US20200407792A1 - Radiation biodosimetry systems - Google Patents

Radiation biodosimetry systems Download PDF

Info

Publication number
US20200407792A1
US20200407792A1 US16/929,512 US202016929512A US2020407792A1 US 20200407792 A1 US20200407792 A1 US 20200407792A1 US 202016929512 A US202016929512 A US 202016929512A US 2020407792 A1 US2020407792 A1 US 2020407792A1
Authority
US
United States
Prior art keywords
radiation
seq
nucleic acid
dose
nos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US16/929,512
Inventor
Joshua Labaer
Kristin Gillis
Garrick Wallstrom
Jin Park
Vel Murugan
Mitch Magee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arizona State University ASU
Original Assignee
Arizona State University ASU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arizona State University ASU filed Critical Arizona State University ASU
Priority to US16/929,512 priority Critical patent/US20200407792A1/en
Assigned to ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY reassignment ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GILLIS, KRISTIN, LABAER, JOSHUA, MAGEE, Mitch, MURUGAN, VEL, PARK, JIN, WALLSTROM, GARRICK
Publication of US20200407792A1 publication Critical patent/US20200407792A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • Radiation exposure is one of the most serious hazards of the modern era.
  • the health consequences to individuals and populations exposed to radiological incidents, accidental or otherwise, can range from negligible to fatal depending on the amount of radiation that is absorbed by an individual.
  • compositions and methods for accurately estimating the absorbed dose of radiation suffered by a subject based on the expression pattern in RNA obtained from peripheral blood of a panel of radiation-modulated (RM) genes at various time points following exposure of the subject to ionizing radiation are disclosed herein.
  • a radiation biodosimetry assay system comprising a plurality of nucleic acid amplification reactions comprising (i) mRNA or cDNA from a human subject suspected of (but not necessarily) suffering from radiation exposure; (ii) primer pairs capable of hybridizing under stringent conditions to mRNAs or cDNAs comprising the nucleotide sequences referred to in Table 4 or the complementary sequences thereof, wherein each primer pair hybridizes to a different one of the mRNAs or cDNAs; and (iii) a thermostable enzyme suitable for amplification of target amplicon sequences from the mRNAs or cDNAs.
  • a mathematical algorithm that converts gene expression results to estimated absorbed dose of radiation.
  • the one or more nucleic acid amplification reactions further comprise detectably labeled TAQMAN® probes capable of hybridizing under stringent conditions to the mRNAs or cDNAs.
  • the thermostable enzyme is a thermostable polymerase.
  • the mRNA is from a subject that was exposed to radiation about 4-hours to about seven days prior to the time at which a biological sample comprising the mRNA was obtained.
  • a radiation biomarker assay kit comprising a nucleic acid probe set consisting essentially of nucleic acid probes that hybridize specifically with nucleic acid targets comprising at least one of the nucleotide sequences referred to in SEQ ID NOs: 1-39 or the complementary sequences thereof.
  • the probe set comprises no more than 100 probes.
  • the probe set consists of the nucleic acid probes that hybridize specifically with the nucleic acid targets.
  • the nucleic acid probe set comprises primer pairs and TAQMAN probes suitable for qPCR analysis of mRNAs or cDNAs comprising at least one of the nucleotide sequences referred to in SEQ ID NOS: 1-39 or the complementary sequences thereof.
  • the nucleic acid probes are provided in a multi-well plate. In some embodiments, where the nucleic acid probes are provided in a multi-well plate, at least two nucleic acid probes that hybridize to at least two different nucleic acid targets are in the same wells of the multi-well plate.
  • the kit also includes radiation exposure positive and negative control mRNA samples or cDNAs thereof.
  • a method for assessing a dose of ionizing radiation absorbed by a subject comprising (i) determining the mRNA expression levels of mRNAs comprising at least one of the nucleotide sequences referred to in SEQ ID NOs: 1-39 in a biological sample, comprising mRNA from the subject, to obtain an expression profile; and (ii) transforming the gene expression profile and when available, the duration of time from exposure to sample collection, into a measure of absorbed dose of radiation for the subject based on a mathematical algorithm.
  • the algorithm utilizes multiple random forest regression trees to estimate absorbed dose and confidence limits and then a top-level logic layer to combine outputs into a single estimated absorbed dose with confidence limits.
  • the method further includes treating the subject based on the estimated absorbed dose of radiation determined in step (ii).
  • the absorbed dose of ionizing radiation is determined within about seven days of subject exposure to ionizing radiation.
  • the method also includes a step of obtaining the biological sample from the subject prior to step (i).
  • a method for radiation treatment triage of a subject in need thereof comprising (i) determining the mRNA expression levels of mRNAs comprising the nucleotide sequences referred to in at least one of SEQ ID NOs: 1-39 (or any other sequence identifier included herein, in any combination) in a biological sample comprising leukocyte mRNA from the subject to obtain a gene expression profile; and (ii) providing a suitable treatment for radiation exposure to the subject based on the expression levels of the genes.
  • FIG. 1A show tables listing a set of 28 radiation modulated (RM) genes and their expression pattern at various time points following absorption of ionizing radiation.
  • RM radiation modulated
  • FIG. 1B show tables listing a set of 28 radiation modulated (RM) genes and their expression pattern at various time points following absorption of ionizing radiation.
  • RM radiation modulated
  • FIG. 2 shows a time series (days 1-7) of plots of actual delivered ionizing radiation dosage values (0 Gy to 10 Gy) versus estimated absorbed dose of radiation based on changes in RM gene expression in peripheral blood
  • FIG. 3 shows a table providing the percentage accuracy (within 1 Gy) of the biodosimetry algorithm's absorbed radiation dose estimate based on expression of 29 RM genes in peripheral blood collected from rhesus macaque non-human primate (NHPs) at various time points (1-7 days) following exposure to irradiation doses ranging from 0 Gy to 10 Gy.
  • FIG. 4 shows a table providing the percentage accuracy (within 0.5 Gy) of the biodosimetry algorithm's absorbed radiation dose estimate based on expression of 29 RM genes in peripheral blood from NHPs at various time points (1-7 days) following exposure to irradiation doses ranging from 0 Gy to 10 Gy.
  • FIG. 5 shows scatter plots of changes in RM gene expression in male vs. female NHPs following radiation exposure of various doses and at different time points following radiation exposure. As shown, male and female RM gene expression responses were very closely correlated for the 29 RM genes.
  • FIG. 6 shows a table describing the sensitivity and specificity of the biodosimetry algorithm in various NHP and human irradiation models.
  • FIG. 7 shows an overview of an exemplary, non-limiting, embodiment of biodosimetry workflow illustrating the steps of: blood sample collection, RNA isolation, reverse transcription to obtain cDNA, pre-amplification of the cDNA, and qPCR assay of a RM biomarker and reference gene panel.
  • FIG. 8 shows a single regression tree in a random forest example. This tree generates an estimated absorbed dose using the relative expression levels of gene biomarkers, HBA2 and IL27RA, and the absolute expression level of gene biomarker, COCH.
  • FIG. 9 shows a schematic overview on human and NHP data sets, cross-species conversion approaches to utilize the NHP single-dose (SD) biodosimetry algorithm to predict absorbed dose in human in case of acute radiation exposure.
  • SD single-dose
  • Cross-species conversion algorithms were developed with human and NHP fractionated-dose (FD) models that showed a good cross-model compatibility with NHP SD models.
  • FIG. 10A shows a schematic overview on the approach to convert NHP fractionated dose (FD) data to the corresponding values in NHP single-dose (SD) data by 3-dimensional linear scaling of day, dose, and expression values.
  • FIG. 10B shows the optimal range (in blue) of dose/day scaling factors for 12 Gy/day-6 data points of individual biomarkers (top panels) and a unified scaling factor (bottom panel) for 29 tested biomarkers.
  • FIG. 11A shows dose prediction performances of a random forests model based on 7 correlated biomarker genes on NHP SD data (for day 3, as an example).
  • FIG. 11B shows dose prediction performances of a random forests model based on 7 correlated biomarker genes on converted NHP FD values across all days by matching day/cumulative dose, 3D scaling, and 3D scaling followed by multi-gene regression. Prediction accuracies within 1.0 Gy are shown.
  • FIG. 12A shows correlation of individual biomarker expression values between NHP fractionated dose (FD) and human TBI, magnitude of expressional changes across dose, and mean absolute difference (MAD) between NHP FD and human TBI data points.
  • FIG. 12B shows dose response curves of the top 4 inter-species correlated genes in NHP FD and human TBI data.
  • FIG. 13A shows dose prediction performances of a random forests model based on 10 inter-species biomarker genes on NHP FD data.
  • FIG. 13B shows dose prediction performances of a random forests model based on 10 inter-species biomarker genes on unconverted and converted human TBI values by value shift, and value shift followed by multi-gene regression. Prediction accuracies within 1.0 Gy are shown.
  • the present invention provides methods for estimating absorbed dose of ionizing radiation by a subject, which includes the steps of: (i) determining the mRNA expression levels of mRNAs comprising the nucleotide sequences referred to in SEQ ID NOs: 1-39 in a biological sample comprising peripheral blood mRNA collected from the subject to obtain an expression profile; and (ii) transforming the gene expression profile and when available, the duration of time from exposure to sample collection into an estimated absorbed dose of ionizing radiation and confidence limits for a subject based on a mathematical algorithm. For each of several durations for which training data were available, one primary random forest was developed to estimate absorbed dose of radiation. Additional secondary random forests were developed to provide more accurate dosimetry in narrow dosage intervals. The top-level logic layer uses the primary random forest to generate an initial estimate of absorbed dose of radiation, and based on that value, may select additional random forests to construct more refined estimates of absorbed dose, with confidence limits.
  • the method also includes treating the subject based on the absorbed dose of ionizing radiation determined in step (ii) above.
  • the absorbed dose of ionizing radiation is determined within about seven days of exposure to the ionizing radiation, e.g., within about 30 minutes, 1 hour, 3 hours, 6 hours, 8 hours, 24 hours, 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, or another time period within seven days following ionizing irradiation.
  • the absorbed dose of ionizing radiation is within the range of about 0.5 Grays (Gy) to about 10 Gy, e.g., about 1 Gy, 2 Gy, 3 Gy, 4 Gy, 6 Gy, 7 Gy, 8 Gy, 9 Gy, or another absorbed dose of ionizing radiation from about 0.5 Gy to about 10 Gy.
  • the method also includes obtaining the biological sample from the irradiated subject prior to step (i) above.
  • a whole blood sample, or other blood fraction containing lymphocytes, is collected from a subject known to be or suspected of being irradiated into a PAXGENETM Blood RNA tube.
  • the PAXGENETM Blood RNA contains an additive that stabilizes in vitro gene expression and RNA degradation.
  • RNA is extracted from the stabilized blood sample by using a Stabilized BLOOD-TO-CTTM Nucleic Acid Preparation Kit for qPCR (Life Technologies, Inc.).
  • RNA sample is then subjected to reverse transcription, e.g., using the INVITROGENTM SUPERSCRIPT ⁇ VILOTM (Variable Input, Linear Output) cDNA synthesis kit (Life Technologies, Inc.) or equivalent kit.
  • the resulting cDNA is pre-amplified using a TAQMAN® probe PreAmp Master Mix Kit (Life Technologies, Inc.) and the pre-amplified cDNA is then assayed by TAQMAN ⁇ probe-based qPCR in a 96-well or 384-well format using QUANTSTUDIOTM Dx or ABI7500 Fast Dx quantitative Real-Time PCR Instruments (Life Technologies, Inc.).
  • expression levels of RM mRNAs will be expressed as a difference in C T between a test gene and a reference (“housekeeping”) gene C T .
  • the panel of RM mRNAs to be assayed include at least some combination of mRNAs for one or all of the following (human) genes: CR2 (SEQ ID NO: 1), DHRS4L1 (SEQ ID NO: 2), HCK (SEQ ID NO: 3), IL1RAP (SEQ ID NO: 4), LYRM4 (SEQ ID NO: 5), MYC (SEQ ID NO: 6), TMEM63B (SEQ ID NO: 7), ALOX5 (SEQ ID NO: 8), CAMK4 (SEQ ID NO: 9), CDKN1A (SEQ ID NO: 10), COCH (SEQ ID NO: 11), DHRS4 (SEQ ID NO: 12), MICAL1 (SEQ ID NO: 13), MOB3B (SEQ ID NO: 14), NUSAP1 (SEQ ID NO: 15), IL27RA (SEQ ID NO: 16), HBA2 (SEQ ID NO: 17), PPM1F (SEQ ID NO: 18), P
  • RM mRNAs to be assayed can include at least some combination of one or all of the following genes: ADAM17, AKT1, ANK, ANXA3, ARHGAP26, ARID4A, ATG2A, ATIC, BCL11A, BCL6, BID, CFLAR, CIT, CPVL, CYTH4, DDB2, DDX58, DTL, EHBPL1, FCGR2A, FGR, HPRT1, HSP90AB1, HTRA2, IDOL, IRF1, JMJD1C, KIAA0101, LARP4B, LRRC6, LYN, MAP3K1, MAPK3, MDM1, MKNK1, MXD1, NAIP, NFE2L2, NRG1, NUSAP, PCNA, PGK1, PMP22, RARA, RNASE6, RPL13A, RPL6, RPS14, SP10, SPOCK2, TAPBP, TBP, TCF3, TNFRSF1A, TNFRSF1B, TNFSF14
  • qPCR reactions are multiplexed such that multiple mRNAs (including a reference mRNA) are assayed in a single qPCR reaction.
  • Also disclosed herein is a method for radiation treatment triage of a subject in need thereof, which includes the steps of: (i) determining the mRNA expression levels of mRNAs comprising the nucleotide sequences referred to in any of SEQ ID NOS: 1-39 (or any combination of any other SEQ ID NO provided herein) in a biological sample comprising mRNA from the subject to obtain an expression profile; and (ii) providing a suitable treatment for radiation exposure to the subject based on the expression levels of the genes.
  • Exemplary treatments for radiation exposure based on radiation dosage are shown in Table 1 below:
  • a radiation biodosimetry assay system that includes multiple nucleic acid amplification reactions containing the following: (i) mRNA or cDNA from a human subject suspected of suffering from radiation exposure; (ii) primer pairs capable of hybridizing under stringent conditions to mRNAs or cDNAs comprising the nucleotide sequences referred to in SEQ ID NOS: 1-39 (or any other SEQ ID NO provided herein), or the complementary sequences thereof, wherein each primer pair hybridizes to a different one of the mRNAs or cDNAs; and (iii) A mathematical algorithm the converts gene expression results to estimated absorbed dose of radiation.
  • the mathematical algorithm of the present invention takes as input sample qPCR data, sample barcode, and available information about the date and time of the exposure event and sample collection.
  • the primary output of the algorithm is an absorbed dose report that contains an estimated absorbed dose and a dose interval that provides a range of dose values for the patient based on prediction intervals.
  • the algorithm contains 6 basic steps, which are summarized in Table 2.
  • Step 1 patient qPCR data are combined with the available information about the date and time of the event and sample collection using the patient barcode.
  • Step 2 several quality control metrics are calculated for the qPCR data. Depending on the values of these metrics, the algorithm may determine that a sample requires re-testing. If the sample does not require re-testing, the quality control metrics will be utilized in the estimation of absorbed radiation dose, and in particular may affect the estimation interval.
  • step 3 the qPCR data are checked against expected ranges for each biomarker.
  • step 4 quality control metrics and the results of the biomarker range checks are used to determine whether specific biomarker values are invalid and whether sufficient biomarker values are valid for dose estimation.
  • step 5 the qPCR data and the available temporal information for the event and sample collection are processed through a random forest-based mathematical algorithm that yields an estimated dose and a dose interval.
  • the mathematical algorithm in Step 5 utilizes Random ForestsTM method, introduced by Breiman (2001). Random forests is a popular machine-learning tool for prediction that combines large numbers of classification or regression trees to yield accurate and robust predictions.
  • the input to the forest is a vector X of relative and/or absolute expression levels of a set of genes.
  • each tree T i takes X as input and outputs an estimate of absorbed dose, T i (X).
  • FIG. 8 depicts a single tree in a random forest that utilizes the relative expression levels for two gene biomarkers (HBA2 and IL27RA) and the absolute expression level for one gene biomarker (COCH).
  • HBA2 and IL27RA the relative expression levels for two gene biomarkers
  • COCH the absolute expression level for one gene biomarker
  • samples are partitioned into several non-intersecting groups. For example, samples may be partitioned based upon dose and each group then represents an interval for the absorbed dose.
  • Each tree T i takes as input X and outputs the identity of a single group, T i (X).
  • the output from the classification random forest is a probability distribution on the set of groups, where the probability assigned to each group is the proportion of trees that yield the group.
  • the inputs to the mathematical algorithm in Step 5 are a set of absolute and relative expression levels, X for a set of genes, and a probability distribution w that reflects the uncertainty in D, the duration of time from irradiation to sample collection. If the duration of time is known precisely, w will be a point mass distribution on that known duration of time. If the duration is only known to fall within an interval, then may be any probability distribution on that interval such as a uniform distribution or a symmetric triangular distribution. If the duration is entirely unknown or not provided, then w may be calculated using a classification random forest that takes as input X and yields as output a probability distribution over a fixed set of duration values.
  • the outputs are an estimated absorbed dose, AD and a 95% prediction interval for the absorbed dose, (AD low , AD high ).
  • AD estimated absorbed dose
  • AD high a 95% prediction interval for the absorbed dose
  • a novel aspect of our algorithm is the use of multiple random forests for each of several fixed durations, D 1 , . . . , D k .
  • D i we use n i random forests, denoted by RF i,1 , . . . , RF i,n i , to construct initial estimates of absorbed dose.
  • a decision tree T i combines the outputs from RF i,1 , . . . , RF i,n i into a single initial estimate of absorbed dose.
  • One additional random forest, denoted by RF i E is a quantile regression random forest for error that uses the expression values X′ and the output from T i for bias correction and construction of prediction intervals.
  • n i +1 random forests utilize different, but possibly overlapping sets of genes, may be trained on different sets of samples and may include both regression forests and classification forests.
  • AD I the initial estimate of absorbed dose
  • AD I ( D i ) T i (RF i,1 ( X ′), . . . ,RF i,n i ( X ′))
  • This estimate and the transformed expression levels X′ are then passed to the random forest RF i E .
  • the output from RF i E is the conditional probability distribution for the error in the estimate AD I (D i ).
  • a ⁇ D ⁇ ( D * ) D i + 1 - D * D i + 1 - D i ⁇ A ⁇ D ⁇ ( D i ) + D * - D i D i + 1 - D i ⁇ A ⁇ D ⁇ ( D i + 1 )
  • step 6 an absorbed dose estimation report is constructed utilizing the estimated dose and dose interval.
  • each biomarker b we generate an FD curve of the mean expression level of NHP FD samples (2 Gy per day for 6 days) as a function of cumulative dose and day, FD b (dose, clay), and a SD response surface of the mean expression level of NHP SD samples (0 to 6 days, 0 to 7 Gy) as a function of dose and day, SD b (dose, clay) ( FIG. 10A ).
  • the entire FD curve for each biomarker is shifted to match the mean basal level (i.e. 0 Gy/Day 0) of SD values, which produces a scaling factor ⁇ b for expression values for each biomarker.
  • ⁇ b SD b (0, 0) ⁇ FD b (0, 0).
  • ⁇ b,dose and ⁇ b,day minimize the following expression
  • Absolute gene expression values of biomarker genes are highly variable between NHP and human, and, thus, using an NHP biodosimetry algorithm to predict absorbed dose in human requires another step of cross-species expression value transformation from human to NHP.
  • NHP total body irradiation
  • Step 1 Combine Traceability Barcode Unique barcode Adds all needed Flags data for operator Patient information to intervention Barcode with qPCR data Date/Time Event Step 2 Quality Control Negative 96-Well Prep Plate No Ct (Ref)(2) > 37 Cross- Retest Samples Check Control Template Control Contamination in (NTC) or Reagent Sample Prep Blank Positive qPCR Standard 1. Ct (Ref) ⁇ 1 1. LLOD Verified Flags data - may affect Controls Curve: 10, 0.1, 0.01, each conc. 2. Reproducibility Dose Estimate and 0.001 ng/ ⁇ L 2. Amplification Verified Dose interval (Based on standard Efficiency 3. Amplification Or pooled RNA).
  • Evogenous Control Ct (Xeno TM) ⁇ 1 Inhibitors Sample RNA Spike-in Sample Integrity Endogenous Control Ct (Ref) ⁇ 1 1. Adequate Reference Gene(1) Sample RNA Input. 2. Control for variable RNA Input.
  • Step 3 Biomarker Process QC Biomarker integrity QC flag Usability of each Range Check Biomarker Value
  • Step 4 Apply QC and Process QC Analytical integrity QC flag Usability of each Biomarker Biomarker Value Range Flags
  • Step 5 Calculate Quantitative Endogenous Control Absorbed dose Estimated Checks for intended Estimated (Gy) absorbed Dose use dose range Dose Calculate Dose Measurement Confidence Interval Dose Range Dose Interval Checks for acceptable Interval Confidence confidence interval Step 5 Combine Report Report Gy Dose Estimation Clinic Estimated Report Review/Approval Dose and Dose Interval
  • the target mRNAs or cDNAs to which the primers hybridize are those from the following (human) RM genes: CR2, DHRS4L1, HCK, IL1RAP, LYRM4, MYC, TMEM63B, ALOX5, CAMK4, CDKN1A, COCH, DHRS4, MICAL1, MOB3B, NUSAP1, IL27RA, HBA2, PPM1F, PPP2R1A, CFLAR, DHRS13, ACAA1, INPP5J, OAZ1, PNOC, PDE4B, SCARB1, and TMEM9B.
  • RM genes those from the following (human) RM genes: CR2, DHRS4L1, HCK, IL1RAP, LYRM4, MYC, TMEM63B, ALOX5, CAMK4, CDKN1A, COCH, DHRS4, MICAL1, MOB3B, NUSAP1, IL27RA, HBA2, PPM1F, PPP2R1
  • mRNAs or cDNAs to which primers hybridize may include the following genes: ADAM17, AKT1, ANK1, ANXA3, ARHGAP26, ARID4A, ATG2A, ATIC, BCL11A, BCL6, BID, CFLAR, CIT, CPVL, CYTH4, DDB2, DDX58, DTL, EHBPL1, FCGR2A, FGR, HPRT1, HSP90AB1, HTRA2, IDOL, IL27RA, IRF1, JMJD1C, KIAA0101, LARP4B, LRRC6, LYN, MAP3K11, MAPK3, MDM1, MKNK1, MXD1, NAIP, NFE2L2, NRG1, NUSAP, PCNA, PGK1, PMP22, PPP2RA1, RARA, RNASE6, RPL13A, RPL6, RPS14, SCARB1, SP110, SPOCK2, TAPBP, TBP, TCF3, TNFRSF1A,
  • primers are also included that hybridize to PPP6R3 mRNA or cDNA, where PPP6R3 and its mRNA levels serve as a reference gene for relative quantification of RM gene expression levels in an amplification reaction.
  • primers may be included that hybridize to USP38, WDR48 or LARP4B mRNA or cDNA to serve as the reference gene or some combination thereof.
  • the nucleic acid amplification reactions are qPCR reactions.
  • the qPCR reactions are TAQMAN® probe qPCR reactions that include, in addition to the target primer pairs, TAQMAN® probes that hybridize under stringent conditions to the RM gene or reference gene mRNAs or cDNAs.
  • TAQMAN® probe-based qPCR assays are well known in the art as described in, e.g., U.S. Pat. Nos. 5,677,152, 5,773,258 and 5,804,375.
  • RM and reference gene primer and TAQMAN® probe sequences are listed below in Table 3.
  • stringent hybridization reaction conditions are defined by use of TAQPATHTM qPCR Mastermix chemistry and cycling conditions listed below in Table 4.
  • the plurality of nucleic acid amplification reactions are multiplexed such that multiple mRNAs (including a reference mRNA) are assayed in a single qPCR reaction, i.e., nine qPCR reactions would be needed to assay the entire panel of RM gene mRNAs from one sample, where each of the reactions are “tetraplexed,” 14 reactions would be needed per sample where each reaction is “triplexed”, and 28 reactions would be needed per sample when each qPCR reactions includes primers to a single RM gene mRNA and a reference gene mRNA.
  • the plurality of qPCR reactions can include different multiplexing, i.e., some reactions may contain primer pairs directed to three RM gene mRNAs and others a primer pair to only two or a single RM gene mRNA.
  • the plurality of reactions can be provided in a number of formats, e.g., 96-, 384-, or even 1536-well formats.
  • the mRNA or cDNA in the biodosimetry assay system is from a biological sample from a subject subjected to radiation exposure from about 30 minutes to about seven days prior to the time point at which the biological sample was obtained from the subject, e.g., one hour, three hours, 4 hours, six hours, twelve hours, 1 day, 2 days, 3 days, 4 days, 5 days, 7 days or another time period before biological sample collection from the subject ranging from about 30 minutes to about seven days.
  • a radiation biomarker assay kit that includes a nucleic acid probe set consisting essentially of nucleic acid probes that hybridize specifically with nucleic acid targets comprising at least one of SEQ ID NOS: 1-39 or the complementary sequences thereof.
  • the probe set includes no more than about 200 probes, e.g., PCR primers. In other embodiments the probe set includes no more than about 100 probes.
  • the nucleic acid probe set includes primer pairs and TAQMAN® probes suitable for qPCR analysis of mRNAs or cDNAs comprising at least one of SEQ ID NOS: 1-39.
  • the kit also includes a thermostable polymerase suitable for qPCR, e.g., Taq polymerase and variants thereof known in the art.
  • a thermostable polymerase suitable for qPCR e.g., Taq polymerase and variants thereof known in the art.
  • a qPCR probe set in the kit is provided in a multi-well plate format.
  • a multi-well plate is provided in which at least two nucleic acid probes that hybridize to at least two different nucleic acid targets are in the same wells, i.e., the probes can be multiplexed, as described above such that up to four different targets can be assayed by qPCR in the same reaction.
  • the kit also includes radiation exposure positive and negative control mRNA samples, which ensure that a qPCR biodosimetry assay is working properly, i.e., modulation of RM gene expression is detected in the positive control sample and no modulation of RM gene expression is detected in the negative control sample.
  • Rhesus macaque non-human primate (NHP) in vivo testing was conducted to produce single-dose biodosimetry samples and age/gender confounded samples to calibrate the biodosimeter.
  • NHP in vivo dose response to radiation The animal test laboratory completed NHP Cobalt-60 irradiations at 0, 2, 4, and 6 (LD30/60), 7 Gy (LD70/60), and 10 Gy with cohorts of 16 (8 male and 8 female), at dose rate of approximately 0.6 Gy/min.
  • Samples of 2.5 ml peripheral blood (PAXGENETM blood RNA tube) were obtained from each rhesus macaque ⁇ 2 week and ⁇ 24 hr. prior to irradiation and 4 hr., 24 hr., 36 hr. post radiation, and on days 2, 3, 5, and 7 for a total of 9 blood draws per animal. Samples (0.5 ml) were also obtained in EDTA tubes to determine WBC differentials.
  • Tests were staged to provide 4 NHP at each condition to determine target genes using discovery techniques (Phase 1), 10 NHP at each condition to determine biomarkers and 2 NHP at each condition to test the biodosimeter (algorithm) accuracy (Phase 2).
  • NHP confounder analysis old age and juvenile.
  • the animal test laboratory completed testing of 4 rhesus macaques (2 male and 2 female) exposed to 6 Gy (LD30/60) at a dose rate of approximately 0.6 Gy/min for both geriatric (>15 years) and juvenile (10-14 months) cohorts.
  • Samples of 2.5 ml peripheral blood (PAXGENETM blood RNA tube) were collected from each NHP ⁇ 2 week and ⁇ 24 hr. prior to irradiation and 4 hr., 24 hr., 36 hr. post radiation, and on days 2, 3, 5, and 7 for a total of 9 blood draws per animal. Samples (0.5 ml) were also obtained in EDTA tubes to determine WBC differentials.
  • NHP Fractionated Dose Testing Two NHP models were developed to compare NHP gene response to human gene response for fractionated dose radiotherapy models.
  • NHP Fractionated Dose Models Blood (2.5 ml) was collected from 6 female and 6 male rhesus NHP into PAXGENETM blood RNA tubes. The NHP were irradiated in vivo to parallel the 4 human in vivo test protocols as described below.
  • Twelve (12) NHPs were exposed to 1.5 Gy twice per day (dose rate 0.6-0.8 Gy/min.) for 4 days at the same time each day. The blood samples were collected within 24 hr. prior to irradiation and 24 hrs. after each daily exposure (6 draws).
  • Twelve (12) NHPs were exposed to 1.2 Gy (dose rate 0.6-0.8 Gy/min.) 3 times per day at the same time each day for 4-days.
  • Model 1 Breast Transplant Patients (BMT): Radiation dose is 1.65 to 2 Gy twice daily for 3 to 4 days. Samples are taken prior to and 24 hr. after daily irradiations. The last draw is on Day-7; 7 days after the first dose. (4-6 samples/Series).
  • Model 2 Breast Transplant Patients (BMT): Radiation dose is 1.2 Gy three times daily for 4 days. Samples are taken prior to and 24 hr. after irradiation daily irradiations. The last draw is on Day-3 or 4; 3 or 4 days after the first dose. (5-7 samples/Series).
  • Model 3 Breast Transplant Patients (BMT): Radiation dose is a single fraction related to models 1 and 2. Samples are taken prior to and every 24 hr. after irradiation. The last draw is on Day-6; 6 days after the first dose. (6-7 samples/Series).
  • Model 4 X-Ray Therapy (XRT) Patients (>7% bone marrow exposure): Radiation dose is 2-8 Gy each day for multiple days. Samples are taken prior to and 24 hr. after irradiation. The last draw is taken 7 days after the last exposure.
  • XRT X-Ray Therapy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Algebra (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

Disclosed herein are compositions and methods for accurately estimating the absorbed dose of radiation indicated by a subject based on the expression pattern of a panel of radiation-modulated (RM) genes at various time points following exposure of the subject to ionizing radiation.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. patent application Ser. No. 16/532,138, filed Aug. 9, 2019, which is a divisional of U.S. patent application Ser. No. 14/823,433, filed on Aug. 11, 2015 and now issued as U.S. Pat. No. 10,435,747, and claims the benefit of U.S. Provisional Application No. 62/038,969, filed Aug. 19, 2014, the disclosures of which are hereby incorporated by reference in their entirety for all purposes.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • This invention was made with government support under HHSO100201000008C awarded by Biomedical Advanced Research and Development Authority. The government has certain rights in the invention.
  • REFERENCE TO A SEQUENCE LISTING SUBMITTED VIA EFS-WEB
  • The content of the ASCII text file of the sequence listing named “112624_00614_ST25.txt” which is 108 kb in size was created on Nov. 10, 2015 and electronically submitted via EFS-Web herewith the application is incorporated herein by reference in its entirety.
  • BACKGROUND
  • Radiation exposure is one of the most serious hazards of the modern era. The health consequences to individuals and populations exposed to radiological incidents, accidental or otherwise, can range from negligible to fatal depending on the amount of radiation that is absorbed by an individual. Yet, it is often difficult or impossible to quickly determine the absorbed dose of radiation for an individual or population after a radiological event and thereby determine an appropriate course of treatment. This is particularly critical when large numbers of individuals are potentially affected by radiation exposure and must be quickly “triaged” to prioritize treatment strategies. Thus, there is a great need for systems that quickly estimate, post-hoc, the absorbed dose of radiation by an individual resulting from an ionizing radiation exposure incident.
  • BRIEF SUMMARY OF THE INVENTION
  • Disclosed herein are compositions and methods for accurately estimating the absorbed dose of radiation suffered by a subject based on the expression pattern in RNA obtained from peripheral blood of a panel of radiation-modulated (RM) genes at various time points following exposure of the subject to ionizing radiation.
  • Accordingly in one aspect provided herein is a radiation biodosimetry assay system, comprising a plurality of nucleic acid amplification reactions comprising (i) mRNA or cDNA from a human subject suspected of (but not necessarily) suffering from radiation exposure; (ii) primer pairs capable of hybridizing under stringent conditions to mRNAs or cDNAs comprising the nucleotide sequences referred to in Table 4 or the complementary sequences thereof, wherein each primer pair hybridizes to a different one of the mRNAs or cDNAs; and (iii) a thermostable enzyme suitable for amplification of target amplicon sequences from the mRNAs or cDNAs. A mathematical algorithm that converts gene expression results to estimated absorbed dose of radiation.
  • In some embodiments the one or more nucleic acid amplification reactions further comprise detectably labeled TAQMAN® probes capable of hybridizing under stringent conditions to the mRNAs or cDNAs. In some embodiments the thermostable enzyme is a thermostable polymerase.
  • In some embodiments the mRNA is from a subject that was exposed to radiation about 4-hours to about seven days prior to the time at which a biological sample comprising the mRNA was obtained.
  • In another aspect provided herein is a radiation biomarker assay kit, comprising a nucleic acid probe set consisting essentially of nucleic acid probes that hybridize specifically with nucleic acid targets comprising at least one of the nucleotide sequences referred to in SEQ ID NOs: 1-39 or the complementary sequences thereof. In some embodiments the probe set comprises no more than 100 probes. In some embodiments the probe set consists of the nucleic acid probes that hybridize specifically with the nucleic acid targets.
  • In some embodiments the nucleic acid probe set comprises primer pairs and TAQMAN probes suitable for qPCR analysis of mRNAs or cDNAs comprising at least one of the nucleotide sequences referred to in SEQ ID NOS: 1-39 or the complementary sequences thereof. In some embodiments the nucleic acid probes are provided in a multi-well plate. In some embodiments, where the nucleic acid probes are provided in a multi-well plate, at least two nucleic acid probes that hybridize to at least two different nucleic acid targets are in the same wells of the multi-well plate.
  • In some embodiments the kit also includes radiation exposure positive and negative control mRNA samples or cDNAs thereof. In another aspect provided herein is a method for assessing a dose of ionizing radiation absorbed by a subject, comprising (i) determining the mRNA expression levels of mRNAs comprising at least one of the nucleotide sequences referred to in SEQ ID NOs: 1-39 in a biological sample, comprising mRNA from the subject, to obtain an expression profile; and (ii) transforming the gene expression profile and when available, the duration of time from exposure to sample collection, into a measure of absorbed dose of radiation for the subject based on a mathematical algorithm. In one embodiment, the algorithm utilizes multiple random forest regression trees to estimate absorbed dose and confidence limits and then a top-level logic layer to combine outputs into a single estimated absorbed dose with confidence limits.
  • In some embodiments the method further includes treating the subject based on the estimated absorbed dose of radiation determined in step (ii).
  • In some embodiments the absorbed dose of ionizing radiation is determined within about seven days of subject exposure to ionizing radiation.
  • In some embodiments the method also includes a step of obtaining the biological sample from the subject prior to step (i).
  • In a further aspect provided herein is a method for radiation treatment triage of a subject in need thereof comprising (i) determining the mRNA expression levels of mRNAs comprising the nucleotide sequences referred to in at least one of SEQ ID NOs: 1-39 (or any other sequence identifier included herein, in any combination) in a biological sample comprising leukocyte mRNA from the subject to obtain a gene expression profile; and (ii) providing a suitable treatment for radiation exposure to the subject based on the expression levels of the genes.
  • INCORPORATION BY REFERENCE
  • All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, and patent application was specifically and individually indicated to be incorporated by reference.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will be better understood and features, aspects and advantages other than those set forth above will become apparent when consideration is given to the following detailed description thereof. Such detailed description makes reference to the following drawings, wherein:
  • FIG. 1A show tables listing a set of 28 radiation modulated (RM) genes and their expression pattern at various time points following absorption of ionizing radiation.
  • FIG. 1B show tables listing a set of 28 radiation modulated (RM) genes and their expression pattern at various time points following absorption of ionizing radiation.
  • FIG. 2 shows a time series (days 1-7) of plots of actual delivered ionizing radiation dosage values (0 Gy to 10 Gy) versus estimated absorbed dose of radiation based on changes in RM gene expression in peripheral blood
  • FIG. 3 shows a table providing the percentage accuracy (within 1 Gy) of the biodosimetry algorithm's absorbed radiation dose estimate based on expression of 29 RM genes in peripheral blood collected from rhesus macaque non-human primate (NHPs) at various time points (1-7 days) following exposure to irradiation doses ranging from 0 Gy to 10 Gy.
  • FIG. 4 shows a table providing the percentage accuracy (within 0.5 Gy) of the biodosimetry algorithm's absorbed radiation dose estimate based on expression of 29 RM genes in peripheral blood from NHPs at various time points (1-7 days) following exposure to irradiation doses ranging from 0 Gy to 10 Gy.
  • FIG. 5 shows scatter plots of changes in RM gene expression in male vs. female NHPs following radiation exposure of various doses and at different time points following radiation exposure. As shown, male and female RM gene expression responses were very closely correlated for the 29 RM genes.
  • FIG. 6 shows a table describing the sensitivity and specificity of the biodosimetry algorithm in various NHP and human irradiation models.
  • FIG. 7 shows an overview of an exemplary, non-limiting, embodiment of biodosimetry workflow illustrating the steps of: blood sample collection, RNA isolation, reverse transcription to obtain cDNA, pre-amplification of the cDNA, and qPCR assay of a RM biomarker and reference gene panel.
  • FIG. 8 shows a single regression tree in a random forest example. This tree generates an estimated absorbed dose using the relative expression levels of gene biomarkers, HBA2 and IL27RA, and the absolute expression level of gene biomarker, COCH.
  • FIG. 9 shows a schematic overview on human and NHP data sets, cross-species conversion approaches to utilize the NHP single-dose (SD) biodosimetry algorithm to predict absorbed dose in human in case of acute radiation exposure. Cross-species conversion algorithms were developed with human and NHP fractionated-dose (FD) models that showed a good cross-model compatibility with NHP SD models.
  • FIG. 10A shows a schematic overview on the approach to convert NHP fractionated dose (FD) data to the corresponding values in NHP single-dose (SD) data by 3-dimensional linear scaling of day, dose, and expression values.
  • FIG. 10B shows the optimal range (in blue) of dose/day scaling factors for 12 Gy/day-6 data points of individual biomarkers (top panels) and a unified scaling factor (bottom panel) for 29 tested biomarkers.
  • FIG. 11A shows dose prediction performances of a random forests model based on 7 correlated biomarker genes on NHP SD data (for day 3, as an example).
  • FIG. 11B shows dose prediction performances of a random forests model based on 7 correlated biomarker genes on converted NHP FD values across all days by matching day/cumulative dose, 3D scaling, and 3D scaling followed by multi-gene regression. Prediction accuracies within 1.0 Gy are shown.
  • FIG. 12A shows correlation of individual biomarker expression values between NHP fractionated dose (FD) and human TBI, magnitude of expressional changes across dose, and mean absolute difference (MAD) between NHP FD and human TBI data points.
  • FIG. 12B shows dose response curves of the top 4 inter-species correlated genes in NHP FD and human TBI data.
  • FIG. 13A shows dose prediction performances of a random forests model based on 10 inter-species biomarker genes on NHP FD data.
  • FIG. 13B shows dose prediction performances of a random forests model based on 10 inter-species biomarker genes on unconverted and converted human TBI values by value shift, and value shift followed by multi-gene regression. Prediction accuracies within 1.0 Gy are shown.
  • DETAILED DESCRIPTION
  • In General. Before the present materials and methods are described, it is understood that this invention is not limited to the particular methodology, protocols, materials, and reagents described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.
  • It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural reference unless the context clearly dictates otherwise. As well, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. It is also to be noted that the terms “comprising”, “including”, and “having” can be used interchangeably.
  • Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications and patents specifically mentioned herein are incorporated by reference for all purposes including describing and disclosing the chemicals, cell lines, vectors, animals, instruments, statistical analysis and methodologies which are reported in the publications which might be used in connection with the invention. All references cited in this specification are to be taken as indicative of the level of skill in the art. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.
  • The Invention. The present invention provides methods for estimating absorbed dose of ionizing radiation by a subject, which includes the steps of: (i) determining the mRNA expression levels of mRNAs comprising the nucleotide sequences referred to in SEQ ID NOs: 1-39 in a biological sample comprising peripheral blood mRNA collected from the subject to obtain an expression profile; and (ii) transforming the gene expression profile and when available, the duration of time from exposure to sample collection into an estimated absorbed dose of ionizing radiation and confidence limits for a subject based on a mathematical algorithm. For each of several durations for which training data were available, one primary random forest was developed to estimate absorbed dose of radiation. Additional secondary random forests were developed to provide more accurate dosimetry in narrow dosage intervals. The top-level logic layer uses the primary random forest to generate an initial estimate of absorbed dose of radiation, and based on that value, may select additional random forests to construct more refined estimates of absorbed dose, with confidence limits.
  • In some embodiments the method also includes treating the subject based on the absorbed dose of ionizing radiation determined in step (ii) above. In some embodiments the absorbed dose of ionizing radiation is determined within about seven days of exposure to the ionizing radiation, e.g., within about 30 minutes, 1 hour, 3 hours, 6 hours, 8 hours, 24 hours, 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, or another time period within seven days following ionizing irradiation. In some embodiments, the absorbed dose of ionizing radiation is within the range of about 0.5 Grays (Gy) to about 10 Gy, e.g., about 1 Gy, 2 Gy, 3 Gy, 4 Gy, 6 Gy, 7 Gy, 8 Gy, 9 Gy, or another absorbed dose of ionizing radiation from about 0.5 Gy to about 10 Gy.
  • In some embodiments, the method also includes obtaining the biological sample from the irradiated subject prior to step (i) above.
  • In one embodiment, a whole blood sample, or other blood fraction containing lymphocytes, (including a finger stick or POC device) is collected from a subject known to be or suspected of being irradiated into a PAXGENE™ Blood RNA tube. The PAXGENE™ Blood RNA contains an additive that stabilizes in vitro gene expression and RNA degradation. Subsequently, RNA is extracted from the stabilized blood sample by using a Stabilized BLOOD-TO-CT™ Nucleic Acid Preparation Kit for qPCR (Life Technologies, Inc.). The RNA sample is then subjected to reverse transcription, e.g., using the INVITROGEN™ SUPERSCRIPT© VILO™ (Variable Input, Linear Output) cDNA synthesis kit (Life Technologies, Inc.) or equivalent kit. Afterwards, the resulting cDNA is pre-amplified using a TAQMAN® probe PreAmp Master Mix Kit (Life Technologies, Inc.) and the pre-amplified cDNA is then assayed by TAQMAN© probe-based qPCR in a 96-well or 384-well format using QUANTSTUDIO™ Dx or ABI7500 Fast Dx quantitative Real-Time PCR Instruments (Life Technologies, Inc.). Typically, expression levels of RM mRNAs will be expressed as a difference in CT between a test gene and a reference (“housekeeping”) gene CT.
  • In some embodiments the panel of RM mRNAs to be assayed include at least some combination of mRNAs for one or all of the following (human) genes: CR2 (SEQ ID NO: 1), DHRS4L1 (SEQ ID NO: 2), HCK (SEQ ID NO: 3), IL1RAP (SEQ ID NO: 4), LYRM4 (SEQ ID NO: 5), MYC (SEQ ID NO: 6), TMEM63B (SEQ ID NO: 7), ALOX5 (SEQ ID NO: 8), CAMK4 (SEQ ID NO: 9), CDKN1A (SEQ ID NO: 10), COCH (SEQ ID NO: 11), DHRS4 (SEQ ID NO: 12), MICAL1 (SEQ ID NO: 13), MOB3B (SEQ ID NO: 14), NUSAP1 (SEQ ID NO: 15), IL27RA (SEQ ID NO: 16), HBA2 (SEQ ID NO: 17), PPM1F (SEQ ID NO: 18), PPP2RA (SEQ ID NO: 19), CLAR (SEQ ID NO: 20), DHRS13 (SEQ ID NO: 21), ACAA1 (SEQ ID NO: 22), INPP5J (SEQ ID NO: 23), OAZ1 (SEQ ID NO: 24), PNOC (SEQ ID NO: 25), PDE4B (SEQ ID NO: 26), SCARB1 (SEQ ID NO: 27), TMEM9B (SEQ ID NO: 28), CXXC5 (SEQ ID NO: 29), CD97 (SEQ ID NO: 30), TEX10 (SEQ ID NO: 31), SPECC1 (SEQ ID NO: 32), ALAS2 (SEQ ID NO: 33), ALPK1 (SEQ ID NO: 34), ESD (SEQ ID NO: 35), GPR183 (SEQ ID NO: 36), ESD (SEQ ID NO: 37), PPMK (SEQ ID NO: 38), and SLC6A6 (SEQ ID NO: 39) (collectively, SEQ ID NOs: 1-39).
  • In other embodiments RM mRNAs to be assayed can include at least some combination of one or all of the following genes: ADAM17, AKT1, ANK, ANXA3, ARHGAP26, ARID4A, ATG2A, ATIC, BCL11A, BCL6, BID, CFLAR, CIT, CPVL, CYTH4, DDB2, DDX58, DTL, EHBPL1, FCGR2A, FGR, HPRT1, HSP90AB1, HTRA2, IDOL, IRF1, JMJD1C, KIAA0101, LARP4B, LRRC6, LYN, MAP3K1, MAPK3, MDM1, MKNK1, MXD1, NAIP, NFE2L2, NRG1, NUSAP, PCNA, PGK1, PMP22, RARA, RNASE6, RPL13A, RPL6, RPS14, SP10, SPOCK2, TAPBP, TBP, TCF3, TNFRSF1A, TNFRSF1B, TNFSF14, USP38, WDR48, XAF1, ZAK, NPM, CPSF1, COASY, DNAJC10, DYNLRB1, ELK4, GPRIN, NDE1, PGS1, PPM1K, and PTAFR. In some embodiments, the reference gene to be assayed is PPP6R3. In other embodiments the reference gene to be assayed may be USP38, WDR48 or LARP4B or some combination thereof.
  • In some embodiments, qPCR reactions are multiplexed such that multiple mRNAs (including a reference mRNA) are assayed in a single qPCR reaction.
  • Also disclosed herein is a method for radiation treatment triage of a subject in need thereof, which includes the steps of: (i) determining the mRNA expression levels of mRNAs comprising the nucleotide sequences referred to in any of SEQ ID NOS: 1-39 (or any combination of any other SEQ ID NO provided herein) in a biological sample comprising mRNA from the subject to obtain an expression profile; and (ii) providing a suitable treatment for radiation exposure to the subject based on the expression levels of the genes. Exemplary treatments for radiation exposure based on radiation dosage are shown in Table 1 below:
  • TABLE 1
    Exemplary treatments for radiation exposure based on radiation dosage.
    Very
    Symptoms and Mild Moderate Severe severe Lethal (a)
    treatment strategy (1-2 Gy) (2-4 Gy) (4-6 Gy) (6-8 Gy) (>8 Gy)
    Vomiting Onset After 2 hr. After 1-2 Within Within 30 Within 10 min.
    Incidence 10-50% hrs. 1 hr. min. 100%
    70-90% 100% 100%
    Diarrhea Onset None None Mild Heavy Heavy
    Incidence 3-8 hrs. 1-3 hrs. Within min. −1 hr.
    <10% >10% almost 100%
    Headache Onset Slight Mild Moderate Severe Severe
    Incidence 4-24 hrs. 3-4 hrs. 1-2 hrs.
    50% 80% 80-90%
    Conscious- Onset Alert Alert Alert Possibility Unconsciousness
    ness Incidence of by order of seconds
    impairment or minutes
    Seconds-minutes
    100% (>50 Gy)
    Body Onset Normal Increased Fever High fever High fever
    Temperature Incidence 1-3 hrs. 1-2 hrs. <1 hrs. <1 hrs.
    10-80% 80-100% 100% 100%
    Treatment Outpatient Observation Treatment Treatment Palliative treatment
    Strategy observation at general at at (a) (advanced
    hospital, specialized specialized medical care
    treatment at Hospital hospital including stem cell
    specialized transplantation)
    hospital if
    required
  • Also described herein is a radiation biodosimetry assay system that includes multiple nucleic acid amplification reactions containing the following: (i) mRNA or cDNA from a human subject suspected of suffering from radiation exposure; (ii) primer pairs capable of hybridizing under stringent conditions to mRNAs or cDNAs comprising the nucleotide sequences referred to in SEQ ID NOS: 1-39 (or any other SEQ ID NO provided herein), or the complementary sequences thereof, wherein each primer pair hybridizes to a different one of the mRNAs or cDNAs; and (iii) A mathematical algorithm the converts gene expression results to estimated absorbed dose of radiation.
  • In one embodiment, the mathematical algorithm of the present invention The Radiation Biodosimetry Absorbed Dose Estimation algorithm described herein takes as input sample qPCR data, sample barcode, and available information about the date and time of the exposure event and sample collection. The primary output of the algorithm is an absorbed dose report that contains an estimated absorbed dose and a dose interval that provides a range of dose values for the patient based on prediction intervals. The algorithm contains 6 basic steps, which are summarized in Table 2.
  • In Step 1, patient qPCR data are combined with the available information about the date and time of the event and sample collection using the patient barcode.
  • In Step 2, several quality control metrics are calculated for the qPCR data. Depending on the values of these metrics, the algorithm may determine that a sample requires re-testing. If the sample does not require re-testing, the quality control metrics will be utilized in the estimation of absorbed radiation dose, and in particular may affect the estimation interval.
  • In step 3, the qPCR data are checked against expected ranges for each biomarker.
  • In step 4, quality control metrics and the results of the biomarker range checks are used to determine whether specific biomarker values are invalid and whether sufficient biomarker values are valid for dose estimation.
  • In step 5, the qPCR data and the available temporal information for the event and sample collection are processed through a random forest-based mathematical algorithm that yields an estimated dose and a dose interval. The mathematical algorithm in Step 5 utilizes Random Forests™ method, introduced by Breiman (2001). Random forests is a popular machine-learning tool for prediction that combines large numbers of classification or regression trees to yield accurate and robust predictions. A random forest is a collection of classification or regression trees that we denote by R={T1, . . . , Tn}. The input to the forest is a vector X of relative and/or absolute expression levels of a set of genes. In a regression random forest, each tree Ti takes X as input and outputs an estimate of absorbed dose, Ti(X). For example, FIG. 8 depicts a single tree in a random forest that utilizes the relative expression levels for two gene biomarkers (HBA2 and IL27RA) and the absolute expression level for one gene biomarker (COCH). The estimate of absorbed dose from a regression random forest R is then the average of estimated absorbed doses from the trees within the forest. We write this estimate as:
  • A D = R ( X ) = 1 n × i = 1 n T i ( X )
  • In a classification random forest, samples are partitioned into several non-intersecting groups. For example, samples may be partitioned based upon dose and each group then represents an interval for the absorbed dose. Each tree Ti takes as input X and outputs the identity of a single group, Ti(X). The output from the classification random forest is a probability distribution on the set of groups, where the probability assigned to each group is the proportion of trees that yield the group.
  • The inputs to the mathematical algorithm in Step 5 are a set of absolute and relative expression levels, X for a set of genes, and a probability distribution w that reflects the uncertainty in D, the duration of time from irradiation to sample collection. If the duration of time is known precisely, w will be a point mass distribution on that known duration of time. If the duration is only known to fall within an interval, then may be any probability distribution on that interval such as a uniform distribution or a symmetric triangular distribution. If the duration is entirely unknown or not provided, then w may be calculated using a classification random forest that takes as input X and yields as output a probability distribution over a fixed set of duration values.
  • The outputs are an estimated absorbed dose, AD and a 95% prediction interval for the absorbed dose, (ADlow, ADhigh). For NHP samples that were irradiated with a single acute dose (NHP SD), these outputs are computed in two steps. First, we compute an initial estimate of absorbed dose, AD. Secondly, we correct for bias in the estimate to yield the final estimate of absorbed dose, AD and generate the 95% prediction interval.
  • A novel aspect of our algorithm is the use of multiple random forests for each of several fixed durations, D1, . . . , Dk. For duration Di, we use ni random forests, denoted by RFi,1, . . . , RFi,n i , to construct initial estimates of absorbed dose. A decision tree Ti combines the outputs from RFi,1, . . . , RFi,n i into a single initial estimate of absorbed dose. One additional random forest, denoted by RFi E, is a quantile regression random forest for error that uses the expression values X′ and the output from Ti for bias correction and construction of prediction intervals. These ni+1 random forests utilize different, but possibly overlapping sets of genes, may be trained on different sets of samples and may include both regression forests and classification forests. Hence, if the duration is known to equal Di, the initial estimate of absorbed dose, denoted by ADI (Di), is computed as:

  • ADI(D i)=T i(RFi,1(X′), . . . ,RFi,n i (X′))
  • This estimate and the transformed expression levels X′ are then passed to the random forest RFi E. The output from RFi E is the conditional probability distribution for the error in the estimate ADI(Di). We denote the cumulative distribution function for this conditional distribution by F(⋅|D=Di). The bias corrected estimate of absorbed dose is then AD(Di)=ADI(Di)−F−1(0.5). If the duration is known to equal D* where Di<D*<Di+1, the estimated absorbed dose is computed as:
  • A D ( D * ) = D i + 1 - D * D i + 1 - D i × A D ( D i ) + D * - D i D i + 1 - D i × A D ( D i + 1 )
  • The final estimate of absorbed dose is computed by averaging over the probability distribution π, that is, AD=∫AD(D)×π(D)dD.
  • Similarly, we define F(⋅|D=D*) by:
  • F ( · | D = D * ) = D i + 1 - D * D i + 1 - D i × F ( · | D = D i ) + D * - D i D i + 1 - D i × F ( · | D = D i + 1 )
  • The 95% prediction interval for the absorbed dose is then found by solving the equations:

  • F(e 1 |D)×π(D)dD=0.025, and

  • F(e 2 |Dn(D)dD=0.975
  • for e1 and e2, respectively, and setting ADlow=AD−e2 and ADhigh=AD−e1.
  • In step 6, an absorbed dose estimation report is constructed utilizing the estimated dose and dose interval.
  • In actual events of acute radiation exposure, to predict absorbed dose of human samples with the NHP-based biodosimetry algorithm, conceptually, gene expression measurements of each biomarker in a human sample need to be transformed by cross-species (i.e. human to NHP) algorithms. Ideal cross-conversion models could be built on two directly comparable single-dose (SD) data sets in human and NHP. However, due to practical difficulties in obtaining human blood samples with single acute irradiation, as an alternative, we obtain samples from human subjects who undergo total body irradiation (TBI). Unlike the acute single-dose (SD) irradiation that we used for development of a biodosimetry algorithm, these subjects under a fractionated dose (FD) schedule were irradiated three times (1.2 Gy each) a day for 6 days. Therefore, we obtained gene expression data from NHP-equivalents of human TBI subjects that underwent the identical fractionated irradiation, and developed novel gene-specific cross-species conversion algorithms. These algorithms will be used to transform human values prior to dose prediction (FIG. 9).
  • Unlike SD models that measure gene expression levels over the time after a single acute irradiation, data from a FD model has a linear relationship between cumulative dose and day. Therefore, prior to development of cross-species conversion algorithms based on human and NHP FD data sets, we first examined whether expression profiles of biomarker genes in NHP FD model were comparable to those in NHP SD model and thus could predict absorbed dose via the NHP SD model-based biodosimetry algorithm. For meta analyses of FD and SD data sets, we developed a three-dimensional (3D) curve fitting strategy to match the FD data to the SD data. Specifically, for each biomarker b we generate an FD curve of the mean expression level of NHP FD samples (2 Gy per day for 6 days) as a function of cumulative dose and day, FDb (dose, clay), and a SD response surface of the mean expression level of NHP SD samples (0 to 6 days, 0 to 7 Gy) as a function of dose and day, SDb(dose, clay) (FIG. 10A). First, the entire FD curve for each biomarker is shifted to match the mean basal level (i.e. 0 Gy/Day 0) of SD values, which produces a scaling factor αb for expression values for each biomarker. The shifted FD curve is denoted FDb′(close, clay)=FDb(dose, clay)+αb, where αb=SDb(0, 0)−FDb(0, 0). Second, for each biomarker, optimal biomarker-specific dose and day scaling factors βb,dose and βb,day, are found that minimize the sum of absolute differences between the SD and scaled FD data.
  • Specifically, βb,dose and βb,day minimize the following expression,
  • d1 , d 2 FD b ( d 1 , d 2 ) FD b ( 12 , 6 ) × S D b ( β b , dose × d 1 , β b , day × d 2 ) - SD b ( β b , dose × d 1 , β b , day × d 2 )
  • By repeating this for all biomarkers and searching for common dose and day scaling factors that minimize the sum of absolute differences across biomarkers, doses and days, unified FD to SD scaling factors of βdose=0.517 for dose (i.e. 12 Gy to 6.2 Gy) and βday=0.933 for day (i.e. day 6 to day 5.6) (FIG. 10B) are obtained.
  • Mathematically, βdose and βday are defined to minimize
  • Σ b Σ d 1 , d 2 F D b ( d 1 , d 2 ) F D b ( 12 , 6 ) × S D b ( β d o s e × d 1 , β d a y × d 2 ) - S D b ( β d o s e × d 1 , β d a y × d 2 ) .
  • Third, linear transformation of FD curves by the scaling factors yields the converted expression values,
  • FD b ( d 1 , d 2 ) = F D b ( d 1 , d 2 ) F D b ( 1 2 , 6 ) × S D b ( β d o s e × d 1 , β d a y × d2 ) . ( FIG . 10 A )
  • To test the conversion strategy from NHP FD to NHP SD data, based on seven biomarkers (COCH, DHRS4L1, IL27RA, INPP5J, PNOC, SCARB1, and TEX10 in this example) with correlated dose responses between the data sets, random forests dose prediction models were generated on NHP SD data, which showed 84% to 98% dose prediction accuracy across days for the model fitting on NHP SD data (FIG. 11A). When expression values of NHP FD data were converted by matching days or doses and then applied to the NHP SD random forests model, dose prediction accuracies within 1.0 Gy were only 21% and 31%, respectively. After the FD values were transformed by the 3D scaling factors (i.e. for expression value, dose, and day), the accuracy was increased to 60% (FIG. 11B).
  • To increase performance of conversion algorithm, we explored a multi-gene regression approach that utilizes linear combinations of gene expression values rather than the expression values of individual biomarkers. This concept has been applied to predict missing values in large gene expression data sets. Since the biomarkers are functionally related within the key biological pathways related to radiation response, we hypothesized that expression profiles of other biomarkers could be informative in predicting expression values of a given gene. We employed Ridge regressions that provide robustness by constraining the size of coefficients by minimizing the summed squares of residuals and coefficients. By using converted NHP FD values by 3D scaling, a multi-gene regression model for each biomarker was generated with all seven genes that were used to build NHP SD biodosimetry algorithm. When the predicted values by the multi-gene regression models were applied to NHP SD algorithm, dose prediction accuracy was increased substantially to 86% (FIG. 11B).
  • Absolute gene expression values of biomarker genes are highly variable between NHP and human, and, thus, using an NHP biodosimetry algorithm to predict absorbed dose in human requires another step of cross-species expression value transformation from human to NHP. To explore the conversion strategies, we compared two data sets, for human and NHP, that were obtained from subjects treated with an identical irradiation schedule (3 times of irradiation at 1.2 Gy per day for 4 days), which is being used for total body irradiation (TBI) in clinical therapeutic setting. Among 29 biomarkers tested, although 17 genes had inter-species correlation coefficient above 0.6 between these two data sets (FIG. 12A), many genes showed substantial differences in absolute expression levels across doses (FIG. 12B). Therefore, we calculated the mean difference of expression for each biomarker and then applied the value to shift the entire expression values the gene across doses. This process decreased the mean absolute differences to less than 1.0 ΔCt for the majority of 29 biomarkers (FIG. 12A, last two columns).
  • To test the conversion strategy from human TBI to NHP FD data, based on 10 biomarkers (DHRS4L1, MYC, SPECC1, CXXC5, ALAS2, HBA2, CDKN1A, GPR183, MOB3B, and PNOC in this example) with inter-species correlation above 0.75 (FIG. 12A), random forests dose prediction models were generated on NHP FD data, which showed a 98% dose prediction accuracy during the model fitting on NHP FD data (FIG. 13A). Appling the converted human TBI values to NHP FD random forests model, prediction accuracy within 1.0 Gy was 13%. When expression values of human TBI data were vertically shifted by the predetermined shift factors and then applied to the NHP FD random forests model, dose prediction accuracies within 1.0 Gy was increase marginally to 19%.
  • We then tested whether the multi-gene regression approaches could improve the cross-species conversion process. As previously done for NHP FD to NHP SD conversion, we also employed Ridge regressions. By using converted human TBI values by vertical shifting factors, a multi-gene regression model for each biomarker was generated with all 10 genes that were used to build the NHP FD biodosimetry algorithm in this example. When the predicted values by the multi-gene regression models were applied to NHP FD algorithm, dose prediction accuracy was increased substantially to 89%.
  • TABLE 2
    Algorithm Function.
    Step 1 Combine Traceability Barcode Unique barcode Adds all needed Flags data for operator
    Patient information to intervention
    Barcode with qPCR data
    Date/Time
    Event
    Step
    2 Quality Control Negative 96-Well Prep Plate No Ct (Ref)(2) > 37 Cross- Retest Samples
    Check Control Template Control Contamination in
    (NTC) or Reagent Sample Prep
    Blank
    Positive qPCR Standard 1. Ct (Ref) ± 1 1. LLOD Verified Flags data - may affect
    Controls Curve: 10, 0.1, 0.01, each conc. 2. Reproducibility Dose Estimate and
    0.001 ng/μL 2. Amplification Verified Dose interval
    (Based on standard Efficiency 3. Amplification Or
    pooled RNA). verifies Require sample retest
    expected qPCR and
    function across Alerts Operator (No
    linear range. operator override)
    Evogenous Control: Ct (Xeno ™) ± 1 Inhibitors
    Sample RNA Spike-in Sample Integrity
    Endogenous Control Ct (Ref) ± 1 1. Adequate
    Reference Gene(1) Sample RNA
    Input.
    2. Control for
    variable RNA
    Input.
    Step 3 Biomarker Process QC Biomarker integrity QC flag Usability of each
    Range Check Biomarker Value
    Step
    4 Apply QC and Process QC Analytical integrity QC flag Usability of each
    Biomarker Biomarker Value
    Range Flags
    Step
    5 Calculate Quantitative Endogenous Control Absorbed dose Estimated Checks for intended
    Estimated (Gy) absorbed Dose use dose range
    Dose
    Calculate Dose Measurement Confidence Interval Dose Range Dose Interval Checks for acceptable
    Interval Confidence confidence interval
    Step
    5 Combine Report Report Gy Dose Estimation Clinic
    Estimated Report Review/Approval
    Dose and
    Dose Interval
  • In one embodiment, the target mRNAs or cDNAs to which the primers hybridize are those from the following (human) RM genes: CR2, DHRS4L1, HCK, IL1RAP, LYRM4, MYC, TMEM63B, ALOX5, CAMK4, CDKN1A, COCH, DHRS4, MICAL1, MOB3B, NUSAP1, IL27RA, HBA2, PPM1F, PPP2R1A, CFLAR, DHRS13, ACAA1, INPP5J, OAZ1, PNOC, PDE4B, SCARB1, and TMEM9B.
  • In other embodiments, mRNAs or cDNAs to which primers hybridize may include the following genes: ADAM17, AKT1, ANK1, ANXA3, ARHGAP26, ARID4A, ATG2A, ATIC, BCL11A, BCL6, BID, CFLAR, CIT, CPVL, CYTH4, DDB2, DDX58, DTL, EHBPL1, FCGR2A, FGR, HPRT1, HSP90AB1, HTRA2, IDOL, IL27RA, IRF1, JMJD1C, KIAA0101, LARP4B, LRRC6, LYN, MAP3K11, MAPK3, MDM1, MKNK1, MXD1, NAIP, NFE2L2, NRG1, NUSAP, PCNA, PGK1, PMP22, PPP2RA1, RARA, RNASE6, RPL13A, RPL6, RPS14, SCARB1, SP110, SPOCK2, TAPBP, TBP, TCF3, TNFRSF1A, TNFRSF1B, TNFSF14, USP38, WDR48, XAF1, ZAK, NPM1, ALAS2, ALPK1, CD97, CPSF1, COASY, CXXC5, DNAJC10, DYNLRB1, ELK4, ESD, GPR183, GPRIN, NDE1, PGS1, PPM1K, PTAFR, SLC6A6, SPECC1, and TEX10.
  • In some embodiments, primers are also included that hybridize to PPP6R3 mRNA or cDNA, where PPP6R3 and its mRNA levels serve as a reference gene for relative quantification of RM gene expression levels in an amplification reaction. In other embodiments primers may be included that hybridize to USP38, WDR48 or LARP4B mRNA or cDNA to serve as the reference gene or some combination thereof.
  • In some embodiments, the nucleic acid amplification reactions are qPCR reactions. In some embodiments the qPCR reactions are TAQMAN® probe qPCR reactions that include, in addition to the target primer pairs, TAQMAN® probes that hybridize under stringent conditions to the RM gene or reference gene mRNAs or cDNAs. TAQMAN® probe-based qPCR assays are well known in the art as described in, e.g., U.S. Pat. Nos. 5,677,152, 5,773,258 and 5,804,375.
  • Exemplary RM and reference gene primer and TAQMAN® probe sequences are listed below in Table 3.
  • TABLE 3
    RM and reference gene primer
    and TAQMAN ® probe sequences.
    Amplicon Length
    Gene Assay ID Sequence (bp) Tm
    PPP6R3 Hs00217759_ml TGAGGGAGGAAG 75 55-65° C.
    ACGGCATGGTTA
    CATGGGACACCT
    AACGAGGATAGC
    TAACTGTATCGT
    GCACAGCACTGA
    CAAG
    CDKN1A Hs00217759_ml GACAGATTTCTA 63 55-65° C.
    CCACTCCAAACG
    CCGGCTGATCTT
    CTCCAAGAGGAA
    GCCCTAATCCGC
    CCACAG
  • Typically, stringent hybridization reaction conditions are defined by use of TAQPATH™ qPCR Mastermix chemistry and cycling conditions listed below in Table 4.
  • TABLE 4
    Thermal Cycling Conditions for Target/
    Primer/Probe Hybridization.
    PCR
    Cycle (40 cycles)
    Incubation Activation Anneal/
    Step Hold Hold Denature Extend
    Temperature 50° C. 95° C. 95° C. 60° C.
    Time
    2 min. 20 sec. 1 sec. 20 sec.
    Volume 10 μL
  • In some embodiments the plurality of nucleic acid amplification reactions are multiplexed such that multiple mRNAs (including a reference mRNA) are assayed in a single qPCR reaction, i.e., nine qPCR reactions would be needed to assay the entire panel of RM gene mRNAs from one sample, where each of the reactions are “tetraplexed,” 14 reactions would be needed per sample where each reaction is “triplexed”, and 28 reactions would be needed per sample when each qPCR reactions includes primers to a single RM gene mRNA and a reference gene mRNA. In some embodiments, the plurality of qPCR reactions can include different multiplexing, i.e., some reactions may contain primer pairs directed to three RM gene mRNAs and others a primer pair to only two or a single RM gene mRNA. The plurality of reactions can be provided in a number of formats, e.g., 96-, 384-, or even 1536-well formats.
  • In various embodiments, the mRNA or cDNA in the biodosimetry assay system is from a biological sample from a subject subjected to radiation exposure from about 30 minutes to about seven days prior to the time point at which the biological sample was obtained from the subject, e.g., one hour, three hours, 4 hours, six hours, twelve hours, 1 day, 2 days, 3 days, 4 days, 5 days, 7 days or another time period before biological sample collection from the subject ranging from about 30 minutes to about seven days.
  • Also contemplated herein is a radiation biomarker assay kit that includes a nucleic acid probe set consisting essentially of nucleic acid probes that hybridize specifically with nucleic acid targets comprising at least one of SEQ ID NOS: 1-39 or the complementary sequences thereof.
  • In some embodiments the probe set includes no more than about 200 probes, e.g., PCR primers. In other embodiments the probe set includes no more than about 100 probes.
  • In some embodiments the nucleic acid probe set includes primer pairs and TAQMAN® probes suitable for qPCR analysis of mRNAs or cDNAs comprising at least one of SEQ ID NOS: 1-39.
  • In some embodiments the kit also includes a thermostable polymerase suitable for qPCR, e.g., Taq polymerase and variants thereof known in the art.
  • In some embodiments a qPCR probe set in the kit is provided in a multi-well plate format. In some a multi-well plate is provided in which at least two nucleic acid probes that hybridize to at least two different nucleic acid targets are in the same wells, i.e., the probes can be multiplexed, as described above such that up to four different targets can be assayed by qPCR in the same reaction.
  • In some embodiments the kit also includes radiation exposure positive and negative control mRNA samples, which ensure that a qPCR biodosimetry assay is working properly, i.e., modulation of RM gene expression is detected in the positive control sample and no modulation of RM gene expression is detected in the negative control sample.
  • EXAMPLES
  • The invention will be more fully understood upon consideration of the following non-limiting Examples. The invention has been described in connection with what are presently considered to be the most practical and preferred embodiments. However, the present invention has been presented by way of illustration and is not intended to be limited to the disclosed embodiments. Accordingly, those skilled in the art will realize that the invention is intended to encompass all modifications and alternative arrangements within the spirit and scope of the invention as set forth in the appended claims.
  • Example 1: Description of Test Experiments Used to Develop Biomarkers
  • Rhesus macaque non-human primate (NHP) in vivo testing was conducted to produce single-dose biodosimetry samples and age/gender confounded samples to calibrate the biodosimeter.
  • NHP in vivo dose response to radiation: The animal test laboratory completed NHP Cobalt-60 irradiations at 0, 2, 4, and 6 (LD30/60), 7 Gy (LD70/60), and 10 Gy with cohorts of 16 (8 male and 8 female), at dose rate of approximately 0.6 Gy/min. Samples of 2.5 ml peripheral blood (PAXGENE™ blood RNA tube) were obtained from each rhesus macaque −2 week and −24 hr. prior to irradiation and 4 hr., 24 hr., 36 hr. post radiation, and on days 2, 3, 5, and 7 for a total of 9 blood draws per animal. Samples (0.5 ml) were also obtained in EDTA tubes to determine WBC differentials. Tests were staged to provide 4 NHP at each condition to determine target genes using discovery techniques (Phase 1), 10 NHP at each condition to determine biomarkers and 2 NHP at each condition to test the biodosimeter (algorithm) accuracy (Phase 2).
  • NHP confounder analysis; old age and juvenile. The animal test laboratory completed testing of 4 rhesus macaques (2 male and 2 female) exposed to 6 Gy (LD30/60) at a dose rate of approximately 0.6 Gy/min for both geriatric (>15 years) and juvenile (10-14 months) cohorts. Samples of 2.5 ml peripheral blood (PAXGENE™ blood RNA tube) were collected from each NHP −2 week and −24 hr. prior to irradiation and 4 hr., 24 hr., 36 hr. post radiation, and on days 2, 3, 5, and 7 for a total of 9 blood draws per animal. Samples (0.5 ml) were also obtained in EDTA tubes to determine WBC differentials.
  • NHP Fractionated Dose Testing: Two NHP models were developed to compare NHP gene response to human gene response for fractionated dose radiotherapy models.
  • NHP Fractionated Dose Models: Blood (2.5 ml) was collected from 6 female and 6 male rhesus NHP into PAXGENE™ blood RNA tubes. The NHP were irradiated in vivo to parallel the 4 human in vivo test protocols as described below. For Study 1: Twelve (12) NHPs were exposed to 1.5 Gy twice per day (dose rate 0.6-0.8 Gy/min.) for 4 days at the same time each day. The blood samples were collected within 24 hr. prior to irradiation and 24 hrs. after each daily exposure (6 draws). For Study 2: Twelve (12) NHPs were exposed to 1.2 Gy (dose rate 0.6-0.8 Gy/min.) 3 times per day at the same time each day for 4-days. Blood samples were collected prior to irradiation and 24 hr. following each exposure (prior to the next exposure) for a total of 6 draws. The NHPs were irradiated by LINAC. At the time of sample collection, a complete differential white cell count was conducted.
  • Human Fractionated Dose Models: Four human in vivo models were co-developed with Mayo Clinic, City of Hope and Stanford to provide blood samples from humans undergoing whole body and fractional radiation.
  • Model 1—Bone Marrow Transplant Patients (BMT): Radiation dose is 1.65 to 2 Gy twice daily for 3 to 4 days. Samples are taken prior to and 24 hr. after daily irradiations. The last draw is on Day-7; 7 days after the first dose. (4-6 samples/Series).
  • Model 2—Bone Marrow Transplant Patients (BMT): Radiation dose is 1.2 Gy three times daily for 4 days. Samples are taken prior to and 24 hr. after irradiation daily irradiations. The last draw is on Day-3 or 4; 3 or 4 days after the first dose. (5-7 samples/Series).
  • Model 3—Bone Marrow Transplant Patients (BMT): Radiation dose is a single fraction related to models 1 and 2. Samples are taken prior to and every 24 hr. after irradiation. The last draw is on Day-6; 6 days after the first dose. (6-7 samples/Series).
  • Model 4—X-Ray Therapy (XRT) Patients (>7% bone marrow exposure): Radiation dose is 2-8 Gy each day for multiple days. Samples are taken prior to and 24 hr. after irradiation. The last draw is taken 7 days after the last exposure.
  • TABLE 5
    Nucleotide Sequences of Biodosimetry Biomarker Genes
    CR2 (SEQ ID NO: 1; GenBank NM_001006658.2).
    ATTTAAGGGCCCGCCTCTCCTGGCTCACAGCTGCTTGCTGCTCCAGCCTTGCCCTCCC
    AGAGCTGCCGGACGCTCGCGGGTCTCGGAACGCATCCCGCCGCGGGGGCTTCGGCC
    GTGGCATGGGCGCCGCGGGCCTGCTCGGGGTTTTCTTGGCTCTCGTCGCACCGGGGG
    TCCTCGGGATTTCTTGTGGCTCTCCTCCGCCTATCCTAAATGGCCGGATTAGTTATTA
    TTCTACCCCCATTGCTGTTGGTACCGTGATAAGGTACAGTTGTTCAGGTACCTTCCGC
    CTCATTGGAGAAAAAAGTCTATTATGCATAACTAAAGACAAAGTGGATGGAACCTG
    GGATAAACCTGCTCCTAAATGTGAATATTTCAATAAATATTCTTCTTGCCCTGAGCCC
    ATAGTACCAGGAGGATACAAAATTAGAGGCTCTACACCCTACAGACATGGTGATTC
    TGTGACATTTGCCTGTAAAACCAACTTCTCCATGAACGGAAACAAGTCTGTTTGGTG
    TCAAGCAAATAATATGTGGGGGCCGACACGACTACCAACCTGTGTAAGTGTTTTCCC
    TCTCGAGTGTCCAGCACTTCCTATGATCCACAATGGACATCACACAAGTGAGAATGT
    TGGCTCCATTGCTCCAGGATTGTCTGTGACTTACAGCTGTGAATCTGGTTACTTGCTT
    GTTGGAGAAAAGATCATTAACTGTTTGTCTTCGGGAAAATGGAGTGCTGTCCCCCCC
    ACATGTGAAGAGGCACGCTGTAAATCTCTAGGACGATTTCCCAATGGGAAGGTAAA
    GGAGCCTCCAATTCTCCGGGTTGGTGTAACTGCAAACTTTTTCTGTGATGAAGGGTA
    TCGACTGCAAGGCCCACCTTCTAGTCGGTGTGTAATTGCTGGACAGGGAGTTGCTTG
    GACCAAAATGCCAGTATGTGAAGAAATTTTTTGCCCATCACCTCCCCCTATTCTCAA
    TGGAAGACATATAGGCAACTCACTAGCAAATGTCTCATATGGAAGCATAGTCACTTA
    CACTTGTGACCCGGACCCAGAGGAAGGAGTGAACTTCATCCTTATTGGAGAGAGCA
    CTCTCCGTTGTACAGTTGATAGTCAGAAGACTGGGACCTGGAGTGGCCCTGCCCCAC
    GCTGTGAACTTTCTACTTCTGCGGTTCAGTGTCCACATCCCCAGATCCTAAGAGGCC
    GAATGGTATCTGGGCAGAAAGATCGATATACCTATAACGACACTGTGATATTTGCTT
    GCATGTTTGGCTTCACCTTGAAGGGCAGCAAGCAAATCCGATGCAATGCCCAAGGC
    ACATGGGAGCCATCTGCACCAGTCTGTGAAAAGGAATGCCAGGCCCCTCCTAACAT
    CCTCAATGGGCAAAAGGAAGATAGACACATGGTCCGCTTTGACCCTGGAACATCTA
    TAAAATATAGCTGTAACCCTGGCTATGTGCTGGTGGGAGAAGAATCCATACAGTGTA
    CCTCTGAGGGGGTGTGGACACCCCCTGTACCCCAATGCAAAGTGGCAGCGTGTGAA
    GCTACAGGAAGGCAACTCTTGACAAAACCCCAGCACCAATTTGTTAGACCAGATGT
    CAACTCTTCTTGTGGTGAAGGGTACAAGTTAAGTGGGAGTGTTTATCAGGAGTGTCA
    AGGCACAATTCCTTGGTTTATGGAGATTCGTCTTTGTAAAGAAATCACCTGCCCACC
    ACCCCCTGTTATCTACAATGGGGCACACACCGGGAGTTCCTTAGAAGATTTTCCATA
    TGGAACCACGGTCACTTACACATGTAACCCTGGGCCAGAAAGAGGAGTGGAATTCA
    GCCTCATTGGAGAGAGCACCATCCGTTGTACAAGCAATGATCAAGAAAGAGGCACC
    TGGAGTGGCCCTGCTCCCCTGTGTAAACTTTCCCTCCTTGCTGTCCAGTGCTCACATG
    TCCATATTGCAAATGGATACAAGATATCTGGCAAGGAAGCCCCATATTTCTACAATG
    ACACTGTGACATTCAAGTGTTATAGTGGATTTACTTTGAAGGGCAGTAGTCAGATTC
    GTTGCAAAGCTGATAACACCTGGGATCCTGAAATACCAGTTTGTGAAAAAGGCTGC
    CAGTCACCTCCTGGGCTCCACCATGGTCGTCATACAGGTGGAAATACGGTCTTCTTT
    GTCTCTGGGATGACTGTAGACTACACTTGTGACCCTGGCTATTTGCTTGTGGGAAAC
    AAATCCATTCACTGTATGCCTTCAGGAAATTGGAGTCCTTCTGCCCCACGGTGTGAA
    GAAACATGCCAGCATGTGAGACAGAGTCTTCAAGAACTTCCAGCTGGTTCACGTGTG
    GAGCTAGTTAATACGTCCTGCCAAGATGGGTACCAGTTGACTGGACATGCTTATCAG
    ATGTGTCAAGATGCTGAAAATGGAATTTGGTTCAAAAAGATTCCACTTTGTAAAGTT
    ATTCACTGTCACCCTCCACCAGTGATTGTCAATGGGAAGCACACAGGCATGATGGCA
    GAAAACTTTCTATATGGAAATGAAGTCTCTTATGAATGTGACCAAGGATTCTATCTC
    CTGGGAGAGAAAAAATTGCAGTGCAGAAGTGATTCTAAAGGACATGGATCTTGGAG
    CGGGCCTTCCCCACAGTGCTTACGATCTCCTCCTGTGACTCGCTGCCCTAATCCAGA
    AGTCAAACATGGGTACAAGCTCAATAAAACACATTCTGCATATTCCCACAATGACAT
    AGTGTATGTTGACTGCAATCCTGGCTTCATCATGAATGGTAGTCGCGTGATTAGGTG
    TCATACTGATAACACATGGGTGCCAGGTGTGCCAACTTGTATCAAAAAAGCCTTCAT
    AGGGTGTCCACCTCCGCCTAAGACCCCTAACGGGAACCATACTGGTGGAAACATAG
    CTCGATTTTCTCCTGGAATGTCAATCCTGTACAGCTGTGACCAAGGCTACCTGCTGGT
    GGGAGAGGCACTCCTTCTTTGCACACATGAGGGAACCTGGAGCCAACCTGCCCCTC
    ATTGTAAAGAGGTAAACTGTAGCTCACCAGCAGATATGGATGGAATCCAGAAAGGG
    CTGGAACCAAGGAAAATGTATCAGTATGGAGCTGTTGTAACTCTGGAGTGTGAAGA
    TGGGTATATGCTGGAAGGCAGTCCCCAGAGCCAGTGCCAATCGGATCACCAATGGA
    ACCCTCCCCTGGCGGTTTGCAGATCCCGTTCACTTGCTCCTGTCCTTTGTGGTATTGC
    TGCAGGTTTGATACTTCTTACCTTCTTGATTGTCATTACCTTATACGTGATATCAAAA
    CACAGAGCACGCAATTATTATACAGATACAAGCCAGAAAGAAGCTTTTCATTTAGA
    AGCACGAGAAGTATATTCTGTTGATCCATACAACCCAGCCAGCTGATCAGAAGACA
    AACTGGTGTGTGCCTCATTGCTTGGAATTCAGCGGAATATTGATTAGAAAGAAACTG
    CTCTAATATCAGCAAGTCTCTTTATATGGCCTCAAGATCAATGAAATGATGTCATAA
    GCGATCACTTCCTATATGCACTTATTCTCAAGAAGAACATCTTTATGGTAAAGATGG
    GAGCCCAGTTTCACTGCCATATACTCTTCAAGGACTTTCTGAAGCCTCACTTATGAG
    ATGCCTGAAGCCAGGCCATGGCTATAAACAATTACATGGCTCTAAAAAGTTTTGCCC
    TTTTTAAGGAAGGCACTAAAAAGAGCTGTCCTGGTATCTAGACCCATCTTCTTTTTG
    AAATCAGCATACTCAATGTTACTATCTGCTTTTGGTTATAATGTGTTTTTAATTATCT
    AAAGTATGAAGCATTTTCTGGGGTTATGATGGCTTTACCTTTATTAGGAAGTATGGT
    TTTATTTTGATAGTAGCTTCCTCCTCTGGTGGTGTTAATCATTTCATTTTTACCCTTAC
    TTGGTTTGAGTTTCTCTCACATTACTGTATATACTTTGCCTTTCCATAATCACTCAGTG
    ATTGCAATTTGCACAAGTTTTTTTAAATTATGGGAATCAAGATTTAATCCTAGAGATT
    TGGTGTACAATTCAGGCTTTGGATGTTTCTTTAGCAGTTTTGTGATAAGTTCTAGTTG
    CTTGTAAAATTTCACTTAATAATGTGTACATTAGTCATTCAATAAATTGTAATTGTAA
    AGAAAACATACAAAAAAAAAAAAAAAA
    DHRS4L1 (SEQ ID NO: 2; GenBank NM_001277864.1).
    AGTCGGGCAGCTCTCCGGGCCGGCGTGGGAGCCCGCGCTCCAAAGCCCGGTGGGGG
    GAGGGGCGCTCACGCAACCGCCACTGTCTGGAGCGGGCTCGCCTCTGCGGCGGCAC
    TCACCGCCCGGGCTTTACTGAAGCGGAGTCTAGCATGTGCGGCTGCTCCACAGCGGT
    GTGGGTGGCGGCGGCTCCTCTGCAGCAGCCTCGGCAGTAGGGGTCACGGTGGCCAA
    GCCCACCGTGGAGCTCATCTGAGAGTTGTAAGGTACGGGACTGCCTCGGTCTTTGGG
    ACGCCCCGTCTGGTAGCATCCCAGATCCAGCACGTTCCTTCCGGCCCTGCACCCCGG
    CCCGGTGCCTCACACCCCGCTACCCCATGCATCCAGACTCTAAGGCAGCCCCTGCAT
    CTCAGTCCTGACATCGCTGTCCCTGGAGCATCCTCCGCTGGAGCTGGAGCTTGACAG
    GATCGGCTTCGCCGTCGCCCAGCGTCTGGCCCAAGACGGGGCCCACGTGGTAGTCA
    GCCGCCGGAAGCAGCAGAATGTGGACCAGGCAGTGGCCACGCTGCAGGGGGAGGG
    GCTGAGCATGACGGGCACTGTGTGCCATGTGGGGAAGATGAAGGACTGGGAGCGGC
    TGGTGGCCACAGTGAGCTGCAGGGAAATGGGCACAGAGCCAGGAGGTGGAAAAGG
    GAGCCAGCCTGAGCCTCCTTCCCTGCTTTCCTGGACAGCATTGGGCTTCAGTCCTTAC
    AATGTCAGTAAAACAGCCTTGCTGGGCCTCAACAAGACCTTGGCCATAGAGCTGGC
    CCCAAGGAACATTAGGGTGAACTGCCTAGCACCTGGACTTATCAAGACTAGCTTCAG
    CAGGATGCTCTGGATGGACAAGGAAAAAGAGGAAAGCATGAAAGAAACCCTGCGG
    ATAAGAAGGTTAGGCGAGCCAGAGGATTCTCTTGGCATCGTGTCTTTCCTGTGCTCT
    GAAGATGCCAGCTACCTCACTGGGGAAACAGTGATGGTGGGTGGAGGAACCCCGTC
    CCGCCTCTGAGGACCCGGAGACAGCCCACAGGCCAGAGTTGGGCTCTAGCTCCTGG
    TGCTGTTCCTGCATTCACCCACTGGCCTTTCCCACCTCTGCTCACCTTACTGTTCACC
    TCATCAAATCAGTTCTGCCCTGTGAAAAGATCCAGCCTTCCCTGCCGTCAAGGTGGT
    GTCTTACTCGGGATTCCTGCTGTTGTTGTGGCCTTGGGTAAAGGCCTCCCCTGAGAA
    CACAGGACAGGCCTGCTGACAAGGCTGAGTCTACCTTGGCAAAGACCAAGATATTT
    TTTGCCCAGGCCACTGGGGAATTTGAGGGGAGATGAGAGAGAAGGAAGCTGGAGTG
    GAAGGAGCAGAGTTGCAAATTAACAACTTGCAAATGAGGTGCAAATAAAATGCAGA
    TGATTGCGCGGCTTTGAATCGAAAAAAAAAAA
    HCK (SEQ ID NO: 3; GenBank NM_001172129.1).
    GGAGTTAGCCTCGCTCAGGGCGCGGCTAAGGCGCCCAGATGGCCTGCGGGCGCCAC
    CACGTCCCTGGTCCCAGCTCGGGAGCACATCAGAGGCTTAGAGGCGAGTGGGAAGG
    GACTCAGACAGTGCAGGACGAGAAACGCCCGCGGCACCAAAGCCCCTCAGAGCGTC
    GCCCCCGCCTCTAGTTCTAGAAAGTCAGTTTCCCGGCACTGGCACCCCGGAACCTCA
    GGGGCTGCCGAGCTGGGGGGGCGCTCAAGCTGCGAGGATCCGGGCTGCCCGCGAGA
    CGAGGAGCGGGCGCCCAGGATGGGGTGCATGAAGTCCAAGTTCCTCCAGGTCGGAG
    GCAATACATTCTCAAAAACTGAAACCAGCGCCAGCCCACACTGTCCTGTGTACGTGC
    CGGATCCCACATCCACCATCAAGCCGGGGCCTAATAGCCACAACAGCAACACACCA
    GGAATCAGGGAGGCAGGCTCTGAGGACATCATCGTGGTTGCCCTGTATGATTACGA
    GGCCATTCACCACGAAGACCTCAGCTTCCAGAAGGGGGACCAGATGGTGGTCCTAG
    AGGAATCCGGGGAGTGGTGGAAGGCTCGATCCCTGGCCACCCGGAAGGAGGGCTAC
    ATCCCAAGCAACTATGTCGCCCGCGTTGACTCTCTGGAGACAGAGGAGTGGTTTTTC
    AAGGGCATCAGCCGGAAGGACGCAGAGCGCCAACTGCTGGCTCCCGGCAACATGCT
    GGGCTCCTTCATGATCCGGGATAGCGAGACCACTAAAGGAAGCTACTCTTTGTCCGT
    GCGAGACTACGACCCTCGGCAGGGAGATACCGTGAAACATTACAAGATCCGGACCC
    TGGACAACGGGGGCTTCTACATATCCCCCCGAAGCACCTTCAGCACTCTGCAGGAGC
    TGGTGGACCACTACAAGAAGGGGAACGACGGGCTCTGCCAGAAACTGTCGGTGCCC
    TGCATGTCTTCCAAGCCCCAGAAGCCTTGGGAGAAAGATGCCTGGGAGATCCCTCG
    GGAATCCCTCAAGCTGGAGAAGAAACTTGGAGCTGGGCAGTTTGGGGAAGTCTGGA
    TGGCCACCTACAACAAGCACACCAAGGTGGCAGTGAAGACGATGAAGCCAGGGAG
    CATGTCGGTGGAGGCCTTCCTGGCAGAGGCCAACGTGATGAAAACTCTGCAGCATG
    ACAAGCTGGTCAAACTTCATGCGGTGGTCACCAAGGAGCCCATCTACATCATCACG
    GAGTTCATGGCCAAAGGAAGCTTGCTGGACTTTCTGAAAAGTGATGAGGGCAGCAA
    GCAGCCATTGCCAAAACTCATTGACTTCTCAGCCCAGATTGCAGAAGGCATGGCCTT
    CATCGAGCAGAGGAACTACATCCACCGAGACCTCCGAGCTGCCAACATCTTGGTCTC
    TGCATCCCTGGTGTGTAAGATTGCTGACTTTGGCCTGGCCCGGGTCATTGAGGACAA
    CGAGTACACGGCTCGGGAAGGGGCCAAGTTCCCCATCAAGTGGACAGCTCCTGAAG
    CCATCAACTTTGGCTCCTTCACCATCAAGTCAGACGTCTGGTCCTTTGGTATCCTGCT
    GATGGAGATCGTCACCTACGGCCGGATCCCTTACCCAGGGATGTCAAACCCTGAAG
    TGATCCGAGCTCTGGAGCGTGGATACCGGATGCCTCGCCCAGAGAACTGCCCAGAG
    GAGCTCTACAACATCATGATGCGCTGCTGGAAAAACCGTCCGGAGGAGCGGCCGAC
    CTTCGAATACATCCAGAGTGTGCTGGATGACTTCTACACGGCCACAGAGAGCCAGTA
    CCAACAGCAGCCATGATAGGGAGGACCAGGGCAGGGCCAGGGGGTGCCCAGGTGG
    TGGCTGCAAGGTGGCTCCAGCACCATCCGCCAGGGCCCACACCCCCTTCCTACTCCC
    AGACACCCACCCTCGCTTCAGCCACAGTTTCCTCATCTGTCCAGTGGGTAGGTTGGA
    CTGGAAAATCTCTTTTTGACTCTTGCAATCCACAATCTGACATTCTCAGGAAGCCCCC
    AAGTTGATATTTCTATTTCCTGGAATGGTTGGATTTTAGTTACAGCTGTGATTTGGAA
    GGGAAACTTTCAAAATAGTGAAATGAATATTTAAATAAAAGATATAAATGCCAAAG
    TCTTTACCAAAAAAAAAAAAAAAAA
    IL1RAP (SEQ ID NO: 4; GenBank NM_002182.3).
    AAAGGGGGAAAAGAAAGTGCGGCGGAAAGTAAGAGGCTCACTGGGGAAGACTGCC
    GGGATCCAGGTCTCCGGGGTCCGCTTTGGCCAGAGGCGCGGAAGGAAGCAGTGCCC
    GGCGACACTGCACCCATCCCGGCTGCTTTTGCTGCGCCCTCTCAGCTTCCCAAGAAA
    GGCATCGTCATGTGATCATCACCTAAGAACTAGAACATCAGCAGGCCCTAGAAGCC
    TCACTCTTGCCCCTCCCTTTAATATCTCAAAGGATGACACTTCTGTGGTGTGTAGTGA
    GTCTCTACTTTTATGGAATCCTGCAAAGTGATGCCTCAGAACGCTGCGATGACTGGG
    GACTAGACACCATGAGGCAAATCCAAGTGTTTGAAGATGAGCCAGCTCGCATCAAG
    TGCCCACTCTTTGAACACTTCTTGAAATTCAACTACAGCACAGCCCATTCAGCTGGC
    CTTACTCTGATCTGGTATTGGACTAGGCAGGACCGGGACCTTGAGGAGCCAATTAAC
    TTCCGCCTCCCCGAGAACCGCATTAGTAAGGAGAAAGATGTGCTGTGGTTCCGGCCC
    ACTCTCCTCAATGACACTGGCAACTATACCTGCATGTTAAGGAACACTACATATTGC
    AGCAAAGTTGCATTTCCCTTGGAAGTTGTTCAAAAAGACAGCTGTTTCAATTCCCCC
    ATGAAACTCCCAGTGCATAAACTGTATATAGAATATGGCATTCAGAGGATCACTTGT
    CCAAATGTAGATGGATATTTTCCTTCCAGTGTCAAACCGACTATCACTTGGTATATG
    GGCTGTTATAAAATACAGAATTTTAATAATGTAATACCCGAAGGTATGAACTTGAGT
    TTCCTCATTGCCTTAATTTCAAATAATGGAAATTACACATGTGTTGTTACATATCCAG
    AAAATGGACGTACGTTTCATCTCACCAGGACTCTGACTGTAAAGGTAGTAGGCTCTC
    CAAAAAATGCAGTGCCCCCTGTGATCCATTCACCTAATGATCATGTGGTCTATGAGA
    AAGAACCAGGAGAGGAGCTACTCATTCCCTGTACGGTCTATTTTAGTTTTCTGATGG
    ATTCTCGCAATGAGGTTTGGTGGACCATTGATGGAAAAAAACCTGATGACATCACTA
    TTGATGTCACCATTAACGAAAGTATAAGTCATAGTAGAACAGAAGATGAAACAAGA
    ACTCAGATTTTGAGCATCAAGAAAGTTACCTCTGAGGATCTCAAGCGCAGCTATGTC
    TGTCATGCTAGAAGTGCCAAAGGCGAAGTTGCCAAAGCAGCCAAGGTGAAGCAGAA
    AGTGCCAGCTCCAAGATACACAGTGGAACTGGCTTGTGGTTTTGGAGCCACAGTCCT
    GCTAGTGGTGATTCTCATTGTTGTTTACCATGTTTACTGGCTAGAGATGGTCCTATTT
    TACCGGGCTCATTTTGGAACAGATGAAACCATTTTAGATGGAAAAGAGTATGATATT
    TATGTATCCTATGCAAGGAATGCGGAAGAAGAAGAATTTGTATTACTGACCCTCCGT
    GGAGTTTTGGAGAATGAATTTGGATACAAGCTGTGCATCTTTGACCGAGACAGTCTG
    CCTGGGGGAATTGTCACAGATGAGACTTTGAGCTTCATTCAGAAAAGCAGACGCCTC
    CTGGTTGTTCTAAGCCCCAACTACGTGCTCCAGGGAACCCAAGCCCTCCTGGAGCTC
    AAGGCTGGCCTAGAAAATATGGCCTCTCGGGGCAACATCAACGTCATTTTAGTACAG
    TACAAAGCTGTGAAGGAAACGAAGGTGAAAGAGCTGAAGAGGGCTAAGACGGTGC
    TCACGGTCATTAAATGGAAAGGGGAAAAATCCAAGTATCCACAGGGCAGGTTCTGG
    AAGCAGCTGCAGGTGGCCATGCCAGTGAAGAAAAGTCCCAGGCGGTCTAGCAGTGA
    TGAGCAGGGCCTCTCGTATTCATCTTTGAAAAATGTATGAAAGGAATAATGAAAAG
    GGTAAAAAGAACAAGGGGTGCTCCAGGAAGAAAGAGTCCCCCCAGTCTTCATTCGC
    AGTTTATGGTTTCATAGGCAAAAATAATGGTCTAAGCCTCCCAATAGGGATAAATTT
    AGGGTGACTGTGTGGCTGACTATTCTGCTTCCTCAGGCAACACTAAAGTTTAGAAAG
    ATATCATCAACGTTCTGTCACCAGTCTCTGATGCCACTATGTTCTTTGCAGGCAAAG
    ACTTGTTCAATGCGAATTTCCCCTTCTACATTGTCTATCCCTGTTTTTATATGTCTCCA
    TTCTTTTTAAAATCTTAACATATGGAGCAGCCTTTCCTATGAATTTAAATATGCCTTT
    AAAATAAGTCACTGTTGACAGGGTCATGAGTTTCCGAGTATAGTTTTCTTTTTATCTT
    ATTTTTACTCGTCCGTTGAAAAGATAATCAAGGCCTACATTTTAGCTGAGGATAATG
    AACTTTTTTCCTCATTCGGCTGTATAATACATAACCACAGCAAGACTGACATCCACTT
    AGGATGATACAAAGCAGTGTAACTGAAAATGTTTCTTTTAATTGATTTAAAGGACTT
    GTCTTCTATACCACCCTTGTCCTCATCTCAGGTAATTTATGAAATCTATGTAAACTTG
    AAAAATATTTCTTAATTTTTGTTTTTGCTCCAGTCAATTCCTGATTATCCACAGGTCA
    ACCCACATTTTTTCATTCCTTCTCCCTATCTGCTTATATCGCATTGCTCATTTAGAGTT
    TGCAGGAGGCTCCATACTAGGTTCAGTCTGAAAGAAATCTCCTAATGGTGCTATAGA
    GAGGGAGGTAACAGAAAGACTCTTTTAGGGCATTTTTCTGACTCATGAAAAGAGCA
    CAGAAAAGGATGTTTGGCAATTTGTCTTTTAAGTCTTAACCTTGCTAATGTGAATACT
    GGGAAAGTGATTTTTTCTCACTCGTTTTTGTTGCTCCATTGTAAAGGGCGGAGGTCA
    GTCTTAGTGGCCTTGAGAGTTGCTTTTGGCATTAATATTCTAAGAGAATTAACTGTAT
    TTCCTGTCACCTATTCACTAGTGCAGGAAATATACTTGCTCCAAATAAGTCAGTATG
    AGAAGTCACTGTCAATGAAAGTTGTTTTGTTTGTTTTCAGTAATATTTTGCTGTTTTT
    AAGACTTGGAAAACTAAGTGCAGAGTTTACAGAGTGGTAAATATCTATGTTACATGT
    AGATTATACATATATATACACACGTGTATATGAGATATATATCTTATATCTCCACAA
    ACACAAATTATATATATACATATCCACACACATACATTACATATATCTGTGTATATA
    AATCCACATGCACATGAAATATATATATATATATAATTTGTGTGTGTGTATGTGTAT
    GTATATGACTTTAAATAGCTATGGGTACAATATTAAAAACCACTGGAACTCTTGTCC
    AGTTTTTAAATTATGTTTTTACTGGAATGTTTTTGTGTCAGTGTTTTCTGTACATATTA
    TTTGTTAATTCACAGCTCACAGAGTGATAGTTGTCATAGTTCTTGCCTTCCCTAAGTT
    TATATAAATAACTTAAGTATTGCTACAGTTTATCTAGGTTGCAGTGGCATCTGCTGTG
    CACAGAGCTTCCATGGTCACTGCTAAGCAGTAGCCAGCCATCGGGCATTAATTGATT
    TCCTACTATATTCCCAGCAGACACATTTAGAAACTAAGCTATGTTAACCTCAGTGCT
    CAACTATTTGAACTGTTGAGTGATAAAGGAAACAAATATAACTGTAAATGAATCTTG
    GTATCCTGTGAAACAGAATAATTCGTAATTTAAGAAAGCCCTTATCCCGGTAACATG
    AATGTTGATGAACAAATGTAAAATTATATCCTATATTTAAGTACCCATAATAAATCA
    TTTCCCTCTATAAGTGTTATTGATTATTTTAAATTGAAAAAAGTTTCACTTGGATGAA
    AAAAGTAGAAAAGTAGGTCATTCTTGGATCTACTTTTTTTTAGCCTTATTAATATTTT
    TCCCTATTAGAAACCACAATTACTCCCTCTATTAACCCTTCACTTACTAGACCAGAA
    AAGAACTTATTCCAGATAAGCTTTGAATATCAATTCTTACATAAACTTTAGGCAAAC
    AGGGAATAGTCTAGTCACCAAAGGACCATTCTCTTGCCAATGCTGCATTCCTTTTGC
    ACTTTTGGATTCCATATTTATCCCAAATGCTGTTGGGCACCCCTAGAAATACCTTGAT
    GTTTTTTCTATTTATATGCCTGCCTTTGGTACTTAATTTTACAAATGCTGTAATATAA
    AGCATATCAAGTTTATGTGATACGTATCATTGCAAGAGAATTTGTTTCAAGATTTTTT
    TTTAATGTTCCAGAAGATGGCCAATAGAGAACATTCAAGGGAAATGGGGAAACATA
    ATTTAGAGAACAAGAACAAACCATGTCTCAAATTTTTTTAAAAAAAATTAATGGTTT
    TAAATATATGCTATAGGGACGTTCCATGCCCAGGTTAACAAAGAACTGTGATATATA
    GAGTGTCTAATTACAAAATCATATACGATTTATTTAATTCTCTTCTGTATTGTAACTT
    AGATGATTCCCAAGGACTCTAATAAAAAATCACTTCATTGTATTTGGAAACAAAAAC
    ATCATTCATTAATTACTTATTTTCTTTCCATAGGTTTTAATATTTTGAGAGTGTCTTTT
    TTATTTCATTCATGAACTTTTGTATTTTTCATTTTTCATTTGATTTGTAAATTTACTTAT
    GTTAAAAATAAACCATTTATTTTCAGCTTTGAATTTTAAAAAAAAAAAAAAAAAA
    LYRM4 (SEQ ID NO: 5; GenBank NM_020408.5).
    GAGCCCTGCCTGCGCCCGCCCCCGAAGCGGCGCGGGACGCCTGGCGCCGTCCGCGA
    TCCGCAGGGCTGCCCGCTTAGGCTTAGGCCCGGCCCGCTGGCAAAGCCGAGCCGCA
    GCATTTTATTTCGTTCGTGGTTTCCGCACAGGCTGGAGTTTCGTGGGTTGGGTCGTAC
    TTGGGACCTCGGCGAAGAGGACCCGTTTATTTTTTTTTCTTTCCAAAATGGCAGCCTC
    CAGTCGCGCACAAGTGTTATCTCTGTACCGGGCGATGCTGAGAGAGAGCAAGCGTTT
    CAGCGCCTACAATTACAGAACATATGCTGTCAGGAGGATAAGAGATGCCTTCAGAG
    AAAATAAAAATGTAAAGGATCCTGTAGAAATTCAAACCCTAGTGAATAAAGCCAAG
    AGAGACCTTGGAGTAATTCGTCGACAGGTCCACATTGGCCAACTGTATTCAACTGAC
    AAGCTGATCATTGAGAATCGAGACATGCCCAGGACCTAGCAAGCCGGGGACCAGCC
    ACCAGTGGCGGCCAGGGACCACCTTCAGCATCCACTCTCTGTTTGAGATGGGGGCTC
    CCAAAACCAGCTTACAATAGCCTTTTGCGCTGCCTGTCCTGTGGGAGCTGATAAACC
    AAGTCACATTTGCATTCTGTTGCAGGCTTAGTGAAAAAGGACTGCTGTCTTTCCTTG
    GTTCAAGTGTTAGAATGGAGAGCTGGAGTTCGTTCAGAATAGTGCTGTGTGTTACCA
    CGTCTCCCCTGCACCCCATTCCTACCTTGTAGCTCATGACCATTGTGTATAGCATTTC
    TACACTTTGTTTCTTGGTCCTTGGCAATAAAAAGAATGATCTCCCTGAGCCTTTGACC
    CCAGATAAACCCCTCCCAATTAATGCATTTTCATTTCCTACTGATACAAGGCCTGGA
    GAGGGCTGTTGGGGGCCCTCAGGGAGGGTTCAACTCTGAGACGAGAACTGCCTTGG
    TGAAGGCAAGTTCAAGCACCACTTGAGACTGGGGGCAGCATGGAGTAGGGCAGGGC
    TACGGGGATACACGGTGCACCCTGCAACTTATACCTGAGCCCAGTACAACAAAGGT
    GACGGGTGTGTAGGTACACACCCAGAGATGGAGCACTGCAGATCAGCAACCTCAGC
    CCCACCTGGGAATTTGCTGGAAATGCAGGCTCAAGCCCCTCCCCACACCTGGTGAAT
    GAGAGAGCCCCAGCCTGACCCAAGCCCAGGGCGACTCCCATACCCTGAAGCCTGGG
    GCATGCTGGGCAGCACCGGTGCCCAAATCTGGCTGGTGGACAGAAGCACCTGGAGA
    GTTGGAGAGCTTTTTAAAAAGACATCTCTCAGCACTTCCCTCTCTGCAGATTCTGACT
    CAGTAAGTGAGGGGTGAGGCACAGTCATTTTTCTCTATTCTGAAGCTCTCCCACTGT
    TTTCAATGTTTAACCAACTGGGGACCCCTGCTCTTTAAGTATATTACAGGTAATAAA
    GATATTGTTTGTATGCTTTTAAAAAAAAAAAAAAAAAA.
    MYC (SEQ ID NO: 6; GenBank NM_002467).
    GACCCCCGAGCTGTGCTGCTCGCGGCCGCCACCGCCGGGCCCCGGCCGTCCCTGGCT
    CCCCTCCTGCCTCGAGAAGGGCAGGGCTTCTCAGAGGCTTGGCGGGAAAAAGAACG
    GAGGGAGGGATCGCGCTGAGTATAAAAGCCGGTTTTCGGGGCTTTATCTAACTCGCT
    GTAGTAATTCCAGCGAGAGGCAGAGGGAGCGAGCGGGCGGCCGGCTAGGGTGGAA
    GAGCCGGGCGAGCAGAGCTGCGCTGCGGGCGTCCTGGGAAGGGAGATCCGGAGCG
    AATAGGGGGCTTCGCCTCTGGCCCAGCCCTCCCGCTGATCCCCCAGCCAGCGGTCCG
    CAACCCTTGCCGCATCCACGAAACTTTGCCCATAGCAGCGGGCGGGCACTTTGCACT
    GGAACTTACAACACCCGAGCAAGGACGCGACTCTCCCGACGCGGGGAGGCTATTCT
    GCCCATTTGGGGACACTTCCCCGCCGCTGCCAGGACCCGCTTCTCTGAAAGGCTCTC
    CTTGCAGCTGCTTAGACGCTGGATTTTTTTCGGGTAGTGGAAAACCAGCAGCCTCCC
    GCGACGATGCCCCTCAACGTTAGCTTCACCAACAGGAACTATGACCTCGACTACGAC
    TCGGTGCAGCCGTATTTCTACTGCGACGAGGAGGAGAACTTCTACCAGCAGCAGCA
    GCAGAGCGAGCTGCAGCCCCCGGCGCCCAGCGAGGATATCTGGAAGAAATTCGAGC
    TGCTGCCCACCCCGCCCCTGTCCCCTAGCCGCCGCTCCGGGCTCTGCTCGCCCTCCTA
    CGTTGCGGTCACACCCTTCTCCCTTCGGGGAGACAACGACGGCGGTGGCGGGAGCTT
    CTCCACGGCCGACCAGCTGGAGATGGTGACCGAGCTGCTGGGAGGAGACATGGTGA
    ACCAGAGTTTCATCTGCGACCCGGACGACGAGACCTTCATCAAAAACATCATCATCC
    AGGACTGTATGTGGAGCGGCTTCTCGGCCGCCGCCAAGCTCGTCTCAGAGAAGCTG
    GCCTCCTACCAGGCTGCGCGCAAAGACAGCGGCAGCCCGAACCCCGCCCGCGGCCA
    CAGCGTCTGCTCCACCTCCAGCTTGTACCTGCAGGATCTGAGCGCCGCCGCCTCAGA
    GTGCATCGACCCCTCGGTGGTCTTCCCCTACCCTCTCAACGACAGCAGCTCGCCCAA
    GTCCTGCGCCTCGCAAGACTCCAGCGCCTTCTCTCCGTCCTCGGATTCTCTGCTCTCC
    TCGACGGAGTCCTCCCCGCAGGGCAGCCCCGAGCCCCTGGTGCTCCATGAGGAGAC
    ACCGCCCACCACCAGCAGCGACTCTGAGGAGGAACAAGAAGATGAGGAAGAAATC
    GATGTTGTTTCTGTGGAAAAGAGGCAGGCTCCTGGCAAAAGGTCAGAGTCTGGATC
    ACCTTCTGCTGGAGGCCACAGCAAACCTCCTCACAGCCCACTGGTCCTCAAGAGGTG
    CCACGTCTCCACACATCAGCACAACTACGCAGCGCCTCCCTCCACTCGGAAGGACTA
    TCCTGCTGCCAAGAGGGTCAAGTTGGACAGTGTCAGAGTCCTGAGACAGATCAGCA
    ACAACCGAAAATGCACCAGCCCCAGGTCCTCGGACACCGAGGAGAATGTCAAGAGG
    CGAACACACAACGTCTTGGAGCGCCAGAGGAGGAACGAGCTAAAACGGAGCTTTTT
    TGCCCTGCGTGACCAGATCCCGGAGTTGGAAAACAATGAAAAGGCCCCCAAGGTAG
    TTATCCTTAAAAAAGCCACAGCATACATCCTGTCCGTCCAAGCAGAGGAGCAAAAG
    CTCATTTCTGAAGAGGACTTGTTGCGGAAACGACGAGAACAGTTGAAACACAAACT
    TGAACAGCTACGGAACTCTTGTGCGTAAGGAAAAGTAAGGAAAACGATTCCTTCTA
    ACAGAAATGTCCTGAGCAATCACCTATGAACTTGTTTCAAATGCATGATCAAATGCA
    ACCTCACAACCTTGGCTGAGTCTTGAGACTGAAAGATTTAGCCATAATGTAAACTGC
    CTCAAATTGGACTTTGGGCATAAAAGAACTTTTTTATGCTTACCATCTTTTTTTTTTCT
    TTAACAGATTTGTATTTAAGAATTGTTTTTAAAAAATTTTAAGATTTACACAATGTTT
    CTCTGTAAATATTGCCATTAAATGTAAATAACTTTAATAAAACGTTTATAGCAGTTA
    CACAGAATTTCAATCCTAGTATATAGTACCTAGTATTATAGGTACTATAAACCCTAA
    TTTTTTTTATTTAAGTACATTTTGCTTTTTAAAGTTGATTTTTTTCTATTGTTTTTAGAA
    AAAATAAAATAACTGGCAAATATATCATTGAGCCAAATCTTAAAAAAAAAAAAAAA
    TMEM63B (SEQ ID NO: 7; GenBank NM_018426.1).
    AACCCGGGGCTCCGAGCCGGAGCCGAGTCTGCGCCTGGGGGAGGACCATGCGGCAG
    TAGCAGCCATGCTGCCCTTTCTGCTGGCCACACTGGGCACCACAGCCCTCAACAACA
    GCAACCCCAAGGACTACTGCTACAGCGCCCGCATCCGCAGCACTGTCCTGCAGGGC
    CTGCCCTTTGGGGGCGTCCCCACCGTGCTGGCTCTCGACTTCATGTGCTTCCTTGCAC
    TGCTGTTCTTATTCTCTATCCTCCGGAAGGTGGCCTGGGACTATGGGCGGCTGGCCTT
    GGTGACAGATGCAGACAGGCTTCGGCGGCAGGAGAGGGACCGAGTGGAACAGGAA
    TATGTGGCTTCAGCTATGCACGGGGACAGCCATGACCGGTATGAGCGTCTCACCTCT
    GTCTCCAGCTCCGTTGACTTTGACCAAAGGGACAATGGTTTCTGTTCCTGGCTGACA
    GCCATCTTCAGGATAAAGGATGATGAGATCCGGGACAAATGTGGGGGCGATGCCGT
    GCACTACCTGTCCTTTCAGCGGCACATCATCGGGCTGCTGGTGGTTGTGGGCGTCCT
    CTCCGTAGGCATCGTGCTGCCTGTCAACTTCTCAGGGGACCTGCTGGAGAACAATGC
    CTACAGCTTTGGGAGAACCACCATTGCCAACTTGAAATCAGGGAACAACCTGCTATG
    GCTGCACACCTCCTTCGCCTTCCTGTATCTGCTGCTCACCGTCTACAGCATGCGTAGA
    CACACCTCCAAGATGCGCTACAAGGAGGATGATCTGGTGAAGCGGACCCTCTTCAT
    CAATGGAATCTCCAAATATGCAGAGTCAGAAAAGATCAAGAAGCATTTTGAGGAAG
    CCTACCCCAACTGCACAGTTCTCGAAGCCCGCCCGTGTTACAACGTGGCTCGCCTAA
    TGTTCCTCGATGCAGAGAGGAAGAAGGCCGAGCGGGGAAAGCTGTACTTCACAAAC
    CTCCAGAGCAAGGAGAACGTGCCTACCATGATCAACCCCAAGCCCTGTGGCCACCT
    CTGCTGCTGTGTGGTGCGAGGCTGTGAGCAGGTGGAGGCCATTGAGTACTACACAA
    AGCTGGAGCAGAAGCTGAAGGAAGACTACAAGCGGGAGAAGGAGAAGGTGAATGA
    GAAGCCTCTTGGCATGGCCTTTGTCACCTTCCACAATGAGACTATCACCGCCATCAT
    CCTGAAGGACTTCAACGTGTGTAAATGCCAGGGCTGCACCTGCCGTGGGGAGCCAC
    GCCCCTCATCCTGCAGCGAGTCCCTGCACATCTCCAACTGGACCGTGTCCTATGCCC
    CTGACCCTCAGAACATCTACTGGGAGCACCTCTCCATCCGAGGCTTCATCTGGTGGC
    TGCGCTGCCTGGTCATCAATGTCGTCCTCTTCATCCTCCTCTTCTTCCTCACCACTCC
    AGCCATCATCATCACCACCATGGACAAGTTCAACGTCACCAAGCCTGTGGAGTACCT
    CAACAACCCCATCATCACCCAGTTCTTCCCCACCCTGCTGCTGTGGTGCTTCTCGGCC
    CTCCTTCCCACCATCGTCTACTACTCAGCCTTCTTTGAAGCCCACTGGACACGCTCTG
    GGGAGAACAGGACAACCATGCACAAGTGCTACACTTTCCTCATCTTCATGGTGCTGC
    TCCTACCCTCGCTGGGACTGAGCAGCCTGGACCTCTTCTTCCGCTGGCTCTTTGATAA
    GAAATTCTTGGCTGAGGCAGCTATTCGGTTTGAGTGTGTGTTCCTGCCCGACAACGG
    CGCCTTCTTCGTGAACTACGTCATTGCCTCAGCCTTTATCGGCAACGCCATGGACCT
    GCTGCGCATCCCAGGCCTGCTCATGTACATGATCCGGCTCTGCCTGGCGCGCTCGGC
    CGCCGAGAGGCGCAACGTGAAGCGGCATCAGGCCTACGAGTTCCAGTTTGGCGCAG
    CCTACGCCTGGATGATGTGCGTCTTCACGGTGGTCATGACCTACAGTATCACCTGCC
    CCATCATCGTGCCCTTCGGGCTCATGTACATGCTGCTGAAGCACCTGGTAGACAGGT
    ACAATCTCTACTACGCCTACCTGCCGGCCAAGCTGGACAAGAAGATCCACTCGGGG
    GCTGTGAACCAGGTGGTGGCCGCGCCCATCCTCTGCCTCTTCTGGCTGCTCTTCTTTT
    CCACCATGCGCACGGGGTTCCTAGCTCCCACGTCTATGTTCACATTTGTGGTCCTGGT
    CATCACCATCGTCATCTGTCTCTGCCACGTCTGCTTTGGACACTTCAAATACCTCAGT
    GCCCACAACTACAAGATTGAGCACACGGAGACAGATACTGTGGACCCCAGAAGCAA
    TGGACGGCCCCCCACTGCTGCTGCTGTCCCCAAATCTGCGAAATACATCGCTCAGGT
    GCTGCAGGACTCAGAGGTGGACGGGGATGGGGATGGGGCTCCTGGGAGCTCAGGGG
    ATGAGCCCCCATCATCCTCATCCCAAGATGAGGAGTTGCTGATGCCACCCGACGCCC
    TCACGGACACAGACTTCCAGTCTTGCGAGGACAGCCTCATAGAGAATGAGATTCAC
    CAGTAAGGGGAGGGAGGGGCCCTGGAGGCCACATCCTGCCCCACCCCACCCCCACT
    CCCACGGACACTAAAACGCTAATAATTTATTAGATCTAAAGCCCCTTCCTCCCCAGC
    CCCTGCTTTCATTAAGGTATTTAAACTTGGGGGTTTCACTGCTCTCCCCCATGATGGA
    GGGAGGGAGCCCCCCAACCTCAGTGAGGAGAGCCCCGAGCCGGCCCCGGGGCAAA
    GAGGGGTGCAGAGGGAGTTCCCCCAGATCAGTACCCCCCACCCCTCCCCAGCTAGT
    AGCATGACCAGGAGAGGGTTAATGAGAGCCAAGAGGAGTACCTGGTGCACCTGGTG
    CCGGTGGCTGGAGACCTGGGGGGCAGGTGGATCTGGGGCTGTTCCCCCCCCTCCGTT
    TTTTCCACCCCACAGTTCCTCCTGGGATCTGGCCCTCCAGGGAAGTGGAGCCTCCAG
    CCCCTAGGGGATGCATGAGGGGGGAGGGGGTGCTGAGTGGGAGGAAGAGTCAGGC
    TCACAGCTGGGGTGGCCTGGGGGTGGGGGTGGGCAAGGCTGACACTGGAAAATGGG
    TTTTTGCACTGTTTTTTTTTTGGTTTTTTTGTTCTTTTTTGTTTTTTTCCTTTAAAATAA
    AAACAAAGAAAAGCTCTGAAAAAAAAAAAAAAAAA
    ALOX5 (SEQ ID NO: 8; GenBank NM_000698.3).
    CCGGGGCCAGGGACCAGTGGTGGGAGGAGGCTGCGGCGCTAGATGCGGACACCTG
    GACCGCCGCGCCGAGGCTCCCGGCGCTCGCTGCTCCCGCGGCCCGCGCCATGCCCTC
    CTACACGGTCACCGTGGCCACTGGCAGCCAGTGGTTCGCCGGCACTGACGACTACAT
    CTACCTCAGCCTCGTGGGCTCGGCGGGCTGCAGCGAGAAGCACCTGCTGGACAAGC
    CCTTCTACAACGACTTCGAGCGTGGCGCGGTGGATTCATACGACGTGACTGTGGACG
    AGGAACTGGGCGAGATCCAGCTGGTCAGAATCGAGAAGCGCAAGTACTGGCTGAAT
    GACGACTGGTACCTGAAGTACATCACGCTGAAGACGCCCCACGGGGACTACATCGA
    GTTCCCCTGCTACCGCTGGATCACCGGCGATGTCGAGGTTGTCCTGAGGGATGGACG
    CGCAAAGTTGGCCCGAGATGACCAAATTCACATTCTCAAGCAACACCGACGTAAAG
    AACTGGAAACACGGCAAAAACAATATCGATGGATGGAGTGGAACCCTGGCTTCCCC
    TTGAGCATCGATGCCAAATGCCACAAGGATTTACCCCGTGATATCCAGTTTGATAGT
    GAAAAAGGAGTGGACTTTGTTCTGAATTACTCCAAAGCGATGGAGAACCTGTTCATC
    AACCGCTTCATGCACATGTTCCAGTCTTCTTGGAATGACTTCGCCGACTTTGAGAAA
    ATCTTTGTCAAGATCAGCAACACTATTTCTGAGCGGGTCATGAATCACTGGCAGGAA
    GACCTGATGTTTGGCTACCAGTTCCTGAATGGCTGCAACCCTGTGTTGATCCGGCGC
    TGCACAGAGCTGCCCGAGAAGCTCCCGGTGACCACGGAGATGGTAGAGTGCAGCCT
    GGAGCGGCAGCTCAGCTTGGAGCAGGAGGTCCAGCAAGGGAACATTTTCATCGTGG
    ACTTTGAGCTGCTGGATGGCATCGATGCCAACAAAACAGACCCCTGCACACTCCAGT
    TCCTGGCCGCTCCCATCTGCTTGCTGTATAAGAACCTGGCCAACAAGATTGTCCCCA
    TTGCCATCCAGCTCAACCAAATCCCGGGAGATGAGAACCCTATTTTCCTCCCTTCGG
    ATGCAAAATACGACTGGCTTTTGGCCAAAATCTGGGTGCGTTCCAGTGACTTCCACG
    TCCACCAGACCATCACCCACCTTCTGCGAACACATCTGGTGTCTGAGGTTTTTGGCA
    TTGCAATGTACCGCCAGCTGCCTGCTGTGCACCCCATTTTCAAGCTGCTGGTGGCAC
    ACGTGAGATTCACCATTGCAATCAACACCAAGGCCCGTGAGCAGCTCATCTGCGAG
    TGTGGCCTCTTTGACAAGGCCAACGCCACAGGGGGCGGTGGGCACGTGCAGATGGT
    GCAGAGGGCCATGAAGGACCTGACCTATGCCTCCCTGTGCTTTCCCGAGGCCATCAA
    GGCCCGGGGCATGGAGAGCAAAGAAGACATCCCCTACTACTTCTACCGGGACGACG
    GGCTCCTGGTGTGGGAAGCCATCAGGACGTTCACGGCCGAGGTGGTAGACATCTAC
    TACGAGGGCGACCAGGTGGTGGAGGAGGACCCGGAGCTGCAGGACTTCGTGAACGA
    TGTCTACGTGTACGGCATGCGGGGCCGCAAGTCCTCAGGCTTCCCCAAGTCGGTCAA
    GAGCCGGGAGCAGCTGTCGGAGTACCTGACCGTGGTGATCTTCACCGCCTCCGCCCA
    GCACGCCGCGGTCAACTTCGGCCAGTACGACTGGTGCTCCTGGATCCCCAATGCGCC
    CCCAACCATGCGAGCCCCGCCACCGACTGCCAAGGGCGTGGTGACCATTGAGCAGA
    TCGTGGACACGCTGCCCGACCGCGGCCGCTCCTGCTGGCATCTGGGTGCAGTGTGGG
    CGCTGAGCCAGTTCCAGGAAAACGAGCTGTTCCTGGGCATGTACCCAGAAGAGCAT
    TTTATCGAGAAGCCTGTGAAGGAAGCCATGGCCCGATTCCGCAAGAACCTCGAGGC
    CATTGTCAGCGTGATTGCTGAGCGCAACAAGAAGAAGCAGCTGCCATATTACTACTT
    GTCCCCAGACCGGATTCCGAACAGTGTGGCCATCTGAGCACACTGCCAGTCTCACTG
    TGGGAAGGCCAGCTGCCCCAGCCAGATGGACTCCAGCCTGCCTGGCAGGCTGTCTG
    GCCAGGCCTCTTGGCAGTCACATCTCTTCCTCCGAGGCCAGTACCTTTCCATTTATTC
    TTTGATCTTCAGGGAACTGCATAGATTGATCAAAGTGTAAACACCATAGGGACCCAT
    TCTACACAGAGCAGGACTGCACAGCGTCCTGTCCACACCCAGCTCAGCATTTCCACA
    CCAAGCAGCAACAGCAAATCACGACCACTGATAGATGTCTATTCTTGTTGGAGACAT
    GGGATGATTATTTTCTGTTCTATTTGTGCTTAGTCCAATTCCTTGCACATAGTAGGTA
    CCCAATTCAATTACTATTGAATGAATTAAGAATTGGTTGCCATAAAAATAAATCAGT
    TCATTTAAAATGAAAAAAAAAAAAAAAAAAAA
    CAMK4 (SEQ ID NO: 9; GenBank NM_001744.4).
    AGTCTCCCTCCAGCGGGCGGCGACTCCGGGTTCCCCCTCGCGCCCTCTCGCAGAGGC
    TCGCCCCCTTCCCCGCCCACCGTCCCTGCGAGCGCGGGCGGCGGCGGTGGGCGTGTG
    CGCGCGTGAAGGACGCCGCCTCTCTCTCGCTCCTGCGTTCGCAGGCGGCGGCTGGCG
    GCCGGCTTCTCGCTCGGGCAGCGGCGGCGGCGGCGGCGGCGGCTTCCGGAGTCCCG
    CTGCGAAGATGCTCAAAGTCACGGTGCCCTCCTGCTCCGCCTCGTCCTGCTCTTCGG
    TCACCGCCAGTGCGGCCCCGGGGACCGCGAGCCTCGTCCCGGATTACTGGATCGAC
    GGCTCCAACAGGGATGCGCTGAGCGATTTCTTCGAGGTGGAGTCGGAGCTGGGACG
    GGGTGCTACATCCATTGTGTACAGATGCAAACAGAAGGGGACCCAGAAGCCTTATG
    CTCTCAAAGTGTTAAAGAAAACAGTGGACAAAAAAATCGTAAGAACTGAGATAGGA
    GTTCTTCTTCGCCTCTCACATCCAAACATTATAAAACTTAAAGAGATATTTGAAACC
    CCTACAGAAATCAGTCTGGTCCTAGAACTCGTCACAGGAGGAGAACTGTTTGATAG
    GATTGTGGAAAAGGGATATTACAGTGAGCGAGATGCTGCAGATGCCGTTAAACAAA
    TCCTGGAGGCAGTTGCTTATCTACATGAAAATGGGATTGTCCATCGTGATCTCAAAC
    CAGAGAATCTTCTTTATGCAACTCCAGCCCCAGATGCACCACTCAAAATCGCTGATT
    TTGGACTCTCTAAAATTGTGGAACATCAAGTGCTCATGAAGACAGTATGTGGAACCC
    CAGGGTACTGCGCACCTGAAATTCTTAGAGGTTGTGCCTATGGACCTGAGGTGGACA
    TGTGGTCTGTAGGAATAATCACCTACATCTTACTTTGTGGATTTGAACCATTCTATGA
    TGAAAGAGGCGATCAGTTCATGTTCAGGAGAATTCTGAATTGTGAATATTACTTTAT
    CTCCCCCTGGTGGGATGAAGTATCTCTAAATGCCAAGGACTTGGTCAGAAAATTAAT
    TGTTTTGGATCCAAAGAAACGGCTGACTACATTTCAAGCTCTCCAGCATCCGTGGGT
    CACAGGTAAAGCAGCCAATTTTGTACACATGGATACCGCTCAAAAGAAGCTCCAAG
    AATTCAATGCCCGGCGTAAGCTTAAGGCAGCGGTGAAGGCTGTGGTGGCCTCTTCCC
    GCCTGGGAAGTGCCAGCAGCAGCCATGGCAGCATCCAGGAGAGCCACAAGGCTAGC
    CGAGACCCTTCTCCAATCCAAGATGGCAACGAGGACATGAAAGCTATTCCAGAAGG
    AGAGAAAATTCAAGGCGATGGGGCCCAAGCCGCAGTTAAGGGGGCACAGGCTGAG
    CTGATGAAGGTGCAAGCCTTAGAGAAAGTTAAAGGTGCAGATATAAATGCTGAAGA
    GGCCCCCAAAATGGTGCCCAAGGCAGTGGAGGATGGGATAAAGGTGGCTGACCTGG
    AACTAGAGGAGGGCCTAGCAGAGGAGAAGCTGAAGACTGTGGAGGAGGCAGCAGC
    TCCCAGAGAAGGGCAAGGAAGCTCTGCTGTGGGTTTTGAAGTTCCACAGCAAGATG
    TGATCCTGCCAGAGTACTAAACAGCTTCCTTCAGATCTGGAAGCCAAACACCGGCAT
    TTTATGTACTTTGTCCTTCAGCAAGAAAGGTGTGGAAGCATGATATGTACTATAGTG
    ATTCTGTTTTTGAGGTGCAAAAAACATACATATATACCAGTTGGTAATTCTAACTTC
    AATGCATGTGACTGCTTTATGAAAATAATAGTGTCTTCTATGGCATGTAATGGATAC
    CTAATACCGATGAGTTAAATCTTGCAAGTTAACACAACGTAACACTTAAAAGCATAC
    ATTTTCAGCAACCAGTGGCACATATTTGAAGTGAATAGTAGCAAATTGTTTTTGCTTT
    GAAAATCTAGCCATCCTACATCCTTTGGATTTCTTCACAAGGCAGTAATTCCTTTGAA
    CTACTGCTTAGCTAATACTAGGTAGTGCTAAAAGACATGTTCCCATAACTTTTACAA
    CATTTTACTTTTTATCATTGATGTGTTCAAACTGTTTACAAGGAGATGCTTATAGATG
    ATAGTTGTACATATGTGCAAAAAAAAATCCACTTGCAATGGTAAGAAATTGAAGTA
    TCCTTAAAGGCCATGAAGCCATATGTCCCTAAAAAAAAAAAAAAAAAAAAAAAAA
    AAAAAAAA
    CDKN1A (SEQ ID NO: 10; NM_000389.4).
    GTTGTATATCAGGGCCGCGCTGAGCTGCGCCAGCTGAGGTGTGAGCAGCTGCCGAA
    GTCAGTTCCTTGTGGAGCCGGAGCTGGGCGCGGATTCGCCGAGGCACCGAGGCACT
    CAGAGGAGGCGCCATGTCAGAACCGGCTGGGGATGTCCGTCAGAACCCATGCGGCA
    GCAAGGCCTGCCGCCGCCTCTTCGGCCCAGTGGACAGCGAGCAGCTGAGCCGCGAC
    TGTGATGCGCTAATGGCGGGCTGCATCCAGGAGGCCCGTGAGCGATGGAACTTCGA
    CTTTGTCACCGAGACACCACTGGAGGGTGACTTCGCCTGGGAGCGTGTGCGGGGCCT
    TGGCCTGCCCAAGCTCTACCTTCCCACGGGGCCCCGGCGAGGCCGGGATGAGTTGG
    GAGGAGGCAGGCGGCCTGGCACCTCACCTGCTCTGCTGCAGGGGACAGCAGAGGAA
    GACCATGTGGACCTGTCACTGTCTTGTACCCTTGTGCCTCGCTCAGGGGAGCAGGCT
    GAAGGGTCCCCAGGTGGACCTGGAGACTCTCAGGGTCGAAAACGGCGGCAGACCAG
    CATGACAGATTTCTACCACTCCAAACGCCGGCTGATCTTCTCCAAGAGGAAGCCCTA
    ATCCGCCCACAGGAAGCCTGCAGTCCTGGAAGCGCGAGGGCCTCAAAGGCCCGCTC
    TACATCTTCTGCCTTAGTCTCAGTTTGTGTGTCTTAATTATTATTTGTGTTTTAATTTA
    AACACCTCCTCATGTACATACCCTGGCCGCCCCCTGCCCCCCAGCCTCTGGCATTAG
    AATTATTTAAACAAAAACTAGGCGGTTGAATGAGAGGTTCCTAAGAGTGCTGGGCA
    TTTTTATTTTATGAAATACTATTTAAAGCCTCCTCATCCCGTGTTCTCCTTTTCCTCTC
    TCCCGGAGGTTGGGTGGGCCGGCTTCATGCCAGCTACTTCCTCCTCCCCACTTGTCC
    GCTGGGTGGTACCCTCTGGAGGGGTGTGGCTCCTTCCCATCGCTGTCACAGGCGGTT
    ATGAAATTCACCCCCTTTCCTGGACACTCAGACCTGAATTCTTTTTCATTTGAGAAGT
    AAACAGATGGCACTTTGAAGGGGCCTCACCGAGTGGGGGCATCATCAAAAACTTTG
    GAGTCCCCTCACCTCCTCTAAGGTTGGGCAGGGTGACCCTGAAGTGAGCACAGCCTA
    GGGCTGAGCTGGGGACCTGGTACCCTCCTGGCTCTTGATACCCCCCTCTGTCTTGTG
    AAGGCAGGGGGAAGGTGGGGTCCTGGAGCAGACCACCCCGCCTGCCCTCATGGCCC
    CTCTGACCTGCACTGGGGAGCCCGTCTCAGTGTTGAGCCTTTTCCCTCTTTGGCTCCC
    CTGTACCTTTTGAGGAGCCCCAGCTACCCTTCTTCTCCAGCTGGGCTCTGCAATTCCC
    CTCTGCTGCTGTCCCTCCCCCTTGTCCTTTCCCTTCAGTACCCTCTCAGCTCCAGGTG
    GCTCTGAGGTGCCTGTCCCACCCCCACCCCCAGCTCAATGGACTGGAAGGGGAAGG
    GACACACAAGAAGAAGGGCACCCTAGTTCTACCTCAGGCAGCTCAAGCAGCGACCG
    CCCCCTCCTCTAGCTGTGGGGGTGAGGGTCCCATGTGGTGGCACAGGCCCCCTTGAG
    TGGGGTTATCTCTGTGTTAGGGGTATATGATGGGGGAGTAGATCTTTCTAGGAGGGA
    GACACTGGCCCCTCAAATCGTCCAGCGACCTTCCTCATCCACCCCATCCCTCCCCAG
    TTCATTGCACTTTGATTAGCAGCGGAACAAGGAGTCAGACATTTTAAGATGGTGGCA
    GTAGAGGCTATGGACAGGGCATGCCACGTGGGCTCATATGGGGCTGGGAGTAGTTG
    TCTTTCCTGGCACTAACGTTGAGCCCCTGGAGGCACTGAAGTGCTTAGTGTACTTGG
    AGTATTGGGGTCTGACCCCAAACACCTTCCAGCTCCTGTAACATACTGGCCTGGACT
    GTTTTCTCTCGGCTCCCCATGTGTCCTGGTTCCCGTTTCTCCACCTAGACTGTAAACC
    TCTCGAGGGCAGGGACCACACCCTGTACTGTTCTGTGTCTTTCACAGCTCCTCCCAC
    AATGCTGAATATACAGCAGGTGCTCAATAAATGATTCTTAGTGACTTTACTTGTAAA
    AAAAAAAAAAAAAAA
    COCH (SEQ ID NO: 11; AY358900.1).
    GGGGCCTTGCCTTCCGCACTCGGGCGCAGCCGGGTGGATCTCGAGCAGGTGCGGAG
    CCCCGGGCGGCGGGCGCGGGTGCGAGGGATCCCTGACGCCTCTGTCCCTGTTTCTTT
    GTCGCTCCCAGCCTGTCTGTCGTCGTTTTGGCGCCCCCGCCTCCCCGCGGTGCGGGG
    TTGCACACCGATCCTGGGCTTCGCTCGATTTGCCGCCGAGGCGCCTCCCAGACCTAG
    AGGGGCGCTGGCCTGGAGCAGCGGGTCGTCTGTGTCCTCTCTCCTCTGCGCCGCGCC
    CGGGGATCCGAAGGGTGCGGGGCTCTGAGGAGGTGACGCGCGGGGCCTCCCGCACC
    CTGGCCTTGCCCGCATTCTCCCTCTCTCCCAGGTGTGAGCAGCCTATCAGTCACCATG
    TCCGCAGCCTGGATCCCGGCTCTCGGCCTCGGTGTGTGTCTGCTGCTGCTGCCGGGG
    CCCGCGGGCAGCGAGGGAGCCGCTCCCATTGCTATCACATGTTTTACCAGAGGCTTG
    GACATCAGGAAAGAGAAAGCAGATGTCCTCTGCCCAGGGGGCTGCCCTCTTGAGGA
    ATTCTCTGTGTATGGGAACATAGTATATGCTTCTGTATCGAGCATATGTGGGGCTGC
    TGTCCACAGGGGAGTAATCAGCAACTCAGGGGGACCTGTACGAGTCTATAGCCTAC
    CTGGTCGAGAAAACTATTCCTCAGTAGATGCCAATGGCATCCAGTCTCAAATGCTTT
    CTAGATGGTCTGCTTCTTTCACAGTAACTAAAGGCAAAAGTAGTACACAGGAGGCC
    ACAGGACAAGCAGTGTCCACAGCACATCCACCAACAGGTAAACGACTAAAGAAAA
    CACCCGAGAAGAAAACTGGCAATAAAGATTGTAAAGCAGACATTGCATTTCTGATT
    GATGGAAGCTTTAATATTGGGCAGCGCCGATTTAATTTACAGAAGAATTTTGTTGGA
    AAAGTGGCTCTAATGTTGGGAATTGGAACAGAAGGACCACATGTGGGCCTTGTTCA
    AGCCAGTGAACATCCCAAAATAGAATTTTACTTGAAAAACTTTACATCAGCCAAAG
    ATGTTTTGTTTGCCATAAAGGAAGTAGGTTTCAGAGGGGGTAATTCCAATACAGGAA
    AAGCCTTGAAGCATACTGCTCAGAAATTCTTCACGGTAGATGCTGGAGTAAGAAAA
    GGGATCCCCAAAGTGGTGGTGGTATTTATTGATGGTTGGCCTTCTGATGACATCGAG
    GAAGCAGGCATTGTGGCCAGAGAGTTTGGTGTCAATGTATTTATAGTTTCTGTGGCC
    AAGCCTATCCCTGAAGAACTGGGGATGGTTCAGGATGTCACATTTGTTGACAAGGCT
    GTCTGTCGGAATAATGGCTTCTTCTCTTACCACATGCCCAACTGGTTTGGCACCACA
    AAATACGTAAAGCCTCTGGTACAGAAGCTGTGCACTCATGAACAAATGATGTGCAG
    CAAGACCTGTTATAACTCAGTGAACATTGCCTTTCTAATTGATGGCTCCAGCAGTGT
    TGGAGATAGCAATTTCCGCCTCATGCTTGAATTTGTTTCCAACATAGCCAAGACTTTT
    GAAATCTCGGACATTGGTGCCAAGATAGCTGCTGTACAGTTTACTTATGATCAGCGC
    ACGGAGTTCAGTTTCACTGACTATAGCACCAAAGAGAATGTCCTAGCTGTCATCAGA
    AACATCCGCTATATGAGTGGTGGAACAGCTACTGGTGATGCCATTTCCTTCACTGTT
    AGAAATGTGTTTGGCCCTATAAGGGAGAGCCCCAACAAGAACTTCCTAGTAATTGTC
    ACAGATGGGCAGTCCTATGATGATGTCCAAGGCCCTGCAGCTGCTGCACATGATGCA
    GGAATCACTATCTTCTCTGTTGGTGTGGCTTGGGCACCTCTGGATGACCTGAAAGAT
    ATGGCTTCTAAACCGAAGGAGTCTCACGCTTTCTTCACAAGAGAGTTCACAGGATTA
    GAACCAATTGTTTCTGATGTCATCAGAGGCATTTGTAGAGATTTCTTAGAATCCCAG
    CAATAATGGTAACATTTTGACAACTGAAAGAAAAAGTACAAGGGGATCCAGTGTGT
    AAATTGTATTCTCATAATACTGAAATGCTTTAGCATACTAGAATCAGATACAAAACT
    ATTAAGTATGTCAACAGCCATTTAGGCAAATAAGCACTCCTTTAAAGCCGCTGCCTT
    CTGGTTACAATTTACAGTGTACTTTGTTAAAAACACTGCTGAGGCTTCATAATCATG
    GCTCTTAGAAACTCAGGAAAGAGGAGATAATGTGGATTAAAACCTTAAGAGTTCTA
    ACCATGCCTACTAAATGTACAGATATGCAAATTCCATAGCTCAATAAAAGAATCTGA
    TACTTAGACCAAAAAAAAAAA
    DHRS4 (SEQ ID NO: 12; NM_021004.3).
    CTACTCTGTCACCGCCCCTGGGAAGAGTGGAACCCATACTTGCTGGTCTGATCCATG
    CACAAGGCGGGGCTGCTAGGCCTCTGTGCCCGGGCTTGGAATTCGGTGCGGATGGC
    CAGCTCCGGGATGACCCGCCGGGACCCGCTCGCAAATAAGGTGGCCCTGGTAACGG
    CCTCCACCGACGGGATCGGCTTCGCCATCGCCCGGCGTTTGGCCCAGGACGGGGCCC
    ATGTGGTCGTCAGCAGCCGGAAGCAGCAGAATGTGGACCAGGCGGTGGCCACGCTG
    CAGGGGGAGGGGCTGAGCGTGACGGGCACCGTGTGCCATGTGGGGAAGGCGGAGG
    ACCGGGAGCGGCTGGTGGCCACGGCTGTGAAGCTTCATGGAGGTATCGATATCCTA
    GTCTCCAATGCTGCTGTCAACCCTTTCTTTGGAAGCATAATGGATGTCACTGAGGAG
    GTGTGGGACAAGACTCTGGACATTAATGTGAAGGCCCCAGCCCTGATGACAAAGGC
    AGTGGTGCCAGAAATGGAGAAACGAGGAGGCGGCTCAGTGGTGATCGTGTCTTCCA
    TAGCAGCCTTCAGTCCATCTCCTGGCTTCAGTCCTTACAATGTCAGTAAAACAGCCTT
    GCTGGGCCTGACCAAGACCCTGGCCATAGAGCTGGCCCCAAGGAACATTAGGGTGA
    ACTGCCTAGCACCTGGACTTATCAAGACTAGCTTCAGCAGGATGCTCTGGATGGACA
    AGGAAAAAGAGGAAAGCATGAAAGAAACCCTGCGGATAAGAAGGTTAGGCGAGCC
    AGAGGATTGTGCTGGCATCGTGTCTTTCCTGTGCTCTGAAGATGCCAGCTACATCAC
    TGGGGAAACAGTGGTGGTGGGTGGAGGAACCCCGTCCCGCCTCTGAGGACCGGGAG
    ACAGCCCACAGGCCAGAGTTGGGCTCTAGCTCCTGGTGCTGTTCCCGCATTCACCCA
    CTGGCCTTTCCCACCTCTGCTCACCTTACTGTTCACCTCATCAAATCAGTTCTGCCCT
    GTGAAAAGATCCAGCCTTCCCTGCCGTCAAGGTGGCGTCTTACTCGGGATTTCTGCT
    GTTGTTGTGGCCTTGGGTAAAGGCCTCCCCTGAGAACACAGGACAGGCCTGCTGACA
    AGGCTGAGTCTACCTTGGCAAAGACCAAGATATTTTTTCCCGGGCCACTGGGGAATC
    TGAGGGGTGATGGGAGAGAAGGAACCTGGAGTGGAAGGAGCAGAGTTGCAAATTA
    ACAACTTGCAAATGAGGTGCAAATAAAATGCAGATGATTGCGCGGCTTTGAATCCA
    AAAAAAAAAAAAAAAAA
    MICAL1 (SEQ ID NO: 13; NM_022765.3).
    CCCAAGACTGTCCCCGCTGGAGGCGGTAGAGGGATCCAGAAGTAATGAGATGCTAA
    TGAGTCGCGAATAAAGCCCGGGCGGCGCCCCGCGCCCCTCGCGGAAGCCCACACTC
    CGCGCGACTCCAGGCGCACGCCCCGGGCCGCCCCGCATCCCAGCATCCCCGCCCGA
    TCTCGGCGTTTCCGCCCCCGCCCCCGCCCCCGCCCTCCCACCCGCTCAGACCTGGTTG
    CCAGCCCAACAGGAAGCGGCCCCTCCCGGCTTCGGAGCCGCCGCCACTCATCTCTGC
    CCAGCTGCTGCCCTCCCCAGGAGGCCTCCATGGCTTCACCTACCTCCACCAACCCAG
    CGCATGCCCACTTTGAGAGCTTCCTGCAGGCCCAGCTGTGCCAGGACGTGCTGAGCA
    GCTTCCAGGAGCTGTGTGGGGCCCTGGGGCTGGAACCCGGTGGGGGGCTGCCCCAG
    TACCACAAGATCAAGGACCAGCTCAACTACTGGAGCGCCAAGTCACTGTGGACCAA
    GCTGGACAAGCGAGCAGGCCAGCCTGTCTACCAGCAGGGCCGGGCCTGCACCAGCA
    CCAAGTGCCTGGTGGTGGGTGCTGGACCTTGCGGGCTGCGGGTCGCTGTGGAGCTGG
    CGCTGCTGGGGGCCCGAGTGGTGCTGGTGGAAAAGCGCACCAAGTTCTCTCGCCAC
    AACGTGCTCCACCTCTGGCCCTTCACCATCCACGACCTGCGGGCACTCGGTGCTAAG
    AAGTTCTACGGGCGCTTCTGCACCGGCACCCTGGACCACATCAGCATCAGGCAGCTC
    CAGCTGCTTCTGCTGAAGGTAGCATTGCTGCTGGGGGTGGAAATTCACTGGGGTGTC
    ACTTTCACTGGCCTCCAGCCCCCTCCTAGGAAGGGGAGTGGCTGGCGTGCCCAGCTC
    CAACCCAACCCCCCTGCCCAGCTGGCCAACTATGAATTTGACGTCCTTATCTCGGCT
    GCAGGAGGTAAATTCGTCCCTGAAGGCTTCAAAGTTCGAGAAATGCGAGGCAAACT
    GGCCATTGGCATCACAGCCAACTTTGTGAATGGACGCACCGTGGAGGAGACACAGG
    TGCCGGAGATCAGTGGTGTAGCCAGGATCTACAACCAGAGCTTCTTCCAGAGCCTTC
    TCAAAGCCACAGGCATTGATCTGGAGAACATTGTGTACTACAAGGACGACACCCAC
    TACTTTGTGATGACAGCCAAGAAGCAGTGCCTGCTGCGGCTGGGGGTGCTGCGCCA
    GGACTGGCCAGACACCAATCGGCTGCTGGGCAGTGCCAATGTGGTGCCCGAGGCTC
    TGCAGCGCTTTACCCGGGCAGCTGCTGACTTTGCCACCCATGGCAAGCTCGGGAAAC
    TAGAGTTTGCCCAGGATGCCCATGGGCAGCCTGATGTCTCTGCCTTTGACTTCACGA
    GCATGATGCGGGCAGAGAGTTCTGCTCGTGTGCAAGAGAAGCATGGCGCCCGCCTG
    CTGCTGGGACTGGTGGGGGACTGCCTGGTGGAGCCCTTCTGGCCCCTGGGCACTGGA
    GTGGCACGGGGCTTCCTGGCAGCCTTTGATGCAGCCTGGATGGTGAAGCGGTGGGC
    AGAGGGCGCTGAGTCCCTAGAGGTGTTGGCTGAGCGTGAGAGCCTGTACCAGCTTCT
    GTCACAGACATCCCCAGAAAACATGCATCGCAATGTGGCCCAGTATGGGCTGGACC
    CAGCCACCCGCTACCCCAACCTGAACCTCCGGGCAGTGACCCCCAATCAGGTACGA
    GACCTGTATGATGTGCTAGCCAAGGAGCCTGTGCAGAGGAACAACGACAAGACAGA
    TACAGGGATGCCAGCCACCGGGTCGGCAGGCACCCAGGAGGAGCTGCTACGCTGGT
    GCCAGGAGCAGACAGCTGGGTACCCGGGAGTCCACGTCTCCGATTTGTCTTCCTCCT
    GGGCTGATGGGCTAGCTCTGTGTGCCCTGGTGTACCGGCTGCAGCCTGGCCTGCTGG
    AACCCTCAGAGCTGCAGGGGCTGGGAGCTCTGGAAGCAACTGCTTGGGCACTAAAG
    GTGGCAGAGAATGAGCTGGGCATCACACCGGTGGTGTCTGCACAGGCCGTGGTAGC
    AGGGAGTGACCCACTGGGCCTCATTGCCTACCTCAGCCACTTCCACAGTGCCTTCAA
    GAGCATGGCCCACAGCCCAGGCCCTGTCAGCCAGGCCTCCCCAGGGACCTCCAGTG
    CTGTATTATTCCTTAGTAAACTTCAGAGGACCCTGCAGCGATCCCGGGCCAAGGAAA
    ATGCAGAGGATGCTGGTGGCAAGAAGCTGCGCTTGGAGATGGAGGCCGAGACCCCA
    AGTACTGAGGTGCCACCTGACCCAGAGCCTGGTGTACCCCTGACACCCCCATCCCAA
    CACCAGGAGGCCGGTGCTGGGGACCTGTGTGCACTTTGTGGGGAACACCTCTATGTC
    CTGGAACGCCTCTGTGTCAACGGCCATTTCTTCCACCGGAGCTGCTTCCGCTGCCAT
    ACCTGTGAGGCCACACTGTGGCCAGGTGGCTACGAGCAGCACCCAGGAGATGGACA
    TTTCTACTGCCTCCAGCACCTGCCCCAGACAGACCACAAAGCGGAAGGCAGCGATA
    GAGGCCCTGAGAGTCCGGAGCTCCCCACACCAAGTGAGAATAGCATGCCACCAGGC
    CTCTCAACTCCCACAGCCTCGCAGGAGGGGGCCGGTCCTGTTCCAGATCCCAGCCAG
    CCCACCCGTCGGCAGATCCGCCTCTCCAGCCCGGAGCGCCAGCGGTTGTCCTCCCTT
    AACCTTACCCCTGACCCGGAAATGGAGCCTCCACCCAAGCCTCCCCGCAGCTGCTCC
    GCCTTGGCCCGCCACGCCCTGGAGAGCAGCTTTGTGGGCTGGGGCCTGCCAGTCCAG
    AGCCCTCAAGCTCTTGTGGCCATGGAGAAGGAGGAAAAAGAGAGTCCCTTCTCCAG
    TGAAGAGGAAGAAGAAGATGTGCCTTTGGACTCAGATGTGGAACAGGCCCTGCAGA
    CCTTTGCCAAGACCTCAGGCACCATGAATAACTACCCAACATGGCGTCGGACTCTGC
    TGCGCCGTGCGAAGGAGGAGGAGATGAAGAGGTTCTGCAAGGCCCAGACCATCCAA
    CGGCGACTAAATGAGATTGAGGCTGCCTTGAGGGAGCTAGAGGCCGAGGGCGTGAA
    GCTGGAGCTGGCCTTGAGGCGCCAGAGCAGTTCCCCAGAACAGCAAAAGAAACTAT
    GGGTAGGACAGCTGCTACAGCTCGTTGACAAGAAAAACAGCCTGGTGGCTGAGGAG
    GCCGAGCTCATGATCACGGTGCAGGAATTGAATCTGGAGGAGAAACAGTGGCAGCT
    GGACCAGGAGCTACGAGGCTACATGAACCGGGAAGAAAACCTAAAGACAGCTGCT
    GATCGGCAGGCTGAGGACCAGGTCCTGAGGAAGCTGGTGGATTTGGTCAACCAGAG
    AGATGCCCTCATCCGCTTCCAGGAGGAGCGCAGGCTCAGCGAGCTGGCCTTGGGGA
    CAGGGGCCCAGGGCTAGACGAGGGTGGGCCGTCTGCTTTCGTTCCCACAAAGAAAG
    CACCTCACCCCAGCACAGTGCCACCCCTGTTCATCTGGGCTGCCTGGCAGAGAGCCT
    TGCTGTTTACAATTAAAATGTTTCTGCCACAAAAAAAAAAAAAAAAAAA
    MOB3B (SEQ ID NO: 14; AJ580636.1).
    ATGTCCATAGCCCTGAAGCAGGTATTCAACAAGGACAAGACCTTCCGACCCAAGAG
    GAAATTTGAACCTGGCACACAGAGGTTTGAGCTGCACAAACGGGCTCAGGCATCCC
    TCAACTCGGGTGTGGACCTGAAGGCGGCTGTGCAGTTGCCCAGTGGGGAGGACCAG
    AATGACTGGGTGGCAGTACATGTGGTGGACTTCTTCAATCGGATCAACCTCATCTAT
    GGCACCATCTGTGAGTTCTGCACCGAGCGGACCTGTCCTGTGATGTCAGGGGGCCCC
    AAATATGAGTATCGGTGGCAGGATGATCTCAAGTATAAGAAGCCAACAGCGCTGCC
    AGCTCCCCAGTACATGAACCTTCTTATGGATTGGATTGAGGTTCAGATCAACAACGA
    GGAAATATTTCCAACATGCGTGGGTGTTCCCTTCCCAAAGAACTTCCTTCAGATCTG
    CAAGAAGATCCTGTGCCGCCTTTTCCGGGTCTTTGTCCACGTCTATATCCACCACTTC
    GACCGGGTCATTGTGATGGGTGCAGAGGCCCATGTCAACACCTGCTACAAACACTTC
    TATTACTTTGTCACAGAGATGAACCTCATAGACCGCAAGGAGCTAGAGCCTTTGAAA
    GAAATGACGAGCAGGATGTGTCACTAA
    NUSAP1 (SEQ ID NO: 15; NM_016359.4).
    GCGTTACAGGCCCTTTGGCGCCTGCGTATTCGTGAAGTGTGAAAAAAGCGCGCCTCT
    GTTGGGACGGGAAATCAGCCTTTCTATTGGTCAGGGTTAGAAACCCCGCCTTTGAGG
    CATTTTCAACCAATGGAAGCGCGGCATTCTTCATTTAAACTGTCTATAAATTTCTGCC
    TAGTCAAAGTTAAGAGTGGCGCCAGGGATTTGAACCGCGCTGACGAAGTTTGGTGA
    TCCATCTTCCGAGTATCGCCGGGATTTCGAATCGCGATGATCATCCCCTCTCTAGAG
    GAGCTGGACTCCCTCAAGTACAGTGACCTGCAGAACTTAGCCAAGAGTCTGGGTCTC
    CGGGCCAACCTGAGGGCAACCAAGTTGTTAAAAGCCTTGAAAGGCTACATTAAACA
    TGAGGCAAGAAAAGGAAATGAGAATCAGGATGAAAGTCAAACTTCTGCATCCTCTT
    GTGATGAGACTGAGATACAGATCAGCAACCAGGAAGAAGCTGAGAGACAGCCACTT
    GGCCATGTCACCAAAACAAGGAGAAGGTGCAAGACTGTCCGTGTGGACCCTGACTC
    ACAGCAGAATCATTCAGAGATAAAAATAAGTAATCCCACTGAATTCCAGAATCATG
    AAAAGCAGGAAAGCCAGGATCTCAGAGCTACTGCAAAAGTTCCTTCTCCACCAGAC
    GAGCACCAAGAAGCTGAGAATGCTGTTTCCTCAGGTAACAGAGATTCAAAGGTACC
    TTCAGAAGGAAAGAAATCTCTCTACACAGATGAGTCATCCAAACCTGGAAAAAATA
    AAAGAACTGCAATCACTACTCCAAACTTTAAGAAGCTTCATGAAGCTCATTTTAAGG
    AAATGGAGTCCATTGATCAATATATTGAGAGAAAAAAGAAACATTTTGAAGAACAC
    AATTCCATGAATGAACTGAAGCAGCAGCCCATCAATAAGGGAGGGGTCAGGACTCC
    AGTACCTCCAAGAGGAAGACTCTCTGTGGCTTCTACTCCCATCAGCCAACGACGCTC
    GCAAGGCCGGTCTTGTGGCCCTGCAAGTCAGAGTACCTTGGGTCTGAAGGGGTCACT
    CAAGCGCTCTGCTATCTCTGCAGCTAAAACGGGTGTCAGGTTTTCAGCTGCTACTAA
    AGATAATGAGCATAAGCGTTCACTGACCAAGACTCCAGCCAGAAAGTCTGCACATG
    TGACCGTGTCTGGGGGCACCCCAAAAGGCGAGGCTGTGCTTGGGACACACAAATTA
    AAGACCATCACGGGGAATTCTGCTGCTGTTATTACCCCATTCAAGTTGACAACTGAG
    GCAACGCAGACTCCAGTCTCCAATAAGAAACCAGTGTTTGATCTTAAAGCAAGTTTG
    TCTCGTCCCCTCAACTATGAACCACACAAAGGAAAGCTAAAACCATGGGGGCAATC
    TAAAGAAAATAATTATCTAAATCAACATGTCAACAGAATTAACTTCTACAAGAAAA
    CTTACAAACAACCCCATCTCCAGACAAAGGAAGAGCAACGGAAGAAACGCGAGCA
    AGAACGAAAGGAGAAGAAAGCAAAGGTTTTGGGAATGCGAAGGGGCCTCATTTTGG
    CTGAAGATTAATAATTTTTTAACATCTTGTAAATATTCCTGTATTCTCAACTTTTTTCC
    TTTTGTAAATTTTTTTTTTTTGCTGTCATCCCCACTTTAGTCACGAGATCTTTTTCTGC
    TAACTGTTCATAGTCTGTGTAGTGTCCATGGGTTCTTCATGTGCTATGATCTCTGAAA
    AGACGTTATCACCTTAAAGCTCAAATTCTTTGGGATGGTTTTTACTTAAGTCCATTAA
    CAATTCAGGTTTCTAACGAGACCCATCCTAAAATTCTGTTTCTAGATTTTTAATGTCA
    AGTTCCCAAGTTCCCCCTGCTGGTTCTAATATTAACAGAACTGCAGTCTTCTGCTAGC
    CAATAGCATTTACCTGATGGCAGCTAGTTATGCAAGCTTCAGGAGAATTTGAACAAT
    AACAAGAATAGGGTAAGCTGGGATAGAAAGGCCACCTCTTCACTCTCTATAGAATA
    TAGTAACCTTTATGAAACGGGGCCATATAGTTTGGTTATGACATCAATATTTTACCT
    AGGTGAAATTGTTTAGGCTTATGTACCTTCGTTCAAATATCCTCATGTAATTGCCATC
    TGTCACTCACTATATTCACAAAAATAAAACTCTACAACTCATTCTAACATTGCTTACT
    TAAAAGCTACATAGCCCTATCGAAATGCGAGGATTAATGCTTTAATGCTTTTAGAGA
    CAGGGTCTCACTGTGTTGCCCAGGCTGGTCTCAAACTCCACCAAATGTACTTCTTATT
    CATTTTATGGAAAAGACTAGGCTTTGCTTAGTATCATGTCCATGTTTCCTTCACCTCA
    GTGGAGCTTCTGAGTTTTATACTGCTCAAGATCGTCATAAATAAAATTTTTTCTCATT
    GTCATAGAAAAAAAAAAAAAAAAAA
    IL27RA (SEQ ID NO: 16; NM_004843.3).
    GCGGAGGCGGCCTGCCGGGGTGGTTCGGCTTCCCGTTGCCGCCTCGGGCGCTGTACC
    CAGAGCTCGAAGAGGAGCAGCGCGGCCGCGCGGACCCGGCAAGGCTGGGCCGGAC
    TCGGGGCTCCCGAGGGACGCCATGCGGGGAGGCAGGGGCGCCCCTTTCTGGCTGTG
    GCCGCTGCCCAAGCTGGCGCTGCTGCCTCTGTTGTGGGTGCTTTTCCAGCGGACGCG
    TCCCCAGGGCAGCGCCGGGCCACTGCAGTGCTACGGAGTTGGACCCTTGGGCGACT
    TGAACTGCTCGTGGGAGCCTCTTGGGGACCTGGGAGCCCCCTCCGAGTTACACCTCC
    AGAGCCAAAAGTACCGTTCCAACAAAACCCAGACTGTGGCAGTGGCAGCCGGACGG
    AGCTGGGTGGCCATTCCTCGGGAACAGCTCACCATGTCTGACAAACTCCTTGTCTGG
    GGCACTAAGGCAGGCCAGCCTCTCTGGCCCCCCGTCTTCGTGAACCTAGAAACCCAA
    ATGAAGCCAAACGCCCCCCGGCTGGGCCCTGACGTGGACTTTTCCGAGGATGACCC
    CCTGGAGGCCACTGTCCATTGGGCCCCACCTACATGGCCATCTCATAAAGTTCTGAT
    CTGCCAGTTCCACTACCGAAGATGTCAGGAGGCGGCCTGGACCCTGCTGGAACCGG
    AGCTGAAGACCATACCCCTGACCCCTGTTGAGATCCAAGATTTGGAGCTAGCCACTG
    GCTACAAAGTGTATGGCCGCTGCCGGATGGAGAAAGAAGAGGATTTGTGGGGCGAG
    TGGAGCCCCATTTTGTCCTTCCAGACACCGCCTTCTGCTCCAAAAGATGTGTGGGTA
    TCAGGGAACCTCTGTGGGACGCCTGGAGGAGAGGAACCTTTGCTTCTATGGAAGGC
    CCCAGGGCCCTGTGTGCAGGTGAGCTACAAAGTCTGGTTCTGGGTTGGAGGTCGTGA
    GCTGAGTCCAGAAGGAATTACCTGCTGCTGCTCCCTAATTCCCAGTGGGGCGGAGTG
    GGCCAGGGTGTCCGCTGTCAACGCCACAAGCTGGGAGCCTCTCACCAACCTCTCTTT
    GGTCTGCTTGGATTCAGCCTCTGCCCCCCGTAGCGTGGCAGTCAGCAGCATCGCTGG
    GAGCACGGAGCTACTGGTGACCTGGCAACCGGGGCCTGGGGAACCACTGGAGCATG
    TAGTGGACTGGGCTCGAGATGGGGACCCCCTGGAGAAACTCAACTGGGTCCGGCTT
    CCCCCTGGGAACCTCAGTGCTCTGTTACCAGGGAATTTCACTGTCGGGGTCCCCTAT
    CGAATCACTGTGACCGCAGTCTCTGCTTCAGGCTTGGCCTCTGCATCCTCCGTCTGG
    GGGTTCAGGGAGGAATTAGCACCCCTAGTGGGGCCAACGCTTTGGCGACTCCAAGA
    TGCCCCTCCAGGGACCCCCGCCATAGCGTGGGGAGAGGTCCCAAGGCACCAGCTTC
    GAGGCCACCTCACCCACTACACCTTGTGTGCACAGAGTGGAACCAGCCCCTCCGTCT
    GCATGAATGTGAGTGGCAACACACAGAGTGTCACCCTGCCTGACCTTCCTTGGGGTC
    CCTGTGAGCTGTGGGTGACAGCATCTACCATCGCTGGACAGGGCCCTCCTGGTCCCA
    TCCTCCGGCTTCATCTACCAGATAACACCCTGAGGTGGAAAGTTCTGCCGGGCATCC
    TATTCTTGTGGGGCTTGTTCCTGTTGGGGTGTGGCCTGAGCCTGGCCACCTCTGGAA
    GGTGCTACCACCTAAGGCACAAAGTGCTGCCCCGCTGGGTCTGGGAGAAAGTTCCT
    GATCCTGCCAACAGCAGTTCAGGCCAGCCCCACATGGAGCAAGTACCTGAGGCCCA
    GCCCCTTGGGGACTTGCCCATCCTGGAAGTGGAGGAGATGGAGCCCCCGCCGGTTA
    TGGAGTCCTCCCAGCCCGCCCAGGCCACCGCCCCGCTTGACTCTGGGTATGAGAAGC
    ACTTCCTGCCCACACCTGAGGAGCTGGGCCTTCTGGGGCCCCCCAGGCCACAGGTTC
    TGGCCTGAACCACACGTCTGGCTGGGGGCTGCCAGCCAGGCTAGAGGGATGCTCAT
    GCAGGTTGCACCCCAGTCCTGGATTAGCCCTCTTGATGGATGAAGACACTGAGGACT
    CAGAGAGGCTGAGTCACTTACCTGAGGACACCCAGCCAGGCAGAGCTGGGATTGAA
    GGACCCCTATAGAGAAGGGCTTGGCCCCCATGGGGAAGACACGGATGGAAGGTGGA
    GCAAAGGAAAATACATGAAATTGAGAGTGGCAGCTGCCTGCCAAAATCTGTTCCGC
    TGTAACAGAACTGAATTTGGACCCCAGCACAGTGGCTCACGCCTGTAATCCCAGCAC
    TTTGGCAGGCCAAGGTGGAAGGATCACTTAGAGCTAGGAGTTTGAGACCAGCCTGG
    GCAATATAGCAAGACCCCTCACTACAAAAATAAAACATCAAAAACAAAAACAATTA
    GCTGGGCATGATGGCACACACCTGTAGTCCGAGCCACTTGGGAGGCTGAGGTGGGA
    GGATCGGTTGAGCCCAGGAGTTCGAAGCTGCAGGGACCTCTGATTGCACCACTGCA
    CTCCAGGCTGGGTAACAGAATGAGACCTTATCTCAAAAATAAACAAACTAATAAAA
    AGCAAAAAAAAAAAAAAAAAAAAAAAAAAAA
    HBA2 (SEQ ID NO: 17; NM_000517.4).
    CATAAACCCTGGCGCGCTCGCGGGCCGGCACTCTTCTGGTCCCCACAGACTCAGAGA
    GAACCCACCATGGTGCTGTCTCCTGCCGACAAGACCAACGTCAAGGCCGCCTGGGG
    TAAGGTCGGCGCGCACGCTGGCGAGTATGGTGCGGAGGCCCTGGAGAGGATGTTCC
    TGTCCTTCCCCACCACCAAGACCTACTTCCCGCACTTCGACCTGAGCCACGGCTCTG
    CCCAGGTTAAGGGCCACGGCAAGAAGGTGGCCGACGCGCTGACCAACGCCGTGGCG
    CACGTGGACGACATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCACGCGCACAA
    GCTTCGGGTGGACCCGGTCAACTTCAAGCTCCTAAGCCACTGCCTGCTGGTGACCCT
    GGCCGCCCACCTCCCCGCCGAGTTCACCCCTGCGGTGCACGCCTCCCTGGACAAGTT
    CCTGGCTTCTGTGAGCACCGTGCTGACCTCCAAATACCGTTAAGCTGGAGCCTCGGT
    AGCCGTTCCTCCTGCCCGCTGGGCCTCCCAACGGGCCCTCCTCCCCTCCTTGCACCG
    GCCCTTCCTGGTCTTTGAATAAAGTCTGAGTGGGCAGCAAAAAAAAAAAAAAAAAA
    PPM1F (SEQ ID NO: 18; NM_014634).
    AGGGACGGGAAGTGGGCGGGGCCGGCCGGCAGCAGCTTGCGGGACACGGAGCCGC
    GAGGAGACAGCTGAGGCCCGCGGAGACCAGGGGGTGAAGCCTGGAGACCCTCTTGC
    CCTGGCCTAGCTGCAGGCCCCCGGGATGCTTTGGGCATGTCCTCTGGAGCCCCACAG
    AAGAGCAGCCCAATGGCCAGTGGAGCTGAGGAGACCCCAGGCTTCCTGGACACGCT
    CCTGCAAGACTTCCCAGCCCTGCTGAACCCAGAGGACCCTCTGCCATGGAAGGCCCC
    AGGGACGGTGCTCAGCCAGGAGGAGGTGGAGGGCGAGCTGGCTGAGCTGGCCATG
    GGCTTTCTGGGCAGCAGGAAGGCCCCGCCACCACTTGCTGCTGCTCTGGCCCACGAA
    GCAGTTTCACAGCTGCTACAGACAGACCTTTCCGAATTCAGGAAGTTGCCCAGGGAG
    GAAGAAGAAGAGGAGGAGGACGATGACGAGGAGGAAAAGGCCCCTGTGACCTTGC
    TGGATGCCCAAAGCCTGGCACAGAGTTTCTTTAACCGCCTTTGGGAAGTCGCCGGCC
    AGTGGCAGAAGCAGGTGCCATTGGCTGCCCGGGCCTCACAGCGGCAGTGGCTGGTC
    TCCATCCACGCCATCCGGAACACTCGCCGCAAGATGGAGGACCGGCACGTGTCCCT
    CCCTTCCTTCAACCAGCTCTTCGGCTTGTCTGACCCTGTGAACCGCGCCTACTTTGCT
    GTGTTTGATGGTCACGGAGGCGTGGATGCTGCGAGGTACGCCGCTGTCCACGTGCAC
    ACCAACGCTGCCCGCCAGCCAGAGCTGCCCACAGACCCTGAGGGAGCCCTCAGAGA
    AGCCTTCCGGCGCACCGACCAGATGTTTCTCAGGAAAGCCAAGCGAGAGCGGCTGC
    AGAGCGGCACCACAGGTGTGTGTGCGCTCATTGCAGGAGCGACCCTGCACGTCGCC
    TGGCTCGGGGATTCCCAGGTCATTTTGGTACAGCAGGGACAGGTGGTGAAGCTGAT
    GGAGCCACACAGACCAGAACGGCAGGATGAGAAGGCGCGCATTGAAGCATTGGGT
    GGCTTTGTGTCTCACATGGACTGCTGGAGAGTCAACGGGACCCTGGCCGTCTCCAGA
    GCCATCGGGGATGTCTTCCAGAAGCCCTACGTGTCTGGGGAGGCCGATGCAGCTTCC
    CGGGCGCTGACGGGCTCCGAGGACTACCTGCTGCTTGCCTGTGATGGCTTCTTTGAC
    GTCGTACCCCACCAGGAAGTTGTTGGCCTGGTCCAGAGCCACCTGACCAGGCAGCA
    GGGCAGCGGGCTCCGTGTCGCCGAGGAGCTGGTGGCTGCGGCCCGGGAGCGGGGCT
    CCCACGACAACATCACGGTCATGGTGGTCTTCCTCAGGGACCCCCAAGAGCTGCTGG
    AGGGCGGGAACCAGGGAGAAGGGGACCCCCAGGCAGAAGGGAGGAGGCAGGACTT
    GCCCTCCAGCCTTCCAGAACCTGAGACCCAGGCTCCACCAAGAAGCTAGGTGGTTTC
    CAGGCCCCTGCCCTCCCCTTCCTCCCATCCTTGTCCTTCTCTCCCTCAGAAGCCTCAG
    GACCCAACAGGTGGCAGGCAGTGGACAGGGTGCCCGCCCCACAGTGCTTTCCCCAG
    CACCCCAGAGCCAGTCGGGACACCCCCCGCAGCCCGTCCTGGTGGCTGTGGAACTG
    CACTGGGTGGCGGGCAGATGGTGGAAGGCAGCTTAGGAGACCTCACCAAAGAGAA
    GATGGACCGGCTCTTGCTCCCAGCTCCTATTAGGCCCGGGGTGGGACCAGAGGTCAT
    AGGTGCCCAACGGCAGCCAAACCAAAGACACTGGTGTGCATGGGGCAGCATGGTTG
    TGCACGTGGGACCCTGGGGCGGACCCAGGAGCCAAACTCTTGAAGCACCCCCTGGG
    TCAGGCCCAGCAGCGGAGTGGCCAGCCCCAGTTTCCCATTGCTCCTCTCTGCGGCCA
    GGGCCAGGTGGGTTCATATTTACAGATATGCCCAGCCAGTCCTGGTCGGCCACACCA
    GTGTCCCAAAGAGGAGAGCGCAGCAGAGCCAGGGGTCTGTTCTGTAGCAGCCACCC
    CCCTGCCCCCACTCCAGGGCAGCCATGATGTGCTTGGGCCCACCAGGGCCTTCCGGG
    CTGCTCTCTTCCCTGAGCCCGGAACCGGCGACGCACATGTGTCTTTTGTTGGTGTGTT
    TGTTTTTTTCCAGGGAGGTCTAATTCCGAAGCAGTATTCCAGGTTTTCTCTTTGTTTT
    ATCAGTGCCAAGATGACCTGTTGTGTCATATAATTTAAGCAGAGCTTAGCATTTATT
    TTATTCTTTAGAAAACTTAAGTATTTACTTTTTTAAAGCTATTTTTCAAGGAACCTTTT
    TTTGCAGTATTATTGAATTTATTTTCTAAATCAGGATTGAAACAGGAACTTTTCCAGG
    TGGTGTTAATAAGCCATTCAAGTGCCTTACACAGCTTTGAAGAAACTAGGACTGCAG
    TGGGCTCGGATAGGCCCATTGAGGTTTTTAGAAAAGCAGGATTTGTTTTGTTAGGGA
    GGCATGATTTTGGTGAGATCTTTCTGGAAGAGTTTTCCGCCTCTTTGTGATGCTGAAC
    ACCCCCAAGGTTCTCCCCTCCCCCCGCTGCCCAGGTGACTGGCAGGAGCTGCGACTG
    CCACGTAGTGGTGCCTGGGCCCGACAGCGGGGCTCTGGGCATCCCGGGTGACCTTG
    GCCCATCTGCCTGCATTCCCACCCCCTTGGGCCTGGCTGGATCCCAGGCAGAGGGAC
    CTTGCTGCTGTGTGATTGGAACATTCCCAAATATCTTGTGAATTTGTAATCAAATTGG
    TCTCATTGGGAAAGACTCTTAATTAAGAGGCTCAGGCAAGCACAGAGGCAGCCCGT
    GGGTCTCTGTCTCAGTCTGGAGGCAGCAGGGATGCTGCTGGGAGTCCATGGCACAG
    GCCACAGCCCCTCACCTTGCCGCGGTGGCTGGCAGCACGCCTGCCTTGCTCTGCCCC
    ATGCCCTGAACAGGCATGAGAGCTCCACGTCCCCTAGTGCACCCTGAGAGGGGGCT
    CACAAGTGACCGATCCTGGGTGCCTCAGGGAGCTCACTGAGGGCGTGCAAAGTTGA
    AAGTGGCAAGGCTGGGGGAGGGTGTCGGGTAGAGGGAAGAGGGCAGGGGGCTAGG
    GGAGGACTCAGAGGCCATCTGCAGGGCCAAGCCACAGGAAGGGCTGAGCTGGAGG
    TGGGCAGGGCTGCTCCAGGCAGGTCAGAGCAGTGCAGGGGGAGGAGAGGAGAAAG
    GGAGGAAGCTGGGCTGTGTGGTCCCCATGAAGGCATTCAGAGTCCACCTGCAGACA
    GCGAGAGCCCCAGGAAGGTTTGCACAGCTGTGCCCCAAGCACCTTGGCCTCCTCTCA
    GCTCGCCGAGGAGGCACGCTAGAGCCGCCTTCCCGGTGGGAGCCCTCTGTCCCACA
    GGGAGCGGGGAGCCAGCTTTGCTGGGGCCCTACCTGCATGCCCAGCCTTACCCCTCA
    TTCTCACAGCACAGATGAGGTTGAGACCATGCAGTCAATGCATTGCTTAAGGTCTCT
    TATTTACAAAAAAAAACCTTAAACATAGTCGCTGTCATTCAGACATTCAGAGAATGG
    TTGGCCACAAACAATGACCAAGTATTGCTTGGCTTAACTTGAAGGCCTGCTGTCTCC
    TTCTGGGGGTCAGGGACGCAGCTCCACCCTCACCACTAGCCCACCCTGCCCGTGGGC
    ATAACCTTGACGAAGAGAGAGAATGATTGGCATCTGCTTTTCTCTTTTCTTTGCTAAT
    AATTCTGTTCCTGGCTGCCGAGAGTGAAGTTTCACCATGTGGAGGTTTGGCTCCTAT
    CACCTGGTGGTCTGATTCATACCCTAGCCTGAGGCTCCACTGGAAGATCTCGCAGCC
    TCAGTGTATGGGAAACCCTTTCCCCAGGCTTGTCCCAGCACTGCCGCTCCCCACCCC
    TGAGCCAGGACCCCAGAGGATGGCCATGCCCCGTGCCTGGCAGAGGTCTGGTGCCA
    GCACTGGGAGCTGCTCCGCCCTTGCCTTGGGGCCGAGGGAGCCCTCGTCCACCCCTG
    CACAGCAGCTGGGCACAGAGGAGCGCTCTTCCATCTTGACCAGGACTGCACCAAGA
    AGCACCAGGTGTCTTCAGCCTCCAACCTCCGGGGCGACCTTCTCTTCCAGCCACAGT
    CCCATGAGGGCCCCTAGCCAGGGACACTGGTCTGTAAATTGTAATCCTTTCTCCAGC
    CCAGCTCTCCACTTGTTCCTTGTGTGAGCTGAGCAGGCAGTGCACCTCTGAGTGTCC
    CTTTTGTAAGGCCCAGGGGTTGCACTGAGTCTGCAGAGGCCGCGACCTCCTAGAACG
    CTGTGGGTGCAGGTGAGCCGGCGTGTCCTGGGGAGATGCTGCCAGCACACAGGGGC
    CCTCCTGCTGCCAGCAGGTTGGGGTGGTTAAGTCTTATTAGTGTCTATTCTTAAAATT
    AAGTGGGCTGGAGAAGAATGGAGCTCCACATGCCAGCACCGTATATGGAATACAAA
    AGCTGGGGAAGCAGGGCCTGCCTTACAGGTGTGGCTGACTCTGAGCCCAGGCCTGC
    AGGGGTGGAGGGCAGTCCCTCAGAATCCCAGAGGCAGTCCCAGCCTCAGAACCCAG
    GATAGGAAATGGGTGTGTTTAGTGGGGAAAGGGACGGGGTGCAGACGGCAGGGCC
    AGTATGGGGCCCCCTCCCTCTCCTCTCCTCTCCTATGGTGAGCCCAGCGTGGGCACC
    GGGCCGTCTCAGCCGTGTTCCCAGGGCTGGGAGGACAGCTCTGGCCCTTCTTAGGCC
    TAGCCTCGTCCCAAGCTAAATGTAAGCCAGTTGGGCTGTGTTAAAGGAAGCAGTGTT
    TTTGGTTCGATTCTGCCTCTGTAGCTCAAGGGGGGCAGCCCCCAGAGTCCTGTGCAT
    TCTGCCAAGGCTCCATAGCTTTGCCAAATGCACGGAGCTCTGCCATTCCGGTGCAGT
    GCAGGCCTTGCGAAGGGTTTATCTGCGTTCGTCTCGGTGGGCTTCTCCTGCATGGGA
    GTTGTGTTCCTGTGCAAGGGGGAGCTTTGCTCCAGGACAGGATGACTGTCTTCCCTA
    TTCTTAGGGACAAGTCCCAAGATGCCAGAAAGGCAGTCTCCCAAGGACCCACCATG
    CAGAAGTGTCAATAAACCACAAGTTCTGAACTCTGTAAAAAAAAAAAAAA
    PPP2R1A (SEQ ID NO: 19; CR450340.1).
    ATGGCGGCGGCCGACGGCGACGACTCGCTGTACCCCATCGCGGTGCTCATAGACGA
    ACTCCGCAATGAGGACGTTCAGCTTCGCCTCAACAGCATCAAGAAGCTGTCCACCAT
    CGCCTTGGCCCTTGGGGTTGAAAGGACCCGAAGTGAGCTTCTGCCTTTCCTTACAGA
    TACCATCTATGATGAAGATGAGGTCCTCCTGGCCCTGGCAGAACAGCTGGGAACCTT
    CACTACCCTGGTGGGAGGCCCAGAGTACGTGCACTGCCTGCTGCCACCGCTGGAGTC
    GCTGGCCACAGTGGAGGAGACAGTGGTGCGGGACAAGGCAGTGGAGTCCTTACGGG
    CCATCTCACACGAGCACTCGCCCTCTGACCTGGAGGCGCACTTTGTGCCGCTAGTGA
    AGCGGCTGGCGGGCGGCGACTGGTTCACCTCCCGCACCTCGGCCTGCGGCCTCTTCT
    CCGTCTGCTACCCCCGAGTGTCCAGTGCTGTGAAGGCGGAACTTCGACAGTACTTCC
    GGAACCTGTGCTCAGATGACACCCCCATGGTGCGGCGGGCCGCAGCCTCCAAGCTG
    GGGGAGTTTGCCAAGGTGCTGGAGCTGGACAACGTCAAGAGTGAGATCATCCCCAT
    GTTCTCCAACCTGGCCTCTGACGAGCAGGACTCGGTGCGGCTGCTGGCGGTGGAGG
    CGTGCGTGAACATCGCCCAGCTTCTGCCCCAGGAGGATCTGGAGGCCCTGGTGATGC
    CCACTCTGCGCCAGGCCGCTGAAGACAAGTCCTGGCGCGTCCGCTACATGGTGGCTG
    ACAAGTTCACAGAGCTCCAGAAAGCAGTGGGGCCTGAGATCACCAAGACAGACCTG
    GTCCCTGCCTTCCAGAACCTGATGAAAGACTGTGAGGCCGAGGTGAGGGCCGCAGC
    CTCCCACAAGGTCAAAGAGTTCTGTGAAAACCTCTCAGCTGACTGTCGGGAGAATGT
    GATCATGTCCCAGATCTTGCCCTGCATCAAGGAGCTGGTGTCCGATGCCAACCAACA
    TGTCAAGTCTGCCCTGGCCTCAGTCATCATGGGTCTCTCTCCCATCTTGGGCAAAGA
    CAACACCATCGAGCACCTCTTGCCCCTCTTCCTGGCTCAGCTGAAGGATGAGTGCCC
    TGAGGTACGGCTGAACATCATCTCTAACCTGGACTGTGTGAACGAGGTGATTGGCAT
    CCGGCAGCTGTCCCAGTCCCTGCTCCCTGCCATTGTGGAGCTGGCTGAGGACGCCAA
    GTGGCGGGTGCGGCTGGCCATCATTGAGTACATGCCCCTCCTGGCTGGACAGCTGGG
    AGTGGAGTTCTTTGATGAGAAACTTAACTCCTTGTGCATGGCCTGGCTTGTGGATCA
    TGTATATGCCATCCGCGAGGCAGCCACCAGCAACCTGAAGAAGCTAGTGGAAAAGT
    TTGGGAAGGAGTGGGCCCATGCCACAATCATCCCCAAGGTCTTGGCCATGTCCGGA
    GACCCCAACTACCTGCACCGCATGACTACGCTCTTCTGCATCAATGTGCTGTCTGAG
    GTCTGTGGGCAGGACATCACCACCAAGCACATGCTACCCACGGTTCTGCGCATGGCT
    GGGGACCCGGTTGCCAATGTCCGCTTCAATGTGGCCAAGTCTCTGCAGAAGATAGG
    GCCCATCCCGGACAACAGCACCTTGCAGAGTGAAGTCAAGCCCATCCTAGAGAAGC
    TGACCCAGGACCAGGATGTGGACGTCAAATACTTTGCCCAGGAGGCTCTGACTGTTC
    TGTCTCTCGCC
    CFLAR (SEQ ID NO: 20; NM_003879.5).
    ATACTCAGTCACACAAGCCATAGCAGGAAACAGCGAGCTTGCAGCCTCACCGACGA
    GTCTCAACTAAAAGGGACTCCCGGAGCTAGGGGTGGGGACTCGGCCTCACACAGTG
    AGTGCCGGCTATTGGACTTTTGTCCAGTGACAGCTGAGACAACAAGGACCACGGGA
    GGAGGTGTAGGAGAGAAGCGCCGCGAACAGCGATCGCCCAGCACCAAGTCCGCTTC
    CAGGCTTTCGGTTTCTTTGCCTCCATCTTGGGTGCGCCTTCCCGGCGTCTAGGGGAGC
    GAAGGCTGAGGTGGCAGCGGCAGGAGAGTCCGGCCGCGACAGGACGAACTCCCCC
    ACTGGAAAGGATTCTGAAAGAAATGAAGTCAGCCCTCAGAAATGAAGTTGACTGCC
    TGCTGGCTTTCTGTTGACTGGCCCGGAGCTGTACTGCAAGACCCTTGTGAGCTTCCCT
    AGTCTAAGAGTAGGATGTCTGCTGAAGTCATCCATCAGGTTGAAGAAGCACTTGATA
    CAGATGAGAAGGAGATGCTGCTCTTTTTGTGCCGGGATGTTGCTATAGATGTGGTTC
    CACCTAATGTCAGGGACCTTCTGGATATTTTACGGGAAAGAGGTAAGCTGTCTGTCG
    GGGACTTGGCTGAACTGCTCTACAGAGTGAGGCGATTTGACCTGCTCAAACGTATCT
    TGAAGATGGACAGAAAAGCTGTGGAGACCCACCTGCTCAGGAACCCTCACCTTGTTT
    CGGACTATAGAGTGCTGATGGCAGAGATTGGTGAGGATTTGGATAAATCTGATGTGT
    CCTCATTAATTTTCCTCATGAAGGATTACATGGGCCGAGGCAAGATAAGCAAGGAG
    AAGAGTTTCTTGGACCTTGTGGTTGAGTTGGAGAAACTAAATCTGGTTGCCCCAGAT
    CAACTGGATTTATTAGAAAAATGCCTAAAGAACATCCACAGAATAGACCTGAAGAC
    AAAAATCCAGAAGTACAAGCAGTCTGTTCAAGGAGCAGGGACAAGTTACAGGAATG
    TTCTCCAAGCAGCAATCCAAAAGAGTCTCAAGGATCCTTCAAATAACTTCAGGCTCC
    ATAATGGGAGAAGTAAAGAACAAAGACTTAAGGAACAGCTTGGCGCTCAACAAGA
    ACCAGTGAAGAAATCCATTCAGGAATCAGAAGCTTTTTTGCCTCAGAGCATACCTGA
    AGAGAGATACAAGATGAAGAGCAAGCCCCTAGGAATCTGCCTGATAATCGATTGCA
    TTGGCAATGAGACAGAGCTTCTTCGAGACACCTTCACTTCCCTGGGCTATGAAGTCC
    AGAAATTCTTGCATCTCAGTATGCATGGTATATCCCAGATTCTTGGCCAATTTGCCTG
    TATGCCCGAGCACCGAGACTACGACAGCTTTGTGTGTGTCCTGGTGAGCCGAGGAG
    GCTCCCAGAGTGTGTATGGTGTGGATCAGACTCACTCAGGGCTCCCCCTGCATCACA
    TCAGGAGGATGTTCATGGGAGATTCATGCCCTTATCTAGCAGGGAAGCCAAAGATG
    TTTTTTATTCAGAACTATGTGGTGTCAGAGGGCCAGCTGGAGGACAGCAGCCTCTTG
    GAGGTGGATGGGCCAGCGATGAAGAATGTGGAATTCAAGGCTCAGAAGCGAGGGCT
    GTGCACAGTTCACCGAGAAGCTGACTTCTTCTGGAGCCTGTGTACTGCGGACATGTC
    CCTGCTGGAGCAGTCTCACAGCTCACCATCCCTGTACCTGCAGTGCCTCTCCCAGAA
    ACTGAGACAAGAAAGAAAACGCCCACTCCTGGATCTTCACATTGAACTCAATGGCT
    ACATGTATGATTGGAACAGCAGAGTTTCTGCCAAGGAGAAATATTATGTCTGGCTGC
    AGCACACTCTGAGAAAGAAACTTATCCTCTCCTACACATAAGAAACCAAAAGGCTG
    GGCGTAGTGGCTCACACCTGTAATCCCAGCACTTTGGGAGGCCAAGGAGGGCAGAT
    CACTTCAGGTCAGGAGTTCGAGACCAGCCTGGCCAACATGGTAAACGCTGTCCCTA
    GTAAAAATACAAAAATTAGCTGGGTGTGGGTGTGGGTACCTGTATTCCCAGTTACTT
    GGGAGGCTGAGGTGGGAGGATCTTTTGAACCCAGGAGTTCAGGGTCATAGCATGCT
    GTGATTGTGCCTACGAATAGCCACTGCATACCAACCTGGGCAATATAGCAAGATCCC
    ATCTCTTTAAAAAAAAAAAAAAAGGACAGGAACTATCTTACTCAATGTATTAGTCAT
    GTTTCTCTAGAGGGACAGAACTAATAGGATACATGTATATAAAAAGGGGAGTTTATT
    AAGGAGTATTGACTCACATGATCACAGGGTTAGGTCCCACAATAGGTCATCTGCAA
    GCAAGGAAGCCAATTCAAGTCCCAAAGCTGAAGAACTTGGAGTCCAATGTTTGAGG
    GCAGGAAGCATTCAGCATGAGAGAAAGATGGAGGCCAGAAGACTACACCAGTCTA
    GTCTTTCCATGTTTTGCCTGCTTTTATTCTGGCAGTGCTGGCAGCTGATTAGATGGTG
    CCCACCCAGATTGAGGATGGTCTGCCTTTCCCAGTCCACTGACTCAAATGTTAAATC
    TCCTTTGGCAGCACCCTCACAGATGTACCCGGGAACACTTTGCATCCTTCTATTCAAT
    CAAGTTGATACTCAGTATTAACCATCACAGTCCATTTGGGCAACTATACCAAATTAC
    CATAGACCAGGTGACTTAAACAGCAGTTATTTCTCACAGTTCCGGAGGCTGGGAAAT
    CCAACATCTAAGTGGTAGCATATCTGGTGTCTGGTAAGGCATGCTTCCAGATCTTAC
    CAGATGTCAGTCTTTTGATGTTCTCACATGGCAGAAAAAGAGGATGCAAACTCTCAA
    GTATATCTTTAAGGGCACAAATTCCATTCATGAGGGCTCTACCCTCATCACCTAATT
    ACCTCCCAAAGGCCCCACCTTCTGATACTGTCACTTTGGGGATACTGTCTCCCCTTTG
    AATTCTGGGGGGAATACAAACATTCAGTTTGTAACAATAGCCTTATGATTTAGAGGT
    TACTTGTTCATTCACCTAGACCTCAAATTGCATTTTACAGCTAGTCAAGTATATCTTT
    CTCTGATTTGATAGTGTGACCTAAAAGGGGACCATTGTTTGAAATATCATTAGAGTT
    GCTTATTATTATTATTATTATTATTATTATTATTATTATTATTATTATTGAGACAGAGT
    TTCATTCTGCTGCCCAGGCTGGAGTGCAGTGGCATCATCTTGGCTCATTGCAACCTCT
    GCCTTCTGGGTTCAAGCGATTCTCCTGCCTCAGCCTCCCGAGTAGCTGGGATTACAG
    GCTCCTGCCACCACACCCGGCTAATTTTTGTATTTTTAGTGGAGACAGGGTTTCCACC
    ATGTTGGCCAGCGTGGTCTTGAACTCCTGACCTCAGGTGATTCACCAGCCTCGGCCT
    CCCAAAGTGCTGGGATTACAGGTGTGAGCCACTGCACCTGGCCTATTATTATTTTTA
    AATTTTTTTTTTTTAATTGATCATTCTTGGGTGTTTCTCACAGAGGGTGATTTGGCAG
    GGTCACAGGACAATAGTGGAGGGAAGGTCAGCAGATAAACAAGTGAACAAAGGTC
    TCTGGTTTTCCTAGGCAGAGGACCCTGCGGCCTTCCGCAGTGTTTGTGTCCCTGGGTA
    CTTGAGATTAGGGAGTGGTGATGACTCTTAAGGAGCATGCTGCCTTCAAGCATCTGT
    TTAACAAAGCACATCTTGCACTGCCCTTAATCCATTTAACCCTGAGTGGACACAGCA
    CATGTTTCAGAGAGCACAGGGTTGGGGGTAAGGTCATAGATCAACAGCATCCTAAG
    GCAGAAGAATTTTTCTTAGTACAGAACAAAATGAAGTCTCCCATGTCTACTTCTTTCT
    ACACAGACACAGCAACAATCTGATTTCTCTATCTTTTCCCCACCTTTCCCCCTTTTCT
    ATTCCACAAAACCGCCATCGTCATCATGGCCTGTTCTCAATGAGCTGTTGGGTACAC
    CTCCCAGACGGGGTGGCGGCTGGGCAGAGGGGCTCCTCACTTCCCAGATGGGGCGG
    CCAGGCGGACGCGCCCCCCACCTCCCTCCCGGACGGGATAGCTGGCCGGGCGGGGG
    CTGACCCCCCACCTCCCTCCCCGACGGGGCGGCTGGCCGGGCGGGGGCTGACCCCC
    ACGCCTCCCTCCCGGACGGGGCGGCTGCCAGGCGGAGGGGCTCCTCACTTCTCAGA
    CGGGGTGGCTGCTGGGCGGAGACGCTCCTCACTTCCCAGACAGGGTGGCTGTCGGG
    CGGAGGGGCTCCTCACTTCTCAGACGGGGCAGCTGCGGGCGGAGGGGCTCCTCACT
    TCTCAGACGGGGTGGCCGGGCAGAGAAGCTCCTCACATCCCAGACGGGGGGGCGGG
    GCAGAGGCGCTCCCCACATCTCAGACGATGGGCGGCCGGGCAGAGACGCTCCTCAC
    TTCATCCCAGACGGGGTGGCGGCCGGGCAGAAGCTGTAATCTCGGCACCCTGGGGG
    GCCAAGGCAGGCGGCTGGGAGGCGGAGGCCGTAGCCAGCTGAGATCACACCACTGC
    ACTCCAGCCTGGGCAACATTGAGCACTGAGTGGACGAGACTCTGCCCGCAATCCCG
    GCACCTCGGGAGGCCGAGGCTGGCAGATCACTCGCAGTCAGGAGCTGGAGACCAGC
    CCGGCCAACACAGTGAAACCCTGTCTCCACCAAAAAAATACGAAAACCAGTCAGGC
    GTGGCGGCGCCCGCAATGGCAGGCACGCGGCAGGCCGAGGCGGGAGAATCAGGCA
    GGGAGGCTGCAGTGAGCCGAGATGGCAGCAGTACAGTCCAGCTTCGGCTCGGCATC
    AGAGGGAGACCGTGGGGAGAGGGAGAAGAGAGGGAGGGGGAGAGGGCTATTTTTA
    AAATTTTTTAAAATTGCTGAACAGGGGTACCTCTGGGCAGTGTGTCAGAATACCACT
    TTTTAAATATTTTATGATTTATTTATTTTTCTATTTCTTGAGGTTTTAACTGATGTGTA
    TCTGTATGTCTATTTGTGTATATTTTGTCATGATCATGTAACAGAGTCTGAAAAGTGT
    CGAAGAGACAGTTTTCAGGAACAACAAGCAATTATTCCTACTTTCCAAGTTATTTTG
    ATGCCATGGTGGCTCATACCTATAATCTGAGTACTTTGGGAGGCTGAGGTGGACTGA
    TCACTTGAGCCCAGGAGTTTGAGACCAGCCTGGGCAACATAGCAAGACTCCATCTCT
    ACAAAAAAAGACAAAATTTAGCTGAGCGTGGTGGCGTGTTCCTGTAGTCCCAGCTA
    CTTGGGAGGCTGAAGTGAGTGGATCCCCTGAGCCCAGAGAGGTCAAGGTTGTGATG
    AGCTGTGATCACACCACTGCACTTCAGCATGGGAGACAGAGTGAGACCCTGTTTCAG
    AAAAAATAAATAAATAAAACCACCAGCACCACAAACAACAACAAAAAGTTATTTTG
    TACTTGTTTTGAGCACAGGACTCCTGAGGGTATCTTTGCATTTAATATTACATAGGG
    GTGCCAGTGGGAAGTAATGTGTATGCTTGGCCTCATGAGCTAAAACCCTGTGTTAAT
    TATGACAGAAGGAAAGTGTGTGAGAGAGATCTTAACTACCTAGCAGCTCTAGCTGC
    CATCTTGAACCATGAAGATACGGGCCACACGTAGGGGTAGCTGGGTAGTGAGCAGC
    AAGAAGCCTTGTTGGATGAGGGCACGAAGGAGCAGAATCACTGGAATCACTGTGTC
    AGCCCTAATTACCTACCTCTGGACTTTTATGTGAGGGGAAAAAAAATTGACAGTTTA
    TATTTATCTCAACCTAGTTAACCCAAGTGATGCATTGTTATGAGATTAAAATGTTTGG
    AGGCCGGGTGCGGTGGCTCACGCCTATAATCCCAGCCCTTTGGGAGGCCAAGGCGG
    GCGGATCACGAGGTCAGGAGATCAAGACCATCCTGGCTAACATGTAAAACCCCGTC
    TCTACTAAAAATACAAAAAATTAGCCAGGCGTTGTGGCGGTCGCCTGTAGTCCCTGC
    TATTTGGGAGGCCGAGGCAAGAGAACGGCATGAACCTGGGAGGTGGAGCTTGCAGC
    GAGCTGAGATCTTGCCACTGCACTCCAGCCTGGGCGACAGTGCGAGACTCTGTCTCA
    AAAATAAATAAATAAATAAATAATAAATAAAATGTTTGGAATGTTGGCTTCATCCCT
    GGGATGCAAGGCTGGTTCAACATACGCAAATCAAGAAACATAATTCATCACATAAA
    CAGAACTAAAGACAAAAACCACATGATTATCTCAATAGATACAGAAAAGGCCTTCA
    ATAAAATTCAACGTTGCTTCATGTTAAAAACTCTCAATAAACTAGGTATTGATGGAA
    AATATCTCAAAATAATAACCATTTATGACAAACCCACAGCCATTATCATACTGAATG
    GGCAAAAGCTGGAAGCATTCCCCTTGAAAACTGGCACAAGACAGGGATGCCGTCTC
    ACCACTCCTATTTAACATAGTATTGGAAGTTCTGGCCAAGAAAATCAGGCAAGAGA
    AACAAATAAGGGGTATTCAAATAGGAAAAGAGGAAGTAAAACTGTGTTTGCAGATG
    ACATGATACTATATCTAGAAAACCCCATTATCTCCACCCAAAAGTTCCTTAAGCTGA
    TAAGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTGCAGAAATCACAAGCA
    TTCTATACACCAACAATACACAAGCAGAGAGCCAAATCATGAATGAACTCCCATTC
    ACAGTTGCTAGAAAGAGAATAAAATACCTAGGAATACAGCTAATAAGATGTGAAGG
    ATCTCTTCAAGGAGAACTACAAACCACTGCTCAAGGAAATAAGAGAGGACACAAAT
    GAAAAAACATTCCATTCTCGTGGATAGGAAGAATCAATATCATGAAAATGGCCATA
    CTACCCAAAGTAATTTATAGGTTCATTGCTATTCCCATTAAACTACTATTGACATTCT
    TCACAGAATTAGAAAAAAACTACTTTAAAATTCAAATGGAACCAAAAAAGAGCCCG
    TATAACCAAGACAACAATAAGCAAAAAGAACAAAGCTGGAAGCATCACACTACCC
    AACTTCAAAGTATACTGCAAGGCTACAGTAGCCAAAATGGCATGGTACTGGTACAA
    AAACAGACACATAGACCAATGGAACAGAATAGAGACCAGAGAAAGAAGACCACAC
    ATCTACAGCCATCTGATCATCGACAAACCTGACAAAAACAAGCAATGGGGAAAAGA
    TTCCCTATTTAATAAATGGTGCTGGGAAAACTGGCTAGCCATATGCAGAAAATTGAA
    ACTGACCCCTTCCTTACACCTTATACAAAAATTAACTCAAGATTAAAGACTTAATGT
    AAAACCTAAAACTATAAAAACCCTAGAAGAAAATCTATTTAATACCATTCAAGACA
    TAGGCACAAGCAAAGGTTTCATGACAAAAACATCAAAAGCAATTGCAACAAAAGCA
    AAAATTACAAATGGGATCTAATTAAACTAAAGAGCTCCTGCACAGCAAAAGAAACT
    ATCATTAGAGTGAACAGGCAACCTACAGAATGGGAGAACATTTTTGCAATCTATCCA
    TCTGACAAAGGTCTAATATCCAGAACCTACAAGGAACTTAAAACAAATTTACAAGG
    AAAAAAACAACCCCATCAAAAAGTGGACAAAGGACATGAACAGACACTTCTCAAA
    AGAAGACATTTATGTGGCCAACAAACATATAAAAAAAAGCTCAACCTTACTGATCA
    TTAGAGAAATGCAAAGGAGAACCACAATGAGATACCATCTCATGCCGGTCAGAATG
    GTGATTATTAAAAAGTCAAAAAACAACAGATGCTGGCGAGGCTGTGGAGAAGTAGG
    AACACTTTTACATTGTTGGTGGGAATGTAAATTAGTTCAACCGTTGTGGAAGTGTGT
    GTGGCTATTCCTCAAAGATCTAGAACTAGAAATACTATTTGTCCCAGCAATCCCATT
    ACTGGGTATATACCCAAAGGAATATAAACCATTTTATTATAAAGATACATGCACATT
    TTTGTTCATTGCAGCACTCTTCACAATAGCAAAGACACAATAGCAAATGCCCATCAA
    AGATAGACTGGATAAAGAAAATGTGGTACATATACACCATGGAATACTGTGCAGTG
    CAGCCATTACAGCTTTTGGTGATACAGTGAATCAGATTTTTCATTAATTCTTTTAATT
    GGTTATTACTGAACGTGAAAAAGTAATGTTTGTATTGAAATCTTGAGTCTGGCCATG
    TTTCTATTTTAAATTCATAAAGAATTCTAACAAGAGGAATTCCAAGAATGTCATAAA
    TGGATGTTTCTCCATGGATGAAGGAACTGTTTTATTCACTTGCTGATAATTCAGCCTA
    ATCCAGTTTGACATCATATAGATAAGTAGTTGAATTATGGATTTAAAATACATATCA
    TTTTCTAACTCCAAAGGTAATACTTATTTAAATGGTTTTGAAAATATAGAAAGGCAC
    AATTTCTTTTTAAATCTGTTATTCTCCACCACCACTCAATCTGTCTATCATCTATCTCT
    CCATTCATTCTTCCATTTGTTTATATCTGTTAATCTTTGTATGTGTTCATGTATAGCTT
    TTACATGATTGGAATCATAATGCATATTCCATTTTGAAGTCTGCTTTTTTTTACACAA
    AAATATGTTGTGAATATTTTCCTATATTATGAAATATCATTAGCTGAGCTTTTAGAAT
    TGACTGCATGTTTTGGTACCATTTAGATATAGTTTAAGATACTTAGAAGTTATGTGGC
    TTTGCCACTATGGATGAATCTTATTTACTCAATATTAATTACTTACAAATAACCTCAC
    CTAAACACTACTCAGCCATAAAAAGGAATGAATTAATGACATTCACAGCAACCTGG
    AGACTATTACTCTAAAGGAAGTAACTGAGGAATGGAAAACCAAACATTGTATGTTC
    TCACTCATAAGTGGGAGATAAGCTATGAGGATGCAAAGGCATAAGAAGGATACAAT
    GGACTTTGGGGACTTAGGGGAAAGGGTGGGAGGGGGGTGAAGGATAAAAGAATAC
    AAATTGGGTTCAGTGTATACTGCTCAGGTGATGGGTGCACCAGAATCTCACAAGTAA
    CCACTTAATTACTTACGCATGTAACCAGATACCACCTGTTCCCCAAACACCTATGGA
    AATAATTTTGTTTTTTTTTTTAAAAAAGGAATGAGATCATGTCCTTTGCAGGGACATG
    GATGAAGCTGGAAGCCATTATCCTCAGCAAACTAACAGAGGAGCAGGAAACCAAAC
    ACCACATGTTCTCACTTGTAAGCGGAAGCTGAACAATGAGAACACACGGACACAGG
    GATGAGATCAACACACACTGGGGCCTGATGCAGGGGCCGTAGCGGGGAGAGCATCA
    GGATAACTAGCTAATGCATGTGGGGCTTAATACCTAGGTGATAGGTTGATAGGTGCA
    GCAAACCACCATGGGACACGTTTACCTATGTAACAAACCCGCACATCCTGCACTTGT
    ATCCAGAACTTAAAATATTTTAAAAATCTTTAGAGAATACAAAAAAAAAAAAAAAG
    ATTCTTCAATGCATACACAATAAAATTGCAGTTCAGTCAAACATTGGAAGTCTTTCT
    CTGACTGTCTAGTTGGTATCTTCATTTTCAGCTTCTTCAAGATCCCACTCCAAACACT
    GTTAGCTCAGCCAAATTGAACAGCTCATATCTCCTACCTCTGGATCTTTGGTTCTGGT
    GATTGTATATTTCTGGACCATCTGGAACCCCAGCATATCACCCTACCCCACATCTCC
    ACATCCCCAAAATATAACCATACTTCAAGGGCAGTTCAAATACCATCTCCTTCTATC
    CTCCATGAAGTCAGTTATCTCTTCCATTGGAATTATCGCCCCCTCTCCTGAACAGTAC
    TATTTCGTGTGAATCTCCTCCAAGCCTTCTTTTCATTTTATATCTCATGCTGTAATTCT
    TGGAAAGTATGCTGTAGCTCAAGTGCAGAATTCTCATCAGTTTTATCTTTATATCTCT
    CCTAAACACTTTACCTGATGAAGAGCCTGGCATACACATAAATATATATTGAATGAA
    TCAGTGATGGATTGAAAAGAGAAATGATGGATCTCCTAAATTTTAACTTTTATAAAA
    TATTTTGATACATTCATGACCTTACTTTAGCAAGCAATGAACGTGATGTAAACTATT
    GTTGATATAGTTTTTATATTGGAAGTGTAAGTAGTTTGTGGCATGGGATTGTGACAT
    ATCCTAGGTTTCCTCATCTTCTTTTTATTGAAATGTAATTCACAAGCCATAAAATTTG
    CCCCTTTAAAGTAAATGATGCAGTGGATTTTAGTATATTTACAGAGTTGTGCAATCA
    TCACCACTATCTAATTCCAGAACATTTCCATCTACCTAGAAACTCCATACCAGTGAG
    CTGCCACTCTAATCCTCCTCTTCCCCCAGCCTCTAGAAACAATAATCCATTTTCTGTC
    TCTATGATTTGCCTGTTCTAGATATTTTATAAAAATAAACATGTGGCCTTTCGTGTCT
    GACTTCCTTCACTTAAAAAAAAAAAAAAAAAA
    DHRS13 (SEQ ID NO: 21; NM_144683.3).
    CGCCTCCGCCTTCGGAGGCTGACGCGCCCGGGCGCCGTTCCAGGCCTGTGCAGGGC
    GGATCGGCAGCCGCCTGGCGGCGATCCAGGGCGGTGCGGGGCCTGGGCGGGAGCCG
    GGAGGCGCGGCCGGCATGGAGGCGCTGCTGCTGGGCGCGGGGTTGCTGCTGGGCGC
    TTACGTGCTTGTCTACTACAACCTGGTGAAGGCCCCGCCGTGCGGCGGCATGGGCAA
    CCTGCGGGGCCGCACGGCCGTGGTCACGGGCGCCAACAGCGGCATCGGAAAGATGA
    CGGCGCTGGAGCTGGCGCGCCGGGGAGCGCGCGTGGTGCTGGCCTGCCGCAGCCAG
    GAGCGCGGGGAGGCGGCTGCCTTCGACCTCCGCCAGGAGAGTGGGAACAATGAGGT
    CATCTTCATGGCCTTGGACTTGGCCAGTCTGGCCTCGGTGCGGGCCTTTGCCACTGC
    CTTTCTGAGCTCTGAGCCACGGTTGGACATCCTCATCCACAATGCCGGTATCAGTTC
    CTGTGGCCGGACCCGTGAGGCGTTTAACCTGCTGCTTCGGGTGAACCATATCGGTCC
    CTTTCTGCTGACACATCTGCTGCTGCCTTGCCTGAAGGCATGTGCCCCTAGCCGCGT
    GGTGGTGGTAGCCTCAGCTGCCCACTGTCGGGGACGTCTTGACTTCAAACGCCTGGA
    CCGCCCAGTGGTGGGCTGGCGGCAGGAGCTGCGGGCATATGCTGACACTAAGCTGG
    CTAATGTACTGTTTGCCCGGGAGCTCGCCAACCAGCTTGAGGCCACTGGCGTCACCT
    GCTATGCAGCCCACCCAGGGCCTGTGAACTCGGAGCTGTTCCTGCGCCATGTTCCTG
    GATGGCTGCGCCCACTTTTGCGCCCATTGGCTTGGCTGGTGCTCCGGGCACCAAGAG
    GGGGTGCCCAGACACCCCTGTATTGTGCTCTACAAGAGGGCATCGAGCCCCTCAGTG
    GGAGATATTTTGCCAACTGCCATGTGGAAGAGGTGCCTCCAGCTGCCCGAGACGAC
    CGGGCAGCCCATCGGCTATGGGAGGCCAGCAAGAGGCTGGCAGGGCTTGGGCCTGG
    GGAGGATGCTGAACCCGATGAAGACCCCCAGTCTGAGGACTCAGAGGCCCCATCTT
    CTCTAAGCACCCCCCACCCTGAGGAGCCCACAGTTTCTCAACCTTACCCCAGCCCTC
    AGAGCTCACCAGATTTGTCTAAGATGACGCACCGAATTCAGGCTAAAGTTGAGCCTG
    AGATCCAGCTCTCCTAACCCTCAGGCCAGGATGCTTGCCATGGCACTTCATGGTCCT
    TGAAAACCTCGGATGTGTGCGAGGCCATGCCCTGGACACTGACGGGTTTGTGATCTT
    GACCTCCGTGGTTACTTTCTGGGGCCCCAAGCTGTGCCCTGGACATCTCTTTTCCTGG
    TTGAAGGAATAATGGGTGATTATTTCTTCCTGAGAGTGACAGTAACCCCAGATGGAG
    AGATAGGGGTATGCTAGACACTGTGCTTCTCGGAAATTTGGATGTAGTATTTTCAGG
    CCCCACCCTTATTGATTCTGATCAGCTCTGGAGCAGAGGCAGGGAGTTTGCAATGTG
    ATGCACTGCCAACATTGAGAATTAGTGAACTGATCCCTTTGCAACCGTCTAGCTAGG
    TAGTTAAATTACCCCCATGTTAATGAAGCGGAATTAGGCTCCCGAGCTAAGGGACTC
    GCCTAGGGTCTCACAGTGAGTAGGAGGAGGGCCTGGGATCTGAACCCAAGGGTCTG
    AGGCCAGGGCCGACTGCCGTAAGATGGGTGCTGAGAAGTGAGTCAGGGCAGGGCA
    GCTGGTATCGAGGTGCCCCATGGGAGTAAGGGGACGCCTTCCGGGCGGATGCAGGG
    CTGGGGTCATCTGTATCTGAAGCCCCTCGGAATAAAGCGCGTTGACCGCCGAAAAA
    AAAAAAAAAAAAAAA
    ACAA1 (SEQ ID NO: 22; NM_001607.3).
    GGGTTCCCAGGCCGACTCTCCTTGTGGTTGGCTGAGGCTGGAGGTGGACGGGACTTT
    TGGAGGGTCGCTCGCGTCTGTTCGCAGAGCTGTGGGCGGAGTTGAGGCCTTGGAGG
    CTGAGATGTGGTTCTGCGCGTGTGCGGACGGCTGTCTGTTAACTCCGCGGTCAGTTC
    CCGGACTGGTGGCTGGTCTGCAGGGTTGACCTGCGCAATGCAGAGGCTGCAGGTAG
    TGCTGGGCCACCTGAGGGGTCCGGCCGATTCCGGCTGGATGCCGCAGGCCGCGCCTT
    GCCTGAGCGGTGCCCCGCAGGCCTCGGCCGCGGACGTGGTGGTGGTGCACGGGCGG
    CGCACGGCCATCTGCCGGGCGGGCCGCGGCGGCTTCAAGGACACCACCCCCGACGA
    GCTTCTCTCGGCAGTCATGACCGCGGTTCTCAAGGACGTGAATCTGAGGCCGGAACA
    GCTGGGGGACATCTGTGTCGGAAATGTGCTGCAGCCTGGGGCCGGGGCAATCATGG
    CCCGAATCGCCCAGTTTCTGAGTGACATCCCGGAGACTGTGCCTTTGTCCACTGTCA
    ATAGACAGTGTTCGTCGGGGCTACAGGCAGTGGCCAGCATAGCAGGTGGCATCAGA
    AATGGGTCTTATGACATTGGCATGGCCTGTGGGGTGGAGTCCATGTCCCTGGCTGAC
    AGAGGGAACCCTGGAAATATTACTTCGCGCTTGATGGAGAAGGAGAAGGCCAGAGA
    TTGCCTGATTCCTATGGGGATAACCTCTGAGAATGTGGCTGAGCGGTTTGGCATTTC
    ACGGGAGAAGCAGGATACCTTTGCCCTGGCTTCCCAGCAGAAGGCAGCAAGAGCCC
    AGAGCAAGGGCTGTTTCCAAGCTGAGATTGTGCCTGTGACCACCACGGTCCATGATG
    ACAAGGGCACCAAGAGGAGCATCACTGTGACCCAGGATGAGGGTATCCGCCCCAGC
    ACCACCATGGAGGGCCTGGCCAAACTGAAGCCTGCCTTCAAGAAAGATGGTTCTAC
    CACAGCTGGAAACTCTAGCCAGGTGAGTGATGGGGCAGCTGCCATCCTGCTGGCCC
    GGAGGTCCAAGGCAGAAGAGTTGGGCCTTCCCATCCTTGGGGTCCTGAGGTCTTATG
    CAGTGGTTGGGGTCCCACCTGACATCATGGGCATTGGACCTGCCTATGCCATCCCAG
    TAGCTTTGCAAAAAGCAGGGCTGACAGTGAGTGACGTGGACATCTTCGAGATCAAT
    GAGGCCTTTGCAAGCCAGGCTGCCTACTGTGTGGAGAAGCTACGACTCCCCCCTGAG
    AAGGTGAACCCCCTGGGGGGTGCAGTGGCCTTAGGGCACCCACTGGGCTGCACTGG
    GGCACGACAGGTCATCACGCTGCTCAATGAGCTGAAGCGCCGTGGGAAGAGGGCAT
    ACGGAGTGGTGTCCATGTGCATCGGGACTGGAATGGGAGCCGCTGCCGTCTTTGAAT
    ACCCTGGGAACTGAGTGAGGTCCCAGGCTGGAGGCGCTACGCAGACAGTCCTGCTG
    CTCTAGCAGCAAGGCAGTAACACCACAAAAGCAAAACCACATGGGAAAACTCAGC
    ACTGGTGGTGGTGGCAGTGGACAGATCAAGGCACTTCAACTCATTTGGAAAATGTG
    AACACTGATGACATGGTATAGGAGTGGGTGGGGTGTTGAGCCACCCATCAGACCCT
    CTTTAGCTGTGCAAGATAAAAGCAGCCTGGGTCACCCAGGCCACAAGGCCATGGTT
    AATTCTTAAGGCAAGGCAAATCCATGGATGAGAAGTGCAATGGGCATAGTAAAAGT
    GCATGAATTTATCTTAAAAAAAAAAAAAAAAAAAAAA
    INPP5J (SEQ ID NO: 23; NM_001284285.1).
    CAGGTTGAAATGGCTGATGACATCACTGGTTCCCGGGAGCGGTAGAGCTGGAGCCG
    GAGCCAAGGGAGTCCAGGCTGCCGGGGGCTGCAGACATGGAGGGCCAGAGCAGCA
    GGGGCAGCAGGAGGCCAGGGACCCGGGCTGGCCTGGGTTCCCTGCCCATGCCCCAG
    GGTGTTGCCCAAACTGGGGCACCCTCCAAGGTGGACTCAAGTTTTCAGCTCCCAGCA
    AAGAAGAACGCAGCCCTAGGACCCTCGGAACCAAGGTTGGCTCTGGCACCTGTAGG
    GCCACGGGCAGCTATGTCAGCTTCCTCGGAAGGACCGAGGCTGGCTCTGGCATCTCC
    CCGACCAATCCTGGCTCCACTGTGTACCCCTGAAGGGCAGAAAACAGCTACTGCCC
    ACCGCAGCTCCAGCCTGGCCCCAACATCTGTGGGCCAGCTGGTGATGTCTGCCTCAG
    CTGGACCAAAGCCTCCCCCAGCGACCACAGGCTCAGTTCTGGCTCCGACGTCCCTGG
    GGCTGGTGATGCCTGCCTCAGCAGGGCCAAGATCTCCCCCAGTCACCCTGGGGCCCA
    ATCTGGCCCCAACCTCCAGAGACCAGAAGCAGGAGCCACCTGCCTCCGTGGGACCC
    AAGCCAACACTGGCAGCCTCTGGCCTGAGCCTGGCCCTGGCTTCTGAGGAGCAGCC
    CCCAGAACTCCCCTCCACCCCTTCCCCGGTGCCCAGTCCAGTTCTGTCTCCAACTCAG
    GAACAGGCCCTGGCTCCAGCATCCACGGCATCAGGCGCAGCCTCTGTGGGACAGAC
    ATCAGCTAGAAAGAGGGATGCCCCAGCCCCTAGACCTCTCCCTGCTTCTGAGGGGC
    ATCTCCAGCCTCCAGCTCAGACATCTGGTCCTACAGGCTCCCCACCCTGCATCCAAA
    CCTCCCCAGACCCTCGGCTCTCCCCCTCCTTCCGAGCCCGGCCTGAGGCCCTCCACA
    GCAGCCCTGAGGATCCTGTTTTGCCACGGCCACCCCAGACCTTGCCCTTGGATGTGG
    GCCAGGGTCCTTCAGAGCCTGGCACTCACTCCCCTGGACTTCTGTCCCCCACCTTCC
    GGCCTGGGGCCCCCTCAGGCCAGACTGTGCCCCCACCTCTGCCCAAGCCACCCCGAT
    CACCCAGCCGTTCCCCAAGCCACTCCCCGAATCGCTCTCCCTGTGTTCCCCCAGCCC
    CTGACATGGCCCTCCCAAGGCTTGGCACACAGAGTACAGGGCCTGGCAGGTGCCTG
    AGCCCCAACCTTCAGGCCCAAGAAGCCCCAGCCCCAGTCACCACCTCCTCTTCTACA
    TCCACCCTGTCATCCTCCCCTTGGTCAGCTCAGCCTACCTGGAAGAGCGACCCCGGC
    TTCCGGATCACTGTGGTCACATGGAACGTGGGCACTGCCATGCCCCCAGACGATGTC
    ACATCCCTCCTCCACCTGGGCGGTGGTGACGACAGCGACGGCGCAGACATGATCGC
    CATAGGGTTGCAGGAAGTGAACTCCATGCTCAACAAGCGACTCAAGGACGCCCTCT
    TCACGGACCAGTGGAGTGAGCTGTTCATGGATGCGCTAGGGCCCTTCAACTTCGTGC
    TGGTGAGTTCGGTGAGGATGCAGGGTGTCATCCTGCTGCTGTTCGCCAAGTACTACC
    ACCTGCCCTTCCTGCGAGACGTGCAGACCGACTGCACGCGCACTGGCCTGGGCGGCT
    ACTGGGGTAACAAGGGTGGCGTGAGCGTGCGCCTGGCGGCCTTCGGGCACATGCTC
    TGCTTCCTGAACTGCCACTTGCCTGCGCATATGGACAAGGCGGAGCAGCGCAAAGA
    CAACTTCCAGACCATCCTCAGCCTCCAGCAGTTCCAAGGGCCGGGCGCACAGGGCA
    TCCTGGATCATGACCTCGTGTTCTGGTTCGGGGACCTGAACTTCCGCATTGAGAGCT
    ATGACCTGCACTTTGTCAAGTTTGCCATCGACAGTGACCAGCTCCATCAGCTCTGGG
    AGAAGGACCAGCTCAACATGGCCAAGAACACCTGGCCCATTCTGAAGGGCTTTCAG
    GAGGGGCCCCTCAACTTCGCTCCCACCTTCAAGTTTGATGTGGGTACCAACAAATAC
    GATACCAGTGCCAAGAAACGGAAGCCAGCTTGGACAGACCGTATCCTATGGAAGGT
    CAAGGCTCCAGGTGGGGGTCCCAGCCCCTCAGGACGGAAGAGCCACCGACTCCAGG
    TGACGCAGCACAGCTACCGCAGCCACATGGAATACACAGTCAGCGACCACAAGCCT
    GTGGCTGCCCAGTTCCTCCTGCAGTTTGCCTTCAGGGACGACATGCCACTGGTGCGG
    CTGGAGGTGGCAGATGAGTGGGTGCGGCCCGAGCAGGCGGTGGTGAGGTACCGCAT
    GGAAACAGTGTTCGCCCGCAGCTCCTGGGACTGGATCGGCTTATACCGGGTGGGTTT
    CCGCCATTGCAAGGACTATGTGGCTTATGTCTGGGCCAAACATGAAGATGTGGATGG
    GAATACCTACCAGGTAACATTCAGTGAGGAATCACTGCCCAAGGGCCATGGAGACT
    TCATCCTGGGCTACTATAGTCACAACCACAGCATCCTCATCGGCATCACTGAACCCT
    TCCAGATCTCGCTGCCTTCCTCGGAGTTGGCCAGCAGCAGCACAGACAGCTCAGGCA
    CCAGCTCAGAGGGAGAGGATGACAGCACACTGGAGCTCCTTGCACCCAAGTCCCGC
    AGCCCCAGTCCTGGCAAGTCCAAGCGACACCGCAGCCGCAGCCCGGGACTGGCCAG
    GTTCCCTGGGCTTGCCCTACGGCCCTCATCCCGTGAACGCCGTGGTGCCAGCCGTAG
    CCCCTCACCCCAGAGCCGCCGCCTGTCCCGAGTGGCTCCTGACAGGAGCAGTAATG
    GCAGCAGCCGGGGCAGTAGTGAAGAGGGGCCCTCTGGGTTGCCTGGCCCCTGGGCC
    TTCCCACCAGCTGTGCCTCGAAGCCTGGGCCTGTTGCCCGCCTTGCGCCTAGAGACT
    GTAGACCCTGGTGGTGGTGGCTCCTGGGGACCTGATCGGGAGGCCCTGGCGCCCAA
    CAGCCTGTCTCCTAGTCCCCAGGGCCATCGGGGGCTGGAGGAAGGGGGCCTGGGGC
    CCTGAGGGTGGGGTAGGCAGATGGGCCAAGGTGACCACCATTCTGCCTCAATCTTTT
    GCAAGCCCACCTGCCTCTCTCCTGCTGCTCCTCCAGCTGTATCTGCACCTGCCTCTCT
    GTCCTGGCCAGGGGTGGACAACTGGGGTCCCCCAAAACTCAGTCCTGGCACCTCAA
    CTGTGACAATCAGCAAAGCCCCACCCAGGCCCCCATCTGGGATGATGGGAGAGCTC
    TGGCAGATGTCCCAATCCTGGAGGTCATCCATTAGGAATTAAATTCTCCAGCCTCAA
    AAAAAAAAAAAAAAA
    OAZ1 (SEQ ID NO: 24; NM_004152.2).
    TTTTGCGAACGGCGAGCAGCGGCGGCGGCGCGGAGAGACGCAGCGGAGGTTTTCCT
    GGTTTCGGACCCCAGCGGCCGGATGGTGAAATCCTCCCTGCAGCGGATCCTCAATAG
    CCACTGCTTCGCCAGAGAGAAGGAAGGGGATAAACCCAGCGCCACCATCCACGCCA
    GCCGCACCATGCCGCTCCTAAGCCTGCACAGCCGCGGCGGCAGCAGCAGTGAGAGT
    TCCAGGGTCTCCCTCCACTGCTGTAGTAACCCGGGTCCGGGGCCTCGGTGGTGCTCC
    TGATGCCCCTCACCCACCCCTGAAGATCCCAGGTGGGCGAGGGAATAGTCAGAGGG
    ATCACAATCTTTCAGCTAACTTATTCTACTCCGATGATCGGCTGAATGTAACAGAGG
    AACTAACGTCCAACGACAAGACGAGGATTCTCAACGTCCAGTCCAGGCTCACAGAC
    GCCAAACGCATTAACTGGCGAACAGTGCTGAGTGGCGGCAGCCTCTACATCGAGAT
    CCCGGGCGGCGCGCTGCCCGAGGGGAGCAAGGACAGCTTTGCAGTTCTCCTGGAGT
    TCGCTGAGGAGCAGCTGCGAGCCGACCATGTCTTCATTTGCTTCCACAAGAACCGCG
    AGGACAGAGCCGCCTTGCTCCGAACCTTCAGCTTTTTGGGCTTTGAGATTGTGAGAC
    CGGGGCATCCCCTTGTCCCCAAGAGACCCGACGCTTGCTTCATGGCCTACACGTTCG
    AGAGAGAGTCTTCGGGAGAGGAGGAGGAGTAGGGCCGCCTCGGGGCTGGGCATCC
    GGCCCCTGGGGCCACCCCTTGTCAGCCGGGTGGGTAGGAACCGTAGACTCGCTCATC
    TCGCCTGGGTTTGTCCGCATGTTGTAATCGTGCAAATAAACGCTCACTCCGAATTAG
    CGGTGTATTTCTTGAAGTTTAATATTGTGTTTGTGATACTGAAGTATTTGCTTTAATT
    CTAAATAAAAATTTATATTTTACTTTTTTATTGCTGGTTTAAGATGATTCAGATTATC
    CTTGTACTTTGAGGAGAAGTTTCTTATTTGGAGTCTTTTGGAAACAGTCTTAGTCTTT
    TAACTTGGAAAGATGAGGTATTAATCCCCTCCATTGCTCTCCAAAAGCCAATAAAGT
    GATTACACCCGA
    PNOC (SEQ ID NO: 25; NM_006228).
    GCCAGGAAGGCTTGCAGGTTCTGCTGTTTGGTTGCTGAAGGGGGTCAGTGTGTGTAT
    GTGTCATGGAGGTGGGCAGGGAAGGGGAGGGCTGTGCGTGGGGGAGAGGATATAT
    ATGCTGGTGTGGCTGAGAAAGCGGAACCGAGCCTCGCATCCATCGGAGGGAGCCGG
    GGACTGACAGCTCTCAGCACCTGCTTCCTGCTCCTGCACCATGAAAGTCCTGCTTTG
    TGACCTGCTGCTGCTCAGTCTCTTCTCCAGTGTGTTCAGCAGTTGTCAGAGGGACTGT
    CTCACATGCCAGGAGAAGCTCCACCCAGCCCTGGACAGCTTCGACCTGGAGGTGTG
    CATCCTCGAGTGTGAAGAGAAGGTCTTCCCCAGCCCCCTCTGGACTCCATGCACCAA
    GGTCATGGCCAGGAGCTCTTGGCAGCTCAGCCCTGCCGCCCCAGAGCATGTGGCGG
    CTGCTCTCTACCAGCCGAGAGCTTCGGAGATGCAGCATCTGCGGCGAATGCCCCGA
    GTCCGGAGCTTGTTCCAGGAGCAGGAAGAGCCCGAGCCTGGCATGGAGGAGGCTGG
    TGAGATGGAGCAGAAGCAGCTGCAGAAGAGATTTGGGGGCTTCACCGGGGCCCGGA
    AGTCGGCCAGGAAGTTGGCCAATCAGAAGCGGTTCAGTGAGTTTATGAGGCAATAC
    TTGGTCCTGAGCATGCAGTCCAGCCAGCGCCGGCGCACCCTGCACCAGAATGGTAA
    TGTGTAGCCGGAAGGGGCGCTCCTCCCAGCTGTACCGGCCACTGCAACCCATGAGC
    GTCCAGGTGATCCCCCAAACAGCATGTGCTCAGCCCCAGACCTGCCGCCTGGGAATC
    AGGATTCCTTCTTCCCCAAGGCACTGAGCGCCTGCAGATCCCGCAGGCTTCGTTTGC
    CTCCAGAACCTTCCCGTCTGATTGTTCCTCCCCAGCCCCCTGGCATGTTTCACCACAA
    CCCTGTTGCTACATCAGAGTGTATTTTTGTAATTCCTCTAGCTACCATTTCAATAGCC
    CCATCTCTCCTGCTCACCCGCCTCTTGCCCCTTCTAGGGGCAGGTGAAAGGAATAGG
    AAATTGAACCTGGGGTTTTGACTTGCCACTGCCATAACTTGTTTGTAAAAGAGCTGT
    TCTTTTTGACTGATTGTTTTAAACAACGATTTCTCCATTAAACTTCTACTGAGCAAAT
    GGTTAATAAAAAAAAAAAAAAAAAA
    PDE4B (SEQ ID NO: 26; NM_002600).
    AGAGCGCTGCGGCCGCGGCGGTGCAGCAGAGGCGCCTCGGGCAGGAGGAGGGCGG
    CTTCTGCGAGGGCAGCCTGAGGTATTAAAAAGTGTCAGCAAACTGCATTGAATAAC
    AGACATCCTAAGAGGGGATATTTTCCACCTCTATAATGAAGAAAAGCAGGAGTGTG
    ATGACGGTGATGGCTGATGATAATGTTAAAGATTATTTTGAATGTAGCTTGAGTAAA
    TCCTACAGTTCTTCCAGTAACACACTTGGGATCGACCTCTGGAGAGGGAGAAGGTGT
    TGCTCAGGAAACTTACAGTTACCACCACTGTCTCAAAGACAGAGTGAAAGGGCAAG
    GACTCCTGAGGGAGATGGTATTTCCAGGCCGACCACACTGCCTTTGACAACGCTTCC
    AAGCATTGCTATTACAACTGTAAGCCAGGAGTGCTTTGATGTGGAAAATGGCCCTTC
    CCCAGGTCGGAGTCCACTGGATCCCCAGGCCAGCTCTTCCGCTGGGCTGGTACTTCA
    CGCCACCTTTCCTGGGCACAGCCAGCGCAGAGAGTCATTTCTCTACAGATCAGACAG
    CGACTATGACTTGTCACCAAAGGCGATGTCGAGAAACTCTTCTCTTCCAAGCGAGCA
    ACACGGCGATGACTTGATTGTAACTCCTTTTGCCCAGGTCCTTGCCAGCTTGCGAAG
    TGTGAGAAACAACTTCACTATACTGACAAACCTTCATGGTACATCTAACAAGAGGTC
    CCCAGCTGCTAGTCAGCCTCCTGTCTCCAGAGTCAACCCACAAGAAGAATCTTATCA
    AAAATTAGCAATGGAAACGCTGGAGGAATTAGACTGGTGTTTAGACCAGCTAGAGA
    CCATACAGACCTACCGGTCTGTCAGTGAGATGGCTTCTAACAAGTTCAAAAGAATGC
    TGAACCGGGAGCTGACACACCTCTCAGAGATGAGCCGATCAGGGAACCAGGTGTCT
    GAATACATTTCAAATACTTTCTTAGACAAGCAGAATGATGTGGAGATCCCATCTCCT
    ACCCAGAAAGACAGGGAGAAAAAGAAAAAGCAGCAGCTCATGACCCAGATAAGTG
    GAGTGAAGAAATTAATGCATAGTTCAAGCCTAAACAATACAAGCATCTCACGCTTTG
    GAGTCAACACTGAAAATGAAGATCACCTGGCCAAGGAGCTGGAAGACCTGAACAAA
    TGGGGTCTTAACATCTTTAATGTGGCTGGATATTCTCACAATAGACCCCTAACATGC
    ATCATGTATGCTATATTCCAGGAAAGAGACCTCCTAAAGACATTCAGAATCTCATCT
    GACACATTTATAACCTACATGATGACTTTAGAAGACCATTACCATTCTGACGTGGCA
    TATCACAACAGCCTGCACGCTGCTGATGTAGCCCAGTCGACCCATGTTCTCCTTTCT
    ACACCAGCATTAGACGCTGTCTTCACAGATTTGGAGATCCTGGCTGCCATTTTTGCA
    GCTGCCATCCATGACGTTGATCATCCTGGAGTCTCCAATCAGTTTCTCATCAACACA
    AATTCAGAACTTGCTTTGATGTATAATGATGAATCTGTGTTGGAAAATCATCACCTT
    GCTGTGGGTTTCAAACTGCTGCAAGAAGAACACTGTGACATCTTCATGAATCTCACC
    AAGAAGCAGCGTCAGACACTCAGGAAGATGGTTATTGACATGGTGTTAGCAACTGA
    TATGTCTAAACATATGAGCCTGCTGGCAGACCTGAAGACAATGGTAGAAACGAAGA
    AAGTTACAAGTTCAGGCGTTCTTCTCCTAGACAACTATACCGATCGCATTCAGGTCC
    TTCGCAACATGGTACACTGTGCAGACCTGAGCAACCCCACCAAGTCCTTGGAATTGT
    ATCGGCAATGGACAGACCGCATCATGGAGGAATTTTTCCAGCAGGGAGACAAAGAG
    CGGGAGAGGGGAATGGAAATTAGCCCAATGTGTGATAAACACACAGCTTCTGTGGA
    AAAATCCCAGGTTGGTTTCATCGACTACATTGTCCATCCATTGTGGGAGACATGGGC
    AGATTTGGTACAGCCTGATGCTCAGGACATTCTCGATACCTTAGAAGATAACAGGAA
    CTGGTATCAGAGCATGATACCTCAAAGTCCCTCACCACCACTGGACGAGCAGAACA
    GGGACTGCCAGGGTCTGATGGAGAAGTTTCAGTTTGAACTGACTCTCGATGAGGAA
    GATTCTGAAGGACCTGAGAAGGAGGGAGAGGGACACAGCTATTTCAGCAGCACAAA
    GACGCTTTGTGTGATTGATCCAGAAAACAGAGATTCCCTGGGAGAGACTGACATAG
    ACATTGCAACAGAAGACAAGTCCCCCGTGGATACATAATCCCCCTCTCCCTGTGGAG
    ATGAACATTCTATCCTTGATGAGCATGCCAGCTATGTGGTAGGGCCAGCCCACCATG
    GGGGCCAAGACCTGCACAGGACAAGGGCCACCTGGCCTTTCAGTTACTTGAGTTTGG
    AGTCAGAAAGCAAGACCAGGAAGCAAATAGCAGCTCAGGAAATCCCACGGTTGACT
    TGCCTTGATGGCAAGCTTGGTGGAGAGGGCTGAAGCTGTTGCTGGGGGCCGATTCTG
    ATCAAGACACATGGCTTGAAAATGGAAGACACAAAACTGAGAGATCATTCTGCACT
    AAGTTTCGGGAACTTATCCCCGACAGTGACTGAACTCACTGACTAATAACTTCATTT
    ATGAATCTTCTCACTTGTCCCTTTGTCTGCCAACCTGTGTGCCTTTTTTGTAAAACATT
    TTCATGTCTTTAAAATGCCTGTTGAATACCTGGAGTTTAGTATCAACTTCTACACAGA
    TAAGCTTTCAAAGTTGACAAACTTTTTTGACTCTTTCTGGAAAAGGGAAAGAAAATA
    GTCTTCCTTCTTTCTTGGGCAATATCCTTCACTTTACTACAGTTACTTTTGCAAACAG
    ACAGAAAGGATACACTTCTAACCACATTTTACTTCCTTCCCCTGTTGTCCAGTCCAAC
    TCCACAGTCACTCTTAAAACTTCTCTCTGTTTGCCTGCCTCCAACAGTACTTTTAACT
    TTTTGCTGTAAACAGAATAAAATTGAACAAATTAGGGGGTAGAAAGGAGCAGTGGT
    GTCGTTCACCGTGAGAGTCTGCATAGAACTCAGCAGTGTGCCCTGCTGTGTCTTGGA
    CCCTGCCCCCCACAGGAGTTGTACAGTCCCTGGCCCTGTTCCCTACCTCCTCTCTTCA
    CCCCGTTAGGCTGTTTTCAATGTAATGCTGCCGTCCTTCTCTTGCACTGCCTTCTGCG
    CTAACACCTCCATTCCTGTTTATAACCGTGTATTTATTACTTAATGTATATAATGTAA
    TGTTTTGTAAGTTATTAATTTATATATCTAACATTGCCTGCCAATGGTGGTGTTAAAT
    TTGTGTAGAAAACTCTGCCTAAGAGTTACGACTTTTTCTTGTAATGTTTTGTATTGTG
    TATTATATAACCCAAACGTCACTTAGTAGAGACATATGGCCCCCTTGGCAGAGAGGA
    CAGGGGTGGGCTTTTGTTCAAAGGGTCTGCCCTTTCCCTGCCTGAGTTGCTACTTCTG
    CACAACCCCTTTATGAACCAGTTTTGGAAACAATATTCTCACATTAGATACTAAATG
    GTTTATACTGAGCTTTTACTTTTGTATAGCTTGATAGGGGCAGGGGGCAATGGGATG
    TAGTTTTTACCCAGGTTCTATCCAAATCTATGTGGGCATGAGTTGGGTTATAACTGG
    ATCCTACTATCATTGTGGCTTTGGTTCAAAAGGAAACACTACATTTGCTCACAGATG
    ATTCTTCTGAATGCTCCCGAACTACTGACTTTGAAGAGGTAGCCTCCTGCCTGCCATT
    AAGCAGGAATGTCATGTTCCAGTTCATTACAAAAGAAAACAATAAAACAATGTGAA
    TTTTTATAATAAAATGTGAACTGATGTAGCAAATTACGCAAATGTGAAGCCTCTTCT
    GATAACACTTGTTAGGCCTCTTACTGATGTCAGTTTCAGTTTGTAAAATATGTTTCAT
    GCTTTCAGTTCAGCATTGTGACTCAGTAATTACAGAAAATGGCACAAATGTGCATGA
    CCAATGTATGTCTATGAACACTGCATTGTTTCAGGTGGACATTTTATCATTTTCAAAT
    GTTTCTCACAATGTATGTTATAGTATTATTATTATATATTGTGTTCAAATGCATTCTA
    AAGAGACTTTTATATGAGGTGAATAAAGAAAAGCATGATTAGATTAAAAAAA
    SCARB1 (SEQ ID NO: 27; NM_005505.4).
    GCTCAGGCCCCGCCCCTGCCGCCGGAATCCTGAAGCCCAAGGCTGCCCGGGGGCGG
    TCCGGCGGCGCCGGCGATGGGGCATAAAACCACTGGCCACCTGCCGGGCTGCTCCT
    GCGTGCGCTGCCGTCCCGGATCCACCGTGCCTCTGCGGCCTGCGTGCCCGGAGTCCC
    CGCCTGTGTCGTCTCTGTCGCCGTCCCCGTCTCCTGCCAGGCGCGGAGCCCTGCGAG
    CCGCGGGTGGGCCCCAGGCGCGCAGACATGGGCTGCTCCGCCAAAGCGCGCTGGGC
    TGCCGGGGCGCTGGGCGTCGCGGGGCTACTGTGCGCTGTGCTGGGCGCTGTCATGAT
    CGTGATGGTGCCGTCGCTCATCAAGCAGCAGGTCCTTAAGAACGTGCGCATCGACCC
    CAGTAGCCTGTCCTTCAACATGTGGAAGGAGATCCCTATCCCCTTCTATCTCTCCGTC
    TACTTCTTTGACGTCATGAACCCCAGCGAGATCCTGAAGGGCGAGAAGCCGCAGGT
    GCGGGAGCGCGGGCCCTACGTGTACAGGGAGTTCAGGCACAAAAGCAACATCACCT
    TCAACAACAACGACACCGTGTCCTTCCTCGAGTACCGCACCTTCCAGTTCCAGCCCT
    CCAAGTCCCACGGCTCGGAGAGCGACTACATCGTCATGCCCAACATCCTGGTCTTGG
    GTGCGGCGGTGATGATGGAGAATAAGCCCATGACCCTGAAGCTCATCATGACCTTG
    GCATTCACCACCCTCGGCGAACGTGCCTTCATGAACCGCACTGTGGGTGAGATCATG
    TGGGGCTACAAGGACCCCCTTGTGAATCTCATCAACAAGTACTTTCCAGGCATGTTC
    CCCTTCAAGGACAAGTTCGGATTATTTGCTGAGCTCAACAACTCCGACTCTGGGCTC
    TTCACGGTGTTCACGGGGGTCCAGAACATCAGCAGGATCCACCTCGTGGACAAGTG
    GAACGGGCTGAGCAAGGTTGACTTCTGGCATTCCGATCAGTGCAACATGATCAATG
    GAACTTCTGGGCAAATGTGGCCGCCCTTCATGACTCCTGAGTCCTCGCTGGAGTTCT
    ACAGCCCGGAGGCCTGCCGATCCATGAAGCTAATGTACAAGGAGTCAGGGGTGTTT
    GAAGGCATCCCCACCTATCGCTTCGTGGCTCCCAAAACCCTGTTTGCCAACGGGTCC
    ATCTACCCACCCAACGAAGGCTTCTGCCCGTGCCTGGAGTCTGGAATTCAGAACGTC
    AGCACCTGCAGGTTCAGTGCCCCCTTGTTTCTCTCCCATCCTCACTTCCTCAACGCTG
    ACCCGGTTCTGGCAGAAGCGGTGACTGGCCTGCACCCTAACCAGGAGGCACACTCC
    TTGTTCCTGGACATCCACCCGGTCACGGGAATCCCCATGAACTGCTCTGTGAAACTG
    CAGCTGAGCCTCTACATGAAATCTGTCGCAGGCATTGGACAAACTGGGAAGATTGA
    GCCTGTGGTCCTGCCGCTGCTCTGGTTTGCAGAGAGCGGGGCCATGGAGGGGGAGA
    CTCTTCACACATTCTACACTCAGCTGGTGTTGATGCCCAAGGTGATGCACTATGCCC
    AGTACGTCCTCCTGGCGCTGGGCTGCGTCCTGCTGCTGGTCCCTGTCATCTGCCAAA
    TCCGGAGCCAAGAGAAATGCTATTTATTTTGGAGTAGTAGTAAAAAGGGCTCAAAG
    GATAAGGAGGCCATTCAGGCCTATTCTGAATCCCTGATGACATCAGCTCCCAAGGGC
    TCTGTGCTGCAGGAAGCAAAACTGTAGGGTCCTGAGGACACCGTGAGCCAGCCAGG
    CCTGGCCGCTGGGCCTGACCGGCCCCCCAGCCCCTACACCCCGCTTCTCCCGGACTC
    TCCCAGCGGACAGCCCCCCAGCCCCACAGCCTGAGCCTCCCAGCTGCCATGTGCCTG
    TTGCACACCTGCACACACGCCCTGGCACACATACACACATGCGTGCAGGCTTGTGCA
    GACACTCAGGGATGGAGCTGCTGCTGAAGGGACTTGTAGGGAGAGGCTCGTCAACA
    AGCACTGTTCTGGAACCTTCTCTCCACGTGGCCCACAGGCCTGACCACAGGGGCTGT
    GGGTCCTGCGTCCCCTTCCTCGGGTGAGCCTGGCCTGTCCCGTTCAGCCGTTGGGCC
    CAGGCTTCCTCCCCTCCAAGGTGAAACACTGCAGTCCCGGTGTGGTGGCTCCCCATG
    CAGGACGGGCCAGGCTGGGAGTGCCGCCTTCCTGTGCCAAATTCAGTGGGGACTCA
    GTGCCCAGGCCCTGGCCACGAGCTTTGGCCTTGGTCTACCTGCCAGGCCAGGCAAAG
    CGCCTTTACACAGGCCTCGGAAAACAATGGAGTGAGCACAAGATGCCCTGTGCAGC
    TGCCCGAGGGTCTCCGCCCACCCCGGCCGGACTTTGATCCCCCCGAAGTCTTCACAG
    GCACTGCATCGGGTTGTCTGGCGCCCTTTTCCTCCAGCCTAAACTGACATCATCCTAT
    GGACTGAGCCGGCCACTCTCTGGCCGAAGTGGCCGCAGGCTGTGCCCCCGAGCTGC
    CCCCACCCCCTCACAGGGTCCCTCAGATTATAGGTGCCCAGGCTGAGGTGAAGAGG
    CCTGGGGGCCCTGCCTTCCGGGCGCTCCTGGACCCTGGGGCAAACCTGTGACCCTTT
    TCTACTGGAATAGAAATGAGTTTTATCATCTTTGAAAAATAATTCACTCTTGAAGTA
    ATAAACGTTTAAAAAAATGGGAAAAAAAAAAAAAAAAAA
    TMEM9B (SEQ ID NO: 28; NM_020644.2).
    GTGCGCGAACGGCTCCGGCCCGCACGGGTCGCCAGAGGCGACTGTGTGACACTCGG
    AGTTTGCTGGGGTCTCCGTGGGCGGGAGGACTTTCCAGCGCAATGGCGACTCCCTAA
    GCCCCGCAGCTTCTGCGCCCGGGAAAGATATCCAAGAGATGCAAAGCTCTACTGGG
    CCCAGGCTGCCACCCCAGAGGCCCCCTTCCGTCCCGGGGCCGGGGCTAGGCCAAGG
    CGGGCACCAGGACTGCCCAGCCTCCCGGCCCTTCGCACTGGTAACCGGTTCCGGGGC
    GGATGCTTTTTGCATCTGACCCGGCGCGCCCGGTGACGCCTTCGCGTCCAGACGGAA
    GTGCGGGCGGAGGATCCCCAGCCGGGTCCCAAGCCTGTGCCTGAGCCTGAGCCTGA
    GCCTGAGCCCGAGCCGGGAGCCGGTCGCGGGGGCTCCGGGCTGTGGGACCGCTGGG
    CCCCCAGCGATGGCGACCCTGTGGGGAGGCCTTCTTCGGCTTGGCTCCTTGCTCAGC
    CTGTCGTGCCTGGCGCTTTCCGTGCTGCTGCTGGCGCAGCTGTCAGACGCCGCCAAG
    AATTTCGAGGATGTCAGATGTAAATGTATCTGCCCTCCCTATAAAGAAAATTCTGGG
    CATATTTATAATAAGAACATATCTCAGAAAGATTGTGATTGCCTTCATGTTGTGGAG
    CCCATGCCTGTGCGGGGGCCTGATGTAGAAGCATACTGTCTACGCTGTGAATGCAAA
    TATGAAGAAAGAAGCTCTGTCACAATCAAGGTTACCATTATAATTTATCTCTCCATT
    TTGGGCCTTCTACTTCTGTACATGGTATATCTTACTCTGGTTGAGCCCATACTGAAGA
    GGCGCCTCTTTGGACATGCACAGTTGATACAGAGTGATGATGATATTGGGGATCACC
    AGCCTTTTGCAAATGCACACGATGTGCTAGCCCGCTCCCGCAGTCGAGCCAACGTGC
    TGAACAAGGTAGAATATGCACAGCAGCGCTGGAAGCTTCAAGTCCAAGAGCAGCGA
    AAGTCTGTCTTTGACCGGCATGTTGTCCTCAGCTAATTGGGAATTGAATTCAAGGTG
    ACTAGAAAGAAACAGGCAGACAACTGGAAAGAACTGACTGGGTTTTGCTGGGTTTC
    ATTTTAATACCTTGTTGATTTCACCAACTGTTGCTGGAAGATTCAAAACTGGAAGCA
    AAAACTTGCTTGATTTTTTTTTCTTGTTAACGTAATAATAGAGACATTTTTAAAAGCA
    CACAGCTCAAAGTCAGCCAATAAGTCTTTTCCTATTTGTGACTTTTACTAATAAAAAT
    AAATCTGCCTGTAAATTATCTTGAAGTCCTTTACCTGGAACAAGCACTCTCTTTTTCA
    CCACATAGTTTTAACTTGACTTTCAAGATAATTTTCAGGGTTTTTGTTGTTGTTGTTTT
    TTGTTTGTTTGTTTTGGTGGGAGAGGGGAGGGATGCCTGGGAAGTGGTTAACAACTT
    TTTTCAAGTCACTTTACTAAACAAACTTTTGTAAATAGACCTTACCTTCTATTTTCGA
    GTTTCATTTATATTTTGCAGTGTAGCCAGCCTCATCAAAGAGCTGACTTACTCATTTG
    ACTTTTGCACTGACTGTATTATCTGGGTATCTGCTGTGTCTGCACTTCATGGTAAACG
    GGATCTAAAATGCCTGGTGGCTTTTCACAAAAAGCAGATTTTCTTCATGTACTGTGA
    TGTCTGATGCAATGCATCCTAGAACAAACTGGCCATTTGCTAGTTTACTCTAAAGAC
    TAAACATAGTCTTGGTGTGTGTGGTCTTACTCATCTTCTAGTACCTTTAAGGACAAAT
    CCTAAGGACTTGGACACTTGCAATAAAGAAATTTTATTTTAAACCCAAGCCTCCCTG
    GATTGATAATATATACACATTTGTCAGCATTTCCGGTCGTGGTGAGAGGCAGCTGTT
    TGAGCTCCAATGTGTGCAGCTTTGAACTAGGGCTGGGGTTGTGGGTGCCTCTTCTGA
    AAGGTCTAACCATTATTGGATAACTGGCTTTTTTCTTCCTATGTCCTCTTTGGAATGT
    AACAATAAAAATAATTTTTGAAACATCCATCAGTGTATCTATCTATGTCTCCTAGTTT
    TTTCCTCCTCCCTCTTTTGCTGTATAATGAGATTGAAGATATAAAGACATTTTGTACC
    CTGTAAAAAAAA
    PPP6R3 (SEQ ID NO: 29; XM_005274081).
    AACTCAAGGCCTGCTTGATACGTCCGCCATTTTGGGCGCTTCGCTGATGGTGTCGGT
    GAGCGCGTTTCCCGCCTGAGCGCAACTAGCGGCGGGTCGTGGGCACCTCCAGGAGA
    GCTTGTTTCATATCCATATCCCACTGTATTCCTGCTAATCTGCTAATGCAGTAAATTG
    GAGGAAAACTGTTACCAGGATAACCTGTAATGGGCAAGGAGCCACAAAGAAGAAA
    ACATTTCTTTTAATTTTTAAACTTGGTTTGAAAGACCAGCATGTTTTGGAAATTTGAT
    CTTCACTCATCATCCCACATAGACACACTTCTAGAAAGAGAAGATGTAACACTGAAG
    GAGTTAATGGATGAGGAAGATGTTTTACAGGAATGTAAAGCTCAGAACCGCAAACT
    TATAGAGTTTCTGTTAAAAGCAGAATGTCTCGAAGATTTAGTCTCATTCATTATAGA
    AGAACCACCTCAAGACATGGATGAAAAGATCAGATACAAGTATCCAAATATATCTT
    GTGAGTTGCTCACTTCTGATGTCTCCCAGATGAATGATAGACTGGGAGAAGATGAAT
    CCTTGCTAATGAAATTATATAGCTTCCTCCTAAACGATTCCCCTTTGAATCCACTACT
    TGCCAGTTTCTTCAGCAAGGTGCTAAGTATTCTTATCAGCAGAAAACCAGAACAGAT
    TGTGGATTTCTTAAAGAAGAAGCATGATTTTGTAGACCTTATTATAAAGCACATAGG
    AACTTCTGCTATCATGGATTTGTTGCTCAGGCTCCTGACGTGTATCGAACCTCCACAG
    CCCAGGCAAGATGTGCTGAATTGGTTAAATGAGGAGAAAATTATCCAGAGGCTTGT
    GGAAATAGTTCATCCATCGCAAGAAGAAGATCGACATTCAAATGCATCACAATCAC
    TTTGTGAAATTGTTCGCCTGAGCAGAGACCAGATGTTACAAATTCAGAACAGTACAG
    AGCCCGACCCCCTGCTTGCCACTCTAGAAAAGCAAGAAATTATAGAGCAGCTTCTAT
    CAAATATTTTCCACAAGGAGAAAAATGAGTCAGCCATAGTCAGTGCAATCCAGATA
    TTGCTGACTTTACTTGAGACACGACGACCAACATTTGAAGGCCATATAGAGATCTGC
    CCACCAGGCATGAGCCATTCAGCTTGTTCAGTAAACAAGAGTGTTCTAGAAGCCATC
    AGAGGAAGACTTGGATCTTTTCATGAACTCCTGCTGGAGCCACCCAAGAAAAGTGT
    GATGAAGACCACATGGGGTGTGCTGGATCCTCCTGTGGGGAATACCCGGTTGAATGT
    CATTAGGTTGATATCCAGCCTGCTTCAAACCAATACCAGCAGTATAAATGGGGACCT
    TATGGAGCTGAATAGCATTGGAGTCATATTGAACATGTTCTTCAAGTATACATGGAA
    TAACTTTTTGCATACACAAGTGGAAATTTGTATTGCACTGATTCTTGCAAGTCCTTTT
    GAAAACACAGAAAATGCCACAATTACCGATCAAGACTCCACTGGTGATAATTTGTT
    ATTAAAACATCTTTTCCAAAAATGTCAATTAATAGAACGAATACTTGAAGCCTGGGA
    AATGAATGAGAAGAAACAGGCTGAGGGAGGAAGACGGCATGGTTACATGGGACAC
    CTAACGAGGATAGCTAACTGTATCGTGCACAGCACTGACAAGGGCCCCAACAGTGC
    ATTAGTGCAGCAGCTTATCAAAGATCTTCCCGACGAAGTCAGGGAACGATGGGAGA
    CGTTCTGCACAAGCTCCTTAGGAGAAACTAACAAGAGGAACACGGTAGATCTAGTT
    ACAACCTGCCATATTCATTCATCCAGTGATGATGAAATTGACTTTAAAGAAACGGGT
    TTCTCACAGGATTCTTCTTTGCAGCAAGCCTTTTCTGATTATCAGATGCAACAAATGA
    CGTCCAATTTTATTGACCAGTTTGGCTTCAACGATGAGAAGTTTGCAGATCAAGATG
    ACATTGGCAATGTTTCTTTTGATCGAGTATCAGACATCAACTTTACTCTCAATACAAA
    TGAAAGTGGAAATATTGCCTTGTTTGAAGCATGTTGTAAGGAAAGAATACAACAGTT
    TGATGATGGTGGCTCTGATGAGGAAGATATATGGGAGGAAAAGCACATCGCATTCA
    CACCAGAATCCCAAAGACGATCCAGCTCGGGGAGTACAGACAGTGAGGAAAGTAC
    AGACTCTGAAGAAGAAGATGGAGCAAAGCAAGACTTGTTTGAACCCAGCAGTGCCA
    ACACGGAGGATAAAATGGAGGTGGACCTGAGTGAACCACCCAACTGGTCAGCTAAC
    TTTGATGTCCCAATGGAAACAACCCACGGTGCTCCATTGGATTCTGTGGGATCTGAT
    GTCTGGAGCACAGAGGAGCCGATGCCAACTAAAGAGACGGGCTGGGCTTCTTTTTC
    AGAGTTCACGTCTTCCCTGAGCACAAAAGATTCTTTAAGGAGTAATTCTCCAGTGGA
    AATGGAAACCAGCACTGAACCCATGGACCCTCTGACTCCCAGTGCGGCTGCCCTGG
    CAGTGCAGCCAGAAGCGGCAGGCAGTGTGGCCATGGAAGCCAGCTCTGACGGAGA
    GGAGGATGCAGAAAGTACAGACAAGGTAACTGAGACAGTGATGAATGGCGGCATG
    AAGGAAACGCTCAGCCTCACTGTAGATGCCAAGACAGAGACTGCGGTCTTCAAAAG
    TGAGGAAGGGAAACTGTCTACCTCTCAAGATGCTGCTTGTAAAGACGCAGAGGAGT
    GTCCCGAGACTGCAGAGGCGAAGTGCGCGGCGCCCAGGCCTCCCAGCAGCAGTCCC
    GAGCAGAGTGCCTCCGATGCCTGTCTGTTGCTCCTTAGGACTGGCCAACCAAGCGCA
    CCAGGTGACACTTCAGTGAATGGCCCTGTATGACGGGTGACGTCTGCTGCTGCTGAC
    TGAGGACTGCAGACCGCCACCACTCAGGGGCTCTGGAGGGGTCAGCTGGAGCCCAC
    CAAGCTGTCACTGCTGCACTCACTCTGCAAGGGATCAGGACCAGCAACCTTTATATT
    CTAGATTCTAAGACATTGTACAGAGAAATTCAGAAGTGTAAAAATATTGCACATTGA
    CAAATACCAAGAATTTTTGCGTATGTTTATATTGTATTGTTCTAAATAATGGGTAGCC
    TGTGAAATAAGATCTTGCCACCCATGTAATAATAGTAGTAATACTATAGTTAAAATG
    GCTGTAAGAATAGTTTTATAAAAGTGAATACACAGATCTATTGTATTTGAAACATAA
    CTTTGACAATTATTAGTGTGACCAAAGTATTAGGCGGTTTTCATACATTTTTCACCTT
    GTACAAAATTATGAATTCATTTTTCCTCCAGGCCGACAAGGAGTTGTAGAATGAAAA
    TGCCCTCTAAGTGTTATTTTGGTTGTTCTAACTTACAAAAGTGATTTTGAATAAGAAA
    TATTTGGTGTTCTTTTTATAACCAGTTTTTGATTGGTAATTGTTTTCTGTATTGTTTAA
    AACGGATCAAAAATGTAAGTCTATTGGTAGAGATTAAGTAAAGTATTTATTGCTACA
    TCATAGTTGATAAATTGATGTTATCGTAAAGCCATATGTTCTGTTCAAGTCTTGTTTG
    CTTGAAATGATTATTCCTACAAGTGAAACACTAGACTATTTGGAGTGTATATGGCTT
    GTGTTTTGGGATTTTTTTTTTTTTTTTTTGGCTTTTGTTTTTGTTTGTTTTTTTGTTTCAT
    TTGGTAGTTCATCTGCCTTTTAACCCATTCACCAAAATTTACCTTGTTAACAAGCATC
    ACCAATGAACATTTCAGAGCAATCTGCATATTTAACAGACCTAAAATAAATCCTATT
    AGGCAAGTCAGTTGAAAATGCTCGTGCTGCTAATGGAATTAGAGTGCGTTCATTTTA
    CAGGCTAGTATTTTAAAAGTAGAAATCAAAATCTGGCACCGAAGCATGCTAATTGTT
    TACTGTACCTTGTGAGGTTTTCACTCATAAATTTAAACCAGTGTATTTTTTTAGAACT
    GGTTTGTGTATATATATAGTGATTATGGATACTAATTCAATGTAATTTATAATTTTCT
    ATGTCAATACAAAAATACATCACAGCCTTCTCAAACAGCTCAAGCAATATATTGTAT
    ATTGCCATATCGTCTGGTGAAAGGGTTAAATTACTTCACCTCTTGCACTTTTAGATGC
    AAATCAGTTTTTCATTTCTGTAATAGAAAATTATTCACGTATTTTTACATCATTTGTTT
    TTCCTGACCAGTATTTAAAACCAAAAGGATATTCTGAAAAATGGCCAACAATTTTTT
    TAGAAGTAGCATCCCAAGCAGCGTGCCTAAACATTACATTGCATATGGAAATAAAA
    GAATCAAACGTCTAATGCCTTATTATTTCTGATTTCCTTTTTCATTTTAAGTGGTGTG
    GAGATTCCAGCACTCCCAGGACAGTGGAGTCAGCAGTAAGCCCTGGGACAGGTGGC
    AAGGGTGGGTCCCTTGACCTTTGCACGCCTCCTCAGGAACCCCCTTTCCCGGGTGAG
    CCCCTCTCTGAAGAGACTGTCCTTGGGCCTCCTCTGGAAGCAGCACCCCCAGAGGAC
    AGGGCTCCTCCTGCTTGCCTCAGGGCTGCCTGACTTGAATGGCGTTGGACCTCGGGG
    ATTACTGGTAGATAATATGCTCTGGTCTCGCCTGGTGGTGAGTTTTGCCAGCCATGG
    CCAGGGTTTGGCTCCACTGGTGGCACACGTGGCCTCCGTGGTATGGACCTGGTGGCT
    TCTCCATCCCACTGTGGCCTCTGTGGTATGGACCTGGTGGCTTCTCCATCCTACCCAA
    GGTAACAGTGTCTTGCTTCATCCCACTGACTGCTGGGAGAGAGCCTCTGGGACTTTT
    CTTTGGGGCATCATTTTGTTTTGTCTTTCGTAGCAGGGAAAGGATATGACAATGGGG
    AGGACAGTTCTTTTGGAGGTTGGAGGGGCCAAGCCAAGGACAGGAGCAAGTGTGCC
    CTCATTTTGTTTCTACTTTTAATTTCTGTGTGTTGGCCATACTGAATTATGAGACTAA
    CAGATGTCTACAATACAATACCTGTATTCAAAATAACAAAAATAAAGCCTGATTCTT
    TGTTTCTAGAAA

Claims (24)

1. A radiation biodosimetry assay system, comprising a plurality of in vitro nucleic acid amplification reaction mixtures, each amplification reaction mixture comprising:
(a) a probe of at least 10 nucleotides directed to at least one of SEQ ID NOs: 1-39, or the complementary sequences thereof, labeled with a fluorescent dye and a quencher; and
(b) one or more primer pairs, each primer pair comprising primers of at least 10 nucleotides directed to at least one of SEQ ID NOs: 1-39, or a complementary sequence thereof.
2. The radiation biodosimetry assay system of claim 1, wherein the system comprises primers of at least 10 nucleotides and probes of at least 10 nucleotides directed to at least two of SEQ ID NOs: 1-39.
3. The radiation biodosimetry assay system of claim 2, wherein the system comprises primers of at least 10 nucleotides and probes of at least 10 nucleotides directed to at least three of SEQ ID NOs: 1-39.
4. The radiation biodosimetry assay system of claim 1, wherein the radiation biodosimetry assay system additionally comprises mRNA, or cDNA derived therefrom, from a subject exposed to ionizing radiation before the mRNA was obtained.
5. The radiation biodosimetry assay system of claim 1, wherein the in vitro nucleic acid amplification reaction mixtures are provided in a multi-well plate.
6. The radiation biodosimetry assay system of claim 5, wherein at least two nucleic acid probes directed to at least two different nucleic acid targets are in the same wells of the multi-well plate.
7. A radiation biomarker assay kit, comprising
a nucleic acid probe set comprising a plurality of nucleic acid probes of at least 10 nucleotides each that are directed to at least three of SEQ ID NOs: 1-39 or the complementary sequences thereof, the nucleic acid probe set further comprising a probe detectably labeled with a fluorescent dye and a quencher and configured for PCR amplification,
a set of primer pairs comprising a plurality of primer pairs each comprising primers of at least 10 nucleotides that are directed to at least three of SEQ ID NOs: 1-39 or the complementary sequences thereof, and
instructions for calculating an estimate of absorbed radiation dose from a fluorescence value obtained by contacting in vitro an mRNA sample from a human subject suspected of suffering from radiation exposure or cDNA derived therefrom to the nucleic acid probe set and a thermostable polymerase under PCR conditions.
8. The radiation biomarker assay kit of claim 7, wherein the nucleic acid probe set comprises probes of at least 10 nucleotides directed to at least four of SEQ ID NOs: 1-39.
9. The radiation biomarker assay kit of claim 7, wherein the nucleic acid probe set comprises probes of at least 10 nucleotides directed to at least five of SEQ ID NOs: 1-39.
10. The radiation biomarker assay kit of claim 7, further comprising radiation exposure positive and negative control mRNA samples or cDNAs thereof.
11. The radiation biomarker assay kit of claim 7, wherein the nucleic acid probes are provided in a multi-well plate.
12. A method for estimating absorbed dose of ionizing radiation exposure received by a subject, comprising
(i) determining the mRNA expression levels of mRNAs comprising at least one of SEQ ID NOs: 1-39 in a stabilized blood sample comprising mRNA from the subject to obtain an expression profile; and
(ii) transforming the gene expression profile into an estimate of absorbed radiation dose for the subject based on a mathematical algorithm.
13. (canceled)
14. (canceled)
15. The method of claim 12, wherein transforming in step (ii) comprises calculating an estimate of absorbed radiation dose from a fluorescence value obtained by contacting in vitro an mRNA sample from a human subject suspected of suffering from radiation exposure or cDNA derived therefrom to a nucleic acid probe set and a thermostable polymerase under PCR conditions.
16. The method of claim 15, wherein the nucleic acid probe set comprises a plurality of nucleic acid probes of at least 10 nucleotides each that are directed to at least three of SEQ ID NOs: 1-39 or the complementary sequences thereof, the nucleic acid probe set further comprising a probe detectably labeled with a fluorescent dye and a quencher and configured for PCR amplification.
17. The method of claim 15, wherein the mRNA sample from a human subject or cDNA derived therefrom is further contacted to a set of primer pairs comprising a plurality of primer pairs each comprising primers of at least 10 nucleotides that are directed to at least three of SEQ ID NOs: 1-39 or the complementary sequences thereof.
18. A method for radiation treatment triage of a subject in need thereof comprising:
(i) determining the mRNA expression levels of mRNAs comprising at least one of SEQ ID NOs: 1-39 in a stabilized blood sample comprising mRNA from the subject to obtain a gene expression profile; and
(ii) providing a suitable treatment for radiation exposure to the subject based on the expression levels of the genes.
19. (canceled)
20. (canceled)
21. The method of claim 18, further comprising transforming the gene expression profile into an estimate of absorbed radiation dose for the subject.
22. The method of claim 21, wherein transforming comprises calculating an estimate of absorbed radiation dose from a fluorescence value obtained by contacting in vitro an mRNA sample from a human subject suspected of suffering from radiation exposure or cDNA derived therefrom to a nucleic acid probe set and a thermostable polymerase under PCR conditions suitable for amplification of the mRNA or cDNA.
23. The method of claim 22, wherein the nucleic acid probe set comprises a plurality of nucleic acid probes of at least 10 nucleotides each that are directed to at least three of SEQ ID NOs: 1-39 or the complementary sequences thereof, the nucleic acid probe set further comprising a probe detectably labeled with a fluorescent dye and a quencher and configured for PCR amplification.
24. The method of claim 22, wherein the mRNA sample from a human subject or cDNA derived therefrom is further contacted to a set of primer pairs comprising a plurality of primer pairs each comprising primers of at least 10 nucleotides that are directed to at least three of SEQ ID NOs: 1-39 or the complementary sequences thereof.
US16/929,512 2014-08-19 2020-07-15 Radiation biodosimetry systems Pending US20200407792A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/929,512 US20200407792A1 (en) 2014-08-19 2020-07-15 Radiation biodosimetry systems

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462038969P 2014-08-19 2014-08-19
US14/823,433 US10435747B2 (en) 2014-08-19 2015-08-11 Radiation biodosimetry systems
US16/532,138 US10787710B2 (en) 2014-08-19 2019-08-05 Radiation biodosimetry systems
US16/929,512 US20200407792A1 (en) 2014-08-19 2020-07-15 Radiation biodosimetry systems

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/532,138 Division US10787710B2 (en) 2014-08-19 2019-08-05 Radiation biodosimetry systems

Publications (1)

Publication Number Publication Date
US20200407792A1 true US20200407792A1 (en) 2020-12-31

Family

ID=55525197

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/823,433 Active 2036-01-10 US10435747B2 (en) 2014-08-19 2015-08-11 Radiation biodosimetry systems
US16/532,138 Active US10787710B2 (en) 2014-08-19 2019-08-05 Radiation biodosimetry systems
US16/929,512 Pending US20200407792A1 (en) 2014-08-19 2020-07-15 Radiation biodosimetry systems

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US14/823,433 Active 2036-01-10 US10435747B2 (en) 2014-08-19 2015-08-11 Radiation biodosimetry systems
US16/532,138 Active US10787710B2 (en) 2014-08-19 2019-08-05 Radiation biodosimetry systems

Country Status (1)

Country Link
US (3) US10435747B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10435747B2 (en) * 2014-08-19 2019-10-08 Arizona Board Of Regents On Behalf Of Arizona State University Radiation biodosimetry systems
US20170363631A1 (en) 2014-12-09 2017-12-21 Arizona Board Of Regents On Behalf Of Arizona State University Plasma autoantibody biomarkers for basal like breast cancer
WO2017048709A1 (en) 2015-09-14 2017-03-23 Arizona Board Of Regents On Behalf Of Arizona State University Generating recominant affinity reagents with arrayed targets
US10648978B2 (en) 2017-02-09 2020-05-12 Mayo Foundation For Medical Education And Research Methods for detecting novel autoantibodies in Crohn's disease
CN109295200B (en) * 2018-09-27 2022-04-08 南方医科大学 Biological detection marker for high linear energy transfer ray radiation and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773882B2 (en) * 2000-05-01 2004-08-10 Gen-Probe, Incorporated Polynucleotide probes for detection and quantitation of candida species
US6962776B2 (en) * 2001-02-23 2005-11-08 Mayo Foundation For Medical Education And Research Methods and materials for evaluating cardiovascular conditions
US20060234272A1 (en) * 2005-03-31 2006-10-19 The Regents Of The University Of California Using gene panels to predict tissue sensitivity to ionizing radiation
US20090081655A1 (en) * 2001-11-30 2009-03-26 Angela Maria Bertagna Multiplex Real-time Quantitative PCR
US20100143926A1 (en) * 2003-10-14 2010-06-10 Life Technologies Corporation Classification of Patients Having Diffuse Large B-cell Lymphoma Based upon Gene Expression

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2189397A (en) * 1996-02-08 1997-08-28 Affymetrix, Inc. Chip-based speciation and phenotypic characterization of microorganisms
US20030175761A1 (en) * 2001-12-07 2003-09-18 Sabath Daniel E. Identification of genes whose expression patterns distinguish benign lymphoid tissue and mantle cell, follicular, and small lymphocytic lymphoma
US20110152115A1 (en) * 2003-09-03 2011-06-23 The United States of America, as represented by the Secretary, Department of Health and Methods for identifying, diagnosing, and predicting survival of lymphomas
EP1548126A1 (en) * 2003-12-22 2005-06-29 Bio-Rad Pasteur Solid support for control nucleic acid, and application thereof to nucleic acid detection
WO2005107412A2 (en) * 2004-04-30 2005-11-17 Rosetta Inpharmatics Llc Systems and methods for reconstruction gene networks in segregating populations
US20060286558A1 (en) * 2005-06-15 2006-12-21 Natalia Novoradovskaya Normalization of samples for amplification reactions
US8445198B2 (en) * 2005-12-01 2013-05-21 Medical Prognosis Institute Methods, kits and devices for identifying biomarkers of treatment response and use thereof to predict treatment efficacy
US20080076122A1 (en) * 2006-09-26 2008-03-27 The Regents Of The University Of California Characterizing exposure to ionizing radiation
AU2007318208B2 (en) * 2006-10-06 2013-10-24 Nestec S.A. Compositions and multiplex assays for measuring biological mediators of physiological health
WO2008127707A1 (en) * 2007-04-13 2008-10-23 Dana Farber Cancer Institute, Inc. Receptor tyrosine kinase profiling
WO2010135669A1 (en) * 2009-05-22 2010-11-25 Sabiosciences Corporation Arrays and methods for reverse genetic functional analysis
EP3054299B1 (en) 2010-08-13 2021-03-24 Arizona Board of Regents, a body corporate acting on behalf of Arizona State University Biomarkers for the early detection of breast cancer
DE102011005235B4 (en) * 2011-03-08 2017-05-24 Sirs-Lab Gmbh A method for identifying a subset of polynucleotides from an initial set of polynucleotides corresponding to the human genome for in vitro determination of a severity of the host response of a patient
WO2013019680A1 (en) 2011-08-04 2013-02-07 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For & On Behalf Of Arizona Cell-based materials and methods for defining pharmacogenetic differences in drug metabolism
CN103945930B (en) 2011-10-25 2016-10-05 亚利桑那董事会,代表亚利桑那州立大学行事的亚利桑那州法人团体 Programmable array
US20130136722A1 (en) * 2011-11-11 2013-05-30 The Board Of Trustees Of The University Of Illinois Methods of Ex Vivo Expansion of Blood Progenitor Cells, and Generation of Composite Grafts
US9442111B2 (en) 2011-12-14 2016-09-13 Arizona Board Of Regents Method and apparatus for measuring phosphorylation kinetics on large arrays
WO2013176774A1 (en) 2012-05-25 2013-11-28 Arizona Board Of Regents Microbiome markers and therapies for autism spectrum disorders
US9535070B2 (en) 2012-11-09 2017-01-03 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University High throughput detection of fusion proteins
WO2014120902A1 (en) 2013-01-31 2014-08-07 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Ari Autoantibody signature for the early detection of ovarian cancer
EP4036579A1 (en) 2013-03-15 2022-08-03 Arizona Board of Regents on behalf of Arizona State University Biosensor microarray compositions and methods
US9938523B2 (en) 2013-03-15 2018-04-10 Arizona Board Of Regents On Behalf Of Arizona State University Nucleic acid-tagged compositions and methods for multiplexed protein-protein interaction profiling
US20170176423A1 (en) 2014-03-25 2017-06-22 Arizona Board Of Regents On Behalf Of Arizona State University Magnetic programmable bead enzyme-linked immunosorbent assay
EP3137902A4 (en) 2014-04-28 2017-10-11 Arizona Board of Regents on behalf of Arizona State University Novel methods, bioassays, and biomarkers for hpv-related conditions
WO2015175755A1 (en) 2014-05-15 2015-11-19 Arizona Board Of Regents On Behalf Of Arizona State University Nucleic acid-guided ordered protein assemblies and methods
US10435747B2 (en) * 2014-08-19 2019-10-08 Arizona Board Of Regents On Behalf Of Arizona State University Radiation biodosimetry systems
US20170363631A1 (en) 2014-12-09 2017-12-21 Arizona Board Of Regents On Behalf Of Arizona State University Plasma autoantibody biomarkers for basal like breast cancer
US20160195546A1 (en) 2015-01-07 2016-07-07 Arizona Board Of Regents On Behalf Of Arizona State University Type 1 Diabetes Biomarkers
WO2016141044A1 (en) 2015-03-04 2016-09-09 Arizona Board Of Regents On Behalf Of Arizona State University Erbb4 inhibitors and methods of use thereof
WO2017048709A1 (en) 2015-09-14 2017-03-23 Arizona Board Of Regents On Behalf Of Arizona State University Generating recominant affinity reagents with arrayed targets
WO2017075141A1 (en) 2015-10-27 2017-05-04 Arizona Board Of Regents On Behalf Of Arizona State University High throughput identification of t-cell recognition antigens and epitopes
WO2017123648A1 (en) 2016-01-12 2017-07-20 Arizona Board Of Regents On Behalf Of Arizona State University Plasma autoantibody biomarkers for diagnosis of lung cancer
US20200386754A1 (en) 2016-06-14 2020-12-10 Arizona Board Of Regents On Behalf Of Arizona State University Identification and medical applications of anti-citrullinated-protein antibodies in rheumatoid arthritis
WO2018013531A1 (en) 2016-07-11 2018-01-18 Arizona Bopard Of Regents On Behalf Of Arizona State University Autoantibody biomarkers for the early detection of ovarian cancer
US10648978B2 (en) 2017-02-09 2020-05-12 Mayo Foundation For Medical Education And Research Methods for detecting novel autoantibodies in Crohn's disease
US10618932B2 (en) 2017-02-21 2020-04-14 Arizona Board Of Regents On Behalf Of Arizona State University Method for targeted protein quantification by bar-coding affinity reagent with unique DNA sequences
US11060133B2 (en) 2017-10-26 2021-07-13 Arizona Board Of Regents On Behalf Of Arizona State University Methods for detection and quantification of infectious carbapenem resistant Enterobacteriaceae (CRE)
US20190162725A1 (en) 2017-11-29 2019-05-30 Mitch Magee Materials and methods relating to antibody targets for tuberculosis serology
US20210163926A1 (en) 2018-01-04 2021-06-03 Arizona Board Of Regents On Behalf Of Arizona State University Versatile amplicon single-cell droplet sequencing-based shotgun screening platform to accelerate functional genomics
US20220042982A1 (en) 2018-06-12 2022-02-10 Arizona Board Of Regents On Behalf Of Arizona State University Adaptation of nappa for surface plasmon resonance imaging analyses

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773882B2 (en) * 2000-05-01 2004-08-10 Gen-Probe, Incorporated Polynucleotide probes for detection and quantitation of candida species
US6962776B2 (en) * 2001-02-23 2005-11-08 Mayo Foundation For Medical Education And Research Methods and materials for evaluating cardiovascular conditions
US20090081655A1 (en) * 2001-11-30 2009-03-26 Angela Maria Bertagna Multiplex Real-time Quantitative PCR
US20100143926A1 (en) * 2003-10-14 2010-06-10 Life Technologies Corporation Classification of Patients Having Diffuse Large B-cell Lymphoma Based upon Gene Expression
US20060234272A1 (en) * 2005-03-31 2006-10-19 The Regents Of The University Of California Using gene panels to predict tissue sensitivity to ionizing radiation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Diffenbach (PCR methods and Applications (1993) volume 3, pages S30-S37) (Year: 1993) *
Roux et al (PCR Methods and Applications (1995) volume 4, pages s185-s194) (Year: 1995) *
Thiel et al. (J Allergy Clin Immunol March 2012) (Year: 2012) *

Also Published As

Publication number Publication date
US20160083793A1 (en) 2016-03-24
US10787710B2 (en) 2020-09-29
US20200010899A1 (en) 2020-01-09
US10435747B2 (en) 2019-10-08

Similar Documents

Publication Publication Date Title
US20200407792A1 (en) Radiation biodosimetry systems
JP7115779B2 (en) Methods and uses thereof for standardized sequencing of nucleic acids
Ramírez-Salazar et al. Serum miRNAs miR-140-3p and miR-23b-3p as potential biomarkers for osteoporosis and osteoporotic fracture in postmenopausal Mexican-Mestizo women
Grace et al. Real-time quantitative RT-PCR assay of GADD45 gene expression changes as a biomarker for radiation biodosimetry
US11220716B2 (en) Methods for predicting the prognosis of breast cancer patient
Rhodes et al. Whole-blood RNA profiles associated with pulmonary arterial hypertension and clinical outcome
Toro et al. Plasma microRNAs as biomarkers for Lamin A/C-related dilated cardiomyopathy
Kao et al. 5-HTT mRNA level as a potential biomarker of treatment response in patients with major depression in a clinical trial
US20210148899A1 (en) Circulating rna signatures specific to preeclampsia
US20180216198A1 (en) Methods for predicting effectiveness of chemotherapy for a breast cancer patient
Kim et al. Cell death-associated ribosomal RNA cleavage in postmortem tissues and its forensic applications
CN110168106A (en) The Postoperative determination of predicted evolution phase patients with gastric cancer or the system of anticancer drug adaptability
Lee et al. Clinical significance of tyrosine hydroxylase mRNA transcripts in peripheral blood at diagnosis in patients with neuroblastoma
KR102150490B1 (en) Method and Composition for Detecting Parkinson&#39;s Disease by using epigenetic marker
US20110184712A1 (en) Predictive models and methods for diagnosing and assessing coronary artery disease
JP2023157965A (en) Method for detecting atopic dermatitis
JP2022164646A (en) Method for detecting severity of infantile diaper dermatitis
US20140194310A1 (en) Genes dysregulated in autism as biomarkers and targets for therapeutic pathways
US8597938B2 (en) System for providing control reactions for real time RT-PCR
RU2818352C1 (en) Method for evaluating resistance of malignant neoplasms to radiation therapy and set of tests for implementation thereof
US11104950B2 (en) Human blood molecular biodosimeter panel for distinguishing radiation exposure from inflammation stress
KR102610767B1 (en) Gene detection method using personal glucose meter
WO2022220299A1 (en) Method for detecting severity of infantile facial eczema
JP7222526B2 (en) Methods for detecting radiation exposure
Baldwin et al. Combined RT-qPCR of mRNA and microRNA targets within one fluidigm integrated fluidic circuit

Legal Events

Date Code Title Description
AS Assignment

Owner name: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY, ARIZONA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LABAER, JOSHUA;GILLIS, KRISTIN;WALLSTROM, GARRICK;AND OTHERS;REEL/FRAME:053216/0171

Effective date: 20151119

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED