US20200391276A1 - Wire mesh rivet - Google Patents
Wire mesh rivet Download PDFInfo
- Publication number
- US20200391276A1 US20200391276A1 US17/008,771 US202017008771A US2020391276A1 US 20200391276 A1 US20200391276 A1 US 20200391276A1 US 202017008771 A US202017008771 A US 202017008771A US 2020391276 A1 US2020391276 A1 US 2020391276A1
- Authority
- US
- United States
- Prior art keywords
- collar
- wire mesh
- shank
- rivet
- heat shield
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002184 metal Substances 0.000 claims abstract description 35
- 238000000034 method Methods 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 33
- 230000006835 compression Effects 0.000 abstract description 2
- 238000007906 compression Methods 0.000 abstract description 2
- 230000000452 restraining effect Effects 0.000 abstract 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000010962 carbon steel Substances 0.000 description 4
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- -1 e.g. Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21F—WORKING OR PROCESSING OF METAL WIRE
- B21F45/00—Wire-working in the manufacture of other particular articles
- B21F45/16—Wire-working in the manufacture of other particular articles of devices for fastening or securing purposes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B19/00—Bolts without screw-thread; Pins, including deformable elements; Rivets
- F16B19/04—Rivets; Spigots or the like fastened by riveting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21F—WORKING OR PROCESSING OF METAL WIRE
- B21F33/00—Tools or devices specially designed for handling or processing wire fabrics or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J15/00—Riveting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J15/00—Riveting
- B21J15/02—Riveting procedures
- B21J15/04—Riveting hollow rivets mechanically
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J15/00—Riveting
- B21J15/02—Riveting procedures
- B21J15/04—Riveting hollow rivets mechanically
- B21J15/046—Riveting hollow rivets mechanically by edge-curling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J15/00—Riveting
- B21J15/10—Riveting machines
- B21J15/28—Control devices specially adapted to riveting machines not restricted to one of the preceding subgroups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J15/00—Riveting
- B21J15/10—Riveting machines
- B21J15/30—Particular elements, e.g. supports; Suspension equipment specially adapted for portable riveters
- B21J15/32—Devices for inserting or holding rivets in position with or without feeding arrangements
- B21J15/323—Devices for inserting or holding rivets in position with or without feeding arrangements using a carrier strip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21K—MAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
- B21K1/00—Making machine elements
- B21K1/58—Making machine elements rivets
- B21K1/60—Making machine elements rivets hollow or semi-hollow rivets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/14—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B19/00—Bolts without screw-thread; Pins, including deformable elements; Rivets
- F16B19/02—Bolts or sleeves for positioning of machine parts, e.g. notched taper pins, fitting pins, sleeves, eccentric positioning rings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B19/00—Bolts without screw-thread; Pins, including deformable elements; Rivets
- F16B19/04—Rivets; Spigots or the like fastened by riveting
- F16B19/08—Hollow rivets; Multi-part rivets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/36—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
- F16F1/362—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers made of steel wool, compressed hair, woven or non-woven textile, or like materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/02—Sealings between relatively-stationary surfaces
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/162—Selection of materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/18—Construction facilitating manufacture, assembly, or disassembly
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2260/00—Exhaust treating devices having provisions not otherwise provided for
- F01N2260/20—Exhaust treating devices having provisions not otherwise provided for for heat or sound protection, e.g. using a shield or specially shaped outer surface of exhaust device
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/162—Selection of materials
- G10K11/168—Plural layers of different materials, e.g. sandwiches
Definitions
- This invention relates to wire mesh isolators for use in providing thermal and/or acoustical isolation for, among other things, the heat shields employed in vehicle exhaust systems.
- the resulting unitary isolator solves a variety of problems associated with multi-piece isolators, including difficulties arising from assembling multiple components in a manufacturing setting and the problem of separation of the isolator's components during shipping of assembled heat shields to vehicle manufacturers and/or during use of the heat shields.
- FIG. 1 shows representative examples of heat shields 7 for vehicle applications, where the bores through the heat shields are shown by the reference number 9 .
- isolators 11 have been installed in some of the bores.
- the volume available for installing an isolator is limited for various of the bore locations. This is especially so for the undersides (concave sides) of bores located near the top of raised sections of a shield. Forming a wire mesh collar in such a limited volume using equipment of the type disclosed in the '860 application can be challenging.
- the present invention in accordance with certain of its aspects, addresses this problem of forming a wire mesh isolator under conditions where the space available for producing the isolator's collar is limited. Both in connection with these aspects and with other aspects, the invention's methods and apparatus seek to simplify the installation of isolators in substrates, as well as to reduce the costs associated therewith.
- the invention provides a rivet ( 13 ) comprising a unitary wire mesh structure ( 19 ) which has a central bore ( 21 ) and comprises a collar ( 15 ) and a shank ( 17 ), wherein the average density of the collar ( 15 ) is greater than the average density of the shank ( 17 ), e.g., the average density is approximately 20% for the collar ( 15 ) and approximately 10% for the shank ( 17 ).
- the invention provides a rivet ( 13 ) comprising:
- the invention provides a rivet dispenser comprising a flexible strip ( 31 ) having a plurality of apertures ( 33 ) and at least one wire mesh rivet ( 13 ) in one of the apertures ( 33 ), said wire mesh rivet ( 13 ) comprising a collar ( 15 ) and a shank ( 17 ), said apertures ( 33 ) being sized to retain the shank ( 17 ) and to allow the collar ( 15 ) to be pushed through the aperture ( 33 ), each aperture ( 33 ) comprising a plurality of circumferential flexible fingers ( 35 ) formed by slits ( 37 ) in the flexible strip ( 31 ), wherein:
- the invention provides apparatus for forming a wire mesh isolator ( 11 ) comprising:
- the invention provides apparatus comprising a sleeve ( 47 ) and a wire mesh rivet ( 13 ) said wire mesh rivet ( 13 ) comprising a collar ( 15 ) whose outside diameter is OD collar , said sleeve ( 47 ) comprising a recess ( 49 ) for receiving the collar ( 15 ), said sleeve ( 47 ) having an outer surface whose maximum diameter at the location of the recess is OD sleeve , wherein OD collar and OD sleeve satisfy the relationship:
- the invention provides a method for making a wire mesh rivet ( 13 ) having a collar ( 15 ) and a shank ( 17 ), said method comprising:
- FIG. 1 is a perspective view of representative heat shields with which wire mesh isolators are used.
- FIG. 2 is a perspective, cross-sectional view of a wire mesh rivet constructed in accordance with certain aspects of the invention.
- FIG. 3 is a cross-sectional view of a wire mesh rivet wherein the rivet includes a metal insert in the form of a grommet and the grommet includes barbs which engage the rivet's wire mesh structure.
- FIG. 4 is a cross-sectional view of a wire mesh rivet wherein the rivet includes a metal insert in the form of a grommet and the grommet includes apertures which engage the rivet's wire mesh structure. As shown in this figure, the apertures extend through the entire thickness of the wall of the insert.
- FIG. 5 is a cross-sectional view of a wire mesh rivet wherein the rivet includes a metal insert in the form of a sleeve and the sleeve includes apertures which engage the rivet's wire mesh structure. As shown in this figure, the apertures extend through the entire thickness of the wall of the insert.
- FIG. 6 is a cross-sectional view of a wire mesh rivet wherein the rivet includes a metal insert that includes apertures which extend through the entire thickness of the wall of the insert. The figure illustrates the engagement of wire mesh with an aperture.
- FIGS. 7A and 7B are cross-sectional and top view views, respectively, of a metal insert in the form of a grommet which includes apertures which extend partially through the thickness of the wall of the insert.
- FIG. 8 is a perspective view of a dispensing strip carrying wire mesh rivets.
- FIG. 9 is a top view of the dispensing strip of FIG. 8 showing the flexible fingers used to engage the shanks of the mesh rivets.
- FIG. 10 is a perspective view illustrating equipment for forming a wire mesh isolator from a wire mesh rivet at a bore of heat shield.
- FIG. 11 is a perspective view of a portion of the isolator forming equipment of FIG. 10 with various parts removed to highlight features of the equipment's lower positioning assembly.
- FIG. 12 is a side view, partially in section, of a portion of the lower positioning assembly of the isolator forming equipment of FIG. 10 .
- FIG. 13 is a cross-sectional view of a portion of the upper forming assembly of the isolator forming equipment of FIG. 10 .
- FIG. 14 is a side view illustrating the use of a dispensing strip to provide wire mesh rivets to the isolator forming equipment of FIG. 10 . Various parts have been removed for clarity.
- FIG. 15 is a perspective view showing the formation of multiple isolators in a heat shield without the need to reposition the part.
- FIGS. 16A and 16B are perspective cross-sectional views of examples of wire mesh isolators produced from wire mesh rivets.
- FIG. 17 is a cross-sectional view showing a tool for forming a wire mesh tube into a wire mesh rivet. The tool is in its open position in this figure.
- FIG. 18A is a cross-sectional view showing the tool of FIG. 17 in its initial closed position.
- FIG. 18B is a cross-sectional view showing the configuration of the wire mesh tube at this point in the process.
- FIG. 19A is a cross-sectional view showing the configuration of the tool of FIG. 17 at the point where the rivet's collar has been formed.
- FIG. 19B is a cross-sectional view showing the configuration of the wire mesh tube at this point in the process.
- FIG. 20A is a cross-sectional view showing the configuration of the tool of FIG. 17 at the point where both the rivet's collar and its shank have been formed.
- FIG. 20B is a cross-sectional view showing the configuration of the wire mesh tube at this point in the process, i.e., it shows the completed wire mesh rivet.
- the invention provides wire mesh rivets for use in forming wire mesh isolators.
- FIG. 2 shows a representative configuration for such a rivet.
- the rivet comprises a unitary wire mesh structure 19 which (a) has a bore 21 and (b) comprises a collar 15 and a shank 17 .
- the unitary wire mesh structure is preferably formed from a continuous piece of wire mesh, although multiple pieces can be united to form the unitary structure if desired.
- mesh rivet 13 preferably includes a metal insert 23 which extends partially along central bore 21 .
- Metal insert 23 may be in the form of a grommet which has a collar which engages the collar of the unitary wire mesh structure (see FIGS. 3, 4, 6, and 7 ) or a simple sleeve without a collar (see FIG. 5 ). In either case, the primary function of the metal insert is to prevent the wire mesh from being excessively compressed when a heat shield is installed in a vehicle. As shown in FIG.
- such installation involves the insertion of a fastener 67 through the bore of the assembled isolator and the tightening of the fastener to a component of the vehicle, e.g., to a component of the vehicle's exhaust system.
- a fastener 67 through the bore of the assembled isolator and the tightening of the fastener to a component of the vehicle, e.g., to a component of the vehicle's exhaust system.
- substantial torque is typically applied to the fastener.
- the wall of the metal insert needs to have sufficient column strength to withstand the resulting compressive forces.
- FIG. 3 shows the use of barbs 25 on the outside surface of the metal insert for this purpose.
- the barb approach works satisfactorily, it is relatively expensive since a substantial amount of metal (e.g., on the order of 80%) needs to be removed from the part to form the barbs.
- FIGS. 4-7 shows an alternate approach for retaining a metal insert in the unitary mesh structure that is substantially less expensive in terms of material costs than the barb approach of FIG. 3 .
- at least two apertures 27 are formed in the outer surface of the wall of the metal insert.
- wire mesh enters into the apertures (see, for example, reference number 29 in FIG. 6 ) and thus substantially locks the insert and the sleeve together.
- the apertures can extend completely through the wall of the metal insert as shown by reference number 27 a in FIGS. 4-6 or only partially through the wall as shown by reference number 27 b in FIG. 7 .
- the apertures that extend completely through the wall can be produced by piercing the wall, while the apertures that extend partially through the wall can be produced by broaching.
- Broaching is generally less expensive than piercing. Also, because the broached apertures only extend partially through the insert's wall, the wall retains more of its original column strength which, as discussed above, is important in terms of withstanding the compressive forces applied to the insert during fastening of a heat shield to its supporting structure. For both these reasons, apertures that extend only partially through the wall of the insert are generally preferred.
- the average wire mesh density of the mesh rivet's collar is greater than the average wire mesh density of its shank.
- the average density of the collar is substantially equal to the average density of the finished isolator, while the average density of the shank is substantially less than the finished density.
- the ratio of the average density of the rivet's shank to the average density of the rivet's collar is in the range of 1:2 to 1:3, preferably in the range of 1:2 to 1:2.5, and most preferably, approximately 1:2.
- the density of the collar will depend on the particular application, but generally, when expressed in percent, the average density of the rivet's collar is in the range of 15% to 25%. Accordingly, the density of the shank will generally be in the range of 7.5% to 12.5%.
- Preferred collar and shank densities are approximately 20% for the collar and approximately 10% for the shank.
- FIG. 17 shows tool 70 in its open condition with a rolled mesh tube 73 placed over an arbor 71 and, in this case, a barbed metal insert 23 placed on top of the mesh tube on the same arbor.
- FIG. 18A shows an upper forming sleeve 75 coming down over arbor 71 and preparing to (a) drive the metal insert 23 into the mesh tube and (b) form the collar 15 of the wire mesh rivet 13 .
- the mesh tube is supported on the bottom by stationary member 77 .
- FIG. 18 -B shows the shape of the wire mesh tube at this point in the process.
- FIG. 19A shows the upper forming sleeve 75 forming and compressing collar 15 from the upper portion of the mesh tube. What happens here that needs to be understood is that as the upper forming sleeve is coming down it bulges the mesh out just above spring-loaded sleeve 79 . In particular, the shoulder at the top of spring-loaded sleeve 79 prevents the mesh tube from traveling downward. The more the upper sleeve goes down the more the mesh encroaches over the spring-loaded sleeve further preventing the mesh tube and, in particular the mesh shank, from traveling axially. As a result of this process, the densities of both the collar and the shank are increased, with the density of the collar being increased much more than the density of the shank.
- FIG. 19A shows the resulting structure.
- FIG. 20A shows the upper sleeve continuing even further downward, but in this case it has overcome the springs (not shown) of spring-loaded sleeve 79 . As a result, the shank portion of the tube is further compressed to its final density.
- FIG. 17D-2 shows the resulting finished wire mesh rivet 13 with the rivet's collar 15 having a higher density than its shank 17 .
- arbor 21 prevents the mesh from flowing into the bore of the rivet as collar 15 is formed. That is, the wire mesh enters the aperture, but is stopped from entering the rivet's bore by the arbor. Wire mesh also enters apertures 27 b as the collar is formed in cases where apertures which extend only partially through the thickness of the wall of the metal insert are used.
- the wire mesh making up the wire mesh structure can be composed of various materials and those materials can be subjected to various treatments (including coatings) either before or after being formed into a mesh.
- suitable materials and treatments include, without limitation, carbon steel, stainless steel, 300 and 400 series, tin-plated carbon steel, zinc-plated carbon steel, and galvanized carbon steel.
- the wires making up the wire mesh can have various cross-sections, including, without limitation, round, hexagon, octagon, square, and flat.
- the wire mesh is preferably a knitted wire mesh, although other types of wire meshes, e.g., woven and expanded metal meshes, can be used if desired.
- the wire mesh rivets are preferably mounted in a dispensing strip prior to being provided to users, e.g., heat shield manufacturers.
- FIGS. 8 and 9 show a suitable configuration for such a dispensing strip.
- dispensing strip 31 includes a plurality of apertures 33 sized to received the shanks 17 of rivets 13 and to allow collars 15 to be pushed through the apertures.
- Apertures 33 comprise a plurality of flexible fingers 35 formed by slits 37 in the body of the strip.
- dispensing strip 31 can include notches 38 for use in feeding the strip to isolator forming equipment, e.g., equipment 39 of FIGS. 10 and 11 discussed below.
- the dispensing strip facilitates automation of the process which converts wire mesh rivets into wire mesh isolators.
- the dispensing strip needs to satisfy a number of competing criteria.
- the strip needs to hold the rivets sufficiently securely so that the rivets do not become misaligned or dislodged from the strip during transport and handling.
- the strip will be coiled in a shipping container and dispensed directly from the container.
- the strip is preferably flexible enough to be wrapped into a coil while still minimizing misalignment and dislodgement of the rivets when coiled.
- the rivets must be readily dispensable from the strip.
- the strip must have sufficient strength so that it does not buckle under the forces applied to the rivet during dispensing. Such buckling is undesirable since it can cause the strip to partially or completely lose engagement with the strip's feed mechanism.
- the strips must be inexpensive so that they can be a disposable item.
- the number and length-to-width ratio of flexible fingers 35 are important parameters in meeting these criteria for a strip composed of a low cost plastic material, such as plasticized styrene.
- a low cost plastic material such as plasticized styrene.
- less than 3 flexible fingers results in unacceptably high dispensing forces, as does a length-to-width ratio of less than 1:1.
- more than 16 flexible fingers results in unacceptable levels of dislodgement of the rivets from the strip, as does a length-to-width ratio greater than 3:1.
- the number of fingers 35 per aperture is preferably in the range of 3-16.
- this parameter is preferably in the range of 1:1 to 3:1, e.g., 1.6:1.
- a wire mesh rivet 13 is transformed into a wire mesh isolator 11 by inserting the rivet's shank 17 in a bore in a substrate 65 (e.g., a bore 9 in a heat shield) with collar 15 engaging one side of the substrate (the proximal side of the substrate) and then compressing the portion of the shank which extends beyond the distal side of the substrate into a second collar 63 (see FIG. 16 ).
- the proximal and distal collars 15 and 63 of the finished isolator 11 have substantially equal densities since unequal densities can cause the isolator to have compromised thermal and/or vibrational properties.
- the proximal and distal collars also will generally have substantially equal diameters and thicknesses, although they can be unequal if desired (see, for example, the collars of FIG. 16 ).
- FIGS. 10 and 11 show representative isolator forming equipment 39 which takes advantage of this aspect of the invention.
- the equipment includes an upper forming assembly 41 and a lower positioning assembly 43 .
- the reference to the “upper” forming assembly and the “lower” positioning assembly are only for convenience of description, it being understood that the positioning assembly and the forming assembly can be reversed or can be oriented at an angle other than vertical, e.g., horizontally, if desired.
- FIG. 10 shows the equipment 39 in use while FIG. 11 shows the same equipment with heat shield 7 removed as well as much of the upper forming assembly 41 .
- the limited amount of equipment needed for the lower positioning assembly 43 is evident in FIG. 11 .
- FIG. 12 shows the lower positioning assembly 43 in more detail.
- the assembly comprises two main parts—a mandrel 45 which engages the bore 21 of the rivet's wire mesh structure 19 and a sleeve 47 which includes a recess 49 which receives the rivet's preformed collar 15 and maintains the collar's shape as the wire mesh collar on the opposite side of the substrate is formed.
- a mandrel 45 which engages the bore 21 of the rivet's wire mesh structure 19
- a sleeve 47 which includes a recess 49 which receives the rivet's preformed collar 15 and maintains the collar's shape as the wire mesh collar on the opposite side of the substrate is formed.
- the OD of sleeve 47 can be held to be within 10% of the OD of the rivet's collar, i.e., OD sleeve /OD collar ⁇ 1.1.
- OD sleeve /OD collar ⁇ 1.1 a small footprint for the lower positioning assembly greatly facilitates the formation of wire mesh isolators for substrates having curved surfaces, such as various of the heat shields of FIG. 1 .
- FIG. 13 shows the upper forming assembly 41 in more detail.
- This assembly includes a mandrel 51 which engages the bore 21 of the rivet's wire mesh structure 19 and a tamp 53 which, during use of the assembly, moves downward to the position shown in FIG. 13 to compress the wire mesh of shank 17 within the confines of sleeve 55 , i.e., within the cavity 56 formed by the inner wall of sleeve 55 , to form the second collar of the isolator, i.e., the collar on the upper side of the heat shield in FIG. 10 .
- mandrels 45 and 51 of the lower positioning assembly and the upper forming assembly maintain an open bore along the entire length of the rivet and, as it is formed, the finished isolator.
- recess 49 in sleeve 47 of positioning assembly 43 constrains collar 15 from changing its shape as forming assembly 41 forms the second collar.
- finished wire mesh isolators are produced which have well defined OD and ID dimensions and collars with substantially equal wire mesh densities.
- forming assembly 41 preferably includes a sensor 57 , e.g., a proximity switch, for detecting the position of sleeve 55 .
- the sensor is connected to a control system (not shown) by wires 59 (see FIGS. 10 and 11 ).
- the control system allows mandrel 51 and tamp 53 to move towards the substrate only if the sensor indicates that sleeve 55 is in its most forward position, i.e., the control system only allows the mandrel and tamp to move forward if sleeve 55 is in engagement with the surface of the substrate, thus preventing an operator's hands from coming into contact with the mandrel and tamp.
- Sleeve 55 is itself lightly sprung so that its motion does not present a hazard to personnel operating the forming equipment.
- the force applied by the sleeve to the substrate is less than 10 pounds. In this way, the forming equipment avoids injury to operating personnel without the need for a light curtain or similar device to ensure that the equipment is not operated while the operator's hands are close to the equipment.
- more than one sensor for the position of sleeve 55 can be employed to provide redundant protection.
- FIG. 14 shows such an embodiment.
- this figure shows positioning assembly 43 after it has removed a mesh rivet 13 from strip 31 and has moved it upward to enter the bore of a substrate (not shown).
- Forming assembly 41 (not shown in this figure) would then compress the shank 17 of the rivet to form second collar 63 of the finished isolator 11 .
- FIG. 15 shows an embodiment in which multiple isolators are formed at different locations of a single substrate (e.g., a single heat shield) without the need to reposition the part.
- supporting structures 61 hold a plurality of upper forming assemblies 41 and lower positioning assemblies 43 in place relative to heat shield 7 so that isolators can be formed at each of the shield's bores.
- the isolators are formed simultaneously, although sequential formation (e.g., singly or in groups) can be employed if desired.
- dispensing strips 31 are preferably used to provide wire mesh rivets to each of the lower positioning assemblies.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Textile Engineering (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Insertion Pins And Rivets (AREA)
- Wire Processing (AREA)
- Forging (AREA)
- Catching Or Destruction (AREA)
Abstract
A wire mesh rivet (13) is provided which is used to produce a wire mesh isolator (11) in a bore (9) of a substrate such as a heat shield (7) for a vehicle exhaust system. The rivet (13) comprises a unitary wire mesh structure (19) which has a collar (15) and a shank (17). The collar (15) has a higher density than the shank (17), e.g., the collar (15) has the density of the finished isolator (11). The rivet (13) is formed into the finished isolator (11) by compressing the shank (17) to form a second collar, while restraining the original collar (15) from substantially changing its shape. The rivet (13) can include a metal insert (23) which prevents the wire mesh of the finished isolator (11) from experiencing high levels of compression when the substrate is fastened to its supporting structure. The rivets (13) can be carried by a dispensing strip (31) and can be formed into the finished isolator (11) using forming equipment (39) whose dimensions are compatible with the limited space available with some substrates.
Description
- This application is a continuation of co-pending U.S. application Ser. No. 15/582,860 filed May 1, 2017, which is a division of U.S. application Ser. No. 14/522,957 filed Oct. 24, 2014, now U.S. Pat. No. 9,651,075, which is a division of U.S. application Ser. No. 13/130,605 filed May 23, 2011, now U.S. Pat. No. 8,870,510, which is the U.S. national phase under 35 USC § 371 of International Application No. PCT/US09/65161 filed Nov. 19, 2009, which claims the benefit under 35 USC § 119(e) of U.S. Provisional Application No. 61/118,506 filed Nov. 28, 2008.
- The contents of U.S. application Ser. Nos. 15/582,860, 14/522,957, and 13/130,605 and U.S. Provisional Application No. 61/118,506 are hereby incorporated by reference in their entireties.
- This invention relates to wire mesh isolators for use in providing thermal and/or acoustical isolation for, among other things, the heat shields employed in vehicle exhaust systems.
- Commonly-assigned U.S. Patent Publication No. 2006/0219860, the contents of which are incorporated herein by reference, discloses unitary wire mesh isolators which are formed by inserting a wire mesh sleeve through a bore in a substrate, e.g., through a bore in a heat shield for a vehicle exhaust system, and then compressing the portions of the sleeve that extend on either side of the substrate into collars larger than the bore so as to trap the wire mesh in place at the bore and form the desired isolator. As detailed in the '860 application, the resulting unitary isolator solves a variety of problems associated with multi-piece isolators, including difficulties arising from assembling multiple components in a manufacturing setting and the problem of separation of the isolator's components during shipping of assembled heat shields to vehicle manufacturers and/or during use of the heat shields.
- Because the collars on both sides of the substrate are formed simultaneously in the '860 application, similar forming equipment is needed on each side of the substrate. For many applications, the use of such equipment is entirely acceptable. However, for some applications, only a limited amount of space is available on one side of the substrate. In particular, heat shields often have a concave and a convex side, with the concave side having a limited volume, especially in the region of the bores where the isolators are located.
-
FIG. 1 shows representative examples ofheat shields 7 for vehicle applications, where the bores through the heat shields are shown by thereference number 9. In this figure,isolators 11 have been installed in some of the bores. As is evident fromFIG. 1 , the volume available for installing an isolator is limited for various of the bore locations. This is especially so for the undersides (concave sides) of bores located near the top of raised sections of a shield. Forming a wire mesh collar in such a limited volume using equipment of the type disclosed in the '860 application can be challenging. - The present invention, in accordance with certain of its aspects, addresses this problem of forming a wire mesh isolator under conditions where the space available for producing the isolator's collar is limited. Both in connection with these aspects and with other aspects, the invention's methods and apparatus seek to simplify the installation of isolators in substrates, as well as to reduce the costs associated therewith.
- In accordance with a first aspect, the invention provides a rivet (13) comprising a unitary wire mesh structure (19) which has a central bore (21) and comprises a collar (15) and a shank (17), wherein the average density of the collar (15) is greater than the average density of the shank (17), e.g., the average density is approximately 20% for the collar (15) and approximately 10% for the shank (17).
- In accordance with a second aspect, the invention provides a rivet (13) comprising:
-
- (a) a unitary wire mesh structure (19) which has a central bore (21) and comprises a collar (15) and a shank (17); and
- (b) a metal insert (23) at least a part of which is within the central bore (21);
wherein the metal insert (23) comprises a wall which has an exterior surface and the exterior surface comprises at least two apertures (27) for engaging the wire mesh of the central bore (21) of the unitary wire mesh structure (19).
- In accordance with a third aspect, the invention provides a rivet dispenser comprising a flexible strip (31) having a plurality of apertures (33) and at least one wire mesh rivet (13) in one of the apertures (33), said wire mesh rivet (13) comprising a collar (15) and a shank (17), said apertures (33) being sized to retain the shank (17) and to allow the collar (15) to be pushed through the aperture (33), each aperture (33) comprising a plurality of circumferential flexible fingers (35) formed by slits (37) in the flexible strip (31), wherein:
-
- (a) the number of flexible fingers (35) per aperture (33) is between 3 and 16; and
- (b) the length-to-width ratio of each flexible finger (35) is in the range of 1:1 to 3:1, e.g., 1.6:1.
- In accordance with a fourth aspect, the invention provides apparatus for forming a wire mesh isolator (11) comprising:
-
- (a) a sleeve (55) which forms a cavity in which wire mesh is compressed, said sleeve (55) having a substrate engaging position; and
- (b) a sensor (57) for determining when the sleeve (55) is in the substrate engaging position;
wherein: - (i) the apparatus prevents compression of the wire mesh prior to the sensor (57) signalling that the sleeve (55) is in its substrate engaging position; and
- (ii) the force applied to the substrate (7,65) by the sleeve (55) when the sleeve (55) is in its substrate engaging position is less than 10 pounds.
- In accordance with a fifth aspect, the invention provides apparatus comprising a sleeve (47) and a wire mesh rivet (13) said wire mesh rivet (13) comprising a collar (15) whose outside diameter is ODcollar, said sleeve (47) comprising a recess (49) for receiving the collar (15), said sleeve (47) having an outer surface whose maximum diameter at the location of the recess is ODsleeve, wherein ODcollar and ODsleeve satisfy the relationship:
-
ODsleeve/ODcollar≤1.1. - In accordance with a sixth aspect, the invention provides a method for making a wire mesh rivet (13) having a collar (15) and a shank (17), said method comprising:
-
- (a) providing a wire mesh tube (73) having a central bore;
- (b) supporting the tube (73) by:
- (i) inserting a first portion of the tube (73) into a first cavity (81), said first cavity (81) having a fixed bottom (77) and a moveable wall, e.g. a spring-loaded wall (79); and
- (ii) inserting an arbor (71) into the tube's bore;
- (c) surrounding a second portion of the tube (73) with a second cavity (83);
- (d) reducing the volume of the second cavity (83) to form the rivet's collar (15) by compressing the second portion of the tube (73) while not substantially reducing the volume of the first cavity (81); and
- (e) reducing the volume of the first cavity (81) through movement of the moveable wall (79) relative to the fixed bottom (77) to form the rivet's shank (17) by compressing the first portion of the tube (73);
wherein the second portion of the tube (73) is compressed to a greater extent than the first portion of the tube (73) so that the density of the collar (15) is greater than the density of the shank (17).
- The reference numbers used in the above summaries of the various aspects of the invention are only for the convenience of the reader and are not intended to and should not be interpreted as limiting the scope of the invention. More generally, it is to be understood that both the foregoing general description and the following detailed description are merely exemplary of the invention and are intended to provide an overview or framework for understanding the nature and character of the invention.
- Additional features and advantages of the invention are set forth in the detailed description which follows and, in part, will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein. The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. It is to be understood that the various features of the invention disclosed in this specification and in the drawings can be used in any and all combinations.
-
FIG. 1 is a perspective view of representative heat shields with which wire mesh isolators are used. -
FIG. 2 is a perspective, cross-sectional view of a wire mesh rivet constructed in accordance with certain aspects of the invention. -
FIG. 3 is a cross-sectional view of a wire mesh rivet wherein the rivet includes a metal insert in the form of a grommet and the grommet includes barbs which engage the rivet's wire mesh structure. -
FIG. 4 is a cross-sectional view of a wire mesh rivet wherein the rivet includes a metal insert in the form of a grommet and the grommet includes apertures which engage the rivet's wire mesh structure. As shown in this figure, the apertures extend through the entire thickness of the wall of the insert. -
FIG. 5 is a cross-sectional view of a wire mesh rivet wherein the rivet includes a metal insert in the form of a sleeve and the sleeve includes apertures which engage the rivet's wire mesh structure. As shown in this figure, the apertures extend through the entire thickness of the wall of the insert. -
FIG. 6 is a cross-sectional view of a wire mesh rivet wherein the rivet includes a metal insert that includes apertures which extend through the entire thickness of the wall of the insert. The figure illustrates the engagement of wire mesh with an aperture. -
FIGS. 7A and 7B are cross-sectional and top view views, respectively, of a metal insert in the form of a grommet which includes apertures which extend partially through the thickness of the wall of the insert. -
FIG. 8 is a perspective view of a dispensing strip carrying wire mesh rivets. -
FIG. 9 is a top view of the dispensing strip ofFIG. 8 showing the flexible fingers used to engage the shanks of the mesh rivets. -
FIG. 10 is a perspective view illustrating equipment for forming a wire mesh isolator from a wire mesh rivet at a bore of heat shield. -
FIG. 11 is a perspective view of a portion of the isolator forming equipment ofFIG. 10 with various parts removed to highlight features of the equipment's lower positioning assembly. -
FIG. 12 is a side view, partially in section, of a portion of the lower positioning assembly of the isolator forming equipment ofFIG. 10 . -
FIG. 13 is a cross-sectional view of a portion of the upper forming assembly of the isolator forming equipment ofFIG. 10 . -
FIG. 14 is a side view illustrating the use of a dispensing strip to provide wire mesh rivets to the isolator forming equipment ofFIG. 10 . Various parts have been removed for clarity. -
FIG. 15 is a perspective view showing the formation of multiple isolators in a heat shield without the need to reposition the part. -
FIGS. 16A and 16B are perspective cross-sectional views of examples of wire mesh isolators produced from wire mesh rivets. -
FIG. 17 is a cross-sectional view showing a tool for forming a wire mesh tube into a wire mesh rivet. The tool is in its open position in this figure. -
FIG. 18A is a cross-sectional view showing the tool ofFIG. 17 in its initial closed position.FIG. 18B is a cross-sectional view showing the configuration of the wire mesh tube at this point in the process. -
FIG. 19A is a cross-sectional view showing the configuration of the tool ofFIG. 17 at the point where the rivet's collar has been formed.FIG. 19B is a cross-sectional view showing the configuration of the wire mesh tube at this point in the process. -
FIG. 20A is a cross-sectional view showing the configuration of the tool ofFIG. 17 at the point where both the rivet's collar and its shank have been formed.FIG. 20B is a cross-sectional view showing the configuration of the wire mesh tube at this point in the process, i.e., it shows the completed wire mesh rivet. - The reference numbers used in the drawings refer to the following:
-
- 7 heat shield
- 9 bore in substrate (e.g., heat shield)
- 11 assembled wire mesh isolator
- 13 wire mesh rivet
- 15 collar of wire mesh rivet
- 7 shank of wire mesh rivet
- 19 unitary wire mesh structure of wire mesh rivet
- 21 bore of unitary wire mesh structure
- 23 metal insert
- 24 metal insert collar
- 25 barb on metal insert
- 27 a aperture which extends through entire thickness of wall of metal insert
- 27 b aperture which extends partially through thickness of wall of metal insert
- 29 wire mesh in aperture of wall of metal insert
- 31 dispensing strip
- 33 apertures in dispensing strip
- 35 flexible fingers of dispensing strip
- 37 slits of dispensing strip
- 38 feed notches of dispensing strip
- 39 isolator forming equipment
- 41 forming assembly of isolator forming equipment
- 43 positioning assembly of isolator forming equipment
- 45 mandrel of positioning assembly
- 47 sleeve of positioning assembly
- 79 recess of sleeve of positioning assembly
- 51 mandrel of forming assembly
- 53 tamp of forming assembly
- 55 sleeve of forming assembly
- 56 cavity formed by inner wall of sleeve of forming assembly
- 57 sensor of forming assembly
- 59 wires for sensor
- 61 supporting structure for isolator forming equipment
- 63 second collar of wire mesh isolator
- 65 substrate
- 67 fastener
- 69 exhaust system component
- 70 rivet forming tool
- 71 arbor of rivet forming tool
- 73 rolled mesh tube
- 75 upper forming sleeve of rivet forming tool
- 77 stationary member of rivet forming tool
- 79 spring-loaded sleeve of rivet forming tool
- 81 first cavity of rivet forming tool
- 83 second cavity of rivet forming tool
- As discussed above, in connection with certain of its aspects, the invention provides wire mesh rivets for use in forming wire mesh isolators.
FIG. 2 shows a representative configuration for such a rivet. As shown in this figure, the rivet comprises a unitarywire mesh structure 19 which (a) has abore 21 and (b) comprises acollar 15 and ashank 17. The unitary wire mesh structure is preferably formed from a continuous piece of wire mesh, although multiple pieces can be united to form the unitary structure if desired. - As shown in, for example,
FIGS. 3-7 ,mesh rivet 13 preferably includes ametal insert 23 which extends partially alongcentral bore 21.Metal insert 23 may be in the form of a grommet which has a collar which engages the collar of the unitary wire mesh structure (seeFIGS. 3, 4, 6, and 7 ) or a simple sleeve without a collar (seeFIG. 5 ). In either case, the primary function of the metal insert is to prevent the wire mesh from being excessively compressed when a heat shield is installed in a vehicle. As shown inFIG. 16 , such installation involves the insertion of afastener 67 through the bore of the assembled isolator and the tightening of the fastener to a component of the vehicle, e.g., to a component of the vehicle's exhaust system. To ensure that the heat shield does not become loose during use, substantial torque is typically applied to the fastener. Accordingly, the wall of the metal insert needs to have sufficient column strength to withstand the resulting compressive forces. - Although the metal insert can simply be placed within the bore of the unitary mesh structure, preferably, the metal insert engages the mesh structure so as to minimize chances that the insert will separate from the mesh structure during shipment and handling of the rivet and/or the assembled isolator prior to final installation of the heat shield.
FIG. 3 shows the use ofbarbs 25 on the outside surface of the metal insert for this purpose. Although the barb approach works satisfactorily, it is relatively expensive since a substantial amount of metal (e.g., on the order of 80%) needs to be removed from the part to form the barbs. -
FIGS. 4-7 shows an alternate approach for retaining a metal insert in the unitary mesh structure that is substantially less expensive in terms of material costs than the barb approach ofFIG. 3 . In accordance with this approach, at least two apertures 27 are formed in the outer surface of the wall of the metal insert. During manufacture of the rivet (see below), wire mesh enters into the apertures (see, for example,reference number 29 inFIG. 6 ) and thus substantially locks the insert and the sleeve together. - The apertures can extend completely through the wall of the metal insert as shown by
reference number 27 a inFIGS. 4-6 or only partially through the wall as shown byreference number 27 b inFIG. 7 . The apertures that extend completely through the wall can be produced by piercing the wall, while the apertures that extend partially through the wall can be produced by broaching. - Broaching is generally less expensive than piercing. Also, because the broached apertures only extend partially through the insert's wall, the wall retains more of its original column strength which, as discussed above, is important in terms of withstanding the compressive forces applied to the insert during fastening of a heat shield to its supporting structure. For both these reasons, apertures that extend only partially through the wall of the insert are generally preferred.
- The average wire mesh density of the mesh rivet's collar is greater than the average wire mesh density of its shank. In particular, the average density of the collar is substantially equal to the average density of the finished isolator, while the average density of the shank is substantially less than the finished density. In this way, after being inserted in the bore of a substrate (e.g., a bore in a heat shield), the shank can be compressed to form a second collar which has the density of the finished isolator (see below).
- Quantitatively, the ratio of the average density of the rivet's shank to the average density of the rivet's collar is in the range of 1:2 to 1:3, preferably in the range of 1:2 to 1:2.5, and most preferably, approximately 1:2. The density of the collar will depend on the particular application, but generally, when expressed in percent, the average density of the rivet's collar is in the range of 15% to 25%. Accordingly, the density of the shank will generally be in the range of 7.5% to 12.5%. Preferred collar and shank densities are approximately 20% for the collar and approximately 10% for the shank.
- As known in the art, the average density (D) in percent of a wire mesh part can be calculated by: (1) determining the weight (W) of the part, (2) determining the volume (V) of the part, (3) determining the density (ρ) of the wire making up the wire mesh, and (4) calculating the average density from the equation: D=100*(W/(V*ρ)).
- The difference in density between the rivet's collar and sleeve can be achieved using tooling of the type shown in
FIGS. 17-20 .FIG. 17 shows tool 70 in its open condition with a rolledmesh tube 73 placed over anarbor 71 and, in this case, abarbed metal insert 23 placed on top of the mesh tube on the same arbor.FIG. 18A shows an upper formingsleeve 75 coming down overarbor 71 and preparing to (a) drive themetal insert 23 into the mesh tube and (b) form thecollar 15 of thewire mesh rivet 13. In this and subsequent steps, the mesh tube is supported on the bottom bystationary member 77.FIG. 18 -B shows the shape of the wire mesh tube at this point in the process. -
FIG. 19A shows the upper formingsleeve 75 forming and compressingcollar 15 from the upper portion of the mesh tube. What happens here that needs to be understood is that as the upper forming sleeve is coming down it bulges the mesh out just above spring-loadedsleeve 79. In particular, the shoulder at the top of spring-loadedsleeve 79 prevents the mesh tube from traveling downward. The more the upper sleeve goes down the more the mesh encroaches over the spring-loaded sleeve further preventing the mesh tube and, in particular the mesh shank, from traveling axially. As a result of this process, the densities of both the collar and the shank are increased, with the density of the collar being increased much more than the density of the shank.FIG. 19A shows the resulting structure. -
FIG. 20A shows the upper sleeve continuing even further downward, but in this case it has overcome the springs (not shown) of spring-loadedsleeve 79. As a result, the shank portion of the tube is further compressed to its final density.FIG. 17D-2 shows the resulting finishedwire mesh rivet 13 with the rivet'scollar 15 having a higher density than itsshank 17. - It should be noted that when a metal insert having an
aperture 27 a which extends completely through the insert's wall is used,arbor 21 prevents the mesh from flowing into the bore of the rivet ascollar 15 is formed. That is, the wire mesh enters the aperture, but is stopped from entering the rivet's bore by the arbor. Wire mesh also entersapertures 27 b as the collar is formed in cases where apertures which extend only partially through the thickness of the wall of the metal insert are used. - The wire mesh making up the wire mesh structure can be composed of various materials and those materials can be subjected to various treatments (including coatings) either before or after being formed into a mesh. Examples of suitable materials and treatments include, without limitation, carbon steel, stainless steel, 300 and 400 series, tin-plated carbon steel, zinc-plated carbon steel, and galvanized carbon steel. The wires making up the wire mesh can have various cross-sections, including, without limitation, round, hexagon, octagon, square, and flat. The wire mesh is preferably a knitted wire mesh, although other types of wire meshes, e.g., woven and expanded metal meshes, can be used if desired.
- The wire mesh rivets are preferably mounted in a dispensing strip prior to being provided to users, e.g., heat shield manufacturers.
FIGS. 8 and 9 show a suitable configuration for such a dispensing strip. As can be seen in these figures, dispensingstrip 31 includes a plurality ofapertures 33 sized to received theshanks 17 ofrivets 13 and to allowcollars 15 to be pushed through the apertures.Apertures 33 comprise a plurality offlexible fingers 35 formed byslits 37 in the body of the strip. As can be seen inFIG. 9 , dispensingstrip 31 can includenotches 38 for use in feeding the strip to isolator forming equipment, e.g.,equipment 39 ofFIGS. 10 and 11 discussed below. - As discussed below, the dispensing strip facilitates automation of the process which converts wire mesh rivets into wire mesh isolators. As such, the dispensing strip needs to satisfy a number of competing criteria. First, the strip needs to hold the rivets sufficiently securely so that the rivets do not become misaligned or dislodged from the strip during transport and handling. Typically, the strip will be coiled in a shipping container and dispensed directly from the container. Accordingly, the strip is preferably flexible enough to be wrapped into a coil while still minimizing misalignment and dislodgement of the rivets when coiled. Second, the rivets must be readily dispensable from the strip. In particular, the strip must have sufficient strength so that it does not buckle under the forces applied to the rivet during dispensing. Such buckling is undesirable since it can cause the strip to partially or completely lose engagement with the strip's feed mechanism. Third, the strips must be inexpensive so that they can be a disposable item.
- In practice, it has been found that the number and length-to-width ratio of
flexible fingers 35 are important parameters in meeting these criteria for a strip composed of a low cost plastic material, such as plasticized styrene. Thus, less than 3 flexible fingers results in unacceptably high dispensing forces, as does a length-to-width ratio of less than 1:1. On the other hand, more than 16 flexible fingers results in unacceptable levels of dislodgement of the rivets from the strip, as does a length-to-width ratio greater than 3:1. - Accordingly, the number of
fingers 35 per aperture is preferably in the range of 3-16. As to the length-to-width ratio of the individual fingers, this parameter is preferably in the range of 1:1 to 3:1, e.g., 1.6:1. These ranges have been found to work successfully with wire mesh rivets having dimensions suitable for use in producing wire mesh isolators for vehicle heat shields, e.g., with wire mesh rivets having shank and collar OD dimensions of approximately 14 millimeters and 22 millimeters, respectively. - Turning now to the process for producing wire mesh isolators from the wire mesh rivets, in broad outline, a
wire mesh rivet 13 is transformed into awire mesh isolator 11 by inserting the rivet'sshank 17 in a bore in a substrate 65 (e.g., abore 9 in a heat shield) withcollar 15 engaging one side of the substrate (the proximal side of the substrate) and then compressing the portion of the shank which extends beyond the distal side of the substrate into a second collar 63 (seeFIG. 16 ). Preferably, the proximal anddistal collars finished isolator 11 have substantially equal densities since unequal densities can cause the isolator to have compromised thermal and/or vibrational properties. The proximal and distal collars also will generally have substantially equal diameters and thicknesses, although they can be unequal if desired (see, for example, the collars ofFIG. 16 ). - In U.S. Patent Publication No. 2006/0219860 referred to above, the proximal and distal collars are formed simultaneously which requires similar forming equipment on both sides of the substrate. For some heat shield configurations (see
FIG. 1 ), locating the forming equipment on the concave side of the heat shield is challenging because of the limited space available. The use of wire mesh rivets having a preformed collar eliminates this problem because compared to forming equipment, less bulky equipment is needed to locate the rivet in the bore and hold it in place while the collar on the opposite side of the substrate is being formed. -
FIGS. 10 and 11 show representative isolator formingequipment 39 which takes advantage of this aspect of the invention. The equipment includes an upper formingassembly 41 and alower positioning assembly 43. It should be noted that the reference to the “upper” forming assembly and the “lower” positioning assembly are only for convenience of description, it being understood that the positioning assembly and the forming assembly can be reversed or can be oriented at an angle other than vertical, e.g., horizontally, if desired. -
FIG. 10 shows theequipment 39 in use whileFIG. 11 shows the same equipment withheat shield 7 removed as well as much of the upper formingassembly 41. The limited amount of equipment needed for thelower positioning assembly 43 is evident inFIG. 11 . -
FIG. 12 shows thelower positioning assembly 43 in more detail. As can be seen in this figure, the assembly comprises two main parts—amandrel 45 which engages thebore 21 of the rivet'swire mesh structure 19 and asleeve 47 which includes arecess 49 which receives the rivet's preformedcollar 15 and maintains the collar's shape as the wire mesh collar on the opposite side of the substrate is formed. By minimizing the difference between the outside diameter (OD) ofsleeve 47 at the level of the recess and the outside diameter of preformedcollar 15, the lower positioning assembly's footprint as seen from the substrate is not much larger than the footprint of the wire mesh rivet itself. In practice, the OD ofsleeve 47 can be held to be within 10% of the OD of the rivet's collar, i.e., ODsleeve/ODcollar≤1.1. Such a small footprint for the lower positioning assembly greatly facilitates the formation of wire mesh isolators for substrates having curved surfaces, such as various of the heat shields ofFIG. 1 . -
FIG. 13 shows the upper formingassembly 41 in more detail. This assembly includes amandrel 51 which engages thebore 21 of the rivet'swire mesh structure 19 and a tamp 53 which, during use of the assembly, moves downward to the position shown inFIG. 13 to compress the wire mesh ofshank 17 within the confines ofsleeve 55, i.e., within thecavity 56 formed by the inner wall ofsleeve 55, to form the second collar of the isolator, i.e., the collar on the upper side of the heat shield inFIG. 10 . During the formation of the second collar,mandrels recess 49 insleeve 47 ofpositioning assembly 43 constrainscollar 15 from changing its shape as formingassembly 41 forms the second collar. As a result of these constraints applied by the mandrels and this recess, finished wire mesh isolators are produced which have well defined OD and ID dimensions and collars with substantially equal wire mesh densities. - As shown in
FIG. 13 , formingassembly 41 preferably includes asensor 57, e.g., a proximity switch, for detecting the position ofsleeve 55. The sensor is connected to a control system (not shown) by wires 59 (seeFIGS. 10 and 11 ). The control system allowsmandrel 51 and tamp 53 to move towards the substrate only if the sensor indicates thatsleeve 55 is in its most forward position, i.e., the control system only allows the mandrel and tamp to move forward ifsleeve 55 is in engagement with the surface of the substrate, thus preventing an operator's hands from coming into contact with the mandrel and tamp.Sleeve 55 is itself lightly sprung so that its motion does not present a hazard to personnel operating the forming equipment. In particular, the force applied by the sleeve to the substrate is less than 10 pounds. In this way, the forming equipment avoids injury to operating personnel without the need for a light curtain or similar device to ensure that the equipment is not operated while the operator's hands are close to the equipment. If desired, more than one sensor for the position ofsleeve 55 can be employed to provide redundant protection. - Although not shown in
FIGS. 10 and 11 , a dispensingstrip 31 is preferably employed to supply wire mesh rivets to isolator formingequipment 39.FIG. 14 shows such an embodiment. In particular, this figure showspositioning assembly 43 after it has removed amesh rivet 13 fromstrip 31 and has moved it upward to enter the bore of a substrate (not shown). Forming assembly 41 (not shown in this figure) would then compress theshank 17 of the rivet to formsecond collar 63 of thefinished isolator 11. -
FIG. 15 shows an embodiment in which multiple isolators are formed at different locations of a single substrate (e.g., a single heat shield) without the need to reposition the part. As can be seen in this figure, supportingstructures 61 hold a plurality of upper formingassemblies 41 andlower positioning assemblies 43 in place relative toheat shield 7 so that isolators can be formed at each of the shield's bores. Preferably, the isolators are formed simultaneously, although sequential formation (e.g., singly or in groups) can be employed if desired. Although not shown in this figure, dispensing strips 31 are preferably used to provide wire mesh rivets to each of the lower positioning assemblies. - A variety of modifications that do not depart from the scope and spirit of the invention will be evident to persons of ordinary skill in the art from the foregoing disclosure. For example, although the invention has been illustrated in terms of heat shields employed in vehicle exhaust systems, it can be used in a variety of other applications where thermal and/or acoustical isolation is desired. Similarly, the invention is not limited to the particular types of heat shields illustrated herein but can be used with other heat shields now known or subsequently developed. Also, the invention can be used with single layer metal substrates or more complex substrates having multiple metal layers or a combination of metal and non-metallic layers, e.g., layers of ceramic or glass fibers. The following claims are intended to cover these and other modifications, variations, and equivalents of the embodiments disclosed herein.
Claims (20)
1. A method for converting a wire mesh rivet into a wire mesh isolator for a heat shield, wherein:
the heat shield comprises:
(i) a bore; and
(ii) at the location of the bore, a concave side (referred to as the heat shield's concave side) and a convex side (referred to as the heat shield's convex side); and
the wire mesh rivet comprises:
(i) a shank at one end; and
(ii) a collar at the other end;
said method comprising:
(I) inserting the shank of the wire mesh rivet into the bore of the heat shield with the collar of the wire mesh rivet on the heat shield's concave side;
(II) forming the shank of the wire mesh rivet into a second collar on the heat shield's convex side using:
(a) a forming assembly that compresses the shank to form the second collar; and
(b) a positioning assembly that locates the wire mesh rivet in the bore and holds it in place, but does not compress the shank;
wherein:
(i) the wire mesh rivet is a unitary wire mesh structure;
(ii) the average density of the wire mesh rivet's collar is greater than the average density of its shank; and
(iii) during step (II), the positioning assembly is on the heat shield's concave side and the forming assembly is on the heat shield's convex side.
2. The method of claim 1 wherein the heat shield's concave side has limited space available for installing a wire mesh isolator compared to the space available on the heat shield's convex side.
3. The method of claim 1 where the bore is located near the top of a raised section of the heat shield.
4. The method of claim 1 wherein as seen from the heat shield, the footprint of the positioning assembly is smaller than the footprint of the forming assembly.
5. The method of claim 1 wherein the positioning assembly comprises a sleeve which comprises a recess for receiving the collar of the wire mesh rivet, said sleeve having an outer surface whose maximum diameter at the location of the recess is ODsleeve, said maximum diameter satisfying the relationship:
ODsleeve/ODcollar≤1.1,
ODsleeve/ODcollar≤1.1,
where ODcollar is the outside diameter of the collar.
6. The method of claim 1 wherein the positioning assembly removes the wire mesh rivet from a dispensing strip.
7. The method of claim 6 wherein the dispensing strip comprises a plurality of apertures sized to retain the wire mesh rivet's shank and to allow the wire mesh rivet's collar to be pushed through the aperture, each aperture comprising a plurality of circumferential flexible fingers formed by slits in the strip.
8. The method of claim 1 wherein the positioning assembly maintains the shape of the wire mesh rivet's collar as the second collar is formed by the forming assembly.
9. The method of claim 1 wherein the second collar has a density substantially equal to density of the wire mesh rivet's collar.
10. The method of claim 1 wherein the ratio of the average density of the wire mesh rivet's collar to the average density of the wire mesh rivet's shank is the range of 1:2 to 1:3.
11. The method of claim 1 wherein when expressed in percent and prior to the conversion of the wire mesh rivet into a wire mesh isolator, the volume ratio Dcollar of the wire material in the wire mesh rivet's collar to the overall volume of the collar is in the range of 15% to 25% and the volume ratio Dshank of the wire material in the wire mesh rivet's shank to the overall volume of the shank is in the range of 7.5% to 12.5%, where the volume ratios Dcollar and Dshank are calculated from the following equations:
D collar=100×(W collar/(V collar×ρ)), and
D shank=100×(W shank/(V shank×ρ)),
D collar=100×(W collar/(V collar×ρ)), and
D shank=100×(W shank/(V shank×ρ)),
wherein
Dcollar represents the volume ratio of the wire material in the collar to the overall volume of the collar (in percent),
Wcollar represents the weight of the wire mesh rivet's collar,
Vcollar represents the volume of the wire mesh rivet's collar,
Dshank represents the volume ratio of the wire material in the shank to the overall volume of the shank (in percent),
Wshank represents the weight of the shank,
Vshank represent the volume of the shank, and
ρ represents the density of the wire making up the unitary wire mesh structure (weight/volume).
12. The method of claim 1 wherein the wire mesh rivet has a central bore and comprises a metal insert at least a part of which is within the central bore, wherein the metal insert comprises a wall which has an exterior surface and the exterior surface comprises at least two apertures for engaging the wire mesh of the central bore.
13. Apparatus for converting a wire mesh rivet into a wire mesh isolator for a heat shield, wherein:
the heat shield comprises:
(i) a bore; and
(ii) at the location of the bore, a concave side (referred to as the heat shield's concave side) and a convex side (referred to as the heat shield's convex side); and
the wire mesh rivet comprises:
(i) a shank at one end; and
(ii) a collar at the other end, the average density of the collar being greater than the average density of the shank;
said apparatus comprising:
(I) a positioning assembly adapted to be located on the heat shield's concave side for inserting the shank of the wire mesh rivet into the bore with the collar of the wire mesh rivet on the heat shield's concave side; and
(II) a forming assembly adapted to be located on the heat shield's convex side for forming the shank of the wire mesh rivet into a second collar on the heat shield's convex side.
14. The apparatus of claim 13 wherein the positioning assembly is adapted to hold the wire mesh rivet in place without compressing the shank.
15. The apparatus of claim 13 wherein the positioning assembly is adapted to maintain the shape of the wire mesh rivet's collar as the second collar is formed by the forming assembly.
16. The apparatus of claim 13 wherein the positioning assembly comprises a sleeve which comprises a recess for receiving the collar of the wire mesh rivet, said sleeve having an outer surface whose maximum diameter at the location of the recess is ODsleeve, said maximum diameter satisfying the relationship:
ODsleeve/ODcollar≤1.1,
ODsleeve/ODcollar≤1.1,
where ODcollar is the outside diameter of the collar.
17. The apparatus of claim 13 wherein the positioning assembly is adapted to remove wire mesh rivets from a dispensing strip.
18. Apparatus for converting a wire mesh rivet into a wire mesh isolator for a heat shield, wherein:
the heat shield comprises:
(i) a bore; and
(ii) at the location of the bore, a concave side (referred to as the heat shield's concave side) and a convex side (referred to as the heat shield's convex side); and
the wire mesh rivet comprises:
(i) a shank at one end; and
(ii) a collar at the other end, the average density of the collar being greater than the average density of the shank;
said apparatus comprising a positioning assembly adapted to be located on the heat shield's concave side for inserting the shank of the wire mesh rivet into the bore with the collar of the wire mesh rivet on the heat shield's concave side, said positioning assembly comprising a sleeve which comprises a recess for receiving the collar of the wire mesh rivet, said sleeve having an outer surface whose maximum diameter at the location of the recess is ODsleeve, said maximum diameter satisfying the relationship:
ODsleeve/ODcollar≤1.1,
ODsleeve/ODcollar≤1.1,
where ODcollar is the outside diameter of the collar.
19. The apparatus of claim 18 wherein the positioning assembly is adapted to hold the wire mesh rivet in place without compressing the shank.
20. The apparatus of claim 18 wherein the positioning assembly is adapted to maintain the shape of the wire mesh rivet's collar as the shank is formed into a second collar.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/008,771 US20200391276A1 (en) | 2008-11-28 | 2020-09-01 | Wire mesh rivet |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11850608P | 2008-11-28 | 2008-11-28 | |
PCT/US2009/065161 WO2010062828A1 (en) | 2008-11-28 | 2009-11-19 | Wire mesh rivet |
US201113130605A | 2011-05-23 | 2011-05-23 | |
US14/522,957 US9651075B2 (en) | 2008-11-28 | 2014-10-24 | Wire mesh rivet |
US15/582,860 US10780488B2 (en) | 2008-11-28 | 2017-05-01 | Wire mesh rivet |
US17/008,771 US20200391276A1 (en) | 2008-11-28 | 2020-09-01 | Wire mesh rivet |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/582,860 Continuation US10780488B2 (en) | 2008-11-28 | 2017-05-01 | Wire mesh rivet |
Publications (1)
Publication Number | Publication Date |
---|---|
US20200391276A1 true US20200391276A1 (en) | 2020-12-17 |
Family
ID=42226006
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/130,605 Expired - Fee Related US8870510B2 (en) | 2008-11-28 | 2009-11-19 | Wire mesh rivet |
US14/522,957 Active 2030-05-12 US9651075B2 (en) | 2008-11-28 | 2014-10-24 | Wire mesh rivet |
US15/582,860 Active 2031-08-18 US10780488B2 (en) | 2008-11-28 | 2017-05-01 | Wire mesh rivet |
US17/008,771 Abandoned US20200391276A1 (en) | 2008-11-28 | 2020-09-01 | Wire mesh rivet |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/130,605 Expired - Fee Related US8870510B2 (en) | 2008-11-28 | 2009-11-19 | Wire mesh rivet |
US14/522,957 Active 2030-05-12 US9651075B2 (en) | 2008-11-28 | 2014-10-24 | Wire mesh rivet |
US15/582,860 Active 2031-08-18 US10780488B2 (en) | 2008-11-28 | 2017-05-01 | Wire mesh rivet |
Country Status (7)
Country | Link |
---|---|
US (4) | US8870510B2 (en) |
EP (1) | EP2356354B1 (en) |
JP (4) | JP6038454B2 (en) |
KR (2) | KR102089029B1 (en) |
CN (1) | CN102227580B (en) |
ES (1) | ES2551161T3 (en) |
WO (1) | WO2010062828A1 (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202011001963U1 (en) * | 2011-01-26 | 2012-01-27 | Reinz-Dichtungs-Gmbh | heat shield |
DE202011109219U1 (en) * | 2011-12-16 | 2012-12-19 | Reinz-Dichtungs-Gmbh | heat shield |
WO2014124007A1 (en) * | 2013-02-05 | 2014-08-14 | Comau, Inc. | Continuous fastener feeding apparatus and method |
CN103223572B (en) * | 2013-04-11 | 2015-06-17 | 漳州鑫一达五金电子有限公司 | Anchoring nail processing method |
DE202013006767U1 (en) | 2013-07-26 | 2014-07-28 | Reinz-Dichtungs-Gmbh | heat shield |
DE202015000342U1 (en) * | 2015-01-17 | 2016-04-21 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | Component for a motor vehicle made of a plastic part and a heat shield |
DE102015100994A1 (en) * | 2015-01-23 | 2016-07-28 | Faurecia Emissions Control Technologies, Germany Gmbh | Heat shield assembly for a vehicle exhaust system and exhaust system component of a motor vehicle |
DE102015118117A1 (en) | 2015-10-23 | 2017-04-27 | Elringklinger Ag | Plate-like component with a plate-like component by cross-fastening device |
GB201705753D0 (en) * | 2017-04-10 | 2017-05-24 | Henrob Ltd | Tape joining |
KR102103332B1 (en) | 2018-12-27 | 2020-04-22 | 주식회사 에이치비티 | A Smart Automatic System for Manufacturing a Insole with a Correcting and Curing Function |
KR102036923B1 (en) * | 2019-02-11 | 2019-10-25 | 이동근 | Breakaway prevent type safety cap structure for bolt |
CN110375068B (en) * | 2019-07-25 | 2024-07-26 | 宁波信幸隆密封制品有限公司 | Ribbon graphite sealing ring and processing technology and processing equipment thereof |
CN110541875A (en) * | 2019-09-17 | 2019-12-06 | 上海纳特汽车标准件有限公司 | riveting sleeve |
KR20220051527A (en) | 2020-10-19 | 2022-04-26 | 주식회사 에이치비티 | A Smart System for Manufacturing a Insole of a Shoe Based on a Diagnosis of a Shape and a Condition |
KR102536757B1 (en) | 2020-11-06 | 2023-05-30 | 주식회사 에이치비티 | An Information and Communication Technology Integrated Type of an Insole Scanner Capable of Diagnosing a Foot Condition and a Supplying System Linked to the Same |
KR102498665B1 (en) | 2020-11-18 | 2023-02-10 | 주식회사 에이치비티 | A Scanning Apparatus for Producing an Insole with a Function of Diagnosing a Foot Disease |
KR20220068656A (en) | 2020-11-19 | 2022-05-26 | 주식회사 에이치비티 | A Scanning Type of an Apparatus for Producing a Diagnosing Data of a Foot and a Method for Providing a Diagnosing Service with the Same |
CN117616189A (en) | 2021-03-30 | 2024-02-27 | 爱尔铃克铃尔股份公司 | Shielding, in particular thermal protection device |
KR20220167145A (en) | 2021-06-11 | 2022-12-20 | 주식회사 에이치비티 | A 3D Scanning System Capable of Diagnosing a Disease and a Method for Manufacturing an Insole Using the Same |
KR20230028865A (en) | 2021-08-23 | 2023-03-03 | 주식회사 에이치비티 | A System for Diagnosing a Foot in a 3 Dimension and a Platform for Providing an Insole Service for Correcting by the Same |
KR20230028998A (en) | 2021-08-23 | 2023-03-03 | 원남메디칼 (주) | A System for Producing a Standard Model of a Foot and a Method for Manufacturing an Insole Using the Same |
Family Cites Families (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2439424A (en) * | 1945-01-16 | 1948-04-13 | Metal Textile Corp | Method of producing compressed wire units |
US2405725A (en) * | 1945-03-02 | 1946-08-13 | Metal Textile Corp | Apparatus for producing annular compressed wire mesh units |
US2680284A (en) * | 1950-11-03 | 1954-06-08 | Barry Corp | Method of making dampers for vibration isolators |
US2869858A (en) * | 1956-08-01 | 1959-01-20 | Metal Textile Corp | Vibration and shock absorptive cushion element |
US3097360A (en) * | 1961-06-26 | 1963-07-16 | Jr Carl J Carlson | Fastener assemblage |
US3223374A (en) | 1963-05-23 | 1965-12-14 | David H Butler | Miniature vibration isolator |
US3690606A (en) * | 1968-05-27 | 1972-09-12 | Pall Corp | Anisometric compressed and bonded multilayer knitted wire mesh composites |
GB1323873A (en) | 1969-07-28 | 1973-07-18 | Avdel Ltd | Tubular rivet |
US3593399A (en) | 1969-12-11 | 1971-07-20 | Lear Siegler Inc | Method of making a rod end bearing |
JPS512672B2 (en) * | 1971-11-17 | 1976-01-28 | ||
US3766631A (en) | 1972-05-22 | 1973-10-23 | Arvin Ind Inc | Method of interconnecting a tube to a plate |
US3938657A (en) * | 1972-11-16 | 1976-02-17 | David Melvin J | Blind rivet assembly |
US3895408A (en) * | 1974-01-30 | 1975-07-22 | Charles J Leingang | Resilient mounting |
FR2282306A1 (en) * | 1974-08-07 | 1976-03-19 | Otalu Sa | Holding strip for rivet feeding - has seats with radial lugs for holding the rivet shanks |
JPS5346481U (en) * | 1976-09-27 | 1978-04-20 | ||
JPS5340117A (en) * | 1976-09-27 | 1978-04-12 | Chuo Hatsujo Kk | Method of forming honey comb support cushion body for exhaust gas purifying catalytic converter and cushion body |
JPS53117893U (en) * | 1977-02-26 | 1978-09-19 | ||
DE3024610A1 (en) | 1980-06-28 | 1982-01-28 | Basf Ag, 6700 Ludwigshafen | METHOD FOR PRODUCING 1,2-DICHLORAETHANE |
JPS5930272Y2 (en) * | 1980-08-01 | 1984-08-29 | 中央発條株式会社 | Anti-vibration heat shield plate with metal anti-vibration mount |
JPS5839267B2 (en) * | 1981-04-27 | 1983-08-29 | 中央発條株式会社 | Forming method of vibration-proof sheet |
JPS59107638A (en) | 1982-12-10 | 1984-06-21 | Citizen Watch Co Ltd | 2/3 frequency dividing signal generating circuit |
US4463959A (en) * | 1983-03-21 | 1984-08-07 | Metex Corporation | Composite gasket including rings of refractory sheet material and knitted wire mesh |
JPS60126244U (en) * | 1984-01-30 | 1985-08-24 | 不二自動車工業株式会社 | Rivet crimping device |
JPS6123511U (en) * | 1984-07-18 | 1986-02-12 | 株式会社 ニフコ | Synthetic resin rivets |
US4748806A (en) * | 1985-07-03 | 1988-06-07 | United Technologies Corporation | Attachment means |
JPS6123511A (en) | 1985-07-05 | 1986-02-01 | Kawasaki Steel Corp | Four-high rolling mill |
JPS6384439A (en) | 1986-09-25 | 1988-04-15 | 株式会社 ヒガシモトキカイ | Vehicle liquid injector |
JPS6384439U (en) * | 1986-11-21 | 1988-06-02 | ||
US4865792A (en) | 1987-06-22 | 1989-09-12 | Moyer James D | Method of using composite reinforced grommet |
US4865506A (en) * | 1987-08-24 | 1989-09-12 | Stolle Corporation | Apparatus for reforming an end shell |
FR2619875B1 (en) * | 1987-08-31 | 1989-11-03 | Badanjak Claude | RIVET AND TOOL FOR LAYING SUCH A RIVET |
FR2647504B1 (en) * | 1989-05-26 | 1991-08-30 | Dubois Jacques | FLEXIBLE EXHAUST COUPLING |
US4953420A (en) | 1989-09-29 | 1990-09-04 | Clum Manufacturing Company, Inc. | Key lock apparatus |
US5065493A (en) * | 1989-11-02 | 1991-11-19 | Oiles Corporation | Method of making a spherical sealing body used for exhaust pipe joint |
US5035041A (en) | 1990-06-19 | 1991-07-30 | Josip Matuschek | Method to obtain preload in solid one-piece ductile rivet installation |
DE69205499T2 (en) * | 1991-06-14 | 1996-03-21 | Toyota Motor Co Ltd | Flexible connection for an exhaust pipe. |
JPH07100208B2 (en) * | 1992-10-15 | 1995-11-01 | 大内 正年 | Blind rivet holder |
US5849054A (en) * | 1995-10-31 | 1998-12-15 | Nippon Reinz Co., Ltd. | Filter for an inflator |
DE19716733A1 (en) * | 1997-04-14 | 1998-10-15 | J & S Gmbh Werkzeugbau Stanz U | Acoustic damping cover with fixture part |
US6277166B2 (en) * | 1999-03-31 | 2001-08-21 | Acs Industries Inc. | Filter with stiffening ribs |
JP3490927B2 (en) * | 1999-05-19 | 2004-01-26 | ニチアス株式会社 | How to attach a vibrating floating washer to the heat shield |
JP4306896B2 (en) * | 1999-10-18 | 2009-08-05 | 日本ラインツ株式会社 | Heat shield support device |
JP2004116442A (en) * | 2002-09-27 | 2004-04-15 | Toyota Motor Corp | Vibration isolating plate, vibration isolating support structure of heat shield board |
WO2005019714A2 (en) * | 2003-08-12 | 2005-03-03 | Ogg Harding Machine, Inc. | Heat shield retainer assembly |
US20050040576A1 (en) | 2003-08-20 | 2005-02-24 | Ernest Oxenknecht | Multi-axis isolator and assembly for the same |
US7341615B2 (en) * | 2003-10-29 | 2008-03-11 | Automotive Systems Laboratory, Inc. | Filter with locating feature |
US20050258613A1 (en) | 2004-05-20 | 2005-11-24 | Kleckner Matthew D | Control arm for a vehicle suspension and method of making same |
US20060103122A1 (en) * | 2004-11-12 | 2006-05-18 | Trw Vehicle Safety Systems Inc. | Crushed expanded sheet metal filter for an inflator |
JP2006153055A (en) * | 2004-11-25 | 2006-06-15 | Japan Power Fastening Co Ltd | Screw holding belt |
US7784585B2 (en) * | 2005-04-05 | 2010-08-31 | Acs Industries, Inc. | Wire mesh heat shield isolator |
-
2009
- 2009-11-19 KR KR1020177018376A patent/KR102089029B1/en active IP Right Grant
- 2009-11-19 JP JP2011538637A patent/JP6038454B2/en active Active
- 2009-11-19 WO PCT/US2009/065161 patent/WO2010062828A1/en active Application Filing
- 2009-11-19 US US13/130,605 patent/US8870510B2/en not_active Expired - Fee Related
- 2009-11-19 CN CN200980148194.7A patent/CN102227580B/en active Active
- 2009-11-19 EP EP09829724.5A patent/EP2356354B1/en active Active
- 2009-11-19 KR KR1020117014959A patent/KR102021611B1/en active IP Right Grant
- 2009-11-19 ES ES09829724.5T patent/ES2551161T3/en active Active
-
2014
- 2014-10-24 US US14/522,957 patent/US9651075B2/en active Active
-
2015
- 2015-05-07 JP JP2015094763A patent/JP5911627B2/en active Active
-
2016
- 2016-09-01 JP JP2016171046A patent/JP6616751B2/en active Active
-
2017
- 2017-05-01 US US15/582,860 patent/US10780488B2/en active Active
-
2019
- 2019-01-31 JP JP2019015756A patent/JP6680912B2/en active Active
-
2020
- 2020-09-01 US US17/008,771 patent/US20200391276A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
JP2017020657A (en) | 2017-01-26 |
EP2356354B1 (en) | 2015-08-26 |
US20110220676A1 (en) | 2011-09-15 |
JP2019123018A (en) | 2019-07-25 |
US8870510B2 (en) | 2014-10-28 |
ES2551161T3 (en) | 2015-11-16 |
EP2356354A1 (en) | 2011-08-17 |
US10780488B2 (en) | 2020-09-22 |
CN102227580B (en) | 2015-10-07 |
EP2356354A4 (en) | 2013-04-24 |
WO2010062828A1 (en) | 2010-06-03 |
JP6680912B2 (en) | 2020-04-15 |
JP2012510593A (en) | 2012-05-10 |
JP5911627B2 (en) | 2016-04-27 |
KR20170081751A (en) | 2017-07-12 |
US9651075B2 (en) | 2017-05-16 |
JP2015166632A (en) | 2015-09-24 |
JP6038454B2 (en) | 2016-12-07 |
KR20110099023A (en) | 2011-09-05 |
US20170232500A1 (en) | 2017-08-17 |
KR102021611B1 (en) | 2019-09-16 |
US20150043992A1 (en) | 2015-02-12 |
KR102089029B1 (en) | 2020-03-13 |
JP6616751B2 (en) | 2019-12-04 |
CN102227580A (en) | 2011-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200391276A1 (en) | Wire mesh rivet | |
CA2105422C (en) | Method and apparatus for providing a flexible covering for a portion of a tapered coil spring | |
US8360301B2 (en) | Mixed metal magnetic pulse impact beam | |
US9200662B2 (en) | Miniature tack pins | |
EP3265711B1 (en) | Press sleeve, press fitting and use of the press fitting or the press sleeve | |
EP1808864B1 (en) | Methods for installing a fuel pellet locking retainer in a nuclear fuel rod | |
US20060228194A1 (en) | Vehicle body mount | |
US20060208479A1 (en) | Pipe unit with connector and producing method thereof | |
US8601646B2 (en) | Steel wire hook | |
KR101882320B1 (en) | Fastener | |
DE69718185T2 (en) | SYSTEM AND METHOD FOR APPLYING INSULATION LAYERS ON SHEET MATERIAL | |
EP3275713B1 (en) | Automotive pipe | |
US20030159255A1 (en) | Clamp retention device | |
WO2012048801A1 (en) | Device and method for fastening a component comprising at least one opening on a carrier part | |
EP2370215B1 (en) | Method for forming a clip | |
KR20190116488A (en) | Fastening Device and Fastening Assembly | |
US9393942B2 (en) | Composite spring retainer and method of assembly in a brake master cylinder | |
US20020151370A1 (en) | Wrapped shift washer | |
JP2000303605A (en) | Steel bundle and its manufacture | |
US20020151371A1 (en) | Wrapped driving anvil | |
DE102010035255A1 (en) | Connecting part, connection and hose line and method for their preparation, in particular for gas installations | |
EP0787101A1 (en) | Ferrule |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |