campbell John Lewis Multiple hybrid immunoassay
DE60303641T2 (en) 2002-08-14 2006-12-14 Uematsu, Minoru, Kamakura Arrangement for radiotherapy
CN100515520C (en) 2004-08-18 2009-07-22 深圳市海博科技有限公司 Radiotherapy apparatus
CN100574827C (en) * 2005-08-25 2009-12-30 深圳市海博科技有限公司 Radiotherapy unit
CN1919372B (en) * 2005-08-25 2011-10-19 深圳市海博科技有限公司 Radiation therapeutical device
CN101223608B (en) 2006-07-27 2012-07-04 德国癌症研究公共权益基金会 Irradiation unit and collimator
US7659530B2 (en) * 2006-08-03 2010-02-09 Yanxiong Qiu Focusing and shielding device for encephalic photon knife
EP2095373A4 (en) 2006-12-19 2012-07-18 C Rad Innovation Ab Collimator
CN100563751C (en) * 2007-01-04 2009-12-02 吕风华 Gamma ray focusing radiation unit
WO2008106468A1 (en) * 2007-02-28 2008-09-04 University Of Maryland, Baltimore Method and equipment for image-guided stereotactic radiosurgery of breast cancer
RU2343459C1 (en) 2007-06-06 2009-01-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт технической физики и автоматизации" Gamma-ray flaw detector
US9687200B2 (en) 2010-06-08 2017-06-27 Accuray Incorporated Radiation treatment delivery system with translatable ring gantry
WO2011106433A1 (en) 2010-02-24 2011-09-01 Accuray Incorporated Gantry image guided radiotherapy system and related treatment delivery methods
GB2513596B (en) 2013-04-30 2020-01-01 Elekta Ab Image-guided radiotherapy
CN103272338B (en) * 2013-05-20 2016-02-24 清华大学 Radiotherapy equipment and there is the radiotherapy system of this radiotherapy equipment
CN104001269B (en) 2014-06-09 2016-07-06 武汉新奥沃医疗新技术有限公司 A kind of medical radiation source apparatus
CN105705201B (en) 2014-07-22 2019-02-19 深圳市奥沃医学新技术发展有限公司 Radiation source assemblies and treatment head and gamma knife with the radiation source assemblies
US10716952B2 (en) * 2015-08-04 2020-07-21 Our United Corporation Focused radiotherapy apparatus and radiotherapy equipment thereof

Also Published As

Publication number Publication date
CN109791810A (en) 2019-05-21
BR112019000270A2 (en) 2019-10-01
EP3482401A1 (en) 2019-05-15
CN109791810B (en) 2024-03-08
US10720255B2 (en) 2020-07-21
BR112019000270B1 (en) 2023-04-11
EP3482401B1 (en) 2021-03-10
US20180012675A1 (en) 2018-01-11
ES2871555T3 (en) 2021-10-29
HUE054949T2 (en) 2021-10-28
PL3482401T3 (en) 2021-10-25
EP3482401A4 (en) 2020-03-04
WO2018009665A1 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
US7295648B2 (en) Method and apparatus for treatment by ionizing radiation
US9044604B2 (en) Radiotherapy system
US20150352373A1 (en) An apparatus to deliver conformal radiotherapy using external beam cobalt 60
US10188878B2 (en) Small beam area, mid-voltage radiotherapy system with reduced skin dose, reduced scatter around the treatment volume, and improved overall accuracy
US10500420B2 (en) Small beam area, mid-voltage radiotherapy system with reduced skin dose, reduced scatter around the treatment volume, and improved overall accuracy
US10022565B2 (en) External beam radiotherapy and imaging with radioactive isotope
US20210005339A1 (en) Radiation delivery devices and applications thereof
US9486646B2 (en) System and method for control of external beam radiation
US20140066687A1 (en) Radiation therapy of protruding and/or conformable organs
US20220233882A1 (en) Radiation shields for brachytherapy
US8444544B1 (en) Device and method for intensity modulated brachytherapy
US11324966B2 (en) Delivery system for intensity modulated high dose rate brachytherapy with intermediate energy brachytherapy isotopes
US10576299B1 (en) Radioactive therapeutic device able to turn small radii
WO2020091714A1 (en) Vaginal intensity modulated brachytherapy (imbt) applicator
US20200305820A1 (en) Diagnostic and therapeutic unit
MASTERSON-McGARY 1.1 Technical Requirements of a Stereotactic Radiosurgery System
Teyssier et al. Time-dependent dose distribution changes in prostate brachytherapy with iodine seeds.
WO2018095413A1 (en) Focused radiation knife
CN116899120A (en) Source device and radiotherapy system
Aubin Gamma Knife Radiosurgery
Baggarley et al. The physics of radiation oncology

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION