US20210002046A1 - Device for automatically opening a container provided with a sealing element - Google Patents
Device for automatically opening a container provided with a sealing element Download PDFInfo
- Publication number
- US20210002046A1 US20210002046A1 US16/977,419 US201916977419A US2021002046A1 US 20210002046 A1 US20210002046 A1 US 20210002046A1 US 201916977419 A US201916977419 A US 201916977419A US 2021002046 A1 US2021002046 A1 US 2021002046A1
- Authority
- US
- United States
- Prior art keywords
- containers
- automatic opening
- screw thread
- locking
- opening device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000007789 sealing Methods 0.000 title claims abstract description 141
- 238000005520 cutting process Methods 0.000 claims description 111
- 230000002787 reinforcement Effects 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 description 41
- 230000008569 process Effects 0.000 description 41
- 239000000463 material Substances 0.000 description 8
- 238000003825 pressing Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 230000006978 adaptation Effects 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 235000013409 condiments Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 208000034809 Product contamination Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 238000010915 one-step procedure Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012858 resilient material Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 235000014347 soups Nutrition 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D51/00—Closures not otherwise provided for
- B65D51/18—Arrangements of closures with protective outer cap-like covers or of two or more co-operating closures
- B65D51/20—Caps, lids, or covers co-operating with an inner closure arranged to be opened by piercing, cutting, or tearing
- B65D51/22—Caps, lids, or covers co-operating with an inner closure arranged to be opened by piercing, cutting, or tearing having means for piercing, cutting, or tearing the inner closure
- B65D51/221—Caps, lids, or covers co-operating with an inner closure arranged to be opened by piercing, cutting, or tearing having means for piercing, cutting, or tearing the inner closure a major part of the inner closure being left inside the container after the opening
- B65D51/222—Caps, lids, or covers co-operating with an inner closure arranged to be opened by piercing, cutting, or tearing having means for piercing, cutting, or tearing the inner closure a major part of the inner closure being left inside the container after the opening the piercing or cutting means being integral with, or fixedly attached to, the outer closure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D51/00—Closures not otherwise provided for
- B65D51/18—Arrangements of closures with protective outer cap-like covers or of two or more co-operating closures
- B65D51/20—Caps, lids, or covers co-operating with an inner closure arranged to be opened by piercing, cutting, or tearing
- B65D51/22—Caps, lids, or covers co-operating with an inner closure arranged to be opened by piercing, cutting, or tearing having means for piercing, cutting, or tearing the inner closure
- B65D51/221—Caps, lids, or covers co-operating with an inner closure arranged to be opened by piercing, cutting, or tearing having means for piercing, cutting, or tearing the inner closure a major part of the inner closure being left inside the container after the opening
- B65D51/226—Caps, lids, or covers co-operating with an inner closure arranged to be opened by piercing, cutting, or tearing having means for piercing, cutting, or tearing the inner closure a major part of the inner closure being left inside the container after the opening the piercing or cutting means being non integral with, or not fixedly attached to, the outer closure
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47G—HOUSEHOLD OR TABLE EQUIPMENT
- A47G19/00—Table service
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D47/00—Closures with filling and discharging, or with discharging, devices
- B65D47/04—Closures with discharging devices other than pumps
- B65D47/06—Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages
- B65D47/065—Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages with hinged, foldable or pivotable spouts
- B65D47/066—Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages with hinged, foldable or pivotable spouts the spout being either flexible or having a flexible wall portion, whereby the spout is foldable between a dispensing and a non-dispensing position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D47/00—Closures with filling and discharging, or with discharging, devices
- B65D47/04—Closures with discharging devices other than pumps
- B65D47/06—Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages
- B65D47/08—Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages having articulated or hinged closures
- B65D47/0804—Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages having articulated or hinged closures integrally formed with the base element provided with the spout or discharge passage
- B65D47/0833—Hinges without elastic bias
- B65D47/0838—Hinges without elastic bias located at an edge of the base element
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D47/00—Closures with filling and discharging, or with discharging, devices
- B65D47/04—Closures with discharging devices other than pumps
- B65D47/06—Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages
- B65D47/08—Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages having articulated or hinged closures
- B65D47/0804—Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages having articulated or hinged closures integrally formed with the base element provided with the spout or discharge passage
- B65D47/0833—Hinges without elastic bias
- B65D47/0838—Hinges without elastic bias located at an edge of the base element
- B65D47/0842—Hinges without elastic bias located at an edge of the base element consisting of a strap of flexible material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2251/00—Details relating to container closures
- B65D2251/0003—Two or more closures
- B65D2251/0006—Upper closure
- B65D2251/0025—Upper closure of the 47-type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2251/00—Details relating to container closures
- B65D2251/0003—Two or more closures
- B65D2251/0068—Lower closure
- B65D2251/0093—Membrane
Definitions
- the present invention relates to an automatic opening device for containers that has a spout provided with a sealing element firmly attached to its rim, said automatic opening device for containers being provided with means that eliminates the need to remove the cap of the container and performs multiple operations to remove the sealing element from the edge of the spout to release the ministering of the stored product.
- sealing elements in containers designed to store products such as condiments for food, soups, liquid or paste products, medicines, cosmetics and other products.
- the sealing element is firmly attached to the rim of the opening through which the product can be removed from the container, for example at the rim of a pouring spout.
- a closing element is provided in the pouring spout, usually a cap, which is often provided with an internal screw thread which engages to an external screw thread provided in the pouring spout.
- the cap will only operate to seal the container after a user removes the sealing element from the rim of the spout.
- sealing elements are known to adhere to the rim of the spouts of these containers, the characteristics of which vary according to the type of product contained in the container.
- the sealing elements comprise a multilayer material, which can comprise plastic materials, paper, aluminum films, etc.
- U.S. Pat. Nos. 6,277,478, 6,461,714, 7,648,764 and 8,080,118 disclose some types of sealing elements.
- sealing elements applied to the rim of the spout, for example, the need to provide barriers against light, odors, scents, humidity, oxygen, etc., which can jeopardise the quality and the integrity of the product stored in the container.
- the sealing elements can usually be made in layers of different materials, each of them meeting specific needs.
- the sealing elements can also serve to extend the shelf life of the products stored in the containers, since the sale to the final user can take place long after the date of manufacture, in some cases in periods longer than one year after manufacture.
- the sealing elements also serve as an indication to the user that the contents of the container have not been tampered with. If the sealing element shows any sign of tampering when opening the cap, it will signal to the user that the container has been tampered with and the product may have suffered some type of contamination and therefore should not be used.
- containers caps with spouts with sealing elements in the rim are often not provided with tamper evidence devices, since the sealing element itself serves this purpose. In this case, when purchasing the product, users have just to remove the caps from the containers to check if the sealing element is intact.
- sealing elements In such situations, users may inadvertently damage the sealing element, which would make the product contained in the container unsuitable for sale.
- the sealing elements it is common for the sealing elements to be manufactured with layers of thicker materials than would be necessary to serve as a barrier element, aiming to increase its resistance.
- this option usually creates difficulties for users, causing them difficulties to remove the sealing element when it is necessary to open the container for the first time to pour product contained therein.
- the cap is provided with a pouring spout that makes it possible to pour the product without the need to disengage the cap from the spout. In these cases, after removing the sealing element, the cap must be re-engaged to the spout, to close the container and allow the product to be served normally through the pouring spout.
- the sealing elements are provided with at least one side lug that extends downwards the rim of the spout, facing the outer portion of the spout.
- This side lug aims to facilitate the task of removing the sealing element, and for this aim the user must handle the side lug and make an upward movement.
- the task of removing the sealing element is still difficult, and frequently users are unable to release the sealing element because it is firmly adhered to the rim of the spout.
- This operation is not always easy to be performed, being even very difficult for users to handle the remaining parts of the sealing element still adhered to the rim of the spout, in order to remove them.
- Users often use a sharp instrument, such as the tip of a knife or scissors, to assist removal of said remaining parts of the sealing element, which can cause accidents as well as creating the possibility of product contamination.
- sealing element it is not uncommon that users instead of trying to remove the sealing element as a whole, choose to simply cut it, usually with a sharp instrument, such as the tip of a knife or scissors.
- a sharp instrument such as the tip of a knife or scissors.
- one of the layers of the sealing element comprises a resilient plastic material, usually this may cause some resistance for users to be able to puncture the sealing element.
- the difficulty to release the sealing element may be even greater if it is quite thick, notably in containers in that the cap is not provided with a tamper evidence element, wherein the sealing element also serves to hinder tampering with the container, as previously mentioned.
- the need to provide a sealing element at the rim of the container spout, for the preservation of the product usually causes difficulties for users. Besides being necessary the users perform a sequence of operations to open the container (unscrew the cap of the spout, remove the sealing element from the rim of the spout and then screw the cap back on the spout), the operation of releasing the sealing element from the rim of the spout can even cause accidents.
- caps for container which also serve as sealing element for the containers.
- These caps are usually provided with a protruding element at the top, usually in the form of a cone trunk, which will later be used for pouring the product stored in the container.
- Said protruding element has its upper end closed, and therefore it will be necessary for users to use a cutting instrument, a knife, for example, to cut the upper portion of the protruding element, thereby opening a pouring orifice for the product into the container. It is then highly possible that accidents occur during this operation, especially if performed by children or older people.
- caps can be provided in one piece or in two pieces joined by a pivoting element, one of the pieces being the part that is applied to the spout and the other serves as a closing element.
- the present invention provides an automatic opening device for containers provided with sealing elements fixed to the rim of the pouring spout, thereby allowing the operation for tearing the sealing element to be made in a single operation, whereby eliminating the need for the user to perform multiple tasks in order to tear the sealing element to open the containers.
- the present invention allows the sealing elements to be manufactured without the need to be thicker than necessary, thereby serving only as a barrier element. Consequently, it eliminates the need for the sealing elements to be more resistant to avoid accidental ruptures, as currently observed.
- FIGS. 1A, 1B and 1C respectively depict an upper perspective view, an upper perspective view in partial cut and a lower perspective view, in partial cut, of a first embodiment of the automatic opening device for containers according to the present invention
- FIG. 2 depicts an upper perspective view of the automatic opening device for containers shown in FIGS. 1A, 1B, 1C , in a situation where the closing element of the device is in the open position;
- FIG. 3 depicts an upper perspective view of a threaded spout provided in a container, with a sealing element being provided at the rim of the spout;
- FIGS. 4A, 4B, 4C and 4D depict frontal views of the automatic opening device for containers depicted in FIGS. 1A, 1B, 1C and 2 , in partial cut, showing a sequence for the application of the device in the spout depicted in FIG. 3 ;
- FIG. 5 depicts a front cutting view of a Detail X shown in FIG. 4D ;
- FIGS. 6A, 6B, 6C and 6D depict upper perspective views of the automatic opening device for containers depicted in FIGS. 1A, 1B, 1C and 2 , in partial cut, showing a sequence of operations for opening the container using the device for cutting the sealing element provided at the rim of the spout shown in FIG. 3 ;
- FIG. 7 depicts a front cutting view of the Detail Y depicted in FIG. 6D ;
- FIGS. 8A and 8B depict front views of a first variation of the automatic opening device for containers shown in FIGS. 1A, 1B, 1C and 2 ;
- FIGS. 9A, 9B, 9C and 9D depict front views of a second variation of the automatic opening device for containers shown in FIGS. 1A, 1B, 1C and 2 ;
- FIGS. 10 and 11 depict, respectively, a front view of a third variation of the automatic opening device for containers shown in FIGS. 1A, 1B, 1C and 2 , and an upper perspective view for a spout to which this variation of the automatic opening device for containers must be applied;
- FIGS. 12A, 12B and 12C depict front views in partial cut of a fourth variation of the automatic opening device for containers shown in FIGS. 1A, 1B, 1C and 2 ;
- FIGS. 13A and 13B depicts respectively, an upper perspective view, and an upper cutting view of a fifth variation of the automatic opening device for containers;
- FIGS. 14A, 14B, 14C and 14D depict, respectively, an exploded front view, an exploded upper perspective view in partial cut, a lower perspective view and an upper perspective view, showing a spout adapter device intended to serve as an interface for the application of an automatic opening device for containers in a spout of a container provided with an external screw thread different from the internal screw thread of the automatic opening device for containers;
- FIG. 15 depicts an upper perspective view, in cut, in which the assembly of the automatic opening device for containers in the spout adapter device depicted in FIGS. 14A, 14B, 14C and 14D can be seen;
- FIG. 16 depicts a front view of a variation of the spout adapter device of FIGS. 14A, 14B, 14C and 14D ;
- FIGS. 17 and 18 depict top perspective views, in cut, showing the assembly formed by the automatic opening device for containers applied to the spout adapter device before and after being applied to a container, respectively;
- FIGS. 19A, 19B and 19C depict, respectively, an exploded front view, in partial cut, and an upper perspective view, in partial cut, and a front view, in which an alternative embodiment of the spout adapter device is shown;
- FIG. 20 shows an upper cutting perspective view of the spout adapter device of FIGS. 19A and 19B applied to the automatic opening device for containers;
- FIGS. 21 and 22 show upper perspective views, in cut, of the assembly depicted in FIG. 20 , before and after the assembly is applied to a spout, respectively;
- FIGS. 23A, 23B and 23C depict, respectively, a perspective view, a partial cutting perspective view and a lower perspective view, in partial cut, of a further embodiment of the invention according to the teachings of the present invention, showing an automatic opening device for containers to be applied to the spout of a container by means of a bayonet type connection;
- FIG. 24 shows an upper perspective view of the automatic opening device for containers of FIGS. 23A, 23B and 23C , in which the closing element is open;
- FIGS. 25A and 25B depict a front view and a partial cutting front view showing the automatic opening device for containers of FIGS. 23A, 23B and 23C in a position immediately prior to the beginning of its application to a spout;
- FIG. 26A depicts a front view of the automatic opening device for containers of FIGS. 23A, 23B and 23C applied to the spout of a container
- FIG. 26B depicts a front view of the automatic opening device for containers after a user has started the operation for opening the container;
- FIG. 27 depicts an exploded perspective view of a variation of the automatic opening device for containers of FIGS. 23A, 23B and 23C in which the lower portion of a guiding and locking device of the automatic opening device for containers is provided with an internal screw thread;
- FIGS. 28A and 28B depict upper perspective views showing alternative embodiments for the guiding and locking device for the automatic opening device for containers of FIGS. 23A, 23B, 23C and 27 ;
- FIGS. 29A, 29B, 30A and 30B depict partial cutting front views showing variations in the application of different types of screw threads to the guiding and locking device and to the automatic opening device for containers of FIGS. 23A, 23B, 23C, 27, 28A and 28B ;
- FIGS. 31A and 31B depict, respectively, a front partial cutting view and a front perspective cutting view, in which an additional embodiment of an automatic opening device for containers according to the teachings of the present invention is shown, in which said device is shown disconnected from a spout;
- FIGS. 31C and 31D depict frontal partial views of the automatic opening device for containers shown in FIGS. 31A and 31B , showing different stages of application of the device in a spout;
- FIG. 31E depicts a front partial view of the automatic opening device for containers shown in FIGS. 31A and 31B after being activated to open a container;
- FIGS. 32A and 32B depict respectively an upper perspective view and an upper partial cutting perspective view of an automatic opening device for containers whose base element is provided with a pouring device;
- FIG. 33 depicts an automatic opening device for containers whose base element is provided with a protruding plugging element whose upper portion is sealed;
- FIGS. 34A and 34B depict perspective views showing a rotational locking system of the external screw thread flanks of the automatic opening device for containers of the invention
- FIG. 35 shows an upper perspective view of a further embodiment of the automatic opening device for containers in a situation where the closing element of the device is in the open position;
- FIG. 36 depicts an upper perspective cutting view of the automatic opening device for containers depicted in FIG. 35 , in a situation where the device is applied to a spout of a container and the closing element of the device is in the open position;
- FIG. 37 depicts a lower perspective cutting view of the automatic opening device for containers depicted in FIG. 35 , in a situation where the device is applied to a spout of a container and the closing element of the device is in the open position;
- FIG. 38 depicts an upper perspective view of a variation of the throughout orifice of the fourth embodiment of the automatic opening device for containers depicted in FIG. 35 , in a situation where the closing element of the device is in the open position;
- FIG. 39 depicts a perspective view, in partial cut, of an additional embodiment of an automatic opening device for containers object of the present invention.
- FIGS. 40 and 41 depict frontal views, in partial cut, showing phases of operation of the application of the automatic opening device for containers of FIG. 39 being applied to a container;
- FIG. 42 depicts a perspective view, in partial cut, of the automatic opening device for containers of FIG. 39 at the end of its application to the container;
- FIG. 43 depicts a front view, in partial section, of the automatic opening device for containers of FIG. 39 , in a situation where the device was activated by a user to tear the sealing element of the spout of the container;
- FIGS. 44 and 45 depict perspective views, in partial cut, in which the closing element of the device is in the open and closed positions, respectively.
- FIGS. 1A, 1B, 1C and 2 depict a first embodiment of the automatic opening device for containers 1 according to the present invention.
- the automatic opening device for containers 1 comprises a closing element 1 a , a base element 1 b and a locking device 6 .
- the terms “container” and “packaging” may be used in this specification in a interchangeable manner.
- the closing element 1 a in the closed position, engages into the base element 1 b , as depicted in FIG. 1A , and both are connected to each other by means of a pivoting connection element 7 , as shown in more detail in FIG. 2 .
- connection means can be used to connect the closing element 1 a to the base element 1 b , and there may not even be any connection means between them, and the connection between these two parts could be made by pressure or screwing, for example.
- the base element 1 b comprises a first sidewall 11 , in the form of an elongated cylindrical body, and a top element 10 , circular in shape and whose edges are joined to the upper edge of the first sidewall 11 .
- a central protruding ring 2 is provided in the upper central portion of the top element 10 , which encircles a throughout orifice 2 a .
- the closing element 1 a comprises a second sidewall 9 in the form of an elongated cylindrical body and an upper element 8 , circular in shape and whose edges are joined to the upper edge of the second sidewall 9 .
- a protruding sealing element 4 is provided in the inner central portion of the upper element 8 of the closing element 1 a .
- the sealing protruding element 4 is designed to house into the protruding ring 2 and to close the throughout orifice 2 a of the base element 1 b when the closing element 1 a and the base element 1 b are closed.
- the automatic opening device for containers 1 is designed so that the second sidewall 9 of the closing element 1 a and the first sidewall 11 of the base element 1 b have substantially equal outside diameters when closed, as shown in FIG. 1A .
- the top element 10 of the base element 1 b must be provided with a recess in the region of its edge at which it connects to the first sidewall 11 , to form a engaging annular ring region 10 a .
- the closing element 1 a when the closing element 1 a is in the closed position, the lower region of the second sidewall 12 will fit into that engaging annular ring region 10 a , as can be seen in FIG. 1B .
- This feature is only intended to facilitate the manipulation of the automatic opening device for containers 1 by users, but it is not essential for the functionality of the device.
- the embodiments of the closing element 1 a and the base element 1 b can be different from those depicted in the Figures, without, however, changing the functionality of these components for the adequate operation of the automatic opening device for containers 1 .
- the automatic opening device for containers 1 can even be provided without a closing element 1 a as shown in the Figures, as the automatic opening device for containers 1 will operate normally even being not provided with this component, as will be seen hereafter.
- An internal screw thread 5 is provided in the inner portion of the first sidewall 11 of the base element 1 b .
- the internal screw thread 5 comprises an internal orientation screw thread to the right of three entries, depicted in the Figure by means of three internal screw thread flanks 5 .
- the internal screw thread 5 may comprise a screw thread with any number of entries and consequently, and so the invention is not limited to the use of an internal screw thread 5 with three entries.
- a three entries screw thread was chosen only as an exemplary embodiment of the invention, although the use of a multiple entry screw thread is more suitable for the purposes of the invention, as will be seen hereafter.
- the internal screw thread 5 can be indistinctly oriented to the right, as shown in the Figures, or oriented to the left.
- the expressions “internal screw thread 5 ” and “internal screw thread flanks 5 ” will be used as a common reference for this internal screw thread.
- a cutting device 3 is provided in the inner portion of the top element 10 , which comprises a hollow protruding body whose upper portion is connected to the lower portion of the top element 10 , in the region where the throughout orifice 2 a is located, the latter being a continuation of the hollow portion of the cutting device 3 .
- the lower portion of the cutting device 3 is provided with a plurality of cutting elements 3 a . In FIG. 1B , this cutting device 3 does not appear in cut so as to enable it to be totally seen.
- the locking device 6 comprises an elongated substantially cylindrical body provided at its upper edge with a plurality of upper rupture elements 6 a , which are connected to the lower edge of the base element 1 b , as can be seen in more detail in FIG. 1C .
- a plurality of lower locking elements 6 b is provided in the lower internal portion of the locking device 6 .
- the lower locking elements 6 b comprise tabs distributed circularly and spaced apart, the lower portion of each lug being joined to the lower region of the locking device 6 and the body of each lug being tilted towards the geometric axis of the locking device 6 .
- the lower locking elements 6 b are designed so that they can undergo small radial bends towards the inner wall of the locking device 6 .
- lower locking elements 6 b can be used and, therefore, the invention is not limited to the embodiment depicted in FIGS. 1B and 1C .
- the function of the upper rupture elements 6 a and the lower locking elements 6 b will also be seen hereafter in the description that will be made of the operation of applying the automatic opening device for containers 1 to a spout.
- FIG. 3 depicts a container 20 provided with a spout 12 , depicted in the Figure only by its upper part.
- the spout 12 comprises an elongated cylindrical body 13 provided with an external screw thread 14 , in the present case, a right hand screw thread with three entries, which comprises a lower flank 14 a and an upper flank 14 b , with a root 15 formed between these two flanks.
- the upper flank 14 b of the external screw thread 14 has an upper end 21 which extends over the upper ring 16
- the lower flank 14 a has its upper end even with the lower portion of the upper ring 16 , to facilitate the screwing of the internal screw thread flanks 5 on the root 15 , as will be seen hereafter.
- an external right oriented screw thread with three entries, is exclusively due to the fact that this is the embodiment used in the internal screw thread flanks 5 of the base element 1 b .
- the same above comments are valid here, in which the use of a right hand screw thread with three entries is only a possibility to carry out the invention, which evidently is not limited to the use of a screw thread of three entries, as well as the screw thread may be right or left hand oriented.
- the external screw thread 14 can be a screw thread with any number of entries, and its orientation can be indistinctly to the right, as shown in FIG. 3 , or to the left, as long as it is compatible with the screw thread used in the internal screw thread 5 .
- a sealing element 19 is affixed to the rim of the spout 12 .
- the elongated cylindrical body 13 of the spout 12 is also provided in its outer portion with an upper ring 16 , an intermediate ring 18 and a lower ring 17 , located in the upper, intermediate and lower regions, respectively.
- the diameter of the upper ring 16 is smaller than the diameter of the intermediate ring 18
- the diameter of the intermediate ring 18 is smaller than the diameter of the lower ring 17 , as can be seen in FIG. 3 .
- FIGS. 4A, 4B, 4C and 4D show a sequence of a process for applying the automatic opening device for containers 1 to the spout 12 of the container 20 provided with a sealing element 19 .
- the internal screw thread flanks 5 of the base element 1 b located in the front portion of the device for the automatic opening device for containers 1 were not cut.
- the application of the automatic opening device for containers 1 to the spout 12 is made by means of making the lower part of the automatic opening device for containers 1 to exert a downward longitudinal movement against the upper part of the spout 12 , as shown in the Figures. In this process a slight interference may occur between some component parts of the automatic opening device for containers 1 and component parts of the spout 12 at the time of assembly.
- the automatic opening device for containers 1 must be made of a relatively resilient material, a thermoplastic, for example, and so, elements of the automatic opening device for containers 1 located in regions where occur interference with elements of the spout 12 undergo temporary elastic deformations, thereby allowing the continuity of the process to apply the automatic opening device for containers 1 in the spout 12 .
- FIG. 4A An automatic opening device for containers 1 can be seen in FIG. 4A , whose geometric axis is aligned with the geometric axis of the spout 12 , in a position to start the operation to apply the automatic opening device for containers 1 to the nozzle 12 .
- FIG. 4B the automatic opening device for containers 1 is depicted in a position immediately before the beginning of its engagement to the spout 12 .
- FIG. 4C the automatic opening device for containers 1 is almost completely engaged in the spout 12 . It is important to observe in this Figure that the lower regions of the lower locking elements 6 b of the locking device 6 initiate contact with the upper face of the intermediate ring 18 .
- the lower locking elements 6 b of the locking device 6 With the continuity of the longitudinal downward movement of the automatic opening device for containers 1 in relation to the spout 12 , the lower locking elements 6 b of the locking device 6 will be outwardly pressed by the edge of the intermediate ring 18 , and consequently will tend to incline outwardly towards the internal wall of the locking device 6 , which will allow the continuity of the downward longitudinal movement of the automatic opening device for containers 1 .
- FIG. 4D depicts a Detail X indicated in FIG. 4D .
- the lower locking elements 6 b will prevent longitudinal upward movements of the automatic opening device for containers 1 , which will then be kept in that position.
- the downward longitudinal movement of the automatic opening device for containers 1 ceases when the lower edge of the locking device 6 touches the upper surface of the lower ring 17 , as shown in FIG. 4D , whereby the process of applying the automatic opening device for containers 1 to the spout 12 is completed.
- the internal screw thread flanks 5 are in a position in which they can be screwed to the screw thread 14 of the spout 12 , as will be seen hereafter.
- the container 20 will then be ready for sale.
- FIGS. 6A, 6B, 6C and 6D depict upper perspective views, in partial cut, showing a sequence of the process for opening the container 20 by means of the automatic opening device for containers 1 .
- the internal screw thread flanks 5 of the base element 1 b had not been cut in FIGS. 6A, 6B, 6C and 6D .
- the cutting device 3 also does not appear in cut, thereby making possible to see it in its entirety.
- FIG. 6A the automatic opening device for containers 1 is depicted in the final position after being applied to container 20 , an operation carried out in a factory.
- a user In order to start the process to open the container 20 a user must apply a clockwise rotary movement to the upper portion of the automatic opening device for containers 1 , formed by the closing element 1 a and the base element 1 b , as indicated by the circle T in the Figures.
- This clockwise rotary movement will cause the upper rupture elements 6 a of the locking device 6 to rupture, as indicated by the circles R in FIG. 6B , and consequently, the assembly formed by the closing element 1 a and the base element 1 b will begin to rotate clockwise.
- the entry tips 5 a of the internal screw thread flanks 5 will run along the upper face of the upper ring 16 , until they meet the upper end 21 of the upper flank 14 b of the screw thread 14 , as can be seen in FIG. 6B .
- each internal screw thread 5 will begin to enter the root 15 of the external screw thread 14 , as can be seen in FIG. 6B .
- the internal screw thread flanks 5 will displace along the roots 15 of the external screw thread 14 .
- This rotary movement will cause a downward axial displacement of the automatic opening device for containers 1 , as indicated by the arrows Z in FIGS. 6B, 6C and 6D .
- the combination of the two movements, rotation and downward axial displacement will cause the cutting elements 3 a of the cutting device 3 to cut the sealing element 19 affixed to the upper edge of the spout 12 , as can be seen in FIG. 6C .
- FIG. 7 depicts an upper rupture element 6 a which was torn at the beginning of the rotary movement of the automatic opening device for containers 1 , part of the rupture element 6 a being attached to the inner portion of the upper edge of the locking element 6 , as shown in the upper part of the drawing, and the remaining part keeping attached to the inner portion of the lower edge of the base element 1 b , as shown in the lower part of FIG. 7 , indicated by the ellipses S.
- the cutting elements 3 a of the cutting device 3 had already made the tearing of the sealing element 19 . Consequently, the product into the container 20 can be poured through the protruding hollow body of the cutting device 3 and the throughout orifice 2 a , pivoting first the closing element 1 a to enable the product stored in the container 20 to pass through the throughout orifice 2 a.
- both the outer face of the second sidewall 9 of the closing element 1 a and the outer face of the first sidewall 11 of the base element 1 b of the automatic opening device for containers 1 are provided with means that increase the friction coefficient thereof, consequently facilitating the handling of the automatic opening device for containers 1 by users.
- the process of opening the container 20 described hereinbefore requires the users to turn clockwise the automatic opening device to open the container 1 . This may cause some confusion to the users, as clockwise is usually the direction of rotation for closing caps of containers, which mostly use threaded spouts with screw threads right hand oriented.
- FIG. 8A depicts a first variation of the automatic opening device for containers 1 , in which the internal screw thread flanks 5 are bipartite, and comprise an upper section 5 s and a lower section 5 i . The intermediate portion of each internal screw thread 5 was removed, as can be seen in FIG. 8A .
- a guiding element 22 is provided in the external portion of the elongated cylindrical body 13 of the spout 12 and extends parallel to the upper edge of the spout 12 .
- the upper end 21 of the upper flank 14 b of the external screw thread 14 extends up to the guiding element 22 , as can be seen in FIG. 8A .
- a limiter of rotation 23 is formed between the upper end 21 of the upper flank 14 b and the guiding element 22 .
- FIG. 9A depicts a front partial cutting view of a second variation of the automatic opening device for containers 1 , in which the upper end 21 of the internal screw thread flanks 5 extend beyond the upper ring 16 to a shorter extent than the length observed in FIGS. 4A, 4B, 4C and 4D , and the lower flank 14 a has its upper end facing with the lower portion of the upper ring 16 , as can be seen in FIG. 9A .
- the locking elements 6 b of the locking device 6 are designed in such a way that their upper ends maintain a gap in relation to the lower face of the intermediate ring 18 , as indicated by the circles P in FIG. 9A .
- the clearance between the upper ends of the locking elements 6 b of the locking device 6 in relation to the lower face of the intermediate ring 18 must be designed so that it is sufficient to allow the internal screw thread flanks 5 to move past the upper end 21 of the upper flanks 14 b.
- the gap has an extension greater than the vertical extension H that the upper ends 21 of the upper flanks 14 b raise beyond the upper ring 16 , as shown in FIG. 9B . Therefore, in the event that the user applies an anti-clockwise rotation to the upper portion of the automatic opening device for containers 1 , the gap between the upper ends 21 of the upper flanks 14 b in relation to the lower face of the intermediate ring 18 will always allow that the upper ends 21 of the upper flanks 14 b may extend beyond the upper ring 16 , as can be seen by the circles T shown in FIG. 9B .
- FIG. 9D depicts another variation of the automatic opening device for containers 1 , similar to the variation depicted in FIGS. 9A, 9B and 9C , in which the only difference is that the locking device 6 is provided with a circular wing 6 e at its lower portion, the latter extending from the end of the locking device 6 , completely encircling the lower ring 17 , as can be seen in FIG. 9D .
- FIG. 10 depicts a third variation of the first embodiment of the automatic opening device for containers 1 .
- the internal screw thread flanks 5 comprise a left hand oriented screw thread, this being the only difference between the first embodiment and this variation.
- the spout 12 be provided with an external screw thread 14 with left hand orientation, as shown in FIG. 10 .
- FIG. 11 depicts in more detail this spout with left angle orientation.
- the expression “open the container” means to tear the sealing element that is applied to the rim of the spout of a container to protect its contents, thereby allowing the product into the container to be removed. Notice that, according to the teachings of the invention, once the user has opened the container, there is no need to execute any further action, and the product stored in the container can be served immediately.
- FIGS. 12A, 12B and 12C depict front views, in partial cut, of a fourth variation of the automatic opening device for containers depicted in FIGS. 1A, 1B, 1C and 2 .
- the difference observed in this variation is the provision of a locking device 6 ′ of lesser longitudinal extension, as can be seen in the Figures, due to a partial screwing of the internal screw thread flanks 5 in the roots 15 of the external screw thread 14 , as will be noted from the following description made in the next paragraphs.
- the locking device 6 ′ comprises an elongated and substantially cylindrical body provided at its upper edge with a plurality of upper rupture elements 6 a ′, as can be seen in more detail in FIG. 12A , the upper rupture elements 6 a ′ being connected to the lower edge of the base element 1 b .
- a plurality of lower locking elements 6 b ′ is provided in the lower inner portion of the locking device 6 ′.
- FIGS. 12A, 12B and 12 C An automatic opening device for containers 1 with the same characteristics described above in relation to the device shown in FIGS. 1A, 1B, 1C and 2 is depicted in the FIGS. 12A, 12B and 12 C, as well as it is depicted the same spout 12 previously described in relation to said FIGS. 1A, 1B, 1C and 2 . Consequently, there is no need to repeat here the description of the constituent parts of both the automatic opening device for containers 1 and the spout 12 .
- the internal screw thread 5 and the external screw thread 14 comprise screw threads of multiple entries of right hand orientation.
- single or multiple screw threads having right or left hand orientation can be used.
- this fourth variation of the automatic opening device for containers 1 to the spout 12 is made at a factory, by means of an equipment not shown in the Figures, which executes a sequential pressing and rotating process. Initially, a downward longitudinal movement is applied to the automatic opening device for containers 1 , as indicated by the arrow M in FIG. 12A , whereby the lower part of the automatic opening device for containers 1 is pressed against the upper part of the spout 12 until the lower regions of the lower locking elements 6 b ′ touch the upper region of the intermediate ring 18 .
- the lower locking elements 6 b ′ must be designed to make them strong enough to preclude any attempt to unscrew the automatic opening device for containers 1 in the spout 12 , especially if right hand oriented screw threads are used in the internal screw thread flanks 5 and in the external screw thread 14 .
- the difficulty users would face to apply a counterclockwise rotary movement to the automatic opening device for containers 1 would serve to draw their attention to the remarks in the upper region of the closing element 1 a , which indicate that the correct rotational movement must be in a clockwise direction to open the container.
- FIGS. 13A and 13B depict, respectively, an upper perspective view and an upper cutting perspective view of a fifth variation of the automatic opening device for containers 1 , in which the base element 1 b is provided with a suction spout 24 , which comprises a hollow body which extends above the base element 1 b and encircles the throughout orifice 2 a .
- the suction spout 24 is provided at its upper end with a mouth ring 24 a
- the protruding sealing element 4 of the upper element 8 of the sealing element 1 a is designed to house in the mouth ring 24 a and to close the throughout orifice 2 a of the base element 1 b when the closing element 1 a and the base element 1 b are closed.
- Containers provided with suction spouts are normally used to store liquids that are usually consumed by users when they are on the move, cases of cyclists, long-distance runners or even people who prefer to consume the product stored in the container while on the move
- this fifth variation can be combined with any of the variations of the first embodiment of the invention described herein before. If it is made a combination of the third variation with the fifth variation, it will only be necessary to make the necessary to make some modifications due to the use of a left hand oriented screw thread.
- FIGS. 14A and 14B respectively depict a front view, in partial cut, and a upper perspective view, in partial cut, which show details of a spout adapter device intended to serve as an interface for the application of an automatic opening device for containers 1 in a spout provided with an external screw thread which is different from the internal screw thread of the automatic opening device for containers 1 .
- a sealing element 19 is affixed to the rim of the spout 26 .
- External upper end of the spout 26 is provided with an external screw thread 30 , a retaining ring being located below the external screw thread 30 .
- the automatic opening device for containers 1 depicted in FIGS. 14A and 14B is substantially similar to the one that has been described regarding FIGS. 4A, 4B, 4C and 4D , and therefore it is not necessary to repeat the description herein. Any of the previous variations of the automatic opening device for containers 1 described hereinbefore could have been depicted in FIGS. 14A and 14B , which would normally operate in conjunction with the spout adapter device 25 , meaning that there are no limitations for the use of any type of automatic opening device for containers 1 in conjunction with the spout adapter device 25 .
- the lower external region of the spout 26 is provided with a base ring 28 , larger in diameter than the retaining ring 33 .
- the external screw thread 30 depicted in FIGS. 14A and 14B has a shape different from the internal screw thread 5 of the automatic opening device for containers 1 .
- a screw thread of a single entry having a right hand orientation, although other types of screw threads could be used, such as, for example, a multiple entry screw thread and/or a left hand oriented screw thread.
- the spout adapter device 25 comprises an upper portion 25 s rigidly connected to a lower portion 251 , of larger diameter, both being substantially cylindrical portions.
- the upper outer region of the upper portion 25 s is provided with a protruding ring 25 c , located near to the upper edge of the spout adapter device 25 , and an external screw thread 27 , the latter comprising a lower flank 27 a and an upper flank 27 b .
- a root 27 c is formed between the lower flank 27 a and the upper flank 27 b .
- a three entries right hand oriented screw thread is shown in the FIGS. 14A, 14B and 14C , merely for exemplification. However, a screw thread with any number of entries could be used.
- the upper flank 27 b of the external screw thread 27 has an upper end 31 that extends beyond the protruding ring 25 c , in order to facilitate the screwing of the external screw thread flanks 5 of the automatic opening device for containers 1 in the root 27 c , as will be seen hereafter.
- the lower flank 27 a has the upper end leveled with the lower portion of the protruding ring 25 c.
- An internal screw thread 29 is provided in the inner region of the upper portion 25 s of the spout adapter device 25 , as can be seen in FIGS. 14B, 14C and 14D .
- This internal screw thread 29 is sized to engage the external screw thread 30 of the spout 26 , as will be seen hereafter.
- an internal screw thread 29 of one entry is depicted in the Figures, although a multiple entry screw thread could be depicted.
- the inner lower region of the lower portion 251 is provided with a plurality of lower locking elements 25 a , each of them located in front of openings 25 b formed in the lower portion 251 , as can be seen in the Figures.
- the lower locking elements 25 a are similar to the lower locking elements 6 b of the locking device 6 , and comprise circularly distributed and spaced apart lugs, the lower portion of each lug being joined to the lower region of the lower portion 251 of the spout adapter device 25 , and the body of each lug being tilted towards the geometric axis of the spout adapter device 25 .
- the lower locking elements 25 a are designed to be able to undergo small radial bends towards the inner wall of the spout adapter device 25 when it is connected to the spout 26 , as will be seen hereafter.
- Other locking means can be used to replace the lower locking elements 25 a , provided that they are able to lock the spout adapter device 25 into the spout 26 .
- the automatic opening device for containers 1 must be applied to the spout adapter device 25 by means of a pressing process, a downward longitudinal movement wherein the lower part of the automatic opening device for containers 1 is pressed against the top of the spout adapter device 25 , thereby causing a strong assembly between them.
- This application will be made in a factory.
- FIG. 15 shows an upper perspective cutting view in which the automatic opening device for containers 1 can be seen in the spout adapter device 25 .
- the lower locking elements 6 b of the locking device 6 should fit into the openings 25 b formed in the lower portion 251 of the spout adapter device 25 , which are in front of the lower locking elements 25 a . Thereby the lower locking elements 6 b and the lower locking elements 25 a will be facing each other, as shown in FIG. 15 .
- FIG. 16 depicts a front view of the spout adapter device 25 showing an alternative embodiment for the lower portion 251 of the spout adapter device 25 , the latter in this embodiment being not provided with openings 25 b .
- the upper region of the lower portion 251 is provided with a ring that protrudes in relation to the lower region of the lower portion 251 , thereby forming a retaining edge 25 r , which will serve to retain the lower locking elements 25 a soon after they move past the retention edge 25 r , as shown in FIG. 16 , and especially in the circles K.
- FIG. 17 depicts an assembly formed by the automatic opening device for containers land the spout adapter device 25 both already assembled each other in a position immediately prior to the beginning of the application of the assembly to the spout 26 .
- This application is made in a factory by means of a rotating applicator, not shown in FIG. 17 , which applies a clockwise rotation to the assembly, as indicated by circle G in the Figure.
- FIG. 18 depicts the assembly formed by the automatic opening device for containers 1 and the spout adapter device 25 duly applied to the spout 26 . Notice that the lower locking elements 25 a of the spout adapter device 25 had already passed over the retaining ring 33 of the spout 26 at the end of the process to apply said assembly to the spout 26 . Consequently, the container 20 will be ready to for sale, to be opened later by a user.
- FIGS. 19A, 19B and 19C depict an exploded front view, in partial cut, an upper perspective view, in partial cut, and a front view, respectively, showing an alternative embodiment of a spout adapter device 35 to be used in conjunction with the automatic opening device for containers 1 .
- the spout adapter device 35 comprises an upper portion 35 s , a medial portion 35 m and a lower portion 35 i.
- a protruding ring 35 c is provided, located on the upper part of the outer portion of the upper portion 35 s .
- An external screw thread 37 is also provided, which is similar to the external screw thread 27 of the spout adapter device 25 of the previous embodiment.
- the external screw thread 37 comprises a lower flank 37 a and an upper flank 37 b , a root 37 c being formed between the flanks 37 a and 37 b .
- a three entry screw thread is shown in the Figures, merely for illustrative effect. It is important to mention that a screw thread with any number of entries can be used, according to the design needs.
- the upper flank 37 b of the external screw thread 37 has an upper end 32 extending beyond the protruding ring 35 c , intended to facilitate the screwing of the external screw thread flanks 5 of the automatic opening device for containers 1 in the roots 37 c , as will be seen hereafter, while the lower flank 37 a has its upper end facing with the lower portion of the protruding ring 35 c.
- a rim 34 is provided in the lower region of the upper portion 35 s of the spout adapter device 35 .
- the medial portion 35 m is shaped like a trunk-cone and its upper portion is connected to the lower region of the rim 34 , while its lower region is connected to the upper region of the lower portion 35 i .
- There is a radial gap in the region that connects the medial portion 35 m to the lower region of the rim 34 the radial gap intended to engage to the lower locking elements 6 b of the automatic opening device for containers 1 when it is applied to the spout adapter device 35 , as will be seen hereafter.
- the medial portion 35 m is provided with a plurality of spaced apart and circumferentially distributed radial openings 35 a .
- a internal screw thread 36 having one entry is provided in the inner portion of the lower portion 35 i of the spout adapter device 35 .
- This internal screw thread 36 is sized to screw to the outer screw thread 30 of the spout 26 , as will be seen hereafter.
- a plurality of lower locking elements 35 b is provided in the lower inner region of the lower portion 35 i , similar to the lower locking elements 25 a of the spout adapter device 25 , the lower locking elements 35 b comprising a plurality of spaced apart lugs distributed circularly, the lower portion of each lug being joined to the lower region of the lower portion 35 i of the spout adapter device 35 , and the body of each lug being tilted towards the geometric axis of the spout adapter device 35 .
- the lower locking elements 35 b are able to bend slightly towards the inner wall of the spout adapter device 35 when it is connected to the spout 26 , as will be seen hereafter.
- the cutting device 3 of such assembly is lengthy than the cutting devices 3 of the variations of the invention described hereinbefore.
- the automatic opening device for containers 1 must be applied to the spout adapter device 35 by means of a pressing process, a downward longitudinal movement in which the lower part of the automatic opening device for containers 1 is pressed against the top of the spout adapter device 35 , which causes a forced assembly between them.
- This application will be made in a factory.
- the lower locking elements 6 b of the locking device 6 will be pressed by the rim 34 of the spout adapter device 35 , and consequently will tend to incline towards the internal wall of the locking device 6 , thereby allowing the automatic opening device for containers 1 to make a downward longitudinal movement.
- FIG. 20 depicts a perspective view in cut wherein the automatic opening device for containers 1 is totally applied to the spout adapter device 35 .
- the lower locking elements 6 b of the locking device 6 should fit into the radial openings 35 a of the medial portion 35 m of the spout adapter device 35 , as shown in FIG. 20 .
- FIG. 21 shows the assembly formed by the automatic opening device for containers 1 already applied to the spout adapter device 35 , in a position immediately before starting the application of said assembly to the spout 26 .
- This application will be made in a factory by means of a rotating applicator, not shown in FIG. 21 .
- Said applicator applies a rotation to the assembly, in this case, a clockwise rotation, as indicated by circle J in the Figure.
- FIG. 22 is an upper perspective cutting view showing the assembly formed by the automatic opening device for containers 1 and the spout adapter device 35 duly applied to the spout 26 .
- the lower locking elements 35 b of the device spout adapter 35 had passed the retaining ring 33 of spout 26 at the end of the process to apply said assembly to the spout 26 . Therefore, the container 20 will be ready for sale and to be subsequently opened by a user.
- the external screw thread 27 of the spout adapter device 25 shown in FIGS. 14A, 14B, 14C and 14D
- the external screw thread 37 of the spout adapter device 35 shown in FIGS. 19A and 19 B, can both be left hand oriented screw threads if an automatic opening device for containers 1 is used in case the internal screw thread 5 is a left hand oriented screw thread.
- FIGS. 23A, 23B, 23C and 24 depict views of a further embodiment of the invention, showing an automatic opening device for containers 41 to be applied to a spout 47 of a container 51 .
- the spout 47 comprises an elongated cylindrical body 48 , a first upper ring 49 and a second lower ring 50 , larger in diameter than the first upper ring 49 .
- a sealing element 19 adheres to the upper rim of the spout 47 .
- the connection between the spout 47 and the automatic opening device for containers 41 is a bayonet connection, as will be seen hereafter.
- the automatic opening device for containers 41 comprises a closing element 41 a , a base element 41 b and a guiding and locking device 46 .
- the closing element 41 a is in the open position, and the connection between the base element 41 b and the closing element 41 a is made by a pivoting connecting element, not shown in the Figure, a connection similar to that used between the closing element 1 a and the base element 1 b previously described in relation to FIGS. 1A, 1B and 1C and 2 .
- the base element 41 b comprises a first sidewall element 54 and an upper member 55 whose edges are joined to the upper edge of the first sidewall element 54 .
- a central protruding ring 39 is provided in the upper central portion of the upper member 55 , which encircles a throughout orifice 39 a .
- An external screw thread 45 is provided in the lower external portion of the first sidewall element 54 of the base element 41 b .
- an external screw thread with three entries is shown, for a exemplification only, as other types of screw threads may be used. It can be seen in the Figures the external screw thread flanks 45 .
- the expressions “external screw thread 45 ” and “external screw thread flanks 45 ” will be used to refer to the same screw thread.
- the closing element 41 a comprises a second sidewall element 56 , in the form of an elongated cylindrical body, and an upper member 57 , circularly shaped, whose edges are joined to the upper edge of the second sidewall element 56 .
- a protruding sealing element 40 is provided in the inner central portion of the upper member 55 of the sealing element 41 a .
- the sealing protruding element 40 is designed to house the protruding ring 39 and to close the throughout orifice 39 a of the base element 41 b when the closing element 41 a and the base element 41 b are closed.
- the guiding and locking device 46 shown in partial cut in FIGS. 23A, 23B, 23C and 24 , comprises an elongated cylindrical body whose upper inner portion is provided with an internal screw thread 44 , in the Figure a three entries screw thread comprising a lower flank 44 a and an upper flank 44 b , with a root 44 c formed between these two flanks.
- the flanks of the internal screw thread 44 of the guiding and locking device 46 are shown in the Figures, which would not appear in a cutting view.
- the upper ends 44 d of the upper flanks 44 b extend above the upper ends of the lower flanks 44 a to facilitate the screwing of the external screw thread flanks 45 in the roots 44 c .
- Reinforcement lugs 46 d are provided on the upper edge of the guiding and locking device 46 , located in the regions where the upper ends 44 d of the upper flanks 44 b are extended, thereby providing support for the upper ends 44 d at the moment when the entries 45 a of the external screw thread flanks 45 touch the upper ends 44 d , as will be seen hereafter.
- a plurality of lower locking elements 46 b are provided in the lower region of the inner portion of the guiding and locking device 46 , which comprise spaced apart lugs distributed circularly, the lower portion of each lug being joined to the lower region of the inner portion of the guiding and locking device 46 , and the body of each lug being pivoted towards the geometric axis of the guiding and locking device 46 .
- a plurality of upper rupture elements 46 a connects the upper region of the guiding and locking device 46 to the lower edge of the base element 41 b , as outlined by circle F in FIG. 23C .
- a plurality of guiding fins 46 c can also be seen in the Figure, provided in the lower inner portion of the guiding and locking device 46 . These guide fins 46 c are optional and serve to facilitate the insertion of the guiding and locking device 46 in the spout 47 , thereby positioning it correctly.
- the screw thread 45 provided on the lower external portion of the first sidewall element 54 of the base element 41 b , and the internal screw thread 44 provided on the upper internal portion of the guiding and locking device 46 comprise a screw thread with three entries.
- a cutting device 43 is provided in the lower central portion of the upper member 55 of the base member 41 b , the cutting device 43 comprising a hollow protruding body whose upper portion is connected to the lower central portion of the upper member 55 in the region where it is located the throughout orifice 39 a , the latter being a continuation of the hollow portion of the cutting device 43 .
- the lower portion of the cutting device 43 is provided with a plurality of cutting elements 43 a.
- the automatic opening device for containers 41 is in a position immediately prior to the beginning of its application to the spout 47 , which is made by pressing the lower portion of the automatic opening device for containers 41 against the upper portion of the spout 47 , an operation performed in a factory by means of an applicator not shown in FIGS. 25A and 25B .
- FIG. 26A is a partial front view showing the automatic opening device for containers 41 duly applied to the spout 47 . Notice that the lower locking elements 46 b of the guiding and locking device 46 had passed the first upper ring 49 at the end of the process of applying the automatic opening device for containers 41 to the spout 47 . Consequently, the container 51 will be ready for sale and to be subsequently opened by a user.
- FIG. 27 is a partial perspective cutting view depicting a variation of the automatic opening device for containers 41 , in which the only difference regarding the automatic opening device for containers 41 depicted in FIGS. 23A, 23B, 23C and 24 is that the lower region of the guiding and locking device 46 is provided with an internal screw thread 52 .
- This variation of the device for the automatic opening device for containers 41 can be used in containers provided with threaded spouts.
- the spout 26 of the container 20 shown in FIG. 27 is provided with a single entry screw thread with right angle orientation.
- screw threads having more than one entry can be provided to the spout 26 , as well as left hand oriented screw threads can be used.
- the internal screw thread 52 of the automatic opening device for containers 41 must be screwed onto the screw thread 30 of the screwed spout 26 by means of a rotating applicator, an operation executed in factory.
- the operation to open the container 20 is to be executed by users in the same manner as described hereinbefore. Users are unlikely to even notice the differences between the modalities of the automatic opening device for containers 41 used in a container, whether the one depicted in FIG. 27 or the one depicted in FIGS. 23A, 23B, 23C and 24 .
- FIGS. 28A and 28B are perspective views depicting alternative embodiments for the guiding and locking device 46 of the automatic opening device for containers 41 .
- the guiding and locking device 46 is not provided with reinforcement wings 46 d (shown in the embodiment of FIGS. 25A and 25B ).
- the upper ends 44 d of the upper flanks 44 b must be designed to withstand the stress to which they will be subjected at the moment of starting the operation to open the container, when they will come in contact with the entries 45 a of the external screw thread flanks 45 .
- the elongated cylindrical body of the guiding and locking device 46 is extended to provide support for the upper ends 44 d of the upper flanks 44 b .
- this alternative shape of the guiding and locking device 46 is more complex to manufacture, it has the advantage of also providing protection for the external screw thread flanks 45 , which become less exposed. This precludes the external screw thread flanks 45 from being damaged in case of possible impacts caused by falls, notably in market shelves, where products are displayed for sale.
- FIG. 29A depicts a front partial cutting view of the automatic opening device for containers 41 in which the lower flank 44 a and the upper flank 44 b of the spout 44 are applied to the upper region of the inner portion of the guiding and locking device 46 , as described previously, however it is possible to invert this configuration.
- FIG. 29B shows a front partial cutting view of the automatic opening device for containers 41 in which an automatic opening device for containers 41 is depicted, the outer portion of the lower region of the base element 41 b of the containers 41 being provided with an external screw thread 144 , which comprises a lower flank 144 a and an upper flank 144 b .
- a root 144 c is formed between these two flanks, wherein the lower ends 144 d of the lower flanks 144 a extend below the lower ends of the upper flanks 144 b .
- An internal screw thread 145 is provided in the upper region of the internal portion of the guiding and locking device 46 .
- FIGS. 29A and 29B for exemplification only, use is made of a three entries screw thread.
- the screw threads 144 and 145 can be of single or multiple entries, and, in this case, the internal screw thread 145 will then comprise a plurality of internal screw thread flanks.
- the reinforcement lugs 46 d on the upper edge of the guiding and locking device 46 will be located in the regions where the ends of the internal screw thread flanks 145 are extended above the upper edge of the guiding and locking device 46 .
- FIG. 29A Another difference regarding the embodiment depicted in FIG. 29A will be notice at the moment of opening the container.
- the lower ends 144 d of the lower flanks 144 a of the external screw thread 144 will touch the upper ends of the internal thread flanks of the screw thread 145 , which, in the continuity of the rotary movement, will cause the screwing of these internal screw thread flanks 145 on the roots 144 c of the external screw thread 144 .
- left hand oriented screw threads were depicted in the Figures of the previously described embodiments of the automatic opening device for containers 41 , left hand oriented screw threads can be used instead, as mentioned regarding the embodiments of the invention described hereinbefore.
- FIGS. 30A and 30B are front cutting views showing an automatic opening device for containers 41 provided with left hand oriented screw threads, similar to those depicted in FIGS. 29A and 29B .
- FIGS. 31A and 31B depict a front partial cutting view and a partial front perspective cutting view depicting an additional embodiment of an automatic opening device for containers 61 according to the teachings of the present invention.
- the automatic opening device for containers 61 comprises a closing element 61 a , a base element 61 b and a locking device 62 .
- the closing element 61 a is in a closed position, engaged to the base element 61 b .
- both are connected to each other by means of a pivoting connection element, not shown in the Figures.
- This type of pivoting connection between base elements and closing elements is well known in the art, variations thereof being known, and can be used interchangeably in conjunction with the present invention. Any other connection means can be used to connect the closing element 61 a to the base element 61 b , and there may even be no connection means between them, and the connection between these two parts could be made by pressure, or by screwing, for example.
- the base element 61 b comprises a first sidewall 72 , in the form of an elongated cylindrical body, and a top element 73 , circularly shaped and whose edges are joined to the upper edge of the first sidewall 72 .
- the closing element 61 a is also similar to the closing elements 1 a and 41 a described hereinbefore and comprises a second sidewall 71 , in the form of an elongated cylindrical body, and an upper element 75 shaped and whose edges are joined to the upper edge of the second sidewall 71 .
- a cutting device 63 is provided in the inner region of the top element 73 , the cutting device 63 comprising a protruding hollow body which projects downwardly, as shown in FIG. 31A , its lower portion being provided with a plurality of cutting elements 63 a . In FIGS. 31A and 31B the cutting device 63 does not appear in cut so as to allow to view it in its entirety.
- the top element 73 is provided in its upper region with a protruding ring 74 , which encircles a throughout orifice 74 a .
- the upper region of the cutting device 63 is connected to the lower portion of the top element 73 , in the region where the throughout orifice 74 a is located, the latter being a continuation of the hollow portion of the cutting device 63 .
- the throughout orifice is not viewed in the Figure, the throughout orifice 74 a being shown in the Figure in dashed lines, to indicate its location in the top element 73 in alignment with the hollow portion of the cutting device 63 .
- a protruding sealing member 76 is provided in the inner portion of the upper member 75 of the closing member 61 a .
- the protruding sealing member 76 is designed to house the protruding ring 74 when the closing element 61 a and the base element 61 b are closed, wherein the protruding sealing member 76 closes the throughout orifice 74 a of the base element 61 b , as shown in FIGS. 31A and 31B .
- the second sidewall 71 of the closing element 61 a and the first sidewall 72 of the base element 61 b of the automatic opening device for containers 61 have substantially equal outside diameters when closed, as shown in FIG. 31A . Therefore, the top element 73 of the base element 61 b must be provided with a recess in the region of its edge at which it connects to the first sidewall 72 , to form an annular ring region 73 a .
- the closing element 61 a when the closing element 61 a is in the closed position, the lower region of the second sidewall 71 will engage to the annular ring region 73 a , as can be seen in FIG. 31A .
- This feature is only intended to facilitate the manipulation of the automatic opening device for containers 61 by users, serving only to facilitate the use of the device.
- the configurations of the closing element 61 a and the base element 61 b can be different from those depicted in the Figures, provided that these different components do not cause difficulties for the operation of the automatic opening device for containers 61 .
- the automatic opening device for containers 61 can even be provided without a closing element 61 a such as the one shown in the Figures, and yet the automatic opening device for containers 61 will operate normally, as will be seen hereafter.
- An internal screw thread 64 is provided in the inner portion of the first sidewall 72 of the base element 61 b .
- the internal screw thread 64 comprises a right hand oriented screw thread of single entry.
- the internal screw thread 64 may comprise a screw thread with any number of entries and, consequently, the invention is not limited to the use of an internal screw thread 64 having a simple entry. Further, the orientation of the internal screw thread 64 may also be to the left.
- the locking device 62 comprises an elongated substantially cylindrical body provided at its upper edge having a plurality of upper rupture elements 62 a connected to the lower edge of the base element 61 b , as can be seen in the Figures.
- a plurality of lower locking elements 62 b is provided in the lower inner portion of the locking device 62 .
- the lower locking elements 62 b comprise spaced apart lugs distributed circularly, the lower portion of each lug being joined to the lower region of the locking device 62 and the body of each lug being inclined towards the geometric axis of the locking device 62 .
- the lower locking elements 62 b can undergo small radial bends towards the inner wall of the locking device 62 .
- Other embodiments of lower locking elements 62 b may be used and, therefore, the invention is not limited to the embodiment depicted in FIGS. 31A and 31B .
- the upper rupture elements 62 a operate basically the same way as the upper rupture elements 6 a and 46 a described hereinafter, as well as the lower locking elements 62 b have basically the same functions as the lower locking elements 6 b and 46 b described hereinafter. Therefore, it is not necessary to make herein a detailed description of these component parts.
- rupture elements may be used on the upper rupture elements 62 a , provided that they are able to cause the same effects obtained by the rupture elements depicted in the Figure.
- the automatic opening device for containers 61 should be screwed onto a spout 65 provided in a container 70 .
- the spout 65 comprises an elongated cylindrical body 66 provided in its outer region with an external screw thread 67 .
- the internal screw thread 64 of the base element 61 b will screw onto the external screw thread 67 of the spout 65 , as will be seen hereafter.
- a retaining ring 68 is provided in the outer region of the elongated cylindrical body 66 , below the outer screw thread 67 , and a lower ring 69 is provided in the lower outer region of the elongated cylindrical body 66 , as can be seen in the Figures.
- the spout 65 is provided in its rim with a sealing element 77 , as shown in FIG. 31B .
- the automatic opening device for containers 61 is in a position immediately prior to starting its application to the spout 65 .
- the application starts by inserting the lower portion of the automatic opening device for containers 61 against the upper portion of the spout 65 , by making a linear downward movement as indicated by the arrow N in FIG. 31B .
- This operation will cease when the automatic opening device for containers 61 is in a position where a rotational movement can be initiated, to cause the internal screw thread 64 of the base element 61 b to screw in the external screw thread 67 of the spout 65 .
- This operation is executed in a factory, using an applicator not shown in FIGS. 31A and 32B .
- FIG. 31C depicts the automatic opening device for containers 61 partially screwed onto the spout 65 , after the rotational screwing movement has started, as indicated by circle B. More particularly, the Figure depicts the moment of starting the rotational screwing movement, when the lower locking elements 62 b touches the edge of the retaining ring 68 . Consequently, the lower locking elements 62 b incline towards the internal region of the locking device 62 .
- said rotational screwing movement is applied to the automatic opening device for containers 61 , it also undergoes a concomitant downward linear movement, as indicated by the arrow N in FIG. 31C .
- a particular feature of this embodiment of the invention is that is partial the screwing of the internal screw thread 64 of the base element 61 b of the automatic opening device for containers 61 on the external screw thread 67 of the spout 65 , as depicted in FIG. 31D .
- the use of the lower locking elements 62 b is optional, although recommended, as it prevents inadvertent unscrewing of the automatic opening device for containers 61 , as described hereinbefore. However, the automatic opening device for containers 61 would operate normally if it were not provided with the lower locking elements 62 b.
- This partial screwing is fundamental to facilitate the opening of the container 70 by a user, who will only need to rotate the automatic opening device for containers 61 in a clockwise direction, thereby causing the tearing of the upper rupture elements 62 a . Consequently, the screwing of the internal screw thread 64 of the base element 1 b of the automatic opening device for containers 61 on the external screw thread 67 of the spout 65 will go on.
- Some aspects are relevant for designing the automatic opening device for containers 61 , to enable it to operate correctly to open container 70 .
- One of these relevant aspects is to design the lower locking elements 62 b in such a way that, after they had move past the edge of the locking ring 68 , they must resist any attempts to unscrew the automatic opening device for containers 61 .
- An aspect of fundamental importance for the correct operation of the automatic opening device for containers 61 to open container 70 is the correct sizing of some components of the automatic opening device for containers 61 object of this embodiment of the invention, particularly the base element 61 b and the locking device 62 , as will be seen hereafter.
- the spout 65 has a linear extension L 1 between its rim and the edge of the retaining ring 68 , and a linear extension C 1 between said edge of the retaining ring 68 and the portion of the upper region of the lower ring 69 where the edge bottom of the locking device 62 will touch, at the end of the assembly of the automatic opening device for containers 61 on the container 70 , as shown in FIG. 31D .
- the base element 61 b has a linear extension L 2 between the lower part of the ring-shaped engagement region 74 a and its lower edge, and a linear extension C 2 between that lower edge of the base element 61 b and an imaginary plane that contains the upper region of the lower locking elements 62 b.
- the linear extension L 3 represents the displacement of the linear extension of the spout 65 between its edge and the edge of the retaining ring 68 inside the automatic opening device for containers 61 , after the device is in the final position of its application to the spout 65 .
- the linear extension C 3 represents the spacing between the edge of the spout 65 and the bottom of the ring-shaped engagement region 73 a of the upper member 73 .
- FIGS. 32A and 32B are upper perspective views showing an automatic opening device for containers 41 whose base element 41 b is provided with a pouring device 53 .
- the closing element 41 a is in the open position
- in FIG. 32B is in the closed position, in a partial cut.
- the pouring device 53 comprises an integrally hollow body formed by a first curved portion 53 a and a second portion 53 b.
- the first curved portion 53 a has one end connected to the hollow body of the cutting device 43 (not shown in the Figures), and its other end is connected to one end of the second horizontal portion 53 b , the latter extending over the face of the base element 41 b towards the edge, as shown in FIG. 32A .
- the other end of the second horizontal portion 53 b is beveled and forms a rim 53 c , which defines a throughout orifice 53 d.
- the closing element 41 a is provided with a sealing element 54 , which is designed to rest on the rim 53 c of the second horizontal portion 53 b when the closing element 41 a is in the closed position, as can be seen in FIG. 32B . Consequently, the sealing element 54 blocks the undesirable passage of product through the throughout orifice 53 d if, for example, the container is placed in an inclined position with the closing element 41 a in the closed position, or even in an inverted position, supported on the upper face of the closing element 41 a.
- the sealing element 54 prevents the possibility for the product to flow through the throughout orifice 53 d and accumulate inside the empty space formed between the closing element 41 a and the base element 41 b . In case the sealing element 54 were not provided, when a user would open the closing element 41 a , an undesirable product spill would occur.
- This embodiment of the pouring device 53 enables a user to pour the product stored in the container without having to place the container upside-down, in a position where the throughout orifice is substantially downwards, which can cause the product to overflow, in special thixotropic products.
- the pouring device 53 may be used in conjunction with any of the embodiments and variations of the invention described hereinbefore. Therefore, mutatis mutandis, the automatic opening device for containers 1 shown in FIGS. 1A to 12 and FIGS. 14A to 22 may also be provided with a pouring device 53 .
- the automatic opening device for containers is provided with a closing element and a base element, joined by a pivoting connecting element.
- the closing element can be attached to the base element by means of a screw thread, or by means of a pressure coupling, as previously mentioned.
- the embodiments of the automatic opening device for containers disclosed hereinbefore be provided with only the base elements 1 b , 41 b or 61 b .
- the throughout orifice for the administration of the product would be permanently open, without a seal.
- the upper member 10 of the base element 1 b may be provided with a protruding plugging element 58 formed by an elongated hollow body whose upper portion is closed, and the bottom portion is open and firmly connected to the base element 1 b , with the hollow portion of the protruding plugging element 58 being aligned and in communication with the throughout orifice 2 a and, consequently, with the hollow portion of the cutting device 3 .
- a cutting element such as a knife
- a transverse cut across section the body of the protruding plugging element 58 to provide a throughout orifice, in order to allow the product stored in the container to pass through hollow portion of the protruding plugging element 58 .
- a cap 59 can be provided to close this throughout orifice in the hollow portion of the protruding plugging element 58 , in order to prevent that passage from being permanently open.
- the cap 59 is connected to the base element 1 b by means of a flexible connecting element 60 , to prevent the cap 59 from being inadvertently discarded by the user.
- this solution could also be used in the embodiments depicted in FIGS. 23A to 31B .
- the cap 59 and the closing element 1 a , or the closing element 41 a execute the same function of sealing the passage of the product stored in the container through the throughout orifices 2 a or 39 a , respectively.
- the only difference is that the cap 59 is sized to engage the body of the protruding plugging element 58 , thereby resulting in a smaller component and saving material.
- FIGS. 34A and 34B depict perspective views showing an exemplary rotational locking system that can be used in conjunction with any of the automatic opening devices for containers described hereinbefore.
- said rotational locking system is described in conjunction with the embodiment of the automatic opening device for containers 41 shown in FIGS. 23A, 23B, 23C and 24 . It is important to mention that, mutatis mutandis, this rotational locking system can also be used in the automatic opening devices for containers 1 and 61 described hereinbefore.
- FIGS. 34A and 34B depict an external screw thread flank 45 being screwed onto the internal screw thread 44 .
- Each of the external screw thread flanks 45 is provided with a locking recess 45 b to preclude rotational movements, which is designed to latch into a locking protrusion 44 e provided in one of the flanks of the screw thread 44 , thereby preventing rotational movements.
- each rotational locking recess 45 b and each rotational locking shoulder 44 e must be determined in such a way that the latch between them occurs at the same time as the inner portion of the upper member 55 of the base member 41 b touches the edge of the spout 47 . Therefore, when a user opens the container, by means of a clockwise rotation of the assembly formed by the closing element 41 a and the base element 41 b , at the moment when the rotational locking recesses 45 b latches into the locking shoulder 44 of the screw thread 44 , the user will hear a snap. From that moment on no rotation will occur, in any direction, as the whole assembly is locked in that position.
- the rotational locking system depicted in FIGS. 34A and 34B prevents the assembly formed by the closing element 41 a and the base element 41 b from rotating to unscrew the screw thread 44 in an anti-clockwise direction. It therefore serves as a tamper resistant means that precludes removal of that assembly formed by the closing element 41 a and the base element 41 b , thereby preventing the container from being refilled after the product originally stored in the container has been fully poured.
- a container is provided with an automatic opening device for containers according to the invention in which there is no connecting element to hold the closing element 1 a or 41 a , or the cap 59 , connected to the base element 1 b , or 41 b , it is recommended that an tamper evidence device is used to cover the automatic opening device for containers, thereby preventing the closing elements 1 a , 41 a , 61 a or the cap 59 from being improperly removed when the container is in market shelves.
- FIG. 35 shows an automatic opening device for containers 81 according to a further embodiment of the invention.
- the automatic opening device for containers 81 comprises a closing element 81 a , a base element 81 b and a locking device 6 .
- the automatic opening device for containers 81 is quite similar to the automatic opening device for containers 1 shown in FIGS. 1A, 1B and 1C .
- the closing element 81 a when is in the closed position, engage with the base element 81 b , and both are connected to each other by means of a pivoting connection element 86 , as shown in FIG. 35 .
- a pivoting connection element 86 there are variations of this type of pivoting connection, which can be used interchangeably in conjunction with the present invention.
- any other type of connection means can be used to connect the closing element 81 a to the base element 81 b , and there may even be no connection means between them, in which case the connection between these two parts could be made by pressure or screwing, for example.
- the base element 81 b comprises a first sidewall 78 , in the form of an elongated cylindrical body, and a circularly shaped top element 79 whose edges are joined to the upper edge of the first sidewall 78 .
- the upper region of the top element 79 is provided with a protruding element 84 , located in a region close to the edge of the top element 79 , preferably located 180° from the region where the connecting pivoting element 86 connects the base element 81 b with the closing element 81 a , although other locations can be chosen.
- the protruding element 84 encircles a throughout orifice 83 .
- the closing element 81 a comprises a second sidewall 80 in the form of an elongated cylindrical body and an upper element 82 , circular in shape and whose edges are joined to the upper edge of the second sidewall 80 .
- a protruding sealing element 85 is provided in the lower region of the upper element 82 , intended to close the throughout orifice 83 of the base element 81 b when the closing element 81 a and the base element 81 b are closed.
- the protruding sealing element 85 can be designed to encircle the protruding element 84 , or, alternatively, engage with the throughout orifice 83 to create a sealing.
- the location of the protruding sealing element 85 in the lower region of the upper element 82 will be a function of the location of the protruding element 84 , and in the present case it will be located in a region close to the edge of the upper portion of the upper element 82 , preferably located at 180° from the region in which the connecting pivoting element 86 connects the base element 81 b to the closing element 81 a , although other locations can be chosen.
- the automatic opening device for containers 81 is designed so that the second sidewall 80 of the closing element 81 a and the first sidewall 78 of the base element 81 b have substantially equal outside diameters when closed.
- the top element 79 of the base element 81 b must be provided with a recess in the region of its edge where it connects to the first sidewall 78 , to form a ring-shaped engagement region 79 a .
- the closing element 81 a is in the closed position, the lower region of the second sidewall 80 will engage into said ring-shaped engagement region.
- This feature intends to facilitate the manipulation of the automatic opening device for containers 81 by users. It is possible to use different configurations of the closing element 81 a and the base element 81 b than those depicted in the Figures, without, however, changing the functionality of these components for the operation of the automatic opening device for containers 81 .
- the automatic opening device for containers 81 may even be provided without a closing element 81 a as shown in FIG. 35 , and yet the automatic opening device for containers 81 will operate normally, according to the teachings of the invention.
- an internal screw thread 87 is provided in the inner portion of the first sidewall 78 of the base element 81 b .
- the configuration of the internal screw thread 87 may comprise, for example, a right-oriented screw thread with three entries, although the internal screw thread 87 may comprise a screw thread with any number of entries.
- this embodiment of the invention is not limited to the use of an internal screw thread with three entries, and such screw thread was only chosen for exemplification only, although the use of a screw thread with multiple entries is more suitable for the purposes of the invention.
- the internal screw thread 87 may be indistinctly oriented to the right, as shown in the Figures, or to the left.
- the inner portion of the top element 79 is provided with a cutting device 88 , which comprises a hollow protruding body whose upper portion is connected to the lower portion of the top element 79 in the region where the throughout orifice 83 is located.
- the latter is a continuation of the hollow portion of the cutting device 88 , thereby forming a direct connection substantially between the throughout orifice 83 and the hollow portion of the cutting device 88 , through which the product contained in the container will pass.
- the lower portion of the cutting device 88 is provided with a plurality of cutting elements 88 a.
- the locking device 6 shown in FIGS. 35, 36 and 37 is identical to the locking device that has been described in relation to the embodiment of the invention shown in FIGS. 1A, 1B, 1C and 2 , and comprises an elongated substantially cylindrical body provided in its upper edge of a plurality of upper rupture elements 6 a which are connected to the lower edge of the base element 1 b , as can be seen in more detail in FIG. 1C .
- a plurality of lower locking elements 6 b is provided in the lower internal portion of the locking device 6 .
- the lower locking elements 6 b comprise spaced apart lugs circularly distributed, the lower portion of each lug being joined to the lower region of the locking device 6 and the body of each lug being inclined towards the geometric axis of the locking device 6 .
- the lower locking elements 6 b are designed so that they can slightly incline radially towards the inner wall of the locking device 6 .
- FIGS. 36 and 37 Other configurations of lower locking elements 6 b can be used and, therefore, the invention is not limited to the configuration depicted in FIGS. 36 and 37 .
- the function of the upper rupture elements 6 a and the lower locking elements 6 b will be understood hereafter, in the description of the operation to apply the automatic opening device for containers 81 to a spout.
- the container 20 shown in FIGS. 36 and 37 is the same shown in FIG. 3 , which is provided with a spout 12 which comprises an elongated cylindrical body provided with an external screw thread 14 , in the Figure a three-entry, right-oriented screw thread, which comprises a lower flank 14 a and an upper flank 14 b , with a root 15 formed between these two flanks.
- the characteristics of the external screw thread 14 have been described hereinbefore, and for this reason, it will not be repeated here.
- an external right-oriented screw thread with three entries, is because this is the configuration used in the internal screw thread 5 of the base element 81 b .
- the same comments presented hereinbefore with this regard are valid here, in that the use of a right-oriented thread with three entries is for exemplification only. Therefore, is evidently that the invention is not limited to use only a three-entries screw thread, be it right or left hand oriented. Therefore, the external screw thread 14 may be a screw thread with any number of entries, and its orientation can be indistinctly to the right, as shown in FIGS. 36 and 37 , or to the left, as long as it is compatible with the screw thread used in the internal screw thread 87 .
- a sealing element 19 is affixed to the rim of the spout 12 .
- the spout 12 is also provided in its outer portion with an upper ring 16 , an intermediate ring 18 and a lower ring 17 , located in the upper, intermediate and lower regions, respectively.
- the diameter of the upper ring 16 is smaller than the diameter of the intermediate ring 18
- the diameter of the intermediate ring 18 is smaller than the diameter of the lower ring 17 , as can be seen in FIGS. 36 and 37 .
- the application of the automatic opening device for containers 81 to the spout 12 is made by means of a pressing process, a downward longitudinal movement, by means of which the lower part of the automatic opening device for containers 81 is pressed against the upper part of the spout 12 .
- FIG. 36 depicts the automatic opening device for containers 81 in the position it remains after being applied to the spout 12 of the container 20 , an operation executed in factory. In that position, container 20 is ready for sale.
- container 20 is ready for sale.
- a user needs to open the container 20 , to pour the product contained therein, suffices to rotate the automatic opening device for containers 81 in order to make the cutting elements 88 a of the cutting device 88 tear the sealing element 19 , thereby releasing the passage of the product through the hollow portion of the cutting device 88 and through the throughout orifice 83 .
- FIG. 37 the automatic opening device for containers 81 is depicted in a position after a user has made a rotation that has made the cutting elements 88 a of the cutting device 88 cut the sealing element 19 , thereby enabling the product to pass through the hollow portion of the cutter 88 and through the throughout orifice 83 .
- FIG. 38 depicts a top perspective view of a variation of the throughout orifice of the fourth embodiment of the automatic opening device for containers depicted in FIGS. 35, 36 and 37 .
- the protruding element 84 depicted in the Figure is has an annular shape, which encircles a circular throughout orifice 83 . All the remaining components of the automatic opening device for containers 81 shown in FIG. 38 are identical to those described in relation to FIGS. 35, 36 and 37 , and for that reason, the description of these components will not be repeated here.
- FIGS. 35 to 38 can also be used in any of the embodiments and variations of the invention disclosed in this specification, that is, the provision of a protruding element 84 that encircles a throughout orifice 83 , both provided in a region close to the edge of the upper portion of the top element 79 of the base element 81 b , with a cutting device 88 duly positioned in the region where the throughout orifice 83 is located.
- the necessary adaptations must be made so that it can be done.
- FIGS. 39 to 45 depict a further embodiment of the present invention, which is similar to the embodiment of FIGS. 10 and 11 .
- the differences between the embodiment of FIGS. 39 to 45 and the embodiment of FIGS. 10 and 11 is the use of a cap comprising an upper sealing element and a base element and the manner these components are locked to form the automatic opening device for containers object of the present embodiment.
- the upper sealing element 141 a comprises a disk-shaped body and substantially flat whose lower region is provided with a sealing projection 141 a ′ having the shape of a trunk of a cylinder, the upper edge of the sealing projection 141 a ′ being rigidly affixed to the lower region of the upper sealing element 141 a , as can be seen in the Figures.
- the base element 141 b comprises a hollow cylindrical body whose internal region is provided with at least one segment of internal screw thread 5 , in FIGS. 39 to 45 three segment of internal screw threads 5 being shown as a not limiting example. Each segment of internal screw thread 5 is designed to engage on a respective segment of external screw thread 14 of the spout 12 .
- the number of segment of internal screw threads 5 used in the base element 141 b must be the same number of segment of external screw threads 14 of the spout 12 .
- the base element 141 b is also provided with a cutting device 143 , which comprises a hollow cylindrical body whose upper edge is affixed to the upper inner region of the base element 141 b by means of a connecting ring 145 .
- the lower region of the device cutting element 143 is provided with at least one cutting element 143 a.
- the edge of the lower inner region of the base element 141 b is provided with a plurality of upper locking elements 141 b ′, each of them comprising in this embodiment a body projecting obliquely and upwardly towards the imaginary geometric axis of the element base 141 b .
- the upper locking elements 141 b ′ are designed to be able to slightly incline in opposition to the geometric axis of the base element 141 b .
- a connecting link element 144 connects the upper sealing element 141 a to the base element 141 b.
- the locking device 6 comprises a hollow body in a substantially cylindrical shape, whose top edge is provided with a plurality of rupture elements 6 a , which are also connected to the bottom edge of the base element 141 b , thereby forming a breakable interconnection between the locking device lock 6 and the base element 141 b .
- the function of the rupture elements 6 a will be understood from the description that will be made hereinafter regarding the mode to use the automatic opening device for containers 140 .
- the edge of the lower internal region of the locking device 6 is provided with a plurality of lower locking elements 6 b , each of them comprising in the present embodiment a body projecting obliquely and upwardly towards the imaginary geometric axis of the locking device 6 .
- the lower locking elements 6 b are designed in such a way as to be able to slightly incline in opposition to the geometric axis of the locking device 6 .
- FIGS. 39 and 40 depict the assembly formed by the upper sealing element 141 a , the base element 141 b and the locking device 6 before the assembly is inserted into the spout 12 .
- FIGS. 41 and 42 depict the assembly formed by the upper sealing element 141 a , the base element 141 b and the locking device 6 after the assembly is inserted into the spout 12 .
- the lower locking elements 6 a of the locking device 6 have already move past the upper ring 16 .
- the lower locking elements 6 b touches the upper edge of the lower ring 17 they incline in opposition to the geometric axis of the locking device 6 , thereby allowing the lower locking elements 6 b to move past the lower ring 17 .
- the assembly formed by the upper sealing element 141 a , the base element 141 b and the locking device 6 is locked in the position depicted in FIGS. 41 and 42 , and can no longer be removed by means of upward longitudinal movements. That is the mounting position in that the assembly formed by the upper sealing element 141 a , the base element 141 b and the locking device 6 and the spout 12 must remain to form the automatic opening device for containers 140 so that the latter can be applied to a container, an operation performed at a factory using a tool specially dedicated for this purpose. After being duly assembled, an automatic opening device for containers 140 should be applied, for example, to an aseptic carton package or to a plastic pouch.
- each segment of internal screw thread 5 of the base element 141 b can screw in its respective segment of external screw thread 14 , because when each segment of internal screw thread 5 touches the upper portion 21 of the respective upper flank, the only possibility for the continuation of the rotary movement in the counterclockwise direction will be the screwing of each segment of internal screw thread 5 in the respective segment of external screw thread 14 .
- the cutting device 143 As the cutting device 143 is rigidly attached to the base element 141 b , evidently the cutting device 143 will execute the same movements made by the base element 141 b . Therefore, with the continuation of the counterclockwise rotary movement of the assembly formed by the upper sealing element 141 a and the base element 141 b , the cutting device 143 will execute the same counterclockwise rotary movement executed by the assembly formed by the upper sealing element 141 a and the base element 141 b.
- the assembly formed by the upper sealing element 141 a and the base element 141 b will also make an axial downward movement, resulting from the screwing of the segment of internal screw threads 5 of the base element 141 b in their respective segment of external screw threads 14 of the spout 12 , as indicated by the arrow W in FIG. 41 . Consequently, the a cutting device 143 will perform the same downward axial movement indicated by the arrow W in FIG. 41 .
- the composition of the counterclockwise and downward axial rotational movements made by the cutting device 143 will cause the cutting elements 143 a of the cutting device 143 to cut the sealing element 19 of the container, adhered to the rim of the spout 12 .
- FIG. 43 the cutting device 143 is depicted in the final position, after the assembly formed by the upper sealing element 141 a and the base element 141 b has reached the lowest position in the previously described screwing operation, when the upper edge of the spout 12 touches the lower region of the connection ring 145 , as can be seen in more detail in FIG. 43 .
- the upper locking elements 141 b ′ moved past the intermediate ring 18 of the spout 12 .
- the upper locking elements 141 b ′ touched the upper edge of the intermediate ring 18 they inclined in opposition to the geometric axis of the base element 141 b , which allowed the upper locking elements 141 b ′ to move past the intermediate ring 18
- FIG. 43 Detail X in FIG. 43 shown the upper locking elements 141 b ′ having already moved past the intermediate ring 18 . Consequently, the assembly formed by the upper sealing element 141 a and the base element 141 b was locked in that position shown in FIG. 43 , and can no longer be released.
- the use of the upper locking elements 141 b ′ is optional, and is only intended to prevent the removal of the assembly formed by the upper sealing element 141 a , the base element 141 b .
- said locking of the assembly formed by the upper sealing element 141 a and the base element 141 b can be achieved between the segment of internal screw threads 5 and the segment of external screw threads 14 , at the end of their screwing.
- FIGS. 44 and 45 depict in cut the automatic opening device for containers 140 with the upper sealing element 141 a shown in the open and closed positions, respectively.
- segment of internal screw threads 5 of the base element 141 b and the segment of external screw thread 14 of the spout 12 comprise a left-oriented screw thread.
- the choice of this type of orientation is due to the fact that users are accustomed to manipulating threaded caps and spouts provided with right hand oriented screw threads, wherein unscrewing is made by counterclockwise rotating movements to cause upward axial movements.
- the assembly formed by the upper sealing element 141 a and the base element 141 b make first an axial downward movement to cause the sealing element to be torn, when a user is opening the container, it is then preferably to use a left hand oriented screw thread, wherein counterclockwise rotary movements cause axial downward movements.
- the use of right-hand oriented screw threads certainly would cause difficulties for most users to rotate said assembly correctly.
- segment of internal screw threads 5 of the base element 141 b and the segment of external screw thread 14 of the spout 12 may comprise a right-hand oriented screw thread.
- users would have to be instructed to initially rotate the assembly formed by the upper sealing element 141 a and the base element 141 b in a clockwise direction to cause a downward axial movement said assembly in order to tear the sealing element 19 .
- the fundamental characteristic of all of them is the provision of a cutting device that, in addition to serving as a cap for the container, is provided with a means for executing a cutting operation of the sealing elements which are usually affixed to the rims of the spouts of the containers, thereby creating a passage to enable the product contained in the container to be poured.
- the shapes of the cutting elements used in the cutting devices of the invention must be determined according to the cutting speed provided by the type of screw thread used in the automatic opening device for containers and the characteristics of the material used in the sealing element.
- Tamper resistant devices may be used in conjunction with the various embodiments and variations of the invention described herein, in order to guarantee the user that the container has not been tampered with.
- thermal wrappers around the spout and devices can be used, which are provided with tear lines that facilitate their removal, as is well known in the art.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Closures For Containers (AREA)
Abstract
The present invention refers to an automatic opening device for a container provided with a spout having a rim with a sealing element firmly attached thereto, said automatic opening device for a container being provided with means that obviate the need to unscrew the cap of the container and next remove the sealing element from the rim of the spout in order to enable pouring of the product stored in the container.
Description
- The present invention relates to an automatic opening device for containers that has a spout provided with a sealing element firmly attached to its rim, said automatic opening device for containers being provided with means that eliminates the need to remove the cap of the container and performs multiple operations to remove the sealing element from the edge of the spout to release the ministering of the stored product.
- It is well known the use of sealing elements in containers designed to store products such as condiments for food, soups, liquid or paste products, medicines, cosmetics and other products. Normally the sealing element is firmly attached to the rim of the opening through which the product can be removed from the container, for example at the rim of a pouring spout.
- Usually, a closing element is provided in the pouring spout, usually a cap, which is often provided with an internal screw thread which engages to an external screw thread provided in the pouring spout. The cap will only operate to seal the container after a user removes the sealing element from the rim of the spout.
- Several types of sealing elements are known to adhere to the rim of the spouts of these containers, the characteristics of which vary according to the type of product contained in the container. Usually the sealing elements comprise a multilayer material, which can comprise plastic materials, paper, aluminum films, etc. U.S. Pat. Nos. 6,277,478, 6,461,714, 7,648,764 and 8,080,118 disclose some types of sealing elements.
- There are several reasons to seal the container by means of sealing elements applied to the rim of the spout, for example, the need to provide barriers against light, odors, scents, humidity, oxygen, etc., which can jeopardise the quality and the integrity of the product stored in the container. For this reason, the sealing elements can usually be made in layers of different materials, each of them meeting specific needs.
- The sealing elements can also serve to extend the shelf life of the products stored in the containers, since the sale to the final user can take place long after the date of manufacture, in some cases in periods longer than one year after manufacture.
- The sealing elements also serve as an indication to the user that the contents of the container have not been tampered with. If the sealing element shows any sign of tampering when opening the cap, it will signal to the user that the container has been tampered with and the product may have suffered some type of contamination and therefore should not be used.
- For this reason, containers caps with spouts with sealing elements in the rim are often not provided with tamper evidence devices, since the sealing element itself serves this purpose. In this case, when purchasing the product, users have just to remove the caps from the containers to check if the sealing element is intact.
- In such situations, users may inadvertently damage the sealing element, which would make the product contained in the container unsuitable for sale. To avoid this possibility, it is common for the sealing elements to be manufactured with layers of thicker materials than would be necessary to serve as a barrier element, aiming to increase its resistance. However, this greatly increases manufacturing costs.
- Whatever is the reason for providing thicker sealing elements, this option usually creates difficulties for users, causing them difficulties to remove the sealing element when it is necessary to open the container for the first time to pour product contained therein.
- If the product is a condiment or a cream, for example, it is common for the cap to be provided with a pouring spout that makes it possible to pour the product without the need to disengage the cap from the spout. In these cases, after removing the sealing element, the cap must be re-engaged to the spout, to close the container and allow the product to be served normally through the pouring spout.
- When it is necessary to remove the product stored in the container for the first time, it will be necessary to unscrew the cap from the spout and remove the sealing element attached to the rim of the spout. Then, the cap must be screwed back on to the spout to keep the container closed, in case all the product stored in the container has not been used.
- In some cases, the sealing elements are provided with at least one side lug that extends downwards the rim of the spout, facing the outer portion of the spout. This side lug aims to facilitate the task of removing the sealing element, and for this aim the user must handle the side lug and make an upward movement. However, even with the provision of these side lugs, the task of removing the sealing element is still difficult, and frequently users are unable to release the sealing element because it is firmly adhered to the rim of the spout.
- It is common that the sealing element tears during the attempt to release it from the rim of the spout, being them partially removed, thereby causing users to try to find a means to remove the rest of the sealing element still attached to the rim of the spout. This operation is not always easy to be performed, being even very difficult for users to handle the remaining parts of the sealing element still adhered to the rim of the spout, in order to remove them. Users often use a sharp instrument, such as the tip of a knife or scissors, to assist removal of said remaining parts of the sealing element, which can cause accidents as well as creating the possibility of product contamination.
- It is not uncommon that users instead of trying to remove the sealing element as a whole, choose to simply cut it, usually with a sharp instrument, such as the tip of a knife or scissors. As one of the layers of the sealing element comprises a resilient plastic material, usually this may cause some resistance for users to be able to puncture the sealing element.
- The difficulty to release the sealing element may be even greater if it is quite thick, notably in containers in that the cap is not provided with a tamper evidence element, wherein the sealing element also serves to hinder tampering with the container, as previously mentioned.
- In the situations mentioned above, in which users use some sharp instrument to assist in the removal of the sealing element, accidents may occur and cause injury to users, which is unfortunately not uncommon.
- As can be seen from the foregoing, the need to provide a sealing element at the rim of the container spout, for the preservation of the product, usually causes difficulties for users. Besides being necessary the users perform a sequence of operations to open the container (unscrew the cap of the spout, remove the sealing element from the rim of the spout and then screw the cap back on the spout), the operation of releasing the sealing element from the rim of the spout can even cause accidents.
- It is known the use of caps for container which also serve as sealing element for the containers. These caps are usually provided with a protruding element at the top, usually in the form of a cone trunk, which will later be used for pouring the product stored in the container.
- Said protruding element has its upper end closed, and therefore it will be necessary for users to use a cutting instrument, a knife, for example, to cut the upper portion of the protruding element, thereby opening a pouring orifice for the product into the container. It is then highly possible that accidents occur during this operation, especially if performed by children or older people.
- These caps can be provided in one piece or in two pieces joined by a pivoting element, one of the pieces being the part that is applied to the spout and the other serves as a closing element.
- In view of the problems previously reported, it becomes evident the need to provide sealed containers in which it is possible for users to easily perform the operation of opening the container without causing accidents.
- The present invention provides an automatic opening device for containers provided with sealing elements fixed to the rim of the pouring spout, thereby allowing the operation for tearing the sealing element to be made in a single operation, whereby eliminating the need for the user to perform multiple tasks in order to tear the sealing element to open the containers.
- Furthermore, the present invention allows the sealing elements to be manufactured without the need to be thicker than necessary, thereby serving only as a barrier element. Consequently, it eliminates the need for the sealing elements to be more resistant to avoid accidental ruptures, as currently observed. These and other advantages will be immediately realised from the detailed description of the invention that will be made hereafter.
- The invention will be better understood from the detailed description made hereafter with respect to the attached drawings, in which:
-
FIGS. 1A, 1B and 1C respectively depict an upper perspective view, an upper perspective view in partial cut and a lower perspective view, in partial cut, of a first embodiment of the automatic opening device for containers according to the present invention; -
FIG. 2 depicts an upper perspective view of the automatic opening device for containers shown inFIGS. 1A, 1B, 1C , in a situation where the closing element of the device is in the open position; -
FIG. 3 depicts an upper perspective view of a threaded spout provided in a container, with a sealing element being provided at the rim of the spout; -
FIGS. 4A, 4B, 4C and 4D depict frontal views of the automatic opening device for containers depicted inFIGS. 1A, 1B, 1C and 2 , in partial cut, showing a sequence for the application of the device in the spout depicted inFIG. 3 ; -
FIG. 5 depicts a front cutting view of a Detail X shown inFIG. 4D ; -
FIGS. 6A, 6B, 6C and 6D depict upper perspective views of the automatic opening device for containers depicted inFIGS. 1A, 1B, 1C and 2 , in partial cut, showing a sequence of operations for opening the container using the device for cutting the sealing element provided at the rim of the spout shown inFIG. 3 ; -
FIG. 7 depicts a front cutting view of the Detail Y depicted inFIG. 6D ; -
FIGS. 8A and 8B depict front views of a first variation of the automatic opening device for containers shown inFIGS. 1A, 1B, 1C and 2 ; -
FIGS. 9A, 9B, 9C and 9D depict front views of a second variation of the automatic opening device for containers shown inFIGS. 1A, 1B, 1C and 2 ; -
FIGS. 10 and 11 depict, respectively, a front view of a third variation of the automatic opening device for containers shown inFIGS. 1A, 1B, 1C and 2 , and an upper perspective view for a spout to which this variation of the automatic opening device for containers must be applied; -
FIGS. 12A, 12B and 12C depict front views in partial cut of a fourth variation of the automatic opening device for containers shown inFIGS. 1A, 1B, 1C and 2 ; -
FIGS. 13A and 13B depicts respectively, an upper perspective view, and an upper cutting view of a fifth variation of the automatic opening device for containers; -
FIGS. 14A, 14B, 14C and 14D depict, respectively, an exploded front view, an exploded upper perspective view in partial cut, a lower perspective view and an upper perspective view, showing a spout adapter device intended to serve as an interface for the application of an automatic opening device for containers in a spout of a container provided with an external screw thread different from the internal screw thread of the automatic opening device for containers; -
FIG. 15 depicts an upper perspective view, in cut, in which the assembly of the automatic opening device for containers in the spout adapter device depicted inFIGS. 14A, 14B, 14C and 14D can be seen; -
FIG. 16 depicts a front view of a variation of the spout adapter device ofFIGS. 14A, 14B, 14C and 14D ; -
FIGS. 17 and 18 depict top perspective views, in cut, showing the assembly formed by the automatic opening device for containers applied to the spout adapter device before and after being applied to a container, respectively; -
FIGS. 19A, 19B and 19C depict, respectively, an exploded front view, in partial cut, and an upper perspective view, in partial cut, and a front view, in which an alternative embodiment of the spout adapter device is shown; -
FIG. 20 shows an upper cutting perspective view of the spout adapter device ofFIGS. 19A and 19B applied to the automatic opening device for containers; -
FIGS. 21 and 22 show upper perspective views, in cut, of the assembly depicted inFIG. 20 , before and after the assembly is applied to a spout, respectively; -
FIGS. 23A, 23B and 23C depict, respectively, a perspective view, a partial cutting perspective view and a lower perspective view, in partial cut, of a further embodiment of the invention according to the teachings of the present invention, showing an automatic opening device for containers to be applied to the spout of a container by means of a bayonet type connection; -
FIG. 24 shows an upper perspective view of the automatic opening device for containers ofFIGS. 23A, 23B and 23C , in which the closing element is open; -
FIGS. 25A and 25B depict a front view and a partial cutting front view showing the automatic opening device for containers ofFIGS. 23A, 23B and 23C in a position immediately prior to the beginning of its application to a spout; -
FIG. 26A depicts a front view of the automatic opening device for containers ofFIGS. 23A, 23B and 23C applied to the spout of a container, andFIG. 26B depicts a front view of the automatic opening device for containers after a user has started the operation for opening the container; -
FIG. 27 depicts an exploded perspective view of a variation of the automatic opening device for containers ofFIGS. 23A, 23B and 23C in which the lower portion of a guiding and locking device of the automatic opening device for containers is provided with an internal screw thread; -
FIGS. 28A and 28B depict upper perspective views showing alternative embodiments for the guiding and locking device for the automatic opening device for containers ofFIGS. 23A, 23B, 23C and 27 ; -
FIGS. 29A, 29B, 30A and 30B depict partial cutting front views showing variations in the application of different types of screw threads to the guiding and locking device and to the automatic opening device for containers ofFIGS. 23A, 23B, 23C, 27, 28A and 28B ; -
FIGS. 31A and 31B depict, respectively, a front partial cutting view and a front perspective cutting view, in which an additional embodiment of an automatic opening device for containers according to the teachings of the present invention is shown, in which said device is shown disconnected from a spout; -
FIGS. 31C and 31D depict frontal partial views of the automatic opening device for containers shown inFIGS. 31A and 31B , showing different stages of application of the device in a spout; -
FIG. 31E depicts a front partial view of the automatic opening device for containers shown inFIGS. 31A and 31B after being activated to open a container; -
FIGS. 32A and 32B depict respectively an upper perspective view and an upper partial cutting perspective view of an automatic opening device for containers whose base element is provided with a pouring device; -
FIG. 33 depicts an automatic opening device for containers whose base element is provided with a protruding plugging element whose upper portion is sealed; -
FIGS. 34A and 34B depict perspective views showing a rotational locking system of the external screw thread flanks of the automatic opening device for containers of the invention; -
FIG. 35 shows an upper perspective view of a further embodiment of the automatic opening device for containers in a situation where the closing element of the device is in the open position; -
FIG. 36 depicts an upper perspective cutting view of the automatic opening device for containers depicted inFIG. 35 , in a situation where the device is applied to a spout of a container and the closing element of the device is in the open position; -
FIG. 37 depicts a lower perspective cutting view of the automatic opening device for containers depicted inFIG. 35 , in a situation where the device is applied to a spout of a container and the closing element of the device is in the open position; -
FIG. 38 depicts an upper perspective view of a variation of the throughout orifice of the fourth embodiment of the automatic opening device for containers depicted inFIG. 35 , in a situation where the closing element of the device is in the open position; -
FIG. 39 depicts a perspective view, in partial cut, of an additional embodiment of an automatic opening device for containers object of the present invention; -
FIGS. 40 and 41 depict frontal views, in partial cut, showing phases of operation of the application of the automatic opening device for containers ofFIG. 39 being applied to a container; -
FIG. 42 depicts a perspective view, in partial cut, of the automatic opening device for containers ofFIG. 39 at the end of its application to the container; -
FIG. 43 depicts a front view, in partial section, of the automatic opening device for containers ofFIG. 39 , in a situation where the device was activated by a user to tear the sealing element of the spout of the container; and -
FIGS. 44 and 45 depict perspective views, in partial cut, in which the closing element of the device is in the open and closed positions, respectively. - In the following specification regarding embodiments of the invention, similar components will always be mentioned and indicated in the Figures by the same indicative numerals. Terms like “upper”, “lower”, “vertical” and “horizontal” used in this description refer specifically to the position in which elements, parts, portions, regions, etc. are depicted in the Figures.
FIGS. 1A, 1B, 1C and 2 depict a first embodiment of the automatic opening device forcontainers 1 according to the present invention. As can be seen in the Figures, the automatic opening device forcontainers 1 comprises aclosing element 1 a, abase element 1 b and alocking device 6. The terms “container” and “packaging” may be used in this specification in a interchangeable manner. - In the embodiment depicted in these Figures, the
closing element 1 a, in the closed position, engages into thebase element 1 b, as depicted inFIG. 1A , and both are connected to each other by means of apivoting connection element 7, as shown in more detail inFIG. 2 . - There are variations of this type of pivoting connection, which can be used interchangeably in conjunction with the present invention. In addition, any other type of connection means can be used to connect the
closing element 1 a to thebase element 1 b, and there may not even be any connection means between them, and the connection between these two parts could be made by pressure or screwing, for example. - The
base element 1 b comprises afirst sidewall 11, in the form of an elongated cylindrical body, and atop element 10, circular in shape and whose edges are joined to the upper edge of thefirst sidewall 11. A central protruding ring 2 is provided in the upper central portion of thetop element 10, which encircles a throughout orifice 2 a. Theclosing element 1 a comprises a second sidewall 9 in the form of an elongated cylindrical body and an upper element 8, circular in shape and whose edges are joined to the upper edge of the second sidewall 9. - A protruding sealing element 4 is provided in the inner central portion of the upper element 8 of the
closing element 1 a. The sealing protruding element 4 is designed to house into the protruding ring 2 and to close the throughout orifice 2 a of thebase element 1 b when theclosing element 1 a and thebase element 1 b are closed. - Preferably the automatic opening device for
containers 1 is designed so that the second sidewall 9 of theclosing element 1 a and thefirst sidewall 11 of thebase element 1 b have substantially equal outside diameters when closed, as shown inFIG. 1A . In order for this to occur, thetop element 10 of thebase element 1 b must be provided with a recess in the region of its edge at which it connects to thefirst sidewall 11, to form a engagingannular ring region 10 a. Thus, when theclosing element 1 a is in the closed position, the lower region of thesecond sidewall 12 will fit into that engagingannular ring region 10 a, as can be seen inFIG. 1B . - This feature is only intended to facilitate the manipulation of the automatic opening device for
containers 1 by users, but it is not essential for the functionality of the device. The embodiments of theclosing element 1 a and thebase element 1 b can be different from those depicted in the Figures, without, however, changing the functionality of these components for the adequate operation of the automatic opening device forcontainers 1. The automatic opening device forcontainers 1 can even be provided without aclosing element 1 a as shown in the Figures, as the automatic opening device forcontainers 1 will operate normally even being not provided with this component, as will be seen hereafter. - An
internal screw thread 5 is provided in the inner portion of thefirst sidewall 11 of thebase element 1 b. In the embodiment depicted in the Figures, theinternal screw thread 5 comprises an internal orientation screw thread to the right of three entries, depicted in the Figure by means of three internal screw thread flanks 5. Theinternal screw thread 5 may comprise a screw thread with any number of entries and consequently, and so the invention is not limited to the use of aninternal screw thread 5 with three entries. - In the present description, a three entries screw thread was chosen only as an exemplary embodiment of the invention, although the use of a multiple entry screw thread is more suitable for the purposes of the invention, as will be seen hereafter. The
internal screw thread 5 can be indistinctly oriented to the right, as shown in the Figures, or oriented to the left. Hereinafter the expressions “internal screw thread 5” and “internalscrew thread flanks 5” will be used as a common reference for this internal screw thread. - A
cutting device 3 is provided in the inner portion of thetop element 10, which comprises a hollow protruding body whose upper portion is connected to the lower portion of thetop element 10, in the region where the throughout orifice 2 a is located, the latter being a continuation of the hollow portion of thecutting device 3. The lower portion of thecutting device 3 is provided with a plurality of cuttingelements 3 a. InFIG. 1B , thiscutting device 3 does not appear in cut so as to enable it to be totally seen. - The
locking device 6 comprises an elongated substantially cylindrical body provided at its upper edge with a plurality ofupper rupture elements 6 a, which are connected to the lower edge of thebase element 1 b, as can be seen in more detail inFIG. 1C . A plurality oflower locking elements 6 b is provided in the lower internal portion of thelocking device 6. Thelower locking elements 6 b comprise tabs distributed circularly and spaced apart, the lower portion of each lug being joined to the lower region of thelocking device 6 and the body of each lug being tilted towards the geometric axis of thelocking device 6. Thelower locking elements 6 b are designed so that they can undergo small radial bends towards the inner wall of thelocking device 6. - Other embodiments of
lower locking elements 6 b can be used and, therefore, the invention is not limited to the embodiment depicted inFIGS. 1B and 1C . The function of theupper rupture elements 6 a and thelower locking elements 6 b will also be seen hereafter in the description that will be made of the operation of applying the automatic opening device forcontainers 1 to a spout. -
FIG. 3 depicts acontainer 20 provided with aspout 12, depicted in the Figure only by its upper part. Thespout 12 comprises an elongatedcylindrical body 13 provided with anexternal screw thread 14, in the present case, a right hand screw thread with three entries, which comprises alower flank 14 a and anupper flank 14 b, with aroot 15 formed between these two flanks. It can be seen inFIG. 3 that theupper flank 14 b of theexternal screw thread 14 has anupper end 21 which extends over theupper ring 16, while thelower flank 14 a has its upper end even with the lower portion of theupper ring 16, to facilitate the screwing of the internal screw thread flanks 5 on theroot 15, as will be seen hereafter. - The choice of an external right oriented screw thread, with three entries, is exclusively due to the fact that this is the embodiment used in the internal
screw thread flanks 5 of thebase element 1 b. The same above comments are valid here, in which the use of a right hand screw thread with three entries is only a possibility to carry out the invention, which evidently is not limited to the use of a screw thread of three entries, as well as the screw thread may be right or left hand oriented. Thus, theexternal screw thread 14 can be a screw thread with any number of entries, and its orientation can be indistinctly to the right, as shown inFIG. 3 , or to the left, as long as it is compatible with the screw thread used in theinternal screw thread 5. - A sealing
element 19 is affixed to the rim of thespout 12. The elongatedcylindrical body 13 of thespout 12 is also provided in its outer portion with anupper ring 16, anintermediate ring 18 and alower ring 17, located in the upper, intermediate and lower regions, respectively. The diameter of theupper ring 16 is smaller than the diameter of theintermediate ring 18, and the diameter of theintermediate ring 18 is smaller than the diameter of thelower ring 17, as can be seen inFIG. 3 . -
FIGS. 4A, 4B, 4C and 4D show a sequence of a process for applying the automatic opening device forcontainers 1 to thespout 12 of thecontainer 20 provided with a sealingelement 19. In order to facilitate the description of the steps of the process for applying the automatic opening device forcontainers 1 in thespout 12 the internalscrew thread flanks 5 of thebase element 1 b located in the front portion of the device for the automatic opening device forcontainers 1 were not cut. - For the sake of simplification of the Figures, in the description of the process for the application of the automatic opening device for
containers 1 to thespout 12 the tools used for this operation will not be represented, whichever are the tools used in this operation. The arrows W depicted inFIGS. 4A, 4B, 4C and 4D indicate the direction of the operation to apply the automatic opening device for containers in thespout 12 of thecontainer 20. - The application of the automatic opening device for
containers 1 to thespout 12 is made by means of making the lower part of the automatic opening device forcontainers 1 to exert a downward longitudinal movement against the upper part of thespout 12, as shown in the Figures. In this process a slight interference may occur between some component parts of the automatic opening device forcontainers 1 and component parts of thespout 12 at the time of assembly. - Consequently, the automatic opening device for
containers 1 must be made of a relatively resilient material, a thermoplastic, for example, and so, elements of the automatic opening device forcontainers 1 located in regions where occur interference with elements of thespout 12 undergo temporary elastic deformations, thereby allowing the continuity of the process to apply the automatic opening device forcontainers 1 in thespout 12. - An automatic opening device for
containers 1 can be seen inFIG. 4A , whose geometric axis is aligned with the geometric axis of thespout 12, in a position to start the operation to apply the automatic opening device forcontainers 1 to thenozzle 12. InFIG. 4B the automatic opening device forcontainers 1 is depicted in a position immediately before the beginning of its engagement to thespout 12. InFIG. 4C the automatic opening device forcontainers 1 is almost completely engaged in thespout 12. It is important to observe in this Figure that the lower regions of thelower locking elements 6 b of thelocking device 6 initiate contact with the upper face of theintermediate ring 18. - With the continuity of the longitudinal downward movement of the automatic opening device for
containers 1 in relation to thespout 12, thelower locking elements 6 b of thelocking device 6 will be outwardly pressed by the edge of theintermediate ring 18, and consequently will tend to incline outwardly towards the internal wall of thelocking device 6, which will allow the continuity of the downward longitudinal movement of the automatic opening device forcontainers 1. - After the
lower locking elements 6 b of thelocking device 6 move past theintermediate ring 18 they will return to the regular position, in that they are projected towards the geometric axis of thelocking device 6, as depicted inFIG. 4D , and shown in more detail inFIG. 5 , which depicts a Detail X indicated inFIG. 4D . As a result, thelower locking elements 6 b will prevent longitudinal upward movements of the automatic opening device forcontainers 1, which will then be kept in that position. - The downward longitudinal movement of the automatic opening device for
containers 1 ceases when the lower edge of thelocking device 6 touches the upper surface of thelower ring 17, as shown inFIG. 4D , whereby the process of applying the automatic opening device forcontainers 1 to thespout 12 is completed. Observe inFIG. 4D that at the end of this downward longitudinal movement of the automatic opening device forcontainers 1, the internalscrew thread flanks 5 are in a position in which they can be screwed to thescrew thread 14 of thespout 12, as will be seen hereafter. Thecontainer 20 will then be ready for sale. -
FIGS. 6A, 6B, 6C and 6D depict upper perspective views, in partial cut, showing a sequence of the process for opening thecontainer 20 by means of the automatic opening device forcontainers 1. In order to facilitate the description of the process, and likewise what occurred in the description of the process for applying the device to thespout 12 shown inFIGS. 4A, 4B, 4C and 4D , the internalscrew thread flanks 5 of thebase element 1 b had not been cut inFIGS. 6A, 6B, 6C and 6D . Thecutting device 3 also does not appear in cut, thereby making possible to see it in its entirety. - In
FIG. 6A the automatic opening device forcontainers 1 is depicted in the final position after being applied tocontainer 20, an operation carried out in a factory. In order to start the process to open the container 20 a user must apply a clockwise rotary movement to the upper portion of the automatic opening device forcontainers 1, formed by theclosing element 1 a and thebase element 1 b, as indicated by the circle T in the Figures. - This clockwise rotary movement will cause the
upper rupture elements 6 a of thelocking device 6 to rupture, as indicated by the circles R inFIG. 6B , and consequently, the assembly formed by theclosing element 1 a and thebase element 1 b will begin to rotate clockwise. In the continuity of this clockwise rotary movement, theentry tips 5 a of the internalscrew thread flanks 5 will run along the upper face of theupper ring 16, until they meet theupper end 21 of theupper flank 14 b of thescrew thread 14, as can be seen inFIG. 6B . - Next, with the continuity of the rotational movement, the
entry tip 5 a of eachinternal screw thread 5 will begin to enter theroot 15 of theexternal screw thread 14, as can be seen inFIG. 6B . Following this rotary movement, the internalscrew thread flanks 5 will displace along theroots 15 of theexternal screw thread 14. This rotary movement will cause a downward axial displacement of the automatic opening device forcontainers 1, as indicated by the arrows Z inFIGS. 6B, 6C and 6D . The combination of the two movements, rotation and downward axial displacement, will cause thecutting elements 3 a of thecutting device 3 to cut the sealingelement 19 affixed to the upper edge of thespout 12, as can be seen inFIG. 6C . - The rotational movement of the automatic opening device for
containers 1 in a clockwise direction will cease when the edge of thespout 12, to which the sealingelement 19 is attached, touches the lower region of thetop element 10 of thebase element 1 b. This will cause a compression between thetop element 10 of thebase element 1 b and the edge of thespout 12, thereby contributing to cause a sealing in this area of compression, as can be seen inFIG. 6D . -
FIG. 7 depicts anupper rupture element 6 a which was torn at the beginning of the rotary movement of the automatic opening device forcontainers 1, part of therupture element 6 a being attached to the inner portion of the upper edge of thelocking element 6, as shown in the upper part of the drawing, and the remaining part keeping attached to the inner portion of the lower edge of thebase element 1 b, as shown in the lower part ofFIG. 7 , indicated by the ellipses S. - At the end of the rotary movement of the automatic opening device for
containers 1 in a clockwise direction, causing it to make a downward axial movement, thecutting elements 3 a of thecutting device 3 had already made the tearing of the sealingelement 19. Consequently, the product into thecontainer 20 can be poured through the protruding hollow body of thecutting device 3 and the throughout orifice 2 a, pivoting first theclosing element 1 a to enable the product stored in thecontainer 20 to pass through the throughout orifice 2 a. - Preferably both the outer face of the second sidewall 9 of the
closing element 1 a and the outer face of thefirst sidewall 11 of thebase element 1 b of the automatic opening device forcontainers 1 are provided with means that increase the friction coefficient thereof, consequently facilitating the handling of the automatic opening device forcontainers 1 by users. - The process of opening the
container 20 described hereinbefore requires the users to turn clockwise the automatic opening device to open thecontainer 1. This may cause some confusion to the users, as clockwise is usually the direction of rotation for closing caps of containers, which mostly use threaded spouts with screw threads right hand oriented. - In order to prevent users from rotating the automatic opening device for
containers 1 in the wrong direction, it is necessary to place instructions on the top face of theclosing element 1 a so that the initial rotation is made in a clockwise direction, in order to ensure the perfect functioning of the automatic opening device forcontainers 1. For example, a circular arrow with the tip indicating the correct direction of rotation can be used to open the container. In addition, it can be included some written instructions that explain the correct direction of rotation. - However, it may still occur situations in that careless users do not observe the instructions on the upper face of the
closing element 1 a and, being used to turning caps counterclockwise to open containers, then perform a rotation on the automatic opening device forcontainers 1 in the counterclockwise direction. In order to avoid this problem, variations of the first embodiment of the automatic opening device forcontainers 1 will be described hereafter in order to prevent this improper handling from occurring. -
FIG. 8A depicts a first variation of the automatic opening device forcontainers 1, in which the internalscrew thread flanks 5 are bipartite, and comprise an upper section 5 s and a lower section 5 i. The intermediate portion of eachinternal screw thread 5 was removed, as can be seen inFIG. 8A . - It can be seen in
FIG. 8A that a guidingelement 22 is provided in the external portion of the elongatedcylindrical body 13 of thespout 12 and extends parallel to the upper edge of thespout 12. In this variation, theupper end 21 of theupper flank 14 b of theexternal screw thread 14 extends up to the guidingelement 22, as can be seen inFIG. 8A . As a result, a limiter ofrotation 23 is formed between theupper end 21 of theupper flank 14 b and the guidingelement 22. - If a user inadvertently applies a counterclockwise rotation to the upper portion of the automatic opening device for
containers 1, formed by theclosing element 1 a and thebase element 1 b, then the lower sections 5 i of the internalscrew thread flanks 5 will move over the upper face of theupper ring 16 until they engage the limiter ofrotation 23, as shown inFIG. 8B . Consequently, the user will no longer be able to turn the automatic opening device forcontainers 1 counterclockwise. - This will then cause the user to direct his attention to the automatic opening device for
containers 1, and consequently the user will notice the instructions for the correct direction of rotation, making him/her rotate the automatic opening device forcontainers 1 in the correct direction (clockwise), to open the container. -
FIG. 9A depicts a front partial cutting view of a second variation of the automatic opening device forcontainers 1, in which theupper end 21 of the internalscrew thread flanks 5 extend beyond theupper ring 16 to a shorter extent than the length observed inFIGS. 4A, 4B, 4C and 4D , and thelower flank 14 a has its upper end facing with the lower portion of theupper ring 16, as can be seen inFIG. 9A . In this variation, thelocking elements 6 b of thelocking device 6 are designed in such a way that their upper ends maintain a gap in relation to the lower face of theintermediate ring 18, as indicated by the circles P inFIG. 9A . - If a user inadvertently applies a counterclockwise rotation to the upper portion of the automatic opening device for
containers 1, formed by theclosing element 1 a and thebase element 1 b, then theentry tips 5 a of the internalscrew thread flanks 5 will approach the upper ends 21 of theupper flanks 14 b of theexternal screw thread 14. - When the
entry tips 5 a contacts the upper ends 21 of theupper flanks 14 b, as shown inFIG. 9A , the user will feel a resistance to the continuity of the rotation. If the user still persists in turning counterclockwise, the gap between the upper ends of thelocking elements 6 b of thelocking device 6 in relation to the lower face of theintermediate ring 18 will then enable theentry tips 5 a of the internalscrew thread flanks 5 to move past theupper end 21 of theupper flanks 14 b, as shown inFIG. 9B . - With the continuation of the undue rotary movement in a counterclockwise direction, the
entry tips 5 a of the internalscrew thread flanks 5 will then move past the upper ends 21 of theupper flanks 14 b, and consequently theentry tips 5 a will return to displace on the upper face of theupper ring 16, as shown inFIG. 9C . - The passage of the
entry tips 5 a over the upper ends 21 of theupper flanks 14 b will produce a noise, which should alert the user that something has not been done correctly. This should compel the user to direct his attention to the automatic opening device forcontainers 1. Consequently, the user will then notice the instructions regarding the correct direction of rotation, and will then be able to rotate the automatic opening device forcontainers 1 in the correct clockwise direction to open the container. - Note that the clearance between the upper ends of the
locking elements 6 b of thelocking device 6 in relation to the lower face of theintermediate ring 18 must be designed so that it is sufficient to allow the internalscrew thread flanks 5 to move past theupper end 21 of theupper flanks 14 b. - For this aim, it is necessary that the gap has an extension greater than the vertical extension H that the upper ends 21 of the
upper flanks 14 b raise beyond theupper ring 16, as shown inFIG. 9B . Therefore, in the event that the user applies an anti-clockwise rotation to the upper portion of the automatic opening device forcontainers 1, the gap between the upper ends 21 of theupper flanks 14 b in relation to the lower face of theintermediate ring 18 will always allow that the upper ends 21 of theupper flanks 14 b may extend beyond theupper ring 16, as can be seen by the circles T shown inFIG. 9B . - If the noise from the passage of the
entry tips 5 a over the upper ends 21 of theupper flanks 14 b was not sufficient to show the user that something was not done correctly, the continuation of the counterclockwise rotation will cause the automatic opening device forcontainers 1 to keep rotating without any linear or vertical displacement, as it will not occur engagement of the internalscrew thread flanks 5 in theroots 15 of theexternal screw thread 14, which will certainly indicate to the user that something is not being made correctly, and will lead him/her to finally observe the instructions on the upper face of theclosing element 1 a in that the rotation must be made in a clockwise direction in order to cause the opening of the container. -
FIG. 9D depicts another variation of the automatic opening device forcontainers 1, similar to the variation depicted inFIGS. 9A, 9B and 9C , in which the only difference is that thelocking device 6 is provided with acircular wing 6 e at its lower portion, the latter extending from the end of thelocking device 6, completely encircling thelower ring 17, as can be seen inFIG. 9D . - In this variation of the invention there is a gap between the upper ends of the
locking elements 6 b of the locking device and the lower face of theintermediate ring 18, thereby allowing some clearance for longitudinal movements of between the automatic opening device forcontainers 1 and thespout 12. Thecircular wing 6 e is intended to prevent anyone from inserting any object between the lockingdevice 6 and the upper face of thelower ring 17 in order to unduly disconnect the automatic opening device forcontainers 1 from thespout 12. -
FIG. 10 depicts a third variation of the first embodiment of the automatic opening device forcontainers 1. In this variation, the internalscrew thread flanks 5 comprise a left hand oriented screw thread, this being the only difference between the first embodiment and this variation. - Consequently, it will be necessary in this variation of the first embodiment of the invention that the
spout 12 be provided with anexternal screw thread 14 with left hand orientation, as shown inFIG. 10 .FIG. 11 depicts in more detail this spout with left angle orientation. - The process for applying the automatic opening device for
containers 1 having internalscrew thread flanks 5 with left angle orientation to thespout 12 will be exactly the same as previously described in relation toFIGS. 4A, 4B, 4C and 4D , and the only difference in the process of opening thecontainer 20 in relation to what was previously described in relation toFIGS. 6A, 6B, 6C and 6D is that in this variation users must rotate counterclockwise the automatic opening device forcontainers 1 to open thecontainer 20. - This is the great advantage in using this variation of the first embodiment of the invention, because in this case, users will have to rotate the device in a counterclockwise direction of rotation, which is what they are used to do for opening containers with screw-threaded caps, because most of the containers are provided with right hand orientated screw threads.
- This means that, although a left hand orientated screw thread is used in this variation of the invention, users will hardly notice any difference from the regular right hand oriented threaded caps and threaded spouts. In other words, as usually the action for opening a cap is associated with a counterclockwise rotation, users will not be surprised with the need to apply a counterclockwise rotation to the automatic opening device for
containers 1 to opencontainer 20. - Notice that in the present specification the expression “open the container” means to tear the sealing element that is applied to the rim of the spout of a container to protect its contents, thereby allowing the product into the container to be removed. Notice that, according to the teachings of the invention, once the user has opened the container, there is no need to execute any further action, and the product stored in the container can be served immediately.
- In other words, it is a one-step procedure, differently from what is observed nowadays, in that users need to execute some more steps, usually three, in order to start using the product stored in the container, namely, the steps to unscrew and remove the cap from the spout, then manually remove the sealing element, and next screw back the cap on the spout.
- It is also important to mention that this third variation can be combined with any of the previous variations of the first embodiment of the invention described hereinbefore, being only necessary to make some modifications due to the use of a left hand oriented screw thread.
-
FIGS. 12A, 12B and 12C depict front views, in partial cut, of a fourth variation of the automatic opening device for containers depicted inFIGS. 1A, 1B, 1C and 2 . The difference observed in this variation is the provision of alocking device 6′ of lesser longitudinal extension, as can be seen in the Figures, due to a partial screwing of the internalscrew thread flanks 5 in theroots 15 of theexternal screw thread 14, as will be noted from the following description made in the next paragraphs. - The
locking device 6′ comprises an elongated and substantially cylindrical body provided at its upper edge with a plurality ofupper rupture elements 6 a′, as can be seen in more detail inFIG. 12A , theupper rupture elements 6 a′ being connected to the lower edge of thebase element 1 b. A plurality oflower locking elements 6 b′ is provided in the lower inner portion of thelocking device 6′. - An automatic opening device for
containers 1 with the same characteristics described above in relation to the device shown inFIGS. 1A, 1B, 1C and 2 is depicted in theFIGS. 12A, 12B and 12 C, as well as it is depicted thesame spout 12 previously described in relation to saidFIGS. 1A, 1B, 1C and 2 . Consequently, there is no need to repeat here the description of the constituent parts of both the automatic opening device forcontainers 1 and thespout 12. - The same comments regarding the characteristics of the
internal screw thread 5 and theexternal screw thread 14 apply to the fourth variation of the automatic opening device for containers depicted inFIGS. 12A, 12B and 12 C. In these Figures theinternal screw thread 5 and theexternal screw thread 14 comprise screw threads of multiple entries of right hand orientation. However, single or multiple screw threads having right or left hand orientation can be used. - The application of this fourth variation of the automatic opening device for
containers 1 to thespout 12 is made at a factory, by means of an equipment not shown in the Figures, which executes a sequential pressing and rotating process. Initially, a downward longitudinal movement is applied to the automatic opening device forcontainers 1, as indicated by the arrow M inFIG. 12A , whereby the lower part of the automatic opening device forcontainers 1 is pressed against the upper part of thespout 12 until the lower regions of thelower locking elements 6 b′ touch the upper region of theintermediate ring 18. - Next, a rotational movement is applied to the automatic opening device for
containers 1, as indicated by the circle N inFIG. 12B , whereby the innerscrew thread flanks 5 of thebase element 1 b engage theroots 15 of theexternal screw thread 14 of thespout 12. With the continuation of this rotational movement, thelower locking elements 6 b′ will be forced against the edge of theintermediate ring 18, and consequently thelower locking elements 6 b′ will retract outwardly towards the inner wall of thelocking device 6′, until they move past totally the lower edge of theintermediate ring 18. From this moment on, thelower locking elements 6 b′ will hamper the application of rotational movements to the automatic opening device forcontainers 1, thereby preventing it from being unscrewed from thespout 12. - The rotary movement for screwing the automatic opening device for
containers 1 in thespout 12 will cease when the lower region of thelocking device 6′ touches the upper region of thelower ring 17, as can be seen inFIG. 12C . With that, the container will be ready for sale. Note inFIG. 12C the partial engagement of the internalscrew thread flanks 5 in theroots 15 of theexternal screw thread 14. - When a user starts to open the
container 20, he/she must apply a rotational movement to the automatic opening device forcontainers 1, applying a torque enough to break theupper rupture elements 6 a′, thereby allowing the internalscrew thread flanks 5 to displace along theroots 15 of theexternal screw thread 14. This screwing movement will cause thecutting elements 3 a of thecutting device 3 to tear the sealingelement 19 of thespout 12, thereby opening the container and allowing the product stored inside the container to be served. - The reduction of the longitudinal extension of the
locking device 6′, if compared with the longitudinal extension of thelocking device 6, occurs due to the characteristic of the partial engagement of the internalscrew thread flanks 5 in theroots 15 of theexternal screw thread 14 in the fourth variation of the automatic opening device for containers. - The
lower locking elements 6 b′ must be designed to make them strong enough to preclude any attempt to unscrew the automatic opening device forcontainers 1 in thespout 12, especially if right hand oriented screw threads are used in the internalscrew thread flanks 5 and in theexternal screw thread 14. In this case, as the normal habit of users is to apply a counterclockwise movement in a cap to open a container, the difficulty users would face to apply a counterclockwise rotary movement to the automatic opening device forcontainers 1 would serve to draw their attention to the remarks in the upper region of theclosing element 1 a, which indicate that the correct rotational movement must be in a clockwise direction to open the container. - In case a
spout 12 as shown inFIG. 11 was used, having an external left hand orientated screw thread, in this case it will suffice for a user to, to open the container the user to apply a counterclockwise rotational movement to the automatic opening device forcontainers 1 to open thecontainer 20. As counterclockwise rotational movement is what users are used to applying to a cap for unscrewing it from a threaded spout that are provided with right hand oriented screw threads, consequently users would easily apply the rotary movement correctly, and probably would not even realise that the threaded spout of the container is provided with a left hand oriented screw thread. -
FIGS. 13A and 13B depict, respectively, an upper perspective view and an upper cutting perspective view of a fifth variation of the automatic opening device forcontainers 1, in which thebase element 1 b is provided with asuction spout 24, which comprises a hollow body which extends above thebase element 1 b and encircles the throughout orifice 2 a. In this variation, thesuction spout 24 is provided at its upper end with amouth ring 24 a, and the protruding sealing element 4 of the upper element 8 of the sealingelement 1 a is designed to house in themouth ring 24 a and to close the throughout orifice 2 a of thebase element 1 b when theclosing element 1 a and thebase element 1 b are closed. - Containers provided with suction spouts are normally used to store liquids that are usually consumed by users when they are on the move, cases of cyclists, long-distance runners or even people who prefer to consume the product stored in the container while on the move
- In this fifth variation of the first embodiment of the invention, the assembling of the automatic opening device for
containers 1 and the opening of thecontainer 20 are carried out exactly in the same manner as described hereinbefore, since all the other components of this variation are the same as previously described. - Note that this fifth variation can be combined with any of the variations of the first embodiment of the invention described herein before. If it is made a combination of the third variation with the fifth variation, it will only be necessary to make the necessary to make some modifications due to the use of a left hand oriented screw thread.
-
FIGS. 14A and 14B respectively depict a front view, in partial cut, and a upper perspective view, in partial cut, which show details of a spout adapter device intended to serve as an interface for the application of an automatic opening device forcontainers 1 in a spout provided with an external screw thread which is different from the internal screw thread of the automatic opening device forcontainers 1. A sealingelement 19 is affixed to the rim of thespout 26. External upper end of thespout 26 is provided with anexternal screw thread 30, a retaining ring being located below theexternal screw thread 30. - The automatic opening device for
containers 1 depicted inFIGS. 14A and 14B is substantially similar to the one that has been described regardingFIGS. 4A, 4B, 4C and 4D , and therefore it is not necessary to repeat the description herein. Any of the previous variations of the automatic opening device forcontainers 1 described hereinbefore could have been depicted inFIGS. 14A and 14B , which would normally operate in conjunction with thespout adapter device 25, meaning that there are no limitations for the use of any type of automatic opening device forcontainers 1 in conjunction with thespout adapter device 25. - The lower external region of the
spout 26 is provided with abase ring 28, larger in diameter than the retainingring 33. Theexternal screw thread 30 depicted inFIGS. 14A and 14B has a shape different from theinternal screw thread 5 of the automatic opening device forcontainers 1. In the Figures is depicted a screw thread of a single entry, having a right hand orientation, although other types of screw threads could be used, such as, for example, a multiple entry screw thread and/or a left hand oriented screw thread. - As can be seen in
FIGS. 14A, 14B and 14C , thespout adapter device 25 comprises anupper portion 25 s rigidly connected to alower portion 251, of larger diameter, both being substantially cylindrical portions. The upper outer region of theupper portion 25 s is provided with a protrudingring 25 c, located near to the upper edge of thespout adapter device 25, and an external screw thread 27, the latter comprising alower flank 27 a and anupper flank 27 b. Aroot 27 c is formed between thelower flank 27 a and theupper flank 27 b. A three entries right hand oriented screw thread is shown in theFIGS. 14A, 14B and 14C , merely for exemplification. However, a screw thread with any number of entries could be used. - As shown in
FIG. 14A , theupper flank 27 b of the external screw thread 27 has anupper end 31 that extends beyond the protrudingring 25 c, in order to facilitate the screwing of the externalscrew thread flanks 5 of the automatic opening device forcontainers 1 in theroot 27 c, as will be seen hereafter. Conversely, thelower flank 27 a has the upper end leveled with the lower portion of the protrudingring 25 c. - An
internal screw thread 29 is provided in the inner region of theupper portion 25 s of thespout adapter device 25, as can be seen inFIGS. 14B, 14C and 14D . Thisinternal screw thread 29 is sized to engage theexternal screw thread 30 of thespout 26, as will be seen hereafter. For the sake of facilitating visualization, aninternal screw thread 29 of one entry is depicted in the Figures, although a multiple entry screw thread could be depicted. - The inner lower region of the
lower portion 251 is provided with a plurality oflower locking elements 25 a, each of them located in front ofopenings 25 b formed in thelower portion 251, as can be seen in the Figures. Thelower locking elements 25 a are similar to thelower locking elements 6 b of thelocking device 6, and comprise circularly distributed and spaced apart lugs, the lower portion of each lug being joined to the lower region of thelower portion 251 of thespout adapter device 25, and the body of each lug being tilted towards the geometric axis of thespout adapter device 25. - The
lower locking elements 25 a are designed to be able to undergo small radial bends towards the inner wall of thespout adapter device 25 when it is connected to thespout 26, as will be seen hereafter. Other locking means can be used to replace thelower locking elements 25 a, provided that they are able to lock thespout adapter device 25 into thespout 26. - The automatic opening device for
containers 1 must be applied to thespout adapter device 25 by means of a pressing process, a downward longitudinal movement wherein the lower part of the automatic opening device forcontainers 1 is pressed against the top of thespout adapter device 25, thereby causing a strong assembly between them. This application will be made in a factory. - Likewise what occurred in the process to apply the automatic opening device for
containers 1 in thespout 12, in relation toFIGS. 4A, 4B, 4C and 4D , in the pressing process to apply the automatic opening device forcontainers 1 against the upper part of thespout adapter device 25 there will be a slight interference between some component parts of the automatic opening device forcontainers 1 and component parts of thespout adapter device 25. Therefore, the same observations made hereinbefore regardingFIGS. 4A, 4B, 4C and 4D are valid herein. - In this process of applying the automatic opening device for
containers 1 on thespout adapter device 25, thelower locking elements 6 b of thelocking device 6 will be pressed by thelower portion 251 of thespout adapter device 25, and consequently will tend to incline towards the internal wall of thelocking device 6, which will allow the continuity of the downward longitudinal movement of the automatic opening device forcontainers 1.FIG. 15 shows an upper perspective cutting view in which the automatic opening device forcontainers 1 can be seen in thespout adapter device 25. - Preferably, the
lower locking elements 6 b of thelocking device 6 should fit into theopenings 25 b formed in thelower portion 251 of thespout adapter device 25, which are in front of thelower locking elements 25 a. Thereby thelower locking elements 6 b and thelower locking elements 25 a will be facing each other, as shown inFIG. 15 . -
FIG. 16 depicts a front view of thespout adapter device 25 showing an alternative embodiment for thelower portion 251 of thespout adapter device 25, the latter in this embodiment being not provided withopenings 25 b. In this embodiment the upper region of thelower portion 251 is provided with a ring that protrudes in relation to the lower region of thelower portion 251, thereby forming a retainingedge 25 r, which will serve to retain thelower locking elements 25 a soon after they move past theretention edge 25 r, as shown inFIG. 16 , and especially in the circles K. -
FIG. 17 depicts an assembly formed by the automatic opening device for containers land thespout adapter device 25 both already assembled each other in a position immediately prior to the beginning of the application of the assembly to thespout 26. This application is made in a factory by means of a rotating applicator, not shown inFIG. 17 , which applies a clockwise rotation to the assembly, as indicated by circle G in the Figure. - Similarly to what occurred in the process to apply the automatic opening device for
containers 1 in thespout adapter device 25, or in thespout 12 depicted inFIGS. 4A, 4B, 4C and 4D , a slight interference will occur between some component parts of thespout adapter device 25 and component parts of thespout 26 during the process for applying the assembly comprising the automatic opening device forcontainers 1 and thespout adapter device 25 against thespout 26. Therefore, the same observations made hereinafter are valid here. - Consequently, in this process the
lower locking elements 25 a of thespout adapter device 25 will be pressed by the edge of the retainingring 33 and will tend to incline towards the inner wall of thespout adapter device 25, thereby allowing the continuity of the downward longitudinal movement of the assembly formed by the automatic opening device forcontainers 1 and thespout adapter device 25, until the process is finished. -
FIG. 18 depicts the assembly formed by the automatic opening device forcontainers 1 and thespout adapter device 25 duly applied to thespout 26. Notice that thelower locking elements 25 a of thespout adapter device 25 had already passed over the retainingring 33 of thespout 26 at the end of the process to apply said assembly to thespout 26. Consequently, thecontainer 20 will be ready to for sale, to be opened later by a user. - The operation to open the
container 20 will be carried out in the same way as described previously regardingFIGS. 6A, 6B, 6C and 6D , and for that reason the description of this process will not be repeated herein. Therefore, the same observations made hereinafter with regard to the process to open thecontainer 20 by means of the automatic opening device forcontainers 1 applied to thespout 12 are valid herein. -
FIGS. 19A, 19B and 19C depict an exploded front view, in partial cut, an upper perspective view, in partial cut, and a front view, respectively, showing an alternative embodiment of aspout adapter device 35 to be used in conjunction with the automatic opening device forcontainers 1. Thespout adapter device 35 comprises anupper portion 35 s, amedial portion 35 m and alower portion 35 i. - A protruding
ring 35 c is provided, located on the upper part of the outer portion of theupper portion 35 s. Anexternal screw thread 37 is also provided, which is similar to the external screw thread 27 of thespout adapter device 25 of the previous embodiment. Theexternal screw thread 37 comprises alower flank 37 a and anupper flank 37 b, aroot 37 c being formed between theflanks - The
upper flank 37 b of theexternal screw thread 37 has anupper end 32 extending beyond the protrudingring 35 c, intended to facilitate the screwing of the externalscrew thread flanks 5 of the automatic opening device forcontainers 1 in theroots 37 c, as will be seen hereafter, while thelower flank 37 a has its upper end facing with the lower portion of the protrudingring 35 c. - As shown in
FIGS. 19A, 19B and 19C , arim 34 is provided in the lower region of theupper portion 35 s of thespout adapter device 35. Themedial portion 35 m is shaped like a trunk-cone and its upper portion is connected to the lower region of therim 34, while its lower region is connected to the upper region of thelower portion 35 i. There is a radial gap in the region that connects themedial portion 35 m to the lower region of therim 34, the radial gap intended to engage to thelower locking elements 6 b of the automatic opening device forcontainers 1 when it is applied to thespout adapter device 35, as will be seen hereafter. - The
medial portion 35 m is provided with a plurality of spaced apart and circumferentially distributedradial openings 35 a. Ainternal screw thread 36 having one entry is provided in the inner portion of thelower portion 35 i of thespout adapter device 35. Thisinternal screw thread 36 is sized to screw to theouter screw thread 30 of thespout 26, as will be seen hereafter. - A plurality of
lower locking elements 35 b is provided in the lower inner region of thelower portion 35 i, similar to thelower locking elements 25 a of thespout adapter device 25, thelower locking elements 35 b comprising a plurality of spaced apart lugs distributed circularly, the lower portion of each lug being joined to the lower region of thelower portion 35 i of thespout adapter device 35, and the body of each lug being tilted towards the geometric axis of thespout adapter device 35. Thelower locking elements 35 b are able to bend slightly towards the inner wall of thespout adapter device 35 when it is connected to thespout 26, as will be seen hereafter. - Due to the increase of the height of the assembly formed by the
spout adapter device 35 and the automatic opening device forcontainers 1, when such assembly is applied to thespout 26, it is then necessary to lengthen thecutting devices 3 of the automatic opening device forcontainers 1 to offset such increase of the height of the assembly, as will be seen hereafter. Therefore, thecutting device 3 of such assembly is lengthy than thecutting devices 3 of the variations of the invention described hereinbefore. - The automatic opening device for
containers 1 must be applied to thespout adapter device 35 by means of a pressing process, a downward longitudinal movement in which the lower part of the automatic opening device forcontainers 1 is pressed against the top of thespout adapter device 35, which causes a forced assembly between them. This application will be made in a factory. - Likewise what occurred in the process to apply the automatic opening device for
containers 1 in the spout 12 (FIGS. 4A, 4B, 4C and 4D ), by pressing the automatic opening device forcontainers 1 against the upper part of thespout adapter device 35 it will occur a slight interference between some component parts of the automatic opening device forcontainers 1 and component parts of thespout adapter device 35. - During the process of applying the automatic opening device for
containers 1 to thespout adapter device 35, thelower locking elements 6 b of thelocking device 6 will be pressed by therim 34 of thespout adapter device 35, and consequently will tend to incline towards the internal wall of thelocking device 6, thereby allowing the automatic opening device forcontainers 1 to make a downward longitudinal movement. - At the end of this downward longitudinal movement to apply the automatic opening device for
containers 1 to thespout adapter device 35, thelower locking elements 6 b had been totally passed over therim 34, thereby causing the retention of the automatic opening device forcontainers 1 in thespout adapter device 35.FIG. 20 depicts a perspective view in cut wherein the automatic opening device forcontainers 1 is totally applied to thespout adapter device 35. - The previous observations made regarding the process to apply the automatic opening device for
containers 1 in thespout adapter device 25 or in the spout 12 (FIGS. 4A, 4B, 4C and 4D ) are valid here. Preferably thelower locking elements 6 b of thelocking device 6 should fit into theradial openings 35 a of themedial portion 35 m of thespout adapter device 35, as shown inFIG. 20 . -
FIG. 21 shows the assembly formed by the automatic opening device forcontainers 1 already applied to thespout adapter device 35, in a position immediately before starting the application of said assembly to thespout 26. This application will be made in a factory by means of a rotating applicator, not shown inFIG. 21 . Said applicator applies a rotation to the assembly, in this case, a clockwise rotation, as indicated by circle J in the Figure. - Likewise what occurred in the process to apply the automatic opening device for
containers 1 in the spout 12 (FIGS. 4A, 4B, 4C and 4D ), by pressing the assembly comprising the automatic opening device forcontainers 1 and thespout adapter device 35 against thespout 26, it will occur a slight interference between some component parts of the automatic opening device forcontainers 1 and component parts of thespout 26. Therefore, the same observations made hereinbefore are valid here. - Consequently, during the process the
lower locking elements 35 b of thespout adapter device 35 will be pressed by the edge of the retainingring 33 and will tend to incline towards the inner wall of thespout adapter device 35, thereby allowing the automatic opening device forcontainers 1 and thespout adapter device 35 to make a downward longitudinal movement until the process is finished. -
FIG. 22 is an upper perspective cutting view showing the assembly formed by the automatic opening device forcontainers 1 and thespout adapter device 35 duly applied to thespout 26. Thelower locking elements 35 b of thedevice spout adapter 35 had passed the retainingring 33 ofspout 26 at the end of the process to apply said assembly to thespout 26. Therefore, thecontainer 20 will be ready for sale and to be subsequently opened by a user. - The operation to open the
container 20 will be carried out in the same way as previously described regardingFIGS. 6A, 6B, 6C and 6D . Consequently, the description of this operation will not be repeated herein. The same observations made regarding the process to open thecontainer 20 by means of the automatic opening device forcontainers 1 applied to thespout 12 are valid here. - The external screw thread 27 of the
spout adapter device 25, shown inFIGS. 14A, 14B, 14C and 14D , and theexternal screw thread 37 of thespout adapter device 35, shown inFIGS. 19A and 19B, can both be left hand oriented screw threads if an automatic opening device forcontainers 1 is used in case theinternal screw thread 5 is a left hand oriented screw thread. -
FIGS. 23A, 23B, 23C and 24 depict views of a further embodiment of the invention, showing an automatic opening device forcontainers 41 to be applied to aspout 47 of acontainer 51. Thespout 47 comprises an elongatedcylindrical body 48, a firstupper ring 49 and a secondlower ring 50, larger in diameter than the firstupper ring 49. A sealingelement 19 adheres to the upper rim of thespout 47. The connection between thespout 47 and the automatic opening device forcontainers 41 is a bayonet connection, as will be seen hereafter. - The automatic opening device for
containers 41 comprises aclosing element 41 a, abase element 41 b and a guiding and lockingdevice 46. InFIG. 24 theclosing element 41 a is in the open position, and the connection between thebase element 41 b and theclosing element 41 a is made by a pivoting connecting element, not shown in the Figure, a connection similar to that used between the closingelement 1 a and thebase element 1 b previously described in relation toFIGS. 1A, 1B and 1C and 2 . - The
base element 41 b comprises afirst sidewall element 54 and anupper member 55 whose edges are joined to the upper edge of thefirst sidewall element 54. A central protrudingring 39 is provided in the upper central portion of theupper member 55, which encircles a throughoutorifice 39 a. Anexternal screw thread 45 is provided in the lower external portion of thefirst sidewall element 54 of thebase element 41 b. In the Figures, an external screw thread with three entries is shown, for a exemplification only, as other types of screw threads may be used. It can be seen in the Figures the external screw thread flanks 45. Henceforth the expressions “external screw thread 45” and “external screw thread flanks 45” will be used to refer to the same screw thread. - The closing
element 41 a comprises asecond sidewall element 56, in the form of an elongated cylindrical body, and anupper member 57, circularly shaped, whose edges are joined to the upper edge of thesecond sidewall element 56. A protruding sealingelement 40 is provided in the inner central portion of theupper member 55 of the sealingelement 41 a. Thesealing protruding element 40 is designed to house the protrudingring 39 and to close the throughoutorifice 39 a of thebase element 41 b when theclosing element 41 a and thebase element 41 b are closed. - The guiding and locking
device 46, shown in partial cut inFIGS. 23A, 23B, 23C and 24 , comprises an elongated cylindrical body whose upper inner portion is provided with aninternal screw thread 44, in the Figure a three entries screw thread comprising alower flank 44 a and anupper flank 44 b, with aroot 44 c formed between these two flanks. In order to facilitate the description of the automatic opening device forcontainers 41 and its use for the opening ofcontainer 51, the flanks of theinternal screw thread 44 of the guiding and lockingdevice 46 are shown in the Figures, which would not appear in a cutting view. - The upper ends 44 d of the
upper flanks 44 b extend above the upper ends of thelower flanks 44 a to facilitate the screwing of the external screw thread flanks 45 in theroots 44 c. Reinforcement lugs 46 d are provided on the upper edge of the guiding and lockingdevice 46, located in the regions where the upper ends 44 d of theupper flanks 44 b are extended, thereby providing support for the upper ends 44 d at the moment when theentries 45 a of the external screw thread flanks 45 touch the upper ends 44 d, as will be seen hereafter. - As can be seen in
FIG. 23C , a plurality oflower locking elements 46 b are provided in the lower region of the inner portion of the guiding and lockingdevice 46, which comprise spaced apart lugs distributed circularly, the lower portion of each lug being joined to the lower region of the inner portion of the guiding and lockingdevice 46, and the body of each lug being pivoted towards the geometric axis of the guiding and lockingdevice 46. - A plurality of
upper rupture elements 46 a connects the upper region of the guiding and lockingdevice 46 to the lower edge of thebase element 41 b, as outlined by circle F inFIG. 23C . A plurality of guidingfins 46 c can also be seen in the Figure, provided in the lower inner portion of the guiding and lockingdevice 46. These guidefins 46 c are optional and serve to facilitate the insertion of the guiding and lockingdevice 46 in thespout 47, thereby positioning it correctly. - In the Figures the
screw thread 45 provided on the lower external portion of thefirst sidewall element 54 of thebase element 41 b, and theinternal screw thread 44 provided on the upper internal portion of the guiding and lockingdevice 46 comprise a screw thread with three entries. However, this is for exemplification only, and evidently the invention is not limited to the use of a screw thread with three entries. - A cutting
device 43 is provided in the lower central portion of theupper member 55 of thebase member 41 b, the cuttingdevice 43 comprising a hollow protruding body whose upper portion is connected to the lower central portion of theupper member 55 in the region where it is located the throughoutorifice 39 a, the latter being a continuation of the hollow portion of the cuttingdevice 43. The lower portion of the cuttingdevice 43 is provided with a plurality of cuttingelements 43 a. - In
FIGS. 25A and 25B , the automatic opening device forcontainers 41 is in a position immediately prior to the beginning of its application to thespout 47, which is made by pressing the lower portion of the automatic opening device forcontainers 41 against the upper portion of thespout 47, an operation performed in a factory by means of an applicator not shown inFIGS. 25A and 25B . -
FIG. 26A is a partial front view showing the automatic opening device forcontainers 41 duly applied to thespout 47. Notice that thelower locking elements 46 b of the guiding and lockingdevice 46 had passed the firstupper ring 49 at the end of the process of applying the automatic opening device forcontainers 41 to thespout 47. Consequently, thecontainer 51 will be ready for sale and to be subsequently opened by a user. - To open the container 51 a user must apply a clockwise rotation to the assembly formed by the closing
element 41 a and thebase element 41 b. This will cause theupper rupture elements 46 a to rupture, and consequently, theentries 45 a of the outer screw thread flanks 45 will be guided by the upper ends 44 d of the upper flanks of theinner screw thread 44 to start screwing in theroots 44 c. inFIG. 26B the external screw thread flanks 45 are already screwed on theroots 44 c of theinternal screw thread 44. - With the continuation of the clockwise rotary movement, the assembly formed by the closing
element 41 a and thebase element 41 b, besides rotating, will also execute a concomitant linear downward movement, and consequently the cuttingelements 43 a of the cuttingdevice 43 will tear the sealingelement 19, to open thecontainer 51. - The rotational movement of the assembly formed by the closing
element 41 a and thebase element 41 b in a clockwise direction will end when the inner portion of theupper member 55 of thebase element 41 b touches the rim of thespout 47, where it the sealingelement 19 is adhered to. This will cause a compression between theupper member 55 of thebase element 41 b and the edge of thespout 47, thereby contributing to create a sealing in this area of compression. -
FIG. 27 is a partial perspective cutting view depicting a variation of the automatic opening device forcontainers 41, in which the only difference regarding the automatic opening device forcontainers 41 depicted inFIGS. 23A, 23B, 23C and 24 is that the lower region of the guiding and lockingdevice 46 is provided with aninternal screw thread 52. This variation of the device for the automatic opening device forcontainers 41 can be used in containers provided with threaded spouts. - For exemplification only, the
spout 26 of thecontainer 20 shown inFIG. 27 is provided with a single entry screw thread with right angle orientation. However, screw threads having more than one entry can be provided to thespout 26, as well as left hand oriented screw threads can be used. Theinternal screw thread 52 of the automatic opening device forcontainers 41 must be screwed onto thescrew thread 30 of the screwedspout 26 by means of a rotating applicator, an operation executed in factory. - The operation to open the
container 20 is to be executed by users in the same manner as described hereinbefore. Users are unlikely to even notice the differences between the modalities of the automatic opening device forcontainers 41 used in a container, whether the one depicted inFIG. 27 or the one depicted inFIGS. 23A, 23B, 23C and 24 . -
FIGS. 28A and 28B are perspective views depicting alternative embodiments for the guiding and lockingdevice 46 of the automatic opening device forcontainers 41. InFIG. 28A the guiding and lockingdevice 46 is not provided withreinforcement wings 46 d (shown in the embodiment ofFIGS. 25A and 25B ). In this case, the upper ends 44 d of theupper flanks 44 b must be designed to withstand the stress to which they will be subjected at the moment of starting the operation to open the container, when they will come in contact with theentries 45 a of the external screw thread flanks 45. - In
FIG. 28B the elongated cylindrical body of the guiding and lockingdevice 46 is extended to provide support for the upper ends 44 d of theupper flanks 44 b. Although this alternative shape of the guiding and lockingdevice 46 is more complex to manufacture, it has the advantage of also providing protection for the external screw thread flanks 45, which become less exposed. This precludes the external screw thread flanks 45 from being damaged in case of possible impacts caused by falls, notably in market shelves, where products are displayed for sale. - It is possible to make different combinations of
internal screw threads 44 and external screw thread flanks 45 regarding those depicted in the previous Figures of the automatic opening device forcontainers 41. For example, it is possible to invert the location of theinternal screw threads 44 and the external screw threads flanks 45 without changing the operating manner of the embodiments of the invention regarding the automatic opening device forcontainers 41. -
FIG. 29A depicts a front partial cutting view of the automatic opening device forcontainers 41 in which thelower flank 44 a and theupper flank 44 b of thespout 44 are applied to the upper region of the inner portion of the guiding and lockingdevice 46, as described previously, however it is possible to invert this configuration. -
FIG. 29B shows a front partial cutting view of the automatic opening device forcontainers 41 in which an automatic opening device forcontainers 41 is depicted, the outer portion of the lower region of thebase element 41 b of thecontainers 41 being provided with anexternal screw thread 144, which comprises alower flank 144 a and anupper flank 144 b. Aroot 144 c is formed between these two flanks, wherein the lower ends 144 d of thelower flanks 144 a extend below the lower ends of theupper flanks 144 b. Aninternal screw thread 145 is provided in the upper region of the internal portion of the guiding and lockingdevice 46. - In
FIGS. 29A and 29B , for exemplification only, use is made of a three entries screw thread. Thescrew threads internal screw thread 145 will then comprise a plurality of internal screw thread flanks. - If the embodiment shown in
FIG. 29B is used in the automatic opening device forcontainers 41, the reinforcement lugs 46 d on the upper edge of the guiding and lockingdevice 46 will be located in the regions where the ends of the internal screw thread flanks 145 are extended above the upper edge of the guiding and lockingdevice 46. - Another difference regarding the embodiment depicted in
FIG. 29A will be notice at the moment of opening the container. In that, when a rotary movement is applied to the automatic opening device forcontainers 41, the lower ends 144 d of thelower flanks 144 a of theexternal screw thread 144 will touch the upper ends of the internal thread flanks of thescrew thread 145, which, in the continuity of the rotary movement, will cause the screwing of these internal screw thread flanks 145 on theroots 144 c of theexternal screw thread 144. - The operation to open the container will be the same regardless of which embodiment be used among the two described in the previous paragraphs. A user probably would not notice the difference between these two embodiments. The choice of the screw thread configuration to be used will be a design option, being only necessary to make the due adaptations in the embodiment of the automatic opening device for
containers 41 being used. - Although right hand oriented screw threads were depicted in the Figures of the previously described embodiments of the automatic opening device for
containers 41, left hand oriented screw threads can be used instead, as mentioned regarding the embodiments of the invention described hereinbefore. - Therefore, the same observations previously made are valid here, emphasizing that if a left angle oriented screw thread is used, it will only be necessary to make the necessary adaptations for the automatic opening device for
containers 41 can be used without any difficulty, whichever is the embodiment used.FIGS. 30A and 30B are front cutting views showing an automatic opening device forcontainers 41 provided with left hand oriented screw threads, similar to those depicted inFIGS. 29A and 29B . -
FIGS. 31A and 31B depict a front partial cutting view and a partial front perspective cutting view depicting an additional embodiment of an automatic opening device forcontainers 61 according to the teachings of the present invention. As can be seen in the Figures, the automatic opening device forcontainers 61 comprises aclosing element 61 a, abase element 61 b and alocking device 62. - As depicted in the Figures, the closing
element 61 a is in a closed position, engaged to thebase element 61 b. Preferably, both are connected to each other by means of a pivoting connection element, not shown in the Figures. This type of pivoting connection between base elements and closing elements is well known in the art, variations thereof being known, and can be used interchangeably in conjunction with the present invention. Any other connection means can be used to connect theclosing element 61 a to thebase element 61 b, and there may even be no connection means between them, and the connection between these two parts could be made by pressure, or by screwing, for example. - Likewise the automatic opening device for
containers base element 61 b comprises afirst sidewall 72, in the form of an elongated cylindrical body, and atop element 73, circularly shaped and whose edges are joined to the upper edge of thefirst sidewall 72. The closingelement 61 a is also similar to theclosing elements second sidewall 71, in the form of an elongated cylindrical body, and anupper element 75 shaped and whose edges are joined to the upper edge of thesecond sidewall 71. - A cutting
device 63 is provided in the inner region of thetop element 73, the cuttingdevice 63 comprising a protruding hollow body which projects downwardly, as shown inFIG. 31A , its lower portion being provided with a plurality of cuttingelements 63 a. InFIGS. 31A and 31B the cuttingdevice 63 does not appear in cut so as to allow to view it in its entirety. - The
top element 73 is provided in its upper region with a protrudingring 74, which encircles a throughout orifice 74 a. The upper region of the cuttingdevice 63 is connected to the lower portion of thetop element 73, in the region where the throughout orifice 74 a is located, the latter being a continuation of the hollow portion of the cuttingdevice 63. As thecutting device 63 has not been cut in the Figure, consequently the throughout orifice is not viewed in the Figure, the throughout orifice 74 a being shown in the Figure in dashed lines, to indicate its location in thetop element 73 in alignment with the hollow portion of the cuttingdevice 63. - A protruding sealing
member 76 is provided in the inner portion of theupper member 75 of the closingmember 61 a. The protruding sealingmember 76 is designed to house the protrudingring 74 when theclosing element 61 a and thebase element 61 b are closed, wherein the protruding sealingmember 76 closes the throughout orifice 74 a of thebase element 61 b, as shown inFIGS. 31A and 31B . - Preferably the
second sidewall 71 of theclosing element 61 a and thefirst sidewall 72 of thebase element 61 b of the automatic opening device forcontainers 61 have substantially equal outside diameters when closed, as shown inFIG. 31A . Therefore, thetop element 73 of thebase element 61 b must be provided with a recess in the region of its edge at which it connects to thefirst sidewall 72, to form an annular ring region 73 a. Thus, when theclosing element 61 a is in the closed position, the lower region of thesecond sidewall 71 will engage to the annular ring region 73 a, as can be seen inFIG. 31A . - This feature is only intended to facilitate the manipulation of the automatic opening device for
containers 61 by users, serving only to facilitate the use of the device. The configurations of theclosing element 61 a and thebase element 61 b can be different from those depicted in the Figures, provided that these different components do not cause difficulties for the operation of the automatic opening device forcontainers 61. - The automatic opening device for
containers 61 can even be provided without aclosing element 61 a such as the one shown in the Figures, and yet the automatic opening device forcontainers 61 will operate normally, as will be seen hereafter. - An
internal screw thread 64 is provided in the inner portion of thefirst sidewall 72 of thebase element 61 b. In the embodiment shown in the Figures, theinternal screw thread 64 comprises a right hand oriented screw thread of single entry. However, theinternal screw thread 64 may comprise a screw thread with any number of entries and, consequently, the invention is not limited to the use of aninternal screw thread 64 having a simple entry. Further, the orientation of theinternal screw thread 64 may also be to the left. - The locking
device 62 comprises an elongated substantially cylindrical body provided at its upper edge having a plurality ofupper rupture elements 62 a connected to the lower edge of thebase element 61 b, as can be seen in the Figures. A plurality oflower locking elements 62 b is provided in the lower inner portion of thelocking device 62. - The
lower locking elements 62 b comprise spaced apart lugs distributed circularly, the lower portion of each lug being joined to the lower region of thelocking device 62 and the body of each lug being inclined towards the geometric axis of thelocking device 62. Thelower locking elements 62 b can undergo small radial bends towards the inner wall of thelocking device 62. Other embodiments oflower locking elements 62 b may be used and, therefore, the invention is not limited to the embodiment depicted inFIGS. 31A and 31B . - The
upper rupture elements 62 a operate basically the same way as theupper rupture elements lower locking elements 62 b have basically the same functions as thelower locking elements - Other embodiments of rupture elements may be used on the
upper rupture elements 62 a, provided that they are able to cause the same effects obtained by the rupture elements depicted in the Figure. - The automatic opening device for
containers 61 should be screwed onto aspout 65 provided in acontainer 70. Thespout 65 comprises an elongatedcylindrical body 66 provided in its outer region with anexternal screw thread 67. Theinternal screw thread 64 of thebase element 61 b will screw onto theexternal screw thread 67 of thespout 65, as will be seen hereafter. A retainingring 68 is provided in the outer region of the elongatedcylindrical body 66, below theouter screw thread 67, and alower ring 69 is provided in the lower outer region of the elongatedcylindrical body 66, as can be seen in the Figures. Likewise thespouts spout 65 is provided in its rim with a sealingelement 77, as shown inFIG. 31B . - In
FIGS. 31A and 31B , the automatic opening device forcontainers 61 is in a position immediately prior to starting its application to thespout 65. The application starts by inserting the lower portion of the automatic opening device forcontainers 61 against the upper portion of thespout 65, by making a linear downward movement as indicated by the arrow N inFIG. 31B . This operation will cease when the automatic opening device forcontainers 61 is in a position where a rotational movement can be initiated, to cause theinternal screw thread 64 of thebase element 61 b to screw in theexternal screw thread 67 of thespout 65. This operation is executed in a factory, using an applicator not shown inFIGS. 31A and 32B . -
FIG. 31C depicts the automatic opening device forcontainers 61 partially screwed onto thespout 65, after the rotational screwing movement has started, as indicated by circle B. More particularly, the Figure depicts the moment of starting the rotational screwing movement, when thelower locking elements 62 b touches the edge of the retainingring 68. Consequently, thelower locking elements 62 b incline towards the internal region of thelocking device 62. When said rotational screwing movement is applied to the automatic opening device forcontainers 61, it also undergoes a concomitant downward linear movement, as indicated by the arrow N inFIG. 31C . - With the continuation of the rotational screwing movement, all the
lower locking elements 62 b moved past the edge of the retainingring 68, as shown inFIG. 31D , and will return to their original position, thereby serving as a locking means, intended to prevent unscrewing of the automatic opening device forcontainers 61. - The rotational screwing movement will cease when the lower edge of the
locking device 62 touches the upper region of thelower ring 69, as shown inFIG. 31D . From that moment on,container 70 will be ready for sale. - A particular feature of this embodiment of the invention is that is partial the screwing of the
internal screw thread 64 of thebase element 61 b of the automatic opening device forcontainers 61 on theexternal screw thread 67 of thespout 65, as depicted inFIG. 31D . This means that said rotational screwing movement of the automatic opening device forcontainers 61 onto thespout 65 would still be possible if it were not prevented by the touch of the lower edge of thelocking device 62 in the upper region of thelower ring 69, as previously described. - The use of the
lower locking elements 62 b is optional, although recommended, as it prevents inadvertent unscrewing of the automatic opening device forcontainers 61, as described hereinbefore. However, the automatic opening device forcontainers 61 would operate normally if it were not provided with thelower locking elements 62 b. - As a result of this partial screwing of the
lower locking elements 62 b, the lower ends of the cuttingelements 63 a of the cuttingdevice 63 will be positioned close to the sealingelement 77 adhered to the rim of thespout 65, as shown inFIG. 31D . - This partial screwing is fundamental to facilitate the opening of the
container 70 by a user, who will only need to rotate the automatic opening device forcontainers 61 in a clockwise direction, thereby causing the tearing of theupper rupture elements 62 a. Consequently, the screwing of theinternal screw thread 64 of thebase element 1 b of the automatic opening device forcontainers 61 on theexternal screw thread 67 of thespout 65 will go on. - Concomitantly with this rotational screwing movement, a linear downward movement of the automatic opening device for
containers 61 will also occur, and the combination of these two movements, clockwise rotational screwing and linear downward, will cause thecutting elements 63 a of the cuttingdevice 63 to progressively pierce the sealingelement 77 adhered to the rim of thespout 65. - These clockwise rotational and linear downward movements of the automatic opening device for
containers 61 will cease when the rim of thespout 65 touches the lower region of thetop element 73, and when this occurs the cutting elements of the cuttingdevice 63 will have already torn the sealing element, and the product stored in thecontainer 70 can then be served, passing through the hollow interior of the cuttingdevice 63 and the throughout orifice of thebase element 61 b. - Some aspects are relevant for designing the automatic opening device for
containers 61, to enable it to operate correctly to opencontainer 70. One of these relevant aspects is to design thelower locking elements 62 b in such a way that, after they had move past the edge of the lockingring 68, they must resist any attempts to unscrew the automatic opening device forcontainers 61. - This is important because users are used to executing a counterclockwise rotational movement to unscrew a cap from a spout, due to the massive use of right-oriented screw threads on caps and spouts, and situations may occur where users inadvertently attempt to unscrew the automatic opening device for
containers 61 fromspout 65, without first realizing the need to continue to perform a screwing operation of the automatic opening device forcontainers 61 inspout 65 to open of thecontainer 70. - In such situations it is desirable that the resistance opposed by the
lower locking elements 62 b to this attempt to unscrew the automatic opening device forcontainers 61 of thespout 65 is such that it makes it extremely difficult to occur. The user must then pay attention to the instructions to correctly open thecontainer 70, executing then a clockwise rotary operation to keep screwing. As mentioned hereinbefore, these instructions may appear in the upper region of theupper element 75 of theclosing element 61 a. - An aspect of fundamental importance for the correct operation of the automatic opening device for
containers 61 to opencontainer 70 is the correct sizing of some components of the automatic opening device forcontainers 61 object of this embodiment of the invention, particularly thebase element 61 b and thelocking device 62, as will be seen hereafter. - In
FIG. 31A it can be seen that thespout 65 has a linear extension L1 between its rim and the edge of the retainingring 68, and a linear extension C1 between said edge of the retainingring 68 and the portion of the upper region of thelower ring 69 where the edge bottom of thelocking device 62 will touch, at the end of the assembly of the automatic opening device forcontainers 61 on thecontainer 70, as shown inFIG. 31D . - It can also be seen from
FIG. 31A that thebase element 61 b has a linear extension L2 between the lower part of the ring-shaped engagement region 74 a and its lower edge, and a linear extension C2 between that lower edge of thebase element 61 b and an imaginary plane that contains the upper region of thelower locking elements 62 b. - In
FIG. 31D the linear extension L3 represents the displacement of the linear extension of thespout 65 between its edge and the edge of the retainingring 68 inside the automatic opening device forcontainers 61, after the device is in the final position of its application to thespout 65. The linear extension C3 represents the spacing between the edge of thespout 65 and the bottom of the ring-shaped engagement region 73 a of theupper member 73. - In order for the automatic opening device for
containers 61 object of this embodiment of the invention to operate in the manner previously described, it is necessary that the linear extensions L1, L2 e L3 described above are substantially identical, allowing small variations resulting from manufacturing tolerances that do not harm the perfect engagement of the components related to these linear extensions. Likewise, the linear extensions C1, C2 e C3 must also be substantially identical, the same comments regarding manufacturing tolerances applying here. These are geometric relationships that must be considered for the design of the automatic opening device forcontainers 61. -
FIGS. 32A and 32B are upper perspective views showing an automatic opening device forcontainers 41 whosebase element 41 b is provided with a pouringdevice 53. InFIG. 32A theclosing element 41 a is in the open position, and inFIG. 32B is in the closed position, in a partial cut. The pouringdevice 53 comprises an integrally hollow body formed by a firstcurved portion 53 a and asecond portion 53 b. - The first
curved portion 53 a has one end connected to the hollow body of the cutting device 43 (not shown in the Figures), and its other end is connected to one end of the secondhorizontal portion 53 b, the latter extending over the face of thebase element 41 b towards the edge, as shown inFIG. 32A . The other end of the secondhorizontal portion 53 b is beveled and forms arim 53 c, which defines a throughoutorifice 53 d. - The closing
element 41 a is provided with a sealingelement 54, which is designed to rest on therim 53 c of the secondhorizontal portion 53 b when theclosing element 41 a is in the closed position, as can be seen inFIG. 32B . Consequently, the sealingelement 54 blocks the undesirable passage of product through the throughoutorifice 53 d if, for example, the container is placed in an inclined position with the closingelement 41 a in the closed position, or even in an inverted position, supported on the upper face of theclosing element 41 a. - The sealing
element 54 prevents the possibility for the product to flow through the throughoutorifice 53 d and accumulate inside the empty space formed between the closingelement 41 a and thebase element 41 b. In case the sealingelement 54 were not provided, when a user would open theclosing element 41 a, an undesirable product spill would occur. - This embodiment of the pouring
device 53 enables a user to pour the product stored in the container without having to place the container upside-down, in a position where the throughout orifice is substantially downwards, which can cause the product to overflow, in special thixotropic products. - For a user to pour the product into the container it suffices to slightly incline the container to initiate a flow of product. The control of such flow is easily made by varying the angle of inclination of the container, in conjunction with making a slight pressure in the container, in case that it is made of flexible material. The pouring
device 53 may be used in conjunction with any of the embodiments and variations of the invention described hereinbefore. Therefore, mutatis mutandis, the automatic opening device forcontainers 1 shown inFIGS. 1A to 12 andFIGS. 14A to 22 may also be provided with a pouringdevice 53. - In the description of the embodiments of the invention made hereinbefore it has always been shown that the automatic opening device for containers is provided with a closing element and a base element, joined by a pivoting connecting element. However, it is possible to use other configurations other than those described hereinbefore. For example, the closing element can be attached to the base element by means of a screw thread, or by means of a pressure coupling, as previously mentioned.
- Alternatively, it is possible that the embodiments of the automatic opening device for containers disclosed hereinbefore be provided with only the
base elements - Some solutions can be used in order to avoid this problem. For example, as shown in
FIG. 33 , regarding the embodiments depicted inFIGS. 1A to 12C , merely for example, theupper member 10 of thebase element 1 b may be provided with a protruding pluggingelement 58 formed by an elongated hollow body whose upper portion is closed, and the bottom portion is open and firmly connected to thebase element 1 b, with the hollow portion of the protruding pluggingelement 58 being aligned and in communication with the throughout orifice 2 a and, consequently, with the hollow portion of thecutting device 3. - Therefore, after a user has opened the container, it will suffice to use a cutting element, such as a knife, to make a transverse cut across section the body of the protruding plugging
element 58 to provide a throughout orifice, in order to allow the product stored in the container to pass through hollow portion of the protruding pluggingelement 58. - A
cap 59 can be provided to close this throughout orifice in the hollow portion of the protruding pluggingelement 58, in order to prevent that passage from being permanently open. Preferably thecap 59 is connected to thebase element 1 b by means of a flexible connectingelement 60, to prevent thecap 59 from being inadvertently discarded by the user. - Evidently, mutatis mutandis, this solution could also be used in the embodiments depicted in
FIGS. 23A to 31B . Notice that thecap 59 and theclosing element 1 a, or theclosing element 41 a, execute the same function of sealing the passage of the product stored in the container through the throughoutorifices 2 a or 39 a, respectively. The only difference is that thecap 59 is sized to engage the body of the protruding pluggingelement 58, thereby resulting in a smaller component and saving material. -
FIGS. 34A and 34B depict perspective views showing an exemplary rotational locking system that can be used in conjunction with any of the automatic opening devices for containers described hereinbefore. For exemplification only, said rotational locking system is described in conjunction with the embodiment of the automatic opening device forcontainers 41 shown inFIGS. 23A, 23B, 23C and 24 . It is important to mention that, mutatis mutandis, this rotational locking system can also be used in the automatic opening devices forcontainers -
FIGS. 34A and 34B depict an externalscrew thread flank 45 being screwed onto theinternal screw thread 44. Each of the external screw thread flanks 45 is provided with a lockingrecess 45 b to preclude rotational movements, which is designed to latch into a locking protrusion 44 e provided in one of the flanks of thescrew thread 44, thereby preventing rotational movements. - The location of each
rotational locking recess 45 b and each rotational locking shoulder 44 e must be determined in such a way that the latch between them occurs at the same time as the inner portion of theupper member 55 of thebase member 41 b touches the edge of thespout 47. Therefore, when a user opens the container, by means of a clockwise rotation of the assembly formed by the closingelement 41 a and thebase element 41 b, at the moment when the rotational locking recesses 45 b latches into the lockingshoulder 44 of thescrew thread 44, the user will hear a snap. From that moment on no rotation will occur, in any direction, as the whole assembly is locked in that position. - The rotational locking system depicted in
FIGS. 34A and 34B prevents the assembly formed by the closingelement 41 a and thebase element 41 b from rotating to unscrew thescrew thread 44 in an anti-clockwise direction. It therefore serves as a tamper resistant means that precludes removal of that assembly formed by the closingelement 41 a and thebase element 41 b, thereby preventing the container from being refilled after the product originally stored in the container has been fully poured. - If a container is provided with an automatic opening device for containers according to the invention in which there is no connecting element to hold the
closing element cap 59, connected to thebase element closing elements cap 59 from being improperly removed when the container is in market shelves. -
FIG. 35 shows an automatic opening device forcontainers 81 according to a further embodiment of the invention. As can be seen in the Figure, the automatic opening device forcontainers 81 comprises aclosing element 81 a, abase element 81 b and alocking device 6. The automatic opening device forcontainers 81 is quite similar to the automatic opening device forcontainers 1 shown inFIGS. 1A, 1B and 1C . - The closing
element 81 a, when is in the closed position, engage with thebase element 81 b, and both are connected to each other by means of apivoting connection element 86, as shown inFIG. 35 . There are variations of this type of pivoting connection, which can be used interchangeably in conjunction with the present invention. In addition, any other type of connection means can be used to connect theclosing element 81 a to thebase element 81 b, and there may even be no connection means between them, in which case the connection between these two parts could be made by pressure or screwing, for example. - The
base element 81 b comprises afirst sidewall 78, in the form of an elongated cylindrical body, and a circularly shapedtop element 79 whose edges are joined to the upper edge of thefirst sidewall 78. The upper region of thetop element 79 is provided with a protrudingelement 84, located in a region close to the edge of thetop element 79, preferably located 180° from the region where the connecting pivotingelement 86 connects thebase element 81 b with the closingelement 81 a, although other locations can be chosen. The protrudingelement 84 encircles a throughoutorifice 83. - The closing
element 81 a comprises asecond sidewall 80 in the form of an elongated cylindrical body and anupper element 82, circular in shape and whose edges are joined to the upper edge of thesecond sidewall 80. A protruding sealingelement 85 is provided in the lower region of theupper element 82, intended to close the throughoutorifice 83 of thebase element 81 b when theclosing element 81 a and thebase element 81 b are closed. The protruding sealingelement 85 can be designed to encircle the protrudingelement 84, or, alternatively, engage with the throughoutorifice 83 to create a sealing. - Consequently, the location of the protruding sealing
element 85 in the lower region of theupper element 82 will be a function of the location of the protrudingelement 84, and in the present case it will be located in a region close to the edge of the upper portion of theupper element 82, preferably located at 180° from the region in which the connecting pivotingelement 86 connects thebase element 81 b to theclosing element 81 a, although other locations can be chosen. - Preferably the automatic opening device for
containers 81 is designed so that thesecond sidewall 80 of theclosing element 81 a and thefirst sidewall 78 of thebase element 81 b have substantially equal outside diameters when closed. To this aim, thetop element 79 of thebase element 81 b must be provided with a recess in the region of its edge where it connects to thefirst sidewall 78, to form a ring-shaped engagement region 79 a. Thus, when theclosing element 81 a is in the closed position, the lower region of thesecond sidewall 80 will engage into said ring-shaped engagement region. - This feature intends to facilitate the manipulation of the automatic opening device for
containers 81 by users. It is possible to use different configurations of theclosing element 81 a and thebase element 81 b than those depicted in the Figures, without, however, changing the functionality of these components for the operation of the automatic opening device forcontainers 81. The automatic opening device forcontainers 81 may even be provided without aclosing element 81 a as shown inFIG. 35 , and yet the automatic opening device forcontainers 81 will operate normally, according to the teachings of the invention. - As can be seen in
FIG. 36 , aninternal screw thread 87 is provided in the inner portion of thefirst sidewall 78 of thebase element 81 b. The configuration of theinternal screw thread 87 may comprise, for example, a right-oriented screw thread with three entries, although theinternal screw thread 87 may comprise a screw thread with any number of entries. - Therefore, this embodiment of the invention is not limited to the use of an internal screw thread with three entries, and such screw thread was only chosen for exemplification only, although the use of a screw thread with multiple entries is more suitable for the purposes of the invention. The
internal screw thread 87 may be indistinctly oriented to the right, as shown in the Figures, or to the left. - The inner portion of the
top element 79 is provided with acutting device 88, which comprises a hollow protruding body whose upper portion is connected to the lower portion of thetop element 79 in the region where the throughoutorifice 83 is located. The latter is a continuation of the hollow portion of the cuttingdevice 88, thereby forming a direct connection substantially between the throughoutorifice 83 and the hollow portion of the cuttingdevice 88, through which the product contained in the container will pass. The lower portion of the cuttingdevice 88 is provided with a plurality of cuttingelements 88 a. - The
locking device 6 shown inFIGS. 35, 36 and 37 is identical to the locking device that has been described in relation to the embodiment of the invention shown inFIGS. 1A, 1B, 1C and 2 , and comprises an elongated substantially cylindrical body provided in its upper edge of a plurality ofupper rupture elements 6 a which are connected to the lower edge of thebase element 1 b, as can be seen in more detail inFIG. 1C . - A plurality of
lower locking elements 6 b is provided in the lower internal portion of thelocking device 6. Thelower locking elements 6 b comprise spaced apart lugs circularly distributed, the lower portion of each lug being joined to the lower region of thelocking device 6 and the body of each lug being inclined towards the geometric axis of thelocking device 6. Thelower locking elements 6 b are designed so that they can slightly incline radially towards the inner wall of thelocking device 6. - Other configurations of
lower locking elements 6 b can be used and, therefore, the invention is not limited to the configuration depicted inFIGS. 36 and 37 . The function of theupper rupture elements 6 a and thelower locking elements 6 b will be understood hereafter, in the description of the operation to apply the automatic opening device forcontainers 81 to a spout. Thecontainer 20 shown inFIGS. 36 and 37 is the same shown inFIG. 3 , which is provided with aspout 12 which comprises an elongated cylindrical body provided with anexternal screw thread 14, in the Figure a three-entry, right-oriented screw thread, which comprises alower flank 14 a and anupper flank 14 b, with aroot 15 formed between these two flanks. The characteristics of theexternal screw thread 14 have been described hereinbefore, and for this reason, it will not be repeated here. - The choice of an external right-oriented screw thread, with three entries, is because this is the configuration used in the
internal screw thread 5 of thebase element 81 b. The same comments presented hereinbefore with this regard are valid here, in that the use of a right-oriented thread with three entries is for exemplification only. Therefore, is evidently that the invention is not limited to use only a three-entries screw thread, be it right or left hand oriented. Therefore, theexternal screw thread 14 may be a screw thread with any number of entries, and its orientation can be indistinctly to the right, as shown inFIGS. 36 and 37 , or to the left, as long as it is compatible with the screw thread used in theinternal screw thread 87. - A sealing
element 19 is affixed to the rim of thespout 12. Thespout 12 is also provided in its outer portion with anupper ring 16, anintermediate ring 18 and alower ring 17, located in the upper, intermediate and lower regions, respectively. The diameter of theupper ring 16 is smaller than the diameter of theintermediate ring 18, and the diameter of theintermediate ring 18 is smaller than the diameter of thelower ring 17, as can be seen inFIGS. 36 and 37 . - The application of the automatic opening device for
containers 81 to thespout 12 is made by means of a pressing process, a downward longitudinal movement, by means of which the lower part of the automatic opening device forcontainers 81 is pressed against the upper part of thespout 12. - The process for applying the automatic opening device for
containers 81 to thespout 12 of thecontainer 20 is the same as previously described regarding the application of the automatic opening device forcontainers 1 to thespout 12 of thecontainer 20, and shown inFIGS. 4A, 4B, 4C and 4D . For this reason, the description of this process will not be repeated here. Consequently, the same observations made hereinbefore regarding the embodiment of the invention referring toFIGS. 4A, 4B, 4C and 4D are valid here. - In
FIG. 36 depicts the automatic opening device forcontainers 81 in the position it remains after being applied to thespout 12 of thecontainer 20, an operation executed in factory. In that position,container 20 is ready for sale. When a user needs to open thecontainer 20, to pour the product contained therein, suffices to rotate the automatic opening device forcontainers 81 in order to make the cuttingelements 88 a of the cuttingdevice 88 tear the sealingelement 19, thereby releasing the passage of the product through the hollow portion of the cuttingdevice 88 and through the throughoutorifice 83. - The process of opening
container 20 by means of the automatic opening device forcontainers 81 is exactly the same as that was described with regard toFIGS. 6A, 6B, 6C and 6D , referring to the process for open thecontainer 20 by means of the automatic opening device forcontainers 1. For this reason, the description of this process will not be repeated herein. Consequently, the same observations made hereinbefore regarding the embodiment of the invention referring toFIGS. 6A, 6B, 6C and 6D are valid here. - In
FIG. 37 the automatic opening device forcontainers 81 is depicted in a position after a user has made a rotation that has made the cuttingelements 88 a of the cuttingdevice 88 cut the sealingelement 19, thereby enabling the product to pass through the hollow portion of thecutter 88 and through the throughoutorifice 83. -
FIG. 38 depicts a top perspective view of a variation of the throughout orifice of the fourth embodiment of the automatic opening device for containers depicted inFIGS. 35, 36 and 37 . As can be seen inFIG. 38 , the protrudingelement 84 depicted in the Figure is has an annular shape, which encircles a circular throughoutorifice 83. All the remaining components of the automatic opening device forcontainers 81 shown inFIG. 38 are identical to those described in relation toFIGS. 35, 36 and 37 , and for that reason, the description of these components will not be repeated here. - The characteristic of that embodiment of the invention depicted in
FIGS. 35 to 38 can also be used in any of the embodiments and variations of the invention disclosed in this specification, that is, the provision of a protrudingelement 84 that encircles a throughoutorifice 83, both provided in a region close to the edge of the upper portion of thetop element 79 of thebase element 81 b, with acutting device 88 duly positioned in the region where the throughoutorifice 83 is located. In this case, mutatis mutandis, the necessary adaptations must be made so that it can be done. -
FIGS. 39 to 45 depict a further embodiment of the present invention, which is similar to the embodiment ofFIGS. 10 and 11 . The differences between the embodiment ofFIGS. 39 to 45 and the embodiment ofFIGS. 10 and 11 is the use of a cap comprising an upper sealing element and a base element and the manner these components are locked to form the automatic opening device for containers object of the present embodiment. - The use in the present embodiment of a cutting device having larger diameter is only an operational choice, since the dimensions of the cutting device used in the variation of the embodiment of the automatic opening device for containers shown in
FIGS. 10 and 11 can be changed without being characterized as a new type of cutting device. - Thus, in the following description of the automatic opening device for
containers 140 depicted inFIGS. 39 to 45 , mention will only be made regarding anupper sealing element 141 a and a base element 141 b that form part of the automatic opening device forcontainers 140. The remaining components which are common to the embodiment of the automatic opening device for containers shown inFIGS. 10 and 11 will not be described here, and inFIGS. 39 to 45 the same indicative numerals will be used to refer to them. - In
FIGS. 39 to 45 theupper sealing element 141 a, the base element 141 b and thelocking device 6 are shown in the cut. As can be seen, theupper sealing element 141 a comprises a disk-shaped body and substantially flat whose lower region is provided with a sealingprojection 141 a′ having the shape of a trunk of a cylinder, the upper edge of the sealingprojection 141 a′ being rigidly affixed to the lower region of theupper sealing element 141 a, as can be seen in the Figures. - The base element 141 b comprises a hollow cylindrical body whose internal region is provided with at least one segment of
internal screw thread 5, inFIGS. 39 to 45 three segment ofinternal screw threads 5 being shown as a not limiting example. Each segment ofinternal screw thread 5 is designed to engage on a respective segment ofexternal screw thread 14 of thespout 12. Evidently, the number of segment ofinternal screw threads 5 used in the base element 141 b must be the same number of segment ofexternal screw threads 14 of thespout 12. - The base element 141 b is also provided with a
cutting device 143, which comprises a hollow cylindrical body whose upper edge is affixed to the upper inner region of the base element 141 b by means of a connectingring 145. The lower region of thedevice cutting element 143 is provided with at least onecutting element 143 a. - The edge of the lower inner region of the base element 141 b is provided with a plurality of upper locking elements 141 b′, each of them comprising in this embodiment a body projecting obliquely and upwardly towards the imaginary geometric axis of the element base 141 b. The upper locking elements 141 b′ are designed to be able to slightly incline in opposition to the geometric axis of the base element 141 b. A connecting
link element 144 connects theupper sealing element 141 a to the base element 141 b. - The
locking device 6 comprises a hollow body in a substantially cylindrical shape, whose top edge is provided with a plurality ofrupture elements 6 a, which are also connected to the bottom edge of the base element 141 b, thereby forming a breakable interconnection between the lockingdevice lock 6 and the base element 141 b. The function of therupture elements 6 a will be understood from the description that will be made hereinafter regarding the mode to use the automatic opening device forcontainers 140. - The edge of the lower internal region of the
locking device 6 is provided with a plurality oflower locking elements 6 b, each of them comprising in the present embodiment a body projecting obliquely and upwardly towards the imaginary geometric axis of thelocking device 6. Thelower locking elements 6 b are designed in such a way as to be able to slightly incline in opposition to the geometric axis of thelocking device 6. -
FIGS. 39 and 40 depict the assembly formed by theupper sealing element 141 a, the base element 141 b and thelocking device 6 before the assembly is inserted into thespout 12.FIGS. 41 and 42 depict the assembly formed by theupper sealing element 141 a, the base element 141 b and thelocking device 6 after the assembly is inserted into thespout 12. As shown inFIGS. 41 and 42 thelower locking elements 6 a of thelocking device 6 have already move past theupper ring 16. When thelower locking elements 6 b touches the upper edge of thelower ring 17 they incline in opposition to the geometric axis of thelocking device 6, thereby allowing thelower locking elements 6 b to move past thelower ring 17. - Consequently, the assembly formed by the
upper sealing element 141 a, the base element 141 b and thelocking device 6 is locked in the position depicted inFIGS. 41 and 42 , and can no longer be removed by means of upward longitudinal movements. That is the mounting position in that the assembly formed by theupper sealing element 141 a, the base element 141 b and thelocking device 6 and thespout 12 must remain to form the automatic opening device forcontainers 140 so that the latter can be applied to a container, an operation performed at a factory using a tool specially dedicated for this purpose. After being duly assembled, an automatic opening device forcontainers 140 should be applied, for example, to an aseptic carton package or to a plastic pouch. - When it is necessary to open the container, be it an aseptic carton package or a plastic pouch, it will be necessary to apply a counterclockwise rotary movement to the assembly formed by the
upper sealing element 141 a and the base element 141 b. When this counterclockwise rotary movement is applied, initially each segment ofinternal screw thread 5 of the base element 141 b is screwed into its respective segment ofexternal screw thread 14 of thespout 12. Next, with the continuity of the rotary movement in the counterclockwise direction, therupture elements 6 a will be broken, thereby allowing the rotary movement to continue in the counterclockwise direction of the assembly formed by theupper sealing element 141 a and the base element 141 b. - Note that the
upper portion 21 of each upper flank of the segment ofexternal screw threads 5, which extends beyond theupper ring 16 of thespout 12, guarantees that each segment ofinternal screw thread 5 of the base element 141 b can screw in its respective segment ofexternal screw thread 14, because when each segment ofinternal screw thread 5 touches theupper portion 21 of the respective upper flank, the only possibility for the continuation of the rotary movement in the counterclockwise direction will be the screwing of each segment ofinternal screw thread 5 in the respective segment ofexternal screw thread 14. - As the
cutting device 143 is rigidly attached to the base element 141 b, evidently thecutting device 143 will execute the same movements made by the base element 141 b. Therefore, with the continuation of the counterclockwise rotary movement of the assembly formed by theupper sealing element 141 a and the base element 141 b, thecutting device 143 will execute the same counterclockwise rotary movement executed by the assembly formed by theupper sealing element 141 a and the base element 141 b. - Concomitantly with this movement, the assembly formed by the
upper sealing element 141 a and the base element 141 b will also make an axial downward movement, resulting from the screwing of the segment ofinternal screw threads 5 of the base element 141 b in their respective segment ofexternal screw threads 14 of thespout 12, as indicated by the arrow W inFIG. 41 . Consequently, the acutting device 143 will perform the same downward axial movement indicated by the arrow W inFIG. 41 . - The composition of the counterclockwise and downward axial rotational movements made by the
cutting device 143 will cause the cuttingelements 143 a of thecutting device 143 to cut the sealingelement 19 of the container, adhered to the rim of thespout 12. - In
FIG. 43 thecutting device 143 is depicted in the final position, after the assembly formed by theupper sealing element 141 a and the base element 141 b has reached the lowest position in the previously described screwing operation, when the upper edge of thespout 12 touches the lower region of theconnection ring 145, as can be seen in more detail inFIG. 43 . Note inFIG. 43 that the upper locking elements 141 b′ moved past theintermediate ring 18 of thespout 12. When the upper locking elements 141 b′ touched the upper edge of theintermediate ring 18 they inclined in opposition to the geometric axis of the base element 141 b, which allowed the upper locking elements 141 b′ to move past theintermediate ring 18 - Detail X in
FIG. 43 shown the upper locking elements 141 b′ having already moved past theintermediate ring 18. Consequently, the assembly formed by theupper sealing element 141 a and the base element 141 b was locked in that position shown inFIG. 43 , and can no longer be released. The use of the upper locking elements 141 b′ is optional, and is only intended to prevent the removal of the assembly formed by theupper sealing element 141 a, the base element 141 b. Optionally, said locking of the assembly formed by theupper sealing element 141 a and the base element 141 b can be achieved between the segment ofinternal screw threads 5 and the segment ofexternal screw threads 14, at the end of their screwing. - After the container is open, as described above, it suffices to incline the
upper sealing element 141 a to pour the product contained within the container through thespout 12.FIGS. 44 and 45 depict in cut the automatic opening device forcontainers 140 with theupper sealing element 141 a shown in the open and closed positions, respectively. - It is important to note that in
FIGS. 39 to 45 the segment ofinternal screw threads 5 of the base element 141 b and the segment ofexternal screw thread 14 of thespout 12 comprise a left-oriented screw thread. The choice of this type of orientation is due to the fact that users are accustomed to manipulating threaded caps and spouts provided with right hand oriented screw threads, wherein unscrewing is made by counterclockwise rotating movements to cause upward axial movements. - As in the present embodiment of the invention it is necessary that the assembly formed by the
upper sealing element 141 a and the base element 141 b make first an axial downward movement to cause the sealing element to be torn, when a user is opening the container, it is then preferably to use a left hand oriented screw thread, wherein counterclockwise rotary movements cause axial downward movements. The use of right-hand oriented screw threads certainly would cause difficulties for most users to rotate said assembly correctly. - After this first rotation of the assembly formed by the
upper sealing element 141 a and the base element 141 b, there will no longer be any need to apply rotational movement to any of the components of the automatic opening device forcontainers 140. As seen from the description of the present embodiment of the invention, to pour the product contained in the container, it suffices to incline the container to pour the product through thespout 12. - It is important to note that the segment of
internal screw threads 5 of the base element 141 b and the segment ofexternal screw thread 14 of thespout 12 may comprise a right-hand oriented screw thread. In this case, users would have to be instructed to initially rotate the assembly formed by theupper sealing element 141 a and the base element 141 b in a clockwise direction to cause a downward axial movement said assembly in order to tear the sealingelement 19. - As it was noticed from the descriptions of the different embodiments and variations of the automatic opening device for containers object of the invention, the fundamental characteristic of all of them is the provision of a cutting device that, in addition to serving as a cap for the container, is provided with a means for executing a cutting operation of the sealing elements which are usually affixed to the rims of the spouts of the containers, thereby creating a passage to enable the product contained in the container to be poured. This eliminates the need to execute the operations of unscrewing and removing the cap, manually removing the sealing element and screwing back the cap on the spout of the container, as occurs nowadays. Therefore, the present invention obviates the need for users to even remove the cap from the threaded spouts of the containers in order to remove the sealing elements that are applied to the rim of the spouts.
- With the use of the embodiments of the automatic opening device for containers of the invention, it is no longer necessary to use thick sealing elements adhered to the rim of the spouts, and so the thickness of the sealing element may be reduce to simply seal the container. Therefore, it is no longer needed to use thick sealing elements solely to prevent users from inadvertently damaging or puncturing them at market shelves when they are checking if the container is duly sealed.
- The use of a screw thread with multiple entries in the embodiments of the automatic opening device for containers previously described provides a much greater lead than it would be obtained by using a single entry screw thread, thereby allowing the operation of opening the containers to be rapidly executed. The faster the container is opened, the easier and faster is the tearing of the sealing element by the cutting elements of the cutting device, due to the fact that the sealing element is still well tensioned as a consequence of its strong adhesion to the rim of the spout.
- The shapes of the cutting elements used in the cutting devices of the invention must be determined according to the cutting speed provided by the type of screw thread used in the automatic opening device for containers and the characteristics of the material used in the sealing element.
- Tamper resistant devices may be used in conjunction with the various embodiments and variations of the invention described herein, in order to guarantee the user that the container has not been tampered with. For example, thermal wrappers around the spout and devices can be used, which are provided with tear lines that facilitate their removal, as is well known in the art.
- The present invention has been described regarding its various embodiments and variations. Modifications or substitutions may be made in the invention without, however, departing from the inventive concept described and disclosed herein. Consequently, the invention is not limited only to the embodiments and variations described herein, being only limited by the scope of the accompanying claims to this specification.
Claims (36)
1. An automatic opening device for containers (1,61,140) provided with a sealing element (19,77) in a spout (12,65), an external screw thread (14,67) of at least one entry being provided in the said spout (12,65), the automatic opening device for containers (1,61,140) comprising a base element (1 b, 61 b, 141 b) and a locking device (6,62), in that:
the base element (1 b, 61 b, 141 b) comprises a first sidewall (11,72) and an upper element (10.73) whose edges are joined to the upper edge of the first sidewall (11,72);
the upper element (10,73) is provided with a throughout hole (2 a,74 a);
a screw thread (5,64) of at least one entry is provided in the internal region of the first sidewall (11,72) of the base element (1 b,61 b);
the locking device (6,62) comprises an elongated body provided at its upper edge with a plurality of upper rupture elements (6 a,62 a), which are connected to the lower edge of the base element (1 b,61 b); and
the locking device (6,62) is provided in its lower region with a means for locking the automatic opening device for containers (1,61) in the spout (12,65);
the automatic opening device for containers (1,61) characterized in that:
the upper element (10,73) is provided with a cutting device (3,63), which comprises a protruding hollow body extending downwardly, whose upper region is connected to the lower region of the upper element (10,73) where the throughout hole (2 a,74 a) is located, being a continuation of the hollow portion of the cutting device (3,63), the lower region of the cutting device (3,63) being provided with a plurality of cutting elements (3 a,63 a); and
the external screw thread (14,67) of the spout (12,65) and the internal screw thread (5,64) in the internal region of the first sidewall (11,72) of the base element (1 b, 61 b) have the same number of entries and comprise screw threads of the same orientation, chosen from the group comprising right-hand orientation and left-hand orientation.
2- An automatic opening device for containers (1) according to claim 1 , characterized in that:
it is additionally provided with a closing element (1 a) which is connected to the base element (1 b) by means of a connection chosen from the group comprising a connecting pivoting element (7), a screwed-threaded connection and a pressure connection;
the closing element (1 a) comprises a second sidewall (9) and an upper element (8) whose edges are joined to the upper edge of the second sidewall (9), the upper element (8) being provided in its internal lower region with a protruding sealing element (4);
a central protruding ring (2) encircles the throughout hole (2 a) in the central region of the upper element (10); and
said means for locking the automatic opening device for containers (1) comprises a plurality of lower locking elements (6 b) in the form of spaced apart lugs distributed circularly, the lower portion of each lug being joined to the lower region of the lower portion of the locking device (6), and the body of each lug being inclined towards the geometric axis of the locking device (6).
3- An automatic opening device for containers (1) according to claim 2 , characterized in that:
the internal screw thread (5) provided in the internal region of the first sidewall (11) comprises a screw thread of multiple entries, each screw thread (5) comprising flanks of internal screw thread;
an upper ring (16), an intermediate ring (18) and a lower ring (17) are provided in the upper, intermediate and lower regions, of the external region of the spout (12), respectively;
the diameter of the upper ring (16) is smaller than the diameter of the intermediate ring (18), and the diameter of the intermediate ring (18) is smaller than the diameter of the lower ring (17); and
the external screw thread (14) of the spout (12) comprises a multiple entries screw thread, each entry comprising a lower flank (14 a) and an upper flank (14 b), with a root (15) formed between the lower flank (14 a) and the upper flank (14 b), in that the upper flank (14 b) has an extended upper end (21), which extends beyond the upper ring (16), and the lower flank (14 a) has its upper end even with lower region of the upper ring (16).
4- An automatic opening device for containers (1) according to claim 2 , characterized in that:
the internal screw thread (5) provided in the internal region of the first sidewall (11) comprises a multiple entries screw thread, each comprising bipartite internal screw thread flanks, which comprise an upper section (5 s) and a lower section (5 i);
an upper ring (16), an intermediate ring (18) and a lower ring (17) are provided in the upper, intermediate and lower regions, respectively, of the external region of the spout (12);
the diameter of the upper ring (16) is smaller than the diameter of the intermediate ring (18), and the diameter of the intermediate ring (18) is smaller than the diameter of the lower ring (17);
a guiding element (22) is provided in the external region of the first sidewall (11), which extends parallel to the upper edge of the spout (12);
the external screw thread (14) of the spout (12) comprises a multiple entry screw thread, each entry comprising a lower flank (14 a) and an upper flank (14 b), with a root (15) formed between the lower flank (14 a) and the upper flank (14 b), where the upper flank (14 b) has an upper end (21) that extends to the guiding element (22) and the lower flank (14 a) has its upper end facing the lower region of the upper ring (16); and
a limiter of rotation (23) is formed between the upper end (21) of the upper flank (14 b) and the guiding element (22).
5- An automatic opening device for containers (1) according to claim 3 , characterized in that:
the locking device (6) is provided in its lower portion with a circular wing (6 e), which extends from the lower end of the locking device (6) and completely encircles the lower ring (17); and
a spacing (H) is provided between the upper ends of the locking elements (6 b) of the locking device (6) regarding the lower face of the intermediate ring (18).
6- An automatic opening device for containers (1) according to claim 5 , characterized in that each external screw thread flanks (5) is provided with a rotational locking recess and each internal screw thread flanks (14) is provided with a rotational locking projection, said locking recess and projection being designed to fit and lock the automatic opening device for containers (1) at the end of the rotation operation for opening said container.
7- An automatic opening device for containers (1) according to claim 4 , characterized in that each external screw thread flank (5) is provided with a locking recess and each internal screw thread flank (14) is provided with a locking projection, said locking recess and locking projection being designed to fit and lock the automatic opening device for containers (1) to preclude rotational movements at the end of the operation to open said container.
8- An automatic opening device for containers (1) according to claim 1 , characterized in that:
the base element (1 b) be provided with a pouring device (53) which comprises an integrally hollow body formed by a first curved portion (53) and a second portion (53 b), which extends over the upper face of the base element (1 b) towards the edge, where the first curved portion (53) has one end connected to the hollow body of the cutting device (3), and the other end of the first curved portion (53) is connected to one end of the second portion (53 b), whose other end is chamfered and forms an edge (53 c), which defines a throughout hole (53 d); and
a closing element (1 a) is additionally provided, which is connected to the base element (1 b) by means of a pivoting connecting element, the closing element (1 a) being provided with a sealing element (54), which is designed to rest on the edge (53 c) of the second horizontal portion (53 b) when the closing element (1 a) is in the closed position.
9- An automatic opening device for containers (1) according to claim 8 , characterized in that each external screw thread flank (5) is provided with a locking recess and each internal screw thread flank (14) is provided with a locking projection, said locking recess and locking projection being designed to fit and lock the automatic opening device for containers (1) to preclude rotational movements at the end of the operation to open said container.
10- An automatic opening device for containers (1) according to claim 1 , characterized in that:
be provided with a closing element (1 a), which comprises a second sidewall (9) and an upper element (8) whose edges are joined to the upper edge of the second sidewall (9), the upper element (8) being provided in its internal central region with a protruding sealing element (4);
a suction spout (24) is provided in the upper region of the base element (1 b), the suction spout (24) comprising a hollow body that extends above the base element (1 b) and encircles the throughout hole (2 a), a mouth ring (24 a) being provided at the upper end of the suction spout (24);
the internal screw thread (5) provided in the internal region of the first sidewall (11) comprises a screw thread of multiple entries, each comprising internal screw threads flanks;
an upper ring (16), an intermediate ring (18) and a lower ring (17) are provided in the upper, intermediate and lower regions, respectively, of the external region of the spout (12);
the diameter of the upper ring (16) is smaller than the diameter of the intermediate ring (18), and the diameter of the intermediate ring (18) is smaller than the diameter of the lower ring (17);
the external screw thread (14) of the spout (12) comprises a multiple entries screw thread, each comprising a lower flank (14 a) and an upper flank (14 b), with a root (15) formed between the lower flank (14 a) and the upper flank (14 b), where the upper flank (14 b) has an extended upper end (21), which extends beyond the upper ring (16), and the lower flank (14 a) has its upper end even with the lower region the upper ring (16); and
said locking means comprises a plurality of lower locking elements (6 b) in the form of spaced apart lugs distributed circularly, the lower portion of each lug being joined to the lower region of the lower portion of the locking device (6), and the body of each lug being inclined towards the geometric axis of the locking device (6).
11- An automatic opening device for containers (1) according to claim 10 , characterized in that:
said internal screw thread flanks (5) are bipartite, and comprise an upper section (5 s) and a lower section (5 i);
a guiding element (22) is provided in the outer region of the first sidewall (11), which extends parallel to the upper edge of the spout (12); and
a limiter of rotation (23) is formed between the upper end (21) of the upper flank (14 b) and the guiding element (22).
12- An automatic opening device for containers (1) according to claim 10 , characterized in that a spacing (H) is provided between the upper ends of the locking elements (6 b) of the locking device (6) regarding the lower face of the intermediate ring (18).
13- Automatic opening device for containers (1) according to claim 12 , characterized in that each external screw thread flank (5) is provided with a locking recess and each internal screw thread flank (14) is provided with a locking projection, said locking recess and locking projection being designed to fit and lock the automatic opening device for containers (1) to preclude rotational movements at the end of the operation to open said container.
14- Automatic opening device for containers (1) according to claim 11 , characterized in that each external screw thread flank (5) is provided with a locking recess and each internal screw thread flank (14) is provided with a locking projection, said locking recess and locking projection being designed to fit and lock the automatic opening device for containers (1) to preclude rotational movements at the end of the operation to open said container.
15- An automatic opening device for containers (1) according to claim 1 , characterized in that:
the base element (1 b) is additionally provided with a protruding plugging element (58) formed by an elongated hollow body whose upper portion is closed, and the lower portion is open and firmly connected to the upper element (10) of the base element (1 b), the hollow portion of the protruding plugging element (58) being aligned and in communication with the throughout hole (2 a); and
a cap (59) is connected to the base element (1 b) by means of a flexible connecting element (60).
16- An automatic opening device for containers (1) according to claim 15 , characterized in that each external screw thread flank (5) is provided with a locking recess and each internal screw thread flank (14) is provided with a locking projection, said locking recess and locking projection being designed to fit and lock the automatic opening device for containers (1) to preclude rotational movements at the end of the operation to open said container.
17- An automatic opening device for containers (61) according to claim 1 , characterized in that:
It is additionally be provided with a closing element (61 a), which is connected to the base element (61 b) by means of a connection chosen from the group comprising a pivoting connection, a screwed-threaded connection and a pressure connection;
the closing element (61 a) comprises a second sidewall (71) and an upper element (75) whose edges are joined to the upper edge of the second sidewall (71), the upper element (75) being provided in its internal lower region with a protruding sealing element (76);
a central protruding ring (74) encircles the throughout hole (74 a) in the upper member (73);
said means for the locking of the automatic opening device for containers (61) comprises a plurality of lower locking elements (62 b) in the form of spaced apart lugs distributed circularly, the lower portion of each lug being joined to the lower region of the lower portion of the locking device (62), and the body of each lug being inclined towards the geometric axis of the locking device (62);
the spout (65) is provided with a retaining ring (68), located below the external screw thread (67), and a lower ring (69) located in its lower region;
the spout (65) has a linear extension (L1) between its edge and the edge of the retaining ring (68), and a linear extension (C1) between the edge of the retaining ring (68) and the upper portion of the lower ring (69) where the lower edge of the locking device (62) will touch, at the end of the assembly of the automatic opening device for containers 61 in the container (70);
the base element (61 b) has a linear extension (L2) between the lower part of the ring-shaped engagement region (74 a) of the element and its lower edge, and a linear extension (C2) between that lower edge of the base element (61 b) and an imaginary plane formed by the upper region of the lower locking elements (62 b); and
said linear extensions (L1) and (L2) are substantially identical, and the linear extensions (C1) and (C2) are also substantially identical.
18- An automatic opening device for containers (61) according to claim 17 , characterized in that each external screw thread flank (67) is provided with a locking recess and each internal screw thread flank (64) is provided with a locking projection, said locking recess and locking projection being designed to fit and lock the automatic opening device for containers (61) to preclude rotational movements at the end of the operation to open said container.
19- An automatic opening device for containers (1) according to claim 1 , characterized in that:
the base element (61 b) is additionally provided with a protruding plugging element (58) formed by an elongated hollow body whose upper portion is closed, and the lower portion is open and firmly connected to the upper element (73) of the base element (61 b), the hollow portion of the protruding plugging element (58) being aligned and in communication with the throughout hole (74 a);
a cap (59) is connected to the base element (1 b) by means of a flexible connecting element (60);
said means for locking the automatic opening device for containers (61) comprises a plurality of lower locking elements (62 b) in the form of spaced apart lugs distributed circularly, the lower portion of each lug being joined to the lower region of the lower portion of the locking device (62), and the body of each lug being inclined towards the geometric axis of the locking device (62);
the spout (65) is provided with a retaining ring (68), located below the external screw thread (67), and a lower ring (69) located in its lower region;
the spout (65) has a linear extension (L1) between its edge and the edge of the retaining ring (68), and a linear extension (C1) between the edge of the retaining ring (68) and the upper portion of the lower ring (69) where the lower edge of the locking device (62) will touch, at the end of the assembly of the automatic opening device for containers 61 in the container (70);
the base element (61 b) has a linear extension (L2) between the lower part of the ring-shaped engagement region (74 a) of the element and its lower edge, and a linear extension (C2) between that lower edge of the base element (61 b) and an imaginary plane formed by the upper region of the lower locking elements (62 b); and
said linear extensions (L1) and (L2) are substantially identical, and the linear extensions (C1) and (C2) are also substantially identical.
20- An automatic opening device for containers (61) according to claim 17 , characterized in that:
the base element (61 b) is provided with a pouring device (53) which comprises an integrally hollow body formed by a first curved portion (53 a) and a second portion (53 b), which extends over the upper face of the base element (1 b) towards the edge, where the first curved portion (53) has one end connected to the hollow body of the cutting device (3), and the other end of the first curved portion (53) is connected to one end of the second portion (53 b), whose other end is chamfered and forms an edge (53 c), which defines a throughout hole (53 d); the
the closing element (61 a) is provided with a sealing element (54), which is designed to rest on the edge (53 c) of the second horizontal portion (53 b) when the closing element (61 a) is in the closed position;
said means for locking the automatic opening device for containers (61) comprises a plurality of lower locking elements (62 b) in the form of spaced apart lugs distributed circularly, the lower portion of each lug being joined to the lower region of the lower portion of the locking device (62), and the body of each lug being inclined towards the geometric axis of the locking device (62);
the spout (65) is provided with a retaining ring (68), located below the external screw thread (67), and a lower ring (69) located in its lower region;
the spout (65) has a linear extension (L1) between its edge and the edge of the retaining ring (68), and a linear extension (C1) between the edge of the retaining ring (68) and the upper portion of the lower ring (69) where the bottom edge of the locking device (62) will touch, at the end of the assembly of the automatic opening device for containers (61) in the container (70);
the base element (61 b) has a linear extension (L2) between the lower part of the ring-shaped engagement region (74 a) of the element and its lower edge, and a linear extension (C2) between that lower edge of the base element (61 b) and an imaginary plane formed by the upper region of the lower locking elements (62 b); and
said linear extensions (L1) and (L2) are substantially identical, and the linear extensions (C1) and (C2) are also substantially identical.
21- An automatic opening device for containers (61) according to claim 20 , characterized in that each external screw thread flank (67) is provided with a locking recess and each internal screw thread flank (64) is provided with a locking projection, said locking recess and locking projection being designed to fit and lock the automatic opening device for containers (61) to preclude rotational movements at the end of the operation to open said container.
22- An automatic opening device (41) for containers (51) provided with a sealing element (19) in a spout (47), the automatic opening device (41) comprising a base element (41 b) and a guiding and locking device (46), where:
the spout (47) comprises an elongated cylindrical body (48), a first upper ring (49) and a second lower ring (50), larger in diameter than the first upper ring (49), the connection between the spout (47) and the automatic opening device for containers (41), one from the group comprising screwed-thread and bayonet;
the base element (41 b) comprises a first sidewall element (54) and an upper member (55) whose edges are joined to the upper edge of the first sidewall element (54);
the central region of the upper member (55) is provided with a throughout hole (39 a);
the guiding and locking device (46) comprises an elongated body provided at the upper edge with a plurality of upper rupture elements (46 a), which are connected to the lower edge of the base element (41 b); and
the internal lower region of the guiding and locking device (46) is provided with a locking means;
the automatic opening device for containers (41) characterized in that:
the lower central region of the upper member (55) of the base member (41 b) is provided with a cutting device (43), which comprises a hollow protruding body whose upper region is connected to the lower region of the upper member (55) where the throughout hole (39 a) is located, which is a continuation of the hollow portion of the cutting device (43), the lower region of the cutting device (43) being provided with a plurality of cutting elements (43 a);
a screw thread (45,145) of at least one entry is provided in the lower external region of the first sidewall element (54) of the base element (41 b);
the upper internal region of the guiding and locking device (46) is provided with an internal screw thread (44,144) of at least one entry; and
the screw thread (45,145) provided in the external lower region of the first sidewall element (54) of the base element (41 b) and the internal screw thread (44,144) provided in the upper internal region of the guiding and locking device (46) comprise screw threads of equal orientation, defined between right and left
23- An automatic opening device for containers (41), according to claim 22 , characterized in that:
additionally be provided with a closing element (41 a) which is connected to the base element (41 b) by means of a connection chosen from the group comprising a pivoting connection element, a screw-threaded connection, and a pressure connection element, the closing element (41 a) comprising a second sidewall element (56) and an upper member (57) whose edges are joined to the upper edge of the second sidewall element (56), the upper member (57) being provided in its internal center region of a protruding sealing element (40);
a central protruding ring (39) encircling the throughout hole (39 a) in the central region of the upper member (55);
the screw thread (44,144) comprises a screw thread of multiple entries, each comprising a lower flank (44 a, 144 a) and an upper flank (44 b, 144 b), with a root (44 c, 144 c) formed between these two flanks, wherein the upper ends (44 d, 144 d) of the upper flanks (44 b, 144 b) extend above the upper ends of the lower flanks (44 b, 144 b); and
said locking means comprise a plurality of lower locking elements (46 b) in the form of spaced apart lugs distributed circularly, the lower portion of each lug being joined to the lower region of the lower portion of the guiding and locking device (46), and the body of each lug being inclined towards the geometric axis of the guiding and locking device (46).
24- An automatic opening device for containers (41) according to claim 23 , characterized in that:
the base element (41 b) is provided with a pouring device (53) which comprises a hollow body formed by a first curved portion (53 a) and a second portion (53 b), which extends over the upper face of the base element (41 b) towards its edge, where the first curved portion (53 a) has one end connected to the hollow body of the cutting device (43), and the other end of the first curved portion (53 a) is connected to one end of the second portion (53 b), whose other end is beveled and forms a rim (53 c), which defines a throughout hole (53 d); and
the closing element (41 a) is provided with a sealing element (54), which is designed to rest on the edge (53 c) of the second horizontal portion (53 b) when the closing element (41 a) is in the closed position.
25- An automatic opening device for containers (41) according to claim 24 , characterized in that reinforcement wings (46 d) are provided on the upper edge of the guiding and locking device (46), located in the regions where the upper ends (44 d, 144 d) of the upper flanks (44 b, 144 b) are extended.
26- An automatic opening device for containers (41) according to claim 25 , characterized in that each external screw thread flank (45,145) is provided with a locking recess and each internal screw thread flank (44,144) is provided with a locking projection, said locking recess and locking projection being designed to fit and lock the automatic opening device for containers (41) to preclude rotational movements at the end of the operation to open said container.
27- An automatic opening device for containers (41) according to claim 23 , characterized in that:
a plurality of guiding fins (46 c) is provided in the internal lower region of the guiding and locking device (46);
the base element (41 b) is provided with a pouring device (53) which comprises an integrally hollow body formed by a first curved portion (53 a) and a second portion (53 b), which extends over the upper face of the base element (41 b) towards the edge, where the first curved portion (53 a) has one end connected to the hollow body of the cutting device (43), and the other end of the first curved portion (53 a) is connected to one end of the second portion (53 b), whose other end is chamfered and forms an edge (53 c), which defines a throughout hole (53 d); and
the closing element (41 a) is provided with a sealing element (54), which is designed to rest on the edge (53 c) of the second horizontal portion (53 b) when the closing element (41 a) is in the closed position.
28- An automatic opening device for containers (41), according to claim 27 , characterized in that reinforcement wings (46 d) are provided on the upper edge of the guiding and locking device (46), located in the regions where the upper ends (44 d, 144 d) of the upper flanks (44 b, 144 b) are extended.
29- An automatic opening device for containers (41) according to claim 28 , characterized in that each external screw thread flank (45,145) is provided with a locking recess and each internal screw thread flank (44,144) is provided with a locking projection, said locking recess and locking projection being designed to fit and lock the automatic opening device for containers (41) to preclude rotational movements at the end of the operation to open said container.
30- An automatic opening device for containers (41) according to claim 23 , characterized in that:
an internal screw thread (52) is provided in the lower internal region of the guiding and locking device (46);
the base element (41 b) is provided with a pouring device (53) which comprises an integrally hollow body formed by a first curved portion (53 a) and a second portion (53 b), which extends over the upper face of the base element (41 b) towards the edge, where the first curved portion (53 a) has one end connected to the hollow body of the cutting device (43), and the other end of the first curved portion (53 a) is connected to one end of the second portion (53 b), whose other end is beveled and forms an rim (53 c), which defines a throughout hole (53 d); and
the closing element (41 a) is provided with a sealing element (54), which is designed to rest on the edge (53 c) of the second horizontal portion (53 b) when the closing element (41 a) is in the closed position.
31- An automatic opening device for containers (41) according to claim 30 , characterized in that reinforcement wings (46 d) are provided on the upper edge of the guiding and locking device (46), located in the regions where the upper ends (44 d, 144 d) of the upper flanks (44 b, 144 b) are extended.
32- An automatic opening device for containers (41) according to claim 31 , characterized in that each external screw thread flank (45,145) is provided with a locking recess and each internal screw thread flank (44,144) is provided with a locking projection, said locking recess and locking projection being designed to fit and lock the automatic opening device for containers (41) to preclude rotational movements at the end of the operation to open said container.
33- A spout adapter device (25,35) for application to a spout (26) of a container (20), where:
a sealing element (19) is firmly adhered to the rim of the spout (26);
the external upper region of the spout (26) is provided with an external screw thread (30) with at least one entry, with an orientation chosen from the group comprising right-hand and left-hand;
a retaining ring (33) is located immediately below the external screw thread (30); and
the external lower region of the spout (26) is provided with a base ring (28), larger in diameter than the retaining ring (33);
the spout adapter device (25,35) characterized in that it comprises an upper portion (25 s, 35 s) connected to a lower portion (25 i, 35 i), of larger diameter, in which:
the external upper region of the upper portion (25 s, 35 s) is provided with a protruding ring (25 c, 35 c), located near the upper edge of the spout adapter device (25,35);
an external screw thread (27,37) of at least one entry, having orientation chosen from the group comprising right-hand and left-hand, is provided in the external region of the upper portion (25 s,35 s), which comprises a lower flank (27 a,37 a) and an upper flank (27 b,37 b), with a root (27 c,37 c) formed between the lower flank (27 a, 37 a) and the upper flank (27 b,37 b), the upper flank (27 b,37 b) of the external screw thread (27,37) is provided with an upper end (31,32) that extends beyond the protruding ring (25 c,35 c), while the upper end of the lower flank (27 a,37 a) faces the lower portion of the protruding ring (25 c,35 c);
an internal screw thread (29.36) is provided in the internal region of the upper portion (25 s, 35 s) of the spout adapter device (25.35); and
a locking means is provided in the internal lower region of the lower portion (25 i, 35 i).
34- A spout adapter device (25) according to claim 33 , characterized in that the locking means provided in the internal lower region of the lower portion (25 i) comprises a plurality of lower locking elements (35 b) which comprise spaced apart lugs distributed circularly, the lower portion of each lug being joined to the lower region of the lower portion (35 i) of the spout adapter device (35), and the body of each lug being inclined towards the geometric axis of the spout adapter device (35).
35- A spout adapter device (25) according to claim 33 , characterized in that:
the locking means provided in the internal lower region of the lower portion (25 i) comprises a plurality of lower locking elements (35 b) which comprise spaced apart lugs distributed circularly, the lower portion of each lug being joined to the lower region of the lower portion (35 i) of the spout adapter device (35), and the body of each lug being inclined towards the geometric axis of the spout adapter device (35); and
a retaining edge (25 r) is provided in the upper region of the lower portion (25 i).
36- A spout adapter device (35) according to claim 33 , characterized in that:
it is additionally provided with a medial portion (35 m), the upper region of which is connected to the lower region of an edge (34) provided in the lower region of the upper portion (35 s), while the lower region of the medial portion (35 m) is connected the upper region of the lower portion (35 i);
the medial portion (35 m) is provided with a plurality of spaced apart radial openings (35 a) distributed circumferentially; and
the locking means provided in the internal lower region of the lower portion (35 i) comprises a plurality of lower locking elements (35 b) which comprise spaced apart lugs distributed circularly, the lower portion of each lug being joined to the lower region of the lower portion (35 i) of the spout adapter device (35), and the body of each lug being inclined towards the geometric axis of the spout adapter device (35).
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR102018004352 | 2018-03-01 | ||
BR102018004125-8A BR102018004125A2 (en) | 2018-03-01 | 2018-03-01 | automatic container opening device with sealing element |
BRBR1020180041258 | 2018-03-01 | ||
BRBR1320180066551 | 2018-04-02 | ||
BR132018006655-1A BR132018006655E2 (en) | 2018-04-02 | 2018-04-02 | DEVICE FOR AUTOMATIC CONTAINER OPENING WITH SEALING ELEMENT |
BRBR1320190043520 | 2019-03-01 | ||
PCT/BR2019/050068 WO2019165530A1 (en) | 2018-03-01 | 2019-03-01 | Device for automatically opening a container provided with a sealing element |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/BR2019/050068 A-371-Of-International WO2019165530A1 (en) | 2018-03-01 | 2019-03-01 | Device for automatically opening a container provided with a sealing element |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/884,020 Continuation-In-Part US20250250074A1 (en) | 2018-03-01 | 2024-09-12 | System for automatic opening containers provided with sealing elements |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210002046A1 true US20210002046A1 (en) | 2021-01-07 |
Family
ID=74065169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/977,419 Abandoned US20210002046A1 (en) | 2018-03-01 | 2019-03-01 | Device for automatically opening a container provided with a sealing element |
Country Status (1)
Country | Link |
---|---|
US (1) | US20210002046A1 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD982444S1 (en) * | 2018-09-24 | 2023-04-04 | Silgan White Cap LLC | Ratcheted closure |
US11634314B1 (en) | 2022-11-17 | 2023-04-25 | Sharkninja Operating Llc | Dosing accuracy |
US11647860B1 (en) | 2022-05-13 | 2023-05-16 | Sharkninja Operating Llc | Flavored beverage carbonation system |
US11738988B1 (en) | 2022-11-17 | 2023-08-29 | Sharkninja Operating Llc | Ingredient container valve control |
US11745996B1 (en) | 2022-11-17 | 2023-09-05 | Sharkninja Operating Llc | Ingredient containers for use with beverage dispensers |
US11751585B1 (en) | 2022-05-13 | 2023-09-12 | Sharkninja Operating Llc | Flavored beverage carbonation system |
JP2023163450A (en) * | 2022-04-28 | 2023-11-10 | 株式会社吉野工業所 | Spouting container |
US11871867B1 (en) | 2023-03-22 | 2024-01-16 | Sharkninja Operating Llc | Additive container with bottom cover |
US11925287B1 (en) | 2023-03-22 | 2024-03-12 | Sharkninja Operating Llc | Additive container with inlet tube |
US12005408B1 (en) | 2023-04-14 | 2024-06-11 | Sharkninja Operating Llc | Mixing funnel |
US12084334B2 (en) | 2022-11-17 | 2024-09-10 | Sharkninja Operating Llc | Ingredient container |
US12096880B2 (en) | 2022-05-13 | 2024-09-24 | Sharkninja Operating Llc | Flavorant for beverage carbonation system |
US12103840B2 (en) | 2022-11-17 | 2024-10-01 | Sharkninja Operating Llc | Ingredient container with sealing valve |
US12116257B1 (en) | 2023-03-22 | 2024-10-15 | Sharkninja Operating Llc | Adapter for beverage dispenser |
US12213617B2 (en) | 2022-05-13 | 2025-02-04 | Sharkninja Operating Llc | Flavored beverage carbonation process |
USD1091308S1 (en) | 2022-12-23 | 2025-09-02 | Sharkninja Operating Llc | Ingredient container |
USD1092208S1 (en) | 2022-12-23 | 2025-09-09 | Sharkninja Operating Llc | Cap of ingredient container |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9694956B2 (en) * | 2012-02-23 | 2017-07-04 | Francoise MOREAU | Dispensing and mixing device |
-
2019
- 2019-03-01 US US16/977,419 patent/US20210002046A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9694956B2 (en) * | 2012-02-23 | 2017-07-04 | Francoise MOREAU | Dispensing and mixing device |
Non-Patent Citations (1)
Title |
---|
Gaffney, Susan, SolidWorks 2017 Multiple Start Threads, 24 May 2017, obtained from https://cimquest-inc.com/solidworks-2017-multiple-start-threads/ on 6 March 2024 (Year: 2017) * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD982444S1 (en) * | 2018-09-24 | 2023-04-04 | Silgan White Cap LLC | Ratcheted closure |
JP2023163450A (en) * | 2022-04-28 | 2023-11-10 | 株式会社吉野工業所 | Spouting container |
US12213617B2 (en) | 2022-05-13 | 2025-02-04 | Sharkninja Operating Llc | Flavored beverage carbonation process |
US11647860B1 (en) | 2022-05-13 | 2023-05-16 | Sharkninja Operating Llc | Flavored beverage carbonation system |
US12096880B2 (en) | 2022-05-13 | 2024-09-24 | Sharkninja Operating Llc | Flavorant for beverage carbonation system |
US11751585B1 (en) | 2022-05-13 | 2023-09-12 | Sharkninja Operating Llc | Flavored beverage carbonation system |
US12006202B1 (en) | 2022-11-17 | 2024-06-11 | Sharkninja Operating Llc | Ingredient container valve control |
US12103840B2 (en) | 2022-11-17 | 2024-10-01 | Sharkninja Operating Llc | Ingredient container with sealing valve |
US12410048B2 (en) | 2022-11-17 | 2025-09-09 | Sharkninja Operating Llc | Ingredient container |
US11634314B1 (en) | 2022-11-17 | 2023-04-25 | Sharkninja Operating Llc | Dosing accuracy |
US11745996B1 (en) | 2022-11-17 | 2023-09-05 | Sharkninja Operating Llc | Ingredient containers for use with beverage dispensers |
US12084334B2 (en) | 2022-11-17 | 2024-09-10 | Sharkninja Operating Llc | Ingredient container |
US11738988B1 (en) | 2022-11-17 | 2023-08-29 | Sharkninja Operating Llc | Ingredient container valve control |
US12122661B2 (en) | 2022-11-17 | 2024-10-22 | Sharkninja Operating Llc | Ingredient container valve control |
USD1091308S1 (en) | 2022-12-23 | 2025-09-02 | Sharkninja Operating Llc | Ingredient container |
USD1092208S1 (en) | 2022-12-23 | 2025-09-09 | Sharkninja Operating Llc | Cap of ingredient container |
US12116257B1 (en) | 2023-03-22 | 2024-10-15 | Sharkninja Operating Llc | Adapter for beverage dispenser |
US11871867B1 (en) | 2023-03-22 | 2024-01-16 | Sharkninja Operating Llc | Additive container with bottom cover |
US11925287B1 (en) | 2023-03-22 | 2024-03-12 | Sharkninja Operating Llc | Additive container with inlet tube |
US12005408B1 (en) | 2023-04-14 | 2024-06-11 | Sharkninja Operating Llc | Mixing funnel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210002046A1 (en) | Device for automatically opening a container provided with a sealing element | |
EP0244327B1 (en) | Container spout provided with means for preventing refilling after dispensing with the initial contents | |
JP6762667B2 (en) | Inner plug of injection cap | |
JP6307599B2 (en) | Cap with cutting element | |
KR20100084155A (en) | Ejection member | |
JPS6252047A (en) | Cover made of synthetic resin | |
WO2010095273A1 (en) | Twist-cut unsealing mechanism for container | |
EP1561698B1 (en) | Dropper bottle | |
JP4985223B2 (en) | Twist opening mechanism for containers | |
JP6202528B2 (en) | Hinge cap | |
EP2550110A1 (en) | Fluid dispenser | |
WO2015114084A1 (en) | Container closure | |
JP7044623B2 (en) | Hinge cap with inner plug | |
EP3760554B1 (en) | Device for automatically opening a container provided with a sealing element | |
CA3100076A1 (en) | Pull back closure | |
WO2019165530A1 (en) | Device for automatically opening a container provided with a sealing element | |
EP4467482A1 (en) | Closure capsule for closing a container | |
CA3111606A1 (en) | Tethered plastic stopper | |
JP2014088206A (en) | Nozzle cap provided container | |
US20250250074A1 (en) | System for automatic opening containers provided with sealing elements | |
JP2017114546A (en) | Spout union and container with spout union | |
JP5961547B2 (en) | Refill container | |
BR102018004125A2 (en) | automatic container opening device with sealing element | |
JP6682140B2 (en) | Hinge cap with tamper-proof mechanism | |
US20230182975A1 (en) | Device for automatically opening containers including means for breaking the sealing element of the container |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |