US20200382202A1 - Scheduling beams of a satellite antenna - Google Patents

Scheduling beams of a satellite antenna Download PDF

Info

Publication number
US20200382202A1
US20200382202A1 US16/828,311 US202016828311A US2020382202A1 US 20200382202 A1 US20200382202 A1 US 20200382202A1 US 202016828311 A US202016828311 A US 202016828311A US 2020382202 A1 US2020382202 A1 US 2020382202A1
Authority
US
United States
Prior art keywords
during
identified
antenna
defined period
processing elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/828,311
Inventor
Michael A. Garcia
Boris Veytsman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aireon LLC
Original Assignee
Aireon LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aireon LLC filed Critical Aireon LLC
Priority to US16/828,311 priority Critical patent/US20200382202A1/en
Publication of US20200382202A1 publication Critical patent/US20200382202A1/en
Priority to US17/212,700 priority patent/US20220045748A1/en
Priority to US17/858,679 priority patent/US20230072064A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • H04B7/18508Communications with or from aircraft, i.e. aeronautical mobile service with satellite system used as relay, i.e. aeronautical mobile satellite service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18578Satellite systems for providing broadband data service to individual earth stations
    • H04B7/18582Arrangements for data linking, i.e. for data framing, for error recovery, for multiple access

Definitions

  • the disclosure relates generally to provisioning satellite coverage.
  • a method for scheduling beams of an antenna on a satellite during a defined time period includes calculating a beam score for each beam based on the expected gain of the beam and determining that the number of beams having non-zero beam scores during the defined time period is less than a threshold value.
  • the method also includes accessing a set of beam weights for each of multiple different candidate beam patterns, and, for each set of weights, multiplying individual beam weights by corresponding beam scores, and generating a candidate beam pattern score by calculating a sum of the products of the beam weights and corresponding beam scores.
  • the method further includes comparing the candidate beam pattern scores, selecting a particular one of the candidate beam patterns, and scheduling the selected beam pattern for the defined time period.
  • Implementations described herein, including the above-described implementations, may include a method or process, a system, or computer-readable program code embodied on computer-readable media.
  • FIG. 1 is a high level block diagram of an example of an air traffic management system ecosystem in accordance with a non-limiting implementation of the present disclosure.
  • FIG. 2 is a functional block diagram of an example of a ground control system and satellite interaction ecosystem in accordance with a non-limiting implementation of the present disclosure.
  • FIG. 3 is a flow chart of an example of a process for selecting a beam configuration in accordance with a non-limiting implementation of the present disclosure.
  • FIGS. 4, 5A-5B, and 6A-6B are illustrations of examples of beam patterns in accordance with a non-limiting implementation of the present disclosure.
  • FIG. 7 is a flow chart of an example of a process for selecting a beam configuration in accordance with a non-limiting implementation of the present disclosure.
  • ground-based radar stations and surveillance data processing systems have relied on ground-based radar stations and surveillance data processing systems. These systems rely on aircraft-based radio transmitters and terrestrial interrogation and receiving stations to implement systems, such as, for example, primary surveillance radar (“PSR”), secondary surveillance radar (“SSR”), and/or mode select (“Mode S”) radar, for communicating aircraft position and monitoring information to local ground stations. The information received at the local ground stations is then relayed to regional or global aircraft monitoring systems.
  • PSR primary surveillance radar
  • SSR secondary surveillance radar
  • Mode S mode select
  • Such conventional radar-based systems for use in air traffic control, aircraft surveillance, and flight path management services are limited to use in regions in which the appropriate ground infrastructure exists to interrogate and receive messages from aircraft. Consequently, vast areas of the world's airspace (e.g., over the oceans and poles, remote and/or mountainous regions, etc.) are not monitored by conventional, terrestrial radar-based systems.
  • ADS-B automatic dependent surveillance-broadcast
  • GPS Global Positioning System
  • ADS—B-based systems may utilize different data links and formats for broadcasting ADS-B messages. 1090 MHz Mode S ES is an example of one such data link which has been adopted in many jurisdictions.
  • ADS—B-based systems require appropriate infrastructure for receiving ADS-B messages broadcast by aircraft.
  • ADS—B-based systems air traffic in vast airspaces remains unmonitored.
  • satellite-based receivers can be used to receive ADS-B messages broadcast by aircraft, and such ABS-B messages then can be relayed back down to earth terminals or other terrestrial communications infrastructure for transmission to and use by air traffic control, aircraft surveillance, and flight path management services.
  • System 100 includes satellite 10 in communication with and part of satellite network 20 , and aircraft 70 .
  • satellite network 20 including satellite 10 , may be a low Earth orbit (“LEO”) constellation of cross-linked communications satellites.
  • LEO low Earth orbit
  • terrestrial ADS-B ground station 60 , air traffic management system 40 and satellite communication network earth terminal 30 are located on Earth 80 's surface.
  • Aircraft 70 carries an on-board ADS-B transponder 72 that broadcasts ADS-B messages containing flight status and tracking information.
  • Satellite 10 carries payload 12 to receive ABS-B messages broadcast by aircraft 70 and other aircraft.
  • multiple or all of the satellites in satellite network 20 may carry ADS-B payload to receive ADS-B messages broadcast by aircraft.
  • Messages received at receiver 12 are relayed through satellite network 20 to satellite communication network earth terminal 30 and ultimately to air traffic management system 40 through terrestrial network 50 .
  • the air traffic management system 40 may receive aircraft status information from various aircraft and provide additional services such as air traffic control and scheduling or pass appropriate information along to other systems or entities.
  • ADS-B payload 12 may have one or more antennas and one or more receivers for receiving ADS-B messages broadcast by aircraft. Additionally or alternatively, in some implementations, ADS-B payload 12 may have a phased array antenna formed from multiple antenna elements that collectively are configured to provide multiple different beams for receiving ADS-B messages.
  • satellite network 20 may have a primary mission other than receiving ADS-B messages broadcast by aircraft.
  • satellite network 20 may be a LEO, mobile satellite communications constellation.
  • ADS-B payloads like ADS-B payload 12 may be hosted on satellites 10 of satellite network 20 as hosted or secondary payloads that may be considered secondary to the primary mission of the satellite network 20 . Consequently, such ADS-B payloads when operated as hosted payloads may be constrained by certain limitations, such as, for example, a relatively low maximum weight and a relatively low power budget so as not to take away from the primary mission of the satellite network 20 .
  • Terrestrial ADS-B ground station 60 provides aircraft surveillance coverage for a relatively small portion of airspace, for example, limited to aircraft within line of sight of ground station 60 . Even if terrestrial ADS-B ground stations like ground station 60 are widely dispersed across land regions, large swaths of airspace (e.g., over the oceans) will remain uncovered. Meanwhile, a spaced-based ADS-B system 100 utilizing a satellite network like satellite network 20 may provide coverage of airspace over both land and sea regions without being limited to areas where ground-based surveillance infrastructure has been installed. Thus, a space-based ADS-B system may be preferable (or a valuable supplement) to terrestrial approaches.
  • system 100 may present a number of challenges.
  • individual satellites 10 may have limited power budgets within which to operate.
  • the individual satellites 10 may benefit from intelligent management of resources to achieve desired performance levels without exceeding allowed power budgets.
  • individual satellites 10 may be configured to provide multiple different coverage beams for receiving ADS-B messages and may benefit from intelligent management of beam scheduling to achieve desired coverage without exceeding allowed power budgets.
  • each individual satellite 10 may be configured to have 33 different beams, for example, laid out as illustrated in the example beam pattern illustrated in FIG. 4 .
  • power or other resource constraints
  • size and/or processing constraints may not allow for 33 individual receivers on board satellite 10 (or ADS-B payload 12 ) for concurrently processing signals received in all 33 beams. Therefore, individual satellites 10 (or ADS-B payloads) may benefit from intelligent beam scheduling to achieve desired coverage within the constraints imposed on or by the satellite 10 (or ADS-B payload 12 ).
  • the present disclosure describes beam selection and scheduling techniques. While the disclosed beam selection and scheduling techniques generally are described in the context of selecting and scheduling beams of a satellite's (or payload's) antenna for receiving ADS-B messages, the beam selection and scheduling techniques may have broad application and can be employed in a variety of different contexts for the purpose of selecting and scheduling satellite antenna beams. As described in greater detail below, such beam selection and scheduling may be performed on a terrestrial computing platform (or similar resource) with the resultant beam schedules thereafter being uploaded to individual satellites. Additionally or alternatively, individual satellites may perform the beam selection and scheduling techniques disclosed herein themselves.
  • FIG. 2 is a functional block diagram of an example of a ground control system and satellite interaction ecosystem 105 in accordance with a non-limiting implementation of the present disclosure.
  • the ecosystem may include a server or other computing platform 110 , a memory 115 , a ground control system 120 , a processor 125 , an interface 155 , an input and output (“I/O”) device 130 , and a hard disk 140 .
  • Ground control system 120 processes may be performed on the computing platform 110 shown in FIG. 2 .
  • Processor 125 may be operable to load instructions from hard disk 140 into memory 115 and execute those instructions.
  • Memory 115 may store computer-readable instructions that may instruct the computing platform 110 to perform certain processes.
  • I/O device 130 may receive one or more of data from another server, local database, or a network 145 .
  • the computing platform 110 may be considered a processing system.
  • Satellites 155 a - 155 z may include ADS-B payloads or otherwise be configured to receive ADS-B messages broadcast by aircraft. As such, satellites 155 a - 155 z may include antennas that provide multiple beams for receiving ADS-B messages.
  • Network 145 may facilitate wireless communications of information and provisioning of satellites 155 a - 155 z .
  • the ground control system 120 may communicate with satellites 155 a - 155 z via the network 145 .
  • network 145 may include wireless (e.g., radio frequency (RF′′) uplinks and downlinks for communicating with satellites 155 a - 155 z .
  • Communications sent by the ground control system 120 to satellites 155 a - 155 z via network 145 may include beam selection schedules as described in greater detail below.
  • satellites 155 a - 155 z may relay received ADS-B messages through network 145 for terrestrial processing.
  • the ground control system 120 may also include or have access to a database 150 which may include, for example, additional servers, data storage, and resources. Ground control system 120 may receive additional data from database 150 , such as, for example, expected antenna beam gain patterns, information about desired or required coverage areas, available beam patterns, and power budgets available to individual satellites 155 .
  • the ground control system 120 may be configured to perform beam selection and scheduling processes for satellites 155 a - 155 z . In some implementations, to assess coverage of the earth, the ground control system 120 may divide the earth into a grid of 1° ⁇ 1° tiles over WGS-84 latitude and longitude.
  • Such tiles may be divided into four categories: class one tiles in low update interval service volumes (e.g., update intervals of approximately 10-15 seconds); class two tiles in service volumes that may benefit from special treatment (e.g., tiles near high traffic areas where so-called FRUIT (false replies unsynchronized in time) levels may be expected to be high or tiles where satellite coverage overlap may be low, such as, for instance, near the equator in the case of a constellation of satellites in substantially polar orbits); class three tiles in high update interval service volumes (e.g., update intervals of approximately 30 seconds); and class four tiles where coverage is not desired or provided.
  • class one tiles in low update interval service volumes e.g., update intervals of approximately 10-15 seconds
  • class two tiles in service volumes that may benefit from special treatment
  • special treatment e.g., tiles near high traffic areas where so-called FRUIT (false replies unsynchronized in time) levels may be expected to be high or tiles where satellite coverage overlap may be low, such as, for instance, near the equator
  • an individual class two tile also may be considered to be either a class one tile or a class three tile (e.g., based on the desired update interval for the service volume where the tile is located).
  • These tile classifications may inform, beam selection and scheduling decisions may be ground control system 120 .
  • a space-based ADS-B system is formed from a constellation of satellites in low-Earth orbit (LEO).
  • LEO low-Earth orbit
  • a space-based ADS-B system may be formed from a number of LEO satellites arranged in some number of substantially polar orbital planes such that the constellation collectively provides coverage of substantially all of the Earth's surface.
  • a space-based ADS-B system may be formed from 66 LEO satellites arranged in 6 orbital planes each having 11 satellites in substantially polar orbits.
  • the antennas for receiving ADS-B messages on each of the satellites of such a space-based ADS-B system may be substantially the same and may be configured to provide substantially the same beam patterns.
  • the antennas may be configured to provide 33 beams for receiving ADS-B signals.
  • FIG. 4 illustrates one example of a beam pattern for such an antenna configured to provide 33 beams.
  • the primary mission of the satellites may be to provide the space-based ADS-B system.
  • the satellites may have one or more other missions and the space-based ADS-B system may be implemented by ADS-B payloads hosted on the satellites as hosted or secondary payloads. Therefore, it should be understood that references herein to a satellite or an antenna on board a satellite may refer to a satellite or a satellite's primary payload as well as a hosted or secondary payload and an antenna for a hosted or secondary payload.
  • the beam selection and scheduling techniques may schedule specific beam configurations for defined periods of time, each of which may be subdivided into segments. For example, in one implementation, the beam selection and scheduling techniques may schedule specific beam configurations for defined periods of time that may be referred to herein as beam cycle periods that are further subdivided into four segments (e.g., Segment A, Segment B, Segment C, and Segment D). In some implementations, the time period for a beam cycle period may be configurable.
  • Examples of different time periods for a beam cycle period in different implementations or according to different configurations include 5 seconds, 8 second, and 10 seconds.
  • the satellite may be assigned a particular power budget, for example, based on whether the satellite is in a position from which solar power is available or in an eclipse position from which solar power is not available because the Earth blocks the sun.
  • the scheduling of the four segments and the different beams that may be turned on and off during individual segments then may be determined in an effort to achieve the desired coverage while satisfying the power budget (and/or other constraints).
  • each of the four segments may be assigned to a different quadrant of the antenna's beam pattern (e.g., as depicted in FIG. 4 ), and all (or some portion of all) of the antenna's beams in an individual quadrant may be turned on during the corresponding segment and off during the other segments.
  • a default sector scan When a default sector scan is employed, each of the four segments may be assigned to a different quadrant of the antenna's beam pattern (e.g., as depicted in FIG. 4 ), and all (or some portion of all) of the antenna's beams in an individual quadrant may be turned on during the corresponding segment and off during the other segments. For example, during Segment A, all (or some portion of all) of the antenna's beams in Quadrant 1 may be turned on while all of the antenna's other beams are turned off.
  • the default sector scan technique may be configured to spend an equal dwell time (e.g., 1 second) in each of the four quadrants.
  • the default sector scan may be configured to spend different dwell times in each of the four quadrants (e.g., based on the classifications of tiles within each quadrant). While the default sector scan technique may provide relatively good coverage, a default sector scan also may require a relatively large power budget to operate and, therefore, may not always be a suitable option.
  • Another technique that may be used to accomplish beam selection and scheduling during a beam cycle period is to turn off all of the antenna's beams during one or more segments and to select one or more different beam patterns during the remaining segments.
  • this technique may involve selecting particular beam patterns to be employed during Segment A and Segment C while turning all of the antenna's beams off during Segment B and Segment D.
  • the beam patterns selected for Segments A and C may be referred to herein as paired beam patterns.
  • the length of each individual segment may be determined in an effort to comply with the defined power budget for the beam cycle period.
  • the lengths of Segment B and Segment D may be scheduled to be relatively long; whereas, if the defined power budget is relatively high, the lengths of Segment B and Segment D may be scheduled to be relatively short.
  • the length of time for each of Segments A and C and the length of time for each of Segments B and D may be calculated according to the following equation:
  • Beam Cycle Period represents the time period for the beam cycle period
  • “Time On” represents two times the length of time for each of Segments A and C
  • “Beam Cycle Period” minus “Time On” represents two times the length of time for each of Segments B and D
  • “PowerO n ” represents a measure of the power consumed with the beams turned on during Segments A and C
  • “Power Off ” represents a measure of the power consumed with the beams turned off during Segments B and D
  • Power Budget is the defined power budget for the beam cycle period.
  • the titles to be covered by the satellite during the beam cycle period may be taken into account when determining the length of time for each individual segment. For example, if one or more of the tiles to be covered by the satellite during the beam cycle period are class one tiles for which relatively short update intervals are desired, the lengths of Segment A and Segment C may be scheduled to be relatively long.
  • a variety of different beam patterns may be available for selection for Segment A and Segment C.
  • the first “Omni” beam pattern for Segment A may employ beams 1, 4, 7, 10, 12, 15, 18, 21, 23, 27, 31, and 33
  • the second “Omni” beam pattern for Segment C may employ beams 2, 5, 8, 11, 13, 16, 19, 22, 23, 27, 31, and 33.
  • Plots showing examples of the probability of detection (PD) of ADS-B messages when these two “Omni” beam patterns are used are illustrated in FIG. 5A and FIG. 5B , respectively.
  • a first so-called “Hemi” beam pattern that approximately covers one half of the azimuth and elevation space within the satellite's coverage footprint may be selected for Segment A and a second “Hemi” beam pattern that approximately covers the other half of the azimuth and elevation space within the satellite's coverage footprint may be selected for Segment C.
  • the first “Hemi” beam pattern for Segment A may employ beams 2, 3, 4, 5, 6, 8, 10, 12, 23, 24, 26, and 33
  • the second “hemi” beam pattern for Segment C may employ beams 1, 13, 14, 15, 17, 19, 20, 21, 27, 28, 30, and 33.
  • Plots showing examples of the probability of detection (PD) of ADS-B messages when these two “hemi” beam patterns are used are illustrated in FIG. 6A and FIG. 6B , respectively.
  • many additional paired beam patterns may be available for selection for Segment A and Segment C.
  • one example of an additional paired beam pattern may be a so-called “East Hemi” paired beam pattern that focuses coverage within quadrants 1 and 2 of the azimuth and elevation space of the satellite's coverage footprint.
  • the “East Hemi” beam pattern for Segment A may employ beams 1, 3, 4, 6, 8, 10, 12, 23, 24, 25, 26, and 32
  • the “East Hemi” beam pattern for Segment C may employ beams 2, 4, 5, 7, 9, 11, 23, 24, 25, 26, 27, and 31.
  • an additional paired beam pattern may be a so-called “West Hemi” paired beam pattern that focuses coverage within quadrants 3 and 4 of the azimuth and elevation space of the satellite's coverage footprint.
  • the “West Hemi” beam pattern for Segment A may employ beams 1, 21, 19, 17, 15, 13, 31, 30, 29, 28, 27, and 32
  • the “West Hemi” beam pattern for Segment C may employ beams 22, 20, 18, 16, 14, 12, 23, 27, 28, 29, 30, and 31.
  • Numerous other paired beam patterns also may be available.
  • paired beam patterns focusing on individual quadrants also may be available.
  • paired beam patterns focusing on three quadrants also may be available.
  • each paired beam pattern may be associated with a set of weights, with each weight corresponding to an individual one of the beams of the satellite's antenna.
  • each weight corresponding to an individual one of the beams of the satellite's antenna.
  • the expected gain (in some cases quantified as the link margin, or the energy per bit to noise power spectral density ratio, E b /N 0 ) of each beam during the particular beam cycle period may be multiplied by the beam's corresponding weight for each paired beam pattern, and the resulting products for each of the beams of a given paired beam pattern may be summed to generate a score for the paired beam pattern.
  • the paired beam pattern with the highest score for the particular beam cycle period then may be selected as the appropriate paired beam pattern for the particular beam cycle period.
  • the expected gain for a beam may be a function of one or more different factors.
  • the expected gain for a beam may be a function of the orientation (e.g., angle) of the satellite's antenna (or relevant antenna elements) relative to the coverage area covered by the beam.
  • the excepted gain for a beam also may take into account the desired coverage area. For example, if the coverage area covered by a beam during a particular period of time covers only tiles for which coverage is not desired, the expected gain for the beam may be set to zero irrespective of the actual expected gain of the beam during that particular period.
  • the expected gain for a beam may change over time, for example, as the satellite orbits the Earth and the orientation of the satellite's antenna relative to the Earth changes. Consequently, in some implementations, changes to the expected gain for a beam over time may be taken into account in the beam selection processes described herein.
  • a beam score may be calculated for each beam of a satellite's antenna for a particular beam cycle period by dividing the particular beam cycle period into some smaller number of sub-periods (e.g., 10 sub-periods) and calculating the sum (or the average) of the expected gain for the beam across all of the sub-periods.
  • Such beam scores can be used in a number of different ways in the beam selection processes described herein. For example, the beam scores for each of the beams of a satellite's antenna can be multiplied by the corresponding beam weights associated with the paired antenna patterns as part of the process for selecting an appropriate paired antenna pattern as described above.
  • Process 700 may be performed by a ground control system implemented on a computing platform, such as, for example, ground control system 120 implemented on computing platform 110 as illustrated in FIG. 2 .
  • a ground control system implemented on a computing platform
  • beam selection schedules generated by performing process 700 may be uploaded to individual satellites 155 and, thereafter, used by the individual satellites 155 to control the beams of the satellites' antennas.
  • process 700 may be performed by computing resources on board one or more satellites.
  • process 700 may be performed multiple times and in advance to develop a beam selection schedule for an individual satellite for many defined time periods (e.g., beam cycle periods). For example, in some implementations, process 700 may be performed to generate a forward-looking beam selection schedule for an individual satellite as much as twenty-four hours or more in advance. In such implementations, small portions of such beam selection schedules may be uploaded to the satellites at time. For example, in some implementations, beam selection schedules defining beam selections for 120 second time periods may be uploaded to the satellites. It will be appreciated that process 700 may be performed for each of several different satellites to generate beam selection schedules for each individual satellite.
  • process 700 may be performed for each of several different satellites to generate beam selection schedules for each individual satellite.
  • a defined time period e.g., a beam cycle period
  • an active beam may be considered to be a beam that has a non-zero expected gain during the defined time period or a non-zero beam score during the defined time period.
  • a satellite may have 12 receivers available for processing signals received by the antenna, and the first threshold value may be 3.
  • the satellite's antenna may be determined at step 800 that the number of active beams exceeds the number of available receivers by less than the first threshold value.
  • the satellite's antenna may have 15 or more active beams, it may be determined at step 800 that the number of active beams does not exceed the number of available receivers by less than the first threshold value.
  • step 802 a beam selection process is performed that focuses on selecting the best available active beams for the satellite during the defined time period.
  • the defined time period may be subdivided into Segments A, B, C, and D, and beam scores for each beam of the satellite's antenna during the defined time period may be used to rank each of the beams during the defined time period.
  • Some number (e.g., corresponding to the number of receivers available on the satellite) of the top-ranked beams then may be selected to be turned on during each of Segment A and Segment C while all of the beams may be turned off during Segment B and Segment D.
  • the 12 top-ranked beams may be selected to be turned on during Segment A and the 11 top-ranked beams and the 13th-ranked beam may be selected to be turned on during Segment C.
  • step 804 a determination is made as to whether any of the tiles that will be within the coverage footprint of the satellite's antenna during the defined time period (or that will be within the coverage footprint of the active beams of the satellite's antenna during the defined time period) may benefit from special treatment, for example, because the tiles are near high traffic areas where FRUIT levels may be expected to be high (perhaps particularly during specific windows of time when traffic is known to usually be high) or because the tiles are located in areas where satellite coverage overlap may be low.
  • the process 700 proceeds to step 806 where a determination is made as to whether a sufficient power budget is available during the defined time period to support such special treatment.
  • the determination of whether there is a sufficient power budget available during the defined time period may be based on whether there is a sufficient power budget available to support a default sector scan as described above.
  • a default sector scan may be scheduled for the beams of the satellite's antenna during the defined time period.
  • the process 700 proceeds to step 810 where a determination is made as to whether the number of active beams of the satellite's antenna will exceed a second threshold value during the defined time period. If it is determined that the number of active beams of the satellite's antenna will exceed the second threshold value during the defined time period, the process 700 proceeds to step 812 where a default paired beam pattern (e.g., one of the “Omni” paired beam pattern or the “Hemi” paired beam pattern described above) is scheduled for the beams of the satellite's antenna during the defined time period.
  • a default paired beam pattern e.g., one of the “Omni” paired beam pattern or the “Hemi” paired beam pattern described above
  • the process 700 proceeds to step 814 where a pattern association process is initiated.
  • the defined time period may be subdivided into Segments A, B, C, and D, and, at step 816 , the beam scores for each of the antenna's beams during the defined time period are multiplied by the corresponding beam weights for each of several defined paired beam patterns.
  • the paired beam pattern for which the sum of the products of the beam scores and beam weights is highest may be selected as the paired beam pattern for the antenna's beams during the defined period of time.
  • the actual beam patterns for Segment A and Segment C corresponding to the selected paired beam pattern are retrieved, and, at step 822 , a determination is made as to whether all of the tiles for which coverage is desired (e.g., all tiles classified as class 1 , class 2 , and/or class 3 ) within the coverage footprint of the satellite's antenna (or within the coverage footprint of the active beams of the satellite's antenna) will be covered by the retrieved beam patterns. If it is determined that all of the tiles for which coverage is desired will be covered by the retrieved beam patterns, the process proceeds to step 824 where the retrieved beam patterns are scheduled for the beams of the satellite's antenna during the defined time period.
  • all of the tiles for which coverage is desired e.g., all tiles classified as class 1 , class 2 , and/or class 3
  • the process proceeds to step 824 where the retrieved beam patterns are scheduled for the beams of the satellite's antenna during the defined time period.
  • a default paired beam pattern (e.g., one of the “Omni” paired beam pattern or the “Hemi” paired beam pattern described above) is scheduled for the beams of the satellite's antenna during the defined time period.
  • FIG. 3 is a flow chart of an example of a process 300 for selecting a beam configuration for the beams of a satellite's antenna during a defined time period in accordance with a non-limiting implementation of the present disclosure.
  • Process 300 may be performed by a ground control system implemented on a computing platform, such as, for example, ground control system 120 implemented on computing platform 110 as illustrated in FIG. 2 .
  • beam selection schedules may be uploaded to individual satellites 155 and, thereafter, used by the individual satellites 155 to control the beams of the satellites' antennas.
  • process 300 may be performed by computing resources on board one or more satellites.
  • process 300 may be performed multiple times and in advance to develop a beam selection schedule for an individual satellite for multiple defined time periods. It also will be appreciated that process 300 may be performed for each of several different satellites to generate beam selection schedules for each individual satellite.
  • a beam score is calculated for each beam of the antenna based, at least in part, on the expected gain of the beam during the defined time period.
  • the beam score for a beam may be calculated by subdividing the time period into multiple sub-periods and calculating the sum or average of the expected gain of the beam across the sub-periods.
  • beam scores may take into account desired coverage areas. For example, in some implementations, if the area covered by an individual beam during the defined time period is not an area for which coverage is desired, the beam score for the beam for the defined time period may be set to zero (or some other value to reflect that coverage is not desired for the area covered by the beam during the defined timer period).
  • the number of beams of the antenna having non-zero beam scores during the defined time period is determined. Thereafter, at step 330 , the number of beams of the antenna having non-zero beam scores during the defined time period is compared to a threshold value, and, at step 340 , it is determined that the number of beams of the antenna having non-zero beam scores during the defined time period is less than the threshold value.
  • a set of beam weights for each of multiple different candidate beam patterns is accessed. Thereafter, at step 360 , for each set of weights, the individual beam weights are multiplied by the corresponding beam scores for each of the beams of the antenna during the defined time period, and a candidate beam pattern score is generated by calculating a sum of the products of the beam weights and corresponding beam scores.
  • the candidate beam pattern scores for the different candidate beam patterns then are compared at step 370 , and, at step 380 , a particular one of the candidate beam patterns is selected based on the candidate beam pattern scores. For example, in some implementations, the candidate beam pattern having the highest candidate beam pattern score may be selected. Finally, at step 390 , the selected beam pattern is scheduled for the beams of the antenna for the defined time period.
  • aspects of the present disclosure may be implemented entirely in hardware, entirely in software (including firmware, resident software, micro-code, etc.) or in combinations of software and hardware that may all generally be referred to herein as a “circuit,” “module,” “component,” or “system.”
  • aspects of the present disclosure may take the form of a computer program product embodied in one or more machine-readable media having machine-readable program code embodied thereon.
  • the machine-readable media may be a machine-readable signal medium or a machine-readable storage medium.
  • a machine-readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of such a machine-readable storage medium include the following: a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an appropriate optical fiber with a repeater, an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • a machine-readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device, such as, for example, a microprocessor.
  • a machine-readable signal medium may include a propagated data signal with machine-readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof.
  • a machine-readable signal medium may be any machine-readable medium that is not a machine-readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Program code embodied on a machine-readable signal medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF signals, etc., or any suitable combination of the foregoing.
  • Computer program code for carrying out operations for aspects of the present disclosure may be written in any combination of one or more programming languages, including object oriented programming languages, dynamic programming languages, and/or procedural programming languages.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s).
  • the functions noted in the blocks may occur out of the order illustrated in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.

Abstract

In one implementation, a method for scheduling beams of an antenna on a satellite during a defined time period includes calculating a beam score for each beam based on the expected gain of the beam and determining that the number of beams having non-zero beam scores during the defined time period is less than a threshold value. In addition, the method also includes accessing a set of beam weights for each of multiple different candidate beam patterns, and, for each set of weights, multiplying individual beam weights by corresponding beam scores, and generating a candidate beam pattern score by calculating a sum of the products of the beam weights and corresponding beam scores. The method further includes comparing the candidate beam pattern scores, selecting a particular one of the candidate beam patterns, and scheduling the selected beam pattern for the defined time period.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation of U.S. patent application Ser. No. 16/173,144 filed on Oct. 29, 2018, which is a continuation of U.S. patent application Ser. No. 15/462,396 filed on Mar. 17, 2017, now U.S. Pat. No. 10,116,379 B2 issued on Oct. 30, 2018, the disclosures of which are incorporated herein by reference.
  • TECHNICAL FIELD
  • The disclosure relates generally to provisioning satellite coverage.
  • SUMMARY
  • According to one implementation of the disclosure, a method for scheduling beams of an antenna on a satellite during a defined time period includes calculating a beam score for each beam based on the expected gain of the beam and determining that the number of beams having non-zero beam scores during the defined time period is less than a threshold value. In addition, the method also includes accessing a set of beam weights for each of multiple different candidate beam patterns, and, for each set of weights, multiplying individual beam weights by corresponding beam scores, and generating a candidate beam pattern score by calculating a sum of the products of the beam weights and corresponding beam scores. The method further includes comparing the candidate beam pattern scores, selecting a particular one of the candidate beam patterns, and scheduling the selected beam pattern for the defined time period.
  • Other features of the present disclosure will be apparent in view of the following detailed description of the disclosure and the accompanying drawings. Implementations described herein, including the above-described implementations, may include a method or process, a system, or computer-readable program code embodied on computer-readable media.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a more complete understanding of the present disclosure, reference now is made to the following description taken in connection with the accompanying drawings.
  • FIG. 1 is a high level block diagram of an example of an air traffic management system ecosystem in accordance with a non-limiting implementation of the present disclosure.
  • FIG. 2 is a functional block diagram of an example of a ground control system and satellite interaction ecosystem in accordance with a non-limiting implementation of the present disclosure.
  • FIG. 3 is a flow chart of an example of a process for selecting a beam configuration in accordance with a non-limiting implementation of the present disclosure.
  • FIGS. 4, 5A-5B, and 6A-6B are illustrations of examples of beam patterns in accordance with a non-limiting implementation of the present disclosure.
  • FIG. 7 is a flow chart of an example of a process for selecting a beam configuration in accordance with a non-limiting implementation of the present disclosure.
  • DETAILED DESCRIPTION
  • Traditionally, air traffic control, aircraft surveillance, and flight path management services have relied on ground-based radar stations and surveillance data processing systems. These systems rely on aircraft-based radio transmitters and terrestrial interrogation and receiving stations to implement systems, such as, for example, primary surveillance radar (“PSR”), secondary surveillance radar (“SSR”), and/or mode select (“Mode S”) radar, for communicating aircraft position and monitoring information to local ground stations. The information received at the local ground stations is then relayed to regional or global aircraft monitoring systems. Such conventional radar-based systems for use in air traffic control, aircraft surveillance, and flight path management services are limited to use in regions in which the appropriate ground infrastructure exists to interrogate and receive messages from aircraft. Consequently, vast areas of the world's airspace (e.g., over the oceans and poles, remote and/or mountainous regions, etc.) are not monitored by conventional, terrestrial radar-based systems.
  • Recently, modernization efforts have been launched to replace radar-based air traffic control, aircraft surveillance, and flight management systems with more advanced automatic dependent surveillance-broadcast (“ADS-B”) based systems. In an ADS—B-based system, an aircraft determines its position using a satellite-based navigation system (e.g., the Global Positioning System (“GPS”)) and periodically broadcasts its position and, in some cases, other information (e.g., velocity, time, and/or intent, among other information), thereby enabling the aircraft to be tracked. ADS—B-based systems may utilize different data links and formats for broadcasting ADS-B messages. 1090 MHz Mode S ES is an example of one such data link which has been adopted in many jurisdictions. For example, in the United States, the Federal Aviation Administration (“FAA”) has mandated 1090 MHz Mode S ES for use by air carrier and private or commercial operators of high-performance aircraft. Like traditional radar-based systems, ADS—B-based systems require appropriate infrastructure for receiving ADS-B messages broadcast by aircraft. As a result, even as numerous jurisdictions transition to terrestrial, ADS—B-based systems, air traffic in vast airspaces remains unmonitored.
  • To address this limitation of terrestrial ADS-B systems, satellite-based receivers can be used to receive ADS-B messages broadcast by aircraft, and such ABS-B messages then can be relayed back down to earth terminals or other terrestrial communications infrastructure for transmission to and use by air traffic control, aircraft surveillance, and flight path management services.
  • For example, and with reference to FIG. 1, a high-level block diagram of one example of a space-based ADS-B system 100 is illustrated in accordance with the present disclosure. System 100 includes satellite 10 in communication with and part of satellite network 20, and aircraft 70. In some implementations, satellite network 20, including satellite 10, may be a low Earth orbit (“LEO”) constellation of cross-linked communications satellites. As illustrated in FIG. 1, terrestrial ADS-B ground station 60, air traffic management system 40 and satellite communication network earth terminal 30 are located on Earth 80's surface.
  • Aircraft 70 carries an on-board ADS-B transponder 72 that broadcasts ADS-B messages containing flight status and tracking information. Satellite 10 carries payload 12 to receive ABS-B messages broadcast by aircraft 70 and other aircraft. In some implementations, multiple or all of the satellites in satellite network 20 may carry ADS-B payload to receive ADS-B messages broadcast by aircraft. Messages received at receiver 12 are relayed through satellite network 20 to satellite communication network earth terminal 30 and ultimately to air traffic management system 40 through terrestrial network 50. The air traffic management system 40 may receive aircraft status information from various aircraft and provide additional services such as air traffic control and scheduling or pass appropriate information along to other systems or entities.
  • In some implementations, ADS-B payload 12 may have one or more antennas and one or more receivers for receiving ADS-B messages broadcast by aircraft. Additionally or alternatively, in some implementations, ADS-B payload 12 may have a phased array antenna formed from multiple antenna elements that collectively are configured to provide multiple different beams for receiving ADS-B messages.
  • In certain implementations, satellite network 20 may have a primary mission other than receiving ADS-B messages broadcast by aircraft. For example, in some implementations, satellite network 20 may be a LEO, mobile satellite communications constellation. In such implementations, ADS-B payloads like ADS-B payload 12 may be hosted on satellites 10 of satellite network 20 as hosted or secondary payloads that may be considered secondary to the primary mission of the satellite network 20. Consequently, such ADS-B payloads when operated as hosted payloads may be constrained by certain limitations, such as, for example, a relatively low maximum weight and a relatively low power budget so as not to take away from the primary mission of the satellite network 20.
  • Terrestrial ADS-B ground station 60 provides aircraft surveillance coverage for a relatively small portion of airspace, for example, limited to aircraft within line of sight of ground station 60. Even if terrestrial ADS-B ground stations like ground station 60 are widely dispersed across land regions, large swaths of airspace (e.g., over the oceans) will remain uncovered. Meanwhile, a spaced-based ADS-B system 100 utilizing a satellite network like satellite network 20 may provide coverage of airspace over both land and sea regions without being limited to areas where ground-based surveillance infrastructure has been installed. Thus, a space-based ADS-B system may be preferable (or a valuable supplement) to terrestrial approaches.
  • However, implementing a spaced-based ADS-B system, such as, for example, system 100 may present a number of challenges. For example, in certain implementations, individual satellites 10 (or ADS-B payloads 12) may have limited power budgets within which to operate. As such, the individual satellites 10 (or ADS-B payloads 12) may benefit from intelligent management of resources to achieve desired performance levels without exceeding allowed power budgets.
  • In one example, individual satellites 10 (or ADS-B payloads 12) may be configured to provide multiple different coverage beams for receiving ADS-B messages and may benefit from intelligent management of beam scheduling to achieve desired coverage without exceeding allowed power budgets. Referring now to FIG. 4, in one specific implementation, each individual satellite 10 (or ADS-B payload 12) may be configured to have 33 different beams, for example, laid out as illustrated in the example beam pattern illustrated in FIG. 4. However, power (or other resource constraints) may prevent the concurrent use of all 33 beams at the same time. For example, operating all 33 beams at the same time may cause an individual satellite 10 (or ADS-B payload 12) to exceed its allowed power budget. Additionally or alternatively, size and/or processing constraints may not allow for 33 individual receivers on board satellite 10 (or ADS-B payload 12) for concurrently processing signals received in all 33 beams. Therefore, individual satellites 10 (or ADS-B payloads) may benefit from intelligent beam scheduling to achieve desired coverage within the constraints imposed on or by the satellite 10 (or ADS-B payload 12).
  • The present disclosure describes beam selection and scheduling techniques. While the disclosed beam selection and scheduling techniques generally are described in the context of selecting and scheduling beams of a satellite's (or payload's) antenna for receiving ADS-B messages, the beam selection and scheduling techniques may have broad application and can be employed in a variety of different contexts for the purpose of selecting and scheduling satellite antenna beams. As described in greater detail below, such beam selection and scheduling may be performed on a terrestrial computing platform (or similar resource) with the resultant beam schedules thereafter being uploaded to individual satellites. Additionally or alternatively, individual satellites may perform the beam selection and scheduling techniques disclosed herein themselves.
  • FIG. 2 is a functional block diagram of an example of a ground control system and satellite interaction ecosystem 105 in accordance with a non-limiting implementation of the present disclosure. As illustrated in FIG. 2, the ecosystem may include a server or other computing platform 110, a memory 115, a ground control system 120, a processor 125, an interface 155, an input and output (“I/O”) device 130, and a hard disk 140. Ground control system 120 processes may be performed on the computing platform 110 shown in FIG. 2. Processor 125 may be operable to load instructions from hard disk 140 into memory 115 and execute those instructions. Memory 115 may store computer-readable instructions that may instruct the computing platform 110 to perform certain processes. I/O device 130 may receive one or more of data from another server, local database, or a network 145. The computing platform 110 may be considered a processing system.
  • Satellites 155 a-155 z may include ADS-B payloads or otherwise be configured to receive ADS-B messages broadcast by aircraft. As such, satellites 155 a-155 z may include antennas that provide multiple beams for receiving ADS-B messages.
  • Network 145 may facilitate wireless communications of information and provisioning of satellites 155 a-155 z. For example, the ground control system 120 may communicate with satellites 155 a-155 z via the network 145. As such, network 145 may include wireless (e.g., radio frequency (RF″) uplinks and downlinks for communicating with satellites 155 a-155 z. Communications sent by the ground control system 120 to satellites 155 a-155 z via network 145 may include beam selection schedules as described in greater detail below. Similarly, satellites 155 a-155 z may relay received ADS-B messages through network 145 for terrestrial processing.
  • The ground control system 120 may also include or have access to a database 150 which may include, for example, additional servers, data storage, and resources. Ground control system 120 may receive additional data from database 150, such as, for example, expected antenna beam gain patterns, information about desired or required coverage areas, available beam patterns, and power budgets available to individual satellites 155.
  • The ground control system 120 may be configured to perform beam selection and scheduling processes for satellites 155 a-155 z. In some implementations, to assess coverage of the earth, the ground control system 120 may divide the earth into a grid of 1°×1° tiles over WGS-84 latitude and longitude. Such tiles may be divided into four categories: class one tiles in low update interval service volumes (e.g., update intervals of approximately 10-15 seconds); class two tiles in service volumes that may benefit from special treatment (e.g., tiles near high traffic areas where so-called FRUIT (false replies unsynchronized in time) levels may be expected to be high or tiles where satellite coverage overlap may be low, such as, for instance, near the equator in the case of a constellation of satellites in substantially polar orbits); class three tiles in high update interval service volumes (e.g., update intervals of approximately 30 seconds); and class four tiles where coverage is not desired or provided. In some implementations, an individual class two tile also may be considered to be either a class one tile or a class three tile (e.g., based on the desired update interval for the service volume where the tile is located). These tile classifications may inform, beam selection and scheduling decisions may be ground control system 120.
  • In some implementations, a space-based ADS-B system is formed from a constellation of satellites in low-Earth orbit (LEO). For example, a space-based ADS-B system may be formed from a number of LEO satellites arranged in some number of substantially polar orbital planes such that the constellation collectively provides coverage of substantially all of the Earth's surface. In one particular implementation, a space-based ADS-B system may be formed from 66 LEO satellites arranged in 6 orbital planes each having 11 satellites in substantially polar orbits. The antennas for receiving ADS-B messages on each of the satellites of such a space-based ADS-B system may be substantially the same and may be configured to provide substantially the same beam patterns. In one particular example, the antennas may be configured to provide 33 beams for receiving ADS-B signals. FIG. 4 illustrates one example of a beam pattern for such an antenna configured to provide 33 beams. In some implementations, the primary mission of the satellites may be to provide the space-based ADS-B system. In other implementations, the satellites may have one or more other missions and the space-based ADS-B system may be implemented by ADS-B payloads hosted on the satellites as hosted or secondary payloads. Therefore, it should be understood that references herein to a satellite or an antenna on board a satellite may refer to a satellite or a satellite's primary payload as well as a hosted or secondary payload and an antenna for a hosted or secondary payload.
  • Due to power (and/or other) constraints, it may be desirable (or necessary) to use less than a satellite's full complement of beams for receiving ADS-B messages. Therefore, beam selection and scheduling techniques may be performed in an effort to satisfy such constraints while still providing the desired coverage. In some implementations, the beam selection and scheduling techniques may schedule specific beam configurations for defined periods of time, each of which may be subdivided into segments. For example, in one implementation, the beam selection and scheduling techniques may schedule specific beam configurations for defined periods of time that may be referred to herein as beam cycle periods that are further subdivided into four segments (e.g., Segment A, Segment B, Segment C, and Segment D). In some implementations, the time period for a beam cycle period may be configurable. Examples of different time periods for a beam cycle period in different implementations or according to different configurations include 5 seconds, 8 second, and 10 seconds. For each such beam cycle period, the satellite may be assigned a particular power budget, for example, based on whether the satellite is in a position from which solar power is available or in an eclipse position from which solar power is not available because the Earth blocks the sun. The scheduling of the four segments and the different beams that may be turned on and off during individual segments then may be determined in an effort to achieve the desired coverage while satisfying the power budget (and/or other constraints).
  • A variety of different techniques may be employed to accomplish such beam selection and scheduling during each such beam cycle period for a satellite's antenna. For example, one technique may be referred to as a default sector scan. When a default sector scan is employed, each of the four segments may be assigned to a different quadrant of the antenna's beam pattern (e.g., as depicted in FIG. 4), and all (or some portion of all) of the antenna's beams in an individual quadrant may be turned on during the corresponding segment and off during the other segments. For example, during Segment A, all (or some portion of all) of the antenna's beams in Quadrant 1 may be turned on while all of the antenna's other beams are turned off. Similarly, during Segment B, all (or some portion of all) of the antenna's beams in Quadrant 2 may be turned on while all of the antenna's other beams are turned off. Likewise, during Segment C, all (or some portion of all) of the antenna's beams in Quadrant 3 may be turned on while all of the antenna's other beams are turned off; and, during Segment D, all (or some portion of all) of the antenna's beams in Quadrant 4 may be turned on while all of the antenna's other beams are turned off In some implementations, the default sector scan technique may be configured to spend an equal dwell time (e.g., 1 second) in each of the four quadrants. Alternatively, in other implementations, the default sector scan may be configured to spend different dwell times in each of the four quadrants (e.g., based on the classifications of tiles within each quadrant). While the default sector scan technique may provide relatively good coverage, a default sector scan also may require a relatively large power budget to operate and, therefore, may not always be a suitable option.
  • Another technique that may be used to accomplish beam selection and scheduling during a beam cycle period is to turn off all of the antenna's beams during one or more segments and to select one or more different beam patterns during the remaining segments. In one particular example, this technique may involve selecting particular beam patterns to be employed during Segment A and Segment C while turning all of the antenna's beams off during Segment B and Segment D. In this example, the beam patterns selected for Segments A and C may be referred to herein as paired beam patterns. In such an approach, the length of each individual segment may be determined in an effort to comply with the defined power budget for the beam cycle period. For example, if the defined power budget is relatively low, the lengths of Segment B and Segment D, where all of the antenna's beams are turned off, may be scheduled to be relatively long; whereas, if the defined power budget is relatively high, the lengths of Segment B and Segment D may be scheduled to be relatively short. For example, in one implementation, the length of time for each of Segments A and C and the length of time for each of Segments B and D may be calculated according to the following equation:
  • ( Beam Cycle Period - Time On ) = Time On ( P o w e r O n - P o w e r Budget P o w e r Budget - Power Off )
  • where “Beam Cycle Period” represents the time period for the beam cycle period, “Time On” represents two times the length of time for each of Segments A and C, “Beam Cycle Period” minus “Time On” represents two times the length of time for each of Segments B and D, “PowerOn” represents a measure of the power consumed with the beams turned on during Segments A and C, “PowerOff” represents a measure of the power consumed with the beams turned off during Segments B and D, and “PowerBudget” is the defined power budget for the beam cycle period.
  • Additionally or alternatively, in some implementations, the titles to be covered by the satellite during the beam cycle period may be taken into account when determining the length of time for each individual segment. For example, if one or more of the tiles to be covered by the satellite during the beam cycle period are class one tiles for which relatively short update intervals are desired, the lengths of Segment A and Segment C may be scheduled to be relatively long.
  • A variety of different beam patterns may be available for selection for Segment A and Segment C. For example, in some cases, a first so-called “Omni” beam pattern that covers nearly all of the azimuth and elevation space within the satellite's coverage footprint may be selected for Segment A and a second “Omni” beam pattern that overlaps with the first “Omni” beam pattern but provides slightly different coverage of the azimuth and elevation space within the satellite's coverage footprint may be selected for Segment C. Referring to the specific example beam configuration illustrated in FIG. 4, the first “Omni” beam pattern for Segment A may employ beams 1, 4, 7, 10, 12, 15, 18, 21, 23, 27, 31, and 33, while the second “Omni” beam pattern for Segment C may employ beams 2, 5, 8, 11, 13, 16, 19, 22, 23, 27, 31, and 33. Plots showing examples of the probability of detection (PD) of ADS-B messages when these two “Omni” beam patterns are used are illustrated in FIG. 5A and FIG. 5B, respectively.
  • Additionally or alternatively, in some cases, a first so-called “Hemi” beam pattern that approximately covers one half of the azimuth and elevation space within the satellite's coverage footprint may be selected for Segment A and a second “Hemi” beam pattern that approximately covers the other half of the azimuth and elevation space within the satellite's coverage footprint may be selected for Segment C. Referring to the specific example beam configuration illustrated in FIG. 4, the first “Hemi” beam pattern for Segment A may employ beams 2, 3, 4, 5, 6, 8, 10, 12, 23, 24, 26, and 33, while the second “hemi” beam pattern for Segment C may employ beams 1, 13, 14, 15, 17, 19, 20, 21, 27, 28, 30, and 33. Plots showing examples of the probability of detection (PD) of ADS-B messages when these two “hemi” beam patterns are used are illustrated in FIG. 6A and FIG. 6B, respectively.
  • In some implementations, many additional paired beam patterns may be available for selection for Segment A and Segment C. For example, one example of an additional paired beam pattern may be a so-called “East Hemi” paired beam pattern that focuses coverage within quadrants 1 and 2 of the azimuth and elevation space of the satellite's coverage footprint. Referring to the specific example beam configuration illustrated in FIG. 4, the “East Hemi” beam pattern for Segment A may employ beams 1, 3, 4, 6, 8, 10, 12, 23, 24, 25, 26, and 32, while the “East Hemi” beam pattern for Segment C may employ beams 2, 4, 5, 7, 9, 11, 23, 24, 25, 26, 27, and 31. Alternatively, another example of an additional paired beam pattern may be a so-called “West Hemi” paired beam pattern that focuses coverage within quadrants 3 and 4 of the azimuth and elevation space of the satellite's coverage footprint. Referring to the specific example beam configuration illustrated in FIG. 4, the “West Hemi” beam pattern for Segment A may employ beams 1, 21, 19, 17, 15, 13, 31, 30, 29, 28, 27, and 32, while the “West Hemi” beam pattern for Segment C may employ beams 22, 20, 18, 16, 14, 12, 23, 27, 28, 29, 30, and 31. Numerous other paired beam patterns also may be available. For example, paired beam patterns focusing on individual quadrants also may be available. Additionally or alternatively, paired beam patterns focusing on three quadrants also may be available.
  • In some implementations, each paired beam pattern may be associated with a set of weights, with each weight corresponding to an individual one of the beams of the satellite's antenna. For example, referring to the specific example beam configuration of 33 beams illustrated in FIG. 4 and recalling the “East Hemi” paired beam pattern described above, the following table illustrates examples of weights assigned to each beam of the satellite's antenna for the purposes of the “East Hemi” paired beam pattern:
  • 1 2 3 4 5 6 7 8 9 10 11 12 13
    0.4 1 1 1 1 1 1 1 1 1 1 0.4 0
    14 15 16 17 18 19 20 21 22 23 24 25 26
    0 −1 −1 −1 −1 −1 −1 0 0 0.4 1 1 1
    27 28 29 30 31 32 33
    0.4 0 −1 0 0.4 04 0.4

    These sets of weights for each of the available paired beam patterns may be used in the process of selecting an appropriate paired beam pattern for a satellite for a particular beam cycle period. For example, the expected gain (in some cases quantified as the link margin, or the energy per bit to noise power spectral density ratio, Eb/N0) of each beam during the particular beam cycle period may be multiplied by the beam's corresponding weight for each paired beam pattern, and the resulting products for each of the beams of a given paired beam pattern may be summed to generate a score for the paired beam pattern. The paired beam pattern with the highest score for the particular beam cycle period then may be selected as the appropriate paired beam pattern for the particular beam cycle period.
  • In some implementations, the expected gain for a beam may be a function of one or more different factors. For example, the expected gain for a beam may be a function of the orientation (e.g., angle) of the satellite's antenna (or relevant antenna elements) relative to the coverage area covered by the beam. Additionally or alternatively, the excepted gain for a beam also may take into account the desired coverage area. For example, if the coverage area covered by a beam during a particular period of time covers only tiles for which coverage is not desired, the expected gain for the beam may be set to zero irrespective of the actual expected gain of the beam during that particular period.
  • In some implementations, the expected gain for a beam may change over time, for example, as the satellite orbits the Earth and the orientation of the satellite's antenna relative to the Earth changes. Consequently, in some implementations, changes to the expected gain for a beam over time may be taken into account in the beam selection processes described herein. For example, in some implementations, a beam score may be calculated for each beam of a satellite's antenna for a particular beam cycle period by dividing the particular beam cycle period into some smaller number of sub-periods (e.g., 10 sub-periods) and calculating the sum (or the average) of the expected gain for the beam across all of the sub-periods. Such beam scores can be used in a number of different ways in the beam selection processes described herein. For example, the beam scores for each of the beams of a satellite's antenna can be multiplied by the corresponding beam weights associated with the paired antenna patterns as part of the process for selecting an appropriate paired antenna pattern as described above.
  • Referring now to FIG. 7, a flow chart of an example of a process 700 for selecting a beam configuration for the beams of a satellite's antenna during a defined time period (e.g., a beam cycle period) is illustrated in accordance with a non-limiting implementation of the present disclosure. Process 700 may be performed by a ground control system implemented on a computing platform, such as, for example, ground control system 120 implemented on computing platform 110 as illustrated in FIG. 2. In such cases, beam selection schedules generated by performing process 700 may be uploaded to individual satellites 155 and, thereafter, used by the individual satellites 155 to control the beams of the satellites' antennas. Additionally or alternatively, process 700 may be performed by computing resources on board one or more satellites.
  • In some implementations, process 700 may be performed multiple times and in advance to develop a beam selection schedule for an individual satellite for many defined time periods (e.g., beam cycle periods). For example, in some implementations, process 700 may be performed to generate a forward-looking beam selection schedule for an individual satellite as much as twenty-four hours or more in advance. In such implementations, small portions of such beam selection schedules may be uploaded to the satellites at time. For example, in some implementations, beam selection schedules defining beam selections for 120 second time periods may be uploaded to the satellites. It will be appreciated that process 700 may be performed for each of several different satellites to generate beam selection schedules for each individual satellite.
  • Referring specifically to FIG. 7, at step 800, a determination is made as to whether the number of active beams of the satellite's antenna during a defined time period (e.g., a beam cycle period) exceeds the number of receivers available on the satellite for processing signals received by the antenna by less a defined first threshold value. In some implementations, an active beam may be considered to be a beam that has a non-zero expected gain during the defined time period or a non-zero beam score during the defined time period. In one example, a satellite may have 12 receivers available for processing signals received by the antenna, and the first threshold value may be 3. In this example, if the satellite's antenna has 14 or fewer active beams, it may be determined at step 800 that the number of active beams exceeds the number of available receivers by less than the first threshold value. Alternatively, if the satellite's antenna has 15 or more active beams, it may be determined at step 800 that the number of active beams does not exceed the number of available receivers by less than the first threshold value.
  • If it is determined that the number of active beams of the satellite's antenna exceeds the number of available receivers by less than the first threshold value, the process 700 proceeds to step 802. At step 802, a beam selection process is performed that focuses on selecting the best available active beams for the satellite during the defined time period. For example, the defined time period may be subdivided into Segments A, B, C, and D, and beam scores for each beam of the satellite's antenna during the defined time period may be used to rank each of the beams during the defined time period. Some number (e.g., corresponding to the number of receivers available on the satellite) of the top-ranked beams then may be selected to be turned on during each of Segment A and Segment C while all of the beams may be turned off during Segment B and Segment D. For example, continuing with the example of the satellite having 12 receivers introduced above, if the satellite's antenna has 13 active beams during the defined time period, the 12 top-ranked beams may be selected to be turned on during Segment A and the 11 top-ranked beams and the 13th-ranked beam may be selected to be turned on during Segment C.
  • Returning again to step 800, if it is determined that the number of active beams of the satellite's antenna does not exceed the number of available receivers by less than the threshold value, the process proceeds to step 804. At step 804, a determination is made as to whether any of the tiles that will be within the coverage footprint of the satellite's antenna during the defined time period (or that will be within the coverage footprint of the active beams of the satellite's antenna during the defined time period) may benefit from special treatment, for example, because the tiles are near high traffic areas where FRUIT levels may be expected to be high (perhaps particularly during specific windows of time when traffic is known to usually be high) or because the tiles are located in areas where satellite coverage overlap may be low.
  • If it is determined that one or more of the tiles that will be within the coverage of the footprint of the satellite during the defined time period may benefit from special treatment, the process 700 proceeds to step 806 where a determination is made as to whether a sufficient power budget is available during the defined time period to support such special treatment. In some implementations, the determination of whether there is a sufficient power budget available during the defined time period may be based on whether there is a sufficient power budget available to support a default sector scan as described above. In such implementations, if it is determined that a sufficient power budget is available during the defined time period, at step 808, a default sector scan may be scheduled for the beams of the satellite's antenna during the defined time period.
  • If it is determined that no tiles that will be within the coverage footprint of the satellite's antenna during the defined time period will benefit from special treatment or that a sufficient power budget is not available to support such special treatment, the process 700 proceeds to step 810 where a determination is made as to whether the number of active beams of the satellite's antenna will exceed a second threshold value during the defined time period. If it is determined that the number of active beams of the satellite's antenna will exceed the second threshold value during the defined time period, the process 700 proceeds to step 812 where a default paired beam pattern (e.g., one of the “Omni” paired beam pattern or the “Hemi” paired beam pattern described above) is scheduled for the beams of the satellite's antenna during the defined time period.
  • Alternatively, if it is determined that the number of active beams of the satellite's antenna will not exceed the second threshold value during the defined time period, the process 700 proceeds to step 814 where a pattern association process is initiated. In particular, the defined time period may be subdivided into Segments A, B, C, and D, and, at step 816, the beam scores for each of the antenna's beams during the defined time period are multiplied by the corresponding beam weights for each of several defined paired beam patterns. Thereafter, at step 818, the paired beam pattern for which the sum of the products of the beam scores and beam weights is highest may be selected as the paired beam pattern for the antenna's beams during the defined period of time. At step 820, the actual beam patterns for Segment A and Segment C corresponding to the selected paired beam pattern are retrieved, and, at step 822, a determination is made as to whether all of the tiles for which coverage is desired (e.g., all tiles classified as class 1, class 2, and/or class 3) within the coverage footprint of the satellite's antenna (or within the coverage footprint of the active beams of the satellite's antenna) will be covered by the retrieved beam patterns. If it is determined that all of the tiles for which coverage is desired will be covered by the retrieved beam patterns, the process proceeds to step 824 where the retrieved beam patterns are scheduled for the beams of the satellite's antenna during the defined time period. Alternatively, if it is determined that not all of the tiles for which coverage is desired will be covered by the retrieved beam patterns, the process proceeds to step 812 where a default paired beam pattern (e.g., one of the “Omni” paired beam pattern or the “Hemi” paired beam pattern described above) is scheduled for the beams of the satellite's antenna during the defined time period.
  • FIG. 3 is a flow chart of an example of a process 300 for selecting a beam configuration for the beams of a satellite's antenna during a defined time period in accordance with a non-limiting implementation of the present disclosure. Process 300 may be performed by a ground control system implemented on a computing platform, such as, for example, ground control system 120 implemented on computing platform 110 as illustrated in FIG. 2. In such cases, beam selection schedules may be uploaded to individual satellites 155 and, thereafter, used by the individual satellites 155 to control the beams of the satellites' antennas. Additionally or alternatively, process 300 may be performed by computing resources on board one or more satellites. In some implementations, process 300 may be performed multiple times and in advance to develop a beam selection schedule for an individual satellite for multiple defined time periods. It also will be appreciated that process 300 may be performed for each of several different satellites to generate beam selection schedules for each individual satellite.
  • At step 300, a beam score is calculated for each beam of the antenna based, at least in part, on the expected gain of the beam during the defined time period. In some implementations, the beam score for a beam may be calculated by subdividing the time period into multiple sub-periods and calculating the sum or average of the expected gain of the beam across the sub-periods. Additionally or alternatively, in some implementations, beam scores may take into account desired coverage areas. For example, in some implementations, if the area covered by an individual beam during the defined time period is not an area for which coverage is desired, the beam score for the beam for the defined time period may be set to zero (or some other value to reflect that coverage is not desired for the area covered by the beam during the defined timer period).
  • At step 320, the number of beams of the antenna having non-zero beam scores during the defined time period is determined. Thereafter, at step 330, the number of beams of the antenna having non-zero beam scores during the defined time period is compared to a threshold value, and, at step 340, it is determined that the number of beams of the antenna having non-zero beam scores during the defined time period is less than the threshold value.
  • At step 350, as a consequence of having determined that the number of beams of the antenna having non-zero beam scores during the defined time period is less than the threshold value, a set of beam weights for each of multiple different candidate beam patterns, each of which has a weight corresponding to each of the antenna's beams, is accessed. Thereafter, at step 360, for each set of weights, the individual beam weights are multiplied by the corresponding beam scores for each of the beams of the antenna during the defined time period, and a candidate beam pattern score is generated by calculating a sum of the products of the beam weights and corresponding beam scores.
  • The candidate beam pattern scores for the different candidate beam patterns then are compared at step 370, and, at step 380, a particular one of the candidate beam patterns is selected based on the candidate beam pattern scores. For example, in some implementations, the candidate beam pattern having the highest candidate beam pattern score may be selected. Finally, at step 390, the selected beam pattern is scheduled for the beams of the antenna for the defined time period.
  • Aspects of the present disclosure may be implemented entirely in hardware, entirely in software (including firmware, resident software, micro-code, etc.) or in combinations of software and hardware that may all generally be referred to herein as a “circuit,” “module,” “component,” or “system.” Furthermore, aspects of the present disclosure may take the form of a computer program product embodied in one or more machine-readable media having machine-readable program code embodied thereon.
  • Any combination of one or more machine-readable media may be utilized. The machine-readable media may be a machine-readable signal medium or a machine-readable storage medium. A machine-readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of such a machine-readable storage medium include the following: a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an appropriate optical fiber with a repeater, an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a machine-readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device, such as, for example, a microprocessor.
  • A machine-readable signal medium may include a propagated data signal with machine-readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A machine-readable signal medium may be any machine-readable medium that is not a machine-readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device. Program code embodied on a machine-readable signal medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF signals, etc., or any suitable combination of the foregoing.
  • Computer program code for carrying out operations for aspects of the present disclosure may be written in any combination of one or more programming languages, including object oriented programming languages, dynamic programming languages, and/or procedural programming languages.
  • The flowchart and block diagrams in the figures illustrate examples of the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various aspects of the present disclosure. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the blocks may occur out of the order illustrated in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and machine-readable instructions.
  • The terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
  • The corresponding structures, materials, acts, and equivalents of any means or step plus function elements in the claims below are intended to include any disclosed structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present disclosure has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the disclosure in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the disclosure. The aspects of the disclosure herein were chosen and described in order to explain the principles of the disclosure and the practical application, and to enable others of ordinary skill in the art to understand the disclosure with various modifications as are suited to the particular use contemplated.

Claims (20)

What is claimed is:
1. A computer-implemented method for scheduling beams of an antenna on board a satellite in low-Earth orbit for receiving Automatic Dependent Surveillance Broadcast (ADS-B) messages, wherein the antenna is configured to provide multiple different beams, the method comprising:
identifying, for beams that the antenna is configured to provide, corresponding coverage areas during a defined period of time;
identifying characteristics of the identified coverage areas; and
scheduling individual beams that the antenna is configured to provide to be on or off during the defined period of time based on the identified characteristics of their corresponding coverage areas.
2. The computer-implemented method of claim 1, wherein:
identifying characteristics of the identified coverage areas includes identifying at least one particular coverage area as an area for which coverage is desired; and
scheduling individual beams that the antenna is configured to provide to be on or off during the defined period of time includes scheduling the beam identified as corresponding to the particular coverage area to be on during the defined period of time as a consequence of having identified the particular coverage area as an area for which coverage is desired.
3. The computer-implemented method of claim 2, wherein scheduling the beam identified as corresponding to the particular coverage area to be on during the defined period of time includes scheduling the beam identified as corresponding to the coverage area to be on for a portion of the defined period of time that is less than all of the defined period of time.
4. The computer-implemented method of claim 1, wherein:
identifying characteristics of the identified coverage areas includes identifying at least one particular coverage area as an area for which coverage is not desired; and
scheduling individual beams that the antenna is configured to provide to be on or off during the defined period of time includes scheduling the beam identified as corresponding to the particular coverage area to be off during the defined period of time as a consequence of having identified the particular coverage area as an area for which coverage is not desired.
5. The computer-implemented method of claim 1, wherein:
identifying characteristics of the identified coverage areas includes identifying desired update intervals for aircraft within the identified coverage areas; and
scheduling individual beams that the antenna is configured to provide to be on or off during the defined period of time based on the identified characteristics of their corresponding coverage areas includes scheduling individual beams that the antenna is configured to provide to be one or off during the defined period of time based on the desired update intervals for aircraft within the identified coverage areas.
6. The computer-implemented method of claim 1, wherein:
identifying characteristics of the identified coverage areas includes identifying expected aircraft density within the identified coverage areas; and
scheduling individual beams that the antenna is configured to provide to be on or off during the defined period of time based on the identified characteristics of their corresponding coverage areas includes scheduling individual beams that the antenna is configured to provide to be on or off during the defined period of time based on the expected aircraft density within the identified coverage areas.
7. The computer-implemented method of claim 1, wherein:
identifying characteristics of the identified coverage areas includes identifying expected interference with ADS-B messages within the identified coverage areas; and
scheduling individual beams that the antenna is configured to provide to be on or off during the defined period of time based on the identified characteristics of their corresponding coverage areas includes scheduling individual beams that the antenna is configured to provide to be on or off during the defined period of time based on the expected interference with ADS-B messages within the identified coverage areas.
8. The computer-implemented method of claim 1, further comprising determining a power budget during the defined period of time, wherein:
scheduling individual beams that the antenna is configured to provide to be on or off during the defined period of time based on the identified characteristics of their corresponding coverage areas further comprises scheduling individual beams that the antenna is configured to provide to be on or off during the defined period of time based on the identified characteristics of their corresponding coverage areas and the determined power budget.
9. The computer-implemented method of claim 8, wherein identifying a power budget during the defined period of time includes:
determining that the satellite is in eclipse during the defined period of time; and
determining a power budget during the defined period of time based on the satellite being in eclipse during the defined period of time.
10. The computer-implemented method of claim 8, wherein identifying a power budget during the defined period of time includes:
determining that solar power is available to the satellite during the defined period of time; and
determining a power budget during the defined period of time based on solar power being available to the satellite during the defined period of time.
11. The computer-implemented method of claim 1, further comprising determining, for the beams that the antenna is configured to provide, expected gains during the defined period of time, wherein:
scheduling individual beams that the antenna is configured to provide to be on or off during the defined period of time based on the identified characteristics of their corresponding coverage areas includes scheduling individual beams that the antenna is configured to provide to be on or off during the defined period of time based on the identified characteristics of their corresponding coverage areas and their corresponding expected gains.
12. The computer-implemented method of claim 1 wherein the antenna corresponds to a secondary payload on the satellite.
13. The computer-implemented method of claim 1, wherein scheduling individual beams that the antenna is configured to provide to be on or off during the defined period of time based on the identified characteristics of their corresponding coverage areas includes scheduling at least one beam to be on for at least one portion of the defined period of time and off for at least another portion of the defined period of time.
14. A system for scheduling beams of an antenna on board a satellite in low-Earth orbit for receiving Automatic Dependent Surveillance Broadcast (ADS-B) messages, wherein the antenna is configured to provide multiple different beams, the system comprising:
one or more processing elements; and
non-transitory computer-readable memory storing instructions that, when executed by the one or more processing elements, cause the system to:
identify, for beams that the antenna is configured to provide, corresponding coverage areas during a defined period of time;
identify characteristics of the identified coverage areas; and
schedule individual beams that the antenna is configured to provide to be on or off during the defined period of time based on the identified characteristics of their corresponding coverage areas.
15. The system of claim 14, wherein:
the instructions that, when executed by the one or more processing elements, cause the system to identify characteristics of the identified coverage areas include instructions that, when executed by the one or more processing elements, cause the system to identify at least one particular coverage area as an area for which coverage is desired; and
the instructions that, when executed by the one or more processing elements, cause the system to schedule individual beams that the antenna is configured to provide to be on or off during the defined period of time include instructions that, when executed by the one or more processing elements, cause the system to schedule the beam identified as corresponding to the particular coverage area to be on during the defined period of time as a consequence of having identified the particular coverage area as an area for which coverage is desired.
16. The system of claim 14, wherein:
the instructions that, when executed by the one or more processing elements, cause the system to identify characteristics of the identified coverage areas include instructions that, when executed by the one or more processing elements, cause the system to identify at least one particular coverage area as an area for which coverage is not desired; and
the instructions that, when executed by the one or more processing elements, cause the system to schedule individual beams that the antenna is configured to provide to be on or off during the defined period of time include instructions that, when executed by the one or more processing elements, cause the system to schedule the beam identified as corresponding to the particular coverage area to be off during the defined period of time as a consequence of having identified the particular coverage area as an area for which coverage is not desired.
17. A non-transitory computer-readable storage medium having computer-readable program code embodied thereon for scheduling beams of an antenna on board a satellite in low-Earth orbit for receiving Automatic Dependent Surveillance Broadcast (ADS-B) messages, wherein the antenna is configured to provide multiple different beams, the computer-readable program code comprising instructions that, when executed by one or more processing elements, cause the processing elements to:
identify, for beams that the antenna is configured to provide, corresponding coverage areas during a defined period of time;
identify characteristics of the identified coverage areas; and
schedule individual beams that the antenna is configured to provide to be on or off during the defined period of time based on the identified characteristics of their corresponding coverage areas.
18. The non-transitory computer-readable storage medium of claim 17, wherein:
the instructions that, when executed by the one or more processing elements, cause the processing elements to identify characteristics of the identified coverage areas include instructions that, when executed by the one or more processing elements, cause the processing elements to identify at least one particular coverage area as an area for which coverage is desired; and
the instructions that, when executed by the one or more processing elements, cause the processing elements to schedule individual beams that the antenna is configured to provide to be on or off during the defined period of time include instructions that, when executed by the one or more processing elements, cause the processing elements to schedule the beam identified as corresponding to the particular coverage area to be on during the defined period of time as a consequence of having identified the particular coverage area as an area for which coverage is desired.
19. The non-transitory computer-readable storage medium of claim 17, wherein:
the instructions that, when executed by the one or more processing elements, cause the one or more processing elements to identify characteristics of the identified coverage areas include instructions that, when executed by the one or more processing elements, cause the one or more processing elements to identify at least one particular coverage area as an area for which coverage is not desired; and
the instructions that, when executed by the one or more processing elements, cause the processing elements to schedule individual beams that the antenna is configured to provide to be on or off during the defined period of time include instructions that, when executed by the one or more processing elements, cause the processing elements to schedule the beam identified as corresponding to the particular coverage area to be off during the defined period of time as a consequence of having identified the particular coverage area as an area for which coverage is not desired.
20. The non-transitory computer-readable storage medium of claim 17, wherein:
the instructions that, when executed by the one or more processing elements, cause the processing elements to identify characteristics of the identified coverage areas include instructions that, when executed by the one or more processing elements, cause the processing elements to identify expected aircraft density within the identified coverage areas; and
the instructions that, when executed by the one or more processing elements, cause the processing elements to schedule individual beams that the antenna is configured to provide to be on or off during the defined period of time based on the identified characteristics of their corresponding coverage areas include instructions that, when executed by the one or more processing elements, cause the processing elements to schedule individual beams that the antenna is configured to provide to be on or off during the defined period of time based on the expected aircraft density within the identified coverage areas.
US16/828,311 2017-03-17 2020-03-24 Scheduling beams of a satellite antenna Abandoned US20200382202A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/828,311 US20200382202A1 (en) 2017-03-17 2020-03-24 Scheduling beams of a satellite antenna
US17/212,700 US20220045748A1 (en) 2017-03-17 2021-03-25 Scheduling beams of a satellite antenna
US17/858,679 US20230072064A1 (en) 2017-03-17 2022-07-06 Scheduling beams of a satellite antenna

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/462,396 US10116379B2 (en) 2017-03-17 2017-03-17 Scheduling beams of a satelite antenna
US16/173,144 US20190173570A1 (en) 2017-03-17 2018-10-29 Scheduling beams of a satellite antenna
US16/828,311 US20200382202A1 (en) 2017-03-17 2020-03-24 Scheduling beams of a satellite antenna

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/173,144 Continuation US20190173570A1 (en) 2017-03-17 2018-10-29 Scheduling beams of a satellite antenna

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/212,700 Continuation US20220045748A1 (en) 2017-03-17 2021-03-25 Scheduling beams of a satellite antenna

Publications (1)

Publication Number Publication Date
US20200382202A1 true US20200382202A1 (en) 2020-12-03

Family

ID=63520362

Family Applications (5)

Application Number Title Priority Date Filing Date
US15/462,396 Active US10116379B2 (en) 2017-03-17 2017-03-17 Scheduling beams of a satelite antenna
US16/173,144 Abandoned US20190173570A1 (en) 2017-03-17 2018-10-29 Scheduling beams of a satellite antenna
US16/828,311 Abandoned US20200382202A1 (en) 2017-03-17 2020-03-24 Scheduling beams of a satellite antenna
US17/212,700 Abandoned US20220045748A1 (en) 2017-03-17 2021-03-25 Scheduling beams of a satellite antenna
US17/858,679 Pending US20230072064A1 (en) 2017-03-17 2022-07-06 Scheduling beams of a satellite antenna

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US15/462,396 Active US10116379B2 (en) 2017-03-17 2017-03-17 Scheduling beams of a satelite antenna
US16/173,144 Abandoned US20190173570A1 (en) 2017-03-17 2018-10-29 Scheduling beams of a satellite antenna

Family Applications After (2)

Application Number Title Priority Date Filing Date
US17/212,700 Abandoned US20220045748A1 (en) 2017-03-17 2021-03-25 Scheduling beams of a satellite antenna
US17/858,679 Pending US20230072064A1 (en) 2017-03-17 2022-07-06 Scheduling beams of a satellite antenna

Country Status (1)

Country Link
US (5) US10116379B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10263690B2 (en) 2017-08-01 2019-04-16 Viasat, Inc. Handover based on predicted network conditions
US11363600B2 (en) * 2017-09-19 2022-06-14 Telefonaktiebolaget Lm Ericsson (Publ) Beam assignment in a communications network
US11165160B2 (en) * 2018-05-31 2021-11-02 Kymeta Corporation Antenna testing
CN109904594A (en) * 2019-02-12 2019-06-18 上海航天电子有限公司 A kind of spaceborne simulation multi-beam receiving antenna of miniaturization ADS-B
FR3108005B1 (en) * 2020-03-05 2022-03-11 Airbus Defence & Space Sas Device and system for receiving ADS-B messages by a satellite in orbit
EP3905546A1 (en) * 2020-04-30 2021-11-03 Panasonic Intellectual Property Corporation of America User equipment and base station
CN113644951B (en) * 2020-05-11 2023-03-21 大唐移动通信设备有限公司 Data transmission method and equipment
US11741965B1 (en) * 2020-06-26 2023-08-29 Amazon Technologies, Inc. Configurable natural language output

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1093242B1 (en) * 1999-10-15 2007-02-14 Northrop Grumman Corporation Dynamic beam width selection for non-uniform density multiple access cells
US9748989B1 (en) * 2012-09-05 2017-08-29 RKF Engineering Solutions, LLC Rain fade mitigation in a satellite communications system
US10509097B2 (en) * 2016-03-31 2019-12-17 Hughes Network Systems, Llc Correcting satellite pointing direction

Also Published As

Publication number Publication date
US20220045748A1 (en) 2022-02-10
US20180269958A1 (en) 2018-09-20
US20190173570A1 (en) 2019-06-06
US10116379B2 (en) 2018-10-30
US20230072064A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
US20220045748A1 (en) Scheduling beams of a satellite antenna
Tooley et al. Aircraft communications and navigation systems
Benedicto et al. GALILEO: Satellite system design
Richharia Mobile satellite communications: principles and trends
US10659145B2 (en) Simulating reception of transmissions
US7606567B1 (en) Channel allocation for burst transmission to a diversity of satellites
US6223019B1 (en) Efficient high latitude service area satellite mobile broadcasting systems
US8862122B2 (en) Multi-spot satellite surveillance system and reception device
US10650687B2 (en) Decoding position information in space-based systems
Nag et al. CubeSat constellation design for air traffic monitoring
WO1998020634A2 (en) Frequency sharing for satellite communication system
Ilčev Global Mobile Satellite Communications Theory
Van Der Pryt et al. A Simulation of the Reception of Automatic Dependent Surveillance-Broadcast Signals in Low Earth Orbit.
US20230217345A1 (en) Space-based aircraft monitoring
Alminde et al. Gomx-1: A nano-satellite mission to demonstrate improved situational awareness for air traffic control
Varrall 5G and Satellite Spectrum, Standards, and Scale
Quintana-Diaz et al. Detection of radio interference in the UHF amateur radio band with the Serpens satellite
Nasser Multi mission low earth orbit equatorial satellite for Indonesian regions
EP3839549A1 (en) Decoding position information
Cheruku Satellite communication
Kerczewski et al. Satellite Communications for Unmanned Aircraft C2 Links: C-Band, Ku-Band and Ka-Band
Neale et al. Current and Future Unmanned Aircraft System Control & Communications Datalinks.
McClure et al. Survey and Analysis of Long Distance Communication Techniques
Barnwal et al. Automatic Dependent Surveillance-Broadcast Using Satellite over Indian Air Space
Brandel et al. Global navigation and traffic control using satellites

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION