US20200385931A1 - Process for making a multi-ply dispersible wipe - Google Patents

Process for making a multi-ply dispersible wipe Download PDF

Info

Publication number
US20200385931A1
US20200385931A1 US16/955,660 US201716955660A US2020385931A1 US 20200385931 A1 US20200385931 A1 US 20200385931A1 US 201716955660 A US201716955660 A US 201716955660A US 2020385931 A1 US2020385931 A1 US 2020385931A1
Authority
US
United States
Prior art keywords
web
aqueous solution
composite
crimping
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/955,660
Other versions
US11542664B2 (en
Inventor
Sangsoo Lee
David Andrew Moline
Colin Ackroyd
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimberly Clark Worldwide Inc
Original Assignee
Kimberly Clark Worldwide Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimberly Clark Worldwide Inc filed Critical Kimberly Clark Worldwide Inc
Publication of US20200385931A1 publication Critical patent/US20200385931A1/en
Application granted granted Critical
Publication of US11542664B2 publication Critical patent/US11542664B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/30Multi-ply
    • D21H27/40Multi-ply at least one of the sheets being non-planar, e.g. crêped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31DMAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER, NOT PROVIDED FOR IN SUBCLASSES B31B OR B31C
    • B31D1/00Multiple-step processes for making flat articles ; Making flat articles
    • B31D1/0075Multiple-step processes for making flat articles ; Making flat articles by assembling, e.g. by laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31DMAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER, NOT PROVIDED FOR IN SUBCLASSES B31B OR B31C
    • B31D1/00Multiple-step processes for making flat articles ; Making flat articles
    • B31D1/04Multiple-step processes for making flat articles ; Making flat articles the articles being napkins, handkerchiefs, towels, doilies, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31FMECHANICAL WORKING OR DEFORMATION OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31F1/00Mechanical deformation without removing material, e.g. in combination with laminating
    • B31F1/07Embossing, i.e. producing impressions formed by locally deep-drawing, e.g. using rolls provided with complementary profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31FMECHANICAL WORKING OR DEFORMATION OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31F5/00Attaching together sheets, strips or webs; Reinforcing edges
    • B31F5/02Attaching together sheets, strips or webs; Reinforcing edges by crimping or slotting or perforating
    • B31F5/022Attaching together sheets, strips or webs; Reinforcing edges by crimping or slotting or perforating using a rotary tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • B32B29/002Layered products comprising a layer of paper or cardboard as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B29/005Layered products comprising a layer of paper or cardboard as the main or only constituent of a layer, which is next to another layer of the same or of a different material next to another layer of paper or cardboard layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/20Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of continuous webs only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B25/00Packaging other articles presenting special problems
    • B65B25/14Packaging paper or like sheets, envelopes, or newspapers, in flat, folded, or rolled form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B35/00Supplying, feeding, arranging or orientating articles to be packaged
    • B65B35/30Arranging and feeding articles in groups
    • B65B35/50Stacking one article, or group of articles, upon another before packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B63/00Auxiliary devices, not otherwise provided for, for operating on articles or materials to be packaged
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F11/00Processes for making continuous lengths of paper, or of cardboard, or of wet web for fibre board production, on paper-making machines
    • D21F11/006Making patterned paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/06Paper forming aids
    • D21H21/10Retention agents or drainage improvers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/002Tissue paper; Absorbent paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/02Patterned paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/30Multi-ply
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H5/00Special paper or cardboard not otherwise provided for
    • D21H5/12Special paper or cardboard not otherwise provided for characterised by the use of special fibrous materials
    • D21H5/14Special paper or cardboard not otherwise provided for characterised by the use of special fibrous materials of cellulose fibres only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31FMECHANICAL WORKING OR DEFORMATION OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31F2201/00Mechanical deformation of paper or cardboard without removing material
    • B31F2201/07Embossing
    • B31F2201/0707Embossing by tools working continuously
    • B31F2201/0715The tools being rollers
    • B31F2201/0723Characteristics of the rollers
    • B31F2201/0733Pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31FMECHANICAL WORKING OR DEFORMATION OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31F2201/00Mechanical deformation of paper or cardboard without removing material
    • B31F2201/07Embossing
    • B31F2201/0758Characteristics of the embossed product
    • B31F2201/0761Multi-layered
    • B31F2201/0764Multi-layered the layers being nested
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31FMECHANICAL WORKING OR DEFORMATION OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31F2201/00Mechanical deformation of paper or cardboard without removing material
    • B31F2201/07Embossing
    • B31F2201/0784Auxiliary operations
    • B31F2201/0789Joining plies without adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31FMECHANICAL WORKING OR DEFORMATION OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31F2201/00Mechanical deformation of paper or cardboard without removing material
    • B31F2201/07Embossing
    • B31F2201/0784Auxiliary operations
    • B31F2201/0794Cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31FMECHANICAL WORKING OR DEFORMATION OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31F2201/00Mechanical deformation of paper or cardboard without removing material
    • B31F2201/07Embossing
    • B31F2201/0784Auxiliary operations
    • B31F2201/0797Perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/26All layers being made of paper or paperboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2432/00Cleaning articles, e.g. mops, wipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2555/00Personal care

Definitions

  • Pre-moistened wipes are popular in the marketplace, including baby wipes, toddler wipes, surface cleaning wipes, feminine wipes, hemorrhoid wipes, make-up removal wipes, and child and adult toileting wipes. Consumers flush many of these wipes down the toilet. Some of the wipes are designed to be flushed, and labeled as such. It is important that wipes that are intended to be flushed are compatible with sewer and septic systems, but also important that such wipes do not fall apart when used for their intended purpose. Specifically, when a flushable disposable product is flushed down a toilet into sewer or septic systems, the product, or designated portions of the product, should degrade or break apart (that is, disperse) as it moves through various steps of wastewater processing.
  • a binder on a substrate comprising cellulose fibers.
  • the binder attaches to cellulose fibers, and bonds those fibers together in a network to deliver in-use strength.
  • the binder is stable and delivers this strength when soaking in a stabilizing solution, but swells and weakens in the fresh water of the toilet and sewer system, thus allowing the fiber network to break apart.
  • a binder/stabilizing solution is a salt-sensitive triggerable binder, such as that disclosed in U.S. Pat. No. 6,994,865.
  • binders can be relatively expensive, and it can be challenging to achieve the right balance of in-use wipe strength and post-flush dispersibility.
  • the invention provides a process for making a multi-ply dispersible wipe.
  • the process includes providing a first web and a second web, each web comprising cellulose fibers; superposing the first web over the second web; applying an aqueous solution to the first web; after the aqueous solution is applied to the first web, crimping the second web to the first web to create a composite web; dividing the composite web into a plurality of discrete, multi-ply wet wipes, each multi-ply wet wipe having a crimp pattern; stacking the wipes into a stack; and packaging the plurality of multi-ply wet wipes into a package.
  • the invention provides a process for making a multi-ply dispersible wipe.
  • the process includes providing a first web and a second web, each web comprising cellulose fibers; superposing the first web over the second web; applying an aqueous solution to the first web; after the aqueous solution is applied to the first web, crimping the second web to the first web to create a composite web; creating lines of weakness in the composite web adapted to allow the composite web to be manually separated into discrete multi-ply wet wipes, each multi-ply wet wipe having a crimp pattern; and packaging the composite web into a package.
  • the invention provides the process of the first or second embodiments wherein neither the first web nor the second web contains non-cellulosic fibers.
  • the invention provides the process of any of the first through third embodiments wherein the aqueous solution includes preservatives.
  • the invention provides the process of any of the first through fourth embodiments comprising further applying the aqueous solution to the second web before crimping the second web to the first web.
  • the invention provides the process of any of the first through fifth embodiments wherein the first web and the second web are each hydro-entangled webs.
  • the invention provides the process of any of the first through sixth embodiments wherein the first web is brought into contact with the second web before the aqueous solution is applied to either the first web or the second web.
  • the invention provides the process of any of the first through seventh embodiments wherein the first web and the second web each have a dry basis weight of less than 70 grams per square meter.
  • the invention provides the process of any of the first through eighth embodiments wherein the aqueous solution is present in the composite web at a concentration of over 100 percent, and more particularly by over 210 percent, by weight based on the dry weight of the composite web.
  • the invention provides the process of any of the first through ninth embodiments wherein the crimp pattern includes a plurality of depressions, the plurality of depressions collectively occupying less than 30 percent of the surface area of each wet wipe.
  • the invention provides the process of any of the first through tenth embodiments wherein the composite web extends along and moves in a machine direction, the composite web having a width that extends in the cross-machine direction, and wherein the crimp pattern includes a plurality of lanes of intermittent depressions, each lane extending generally in the machine direction and each lane having a width, further wherein a collective width of the lanes is less than 10 percent of the width of the composite web.
  • the invention provides the process of any of the first through eleventh embodiments wherein a peel strength of the crimp pattern is at least 1.3 grams per linear centimeter.
  • the invention provides the process of any of the first through twelfth embodiments wherein the crimping is conducted at a pressure of at least 100 kilopascals.
  • the invention provides the process of any of the first through thirteenth embodiments wherein (1) the aqueous solution applied to the first web is a first aqueous solution; and (2) after the first aqueous solution is applied to the first web and after crimping the second web to the first web to create a composite web, a second aqueous solution is applied to the composite web.
  • the invention provides the process of the fourteenth embodiment wherein the first aqueous solution has a higher weight-percent water content than the second aqueous solution.
  • the invention provides the process of the fourteenth or fifteenth embodiments wherein the first aqueous solution is applied at a concentration of at least 100 percent by weight based on the dry weight of the composite web.
  • the invention provides the process of the fourteenth, fifteenth, or sixteenth embodiments wherein the second aqueous solution is applied at a concentration of at least 110 percent by weight based on the dry weight of the composite web.
  • the invention provides the process of any of the first through seventeenth embodiments wherein the crimping is performed using a crimping roll, wherein the crimping roll is heated to a temperature of between 100 and 300 degrees Celsius during the crimping.
  • FIG. 1 is a side view of a schematic representation of one embodiment of the present invention.
  • FIG. 2 is a top view of the embodiment of FIG. 1 .
  • FIG. 3 is an end view of the wipe of FIG. 2 taken along line 3 - 3 .
  • FIG. 4 is a side view of a schematic representation of another embodiment of the present invention.
  • FIG. 5 is a top view of the embodiment of FIG. 4 .
  • a process 10 for making a multi-ply dispersible wipe includes providing a first web 12 and a second web 14 .
  • the webs 12 , 14 can be formed in-line, or be provided pre-formed, such as unwound from web rolls 13 , 15 .
  • the process can optionally include third, fourth, or more webs (not shown).
  • Each web 12 , 14 comprises cellulose fibers.
  • each web consists of cellulose fibers.
  • each web 12 , 14 also contains non-cellulosic fibers, such as plastic fibers.
  • neither web 12 nor web 14 includes any non-cellulosic fibers.
  • the webs 12 , 14 include both regenerated cellulose fibers and non-regenerated cellulose fibers.
  • the fibers of the first web 12 have been hydroentangled with one another, and the fibers of the second web 14 have been hydroentangled with one another.
  • the fibers of the first web 12 are held together via a chemical binder, and the fibers of the second web 14 are held together via a chemical binder.
  • the webs 12 , 14 can include wet-laid tissue webs, or can be non-woven webs.
  • nonwoven web as used herein means a structure of fibers randomly formed in a mat-like fashion without the use of an aqueous slurry, in contrast to a wet-laid tissue.
  • first web 12 and the second web 14 each have a dry basis weight of less than 70 grams per square meter, and more particularly of between 25 and 55 grams per square meter.
  • the first web 12 is superposed over the second web 14 , such that the two webs 12 , 14 are in contact with each other.
  • An aqueous solution 16 is applied to the first web 12 , to the second web 14 , or to both the first web 12 and second web 14 , such as representatively illustrated in FIG. 1 .
  • the aqueous solution may be applied by application units 18 a, 18 b, and via methods known in the art, such as, by way of example, spraying ( FIG. 1 ), rolling, pouring, or other suitable application method.
  • the aqueous solution 16 can be any liquid that can be absorbed into the first web 12 (or second web 14 ) and may include any suitable components that provide the desired wiping and processing properties.
  • the solution may include water, emollients, surfactants, fragrances, preservatives, organic or inorganic acids, chelating agents, pH buffers, or combinations thereof, as are well known to those skilled in the art.
  • the wetting solution may also contain lotions, medicaments, and/or antimicrobials.
  • the wetting solution may contain additional agents that impart a beneficial effect on skin or hair and/or further act to improve the aesthetic feel of the compositions and wipes described herein.
  • Suitable skin benefit agents include emollients, sterols or sterol derivatives, natural and synthetic fats or oils, viscosity enhancers, rheology modifiers, polyols, surfactants, alcohols, esters, silicones, clays, starch, cellulose, particulates, moisturizers, film formers, slip modifiers, surface modifiers, skin protectants, humectants, sunscreens, and the like.
  • the aqueous solution contains water.
  • the aqueous solution can in particular embodiments contain water in an amount of from about 40 to about 99 percent of the total weight of the solution.
  • the aqueous solution comprises 99.5 percent, or even more particularly 100 percent, water.
  • the process further includes crimping the second web 14 to the first web 12 to create a composite web 20 .
  • “Crimping” means to press together using pressure distributed over discrete regions such as dots, lines, or shapes, such that the first web 12 and second web 14 are held securely together.
  • the crimping can be performed via a crimping unit 22 , which can optionally include a patterned roll 22 a and an anvil roll 22 b.
  • the patterned roll 22 a includes projections 24 , such as two or more lanes 26 , 26 of projections 24 .
  • the crimping is conducted at a pressure of at least 100 kilopascals, more particularly at least 200 kilopascals, and more particularly between about 250 and 350 kilopascals.
  • the patterned roll 22 a has a steel surface and the anvil roll 22 b has a rubber surface. In other embodiments, both the patterned roll 22 a and the anvil roll 22 b have a steel surface.
  • the process in particular embodiments further includes dividing the composite web 20 into a plurality of discrete, multi-ply wet wipes 30 , such as at separating unit 34 that optionally includes a cutting roll 36 and an anvil roll 38 .
  • the cutting roll includes one or more knives 37 .
  • Each multi-ply wet wipe 30 has a crimp pattern 32 , imparted by the crimping unit 22 .
  • the process 10 further includes stacking the plurality of multi-ply wet wipes 30 into a stack 40 , and packaging the plurality of multi-ply wet wipes 30 into a package 50 , such as via packaging unit 52 , which could be a bagger or other packaging unit known in the art.
  • the package 50 is made of substantially moisture-impervious material, such as a polymeric film or plastic tub.
  • the process instead of dividing the composite web 20 into discrete wipes 30 , the process includes creating lines of weakness 60 (such as perforations or score lines) in the composite web 20 to define a series of interconnected wet wipes 70 .
  • the lines of weakness 60 are adapted to allow the composite web 20 to be manually separated (e.g., torn) into discrete multi-ply wet wipes.
  • the lines of weakness can be imparted, by way of example, via a perforation unit 64 , having a perforating roll 66 , an anvil roll 68 , and a perforating knife 67 .
  • Such embodiments can further include packaging the composite web (or a portion of the composite web) into a package 50 , such as by accumulating the composite web into a roll, or into a z-fold or “accordion” stack.
  • the aqueous solution 16 may be applied to the webs 12 , 14 at a concentration of from about 10 to about 600 percent, more desirably at least 100 percent, more desirably from about 100 to about 500 percent, even more desirably from about 200 to about 400 percent, and in particular of at least 210 percent by weight, measured as a percent of the dry weight of the composite web.
  • the crimp pattern 32 includes a plurality of depressions 33 .
  • the plurality of depressions 33 collectively occupy less than 30 percent of the surface area of each wet wipe.
  • the composite web 20 extends along and moves in a machine direction 8 in the process 10 , and the composite web 20 has a width 21 that extends in the cross-machine direction 9 .
  • the crimp pattern 32 includes a plurality of lanes 35 of intermittent depressions 33 that extend in the machine direction 9 .
  • Each lane has a width 37 that extends in the cross-machine direction 9 .
  • the width 37 is defined as the distance between two imaginary straight lines that extend in the machine direction 8 and that bound the inner and outer edges of each lane 35 of clustered depressions.
  • the collective width of the lanes 35 is less than 10 percent, more particularly less than 5 percent, and still more particularly less than 3 percent of the width 21 of the composite web 20 .
  • tissue layers are crimped together when the sheets are relatively dry. It has been discovered by the inventors that if the layers are first wetted, and then crimped together, that the crimped attachment strength is greater than achievable by “dry” crimping. Furthermore, after wetting the webs 12 , 14 and crimping them together to form the composite web 20 , it is not necessary to dry the composite web 20 , because the composite web 20 is converted into individual wet wipes 30 , which are packaged in the wet condition. Constructing a multi-ply tissue-based wet wipe is advantageous, because it has been found that by constructing the wipe in layers, the wipe can more quickly and easily disperse after flushing.
  • the “wet crimping” technique allows the layers to remain securely adhered to each other during packaging, dispensing, and in-use wiping, while still allowing the layers to release free from each other after flushing.
  • a peel strength of the crimp pattern is at least 1.3 gram, and more particularly 1.44-2.23 grams per linear centimeter.
  • a two-ply wet wipe “wet crimping” embodiment (“Illustrative Example”) was created using two plies of hydroentangled tissue basesheet.
  • the wipe was 200 centimeters long and 125 centimeters wide.
  • Each ply had a basis weight of 55 grams per square meter.
  • An aqueous solution was applied at a concentration of approximately 230 percent based on the dry weight of the two-ply composite web.
  • the plies were crimped together via a crimp pattern comprised of two lanes of dots. Each lane consisted of 3 lines of dots. Each dot had a diameter of 0.9 millimeters. The dots were spaced apart (center to center) by 2.5 millimeters in the direction in which each line extended.
  • the lines were spaced apart from each other (center to center) by 2.0 millimeters, such that the width of each lane of lines was about 5 millimeters, and such that the collective width of all lanes (that is, the sum of the widths of all lanes) was about 10 millimeters.
  • Each lane was spaced in from opposite longitudinal edges of the wipes by about 10 millimeters.
  • the crimping was conducted at a pressure of 300 kilopascals.
  • a “dry crimping” Comparative Example was created as above, except that the aqueous solution was not applied until after the crimping pattern had been applied to the composite web.
  • the crimp peel strength of a 7.62-centimeter-long segment of a single lane of crimp dots was examined, from both the Illustrative Example and the Comparative Example, using a conventional tensile strength tester.
  • the two plies of the wipe were peeled apart, in a direction perpendicular to the direction in which the lane of crimp dots extended.
  • the jaws of the tester moved apart at a rate of 100 millimeters per minute. Five specimens were tested for the Illustrative Example, and five specimens were tested for the Comparative Example.
  • the crimp peel strength of each “wet crimping” specimen of the Illustrative Example was between 1.44 and 2.23 grams per linear centimeter.
  • the crimp peel strength of each “dry crimping” specimen of the Comparative Example was between 0.65 and 1.18 grams per linear centimeter. Consequently, the two plies of the “wet crimped” wipes were held together significantly more strongly than the two plies of the “dry crimped” wipes.

Abstract

A process for making a multi-ply dispersible wipe includes providing a first web and a second web, each web comprising cellulose fibers; superposing the first web over the second web; applying an aqueous solution to at least the first web; after the aqueous solution is applied to the first web, crimping the second web to the first web to create a composite web; cutting or perforating the composite web to define a plurality of multi-ply wet wipes; and packaging the composite web/wet wipes into a package.

Description

    BACKGROUND OF THE INVENTION
  • Pre-moistened wipes are popular in the marketplace, including baby wipes, toddler wipes, surface cleaning wipes, feminine wipes, hemorrhoid wipes, make-up removal wipes, and child and adult toileting wipes. Consumers flush many of these wipes down the toilet. Some of the wipes are designed to be flushed, and labeled as such. It is important that wipes that are intended to be flushed are compatible with sewer and septic systems, but also important that such wipes do not fall apart when used for their intended purpose. Specifically, when a flushable disposable product is flushed down a toilet into sewer or septic systems, the product, or designated portions of the product, should degrade or break apart (that is, disperse) as it moves through various steps of wastewater processing.
  • One common approach to making a flushable wet wipe is using “hydroentangling” technology, in which fibers, primarily or exclusively cellulosic fibers, are “entangled” together using very small high-pressure water jets. However, some wipes made with this technology require a substantial amount of agitation to break apart after flushing, and may not lose significant strength in relatively static environments.
  • Another conventional approach to making a wet wipe that exhibits satisfactory in-use strength, but that adequately breaks down in sewer or septic systems, is via the use of a binder on a substrate comprising cellulose fibers. The binder attaches to cellulose fibers, and bonds those fibers together in a network to deliver in-use strength. The binder is stable and delivers this strength when soaking in a stabilizing solution, but swells and weakens in the fresh water of the toilet and sewer system, thus allowing the fiber network to break apart. One variant of such a binder/stabilizing solution is a salt-sensitive triggerable binder, such as that disclosed in U.S. Pat. No. 6,994,865. However, such binders can be relatively expensive, and it can be challenging to achieve the right balance of in-use wipe strength and post-flush dispersibility.
  • What is needed is a wet wipe that combines sufficient in-use strength, sufficient thickness, and adequate dispersibility after flushing.
  • SUMMARY OF THE INVENTION
  • In a first embodiment, the invention provides a process for making a multi-ply dispersible wipe. The process includes providing a first web and a second web, each web comprising cellulose fibers; superposing the first web over the second web; applying an aqueous solution to the first web; after the aqueous solution is applied to the first web, crimping the second web to the first web to create a composite web; dividing the composite web into a plurality of discrete, multi-ply wet wipes, each multi-ply wet wipe having a crimp pattern; stacking the wipes into a stack; and packaging the plurality of multi-ply wet wipes into a package.
  • In a second embodiment, the invention provides a process for making a multi-ply dispersible wipe. The process includes providing a first web and a second web, each web comprising cellulose fibers; superposing the first web over the second web; applying an aqueous solution to the first web; after the aqueous solution is applied to the first web, crimping the second web to the first web to create a composite web; creating lines of weakness in the composite web adapted to allow the composite web to be manually separated into discrete multi-ply wet wipes, each multi-ply wet wipe having a crimp pattern; and packaging the composite web into a package.
  • In a third embodiment, the invention provides the process of the first or second embodiments wherein neither the first web nor the second web contains non-cellulosic fibers.
  • In a fourth embodiment, the invention provides the process of any of the first through third embodiments wherein the aqueous solution includes preservatives.
  • In a fifth embodiment, the invention provides the process of any of the first through fourth embodiments comprising further applying the aqueous solution to the second web before crimping the second web to the first web.
  • In a sixth embodiment, the invention provides the process of any of the first through fifth embodiments wherein the first web and the second web are each hydro-entangled webs.
  • In a seventh embodiment, the invention provides the process of any of the first through sixth embodiments wherein the first web is brought into contact with the second web before the aqueous solution is applied to either the first web or the second web.
  • In an eighth embodiment, the invention provides the process of any of the first through seventh embodiments wherein the first web and the second web each have a dry basis weight of less than 70 grams per square meter.
  • In a ninth embodiment, the invention provides the process of any of the first through eighth embodiments wherein the aqueous solution is present in the composite web at a concentration of over 100 percent, and more particularly by over 210 percent, by weight based on the dry weight of the composite web.
  • In a tenth embodiment, the invention provides the process of any of the first through ninth embodiments wherein the crimp pattern includes a plurality of depressions, the plurality of depressions collectively occupying less than 30 percent of the surface area of each wet wipe.
  • In an eleventh embodiment, the invention provides the process of any of the first through tenth embodiments wherein the composite web extends along and moves in a machine direction, the composite web having a width that extends in the cross-machine direction, and wherein the crimp pattern includes a plurality of lanes of intermittent depressions, each lane extending generally in the machine direction and each lane having a width, further wherein a collective width of the lanes is less than 10 percent of the width of the composite web.
  • In a twelfth embodiment, the invention provides the process of any of the first through eleventh embodiments wherein a peel strength of the crimp pattern is at least 1.3 grams per linear centimeter.
  • In a thirteenth embodiment, the invention provides the process of any of the first through twelfth embodiments wherein the crimping is conducted at a pressure of at least 100 kilopascals.
  • In a fourteenth embodiment, the invention provides the process of any of the first through thirteenth embodiments wherein (1) the aqueous solution applied to the first web is a first aqueous solution; and (2) after the first aqueous solution is applied to the first web and after crimping the second web to the first web to create a composite web, a second aqueous solution is applied to the composite web.
  • In a fifteenth embodiment, the invention provides the process of the fourteenth embodiment wherein the first aqueous solution has a higher weight-percent water content than the second aqueous solution.
  • In a sixteenth embodiment, the invention provides the process of the fourteenth or fifteenth embodiments wherein the first aqueous solution is applied at a concentration of at least 100 percent by weight based on the dry weight of the composite web.
  • In a seventeenth embodiment, the invention provides the process of the fourteenth, fifteenth, or sixteenth embodiments wherein the second aqueous solution is applied at a concentration of at least 110 percent by weight based on the dry weight of the composite web.
  • In an eighteenth embodiment, the invention provides the process of any of the first through seventeenth embodiments wherein the crimping is performed using a crimping roll, wherein the crimping roll is heated to a temperature of between 100 and 300 degrees Celsius during the crimping.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side view of a schematic representation of one embodiment of the present invention.
  • FIG. 2 is a top view of the embodiment of FIG. 1.
  • FIG. 3 is an end view of the wipe of FIG. 2 taken along line 3-3.
  • FIG. 4 is a side view of a schematic representation of another embodiment of the present invention.
  • FIG. 5 is a top view of the embodiment of FIG. 4.
  • DETAILED DESCRIPTION OF PARTICULAR EMBODIMENTS
  • A process 10 for making a multi-ply dispersible wipe includes providing a first web 12 and a second web 14. The webs 12, 14 can be formed in-line, or be provided pre-formed, such as unwound from web rolls 13, 15. The process can optionally include third, fourth, or more webs (not shown). Each web 12, 14 comprises cellulose fibers. In particular embodiments, each web consists of cellulose fibers. In certain embodiments, each web 12, 14 also contains non-cellulosic fibers, such as plastic fibers. In other embodiments, neither web 12 nor web 14 includes any non-cellulosic fibers. In particular embodiments, the webs 12, 14 include both regenerated cellulose fibers and non-regenerated cellulose fibers. In particular embodiments, the fibers of the first web 12 have been hydroentangled with one another, and the fibers of the second web 14 have been hydroentangled with one another. In other embodiments, the fibers of the first web 12 are held together via a chemical binder, and the fibers of the second web 14 are held together via a chemical binder. The webs 12, 14 can include wet-laid tissue webs, or can be non-woven webs. The term “nonwoven web” as used herein means a structure of fibers randomly formed in a mat-like fashion without the use of an aqueous slurry, in contrast to a wet-laid tissue. In particular embodiments, the first web 12 and the second web 14 each have a dry basis weight of less than 70 grams per square meter, and more particularly of between 25 and 55 grams per square meter.
  • In the process 10, the first web 12 is superposed over the second web 14, such that the two webs 12, 14 are in contact with each other. An aqueous solution 16 is applied to the first web 12, to the second web 14, or to both the first web 12 and second web 14, such as representatively illustrated in FIG. 1. The aqueous solution may be applied by application units 18 a, 18 b, and via methods known in the art, such as, by way of example, spraying (FIG. 1), rolling, pouring, or other suitable application method.
  • The aqueous solution 16 can be any liquid that can be absorbed into the first web 12 (or second web 14) and may include any suitable components that provide the desired wiping and processing properties. For example, the solution may include water, emollients, surfactants, fragrances, preservatives, organic or inorganic acids, chelating agents, pH buffers, or combinations thereof, as are well known to those skilled in the art. Further, the wetting solution may also contain lotions, medicaments, and/or antimicrobials. The wetting solution may contain additional agents that impart a beneficial effect on skin or hair and/or further act to improve the aesthetic feel of the compositions and wipes described herein. Examples of suitable skin benefit agents include emollients, sterols or sterol derivatives, natural and synthetic fats or oils, viscosity enhancers, rheology modifiers, polyols, surfactants, alcohols, esters, silicones, clays, starch, cellulose, particulates, moisturizers, film formers, slip modifiers, surface modifiers, skin protectants, humectants, sunscreens, and the like. In one example, the aqueous solution contains water. The aqueous solution can in particular embodiments contain water in an amount of from about 40 to about 99 percent of the total weight of the solution. In particular embodiments, the aqueous solution comprises 99.5 percent, or even more particularly 100 percent, water.
  • After the aqueous solution 16 is applied to the first web 12 (or to the first web 12 and the second web 14), the process further includes crimping the second web 14 to the first web 12 to create a composite web 20. “Crimping” means to press together using pressure distributed over discrete regions such as dots, lines, or shapes, such that the first web 12 and second web 14 are held securely together.
  • The crimping can be performed via a crimping unit 22, which can optionally include a patterned roll 22 a and an anvil roll 22 b. In particular embodiments, such as that representatively illustrated in FIG. 2, the patterned roll 22 a includes projections 24, such as two or more lanes 26, 26 of projections 24. In particular embodiments, the crimping is conducted at a pressure of at least 100 kilopascals, more particularly at least 200 kilopascals, and more particularly between about 250 and 350 kilopascals. In particular embodiments, the patterned roll 22 a has a steel surface and the anvil roll 22 b has a rubber surface. In other embodiments, both the patterned roll 22 a and the anvil roll 22 b have a steel surface.
  • After the crimping occurs, the process in particular embodiments (referring to FIGS. 1 and 2) further includes dividing the composite web 20 into a plurality of discrete, multi-ply wet wipes 30, such as at separating unit 34 that optionally includes a cutting roll 36 and an anvil roll 38. The cutting roll includes one or more knives 37. Each multi-ply wet wipe 30 has a crimp pattern 32, imparted by the crimping unit 22.
  • The process 10 further includes stacking the plurality of multi-ply wet wipes 30 into a stack 40, and packaging the plurality of multi-ply wet wipes 30 into a package 50, such as via packaging unit 52, which could be a bagger or other packaging unit known in the art. Preferably, the package 50 is made of substantially moisture-impervious material, such as a polymeric film or plastic tub.
  • Referring to FIGS. 4 and 5, in other embodiments, instead of dividing the composite web 20 into discrete wipes 30, the process includes creating lines of weakness 60 (such as perforations or score lines) in the composite web 20 to define a series of interconnected wet wipes 70. The lines of weakness 60 are adapted to allow the composite web 20 to be manually separated (e.g., torn) into discrete multi-ply wet wipes. The lines of weakness can be imparted, by way of example, via a perforation unit 64, having a perforating roll 66, an anvil roll 68, and a perforating knife 67. Such embodiments can further include packaging the composite web (or a portion of the composite web) into a package 50, such as by accumulating the composite web into a roll, or into a z-fold or “accordion” stack.
  • The aqueous solution 16 may be applied to the webs 12, 14 at a concentration of from about 10 to about 600 percent, more desirably at least 100 percent, more desirably from about 100 to about 500 percent, even more desirably from about 200 to about 400 percent, and in particular of at least 210 percent by weight, measured as a percent of the dry weight of the composite web.
  • The crimp pattern 32 includes a plurality of depressions 33. In particular embodiments, the plurality of depressions 33 collectively occupy less than 30 percent of the surface area of each wet wipe. The composite web 20 extends along and moves in a machine direction 8 in the process 10, and the composite web 20 has a width 21 that extends in the cross-machine direction 9. In particular embodiments, the crimp pattern 32 includes a plurality of lanes 35 of intermittent depressions 33 that extend in the machine direction 9. Each lane has a width 37 that extends in the cross-machine direction 9. The width 37 is defined as the distance between two imaginary straight lines that extend in the machine direction 8 and that bound the inner and outer edges of each lane 35 of clustered depressions. The collective width of the lanes 35 is less than 10 percent, more particularly less than 5 percent, and still more particularly less than 3 percent of the width 21 of the composite web 20.
  • Conventionally, to make multi-ply tissue products, tissue layers are crimped together when the sheets are relatively dry. It has been discovered by the inventors that if the layers are first wetted, and then crimped together, that the crimped attachment strength is greater than achievable by “dry” crimping. Furthermore, after wetting the webs 12, 14 and crimping them together to form the composite web 20, it is not necessary to dry the composite web 20, because the composite web 20 is converted into individual wet wipes 30, which are packaged in the wet condition. Constructing a multi-ply tissue-based wet wipe is advantageous, because it has been found that by constructing the wipe in layers, the wipe can more quickly and easily disperse after flushing. This is because the layers delaminate from each other, leaving two (or more) relatively weaker layers that must disperse, as opposed to a single, thicker, relatively stronger layer. In particular embodiments of the present invention, the “wet crimping” technique allows the layers to remain securely adhered to each other during packaging, dispensing, and in-use wiping, while still allowing the layers to release free from each other after flushing.
  • In particular embodiments, a peel strength of the crimp pattern is at least 1.3 gram, and more particularly 1.44-2.23 grams per linear centimeter.
  • EXAMPLE
  • A two-ply wet wipe “wet crimping” embodiment (“Illustrative Example”) was created using two plies of hydroentangled tissue basesheet. The wipe was 200 centimeters long and 125 centimeters wide. Each ply had a basis weight of 55 grams per square meter. An aqueous solution was applied at a concentration of approximately 230 percent based on the dry weight of the two-ply composite web. The plies were crimped together via a crimp pattern comprised of two lanes of dots. Each lane consisted of 3 lines of dots. Each dot had a diameter of 0.9 millimeters. The dots were spaced apart (center to center) by 2.5 millimeters in the direction in which each line extended. The lines were spaced apart from each other (center to center) by 2.0 millimeters, such that the width of each lane of lines was about 5 millimeters, and such that the collective width of all lanes (that is, the sum of the widths of all lanes) was about 10 millimeters. Each lane was spaced in from opposite longitudinal edges of the wipes by about 10 millimeters. The crimping was conducted at a pressure of 300 kilopascals.
  • A “dry crimping” Comparative Example was created as above, except that the aqueous solution was not applied until after the crimping pattern had been applied to the composite web.
  • The crimp peel strength of a 7.62-centimeter-long segment of a single lane of crimp dots was examined, from both the Illustrative Example and the Comparative Example, using a conventional tensile strength tester. The two plies of the wipe were peeled apart, in a direction perpendicular to the direction in which the lane of crimp dots extended. The jaws of the tester moved apart at a rate of 100 millimeters per minute. Five specimens were tested for the Illustrative Example, and five specimens were tested for the Comparative Example.
  • The crimp peel strength of each “wet crimping” specimen of the Illustrative Example was between 1.44 and 2.23 grams per linear centimeter. In contrast, the crimp peel strength of each “dry crimping” specimen of the Comparative Example was between 0.65 and 1.18 grams per linear centimeter. Consequently, the two plies of the “wet crimped” wipes were held together significantly more strongly than the two plies of the “dry crimped” wipes.
  • Other modifications and variations to the appended claims may be practiced by those of ordinary skill in the art, without departing from the spirit and scope as set forth in the appended claims. It is understood that features of the various examples may be interchanged in whole or part. The preceding description, given by way of example in order to enable one of ordinary skill in the art to practice the claimed invention, is not to be construed as limiting the scope of the invention, which is defined by the claims and all equivalents thereto.

Claims (20)

What is claimed is:
1. A process for making a multi-ply dispersible wipe, comprising:
Providing a first web and a second web, each web comprising cellulose fibers;
Superposing the first web over the second web;
Applying an aqueous solution to the first web;
After the aqueous solution is applied to the first web, crimping the second web to the first web to create a composite web;
Dividing the composite web into a plurality of discrete, multi-ply wet wipes, each multi-ply wet wipe having a crimp pattern;
Stacking the wipes into a stack; and
Packaging the plurality of multi-ply wet wipes into a package.
2. The process of claim 1 wherein neither the first web nor the second web contains non-cellulosic fibers.
3. The process of claim 1 wherein the aqueous solution includes preservatives.
4. The process of claim 1, comprising further applying the aqueous solution to the second web before crimping the second web to the first web.
5. The process of claim 1 wherein the first web and the second web are each hydro-entangled webs.
6. The process of claim 1 wherein the first web is brought into contact with the second web before the aqueous solution is applied to either the first web or the second web.
7. The process of claim 1 wherein the first web and the second web each have a dry basis weight of less than 70 grams per square meter.
8. The process of claim 1 wherein the aqueous solution is present in the composite web at a concentration of over 100 percent by weight based on the dry weight of the composite web.
9. The process of claim 1 wherein the aqueous solution is present in the composite web at a concentration of over 210 percent by weight based on the dry weight of the composite web.
10. The process of claim 1 wherein the aqueous solution comprises 99.5 percent water.
11. The process of claim 1 wherein the crimp pattern includes a plurality of depressions, the plurality of depressions collectively occupying less than 30 percent of the surface area of each wet wipe.
12. The process of claim 1 wherein the composite web extends along and moves in a machine direction, the composite web having a width that extends in the cross-machine direction, and wherein the crimp pattern includes a plurality of lanes of intermittent depressions, each lane extending generally in the machine direction and each lane having a width, further wherein a collective width of the lanes is less than 10 percent of the width of the composite web.
13. The process of claim 1 wherein a peel strength of the crimp pattern is at least 1.3 grams per linear centimeter.
14. The process of claim 1 wherein the crimping is conducted at a pressure of at least 100 kilopascals.
15. The process of claim 1 wherein (1) the aqueous solution applied to the first web is a first aqueous solution; and (2) after the first aqueous solution is applied to the first web and after crimping the second web to the first web to create a composite web, a second aqueous solution is applied to the composite web.
16. The process of claim 15 wherein the first aqueous solution has a higher weight-percent water content than the second aqueous solution.
17. The process of claim 15 wherein the first aqueous solution is applied at a concentration of at least 100 percent by weight based on the dry weight of the composite web.
18. The process of claim 17 wherein the second aqueous solution is applied at a concentration of at least 110 percent by weight based on the dry weight of the composite web.
19. The process of claim 1, wherein the crimping is performed using a crimping roll, wherein the crimping roll is heated to a temperature of between 100 and 300 degrees Celsius during the crimping.
20. A process for making a multi-ply dispersible wipe, comprising:
Providing a first web and a second web, each web comprising cellulose fibers;
Superposing the first web over the second web;
Applying an aqueous solution to the first web;
After the aqueous solution is applied to the first web, crimping the second web to the first web to create a composite web;
Creating lines of weakness in the composite web adapted to allow the composite web to be manually separated into discrete multi-ply wet wipes, each multi-ply wet wipe having a crimp pattern; and
Packaging the composite web into a package.
US16/955,660 2017-12-20 2017-12-20 Process for making a multi-ply dispersible wipe Active 2038-11-06 US11542664B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2017/067626 WO2019125438A1 (en) 2017-12-20 2017-12-20 Process for making a multi-ply dispersible wipe

Publications (2)

Publication Number Publication Date
US20200385931A1 true US20200385931A1 (en) 2020-12-10
US11542664B2 US11542664B2 (en) 2023-01-03

Family

ID=66993728

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/955,660 Active 2038-11-06 US11542664B2 (en) 2017-12-20 2017-12-20 Process for making a multi-ply dispersible wipe

Country Status (7)

Country Link
US (1) US11542664B2 (en)
KR (1) KR102608291B1 (en)
CN (1) CN111344456A (en)
AU (1) AU2017443652B2 (en)
GB (1) GB2583241B (en)
MX (1) MX2020005152A (en)
WO (1) WO2019125438A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300981A (en) * 1979-11-13 1981-11-17 The Procter & Gamble Company Layered paper having a soft and smooth velutinous surface, and method of making such paper
US5543202A (en) * 1994-03-14 1996-08-06 Kimberly-Clark Corporation Process for producing a crimp-bonded fibrous cellulosic laminate
US5667635A (en) * 1996-09-18 1997-09-16 Kimberly-Clark Worldwide, Inc. Flushable premoistened personal wipe
US5874157A (en) * 1996-04-02 1999-02-23 The Procter & Gamble Company Separable laminated paper product
US6572722B1 (en) * 1999-11-22 2003-06-03 The Procter & Gamble Company Process for autogeneously bonding laminae of a mult-lamina cellulosic substrate
US20030111169A1 (en) * 2001-12-19 2003-06-19 Baggot James L. Heated embossing and ply attachment
US20050087317A1 (en) * 2003-10-28 2005-04-28 Little Rapids Corporation Dispersable wet wipe
US20070048357A1 (en) * 2005-08-31 2007-03-01 Kimberly-Clark Worldwide, Inc. Fibrous wiping products
US20120090112A1 (en) * 2010-10-14 2012-04-19 Michael Edward Carrier Wet wipes, articles of manufacture, and methods for making same
US20120160436A1 (en) * 2010-12-23 2012-06-28 Kenneth John Zwick Dispersible Wet Wipes Constructed with a Plurality of Layers Having Different Densities and Methods of Manufacturing
US20170211234A1 (en) * 2014-09-24 2017-07-27 Georgia-Pacific Consumer Products Lp Pre-moistened wet wipe products in perforated roll form made of tissue based substrates
US20170254023A1 (en) * 2016-03-04 2017-09-07 Georgia-Pacific Consumer Products Lp Dispersible wipe
US10378151B2 (en) * 2014-12-01 2019-08-13 Kikuo Yamada Method of manufacturing paper sheet

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4574021A (en) 1983-03-03 1986-03-04 Kimberly-Clark Corporation Soft moisture resistant tissue product
US5399412A (en) 1993-05-21 1995-03-21 Kimberly-Clark Corporation Uncreped throughdried towels and wipers having high strength and absorbency
US5429686A (en) 1994-04-12 1995-07-04 Lindsay Wire, Inc. Apparatus for making soft tissue products
US6187137B1 (en) 1997-10-31 2001-02-13 Kimberly-Clark Worldwide, Inc. Method of producing low density resilient webs
US6146568A (en) 1999-04-12 2000-11-14 Kimberly-Clark Worldwide, Inc. Method of making an absorbent member
US7182837B2 (en) 2002-11-27 2007-02-27 Kimberly-Clark Worldwide, Inc. Structural printing of absorbent webs
US7008507B2 (en) 2002-12-31 2006-03-07 Kimberly-Clark Worldwide, Inc. Non-impact printing method for applying compositions to webs and products produced therefrom
US6991706B2 (en) 2003-09-02 2006-01-31 Kimberly-Clark Worldwide, Inc. Clothlike pattern densified web
US20060037724A1 (en) * 2004-08-20 2006-02-23 Kao Corporation Bulky water-disintegratable cleaning article and process of producing water-disintergratable paper
US7879188B2 (en) 2005-12-15 2011-02-01 Kimberly-Clark Worldwide, Inc. Additive compositions for treating various base sheets
US20070137811A1 (en) * 2005-12-15 2007-06-21 Kimberly-Clark Worldwide, Inc. Premoistened tissue products
JP2008002017A (en) * 2006-06-22 2008-01-10 Kao Corp Water-disintegrable cleaning article and method for producing the same
US8414738B2 (en) 2007-08-30 2013-04-09 Kimberly-Clark Worldwide, Inc. Multiple ply paper product with improved ply attachment and environmental sustainability
US20090286437A1 (en) 2008-05-14 2009-11-19 Kimberly-Clark Worldwide, Inc. Wipes with rupturable beads
JP4868620B2 (en) * 2010-06-30 2012-02-01 大王製紙株式会社 Tissue paper and tissue paper manufacturing method
US8894799B2 (en) 2011-09-22 2014-11-25 Dow Global Technologies Llc Method of forming layered-open-network polishing pads
US10113254B2 (en) * 2013-10-31 2018-10-30 Kimberly-Clark Worldwide, Inc. Dispersible moist wipe
US20150223662A1 (en) 2014-02-07 2015-08-13 The Procter & Gamble Company Cleaning sheet and laminates therefor
JP5805250B2 (en) * 2014-03-28 2015-11-04 ユニ・チャーム株式会社 Wet tissue and method for producing wet tissue
US11391000B2 (en) 2014-05-16 2022-07-19 First Quality Tissue, Llc Flushable wipe and method of forming the same
US11118290B2 (en) * 2014-08-07 2021-09-14 Gpcp Ip Holdings Llc Structured, dispersible nonwoven web comprised of hydroentangled individualized bast fibers
PL2985375T3 (en) * 2014-08-12 2017-11-30 Glatfelter Gernsbach Gmbh Dispersible non-woven fabric and method for producing the same
JP6665209B2 (en) 2015-03-12 2020-03-13 チャールズ プロクター, Paper wet with hands
AU2016203733B2 (en) * 2015-06-03 2021-03-11 Opal Packaging Australia Pty Ltd Corrugated medium, paper sheet and a process for the manufacture thereof
CN105463703B (en) * 2015-12-25 2018-02-16 常熟市飞龙无纺机械有限公司 Degradable composite fibre water needled non-woven cloth and preparation method thereof can be broken up

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300981A (en) * 1979-11-13 1981-11-17 The Procter & Gamble Company Layered paper having a soft and smooth velutinous surface, and method of making such paper
US5543202A (en) * 1994-03-14 1996-08-06 Kimberly-Clark Corporation Process for producing a crimp-bonded fibrous cellulosic laminate
US5874157A (en) * 1996-04-02 1999-02-23 The Procter & Gamble Company Separable laminated paper product
US5667635A (en) * 1996-09-18 1997-09-16 Kimberly-Clark Worldwide, Inc. Flushable premoistened personal wipe
US6572722B1 (en) * 1999-11-22 2003-06-03 The Procter & Gamble Company Process for autogeneously bonding laminae of a mult-lamina cellulosic substrate
US20030111169A1 (en) * 2001-12-19 2003-06-19 Baggot James L. Heated embossing and ply attachment
US20050087317A1 (en) * 2003-10-28 2005-04-28 Little Rapids Corporation Dispersable wet wipe
US20070048357A1 (en) * 2005-08-31 2007-03-01 Kimberly-Clark Worldwide, Inc. Fibrous wiping products
US20120090112A1 (en) * 2010-10-14 2012-04-19 Michael Edward Carrier Wet wipes, articles of manufacture, and methods for making same
US20120160436A1 (en) * 2010-12-23 2012-06-28 Kenneth John Zwick Dispersible Wet Wipes Constructed with a Plurality of Layers Having Different Densities and Methods of Manufacturing
US20170211234A1 (en) * 2014-09-24 2017-07-27 Georgia-Pacific Consumer Products Lp Pre-moistened wet wipe products in perforated roll form made of tissue based substrates
US10378151B2 (en) * 2014-12-01 2019-08-13 Kikuo Yamada Method of manufacturing paper sheet
US20170254023A1 (en) * 2016-03-04 2017-09-07 Georgia-Pacific Consumer Products Lp Dispersible wipe

Also Published As

Publication number Publication date
AU2017443652B2 (en) 2022-09-08
AU2017443652A1 (en) 2020-06-25
GB2583241A (en) 2020-10-21
KR20200097732A (en) 2020-08-19
MX2020005152A (en) 2020-08-31
BR112020008993A2 (en) 2020-10-13
US11542664B2 (en) 2023-01-03
GB2583241B (en) 2022-06-01
GB202009091D0 (en) 2020-07-29
CN111344456A (en) 2020-06-26
KR102608291B1 (en) 2023-12-01
WO2019125438A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
US8241743B2 (en) Dispersible nonwoven webs and methods of manufacture
US11118290B2 (en) Structured, dispersible nonwoven web comprised of hydroentangled individualized bast fibers
EP2627229B1 (en) Flushable moist wipe or hygiene tissue
US7682686B2 (en) Tufted fibrous web
EP1902168B1 (en) Tufted fibrous web
EP1761154B1 (en) Low basis weight wet wipes with a pleasing hand
KR20140009382A (en) Toilet paper production method and toilet paper
PL205534B1 (en) Hydrophilic cotton pad for skin care and comprising two different external surfaces
KR20100049493A (en) The cover stock of disposable diaper and absorbent pad for skin appetency
KR20130098178A (en) Tissue paper and method for producing tissue paper
EP3580382B1 (en) Multi-ply dispersible nonwoven material
US11542664B2 (en) Process for making a multi-ply dispersible wipe
CA2734458A1 (en) Nonwoven webs with visible compressed sites
WO2017116429A1 (en) Dispersible wet wipes constructed with a plurality of layers having different binders
BR112020008993B1 (en) PROCESS FOR MAKING A DISPERSIBLE SCARF IN MULTI-LAYERS.
EP1456473B1 (en) Method for bonding at least two plies of tissue papers to each other
JPS6350600A (en) Water-dispersible paper
KR20050019122A (en) Cleansing articles for skin or hair

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE