US20200408424A1 - Natatorium dehumidifier - Google Patents

Natatorium dehumidifier Download PDF

Info

Publication number
US20200408424A1
US20200408424A1 US17/019,549 US202017019549A US2020408424A1 US 20200408424 A1 US20200408424 A1 US 20200408424A1 US 202017019549 A US202017019549 A US 202017019549A US 2020408424 A1 US2020408424 A1 US 2020408424A1
Authority
US
United States
Prior art keywords
air
dehumidifier
natatorium
coil
handler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/019,549
Inventor
Adam J. ANDERSON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Maintenance Inc
Original Assignee
United Maintenance Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/847,632 external-priority patent/US10775056B2/en
Application filed by United Maintenance Inc filed Critical United Maintenance Inc
Priority to US17/019,549 priority Critical patent/US20200408424A1/en
Publication of US20200408424A1 publication Critical patent/US20200408424A1/en
Assigned to UNITED MAINTENANCE, INC. reassignment UNITED MAINTENANCE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ANDERSON, ADAM J.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1405Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification in which the humidity of the air is exclusively affected by contact with the evaporator of a closed-circuit cooling system or heat pump circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0071Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater adapted for use in covered swimming pools

Definitions

  • the present invention relates generally to the field of HVAC systems and equipment, and more particularly to systems and methods relating to a natatorium dehumidifier/air conditioner, and to retrofitting existing natatorium dehumidifiers/air conditioning systems for improved performance and reliability.
  • refrigerant based dehumidifiers comprise one or more coils (carrying refrigerant) that are positioned inside of the air handler. For example, providing a flow of air over the coils provides for heat transfer so that heat energy is transferred from the refrigerant (e.g., passing through the one or more coils) to the air moving through the air handler and across the one or more coils to dehumidify and provide air conditioning within the natatorium. Due to the inherent nature of the dehumidifier and surroundings, the air handler will likely be humid or comprising a substantially large relative humidity such that chlorinated water vapor is present.
  • the moist air inside of the air handler contaminates the coils carrying the refrigerant with chlorinated water vapor, whereby the chlorinated water vapor contacts the inside surface of the coils or piping thereof and forms copper-chloride salt.
  • the coils are evacuated of air using a vacuum pump, thereby causing the moisture to boils away and leaving the copper-chloride salt in the coils.
  • the copper-chloride salt dissolves and contaminates the refrigerant circuit causing acidic refrigerant.
  • the acidic refrigerant in turn causes the dehumidifier to have continuous compressor failures in the form of grounded and shortened windings.
  • refrigerant based dehumidification systems during a repair will more than likely become contaminated by chlorinated water vapor, which will likely cause repetitive compressor failures due to grounded or shortened windings.
  • Standard Desert AireTM dehumidifiers and other refrigerant based dehumidifiers are limited in the amount of outdoor air they can bring into a building such as a natatorium for housing a swimming pool or other enclosed area.
  • the present invention provides a natatorium dehumidifier or dehumidifier/air conditioning system.
  • the present invention relates to a dehumidifier/air conditioner including an air handler and a refrigerant based chiller.
  • the air handler has a contained volume therein and includes at least a chilled water coil, a reheat coil, and a heating coil.
  • the refrigerant based chiller positioned outside of the air handler.
  • the air handler comprises chlorinated water vapor therein.
  • the chilled water coil, the reheat coil, and the heating coil comprise waterside coils.
  • the chiller is positioned outside of the air handler in an environment generally free from moisture or chlorinated water vapor.
  • the air handler comprises a return air damper and an outdoor or outside air damper.
  • the air handler further a runaround coil positioned adjacent the return air damper and a runaround coil positioned adjacent the outdoor air damper.
  • the invention in another aspect, relates to a method of retrofitting an existing dehumidifier/air conditioner including removing refrigerant components from inside of the air handler of the existing dehumidifier/air conditioner; installing one or more waterside components within the existing air handler, the waterside components being chosen based off of efficiency and expense; and providing a refrigerant based chiller, the refrigerant based chiller positioned outside of the air handler.
  • the refrigerant based chiller is in the form of an air cooled chiller.
  • the refrigerant based chiller is in the form of a water cooled chiller.
  • the one or more waterside components include a chilled water coil, a reheat coil, a heating coil, and one or more runaround coils.
  • a boiler or duct furnace positioned outside of the air handler.
  • a plate frame heat exchanger is provided.
  • the invention in another aspect, relates to a natatorium dehumidifier including an air handler and a refrigerant based chiller positioned outside of the air handler.
  • the air handler having a contained volume and having chlorinated water vapor therein.
  • the air handler includes at least a chilled water coil, a reheat coil, and a heating coil.
  • the chilled water coil, the reheat coil, and the heating coil comprise waterside coils.
  • the chiller is positioned outside of the air handler in an environment free from moisture or chlorinated water vapor.
  • the air handler includes a return air damper and an outdoor air damper.
  • a runaround coil is positioned adjacent the return air damper and a runaround coil is positioned adjacent the outdoor air damper.
  • the invention in another aspect, relates to a natatorium including an enclosure containing an indoor pool, and a natatorium dehumidifier comprising an air handler and a chiller containing a refrigerant.
  • the enclosure of the natatorium and the air handler define a treated air containment space, and the refrigerant of the chiller is isolated from and positioned outside of the treated air containment space.
  • FIG. 1 is a schematic of a dehumidifier/air conditioner system according to a first example embodiment of the present invention.
  • FIG. 2 is a schematic of a dehumidifier/air conditioner system according to a second example embodiment of the present invention.
  • FIG. 3 is a schematic of a dehumidifier/air conditioner system according to a third example embodiment of the present invention.
  • FIG. 4 is a schematic of a dehumidifier/air conditioner system according to a fourth example embodiment of the present invention.
  • FIG. 5 is a schematic of a dehumidifier/air conditioner system according to a fifth example embodiment of the present invention.
  • FIG. 6 is a schematic of a dehumidifier/air conditioner system according to a sixth example embodiment of the present invention.
  • FIG. 7 is a schematic of a dehumidifier/air conditioner system according to a seventh example embodiment of the present invention.
  • FIG. 8 is a schematic of a dehumidifier/air conditioner system according to an eighth example embodiment of the present invention.
  • FIG. 9 is a table showing a plurality of options for retrofitting an existing dehumidifier/air conditioner system according to a ninth example embodiment of the present invention.
  • FIGS. 10-12 show additional components and systems according to additional example embodiments of the present invention.
  • the present invention provides improved dehumidification and/or air conditioning systems, and associated methods and equipment, for example for use in a natatorium facility housing an indoor swimming pool, or other buildings which may enclose sources of humidity or otherwise resulting in a need for air treatment.
  • the dehumidifier/air conditioner system of the present invention preferably comprises four modes of operation including: 1) cooling, 2) dehumidifying, 3) economizing, and 4) heating.
  • each of these modes (1-4) include sub modes, which equates to rejecting heat to different components within the system to be utilized later for energy recovery.
  • the dehumidifier/air conditioner system of the present invention generally comprises a plurality of components.
  • the dehumidifier/air conditioner generally comprises a boiler 1 , a chiller 2 , a cooler 3 , a hot water storage tank 4 , one or more pool boilers 5 , 6 , a runaround coil 7 , a return air damper 8 , an outdoor or outside air damper 9 , a runaround coil 10 , a chilled water coil 11 , a reheat coil 12 , a heating coil 13 , one or more air filter racks 14 , and a plate frame heat exchanger 15 .
  • the system generally comprises three air filter racks 14 for receiving filters therein.
  • the air filter racks 14 are provided in front of the runaround coils 7 , 10 , and in front of one or more of the other coils (chilled water coil 11 , reheat coil 12 , heating coil 13 ).
  • An air handler 20 is positioned relative to the components as shown in the figures whereby air comprising a first temperature and a first relative humidity is drawn into the air handler 20 , and whereby air comprising a second temperature and a second relative humidity is dispersed from the air handler 20 .
  • outdoor air may be drawn into the air handler 20 according to some example forms of the present invention.
  • the air handler 20 comprises a contained volume that is occupied by a flow of air passing therethrough.
  • the air e.g., return air in
  • the air is relatively saturated with moisture and contains chlorinated water vapor, for example, as most pools will generally comprise at least some chlorine to cause at least a portion of the water vapor therefrom to be at least partially chlorinated.
  • the air handler 20 generally houses a plurality of the components including the runaround coil 7 adjacent the return air damper 8 , the outdoor air damper 9 adjacent the runaround coil 10 , the chilled water coil 11 , the reheat coil 12 , and the heating coil 13 .
  • the components 7 , 10 , 11 , 12 , 13 are housed within the air handler 20 and all have waterside coils, for example, having coils in which water is the medium flowing therethrough, which can vary depending on the coil and desired temperature.
  • the return air is at a temperature of about 86 degrees F. and 60% relative humidity, and the air being dispersed or blown out of the system (e.g., air out) is at a temperature of about 66 degrees F. and about 97% relative humidity (see FIG. 1 ).
  • the return air is at a temperature of about 86 degrees F. and about 60% relative humidity, and the air being dispersed or blown out of the system (e.g., air out) is about 115 degrees F. and about 29% relative humidity (see FIG. 8 ).
  • all or substantially all of the refrigeration or refrigerant components are contained inside the chiller 2 (e.g., comprising refrigerant within its coils) and are free from being positioned within the air handler or a moisture laden environment where chlorine or chlorinated water vapor is present.
  • the coils of the components within the air handler 20 e.g., moist and chlorinated environment
  • the coils of the chiller 2 are not contaminated by the chlorine since the chiller 2 and the refrigerant coils thereof are in an environment free from chlorine or chlorinated water vapor.
  • the cooling mode will preferably be initiated when the return air entering the machine has a sensible temperature that is higher than the desired space temperature. Regardless of the cooling sub mode, the chiller will preferably run to maintain about a 40 degrees Fahrenheit (40° F.) chilled water temperature, the three way valve at the reheat coil will be in a bypass position, and the supply air fan will run at 60 hertz (full speed). The other valves at the plate frame heat exchanger 15 and in the pool water loop will be opened, closed or modulated based on what sub mode the system is running in while in the cooling mode. The three-way chilled water valve at the cooling coil will be modulated by a proportional-integral-derivative (PID) loop as the space temperature changes giving the system tight control.
  • PLC proportional-integral-derivative
  • FIG. 1 shows a dehumidifier/air conditioner 100 in a cooling mode with no demand for pool heat and a hot storage tank.
  • the system is said to be in “pure cooling mode”.
  • the condenser water leaving the chiller 2 is bypassed around the plate frame heat exchanger 15 and is cooled at the remote air side condenser before reentering the chiller 2 .
  • Moist return airflow from the natatorium structure enclosing a chlorinated water pool is delivered via a return air duct or other return airflow conduit to the enclosed air handler 20 , where the natatorium airflow is conditioned or treated by dehumidification, cooling, heating and/or filtering, and then returned via an air out (conditioned air) supply duct or other supply air delivery conduit to the enclosure of the natatorium structure or pool area.
  • One or more fans or blower units preferably drive the airflow through the system.
  • the natatorium enclosure, air handler and supply and return ducts define a substantially enclosed treated air containment space, and the chiller and refrigerant coils are located outside of and isolated from this treated air containment space to avoid potential contamination of the refrigerant with chlorine or other contaminants that may be present within the treated air containment space.
  • a chilled water delivery pipe or conduit delivers cooling water from the chiller to the chilled water coil within the air handler to cool and/or dehumidify air within the treated air containment space without exposing the refrigerant or refrigerant coils to potential contaminants from the treated air.
  • FIG. 2 shows dehumidifier/air conditioner 200 in a cooling mode with no demand for pool heat and a cold storage tank.
  • the system rejects heat to the storage tank 4 to later release to the pool. This is accomplished by sending condenser water through the plate frame heat exchanger 15 while also switching the valves over at the storage tank 4 in order to circulate the water in the storage tank 4 back to the plate frame heat exchanger 15 . Later, if there is a demand for pool heat while the system is not producing hot condenser water, the storage tank's water is released to the swimming pool through the related changeover valves.
  • one or more of the systems of the present invention generally include the return and outdoor air dampers 8 , 9 , and a set of energy recovery coils known as a runaround loop.
  • the PLC In the colder months of the year when the system is in cooling mode, if the enthalpy of the outdoor air is lower than that of the return air, the PLC begins opening the outdoor air dampers 9 and closing the return air damper 8 .
  • the PLC simultaneously sends an enable signal to the frequency drive that runs the exhaust fan.
  • the exhaust fan then begins ramping up from 20 to 60 hertz based on a signal from a pressure transducer that reads the buildings static pressure relative to atmospheric pressure.
  • a mixed air sensor before the chilled water coil 11 serves two functions. First, it prevents the chilled water coil 11 from freezing while the unit is economizing by not allowing the mixed air temp to get lower than about 40 degrees F. Second, it controls the modulation of the dampers 8 , 9 by comparing the mixed air temperature change to the change in space temperature thereby giving a PID control loop for economizer control.
  • the dehumidifier/air conditioner is configured so as to provide for 120% heat reclaim.
  • 100% of the heat from the airstream can be absorbed plus at least about an additional 20% of heat (over the amount of heat absorbed from the airstream) that is produced by the compressor(s) from transferring their work energy into the heat of the system.
  • the dehumidifier/air conditioner can heat and free heat with the reclaimed energy (of the 120% heat reclaim process).
  • hot water heat from the heating boiler can be configured to provide second stage heat, thereby greatly reducing the amount of fossil fuel/electrical energy needed by the environments for space heating at night and early morning during parts of the year when cooling or dehumidification are needed during the daylight hours.
  • the dehumidifier/air conditioner of the present invention is substantially efficient and resourceful, reducing the energy required to satisfy the demand by utilizing sources of energy already existing within the dehumidifier/air conditioner system and/or environment.
  • FIG. 3 shows dehumidifier/air conditioner 300 in a cooling mode with a demand for pool heat and the air economizer closed
  • FIG. 4 shows dehumidifier/air conditioner 400 in a cooling mode with a demand for pool heat and the air economizer open.
  • the system rejects heat to the pool. This is accomplished by sending condenser water through the plate frame heat exchanger 15 to preheat the water going to the pool boilers 5 , 6 . If the pool temperature continues to drop then the PLC will signal the boilers 5 , 6 to run and the pool will be brought up to the correct temperature.
  • the dehumidifier/air conditioner of the present invention preferably uses the reclaimed heat to reheat the pool.
  • the dehumidification mode will be initiated when the relative humidity of the return air entering the machine is higher than the set point temperature. Regardless of the dehumidification sub mode, the chiller 2 will run to maintain about a 40 degrees F. chilled water temperature and the three way valve at the reheat coil 12 will modulate to supply hot condenser water to the reheat coil 12 . As space temperature drops below the set point the three way valve to the reheat coil 12 will send more flow through the coil. As the humidity in the space decreases the three way valve at the chilled water coil 11 will bypass chilled water around the cooling coil. On other versions of the system, a boiler is used for reheat and the supply fan is set to 30 hertz to maintain energy compliance. The other valves at the plate frame heat exchanger 15 and in the pool water loop will be opened, closed, or modulated by the PLC based on what sub mode the system is running in while in the dehumidification mode.
  • FIG. 5 shows dehumidifier/air conditioner 500 in a dehumidification mode with no demand for pool heat and a hot storage tank 15 .
  • the system is said to be in “pure dehumidification mode”.
  • the condenser water leaving the reheat coil 12 is bypassed around the plate frame heat exchanger 15 and is cooled as needed at the remote air side condenser before reentering the chiller 2 .
  • FIG. 6 shows dehumidifier/air conditioner 600 in a dehumidification mode with no demand for pool heat and a cold storage tank.
  • the system rejects heat to the storage tank 4 to later release to the pool. This is accomplished by sending condenser water through the plate frame heat exchanger 15 while also switching the valves over at the storage tank 4 in order to circulate the water in the storage tank 4 back to the plate frame heat exchanger 15 . Later if there is a demand for pool heat while the system is not producing hot condenser water, the storage tank water (e.g., warm water) is released to the swimming pool through the related changeover valves.
  • the tank 4 is installed below the level of the pool to prevent it from overrunning the pool when released.
  • FIG. 7 shows dehumidifier/air conditioner 700 in a dehumidification mode with a demand for pool heat.
  • the system rejects heat to the pool. This is accomplished by sending condenser water through the plate frame heat exchanger 15 to preheat the water going to the pool boilers 5 , 6 . If the pool temp continues to drop, the PLC will signal the boilers 5 , 6 to run and the pool will be brought up to the correct temperature.
  • FIG. 8 shows dehumidifier/air conditioner 800 in a heating mode with energy recovery from ventilation.
  • the PLC signals the boiler to come on and the boiler's factory controls allow it to maintain its predetermined set point temperature.
  • the PLC will modulate the three way valve at the hot water coil to maintain space temperature giving the system a PID loop.
  • the present invention further relates to retrofitting an existing dehumidifier/air conditioner for improved performance.
  • the dehumidifier/air conditioner of the present invention utilizes the existing air handler's shell to house the new unit's components. This removes the need for a large crane on the job site thereby saving substantial expense on the replacement of the unit.
  • the first step is to remove all the refrigerant components from inside of the air handler.
  • the customer or operator of the system may elect how many options they want in their new system, depending on factors such as efficiency requirements and expense.
  • FIG. 9 is a table showing the different stages (options) that can be installed to give a customer the unit that best matches their needs and budget.
  • the cost of a “Stage #1” retrofit system has been calculated to be about 1 ⁇ 3 the cost of a replacement Desert AireTM unit.
  • a “Stage #2” unit is calculated to produce savings up to an estimated $12,000.00 per year in electrical consumption while costing about half the amount of a new/comparable Desert AireTM unit.
  • the dehumidifier/air conditioner comprises about 2-80 lbs of R410-A, which is substantially less than that of conventional refrigerant based systems.
  • the dehumidifier/air conditioner of the present invention uses about one tenth the amount of chloro-fluoro-carbon based refrigerant in comparison to a direct expansion system comprising an equivalent tonnage, thereby making it more green and environmentally stable.
  • a 60 ton Desert AireTM refrigerant based dehumidifier requires about 400 lbs of R22 refrigerant, which is about ten times more refrigerant than a retrofitted dehumidifier/air conditioning system according to the present invention (e.g., requiring about 40 lbs of R410-A refrigerant).
  • the dehumidifier/air conditioning system of the present invention comprises a fully integrated enthalpy controlled 100% outdoor air economizer that can precool, cool and dehumidify the pool environment (e.g., the natatorium structure enclosing a chlorinated water pool) with no mechanical energy other than the supply air fan itself.
  • FIGS. 10-12 show additional components and systems according to the present invention.
  • FIG. 10 shows a partially hidden view of the air handler 20 .
  • FIG. 11 shows a “Stage #2” retrofit system 900 .
  • FIG. 12 shows a “Stage #7” retrofit system 1000 .

Abstract

The present invention provides improved dehumidification and/or air conditioning systems, and associated methods and equipment, for example for use in a natatorium housing a swimming pool, or other buildings which may enclose sources of humidity or otherwise resulting in a need for air treatment.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of U.S. Non-Provisional Patent Application Ser. No. 14/847,632 filed Sep. 8, 2015, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/047,264 filed Sep. 8, 2014, the entireties of which are hereby incorporated herein by reference for all purposes.
  • TECHNICAL FIELD
  • The present invention relates generally to the field of HVAC systems and equipment, and more particularly to systems and methods relating to a natatorium dehumidifier/air conditioner, and to retrofitting existing natatorium dehumidifiers/air conditioning systems for improved performance and reliability.
  • BACKGROUND
  • The typical design for many packaged refrigerant based dehumidifiers is fundamentally flawed because of the propensity of the system to become contaminated by moisture during repairs. This is particularly the case with dehumidifiers used in indoor swimming pool or natatorium facilities. Replacement packaged dehumidifier systems are extremely expensive and it is more economical to retrofit the customer's existing unit with other components in a different arrangement. Refrigerant based dehumidifiers are overly complicated for many applications due to the quantity of control valves in the refrigerant circuit making it hard for the average technician to troubleshoot. Refrigerant based dehumidifiers also contain a significant volume of refrigerant. For example, a 60 ton Desert Aire™ unit or equivalent system holds about 400 lbs of R22. Typically, refrigerant based dehumidifiers comprise one or more coils (carrying refrigerant) that are positioned inside of the air handler. For example, providing a flow of air over the coils provides for heat transfer so that heat energy is transferred from the refrigerant (e.g., passing through the one or more coils) to the air moving through the air handler and across the one or more coils to dehumidify and provide air conditioning within the natatorium. Due to the inherent nature of the dehumidifier and surroundings, the air handler will likely be humid or comprising a substantially large relative humidity such that chlorinated water vapor is present.
  • For example, as a common decontamination method for large bodies of water such as a swimming pool, chlorine will likely be used (in doses) to decontaminate the pool water. As such, any water vapor from the natatorium (and generally produced by the pool water and chlorine mix), will produce the chlorinated water vapor. Thus, as the refrigerant based dehumidifier runs, the chlorinated water vapor is being drawn within the air handler. According to several accounts, when refrigerant based dehumidifiers are serviced (e.g., compressor replacement, etc.), the moist air inside of the air handler contaminates the coils carrying the refrigerant with chlorinated water vapor, whereby the chlorinated water vapor contacts the inside surface of the coils or piping thereof and forms copper-chloride salt. After the dehumidifier is serviced, the coils are evacuated of air using a vacuum pump, thereby causing the moisture to boils away and leaving the copper-chloride salt in the coils.
  • As the system is recharged with refrigerant, the copper-chloride salt dissolves and contaminates the refrigerant circuit causing acidic refrigerant. The acidic refrigerant in turn causes the dehumidifier to have continuous compressor failures in the form of grounded and shortened windings. Thus, refrigerant based dehumidification systems during a repair will more than likely become contaminated by chlorinated water vapor, which will likely cause repetitive compressor failures due to grounded or shortened windings. Furthermore, Standard Desert Aire™ dehumidifiers and other refrigerant based dehumidifiers are limited in the amount of outdoor air they can bring into a building such as a natatorium for housing a swimming pool or other enclosed area.
  • Accordingly, it can be seen that needs exist for improved dehumidifiers and air conditioners. It is to the provision of a natatorium dehumidifier meeting these and other needs that the present invention is primarily directed.
  • SUMMARY
  • In example embodiments, the present invention provides a natatorium dehumidifier or dehumidifier/air conditioning system. In one aspect, the present invention relates to a dehumidifier/air conditioner including an air handler and a refrigerant based chiller. The air handler has a contained volume therein and includes at least a chilled water coil, a reheat coil, and a heating coil. According to example forms, the refrigerant based chiller positioned outside of the air handler. According to some example forms, the air handler comprises chlorinated water vapor therein. According to preferred example forms, the chilled water coil, the reheat coil, and the heating coil comprise waterside coils. The chiller is positioned outside of the air handler in an environment generally free from moisture or chlorinated water vapor. According to example forms, the air handler comprises a return air damper and an outdoor or outside air damper. Optionally, the air handler further a runaround coil positioned adjacent the return air damper and a runaround coil positioned adjacent the outdoor air damper.
  • In another aspect, the invention relates to a method of retrofitting an existing dehumidifier/air conditioner including removing refrigerant components from inside of the air handler of the existing dehumidifier/air conditioner; installing one or more waterside components within the existing air handler, the waterside components being chosen based off of efficiency and expense; and providing a refrigerant based chiller, the refrigerant based chiller positioned outside of the air handler. According to some example forms, the refrigerant based chiller is in the form of an air cooled chiller. According to some example forms, the refrigerant based chiller is in the form of a water cooled chiller. Generally, the one or more waterside components include a chilled water coil, a reheat coil, a heating coil, and one or more runaround coils. Optionally, a boiler or duct furnace positioned outside of the air handler. Optionally, a plate frame heat exchanger is provided.
  • In another aspect, the invention relates to a natatorium dehumidifier including an air handler and a refrigerant based chiller positioned outside of the air handler. The air handler having a contained volume and having chlorinated water vapor therein. According to example forms, the air handler includes at least a chilled water coil, a reheat coil, and a heating coil. According to preferred forms, the chilled water coil, the reheat coil, and the heating coil comprise waterside coils. According to preferred forms, the chiller is positioned outside of the air handler in an environment free from moisture or chlorinated water vapor. According to example forms, the air handler includes a return air damper and an outdoor air damper. Optionally, a runaround coil is positioned adjacent the return air damper and a runaround coil is positioned adjacent the outdoor air damper.
  • In another aspect, the invention relates to a natatorium including an enclosure containing an indoor pool, and a natatorium dehumidifier comprising an air handler and a chiller containing a refrigerant. The enclosure of the natatorium and the air handler define a treated air containment space, and the refrigerant of the chiller is isolated from and positioned outside of the treated air containment space.
  • These and other aspects, features and advantages of the invention will be understood with reference to the drawing figures and detailed description herein, and will be realized by means of the various elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following brief description of the drawings and detailed description are exemplary and explanatory of example embodiments of the invention, and are not restrictive of the invention, as claimed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic of a dehumidifier/air conditioner system according to a first example embodiment of the present invention.
  • FIG. 2 is a schematic of a dehumidifier/air conditioner system according to a second example embodiment of the present invention.
  • FIG. 3 is a schematic of a dehumidifier/air conditioner system according to a third example embodiment of the present invention.
  • FIG. 4 is a schematic of a dehumidifier/air conditioner system according to a fourth example embodiment of the present invention.
  • FIG. 5 is a schematic of a dehumidifier/air conditioner system according to a fifth example embodiment of the present invention.
  • FIG. 6 is a schematic of a dehumidifier/air conditioner system according to a sixth example embodiment of the present invention.
  • FIG. 7 is a schematic of a dehumidifier/air conditioner system according to a seventh example embodiment of the present invention.
  • FIG. 8 is a schematic of a dehumidifier/air conditioner system according to an eighth example embodiment of the present invention.
  • FIG. 9 is a table showing a plurality of options for retrofitting an existing dehumidifier/air conditioner system according to a ninth example embodiment of the present invention.
  • FIGS. 10-12 show additional components and systems according to additional example embodiments of the present invention.
  • DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS
  • The present invention may be understood more readily by reference to the following detailed description of the invention taken in connection with the accompanying drawing figures, which form a part of this disclosure. It is to be understood that this invention is not limited to the specific devices, methods, conditions or parameters described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be limiting of the claimed invention. Any and all patents and other publications identified in this specification are incorporated by reference as though fully set forth herein.
  • Also, as used in the specification including the appended claims, the singular forms “a,” “an,” and “the” include the plural, and reference to a particular numerical value includes at least that particular value, unless the context clearly dictates otherwise. Ranges may be expressed herein as from “about” or “approximately” one particular value and/or to “about” or “approximately” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment.
  • The present invention provides improved dehumidification and/or air conditioning systems, and associated methods and equipment, for example for use in a natatorium facility housing an indoor swimming pool, or other buildings which may enclose sources of humidity or otherwise resulting in a need for air treatment. The dehumidifier/air conditioner system of the present invention preferably comprises four modes of operation including: 1) cooling, 2) dehumidifying, 3) economizing, and 4) heating. In example forms, each of these modes (1-4) include sub modes, which equates to rejecting heat to different components within the system to be utilized later for energy recovery.
  • As depicted throughout the figures, the dehumidifier/air conditioner system of the present invention generally comprises a plurality of components. For example, according to example embodiments of the present invention, the dehumidifier/air conditioner generally comprises a boiler 1, a chiller 2, a cooler 3, a hot water storage tank 4, one or more pool boilers 5, 6, a runaround coil 7, a return air damper 8, an outdoor or outside air damper 9, a runaround coil 10, a chilled water coil 11, a reheat coil 12, a heating coil 13, one or more air filter racks 14, and a plate frame heat exchanger 15. According to some example forms and as will be described below, one or more of the components of the dehumidifier/air conditioner can be omitted. According to some example forms, the system generally comprises three air filter racks 14 for receiving filters therein. Generally, the air filter racks 14 are provided in front of the runaround coils 7, 10, and in front of one or more of the other coils (chilled water coil 11, reheat coil 12, heating coil 13). An air handler 20 is positioned relative to the components as shown in the figures whereby air comprising a first temperature and a first relative humidity is drawn into the air handler 20, and whereby air comprising a second temperature and a second relative humidity is dispersed from the air handler 20. Optionally, as will be described below, outdoor air may be drawn into the air handler 20 according to some example forms of the present invention.
  • Generally, the air handler 20 comprises a contained volume that is occupied by a flow of air passing therethrough. Generally, the air (e.g., return air in) is relatively saturated with moisture and contains chlorinated water vapor, for example, as most pools will generally comprise at least some chlorine to cause at least a portion of the water vapor therefrom to be at least partially chlorinated. According to example forms, the air handler 20 generally houses a plurality of the components including the runaround coil 7 adjacent the return air damper 8, the outdoor air damper 9 adjacent the runaround coil 10, the chilled water coil 11, the reheat coil 12, and the heating coil 13. Preferably, the components 7, 10, 11, 12, 13 are housed within the air handler 20 and all have waterside coils, for example, having coils in which water is the medium flowing therethrough, which can vary depending on the coil and desired temperature. According to one example form, the return air is at a temperature of about 86 degrees F. and 60% relative humidity, and the air being dispersed or blown out of the system (e.g., air out) is at a temperature of about 66 degrees F. and about 97% relative humidity (see FIG. 1). According to another example form, the return air is at a temperature of about 86 degrees F. and about 60% relative humidity, and the air being dispersed or blown out of the system (e.g., air out) is about 115 degrees F. and about 29% relative humidity (see FIG. 8).
  • According to example forms, all or substantially all of the refrigeration or refrigerant components are contained inside the chiller 2 (e.g., comprising refrigerant within its coils) and are free from being positioned within the air handler or a moisture laden environment where chlorine or chlorinated water vapor is present. Thus, when servicing of the dehumidifier/air conditioner is performed, the coils of the components within the air handler 20 (e.g., moist and chlorinated environment) are outside of the potentially chlorinated airflow and thereby are prevented from being contaminated by the chlorine, and thus, do not contaminate the refrigerant since the coils are carrying water therethrough. Likewise, when servicing of the chiller 2 is performed, the coils of the chiller 2 are not contaminated by the chlorine since the chiller 2 and the refrigerant coils thereof are in an environment free from chlorine or chlorinated water vapor.
  • The cooling mode will preferably be initiated when the return air entering the machine has a sensible temperature that is higher than the desired space temperature. Regardless of the cooling sub mode, the chiller will preferably run to maintain about a 40 degrees Fahrenheit (40° F.) chilled water temperature, the three way valve at the reheat coil will be in a bypass position, and the supply air fan will run at 60 hertz (full speed). The other valves at the plate frame heat exchanger 15 and in the pool water loop will be opened, closed or modulated based on what sub mode the system is running in while in the cooling mode. The three-way chilled water valve at the cooling coil will be modulated by a proportional-integral-derivative (PID) loop as the space temperature changes giving the system tight control. These subsequent sub modes will be determined by the programmable logic controller henceforth known as the PLC. Below is a description of each sub mode within the cooling mode explaining how the devices within the design function in each sub mode.
  • With reference now to the drawing figures, wherein like reference numbers represent corresponding parts throughout the several views, FIG. 1 shows a dehumidifier/air conditioner 100 in a cooling mode with no demand for pool heat and a hot storage tank. When the swimming pool temperature is at its set point and the hot water storage tank 4 temperature is warmer than the condenser water leaving the chiller 2 the system is said to be in “pure cooling mode”. In this mode, the condenser water leaving the chiller 2 is bypassed around the plate frame heat exchanger 15 and is cooled at the remote air side condenser before reentering the chiller 2. Moist return airflow from the natatorium structure enclosing a chlorinated water pool is delivered via a return air duct or other return airflow conduit to the enclosed air handler 20, where the natatorium airflow is conditioned or treated by dehumidification, cooling, heating and/or filtering, and then returned via an air out (conditioned air) supply duct or other supply air delivery conduit to the enclosure of the natatorium structure or pool area. One or more fans or blower units preferably drive the airflow through the system. The natatorium enclosure, air handler and supply and return ducts define a substantially enclosed treated air containment space, and the chiller and refrigerant coils are located outside of and isolated from this treated air containment space to avoid potential contamination of the refrigerant with chlorine or other contaminants that may be present within the treated air containment space. A chilled water delivery pipe or conduit delivers cooling water from the chiller to the chilled water coil within the air handler to cool and/or dehumidify air within the treated air containment space without exposing the refrigerant or refrigerant coils to potential contaminants from the treated air.
  • FIG. 2 shows dehumidifier/air conditioner 200 in a cooling mode with no demand for pool heat and a cold storage tank. When the swimming pool temperature is at its set point and the hot water storage tank 4 is colder than the condenser water leaving the chiller 2, the system rejects heat to the storage tank 4 to later release to the pool. This is accomplished by sending condenser water through the plate frame heat exchanger 15 while also switching the valves over at the storage tank 4 in order to circulate the water in the storage tank 4 back to the plate frame heat exchanger 15. Later, if there is a demand for pool heat while the system is not producing hot condenser water, the storage tank's water is released to the swimming pool through the related changeover valves.
  • In an economizer mode, as will be described below, one or more of the systems of the present invention generally include the return and outdoor air dampers 8, 9, and a set of energy recovery coils known as a runaround loop. In the colder months of the year when the system is in cooling mode, if the enthalpy of the outdoor air is lower than that of the return air, the PLC begins opening the outdoor air dampers 9 and closing the return air damper 8. The PLC simultaneously sends an enable signal to the frequency drive that runs the exhaust fan. The exhaust fan then begins ramping up from 20 to 60 hertz based on a signal from a pressure transducer that reads the buildings static pressure relative to atmospheric pressure. This allows the building to be kept at a slightly positive pressure thereby lowering the evaporation rate from the swimming pool and preventing infiltration of outside air into the structure. A mixed air sensor before the chilled water coil 11 serves two functions. First, it prevents the chilled water coil 11 from freezing while the unit is economizing by not allowing the mixed air temp to get lower than about 40 degrees F. Second, it controls the modulation of the dampers 8, 9 by comparing the mixed air temperature change to the change in space temperature thereby giving a PID control loop for economizer control. If the system is in heating mode and the structure needs a large amount of ventilation air due to chlorine concentrations in the air being too high, from a swim meet or other event, the pump for the runaround loop comes on and heat is taken from the exhaust air and rejected to the incoming fresh air. This serves as an energy reclaim for the fresh air system much like an energy recovery wheel.
  • For example, according to one example embodiment, the dehumidifier/air conditioner is configured so as to provide for 120% heat reclaim. For example, according to example embodiments, 100% of the heat from the airstream can be absorbed plus at least about an additional 20% of heat (over the amount of heat absorbed from the airstream) that is produced by the compressor(s) from transferring their work energy into the heat of the system. According to example embodiments, the dehumidifier/air conditioner can heat and free heat with the reclaimed energy (of the 120% heat reclaim process). Furthermore, hot water heat from the heating boiler can be configured to provide second stage heat, thereby greatly reducing the amount of fossil fuel/electrical energy needed by the environments for space heating at night and early morning during parts of the year when cooling or dehumidification are needed during the daylight hours. Thus, according to example embodiments, the dehumidifier/air conditioner of the present invention is substantially efficient and resourceful, reducing the energy required to satisfy the demand by utilizing sources of energy already existing within the dehumidifier/air conditioner system and/or environment.
  • FIG. 3 shows dehumidifier/air conditioner 300 in a cooling mode with a demand for pool heat and the air economizer closed, and FIG. 4 shows dehumidifier/air conditioner 400 in a cooling mode with a demand for pool heat and the air economizer open. Generally, when the swimming pool's temperature is below its set point the system rejects heat to the pool. This is accomplished by sending condenser water through the plate frame heat exchanger 15 to preheat the water going to the pool boilers 5, 6. If the pool temperature continues to drop then the PLC will signal the boilers 5, 6 to run and the pool will be brought up to the correct temperature. Thus, according to example embodiments, rather than rejecting heat to the atmosphere as is common in prior art systems, the dehumidifier/air conditioner of the present invention preferably uses the reclaimed heat to reheat the pool.
  • The dehumidification mode will be initiated when the relative humidity of the return air entering the machine is higher than the set point temperature. Regardless of the dehumidification sub mode, the chiller 2 will run to maintain about a 40 degrees F. chilled water temperature and the three way valve at the reheat coil 12 will modulate to supply hot condenser water to the reheat coil 12. As space temperature drops below the set point the three way valve to the reheat coil 12 will send more flow through the coil. As the humidity in the space decreases the three way valve at the chilled water coil 11 will bypass chilled water around the cooling coil. On other versions of the system, a boiler is used for reheat and the supply fan is set to 30 hertz to maintain energy compliance. The other valves at the plate frame heat exchanger 15 and in the pool water loop will be opened, closed, or modulated by the PLC based on what sub mode the system is running in while in the dehumidification mode.
  • FIG. 5 shows dehumidifier/air conditioner 500 in a dehumidification mode with no demand for pool heat and a hot storage tank 15. When the swimming pool temperature is at its set point and the hot water storage tank's temperature is warmer than the condenser water leaving the reheat coil 12, the system is said to be in “pure dehumidification mode”. In this mode, the condenser water leaving the reheat coil 12 is bypassed around the plate frame heat exchanger 15 and is cooled as needed at the remote air side condenser before reentering the chiller 2.
  • FIG. 6 shows dehumidifier/air conditioner 600 in a dehumidification mode with no demand for pool heat and a cold storage tank. When the swimming pool temperature is at its set point and the hot water storage tank 4 is colder than the condenser water leaving the reheat coil 12, the system rejects heat to the storage tank 4 to later release to the pool. This is accomplished by sending condenser water through the plate frame heat exchanger 15 while also switching the valves over at the storage tank 4 in order to circulate the water in the storage tank 4 back to the plate frame heat exchanger 15. Later if there is a demand for pool heat while the system is not producing hot condenser water, the storage tank water (e.g., warm water) is released to the swimming pool through the related changeover valves. Preferably, according to some example forms, the tank 4 is installed below the level of the pool to prevent it from overrunning the pool when released.
  • FIG. 7 shows dehumidifier/air conditioner 700 in a dehumidification mode with a demand for pool heat. When the swimming pool temperature is below its set point the system rejects heat to the pool. This is accomplished by sending condenser water through the plate frame heat exchanger 15 to preheat the water going to the pool boilers 5, 6. If the pool temp continues to drop, the PLC will signal the boilers 5, 6 to run and the pool will be brought up to the correct temperature.
  • FIG. 8 shows dehumidifier/air conditioner 800 in a heating mode with energy recovery from ventilation. When the return air has a sensible temperature that is lower than the set point the heating mode is initiated. The PLC signals the boiler to come on and the boiler's factory controls allow it to maintain its predetermined set point temperature. The PLC will modulate the three way valve at the hot water coil to maintain space temperature giving the system a PID loop.
  • According to another example embodiment, the present invention further relates to retrofitting an existing dehumidifier/air conditioner for improved performance. In one example form, the dehumidifier/air conditioner of the present invention utilizes the existing air handler's shell to house the new unit's components. This removes the need for a large crane on the job site thereby saving substantial expense on the replacement of the unit. The first step is to remove all the refrigerant components from inside of the air handler. The customer or operator of the system may elect how many options they want in their new system, depending on factors such as efficiency requirements and expense. FIG. 9 is a table showing the different stages (options) that can be installed to give a customer the unit that best matches their needs and budget. As the customer works their way towards a “Stage #7” unit the initial cost and energy recovery capability of the system grows. According to one example, the cost of a “Stage #1” retrofit system has been calculated to be about ⅓ the cost of a replacement Desert Aire™ unit. According to another example, a “Stage #2” unit is calculated to produce savings up to an estimated $12,000.00 per year in electrical consumption while costing about half the amount of a new/comparable Desert Aire™ unit. Preferably, according to example embodiment of the present invention, the dehumidifier/air conditioner comprises about 2-80 lbs of R410-A, which is substantially less than that of conventional refrigerant based systems. For example, according to one example embodiment, the dehumidifier/air conditioner of the present invention uses about one tenth the amount of chloro-fluoro-carbon based refrigerant in comparison to a direct expansion system comprising an equivalent tonnage, thereby making it more green and environmentally stable. According to one example, a 60 ton Desert Aire™ refrigerant based dehumidifier requires about 400 lbs of R22 refrigerant, which is about ten times more refrigerant than a retrofitted dehumidifier/air conditioning system according to the present invention (e.g., requiring about 40 lbs of R410-A refrigerant). Furthermore, at least one example embodiment of the present invention provides for handling up to 100% outdoor or outside air, thereby giving the ability for the unit to fully economize the structure. For example, according to one example embodiment, the dehumidifier/air conditioning system of the present invention comprises a fully integrated enthalpy controlled 100% outdoor air economizer that can precool, cool and dehumidify the pool environment (e.g., the natatorium structure enclosing a chlorinated water pool) with no mechanical energy other than the supply air fan itself.
  • FIGS. 10-12 show additional components and systems according to the present invention. For example, FIG. 10 shows a partially hidden view of the air handler 20. FIG. 11 shows a “Stage #2” retrofit system 900. FIG. 12 shows a “Stage #7” retrofit system 1000.
  • While the invention has been described with reference to preferred and example embodiments, it will be understood by those skilled in the art that a variety of modifications, additions and deletions are within the scope of the invention, as defined by the following claims.

Claims (20)

What is claimed is:
1. A dehumidifier/air conditioner comprising:
an air handler comprising a contained volume therein, the air handler comprising at least a chilled water coil, a reheat coil, and a heating coil; and
a refrigerant based chiller positioned outside of the air handler.
2. The dehumidifier/air conditioner of claim 1, wherein the air handler processes chlorinated water vapor therein.
3. The dehumidifier/air conditioner of claim 1, wherein the chilled water coil, the reheat coil, and the heating coil comprise waterside coils.
4. The dehumidifier/air conditioner of claim 1, wherein the chiller is positioned outside of the air handler in an environment generally free from moisture or chlorinated water vapor.
5. The dehumidifier/air conditioner of claim 1, wherein the air handler comprises a return air damper.
6. The dehumidifier/air conditioner of claim 5, wherein the air handler further comprises an outdoor air damper.
7. The dehumidifier/air conditioner of claim 5, wherein the air handler further comprises a runaround coil positioned adjacent the return air damper.
8. The dehumidifier/air conditioner of claim 6, wherein the air handler further comprises a runaround coil positioned adjacent the outdoor air damper.
9. A natatorium dehumidifier comprising:
an air handler defining a contained volume and processing air containing potentially chlorinated water vapor therein;
a refrigerant based chiller positioned outside of the air handler.
10. The natatorium dehumidifier of claim 9, wherein the air handler comprises at least a chilled water coil, a reheat coil, and a heating coil.
11. The natatorium dehumidifier of claim 10, wherein the chilled water coil, the reheat coil, and the heating coil comprise waterside coils.
12. The natatorium dehumidifier of claim 9, wherein the chiller is positioned outside of the air handler in an environment free from moisture or chlorinated water vapor.
13. The natatorium dehumidifier of claim 9, wherein the air handler further comprises a return air damper.
14. The natatorium dehumidifier of claim 9, wherein the air handler further comprises an outdoor air damper.
15. The natatorium dehumidifier of claim 13, wherein the air handler further comprises a runaround coil positioned adjacent the return air damper.
16. The natatorium dehumidifier of claim 14, wherein the air handler further comprises a runaround coil positioned adjacent the outdoor air damper.
17. A natatorium comprising an enclosure containing an indoor pool, and a natatorium dehumidifier comprising an air handler and a chiller containing a refrigerant, wherein the enclosure of the natatorium and the air handler define a treated air containment space, and wherein the refrigerant of the chiller is isolated from and positioned outside of the treated air containment space.
18. The natatorium of claim 17, wherein the indoor pool contains chlorinated water, and the refrigerant of the chiller is isolated from exposure to chlorine from the treated air containment space.
19. The natatorium of claim 17, wherein the air handler comprises at least one air conditioning component selected from a cooling coil, a heating coil, a filter and an outside air mixing damper.
20. The natatorium of claim 17, further comprising an enthalpy controlled 100% outdoor air economizer for precooling, cooling and/or dehumidifying the natatorium, the outdoor air economizer comprising an outdoor air damper and a supply air fan, wherein the precooling, cooling and/or dehumidification of the natatorium is provided with no mechanical energy other than a supply air fan.
US17/019,549 2014-09-08 2020-09-14 Natatorium dehumidifier Abandoned US20200408424A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/019,549 US20200408424A1 (en) 2014-09-08 2020-09-14 Natatorium dehumidifier

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462047264P 2014-09-08 2014-09-08
US14/847,632 US10775056B2 (en) 2014-09-08 2015-09-08 Natatorium dehumidifier
US17/019,549 US20200408424A1 (en) 2014-09-08 2020-09-14 Natatorium dehumidifier

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/847,632 Continuation-In-Part US10775056B2 (en) 2014-09-08 2015-09-08 Natatorium dehumidifier

Publications (1)

Publication Number Publication Date
US20200408424A1 true US20200408424A1 (en) 2020-12-31

Family

ID=74043025

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/019,549 Abandoned US20200408424A1 (en) 2014-09-08 2020-09-14 Natatorium dehumidifier

Country Status (1)

Country Link
US (1) US20200408424A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080179408A1 (en) * 2007-01-30 2008-07-31 Johnson Controls Technology Company Sensor-free optimal control of air-side economizer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080179408A1 (en) * 2007-01-30 2008-07-31 Johnson Controls Technology Company Sensor-free optimal control of air-side economizer

Similar Documents

Publication Publication Date Title
US10775056B2 (en) Natatorium dehumidifier
US8689580B2 (en) Air conditioning/dehumidifying unit
KR101083866B1 (en) A Heat Recovery Ventilation System with integrated cooling and heating funtion
CN204128094U (en) A kind of small and exquisite lustration type fresh air dehumidifier
TW201736790A (en) Systems and methods for controlling a refrigeration system
JP2011163682A (en) Indirect evaporation cooling type outdoor air conditioner system
US11320161B2 (en) Air conditioning with recovery wheel, dehumidification wheel, and cooling coil
US20130125574A1 (en) Dehumidifer having split condenser configuration
WO2019173047A1 (en) Energy recovery high efficiency dehumidification system
KR20110105037A (en) A heat recovery ventilation system with integrated cooling and heating funtion
JP2005049059A (en) Air-conditioning system
CN104406242A (en) Efficient dehumidification cleaning room system
CN204128072U (en) Room conditioning
KR101579443B1 (en) Hybrid constant temperature humidity chamber using sensible cooling and indirect ambient cooling
CN104089341B (en) Room conditioning
CN103994504A (en) Fresh air dehumidifier
US20200408424A1 (en) Natatorium dehumidifier
JP2007327693A (en) Dehumidifying air-conditioning system
KR101636263B1 (en) Multi-function air conditioning systems
US20160327313A1 (en) Direct Expansion Heat Recovery Method and Device
CN206944384U (en) The integrated dehumidifying heat pump of swimming pool three
KR101777711B1 (en) cooling-heating system of swimming pool
CN107763737A (en) A kind of indoor apparatus of air conditioner and air-conditioning
CN104676766B (en) A kind of Window frame-type air dehumidifier
CN203163124U (en) Fresh air dehumidifier

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: UNITED MAINTENANCE, INC., GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ANDERSON, ADAM J.;REEL/FRAME:055684/0525

Effective date: 20210319

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION