US20200371804A1 - Boosting local memory performance in processor graphics - Google Patents
Boosting local memory performance in processor graphics Download PDFInfo
- Publication number
- US20200371804A1 US20200371804A1 US16/986,643 US202016986643A US2020371804A1 US 20200371804 A1 US20200371804 A1 US 20200371804A1 US 202016986643 A US202016986643 A US 202016986643A US 2020371804 A1 US2020371804 A1 US 2020371804A1
- Authority
- US
- United States
- Prior art keywords
- group
- work
- processor
- instructions
- local memory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000007334 memory performance Effects 0.000 title 1
- 230000015654 memory Effects 0.000 claims abstract description 127
- 238000000034 method Methods 0.000 claims description 41
- 230000006870 function Effects 0.000 claims description 23
- 230000004044 response Effects 0.000 claims description 8
- 230000001131 transforming effect Effects 0.000 claims description 5
- 230000004888 barrier function Effects 0.000 abstract description 17
- 230000006386 memory function Effects 0.000 abstract description 2
- 238000012545 processing Methods 0.000 description 59
- 238000010586 diagram Methods 0.000 description 23
- 238000013461 design Methods 0.000 description 20
- 239000000872 buffer Substances 0.000 description 19
- 230000008569 process Effects 0.000 description 19
- 239000013598 vector Substances 0.000 description 13
- 238000005070 sampling Methods 0.000 description 12
- 238000003860 storage Methods 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 208000019300 CLIPPERS Diseases 0.000 description 5
- 208000021930 chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids Diseases 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000001960 triggered effect Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 238000005056 compaction Methods 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 101000912503 Homo sapiens Tyrosine-protein kinase Fgr Proteins 0.000 description 1
- 102100026150 Tyrosine-protein kinase Fgr Human genes 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/30098—Register arrangements
- G06F9/3012—Organisation of register space, e.g. banked or distributed register file
- G06F9/30138—Extension of register space, e.g. register cache
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
- G06T1/20—Processor architectures; Processor configuration, e.g. pipelining
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/0802—Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
- G06F12/0804—Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches with main memory updating
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline or look ahead
- G06F9/3867—Concurrent instruction execution, e.g. pipeline or look ahead using instruction pipelines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline or look ahead
- G06F9/3885—Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units
- G06F9/3887—Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units controlled by a single instruction for multiple data lanes [SIMD]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline or look ahead
- G06F9/3885—Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units
- G06F9/3888—Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units controlled by a single instruction for multiple threads [SIMT] in parallel
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline or look ahead
- G06F9/3885—Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units
- G06F9/3888—Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units controlled by a single instruction for multiple threads [SIMT] in parallel
- G06F9/38885—Divergence aspects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/52—Program synchronisation; Mutual exclusion, e.g. by means of semaphores
- G06F9/522—Barrier synchronisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
- G06T1/60—Memory management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/10—Providing a specific technical effect
- G06F2212/1016—Performance improvement
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/10—Providing a specific technical effect
- G06F2212/1016—Performance improvement
- G06F2212/1024—Latency reduction
Definitions
- This relates generally to processor graphics also known as graphics processing units.
- Open Computing Language One computing language for use with processor graphics is called the Open Computing Language (OpenCL) that is designed to work with many different platform models. Thus it is a computing language that is adaptable to many different architectures from different manufacturers.
- OpenCL Open Computing Language
- OpenCL uses a platform module made up of processing elements, global memory and localized programmable memories under the name of local memory.
- a processing element is any virtual scalar processor.
- a work-item, executable on one or more processing elements is one of a collection of parallel executions of a kernel invoked on a device by a command.
- a work-item is executed by one or more processing elements as part of a work-group executing on a compute unit.
- a work-group is a collection of related work-items that execute on a single compute unit. The work-items in the group execute the same kernel and share local memory in work-group barriers.
- a compute unit is an OpenCL device having one or more compute units.
- a work-group executes on a single compute unit.
- a compute unit is composed of one or more processing elements and local memory.
- the OpenCL C programming language provides a built-in work-group barrier function. It can be used by a kernel executing on a device to perform synchronization between work-items and a work-group executing the kernel. All of the work items of the work-group execute the barrier construct before they are allowed to continue execution beyond the barrier.
- a device is a collection of compute units.
- a command-queue is used to queue commands to a device. Examples of commands include executing kernels, or reading and writing memory objects.
- a global memory is a memory region accessible to all work items executing in a context. It is accessible to the host using commands such as read, write and map.
- Local memory is a memory region associated with a work-group and accessible only by work-items in that work-group.
- a context is the environment in which the kernels execute and the domain in which synchronization and memory management is defined.
- a context includes a set of devices, the memory accessible to those devices, the corresponding memory properties and one or more command-queues used to schedule execution of kernels or operations of memory objects.
- a host interacts with the context using the OpenCL application program interface (API).
- API application program interface
- a kernel is a function defined in a program and executed on an OpenCL device.
- SIMD Single instruction multiple data
- All processing elements execute a structurally identical set of instructions or group.
- L3 caches lower level caches
- performance may be less than in those with higher speed local memories.
- performance may vary between different processor graphics based on the relative speeds of their local memories.
- FIG. 1 is a schematic of an execution unit according to one embodiment
- FIG. 2 is a schematic of a slice according to one embodiment
- FIG. 3 is a flow chart for one embodiment
- FIG. 4 is a depiction of a non-aligned write
- FIG. 5 is a flow chart for a non-aligned write according to one embodiment
- FIG. 6 is a block diagram of a processing system according to one embodiment
- FIG. 7 is a block diagram of a processor according to one embodiment
- FIG. 8 is a block diagram of a graphics processor according to one embodiment
- FIG. 9 is a block diagram of a graphics processing engine according to one embodiment.
- FIG. 10 is a block diagram of another embodiment of a graphics processor
- FIG. 11 is a depiction of thread execution logic according to one embodiment
- FIG. 12 is a block diagram of a graphics processor instruction format according to some embodiments.
- FIG. 13 is a block diagram of another embodiment of a graphics processor
- FIG. 14A is a block diagram of a graphics processor command format according to some embodiments.
- FIG. 14B is a block diagram illustrating a graphics processor command sequence according to some embodiments.
- FIG. 15 is a depiction of an exemplary graphics software architecture according to some embodiments.
- FIG. 16 is a block diagram illustrating an IP core development system according to some embodiments.
- FIG. 17 is a block diagram showing an exemplary system on chip integrated circuit according to some embodiments.
- processor graphics with a slower local memory can compensate by using another memory in place of the lowest level or L3 cache.
- processors there is a large register space that can be used for the local memory function by allocating the local memory within those registers.
- barriers can be simulated by letting one execution unit thread execute more SIMD instructions. For example, one execution thread may simulate a whole work-group in the OpenCL API.
- an execution unit may be fine-tuned so that the number of threads and the number of registers may match scalability and specific design requirements.
- an execution unit thread may have 128 general purpose registers within the general purpose register files 14 .
- Each register may store 32 bytes, in one embodiment, accessible as a SIMD 8 element vector of 32-bit data elements.
- Each execution unit may have seven threads for a total of 28 Kbytes of general purpose register file 14 .
- Flexible addressing modes permit registers to be addressed together to build effectively wider registers, or even to represent strided rectangular block structures. Per thread architectural state is maintained in a separate dedicated architecture register file 16 .
- the hardware threads within an execution unit may be executing the same compute kernel code, or each execution unit thread may be executing completely different compute kernel code.
- the execution state of each thread, including its own instruction pointer stack are held in a thread-specific architecture register file 16 .
- an execution unit can co-issue up to different four different instructions from four different threads.
- the execution units thread arbiter 18 dispatches these instructions to one of four issue slots for execution. Although the issue slots pose some instruction co-issue constraints, the four instructions may be independent, since they are dispatched from four separate threads.
- branch instructions are dispatched to a dedicated branch unit 22 to facilitate SIMD divergence and eventual convergence.
- memory operations, sampler operations, and other system communications are all dispatched via a message passing send unit 20 .
- the primary computation units are a pair of SIMD floating point units (FPUs) 24 . These units may support both floating point and integer computation. In one embodiment, the FPUs execute up to four 32-bit floating point integer operations or SIMD execute up to eight 16-bit integer operations.
- the general purpose register files 14 may be allocated as local memory, enabling processors with relatively slower lower level cache performance to execute more effectively. Instead of the last level cache, the local memory contents may be stored in these registers to the greatest possible extent, which may significantly improve performance in some embodiments. When there is no more space in the registers, then the lower level cache may be used.
- the thread can execute more SIMD operations to simulate barriers in some embodiments. For example, if an OpenCL work-group has 64 work threads, the execution unit thread can execute four SIMD-16 instructions to simulate barriers.
- execution units are combined into a slice.
- the level three (L3) data cache 44 is contained within the slice as shown in FIG. 2 .
- two subslices 40 are clustered into slices.
- a single slice aggregates a total of twenty execution units 52 in one embodiment.
- the slice also integrates additional logic for thread dispatch routing 54 , a banked level three (L3) cache 44 , a smaller but highly banked shared local memory structure 46 and fixed function logic 48 for atomics and barriers.
- fixed function units 50 also support media and graphics capabilities.
- a sequence shown in FIG. 3 may be implemented in software, hardware or firmware.
- software and firmware embodiments it may be implemented by computer executed instructions stored in one or more non-transitory computer readable media such as magnetic, optical or semiconductor storage.
- the sequence may be implemented in an execution unit in one embodiment.
- the execution unit tries to store all the local memories in the register space 14 .
- SIMD instructions are expanded to ensure that the whole group is executed in one single execution unit thread.
- the lower level or level three cache is used if the register requirement in the OpenCL kernel is larger than the register space as determined in diamond 36 .
- Thread communication is one of the most important features in SIMT (Single Instruction Multiple Threads) programming languages like OpenCL or Cuda.
- SIMT Single Instruction Multiple Threads
- OpenCL programs use local shared memory to exchange data and synchronize status among a group of threads.
- the pattern that OpenCL kernels access local shared memory could aligned or non-aligned.
- Non-aligned writing to registers with hardware instructions may be problematic in some cases.
- the register locations in the source do not align with the register locations in the destination.
- FIG. 4 shows an example of a non-aligned write.
- the write from the source (Src) to destination (Dest) occurs from register location 1 on the source to register location 2 on the destination (instead of location 1 at the destination) and so the write is non-aligned.
- Permutation group theory can transform this non-aligned write problem into a pattern that uses fewer hardware instructions in one embodiment. If p is a permutation of ⁇ 1, 2, . . . , n ⁇ , according to the group theory, there exists a small k and p can permute itself by k times (p ⁇ circumflex over ( ) ⁇ k) to get the original sequence ⁇ 1, 2, . . . , n ⁇ .
- k 2 in the example above, so p is multiplied by itself one time.
- a sequence shown in FIG. 5 may be implemented in software, hardware or firmware.
- software and firmware embodiments it may be implemented by computer executed instructions stored in one or more non-transitory computer readable media such as magnetic, optical or semiconductor storage.
- the sequence may be implemented in an execution unit in one embodiment.
- the sequence shown in FIG. 5 may operate as follows. Within an OpenCL compiler, permutation group theory is used to calculate the number of k as shown in block 50 .
- the compiler generates log(k ⁇ 1) instructions to transform the source registers, as indicated in block 52 .
- the compiler also needs to decide whether the kernel needs to cache the pattern for subsequent re-use as indicated in diamond 54 . If so, the pattern is cached as indicated in block 56 for subsequent re-use.
- advantages can be achieved including a faster approach for non-aligned register writes that performs permutation multiplication using only one hardware instruction. Also, a write pattern happens several times in the kernel, it can be cached for future use. This saves overhead of computation time.
- FIG. 6 is a block diagram of a processing system 100 , according to an embodiment.
- the system 100 includes one or more processors 102 and one or more graphics processors 108 , and may be a single processor desktop system, a multiprocessor workstation system, or a server system having a large number of processors 102 or processor cores 107 .
- the system 100 is a processing platform incorporated within a system-on-a-chip (SoC) integrated circuit for use in mobile, handheld, or embedded devices.
- SoC system-on-a-chip
- An embodiment of system 100 can include, or be incorporated within a server-based gaming platform, a game console, including a game and media console, a mobile gaming console, a handheld game console, or an online game console.
- system 100 is a mobile phone, smart phone, tablet computing device or mobile Internet device.
- Data processing system 100 can also include, couple with, or be integrated within a wearable device, such as a smart watch wearable device, smart eyewear device, augmented reality device, or virtual reality device.
- data processing system 100 is a television or set top box device having one or more processors 102 and a graphical interface generated by one or more graphics processors 108 .
- the one or more processors 102 each include one or more processor cores 107 to process instructions which, when executed, perform operations for system and user software.
- each of the one or more processor cores 107 is configured to process a specific instruction set 109 .
- instruction set 109 may facilitate Complex Instruction Set Computing (CISC), Reduced Instruction Set Computing (RISC), or computing via a Very Long Instruction Word (VLIW).
- Multiple processor cores 107 may each process a different instruction set 109 , which may include instructions to facilitate the emulation of other instruction sets.
- Processor core 107 may also include other processing devices, such a Digital Signal Processor (DSP).
- DSP Digital Signal Processor
- the processor 102 includes cache memory 104 .
- the processor 102 can have a single internal cache or multiple levels of internal cache.
- the cache memory is shared among various components of the processor 102 .
- the processor 102 also uses an external cache (e.g., a Level-3 (L3) cache or Last Level Cache (LLC)) (not shown), which may be shared among processor cores 107 using known cache coherency techniques.
- L3 cache Level-3
- LLC Last Level Cache
- a register file 106 is additionally included in processor 102 which may include different types of registers for storing different types of data (e.g., integer registers, floating point registers, status registers, and an instruction pointer register). Some registers may be general-purpose registers, while other registers may be specific to the design of the processor 102 .
- processor 102 is coupled to a processor bus 110 to transmit communication signals such as address, data, or control signals between processor 102 and other components in system 100 .
- the system 100 uses an exemplary ‘hub’ system architecture, including a memory controller hub 116 and an Input Output (I/O) controller hub 130 .
- a memory controller hub 116 facilitates communication between a memory device and other components of system 100
- an I/O Controller Hub (ICH) 130 provides connections to I/O devices via a local I/O bus.
- the logic of the memory controller hub 116 is integrated within the processor.
- Memory device 120 can be a dynamic random access memory (DRAM) device, a static random access memory (SRAM) device, flash memory device, phase-change memory device, or some other memory device having suitable performance to serve as process memory.
- the memory device 120 can operate as system memory for the system 100 , to store data 122 and instructions 121 for use when the one or more processors 102 executes an application or process.
- Memory controller hub 116 also couples with an optional external graphics processor 112 , which may communicate with the one or more graphics processors 108 in processors 102 to perform graphics and media operations.
- ICH 130 enables peripherals to connect to memory device 120 and processor 102 via a high-speed I/O bus.
- the I/O peripherals include, but are not limited to, an audio controller 146 , a firmware interface 128 , a wireless transceiver 126 (e.g., Wi-Fi, Bluetooth), a data storage device 124 (e.g., hard disk drive, flash memory, etc.), and a legacy I/O controller 140 for coupling legacy (e.g., Personal System 2 (PS/2)) devices to the system.
- PS/2 Personal System 2
- One or more Universal Serial Bus (USB) controllers 142 connect input devices, such as keyboard and mouse 144 combinations.
- a network controller 134 may also couple to ICH 130 .
- a high-performance network controller (not shown) couples to processor bus 110 .
- the system 100 shown is exemplary and not limiting, as other types of data processing systems that are differently configured may also be used.
- the I/O controller hub 130 may be integrated within the one or more processor 102 , or the memory controller hub 116 and I/O controller hub 130 may be integrated into a discreet external graphics processor, such as the external graphics processor 112 .
- FIG. 7 is a block diagram of an embodiment of a processor 200 having one or more processor cores 202 A- 202 N, an integrated memory controller 214 , and an integrated graphics processor 208 .
- processor 200 can include additional cores up to and including additional core 202 N represented by the dashed lined boxes.
- processor cores 202 A- 202 N includes one or more internal cache units 204 A- 204 N.
- each processor core also has access to one or more shared cached units 206 .
- the internal cache units 204 A- 204 N and shared cache units 206 represent a cache memory hierarchy within the processor 200 .
- the cache memory hierarchy may include at least one level of instruction and data cache within each processor core and one or more levels of shared mid-level cache, such as a Level 2 (L2), Level 3 (L3), Level 4 (L4), or other levels of cache, where the highest level of cache before external memory is classified as the LLC.
- cache coherency logic maintains coherency between the various cache units 206 and 204 A- 204 N.
- processor 200 may also include a set of one or more bus controller units 216 and a system agent core 210 .
- the one or more bus controller units 216 manage a set of peripheral buses, such as one or more Peripheral Component Interconnect buses (e.g., PCI, PCI Express).
- System agent core 210 provides management functionality for the various processor components.
- system agent core 210 includes one or more integrated memory controllers 214 to manage access to various external memory devices (not shown).
- one or more of the processor cores 202 A- 202 N include support for simultaneous multi-threading.
- the system agent core 210 includes components for coordinating and operating cores 202 A- 202 N during multi-threaded processing.
- System agent core 210 may additionally include a power control unit (PCU), which includes logic and components to regulate the power state of processor cores 202 A- 202 N and graphics processor 208 .
- PCU power control unit
- processor 200 additionally includes graphics processor 208 to execute graphics processing operations.
- the graphics processor 208 couples with the set of shared cache units 206 , and the system agent core 210 , including the one or more integrated memory controllers 214 .
- a display controller 211 is coupled with the graphics processor 208 to drive graphics processor output to one or more coupled displays.
- display controller 211 may be a separate module coupled with the graphics processor via at least one interconnect, or may be integrated within the graphics processor 208 or system agent core 210 .
- a ring based interconnect unit 212 is used to couple the internal components of the processor 200 .
- an alternative interconnect unit may be used, such as a point-to-point interconnect, a switched interconnect, or other techniques, including techniques well known in the art.
- graphics processor 208 couples with the ring interconnect 212 via an I/O link 213 .
- the exemplary I/O link 213 represents at least one of multiple varieties of I/O interconnects, including an on package I/O interconnect which facilitates communication between various processor components and a high-performance embedded memory module 218 , such as an eDRAM module.
- a high-performance embedded memory module 218 such as an eDRAM module.
- each of the processor cores 202 - 202 N and graphics processor 208 use embedded memory modules 218 as a shared Last Level Cache.
- processor cores 202 A- 202 N are homogenous cores executing the same instruction set architecture.
- processor cores 202 A- 202 N are heterogeneous in terms of instruction set architecture (ISA), where one or more of processor cores 202 A-N execute a first instruction set, while at least one of the other cores executes a subset of the first instruction set or a different instruction set.
- processor cores 202 A- 202 N are heterogeneous in terms of microarchitecture, where one or more cores having a relatively higher power consumption couple with one or more power cores having a lower power consumption.
- processor 200 can be implemented on one or more chips or as an SoC integrated circuit having the illustrated components, in addition to other components.
- FIG. 8 is a block diagram of a graphics processor 300 , which may be a discrete graphics processing unit, or may be a graphics processor integrated with a plurality of processing cores.
- the graphics processor communicates via a memory mapped I/O interface to registers on the graphics processor and with commands placed into the processor memory.
- graphics processor 300 includes a memory interface 314 to access memory.
- Memory interface 314 can be an interface to local memory, one or more internal caches, one or more shared external caches, and/or to system memory.
- graphics processor 300 also includes a display controller 302 to drive display output data to a display device 320 .
- Display controller 302 includes hardware for one or more overlay planes for the display and composition of multiple layers of video or user interface elements.
- graphics processor 300 includes a video codec engine 306 to encode, decode, or transcode media to, from, or between one or more media encoding formats, including, but not limited to Moving Picture Experts Group (MPEG) formats such as MPEG-2, Advanced Video Coding (AVC) formats such as H.264/MPEG-4 AVC, as well as the Society of Motion Picture & Television Engineers (SMPTE) 421M/VC-1, and Joint Photographic Experts Group (JPEG) formats such as JPEG, and Motion JPEG (MJPEG) formats.
- MPEG Moving Picture Experts Group
- AVC Advanced Video Coding
- SMPTE Society of Motion Picture & Television Engineers
- JPEG Joint Photographic Experts Group
- JPEG Joint Photographic Experts Group
- graphics processor 300 includes a block image transfer (BLIT) engine 304 to perform two-dimensional (2D) rasterizer operations including, for example, bit-boundary block transfers.
- 2D graphics operations are performed using one or more components of graphics processing engine (GPE) 310 .
- graphics processing engine 310 is a compute engine for performing graphics operations, including three-dimensional (3D) graphics operations and media operations.
- GPE 310 includes a 3D pipeline 312 for performing 3D operations, such as rendering three-dimensional images and scenes using processing functions that act upon 3D primitive shapes (e.g., rectangle, triangle, etc.).
- the 3D pipeline 312 includes programmable and fixed function elements that perform various tasks within the element and/or spawn execution threads to a 3D/Media sub-system 315 . While 3D pipeline 312 can be used to perform media operations, an embodiment of GPE 310 also includes a media pipeline 316 that is specifically used to perform media operations, such as video post-processing and image enhancement.
- media pipeline 316 includes fixed function or programmable logic units to perform one or more specialized media operations, such as video decode acceleration, video de-interlacing, and video encode acceleration in place of, or on behalf of video codec engine 306 .
- media pipeline 316 additionally includes a thread spawning unit to spawn threads for execution on 3D/Media sub-system 315 . The spawned threads perform computations for the media operations on one or more graphics execution units included in 3D/Media sub-system 315 .
- 3D/Media subsystem 315 includes logic for executing threads spawned by 3D pipeline 312 and media pipeline 316 .
- the pipelines send thread execution requests to 3D/Media subsystem 315 , which includes thread dispatch logic for arbitrating and dispatching the various requests to available thread execution resources.
- the execution resources include an array of graphics execution units to process the 3D and media threads.
- 3D/Media subsystem 315 includes one or more internal caches for thread instructions and data.
- the subsystem also includes shared memory, including registers and addressable memory, to share data between threads and to store output data.
- FIG. 9 is a block diagram of a graphics processing engine 410 of a graphics processor in accordance with some embodiments.
- the GPE 410 is a version of the GPE 310 shown in FIG. 8 .
- Elements of FIG. 9 having the same reference numbers (or names) as the elements of any other figure herein can operate or function in any manner similar to that described elsewhere herein, but are not limited to such.
- GPE 410 couples with a command streamer 403 , which provides a command stream to the GPE 3D and media pipelines 412 , 416 .
- command streamer 403 is coupled to memory, which can be system memory, or one or more of internal cache memory and shared cache memory.
- command streamer 403 receives commands from the memory and sends the commands to 3D pipeline 412 and/or media pipeline 416 .
- the commands are directives fetched from a ring buffer, which stores commands for the 3D and media pipelines 412 , 416 .
- the ring buffer can additionally include batch command buffers storing batches of multiple commands.
- execution unit array 414 is scalable, such that the array includes a variable number of execution units based on the target power and performance level of GPE 410 .
- a sampling engine 430 couples with memory (e.g., cache memory or system memory) and execution unit array 414 .
- sampling engine 430 provides a memory access mechanism for execution unit array 414 that allows execution array 414 to read graphics and media data from memory.
- sampling engine 430 includes logic to perform specialized image sampling operations for media.
- the specialized media sampling logic in sampling engine 430 includes a de-noise/de-interlace module 432 , a motion estimation module 434 , and an image scaling and filtering module 436 .
- de-noise/de-interlace module 432 includes logic to perform one or more of a de-noise or a de-interlace algorithm on decoded video data.
- the de-interlace logic combines alternating fields of interlaced video content into a single fame of video.
- the de-noise logic reduces or removes data noise from video and image data.
- the de-noise logic and de-interlace logic are motion adaptive and use spatial or temporal filtering based on the amount of motion detected in the video data.
- the de-noise/de-interlace module 432 includes dedicated motion detection logic (e.g., within the motion estimation engine 434 ).
- motion estimation engine 434 provides hardware acceleration for video operations by performing video acceleration functions such as motion vector estimation and prediction on video data.
- the motion estimation engine determines motion vectors that describe the transformation of image data between successive video frames.
- a graphics processor media codec uses video motion estimation engine 434 to perform operations on video at the macro-block level that may otherwise be too computationally intensive to perform with a general-purpose processor.
- motion estimation engine 434 is generally available to graphics processor components to assist with video decode and processing functions that are sensitive or adaptive to the direction or magnitude of the motion within video data.
- image scaling and filtering module 436 performs image-processing operations to enhance the visual quality of generated images and video. In some embodiments, scaling and filtering module 436 processes image and video data during the sampling operation before providing the data to execution unit array 414 .
- the GPE 410 includes a data port 444 , which provides an additional mechanism for graphics subsystems to access memory.
- data port 444 facilitates memory access for operations including render target writes, constant buffer reads, scratch memory space reads/writes, and media surface accesses.
- data port 444 includes cache memory space to cache accesses to memory.
- the cache memory can be a single data cache or separated into multiple caches for the multiple subsystems that access memory via the data port (e.g., a render buffer cache, a constant buffer cache, etc.).
- threads executing on an execution unit in execution unit array 414 communicate with the data port by exchanging messages via a data distribution interconnect that couples each of the sub-systems of GPE 410 .
- FIG. 10 is a block diagram of another embodiment of a graphics processor 500 . Elements of FIG. 10 having the same reference numbers (or names) as the elements of any other figure herein can operate or function in any manner similar to that described elsewhere herein, but are not limited to such.
- graphics processor 500 receives batches of commands via ring interconnect 502 .
- the incoming commands are interpreted by a command streamer 503 in the pipeline front-end 504 .
- graphics processor 500 includes scalable execution logic to perform 3D geometry processing and media processing via the graphics core(s) 580 A- 580 N.
- command streamer 503 supplies commands to geometry pipeline 536 .
- command streamer 503 supplies the commands to a video front end 534 , which couples with a media engine 537 .
- media engine 537 includes a Video Quality Engine (VQE) 530 for video and image post-processing and a multi-format encode/decode (MFX) 533 engine to provide hardware-accelerated media data encode and decode.
- VQE Video Quality Engine
- MFX multi-format encode/decode
- geometry pipeline 536 and media engine 537 each generate execution threads for the thread execution resources provided by at least one graphics core 580 A.
- graphics processor 500 includes scalable thread execution resources featuring modular cores 580 A- 580 N (sometimes referred to as core slices), each having multiple sub-cores 550 A- 550 N, 560 A- 560 N (sometimes referred to as core sub-slices).
- graphics processor 500 can have any number of graphics cores 580 A through 580 N.
- graphics processor 500 includes a graphics core 580 A having at least a first sub-core 550 A and a second core sub-core 560 A.
- the graphics processor is a low power processor with a single sub-core (e.g., 550 A).
- graphics processor 500 includes multiple graphics cores 580 A- 580 N, each including a set of first sub-cores 550 A- 550 N and a set of second sub-cores 560 A- 560 N.
- Each sub-core in the set of first sub-cores 550 A- 550 N includes at least a first set of execution units 552 A- 552 N and media/texture samplers 554 A- 554 N.
- Each sub-core in the set of second sub-cores 560 A- 560 N includes at least a second set of execution units 562 A- 562 N and samplers 564 A- 564 N.
- each sub-core 550 A- 550 N, 560 A- 560 N shares a set of shared resources 570 A- 570 N.
- the shared resources include shared cache memory and pixel operation logic. Other shared resources may also be included in the various embodiments of the graphics processor.
- FIG. 11 illustrates thread execution logic 600 including an array of processing elements employed in some embodiments of a GPE. Elements of FIG. 11 having the same reference numbers (or names) as the elements of any other figure herein can operate or function in any manner similar to that described elsewhere herein, but are not limited to such.
- execution unit array 608 A- 608 N is primarily used to execute “shader” programs.
- the execution units in array 608 A- 608 N execute an instruction set that includes native support for many standard 3D graphics shader instructions, such that shader programs from graphics libraries (e.g., Direct 3D and OpenGL) are executed with a minimal translation.
- the execution units support vertex and geometry processing (e.g., vertex programs, geometry programs, vertex shaders), pixel processing (e.g., pixel shaders, fragment shaders) and general-purpose processing (e.g., compute and media shaders).
- Each execution unit in execution unit array 608 A- 608 N operates on arrays of data elements.
- the number of data elements is the “execution size,” or the number of channels for the instruction.
- An execution channel is a logical unit of execution for data element access, masking, and flow control within instructions.
- the number of channels may be independent of the number of physical Arithmetic Logic Units (ALUs) or Floating Point Units (FPUs) for a particular graphics processor.
- ALUs Arithmetic Logic Units
- FPUs Floating Point Units
- execution units 608 A- 608 N support integer and floating-point data types.
- One or more internal instruction caches are included in the thread execution logic 600 to cache thread instructions for the execution units.
- one or more data caches are included to cache thread data during thread execution.
- sampler 610 is included to provide texture sampling for 3D operations and media sampling for media operations.
- sampler 610 includes specialized texture or media sampling functionality to process texture or media data during the sampling process before providing the sampled data to an execution unit.
- thread execution logic 600 includes a local thread dispatcher 604 that arbitrates thread initiation requests from the graphics and media pipelines and instantiates the requested threads on one or more execution units 608 A- 608 N.
- the geometry pipeline e.g., 536 of FIG. 10
- thread dispatcher 604 can also process runtime thread spawning requests from the executing shader programs.
- pixel shader 602 uses texture sampling logic in sampler 610 to access texture data in texture maps stored in memory. Arithmetic operations on the texture data and the input geometry data compute pixel color data for each geometric fragment, or discards one or more pixels from further processing.
- the data port 614 provides a memory access mechanism for the thread execution logic 600 output processed data to memory for processing on a graphics processor output pipeline.
- the data port 614 includes or couples to one or more cache memories (e.g., data cache 612 ) to cache data for memory access via the data port.
- FIG. 12 is a block diagram illustrating a graphics processor instruction formats 700 according to some embodiments.
- the graphics processor execution units support an instruction set having instructions in multiple formats.
- the solid lined boxes illustrate the components that are generally included in an execution unit instruction, while the dashed lines include components that are optional or that are only included in a sub-set of the instructions.
- instruction format 700 described and illustrated are macro-instructions, in that they are instructions supplied to the execution unit, as opposed to micro-operations resulting from instruction decode once the instruction is processed.
- the graphics processor execution units natively support instructions in a 128-bit format 710 .
- a 64-bit compacted instruction format 730 is available for some instructions based on the selected instruction, instruction options, and number of operands.
- the native 128-bit format 710 provides access to all instruction options, while some options and operations are restricted in the 64-bit format 730 .
- the native instructions available in the 64-bit format 730 vary by embodiment.
- the instruction is compacted in part using a set of index values in an index field 713 .
- the execution unit hardware references a set of compaction tables based on the index values and uses the compaction table outputs to reconstruct a native instruction in the 128-bit format 710 .
- instruction opcode 712 defines the operation that the execution unit is to perform.
- the execution units execute each instruction in parallel across the multiple data elements of each operand. For example, in response to an add instruction the execution unit performs a simultaneous add operation across each color channel representing a texture element or picture element. By default, the execution unit performs each instruction across all data channels of the operands.
- instruction control field 714 enables control over certain execution options, such as channels selection (e.g., predication) and data channel order (e.g., swizzle).
- channels selection e.g., predication
- data channel order e.g., swizzle
- exec-size field 716 limits the number of data channels that will be executed in parallel. In some embodiments, exec-size field 716 is not available for use in the 64-bit compact instruction format 730 .
- Some execution unit instructions have up to three operands including two source operands, src0 722 , src1 722 , and one destination 718 .
- the execution units support dual destination instructions, where one of the destinations is implied.
- Data manipulation instructions can have a third source operand (e.g., SRC2 724 ), where the instruction opcode 712 determines the number of source operands.
- An instruction's last source operand can be an immediate (e.g., hard-coded) value passed with the instruction.
- the 128-bit instruction format 710 includes an access/address mode information 726 specifying, for example, whether direct register addressing mode or indirect register addressing mode is used. When direct register addressing mode is used, the register address of one or more operands is directly provided by bits in the instruction 710 .
- the 128-bit instruction format 710 includes an access/address mode field 726 , which specifies an address mode and/or an access mode for the instruction.
- the access mode to define a data access alignment for the instruction.
- Some embodiments support access modes including a 16-byte aligned access mode and a 1-byte aligned access mode, where the byte alignment of the access mode determines the access alignment of the instruction operands. For example, when in a first mode, the instruction 710 may use byte-aligned addressing for source and destination operands and when in a second mode, the instruction 710 may use 16-byte-aligned addressing for all source and destination operands.
- the address mode portion of the access/address mode field 726 determines whether the instruction is to use direct or indirect addressing.
- direct register addressing mode bits in the instruction 710 directly provide the register address of one or more operands.
- indirect register addressing mode the register address of one or more operands may be computed based on an address register value and an address immediate field in the instruction.
- instructions are grouped based on opcode 712 bit-fields to simplify Opcode decode 740 .
- bits 4 , 5 , and 6 allow the execution unit to determine the type of opcode.
- the precise opcode grouping shown is merely an example.
- a move and logic opcode group 742 includes data movement and logic instructions (e.g., move (mov), compare (cmp)).
- move and logic group 742 shares the five most significant bits (MSB), where move (mov) instructions are in the form of 0000xxxxb and logic instructions are in the form of 0001xxxxb.
- a flow control instruction group 744 (e.g., call, jump (jmp)) includes instructions in the form of 0010xxxxb (e.g., 0x20).
- a miscellaneous instruction group 746 includes a mix of instructions, including synchronization instructions (e.g., wait, send) in the form of 0011xxxxb (e.g., 0x30).
- a parallel math instruction group 748 includes component-wise arithmetic instructions (e.g., add, multiply (mul)) in the form of 0100xxxxb (e.g., 0x40). The parallel math group 748 performs the arithmetic operations in parallel across data channels.
- the vector math group 750 includes arithmetic instructions (e.g., dp4) in the form of 0101xxxxb (e.g., 0x50).
- the vector math group performs arithmetic such as dot product calculations on vector operands.
- FIG. 13 is a block diagram of another embodiment of a graphics processor 800 . Elements of FIG. 13 having the same reference numbers (or names) as the elements of any other figure herein can operate or function in any manner similar to that described elsewhere herein, but are not limited to such.
- graphics processor 800 includes a graphics pipeline 820 , a media pipeline 830 , a display engine 840 , thread execution logic 850 , and a render output pipeline 870 .
- graphics processor 800 is a graphics processor within a multi-core processing system that includes one or more general purpose processing cores. The graphics processor is controlled by register writes to one or more control registers (not shown) or via commands issued to graphics processor 800 via a ring interconnect 802 .
- ring interconnect 802 couples graphics processor 800 to other processing components, such as other graphics processors or general-purpose processors. Commands from ring interconnect 802 are interpreted by a command streamer 803 , which supplies instructions to individual components of graphics pipeline 820 or media pipeline 830 .
- command streamer 803 directs the operation of a vertex fetcher 805 that reads vertex data from memory and executes vertex-processing commands provided by command streamer 803 .
- vertex fetcher 805 provides vertex data to a vertex shader 807 , which performs coordinate space transformation and lighting operations to each vertex.
- vertex fetcher 805 and vertex shader 807 execute vertex-processing instructions by dispatching execution threads to execution units 852 A, 852 B via a thread dispatcher 831 .
- execution units 852 A, 852 B are an array of vector processors having an instruction set for performing graphics and media operations. In some embodiments, execution units 852 A, 852 B have an attached L1 cache 851 that is specific for each array or shared between the arrays.
- the cache can be configured as a data cache, an instruction cache, or a single cache that is partitioned to contain data and instructions in different partitions.
- graphics pipeline 820 includes tessellation components to perform hardware-accelerated tessellation of 3D objects.
- a programmable hull shader 811 configures the tessellation operations.
- a programmable domain shader 817 provides back-end evaluation of tessellation output.
- a tessellator 813 operates at the direction of hull shader 811 and contains special purpose logic to generate a set of detailed geometric objects based on a coarse geometric model that is provided as input to graphics pipeline 820 .
- tessellation components 811 , 813 , 817 can be bypassed.
- complete geometric objects can be processed by a geometry shader 819 via one or more threads dispatched to execution units 852 A, 852 B, or can proceed directly to the clipper 829 .
- the geometry shader operates on entire geometric objects, rather than vertices or patches of vertices as in previous stages of the graphics pipeline. If the tessellation is disabled the geometry shader 819 receives input from the vertex shader 807 . In some embodiments, geometry shader 819 is programmable by a geometry shader program to perform geometry tessellation if the tessellation units are disabled.
- a clipper 829 processes vertex data.
- the clipper 829 may be a fixed function clipper or a programmable clipper having clipping and geometry shader functions.
- a rasterizer/depth 873 in the render output pipeline 870 dispatches pixel shaders to convert the geometric objects into their per pixel representations.
- pixel shader logic is included in thread execution logic 850 .
- an application can bypass the rasterizer 873 and access un-rasterized vertex data via a stream out unit 823 .
- the graphics processor 800 has an interconnect bus, interconnect fabric, or some other interconnect mechanism that allows data and message passing amongst the major components of the processor.
- execution units 852 A, 852 B and associated cache(s) 851 , texture and media sampler 854 , and texture/sampler cache 858 interconnect via a data port 856 to perform memory access and communicate with render output pipeline components of the processor.
- sampler 854 , caches 851 , 858 and execution units 852 A, 852 B each have separate memory access paths.
- render output pipeline 870 contains a rasterizer and depth test component 873 that converts vertex-based objects into an associated pixel-based representation.
- the rasterizer logic includes a windower/masker unit to perform fixed function triangle and line rasterization.
- An associated render cache 878 and depth cache 879 are also available in some embodiments.
- a pixel operations component 877 performs pixel-based operations on the data, though in some instances, pixel operations associated with 2D operations (e.g. bit block image transfers with blending) are performed by the 2D engine 841 , or substituted at display time by the display controller 843 using overlay display planes.
- a shared L3 cache 875 is available to all graphics components, allowing the sharing of data without the use of main system memory.
- graphics processor media pipeline 830 includes a media engine 837 and a video front end 834 .
- video front end 834 receives pipeline commands from the command streamer 803 .
- media pipeline 830 includes a separate command streamer.
- video front-end 834 processes media commands before sending the command to the media engine 837 .
- media engine 337 includes thread spawning functionality to spawn threads for dispatch to thread execution logic 850 via thread dispatcher 831 .
- graphics processor 800 includes a display engine 840 .
- display engine 840 is external to processor 800 and couples with the graphics processor via the ring interconnect 802 , or some other interconnect bus or fabric.
- display engine 840 includes a 2D engine 841 and a display controller 843 .
- display engine 840 contains special purpose logic capable of operating independently of the 3D pipeline.
- display controller 843 couples with a display device (not shown), which may be a system integrated display device, as in a laptop computer, or an external display device attached via a display device connector.
- graphics pipeline 820 and media pipeline 830 are configurable to perform operations based on multiple graphics and media programming interfaces and are not specific to any one application programming interface (API).
- driver software for the graphics processor translates API calls that are specific to a particular graphics or media library into commands that can be processed by the graphics processor.
- support is provided for the Open Graphics Library (OpenGL) and Open Computing Language (OpenCL) from the Khronos Group, the Direct3D library from the Microsoft Corporation, or support may be provided to both OpenGL and D3D. Support may also be provided for the Open Source Computer Vision Library (OpenCV).
- OpenGL Open Graphics Library
- OpenCL Open Computing Language
- Support may also be provided for the Open Source Computer Vision Library (OpenCV).
- OpenCV Open Source Computer Vision Library
- a future API with a compatible 3D pipeline would also be supported if a mapping can be made from the pipeline of the future API to the pipeline of the graphics processor.
- FIG. 14A is a block diagram illustrating a graphics processor command format 900 according to some embodiments.
- FIG. 14B is a block diagram illustrating a graphics processor command sequence 910 according to an embodiment.
- the solid lined boxes in FIG. 14A illustrate the components that are generally included in a graphics command while the dashed lines include components that are optional or that are only included in a sub-set of the graphics commands.
- the exemplary graphics processor command format 900 of FIG. 14A includes data fields to identify a target client 902 of the command, a command operation code (opcode) 904 , and the relevant data 906 for the command.
- opcode command operation code
- a sub-opcode 905 and a command size 908 are also included in some commands.
- client 902 specifies the client unit of the graphics device that processes the command data.
- a graphics processor command parser examines the client field of each command to condition the further processing of the command and route the command data to the appropriate client unit.
- the graphics processor client units include a memory interface unit, a render unit, a 2D unit, a 3D unit, and a media unit. Each client unit has a corresponding processing pipeline that processes the commands.
- an explicit command size 908 is expected to specify the size of the command.
- the command parser automatically determines the size of at least some of the commands based on the command opcode. In some embodiments commands are aligned via multiples of a double word.
- the flow diagram in FIG. 14B shows an exemplary graphics processor command sequence 910 .
- software or firmware of a data processing system that features an embodiment of a graphics processor uses a version of the command sequence shown to set up, execute, and terminate a set of graphics operations.
- a sample command sequence is shown and described for purposes of example only as embodiments are not limited to these specific commands or to this command sequence.
- the commands may be issued as batch of commands in a command sequence, such that the graphics processor will process the sequence of commands in at least partially concurrence.
- the graphics processor command sequence 910 may begin with a pipeline flush command 912 to cause any active graphics pipeline to complete the currently pending commands for the pipeline.
- the 3D pipeline 922 and the media pipeline 924 do not operate concurrently.
- the pipeline flush is performed to cause the active graphics pipeline to complete any pending commands.
- the command parser for the graphics processor will pause command processing until the active drawing engines complete pending operations and the relevant read caches are invalidated.
- any data in the render cache that is marked ‘dirty’ can be flushed to memory.
- pipeline flush command 912 can be used for pipeline synchronization or before placing the graphics processor into a low power state.
- a pipeline select command 913 is used when a command sequence requires the graphics processor to explicitly switch between pipelines. In some embodiments, a pipeline select command 913 is required only once within an execution context before issuing pipeline commands unless the context is to issue commands for both pipelines. In some embodiments, a pipeline flush command is 912 is required immediately before a pipeline switch via the pipeline select command 913 .
- return buffer state commands 916 are used to configure a set of return buffers for the respective pipelines to write data. Some pipeline operations require the allocation, selection, or configuration of one or more return buffers into which the operations write intermediate data during processing. In some embodiments, the graphics processor also uses one or more return buffers to store output data and to perform cross thread communication. In some embodiments, the return buffer state 916 includes selecting the size and number of return buffers to use for a set of pipeline operations.
- the remaining commands in the command sequence differ based on the active pipeline for operations. Based on a pipeline determination 920 , the command sequence is tailored to the 3D pipeline 922 beginning with the 3D pipeline state 930 , or the media pipeline 924 beginning at the media pipeline state 940 .
- the commands for the 3D pipeline state 930 include 3D state setting commands for vertex buffer state, vertex element state, constant color state, depth buffer state, and other state variables that are to be configured before 3D primitive commands are processed. The values of these commands are determined at least in part based the particular 3D API in use. In some embodiments, 3D pipeline state 930 commands are also able to selectively disable or bypass certain pipeline elements if those elements will not be used.
- 3D primitive 932 command is used to submit 3D primitives to be processed by the 3D pipeline. Commands and associated parameters that are passed to the graphics processor via the 3D primitive 932 command are forwarded to the vertex fetch function in the graphics pipeline.
- the vertex fetch function uses the 3D primitive 932 command data to generate vertex data structures. The vertex data structures are stored in one or more return buffers.
- 3D primitive 932 command is used to perform vertex operations on 3D primitives via vertex shaders. To process vertex shaders, 3D pipeline 922 dispatches shader execution threads to graphics processor execution units.
- 3D pipeline 922 is triggered via an execute 934 command or event.
- a register write triggers command execution.
- execution is triggered via a ‘go’ or ‘kick’ command in the command sequence.
- command execution is triggered using a pipeline synchronization command to flush the command sequence through the graphics pipeline.
- the 3D pipeline will perform geometry processing for the 3D primitives. Once operations are complete, the resulting geometric objects are rasterized and the pixel engine colors the resulting pixels. Additional commands to control pixel shading and pixel back end operations may also be included for those operations.
- the graphics processor command sequence 910 follows the media pipeline 924 path when performing media operations.
- the specific use and manner of programming for the media pipeline 924 depends on the media or compute operations to be performed. Specific media decode operations may be offloaded to the media pipeline during media decode.
- the media pipeline can also be bypassed and media decode can be performed in whole or in part using resources provided by one or more general purpose processing cores.
- the media pipeline also includes elements for general-purpose graphics processor unit (GPGPU) operations, where the graphics processor is used to perform SIMD vector operations using computational shader programs that are not explicitly related to the rendering of graphics primitives.
- GPGPU general-purpose graphics processor unit
- media pipeline 924 is configured in a similar manner as the 3D pipeline 922 .
- a set of media pipeline state commands 940 are dispatched or placed into in a command queue before the media object commands 942 .
- media pipeline state commands 940 include data to configure the media pipeline elements that will be used to process the media objects. This includes data to configure the video decode and video encode logic within the media pipeline, such as encode or decode format.
- media pipeline state commands 940 also support the use one or more pointers to “indirect” state elements that contain a batch of state settings.
- media object commands 942 supply pointers to media objects for processing by the media pipeline.
- the media objects include memory buffers containing video data to be processed.
- all media pipeline states must be valid before issuing a media object command 942 .
- the media pipeline 924 is triggered via an execute command 944 or an equivalent execute event (e.g., register write).
- Output from media pipeline 924 may then be post processed by operations provided by the 3D pipeline 922 or the media pipeline 924 .
- GPGPU operations are configured and executed in a similar manner as media operations.
- FIG. 15 illustrates exemplary graphics software architecture for a data processing system 1000 according to some embodiments.
- software architecture includes a 3D graphics application 1010 , an operating system 1020 , and at least one processor 1030 .
- processor 1030 includes a graphics processor 1032 and one or more general-purpose processor core(s) 1034 .
- the graphics application 1010 and operating system 1020 each execute in the system memory 1050 of the data processing system.
- 3D graphics application 1010 contains one or more shader programs including shader instructions 1012 .
- the shader language instructions may be in a high-level shader language, such as the High Level Shader Language (HLSL) or the OpenGL Shader Language (GLSL).
- the application also includes executable instructions 1014 in a machine language suitable for execution by the general-purpose processor core 1034 .
- the application also includes graphics objects 1016 defined by vertex data.
- operating system 1020 is a Microsoft® Windows® operating system from the Microsoft Corporation, a proprietary UNIX-like operating system, or an open source UNIX-like operating system using a variant of the Linux kernel.
- the operating system 1020 uses a front-end shader compiler 1024 to compile any shader instructions 1012 in HLSL into a lower-level shader language.
- the compilation may be a just-in-time (JIT) compilation or the application can perform shader pre-compilation.
- high-level shaders are compiled into low-level shaders during the compilation of the 3D graphics application 1010 .
- user mode graphics driver 1026 contains a back-end shader compiler 1027 to convert the shader instructions 1012 into a hardware specific representation.
- shader instructions 1012 in the GLSL high-level language are passed to a user mode graphics driver 1026 for compilation.
- user mode graphics driver 1026 uses operating system kernel mode functions 1028 to communicate with a kernel mode graphics driver 1029 .
- kernel mode graphics driver 1029 communicates with graphics processor 1032 to dispatch commands and instructions.
- One or more aspects of at least one embodiment may be implemented by representative code stored on a machine-readable medium which represents and/or defines logic within an integrated circuit such as a processor.
- the machine-readable medium may include instructions which represent various logic within the processor. When read by a machine, the instructions may cause the machine to fabricate the logic to perform the techniques described herein.
- Such representations known as “IP cores,” are reusable units of logic for an integrated circuit that may be stored on a tangible, machine-readable medium as a hardware model that describes the structure of the integrated circuit.
- the hardware model may be supplied to various customers or manufacturing facilities, which load the hardware model on fabrication machines that manufacture the integrated circuit.
- the integrated circuit may be fabricated such that the circuit performs operations described in association with any of the embodiments described herein.
- FIG. 16 is a block diagram illustrating an IP core development system 1100 that may be used to manufacture an integrated circuit to perform operations according to an embodiment.
- the IP core development system 1100 may be used to generate modular, re-usable designs that can be incorporated into a larger design or used to construct an entire integrated circuit (e.g., an SOC integrated circuit).
- a design facility 1130 can generate a software simulation 1110 of an IP core design in a high level programming language (e.g., C/C++).
- the software simulation 1110 can be used to design, test, and verify the behavior of the IP core using a simulation model 1112 .
- the simulation model 1112 may include functional, behavioral, and/or timing simulations.
- a register transfer level (RTL) design can then be created or synthesized from the simulation model 1112 .
- the RTL design 1115 is an abstraction of the behavior of the integrated circuit that models the flow of digital signals between hardware registers, including the associated logic performed using the modeled digital signals.
- lower-level designs at the logic level or transistor level may also be created, designed, or synthesized. Thus, the particular details of the initial design and simulation may vary.
- the RTL design 1115 or equivalent may be further synthesized by the design facility into a hardware model 1120 , which may be in a hardware description language (HDL), or some other representation of physical design data.
- the HDL may be further simulated or tested to verify the IP core design.
- the IP core design can be stored for delivery to a 3 rd party fabrication facility 1165 using non-volatile memory 1140 (e.g., hard disk, flash memory, or any non-volatile storage medium).
- the IP core design may be transmitted (e.g., via the Internet) over a wired connection 1150 or wireless connection 1160 .
- the fabrication facility 1165 may then fabricate an integrated circuit that is based at least in part on the IP core design.
- the fabricated integrated circuit can be configured to perform operations in accordance with at least one embodiment described herein.
- FIG. 17 is a block diagram illustrating an exemplary system on a chip integrated circuit 1200 that may be fabricated using one or more IP cores, according to an embodiment.
- the exemplary integrated circuit includes one or more application processors 1205 (e.g., CPUs), at least one graphics processor 1210 , and may additionally include an image processor 1215 and/or a video processor 1220 , any of which may be a modular IP core from the same or multiple different design facilities.
- the integrated circuit includes peripheral or bus logic including a USB controller 1225 , UART controller 1230 , an SPI/SDIO controller 1235 , and an I 2 S/I 2 C controller 1240 .
- the integrated circuit can include a display device 1245 coupled to one or more of a high-definition multimedia interface (HDMI) controller 1250 and a mobile industry processor interface (MIPI) display interface 1255 .
- Storage may be provided by a flash memory subsystem 1260 including flash memory and a flash memory controller.
- Memory interface may be provided via a memory controller 1265 for access to SDRAM or SRAM memory devices.
- Some integrated circuits additionally include an embedded security engine 1270 .
- processors of integrated circuit 1200 may be included in the processor of integrated circuit 1200 , including additional graphics processors/cores, peripheral interface controllers, or general purpose processor cores.
- In another example embodiment may be one or more non-transitory computer readable media storing instructions to perform a sequence comprising using register files as local memory in place of a lowest level cache.
- the media may include also using a lowest level cache as local memory when said register files have insufficient storage space.
- the media may include simulating a barrier by allowing one execution unit thread to execute more single instruction multiple data instructions.
- the media may include using one thread to simulate an entire work-group.
- the media may include using said register files to implement an OpenCL local memory.
- the media may include transforming a non-aligned write using a permutation.
- the media may include transforming a non-aligned write to use only one hardware instruction for permutation multiplication.
- the media may include generating log (k ⁇ 1) instructions to transform source registers.
- the media may include determining whether a kernel should cache a permutated pattern.
- the media may include determining including determining how often a write pattern occurs in a kernel.
- Another example embodiment may be an apparatus comprising a processor to use register files as local memory in place of a lowest level cache, and a storage coupled to said processor.
- the apparatus may include said processor to use a lowest level cache as local memory when said register files have insufficient storage space.
- the apparatus may include said processor to simulate a barrier by allowing one execution unit thread to execute more single instruction multiple data instructions.
- the apparatus may include said processor to use one thread to simulate an entire work-group.
- the apparatus may include said processor to use said register files to implement an OpenCL local memory.
- the apparatus may include said processor to transform a non-aligned write using a permutation.
- the apparatus may include said processor to transform a non-aligned write to use only one hardware instruction for permutation multiplication.
- the apparatus may include said processor to generate log (k ⁇ 1) instructions to transform source registers.
- the apparatus may include said processor to determine whether a kernel should cache a permutated pattern.
- the apparatus may include said processor to determine how often a write pattern occurs in
- graphics processing techniques described herein may be implemented in various hardware architectures. For example, graphics functionality may be integrated within a chipset. Alternatively, a discrete graphics processor may be used. As still another embodiment, the graphics functions may be implemented by a general purpose processor, including a multicore processor.
- references throughout this specification to “one embodiment” or “an embodiment” mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one implementation encompassed within the present disclosure. Thus, appearances of the phrase “one embodiment” or “in an embodiment” are not necessarily referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be instituted in other suitable forms other than the particular embodiment illustrated and all such forms may be encompassed within the claims of the present application.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computer Graphics (AREA)
- Computer Hardware Design (AREA)
- Image Generation (AREA)
- Memory System Of A Hierarchy Structure (AREA)
Abstract
Description
- This application is a continuation of U.S. patent application Ser. No. 15/765,279, filed Apr. 2, 2018, which is a § 371 national stage of international application PCT/US2015/057962, which filed Oct. 29, 2015, the content of which is hereby incorporated by reference.
- This relates generally to processor graphics also known as graphics processing units.
- Graphics processing units are responsible for generating images on displays. One computing language for use with processor graphics is called the Open Computing Language (OpenCL) that is designed to work with many different platform models. Thus it is a computing language that is adaptable to many different architectures from different manufacturers.
- OpenCL uses a platform module made up of processing elements, global memory and localized programmable memories under the name of local memory. A processing element is any virtual scalar processor. A work-item, executable on one or more processing elements, is one of a collection of parallel executions of a kernel invoked on a device by a command. A work-item is executed by one or more processing elements as part of a work-group executing on a compute unit. A work-group is a collection of related work-items that execute on a single compute unit. The work-items in the group execute the same kernel and share local memory in work-group barriers.
- A compute unit is an OpenCL device having one or more compute units. A work-group executes on a single compute unit. A compute unit is composed of one or more processing elements and local memory.
- There are two types of barriers, a command-queue barrier and a work-group barrier. The OpenCL C programming language provides a built-in work-group barrier function. It can be used by a kernel executing on a device to perform synchronization between work-items and a work-group executing the kernel. All of the work items of the work-group execute the barrier construct before they are allowed to continue execution beyond the barrier.
- A device is a collection of compute units. A command-queue is used to queue commands to a device. Examples of commands include executing kernels, or reading and writing memory objects.
- A global memory is a memory region accessible to all work items executing in a context. It is accessible to the host using commands such as read, write and map. Local memory is a memory region associated with a work-group and accessible only by work-items in that work-group.
- A context is the environment in which the kernels execute and the domain in which synchronization and memory management is defined. A context includes a set of devices, the memory accessible to those devices, the corresponding memory properties and one or more command-queues used to schedule execution of kernels or operations of memory objects.
- A host interacts with the context using the OpenCL application program interface (API). A kernel is a function defined in a program and executed on an OpenCL device.
- Single instruction multiple data (SIMD) is a program model where kernels execute concurrently on multiple processing units, each with its own data and a shared program counter. All processing elements execute a structurally identical set of instructions or group.
- Local memory plays an important role in OpenCL kernels. However, in processor graphics with slower speed lower level caches (L3 caches), performance may be less than in those with higher speed local memories. Thus, contrary to the aim of the OpenCL API, performance may vary between different processor graphics based on the relative speeds of their local memories.
- Some embodiments are described with respect to the following figures:
-
FIG. 1 is a schematic of an execution unit according to one embodiment; -
FIG. 2 is a schematic of a slice according to one embodiment; -
FIG. 3 is a flow chart for one embodiment; -
FIG. 4 is a depiction of a non-aligned write; -
FIG. 5 is a flow chart for a non-aligned write according to one embodiment; -
FIG. 6 is a block diagram of a processing system according to one embodiment; -
FIG. 7 is a block diagram of a processor according to one embodiment; -
FIG. 8 is a block diagram of a graphics processor according to one embodiment; -
FIG. 9 is a block diagram of a graphics processing engine according to one embodiment; -
FIG. 10 is a block diagram of another embodiment of a graphics processor; -
FIG. 11 is a depiction of thread execution logic according to one embodiment; -
FIG. 12 is a block diagram of a graphics processor instruction format according to some embodiments; -
FIG. 13 is a block diagram of another embodiment of a graphics processor; -
FIG. 14A is a block diagram of a graphics processor command format according to some embodiments; -
FIG. 14B is a block diagram illustrating a graphics processor command sequence according to some embodiments; -
FIG. 15 is a depiction of an exemplary graphics software architecture according to some embodiments; -
FIG. 16 is a block diagram illustrating an IP core development system according to some embodiments; and -
FIG. 17 is a block diagram showing an exemplary system on chip integrated circuit according to some embodiments. - In some cases, processor graphics with a slower local memory can compensate by using another memory in place of the lowest level or L3 cache. For example, in some processors, there is a large register space that can be used for the local memory function by allocating the local memory within those registers. Also, since the registers do not operate with barriers, barriers can be simulated by letting one execution unit thread execute more SIMD instructions. For example, one execution thread may simulate a whole work-group in the OpenCL API.
- Thus, referring to
FIG. 1 , in accordance with one embodiment, an execution unit may be fine-tuned so that the number of threads and the number of registers may match scalability and specific design requirements. For example, in one embodiment, an execution unit thread may have 128 general purpose registers within the generalpurpose register files 14. Each register may store 32 bytes, in one embodiment, accessible as a SIMD 8 element vector of 32-bit data elements. Each execution unit may have seven threads for a total of 28 Kbytes of generalpurpose register file 14. Flexible addressing modes permit registers to be addressed together to build effectively wider registers, or even to represent strided rectangular block structures. Per thread architectural state is maintained in a separate dedicatedarchitecture register file 16. - Depending on the software workload, the hardware threads within an execution unit may be executing the same compute kernel code, or each execution unit thread may be executing completely different compute kernel code. The execution state of each thread, including its own instruction pointer stack are held in a thread-specific
architecture register file 16. - On every cycle, an execution unit can co-issue up to different four different instructions from four different threads. The execution
units thread arbiter 18 dispatches these instructions to one of four issue slots for execution. Although the issue slots pose some instruction co-issue constraints, the four instructions may be independent, since they are dispatched from four separate threads. - Within the execution unit, branch instructions are dispatched to a
dedicated branch unit 22 to facilitate SIMD divergence and eventual convergence. Finally, memory operations, sampler operations, and other system communications are all dispatched via a message passingsend unit 20. Within each execution unit, the primary computation units are a pair of SIMD floating point units (FPUs) 24. These units may support both floating point and integer computation. In one embodiment, the FPUs execute up to four 32-bit floating point integer operations or SIMD execute up to eight 16-bit integer operations. - Thus in some embodiments, the general purpose register files 14 may be allocated as local memory, enabling processors with relatively slower lower level cache performance to execute more effectively. Instead of the last level cache, the local memory contents may be stored in these registers to the greatest possible extent, which may significantly improve performance in some embodiments. When there is no more space in the registers, then the lower level cache may be used.
- Since all the operations occur in one thread, the thread can execute more SIMD operations to simulate barriers in some embodiments. For example, if an OpenCL work-group has 64 work threads, the execution unit thread can execute four SIMD-16 instructions to simulate barriers.
- In one embodiment, twenty execution units are combined into a slice. The level three (L3)
data cache 44 is contained within the slice as shown inFIG. 2 . In one embodiment, twosubslices 40 are clustered into slices. Thus, a single slice aggregates a total of twentyexecution units 52 in one embodiment. Aside from grouping subslices, the slice also integrates additional logic forthread dispatch routing 54, a banked level three (L3)cache 44, a smaller but highly banked sharedlocal memory structure 46 and fixedfunction logic 48 for atomics and barriers. Additionally, fixedfunction units 50 also support media and graphics capabilities. - In accordance with some embodiments, a sequence shown in
FIG. 3 may be implemented in software, hardware or firmware. In software and firmware embodiments it may be implemented by computer executed instructions stored in one or more non-transitory computer readable media such as magnetic, optical or semiconductor storage. For example, the sequence may be implemented in an execution unit in one embodiment. - Thus, referring to
FIG. 3 , as indicated atblock 30, the execution unit tries to store all the local memories in theregister space 14. Then as indicated inblock 32, SIMD instructions are expanded to ensure that the whole group is executed in one single execution unit thread. Finally as indicated inblock 34, the lower level or level three cache is used if the register requirement in the OpenCL kernel is larger than the register space as determined indiamond 36. - Thread communication is one of the most important features in SIMT (Single Instruction Multiple Threads) programming languages like OpenCL or Cuda. Usually OpenCL programs use local shared memory to exchange data and synchronize status among a group of threads. The pattern that OpenCL kernels access local shared memory could aligned or non-aligned.
- Non-aligned writing to registers with hardware instructions may be problematic in some cases. In non-aligned register writes, the register locations in the source do not align with the register locations in the destination.
-
FIG. 4 shows an example of a non-aligned write. The write from the source (Src) to destination (Dest) occurs fromregister location 1 on the source to registerlocation 2 on the destination (instead oflocation 1 at the destination) and so the write is non-aligned. - Permutation group theory can transform this non-aligned write problem into a pattern that uses fewer hardware instructions in one embodiment. If p is a permutation of {1, 2, . . . , n}, according to the group theory, there exists a small k and p can permute itself by k times (p{circumflex over ( )}k) to get the original sequence {1, 2, . . . , n}.
- Assume p is the index array, one can formally write the problem dst[p]=src. In the example above, p is {2, 1, 4, 3}.
- By multiplying both sides [p
- For example, k equals to 2 in the example above, so p is multiplied by itself one time. The original problem dst[p]=src cannot be handled by some hardware instruction set architectures (ISA) directly. But by multiplying p{circumflex over ( )}1 on both sides, the problem becomes dst=src[p] and may fit a hardware instruction set architecture.
- Calculating [p{circumflex over ( )}(k−1)] is very efficient since only log(k−1) instructions are needed and k is usually much smaller than n. The result can be cached if the permutation pattern happens several times in the program.
- In accordance with some embodiments, a sequence shown in
FIG. 5 may be implemented in software, hardware or firmware. In software and firmware embodiments it may be implemented by computer executed instructions stored in one or more non-transitory computer readable media such as magnetic, optical or semiconductor storage. For example, the sequence may be implemented in an execution unit in one embodiment. - The sequence shown in
FIG. 5 may operate as follows. Within an OpenCL compiler, permutation group theory is used to calculate the number of k as shown inblock 50. The compiler generates log(k−1) instructions to transform the source registers, as indicated inblock 52. The compiler also needs to decide whether the kernel needs to cache the pattern for subsequent re-use as indicated indiamond 54. If so, the pattern is cached as indicated inblock 56 for subsequent re-use. - In some embodiments, advantages can be achieved including a faster approach for non-aligned register writes that performs permutation multiplication using only one hardware instruction. Also, a write pattern happens several times in the kernel, it can be cached for future use. This saves overhead of computation time.
-
FIG. 6 is a block diagram of aprocessing system 100, according to an embodiment. In various embodiments thesystem 100 includes one ormore processors 102 and one ormore graphics processors 108, and may be a single processor desktop system, a multiprocessor workstation system, or a server system having a large number ofprocessors 102 or processor cores 107. In on embodiment, thesystem 100 is a processing platform incorporated within a system-on-a-chip (SoC) integrated circuit for use in mobile, handheld, or embedded devices. - An embodiment of
system 100 can include, or be incorporated within a server-based gaming platform, a game console, including a game and media console, a mobile gaming console, a handheld game console, or an online game console. In someembodiments system 100 is a mobile phone, smart phone, tablet computing device or mobile Internet device.Data processing system 100 can also include, couple with, or be integrated within a wearable device, such as a smart watch wearable device, smart eyewear device, augmented reality device, or virtual reality device. In some embodiments,data processing system 100 is a television or set top box device having one ormore processors 102 and a graphical interface generated by one ormore graphics processors 108. - In some embodiments, the one or
more processors 102 each include one or more processor cores 107 to process instructions which, when executed, perform operations for system and user software. In some embodiments, each of the one or more processor cores 107 is configured to process aspecific instruction set 109. In some embodiments,instruction set 109 may facilitate Complex Instruction Set Computing (CISC), Reduced Instruction Set Computing (RISC), or computing via a Very Long Instruction Word (VLIW). Multiple processor cores 107 may each process adifferent instruction set 109, which may include instructions to facilitate the emulation of other instruction sets. Processor core 107 may also include other processing devices, such a Digital Signal Processor (DSP). - In some embodiments, the
processor 102 includescache memory 104. Depending on the architecture, theprocessor 102 can have a single internal cache or multiple levels of internal cache. In some embodiments, the cache memory is shared among various components of theprocessor 102. In some embodiments, theprocessor 102 also uses an external cache (e.g., a Level-3 (L3) cache or Last Level Cache (LLC)) (not shown), which may be shared among processor cores 107 using known cache coherency techniques. Aregister file 106 is additionally included inprocessor 102 which may include different types of registers for storing different types of data (e.g., integer registers, floating point registers, status registers, and an instruction pointer register). Some registers may be general-purpose registers, while other registers may be specific to the design of theprocessor 102. - In some embodiments,
processor 102 is coupled to aprocessor bus 110 to transmit communication signals such as address, data, or control signals betweenprocessor 102 and other components insystem 100. In one embodiment thesystem 100 uses an exemplary ‘hub’ system architecture, including amemory controller hub 116 and an Input Output (I/O)controller hub 130. Amemory controller hub 116 facilitates communication between a memory device and other components ofsystem 100, while an I/O Controller Hub (ICH) 130 provides connections to I/O devices via a local I/O bus. In one embodiment, the logic of thememory controller hub 116 is integrated within the processor. -
Memory device 120 can be a dynamic random access memory (DRAM) device, a static random access memory (SRAM) device, flash memory device, phase-change memory device, or some other memory device having suitable performance to serve as process memory. In one embodiment thememory device 120 can operate as system memory for thesystem 100, to storedata 122 and instructions 121 for use when the one ormore processors 102 executes an application or process.Memory controller hub 116 also couples with an optionalexternal graphics processor 112, which may communicate with the one ormore graphics processors 108 inprocessors 102 to perform graphics and media operations. - In some embodiments,
ICH 130 enables peripherals to connect tomemory device 120 andprocessor 102 via a high-speed I/O bus. The I/O peripherals include, but are not limited to, anaudio controller 146, afirmware interface 128, a wireless transceiver 126 (e.g., Wi-Fi, Bluetooth), a data storage device 124 (e.g., hard disk drive, flash memory, etc.), and a legacy I/O controller 140 for coupling legacy (e.g., Personal System 2 (PS/2)) devices to the system. One or more Universal Serial Bus (USB) controllers 142 connect input devices, such as keyboard and mouse 144 combinations. Anetwork controller 134 may also couple toICH 130. In some embodiments, a high-performance network controller (not shown) couples toprocessor bus 110. It will be appreciated that thesystem 100 shown is exemplary and not limiting, as other types of data processing systems that are differently configured may also be used. For example, the I/O controller hub 130 may be integrated within the one ormore processor 102, or thememory controller hub 116 and I/O controller hub 130 may be integrated into a discreet external graphics processor, such as theexternal graphics processor 112. -
FIG. 7 is a block diagram of an embodiment of aprocessor 200 having one ormore processor cores 202A-202N, anintegrated memory controller 214, and anintegrated graphics processor 208. Those elements ofFIG. 7 having the same reference numbers (or names) as the elements of any other figure herein can operate or function in any manner similar to that described elsewhere herein, but are not limited to such.Processor 200 can include additional cores up to and includingadditional core 202N represented by the dashed lined boxes. Each ofprocessor cores 202A-202N includes one or moreinternal cache units 204A-204N. In some embodiments each processor core also has access to one or more shared cached units 206. - The
internal cache units 204A-204N and shared cache units 206 represent a cache memory hierarchy within theprocessor 200. The cache memory hierarchy may include at least one level of instruction and data cache within each processor core and one or more levels of shared mid-level cache, such as a Level 2 (L2), Level 3 (L3), Level 4 (L4), or other levels of cache, where the highest level of cache before external memory is classified as the LLC. In some embodiments, cache coherency logic maintains coherency between thevarious cache units 206 and 204A-204N. - In some embodiments,
processor 200 may also include a set of one or morebus controller units 216 and asystem agent core 210. The one or morebus controller units 216 manage a set of peripheral buses, such as one or more Peripheral Component Interconnect buses (e.g., PCI, PCI Express).System agent core 210 provides management functionality for the various processor components. In some embodiments,system agent core 210 includes one or moreintegrated memory controllers 214 to manage access to various external memory devices (not shown). - In some embodiments, one or more of the
processor cores 202A-202N include support for simultaneous multi-threading. In such embodiment, thesystem agent core 210 includes components for coordinating andoperating cores 202A-202N during multi-threaded processing.System agent core 210 may additionally include a power control unit (PCU), which includes logic and components to regulate the power state ofprocessor cores 202A-202N andgraphics processor 208. - In some embodiments,
processor 200 additionally includesgraphics processor 208 to execute graphics processing operations. In some embodiments, thegraphics processor 208 couples with the set of shared cache units 206, and thesystem agent core 210, including the one or moreintegrated memory controllers 214. In some embodiments, adisplay controller 211 is coupled with thegraphics processor 208 to drive graphics processor output to one or more coupled displays. In some embodiments,display controller 211 may be a separate module coupled with the graphics processor via at least one interconnect, or may be integrated within thegraphics processor 208 orsystem agent core 210. - In some embodiments, a ring based
interconnect unit 212 is used to couple the internal components of theprocessor 200. However, an alternative interconnect unit may be used, such as a point-to-point interconnect, a switched interconnect, or other techniques, including techniques well known in the art. In some embodiments,graphics processor 208 couples with thering interconnect 212 via an I/O link 213. - The exemplary I/O link 213 represents at least one of multiple varieties of I/O interconnects, including an on package I/O interconnect which facilitates communication between various processor components and a high-performance embedded
memory module 218, such as an eDRAM module. In some embodiments, each of the processor cores 202-202N andgraphics processor 208 use embeddedmemory modules 218 as a shared Last Level Cache. - In some embodiments,
processor cores 202A-202N are homogenous cores executing the same instruction set architecture. In another embodiment,processor cores 202A-202N are heterogeneous in terms of instruction set architecture (ISA), where one or more ofprocessor cores 202A-N execute a first instruction set, while at least one of the other cores executes a subset of the first instruction set or a different instruction set. In oneembodiment processor cores 202A-202N are heterogeneous in terms of microarchitecture, where one or more cores having a relatively higher power consumption couple with one or more power cores having a lower power consumption. Additionally,processor 200 can be implemented on one or more chips or as an SoC integrated circuit having the illustrated components, in addition to other components. -
FIG. 8 is a block diagram of agraphics processor 300, which may be a discrete graphics processing unit, or may be a graphics processor integrated with a plurality of processing cores. In some embodiments, the graphics processor communicates via a memory mapped I/O interface to registers on the graphics processor and with commands placed into the processor memory. In some embodiments,graphics processor 300 includes amemory interface 314 to access memory.Memory interface 314 can be an interface to local memory, one or more internal caches, one or more shared external caches, and/or to system memory. - In some embodiments,
graphics processor 300 also includes adisplay controller 302 to drive display output data to adisplay device 320.Display controller 302 includes hardware for one or more overlay planes for the display and composition of multiple layers of video or user interface elements. In some embodiments,graphics processor 300 includes avideo codec engine 306 to encode, decode, or transcode media to, from, or between one or more media encoding formats, including, but not limited to Moving Picture Experts Group (MPEG) formats such as MPEG-2, Advanced Video Coding (AVC) formats such as H.264/MPEG-4 AVC, as well as the Society of Motion Picture & Television Engineers (SMPTE) 421M/VC-1, and Joint Photographic Experts Group (JPEG) formats such as JPEG, and Motion JPEG (MJPEG) formats. - In some embodiments,
graphics processor 300 includes a block image transfer (BLIT)engine 304 to perform two-dimensional (2D) rasterizer operations including, for example, bit-boundary block transfers. However, in one embodiment, 2D graphics operations are performed using one or more components of graphics processing engine (GPE) 310. In some embodiments,graphics processing engine 310 is a compute engine for performing graphics operations, including three-dimensional (3D) graphics operations and media operations. - In some embodiments,
GPE 310 includes a3D pipeline 312 for performing 3D operations, such as rendering three-dimensional images and scenes using processing functions that act upon 3D primitive shapes (e.g., rectangle, triangle, etc.). The3D pipeline 312 includes programmable and fixed function elements that perform various tasks within the element and/or spawn execution threads to a 3D/Media sub-system 315. While3D pipeline 312 can be used to perform media operations, an embodiment ofGPE 310 also includes amedia pipeline 316 that is specifically used to perform media operations, such as video post-processing and image enhancement. - In some embodiments,
media pipeline 316 includes fixed function or programmable logic units to perform one or more specialized media operations, such as video decode acceleration, video de-interlacing, and video encode acceleration in place of, or on behalf ofvideo codec engine 306. In some embodiments,media pipeline 316 additionally includes a thread spawning unit to spawn threads for execution on 3D/Media sub-system 315. The spawned threads perform computations for the media operations on one or more graphics execution units included in 3D/Media sub-system 315. - In some embodiments, 3D/
Media subsystem 315 includes logic for executing threads spawned by3D pipeline 312 andmedia pipeline 316. In one embodiment, the pipelines send thread execution requests to 3D/Media subsystem 315, which includes thread dispatch logic for arbitrating and dispatching the various requests to available thread execution resources. The execution resources include an array of graphics execution units to process the 3D and media threads. In some embodiments, 3D/Media subsystem 315 includes one or more internal caches for thread instructions and data. In some embodiments, the subsystem also includes shared memory, including registers and addressable memory, to share data between threads and to store output data. -
FIG. 9 is a block diagram of agraphics processing engine 410 of a graphics processor in accordance with some embodiments. In one embodiment, theGPE 410 is a version of theGPE 310 shown inFIG. 8 . Elements ofFIG. 9 having the same reference numbers (or names) as the elements of any other figure herein can operate or function in any manner similar to that described elsewhere herein, but are not limited to such. - In some embodiments,
GPE 410 couples with a command streamer 403, which provides a command stream to theGPE 3D andmedia pipelines 3D pipeline 412 and/ormedia pipeline 416. The commands are directives fetched from a ring buffer, which stores commands for the 3D andmedia pipelines media pipelines execution unit array 414. In some embodiments,execution unit array 414 is scalable, such that the array includes a variable number of execution units based on the target power and performance level ofGPE 410. - In some embodiments, a
sampling engine 430 couples with memory (e.g., cache memory or system memory) andexecution unit array 414. In some embodiments,sampling engine 430 provides a memory access mechanism forexecution unit array 414 that allowsexecution array 414 to read graphics and media data from memory. In some embodiments,sampling engine 430 includes logic to perform specialized image sampling operations for media. - In some embodiments, the specialized media sampling logic in
sampling engine 430 includes a de-noise/de-interlace module 432, amotion estimation module 434, and an image scaling andfiltering module 436. In some embodiments, de-noise/de-interlace module 432 includes logic to perform one or more of a de-noise or a de-interlace algorithm on decoded video data. The de-interlace logic combines alternating fields of interlaced video content into a single fame of video. The de-noise logic reduces or removes data noise from video and image data. In some embodiments, the de-noise logic and de-interlace logic are motion adaptive and use spatial or temporal filtering based on the amount of motion detected in the video data. In some embodiments, the de-noise/de-interlace module 432 includes dedicated motion detection logic (e.g., within the motion estimation engine 434). - In some embodiments,
motion estimation engine 434 provides hardware acceleration for video operations by performing video acceleration functions such as motion vector estimation and prediction on video data. The motion estimation engine determines motion vectors that describe the transformation of image data between successive video frames. In some embodiments, a graphics processor media codec uses videomotion estimation engine 434 to perform operations on video at the macro-block level that may otherwise be too computationally intensive to perform with a general-purpose processor. In some embodiments,motion estimation engine 434 is generally available to graphics processor components to assist with video decode and processing functions that are sensitive or adaptive to the direction or magnitude of the motion within video data. - In some embodiments, image scaling and
filtering module 436 performs image-processing operations to enhance the visual quality of generated images and video. In some embodiments, scaling andfiltering module 436 processes image and video data during the sampling operation before providing the data toexecution unit array 414. - In some embodiments, the
GPE 410 includes adata port 444, which provides an additional mechanism for graphics subsystems to access memory. In some embodiments,data port 444 facilitates memory access for operations including render target writes, constant buffer reads, scratch memory space reads/writes, and media surface accesses. In some embodiments,data port 444 includes cache memory space to cache accesses to memory. The cache memory can be a single data cache or separated into multiple caches for the multiple subsystems that access memory via the data port (e.g., a render buffer cache, a constant buffer cache, etc.). In some embodiments, threads executing on an execution unit inexecution unit array 414 communicate with the data port by exchanging messages via a data distribution interconnect that couples each of the sub-systems ofGPE 410. -
FIG. 10 is a block diagram of another embodiment of agraphics processor 500. Elements ofFIG. 10 having the same reference numbers (or names) as the elements of any other figure herein can operate or function in any manner similar to that described elsewhere herein, but are not limited to such. - In some embodiments,
graphics processor 500 includes aring interconnect 502, a pipeline front-end 504, amedia engine 537, andgraphics cores 580A-580N. In some embodiments,ring interconnect 502 couples the graphics processor to other processing units, including other graphics processors or one or more general-purpose processor cores. In some embodiments, the graphics processor is one of many processors integrated within a multi-core processing system. - In some embodiments,
graphics processor 500 receives batches of commands viaring interconnect 502. The incoming commands are interpreted by acommand streamer 503 in the pipeline front-end 504. In some embodiments,graphics processor 500 includes scalable execution logic to perform 3D geometry processing and media processing via the graphics core(s) 580A-580N. For 3D geometry processing commands,command streamer 503 supplies commands togeometry pipeline 536. For at least some media processing commands,command streamer 503 supplies the commands to a videofront end 534, which couples with amedia engine 537. In some embodiments,media engine 537 includes a Video Quality Engine (VQE) 530 for video and image post-processing and a multi-format encode/decode (MFX) 533 engine to provide hardware-accelerated media data encode and decode. In some embodiments,geometry pipeline 536 andmedia engine 537 each generate execution threads for the thread execution resources provided by at least onegraphics core 580A. - In some embodiments,
graphics processor 500 includes scalable thread execution resources featuringmodular cores 580A-580N (sometimes referred to as core slices), each havingmultiple sub-cores 550A-550N, 560A-560N (sometimes referred to as core sub-slices). In some embodiments,graphics processor 500 can have any number ofgraphics cores 580A through 580N. In some embodiments,graphics processor 500 includes agraphics core 580A having at least a first sub-core 550A and asecond core sub-core 560A. In other embodiments, the graphics processor is a low power processor with a single sub-core (e.g., 550A). In some embodiments,graphics processor 500 includesmultiple graphics cores 580A-580N, each including a set of first sub-cores 550A-550N and a set of second sub-cores 560A-560N. Each sub-core in the set of first sub-cores 550A-550N includes at least a first set ofexecution units 552A-552N and media/texture samplers 554A-554N. Each sub-core in the set of second sub-cores 560A-560N includes at least a second set of execution units 562A-562N andsamplers 564A-564N. In some embodiments, each sub-core 550A-550N, 560A-560N shares a set of sharedresources 570A-570N. In some embodiments, the shared resources include shared cache memory and pixel operation logic. Other shared resources may also be included in the various embodiments of the graphics processor. -
FIG. 11 illustratesthread execution logic 600 including an array of processing elements employed in some embodiments of a GPE. Elements ofFIG. 11 having the same reference numbers (or names) as the elements of any other figure herein can operate or function in any manner similar to that described elsewhere herein, but are not limited to such. - In some embodiments,
thread execution logic 600 includes apixel shader 602, athread dispatcher 604,instruction cache 606, a scalable execution unit array including a plurality ofexecution units 608A-608N, asampler 610, adata cache 612, and adata port 614. In one embodiment the included components are interconnected via an interconnect fabric that links to each of the components. In some embodiments,thread execution logic 600 includes one or more connections to memory, such as system memory or cache memory, through one or more ofinstruction cache 606,data port 614,sampler 610, andexecution unit array 608A-608N. In some embodiments, each execution unit (e.g. 608A) is an individual vector processor capable of executing multiple simultaneous threads and processing multiple data elements in parallel for each thread. In some embodiments,execution unit array 608A-608N includes any number individual execution units. - In some embodiments,
execution unit array 608A-608N is primarily used to execute “shader” programs. In some embodiments, the execution units inarray 608A-608N execute an instruction set that includes native support for many standard 3D graphics shader instructions, such that shader programs from graphics libraries (e.g., Direct 3D and OpenGL) are executed with a minimal translation. The execution units support vertex and geometry processing (e.g., vertex programs, geometry programs, vertex shaders), pixel processing (e.g., pixel shaders, fragment shaders) and general-purpose processing (e.g., compute and media shaders). - Each execution unit in
execution unit array 608A-608N operates on arrays of data elements. The number of data elements is the “execution size,” or the number of channels for the instruction. An execution channel is a logical unit of execution for data element access, masking, and flow control within instructions. The number of channels may be independent of the number of physical Arithmetic Logic Units (ALUs) or Floating Point Units (FPUs) for a particular graphics processor. In some embodiments,execution units 608A-608N support integer and floating-point data types. - The execution unit instruction set includes single instruction multiple data (SIMD) instructions. The various data elements can be stored as a packed data type in a register and the execution unit will process the various elements based on the data size of the elements. For example, when operating on a 256-bit wide vector, the 256 bits of the vector are stored in a register and the execution unit operates on the vector as four separate 64-bit packed data elements (Quad-Word (QW) size data elements), eight separate 32-bit packed data elements (Double Word (DW) size data elements), sixteen separate 16-bit packed data elements (Word (W) size data elements), or thirty-two separate 8-bit data elements (byte (B) size data elements). However, different vector widths and register sizes are possible.
- One or more internal instruction caches (e.g., 606) are included in the
thread execution logic 600 to cache thread instructions for the execution units. In some embodiments, one or more data caches (e.g., 612) are included to cache thread data during thread execution. In some embodiments,sampler 610 is included to provide texture sampling for 3D operations and media sampling for media operations. In some embodiments,sampler 610 includes specialized texture or media sampling functionality to process texture or media data during the sampling process before providing the sampled data to an execution unit. - During execution, the graphics and media pipelines send thread initiation requests to
thread execution logic 600 via thread spawning and dispatch logic. In some embodiments,thread execution logic 600 includes alocal thread dispatcher 604 that arbitrates thread initiation requests from the graphics and media pipelines and instantiates the requested threads on one ormore execution units 608A-608N. For example, the geometry pipeline (e.g., 536 ofFIG. 10 ) dispatches vertex processing, tessellation, or geometry processing threads to thread execution logic 600 (FIG. 11 ). In some embodiments,thread dispatcher 604 can also process runtime thread spawning requests from the executing shader programs. - Once a group of geometric objects has been processed and rasterized into pixel data,
pixel shader 602 is invoked to further compute output information and cause results to be written to output surfaces (e.g., color buffers, depth buffers, stencil buffers, etc.). In some embodiments,pixel shader 602 calculates the values of the various vertex attributes that are to be interpolated across the rasterized object. In some embodiments,pixel shader 602 then executes an application programming interface (API)-supplied pixel shader program. To execute the pixel shader program,pixel shader 602 dispatches threads to an execution unit (e.g., 608A) viathread dispatcher 604. In some embodiments,pixel shader 602 uses texture sampling logic insampler 610 to access texture data in texture maps stored in memory. Arithmetic operations on the texture data and the input geometry data compute pixel color data for each geometric fragment, or discards one or more pixels from further processing. - In some embodiments, the
data port 614 provides a memory access mechanism for thethread execution logic 600 output processed data to memory for processing on a graphics processor output pipeline. In some embodiments, thedata port 614 includes or couples to one or more cache memories (e.g., data cache 612) to cache data for memory access via the data port. -
FIG. 12 is a block diagram illustrating a graphicsprocessor instruction formats 700 according to some embodiments. In one or more embodiment, the graphics processor execution units support an instruction set having instructions in multiple formats. The solid lined boxes illustrate the components that are generally included in an execution unit instruction, while the dashed lines include components that are optional or that are only included in a sub-set of the instructions. In some embodiments,instruction format 700 described and illustrated are macro-instructions, in that they are instructions supplied to the execution unit, as opposed to micro-operations resulting from instruction decode once the instruction is processed. - In some embodiments, the graphics processor execution units natively support instructions in a 128-
bit format 710. A 64-bitcompacted instruction format 730 is available for some instructions based on the selected instruction, instruction options, and number of operands. The native 128-bit format 710 provides access to all instruction options, while some options and operations are restricted in the 64-bit format 730. The native instructions available in the 64-bit format 730 vary by embodiment. In some embodiments, the instruction is compacted in part using a set of index values in anindex field 713. The execution unit hardware references a set of compaction tables based on the index values and uses the compaction table outputs to reconstruct a native instruction in the 128-bit format 710. - For each format,
instruction opcode 712 defines the operation that the execution unit is to perform. The execution units execute each instruction in parallel across the multiple data elements of each operand. For example, in response to an add instruction the execution unit performs a simultaneous add operation across each color channel representing a texture element or picture element. By default, the execution unit performs each instruction across all data channels of the operands. In some embodiments,instruction control field 714 enables control over certain execution options, such as channels selection (e.g., predication) and data channel order (e.g., swizzle). For 128-bit instructions 710 an exec-size field 716 limits the number of data channels that will be executed in parallel. In some embodiments, exec-size field 716 is not available for use in the 64-bitcompact instruction format 730. - Some execution unit instructions have up to three operands including two source operands,
src0 722,src1 722, and onedestination 718. In some embodiments, the execution units support dual destination instructions, where one of the destinations is implied. Data manipulation instructions can have a third source operand (e.g., SRC2 724), where theinstruction opcode 712 determines the number of source operands. An instruction's last source operand can be an immediate (e.g., hard-coded) value passed with the instruction. - In some embodiments, the 128-
bit instruction format 710 includes an access/address mode information 726 specifying, for example, whether direct register addressing mode or indirect register addressing mode is used. When direct register addressing mode is used, the register address of one or more operands is directly provided by bits in theinstruction 710. - In some embodiments, the 128-
bit instruction format 710 includes an access/address mode field 726, which specifies an address mode and/or an access mode for the instruction. In one embodiment the access mode to define a data access alignment for the instruction. Some embodiments support access modes including a 16-byte aligned access mode and a 1-byte aligned access mode, where the byte alignment of the access mode determines the access alignment of the instruction operands. For example, when in a first mode, theinstruction 710 may use byte-aligned addressing for source and destination operands and when in a second mode, theinstruction 710 may use 16-byte-aligned addressing for all source and destination operands. - In one embodiment, the address mode portion of the access/
address mode field 726 determines whether the instruction is to use direct or indirect addressing. When direct register addressing mode is used bits in theinstruction 710 directly provide the register address of one or more operands. When indirect register addressing mode is used, the register address of one or more operands may be computed based on an address register value and an address immediate field in the instruction. - In some embodiments instructions are grouped based on
opcode 712 bit-fields to simplifyOpcode decode 740. For an 8-bit opcode,bits logic opcode group 742 includes data movement and logic instructions (e.g., move (mov), compare (cmp)). In some embodiments, move andlogic group 742 shares the five most significant bits (MSB), where move (mov) instructions are in the form of 0000xxxxb and logic instructions are in the form of 0001xxxxb. A flow control instruction group 744 (e.g., call, jump (jmp)) includes instructions in the form of 0010xxxxb (e.g., 0x20). A miscellaneous instruction group 746 includes a mix of instructions, including synchronization instructions (e.g., wait, send) in the form of 0011xxxxb (e.g., 0x30). A parallelmath instruction group 748 includes component-wise arithmetic instructions (e.g., add, multiply (mul)) in the form of 0100xxxxb (e.g., 0x40). Theparallel math group 748 performs the arithmetic operations in parallel across data channels. Thevector math group 750 includes arithmetic instructions (e.g., dp4) in the form of 0101xxxxb (e.g., 0x50). The vector math group performs arithmetic such as dot product calculations on vector operands. -
FIG. 13 is a block diagram of another embodiment of agraphics processor 800. Elements ofFIG. 13 having the same reference numbers (or names) as the elements of any other figure herein can operate or function in any manner similar to that described elsewhere herein, but are not limited to such. - In some embodiments,
graphics processor 800 includes agraphics pipeline 820, amedia pipeline 830, adisplay engine 840,thread execution logic 850, and a renderoutput pipeline 870. In some embodiments,graphics processor 800 is a graphics processor within a multi-core processing system that includes one or more general purpose processing cores. The graphics processor is controlled by register writes to one or more control registers (not shown) or via commands issued tographics processor 800 via aring interconnect 802. In some embodiments,ring interconnect 802couples graphics processor 800 to other processing components, such as other graphics processors or general-purpose processors. Commands fromring interconnect 802 are interpreted by acommand streamer 803, which supplies instructions to individual components ofgraphics pipeline 820 ormedia pipeline 830. - In some embodiments,
command streamer 803 directs the operation of avertex fetcher 805 that reads vertex data from memory and executes vertex-processing commands provided bycommand streamer 803. In some embodiments,vertex fetcher 805 provides vertex data to avertex shader 807, which performs coordinate space transformation and lighting operations to each vertex. In some embodiments,vertex fetcher 805 andvertex shader 807 execute vertex-processing instructions by dispatching execution threads toexecution units thread dispatcher 831. - In some embodiments,
execution units execution units L1 cache 851 that is specific for each array or shared between the arrays. The cache can be configured as a data cache, an instruction cache, or a single cache that is partitioned to contain data and instructions in different partitions. - In some embodiments,
graphics pipeline 820 includes tessellation components to perform hardware-accelerated tessellation of 3D objects. In some embodiments, aprogrammable hull shader 811 configures the tessellation operations. Aprogrammable domain shader 817 provides back-end evaluation of tessellation output. Atessellator 813 operates at the direction ofhull shader 811 and contains special purpose logic to generate a set of detailed geometric objects based on a coarse geometric model that is provided as input tographics pipeline 820. In some embodiments, if tessellation is not used,tessellation components - In some embodiments, complete geometric objects can be processed by a
geometry shader 819 via one or more threads dispatched toexecution units clipper 829. In some embodiments, the geometry shader operates on entire geometric objects, rather than vertices or patches of vertices as in previous stages of the graphics pipeline. If the tessellation is disabled thegeometry shader 819 receives input from thevertex shader 807. In some embodiments,geometry shader 819 is programmable by a geometry shader program to perform geometry tessellation if the tessellation units are disabled. - Before rasterization, a
clipper 829 processes vertex data. Theclipper 829 may be a fixed function clipper or a programmable clipper having clipping and geometry shader functions. In some embodiments, a rasterizer/depth 873 in the renderoutput pipeline 870 dispatches pixel shaders to convert the geometric objects into their per pixel representations. In some embodiments, pixel shader logic is included inthread execution logic 850. In some embodiments, an application can bypass therasterizer 873 and access un-rasterized vertex data via a stream outunit 823. - The
graphics processor 800 has an interconnect bus, interconnect fabric, or some other interconnect mechanism that allows data and message passing amongst the major components of the processor. In some embodiments,execution units media sampler 854, and texture/sampler cache 858 interconnect via adata port 856 to perform memory access and communicate with render output pipeline components of the processor. In some embodiments,sampler 854,caches execution units - In some embodiments, render
output pipeline 870 contains a rasterizer anddepth test component 873 that converts vertex-based objects into an associated pixel-based representation. In some embodiments, the rasterizer logic includes a windower/masker unit to perform fixed function triangle and line rasterization. An associated rendercache 878 anddepth cache 879 are also available in some embodiments. Apixel operations component 877 performs pixel-based operations on the data, though in some instances, pixel operations associated with 2D operations (e.g. bit block image transfers with blending) are performed by the2D engine 841, or substituted at display time by thedisplay controller 843 using overlay display planes. In some embodiments, a sharedL3 cache 875 is available to all graphics components, allowing the sharing of data without the use of main system memory. - In some embodiments, graphics
processor media pipeline 830 includes amedia engine 837 and a videofront end 834. In some embodiments, videofront end 834 receives pipeline commands from thecommand streamer 803. In some embodiments,media pipeline 830 includes a separate command streamer. In some embodiments, video front-end 834 processes media commands before sending the command to themedia engine 837. In some embodiments, media engine 337 includes thread spawning functionality to spawn threads for dispatch tothread execution logic 850 viathread dispatcher 831. - In some embodiments,
graphics processor 800 includes adisplay engine 840. In some embodiments,display engine 840 is external toprocessor 800 and couples with the graphics processor via thering interconnect 802, or some other interconnect bus or fabric. In some embodiments,display engine 840 includes a2D engine 841 and adisplay controller 843. In some embodiments,display engine 840 contains special purpose logic capable of operating independently of the 3D pipeline. In some embodiments,display controller 843 couples with a display device (not shown), which may be a system integrated display device, as in a laptop computer, or an external display device attached via a display device connector. - In some embodiments,
graphics pipeline 820 andmedia pipeline 830 are configurable to perform operations based on multiple graphics and media programming interfaces and are not specific to any one application programming interface (API). In some embodiments, driver software for the graphics processor translates API calls that are specific to a particular graphics or media library into commands that can be processed by the graphics processor. In some embodiments, support is provided for the Open Graphics Library (OpenGL) and Open Computing Language (OpenCL) from the Khronos Group, the Direct3D library from the Microsoft Corporation, or support may be provided to both OpenGL and D3D. Support may also be provided for the Open Source Computer Vision Library (OpenCV). A future API with a compatible 3D pipeline would also be supported if a mapping can be made from the pipeline of the future API to the pipeline of the graphics processor. -
FIG. 14A is a block diagram illustrating a graphicsprocessor command format 900 according to some embodiments.FIG. 14B is a block diagram illustrating a graphicsprocessor command sequence 910 according to an embodiment. The solid lined boxes inFIG. 14A illustrate the components that are generally included in a graphics command while the dashed lines include components that are optional or that are only included in a sub-set of the graphics commands. The exemplary graphicsprocessor command format 900 ofFIG. 14A includes data fields to identify atarget client 902 of the command, a command operation code (opcode) 904, and therelevant data 906 for the command. A sub-opcode 905 and acommand size 908 are also included in some commands. - In some embodiments,
client 902 specifies the client unit of the graphics device that processes the command data. In some embodiments, a graphics processor command parser examines the client field of each command to condition the further processing of the command and route the command data to the appropriate client unit. In some embodiments, the graphics processor client units include a memory interface unit, a render unit, a 2D unit, a 3D unit, and a media unit. Each client unit has a corresponding processing pipeline that processes the commands. Once the command is received by the client unit, the client unit reads theopcode 904 and, if present, sub-opcode 905 to determine the operation to perform. The client unit performs the command using information indata field 906. For some commands anexplicit command size 908 is expected to specify the size of the command. In some embodiments, the command parser automatically determines the size of at least some of the commands based on the command opcode. In some embodiments commands are aligned via multiples of a double word. - The flow diagram in
FIG. 14B shows an exemplary graphicsprocessor command sequence 910. In some embodiments, software or firmware of a data processing system that features an embodiment of a graphics processor uses a version of the command sequence shown to set up, execute, and terminate a set of graphics operations. A sample command sequence is shown and described for purposes of example only as embodiments are not limited to these specific commands or to this command sequence. Moreover, the commands may be issued as batch of commands in a command sequence, such that the graphics processor will process the sequence of commands in at least partially concurrence. - In some embodiments, the graphics
processor command sequence 910 may begin with a pipeline flush command 912 to cause any active graphics pipeline to complete the currently pending commands for the pipeline. In some embodiments, the3D pipeline 922 and themedia pipeline 924 do not operate concurrently. The pipeline flush is performed to cause the active graphics pipeline to complete any pending commands. In response to a pipeline flush, the command parser for the graphics processor will pause command processing until the active drawing engines complete pending operations and the relevant read caches are invalidated. Optionally, any data in the render cache that is marked ‘dirty’ can be flushed to memory. In some embodiments, pipeline flush command 912 can be used for pipeline synchronization or before placing the graphics processor into a low power state. - In some embodiments, a pipeline
select command 913 is used when a command sequence requires the graphics processor to explicitly switch between pipelines. In some embodiments, a pipelineselect command 913 is required only once within an execution context before issuing pipeline commands unless the context is to issue commands for both pipelines. In some embodiments, a pipeline flush command is 912 is required immediately before a pipeline switch via the pipelineselect command 913. - In some embodiments, a
pipeline control command 914 configures a graphics pipeline for operation and is used to program the3D pipeline 922 and themedia pipeline 924. In some embodiments,pipeline control command 914 configures the pipeline state for the active pipeline. In one embodiment, thepipeline control command 914 is used for pipeline synchronization and to clear data from one or more cache memories within the active pipeline before processing a batch of commands. - In some embodiments, return buffer state commands 916 are used to configure a set of return buffers for the respective pipelines to write data. Some pipeline operations require the allocation, selection, or configuration of one or more return buffers into which the operations write intermediate data during processing. In some embodiments, the graphics processor also uses one or more return buffers to store output data and to perform cross thread communication. In some embodiments, the
return buffer state 916 includes selecting the size and number of return buffers to use for a set of pipeline operations. - The remaining commands in the command sequence differ based on the active pipeline for operations. Based on a
pipeline determination 920, the command sequence is tailored to the3D pipeline 922 beginning with the3D pipeline state 930, or themedia pipeline 924 beginning at themedia pipeline state 940. - The commands for the
3D pipeline state 930 include 3D state setting commands for vertex buffer state, vertex element state, constant color state, depth buffer state, and other state variables that are to be configured before 3D primitive commands are processed. The values of these commands are determined at least in part based the particular 3D API in use. In some embodiments,3D pipeline state 930 commands are also able to selectively disable or bypass certain pipeline elements if those elements will not be used. - In some embodiments, 3D primitive 932 command is used to submit 3D primitives to be processed by the 3D pipeline. Commands and associated parameters that are passed to the graphics processor via the 3D primitive 932 command are forwarded to the vertex fetch function in the graphics pipeline. The vertex fetch function uses the 3D primitive 932 command data to generate vertex data structures. The vertex data structures are stored in one or more return buffers. In some embodiments, 3D primitive 932 command is used to perform vertex operations on 3D primitives via vertex shaders. To process vertex shaders,
3D pipeline 922 dispatches shader execution threads to graphics processor execution units. - In some embodiments,
3D pipeline 922 is triggered via an execute 934 command or event. In some embodiments, a register write triggers command execution. In some embodiments execution is triggered via a ‘go’ or ‘kick’ command in the command sequence. In one embodiment command execution is triggered using a pipeline synchronization command to flush the command sequence through the graphics pipeline. The 3D pipeline will perform geometry processing for the 3D primitives. Once operations are complete, the resulting geometric objects are rasterized and the pixel engine colors the resulting pixels. Additional commands to control pixel shading and pixel back end operations may also be included for those operations. - In some embodiments, the graphics
processor command sequence 910 follows themedia pipeline 924 path when performing media operations. In general, the specific use and manner of programming for themedia pipeline 924 depends on the media or compute operations to be performed. Specific media decode operations may be offloaded to the media pipeline during media decode. In some embodiments, the media pipeline can also be bypassed and media decode can be performed in whole or in part using resources provided by one or more general purpose processing cores. In one embodiment, the media pipeline also includes elements for general-purpose graphics processor unit (GPGPU) operations, where the graphics processor is used to perform SIMD vector operations using computational shader programs that are not explicitly related to the rendering of graphics primitives. - In some embodiments,
media pipeline 924 is configured in a similar manner as the3D pipeline 922. A set of media pipeline state commands 940 are dispatched or placed into in a command queue before the media object commands 942. In some embodiments, media pipeline state commands 940 include data to configure the media pipeline elements that will be used to process the media objects. This includes data to configure the video decode and video encode logic within the media pipeline, such as encode or decode format. In some embodiments, media pipeline state commands 940 also support the use one or more pointers to “indirect” state elements that contain a batch of state settings. - In some embodiments, media object commands 942 supply pointers to media objects for processing by the media pipeline. The media objects include memory buffers containing video data to be processed. In some embodiments, all media pipeline states must be valid before issuing a
media object command 942. Once the pipeline state is configured and media object commands 942 are queued, themedia pipeline 924 is triggered via an executecommand 944 or an equivalent execute event (e.g., register write). Output frommedia pipeline 924 may then be post processed by operations provided by the3D pipeline 922 or themedia pipeline 924. In some embodiments, GPGPU operations are configured and executed in a similar manner as media operations. -
FIG. 15 illustrates exemplary graphics software architecture for adata processing system 1000 according to some embodiments. In some embodiments, software architecture includes a3D graphics application 1010, anoperating system 1020, and at least oneprocessor 1030. In some embodiments,processor 1030 includes agraphics processor 1032 and one or more general-purpose processor core(s) 1034. Thegraphics application 1010 andoperating system 1020 each execute in thesystem memory 1050 of the data processing system. - In some embodiments,
3D graphics application 1010 contains one or more shader programs includingshader instructions 1012. The shader language instructions may be in a high-level shader language, such as the High Level Shader Language (HLSL) or the OpenGL Shader Language (GLSL). The application also includesexecutable instructions 1014 in a machine language suitable for execution by the general-purpose processor core 1034. The application also includes graphics objects 1016 defined by vertex data. - In some embodiments,
operating system 1020 is a Microsoft® Windows® operating system from the Microsoft Corporation, a proprietary UNIX-like operating system, or an open source UNIX-like operating system using a variant of the Linux kernel. When the Direct3D API is in use, theoperating system 1020 uses a front-end shader compiler 1024 to compile anyshader instructions 1012 in HLSL into a lower-level shader language. The compilation may be a just-in-time (JIT) compilation or the application can perform shader pre-compilation. In some embodiments, high-level shaders are compiled into low-level shaders during the compilation of the3D graphics application 1010. - In some embodiments, user
mode graphics driver 1026 contains a back-end shader compiler 1027 to convert theshader instructions 1012 into a hardware specific representation. When the OpenGL API is in use,shader instructions 1012 in the GLSL high-level language are passed to a usermode graphics driver 1026 for compilation. In some embodiments, usermode graphics driver 1026 uses operating systemkernel mode functions 1028 to communicate with a kernelmode graphics driver 1029. In some embodiments, kernelmode graphics driver 1029 communicates withgraphics processor 1032 to dispatch commands and instructions. - One or more aspects of at least one embodiment may be implemented by representative code stored on a machine-readable medium which represents and/or defines logic within an integrated circuit such as a processor. For example, the machine-readable medium may include instructions which represent various logic within the processor. When read by a machine, the instructions may cause the machine to fabricate the logic to perform the techniques described herein. Such representations, known as “IP cores,” are reusable units of logic for an integrated circuit that may be stored on a tangible, machine-readable medium as a hardware model that describes the structure of the integrated circuit. The hardware model may be supplied to various customers or manufacturing facilities, which load the hardware model on fabrication machines that manufacture the integrated circuit. The integrated circuit may be fabricated such that the circuit performs operations described in association with any of the embodiments described herein.
-
FIG. 16 is a block diagram illustrating an IPcore development system 1100 that may be used to manufacture an integrated circuit to perform operations according to an embodiment. The IPcore development system 1100 may be used to generate modular, re-usable designs that can be incorporated into a larger design or used to construct an entire integrated circuit (e.g., an SOC integrated circuit). Adesign facility 1130 can generate asoftware simulation 1110 of an IP core design in a high level programming language (e.g., C/C++). Thesoftware simulation 1110 can be used to design, test, and verify the behavior of the IP core using asimulation model 1112. Thesimulation model 1112 may include functional, behavioral, and/or timing simulations. A register transfer level (RTL) design can then be created or synthesized from thesimulation model 1112. TheRTL design 1115 is an abstraction of the behavior of the integrated circuit that models the flow of digital signals between hardware registers, including the associated logic performed using the modeled digital signals. In addition to anRTL design 1115, lower-level designs at the logic level or transistor level may also be created, designed, or synthesized. Thus, the particular details of the initial design and simulation may vary. - The
RTL design 1115 or equivalent may be further synthesized by the design facility into ahardware model 1120, which may be in a hardware description language (HDL), or some other representation of physical design data. The HDL may be further simulated or tested to verify the IP core design. The IP core design can be stored for delivery to a 3rdparty fabrication facility 1165 using non-volatile memory 1140 (e.g., hard disk, flash memory, or any non-volatile storage medium). Alternatively, the IP core design may be transmitted (e.g., via the Internet) over awired connection 1150 orwireless connection 1160. Thefabrication facility 1165 may then fabricate an integrated circuit that is based at least in part on the IP core design. The fabricated integrated circuit can be configured to perform operations in accordance with at least one embodiment described herein. -
FIG. 17 is a block diagram illustrating an exemplary system on a chip integratedcircuit 1200 that may be fabricated using one or more IP cores, according to an embodiment. The exemplary integrated circuit includes one or more application processors 1205 (e.g., CPUs), at least onegraphics processor 1210, and may additionally include animage processor 1215 and/or avideo processor 1220, any of which may be a modular IP core from the same or multiple different design facilities. The integrated circuit includes peripheral or bus logic including aUSB controller 1225,UART controller 1230, an SPI/SDIO controller 1235, and an I2S/I2C controller 1240. Additionally, the integrated circuit can include adisplay device 1245 coupled to one or more of a high-definition multimedia interface (HDMI)controller 1250 and a mobile industry processor interface (MIPI)display interface 1255. Storage may be provided by aflash memory subsystem 1260 including flash memory and a flash memory controller. Memory interface may be provided via amemory controller 1265 for access to SDRAM or SRAM memory devices. Some integrated circuits additionally include an embeddedsecurity engine 1270. - Additionally, other logic and circuits may be included in the processor of
integrated circuit 1200, including additional graphics processors/cores, peripheral interface controllers, or general purpose processor cores. - The following clauses and/or examples pertain to further embodiments:
-
- One example embodiment may be a method comprising using register files as local memory in place of a lowest level cache. The method may also include also using a lowest level cache as local memory when said register files have insufficient storage space. The method may include simulating a barrier by allowing one execution unit thread to execute more single instruction multiple data instructions. The method may include using one thread to simulate an entire work-group. The method may include using said register files to implement an OpenCL local memory. The method may include transforming a non-aligned write using a permutation. The method may include transforming a non-aligned write to use only one hardware instruction for permutation multiplication. The method may include generating log (k−1) instructions to transform source registers. The method may include determining whether a kernel should cache a permutated pattern. The method may include wherein determining including determining how often a write pattern occurs in a kernel.
- In another example embodiment may be one or more non-transitory computer readable media storing instructions to perform a sequence comprising using register files as local memory in place of a lowest level cache. The media may include also using a lowest level cache as local memory when said register files have insufficient storage space. The media may include simulating a barrier by allowing one execution unit thread to execute more single instruction multiple data instructions. The media may include using one thread to simulate an entire work-group. The media may include using said register files to implement an OpenCL local memory. The media may include transforming a non-aligned write using a permutation. The media may include transforming a non-aligned write to use only one hardware instruction for permutation multiplication. The media may include generating log (k−1) instructions to transform source registers. The media may include determining whether a kernel should cache a permutated pattern. The media may include determining including determining how often a write pattern occurs in a kernel.
- Another example embodiment may be an apparatus comprising a processor to use register files as local memory in place of a lowest level cache, and a storage coupled to said processor. The apparatus may include said processor to use a lowest level cache as local memory when said register files have insufficient storage space. The apparatus may include said processor to simulate a barrier by allowing one execution unit thread to execute more single instruction multiple data instructions. The apparatus may include said processor to use one thread to simulate an entire work-group. The apparatus may include said processor to use said register files to implement an OpenCL local memory. The apparatus may include said processor to transform a non-aligned write using a permutation. The apparatus may include said processor to transform a non-aligned write to use only one hardware instruction for permutation multiplication. The apparatus may include said processor to generate log (k−1) instructions to transform source registers. The apparatus may include said processor to determine whether a kernel should cache a permutated pattern. The apparatus may include said processor to determine how often a write pattern occurs in a kernel.
- The graphics processing techniques described herein may be implemented in various hardware architectures. For example, graphics functionality may be integrated within a chipset. Alternatively, a discrete graphics processor may be used. As still another embodiment, the graphics functions may be implemented by a general purpose processor, including a multicore processor.
- References throughout this specification to “one embodiment” or “an embodiment” mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one implementation encompassed within the present disclosure. Thus, appearances of the phrase “one embodiment” or “in an embodiment” are not necessarily referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be instituted in other suitable forms other than the particular embodiment illustrated and all such forms may be encompassed within the claims of the present application.
- While a limited number of embodiments have been described, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this disclosure.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/986,643 US20200371804A1 (en) | 2015-10-29 | 2020-08-06 | Boosting local memory performance in processor graphics |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2015/057962 WO2017074377A1 (en) | 2015-10-29 | 2015-10-29 | Boosting local memory performance in processor graphics |
US201815765279A | 2018-04-02 | 2018-04-02 | |
US16/986,643 US20200371804A1 (en) | 2015-10-29 | 2020-08-06 | Boosting local memory performance in processor graphics |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/765,279 Continuation US10768935B2 (en) | 2015-10-29 | 2015-10-29 | Boosting local memory performance in processor graphics |
PCT/US2015/057962 Continuation WO2017074377A1 (en) | 2015-10-29 | 2015-10-29 | Boosting local memory performance in processor graphics |
Publications (1)
Publication Number | Publication Date |
---|---|
US20200371804A1 true US20200371804A1 (en) | 2020-11-26 |
Family
ID=58631938
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/765,279 Active 2035-11-26 US10768935B2 (en) | 2015-10-29 | 2015-10-29 | Boosting local memory performance in processor graphics |
US16/986,643 Abandoned US20200371804A1 (en) | 2015-10-29 | 2020-08-06 | Boosting local memory performance in processor graphics |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/765,279 Active 2035-11-26 US10768935B2 (en) | 2015-10-29 | 2015-10-29 | Boosting local memory performance in processor graphics |
Country Status (2)
Country | Link |
---|---|
US (2) | US10768935B2 (en) |
WO (1) | WO2017074377A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2539958B (en) * | 2015-07-03 | 2019-09-25 | Advanced Risc Mach Ltd | Data processing systems |
US10768935B2 (en) * | 2015-10-29 | 2020-09-08 | Intel Corporation | Boosting local memory performance in processor graphics |
US10664285B1 (en) * | 2018-12-19 | 2020-05-26 | Advanced Micro Devices, Inc. | Flexibly deriving intended thread data exchange patterns |
US11361400B1 (en) | 2021-05-06 | 2022-06-14 | Arm Limited | Full tile primitives in tile-based graphics processing |
CN116450216B (en) * | 2023-06-12 | 2023-08-29 | 上海灵动微电子股份有限公司 | Local caching method for shared hardware operation unit |
Citations (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5274789A (en) * | 1990-03-19 | 1993-12-28 | Bull Hn Information Systems Italia S.P.A. | Multiprocessor system having distributed shared resources and dynamic and selective global data replication |
US5537606A (en) * | 1995-01-31 | 1996-07-16 | International Business Machines Corporation | Scalar pipeline replication for parallel vector element processing |
US5542059A (en) * | 1994-01-11 | 1996-07-30 | Exponential Technology, Inc. | Dual instruction set processor having a pipeline with a pipestage functional unit that is relocatable in time and sequence order |
US5717944A (en) * | 1990-11-13 | 1998-02-10 | International Business Machines Corporation | Autonomous SIMD/MIMD processor memory elements |
US5732241A (en) * | 1990-06-27 | 1998-03-24 | Mos Electronics, Corp. | Random access cache memory controller and system |
US6092175A (en) * | 1998-04-02 | 2000-07-18 | University Of Washington | Shared register storage mechanisms for multithreaded computer systems with out-of-order execution |
US6172980B1 (en) * | 1997-09-11 | 2001-01-09 | 3Com Corporation | Multiple protocol support |
US20010004755A1 (en) * | 1997-04-03 | 2001-06-21 | Henry M Levy | Mechanism for freeing registers on processors that perform dynamic out-of-order execution of instructions using renaming registers |
US20010049744A1 (en) * | 2000-03-03 | 2001-12-06 | Terrence Hussey | High-speed data processing using internal processor memory space |
US20020120709A1 (en) * | 2001-02-13 | 2002-08-29 | Matsushita Electric Industrial Co., Ltd. | Shared-memory controller for use in a multimedia processor system |
US6687254B1 (en) * | 1998-11-10 | 2004-02-03 | Alcatel Canada Inc. | Flexible threshold based buffering system for use in digital communication devices |
US20040193838A1 (en) * | 2003-03-31 | 2004-09-30 | Patrick Devaney | Vector instructions composed from scalar instructions |
US20050102659A1 (en) * | 2003-11-06 | 2005-05-12 | Singh Ravi P. | Methods and apparatus for setting up hardware loops in a deeply pipelined processor |
US6895452B1 (en) * | 1997-06-04 | 2005-05-17 | Marger Johnson & Mccollom, P.C. | Tightly coupled and scalable memory and execution unit architecture |
US20050119837A1 (en) * | 2003-10-14 | 2005-06-02 | Verseon | Method and apparatus for analysis of molecular configurations and combinations |
US20050138297A1 (en) * | 2003-12-23 | 2005-06-23 | Intel Corporation | Register file cache |
US20050149694A1 (en) * | 1998-12-08 | 2005-07-07 | Mukesh Patel | Java hardware accelerator using microcode engine |
US6920562B1 (en) * | 1998-12-18 | 2005-07-19 | Cisco Technology, Inc. | Tightly coupled software protocol decode with hardware data encryption |
US20050182915A1 (en) * | 2004-02-12 | 2005-08-18 | Patrick Devaney | Chip multiprocessor for media applications |
US20050240915A1 (en) * | 2001-08-24 | 2005-10-27 | Nazomi Communications Inc. | Java hardware accelerator using microcode engine |
US20060010292A1 (en) * | 2004-07-06 | 2006-01-12 | Devale John P | Multi-purpose register cache |
US20060020775A1 (en) * | 2004-07-21 | 2006-01-26 | Carlos Madriles | Multi-version register file for multithreading processors with live-in precomputation |
US20070118724A1 (en) * | 2000-10-10 | 2007-05-24 | Nazomi Communications Inc. | Java hardware accelerator using microcode engine |
US7268785B1 (en) * | 2002-12-19 | 2007-09-11 | Nvidia Corporation | System and method for interfacing graphics program modules |
US20080151992A1 (en) * | 2006-12-25 | 2008-06-26 | Shih-Fang Chuang | Method for dynamically adjusting video frame |
US20080229026A1 (en) * | 2007-03-15 | 2008-09-18 | Taiwan Semiconductor Manufacturing Co., Ltd. | System and method for concurrently checking availability of data in extending memories |
US20080235315A1 (en) * | 2006-10-01 | 2008-09-25 | Javaid Aslam | Technique for solving np-hard problems using polynomial sequential time and polylogarithmic parallel time |
US20080270736A1 (en) * | 2007-04-24 | 2008-10-30 | Kabushiki Kaisha Toshiba | Information processing apparatus and access control method |
US20100076941A1 (en) * | 2008-09-09 | 2010-03-25 | Microsoft Corporation | Matrix-based scans on parallel processors |
US7728841B1 (en) * | 2005-12-19 | 2010-06-01 | Nvidia Corporation | Coherent shader output for multiple targets |
US20100138612A1 (en) * | 2007-08-01 | 2010-06-03 | Hangzhou H3C Technologies Co., Ltd. | System and method for implementing cache sharing |
US20100180103A1 (en) * | 2009-01-15 | 2010-07-15 | Shailender Chaudhry | Mechanism for increasing the effective capacity of the working register file |
US20110072243A1 (en) * | 2009-09-24 | 2011-03-24 | Xiaogang Qiu | Unified Collector Structure for Multi-Bank Register File |
US20110161586A1 (en) * | 2009-12-29 | 2011-06-30 | Miodrag Potkonjak | Shared Memories for Energy Efficient Multi-Core Processors |
US20110289299A1 (en) * | 2010-05-24 | 2011-11-24 | Qualcomm Incorporated | System and Method to Evaluate a Data Value as an Instruction |
US20110296202A1 (en) * | 2010-05-25 | 2011-12-01 | Via Technologies, Inc. | Switch key instruction in a microprocessor that fetches and decrypts encrypted instructions |
US20110299317A1 (en) * | 2006-11-29 | 2011-12-08 | Shaeffer Ian P | Integrated circuit heating to effect in-situ annealing |
US8108659B1 (en) * | 2006-11-03 | 2012-01-31 | Nvidia Corporation | Controlling access to memory resources shared among parallel synchronizable threads |
US20120054771A1 (en) * | 2010-08-31 | 2012-03-01 | International Business Machines Corporation | Rescheduling workload in a hybrid computing environment |
US20120054770A1 (en) * | 2010-08-31 | 2012-03-01 | International Business Machines Corporation | High throughput computing in a hybrid computing environment |
US20120079200A1 (en) * | 2010-09-24 | 2012-03-29 | William James Dally | Unified streaming multiprocessor memory |
US20120079503A1 (en) * | 2010-09-24 | 2012-03-29 | William James Dally | Two-Level Scheduler for Multi-Threaded Processing |
US8200949B1 (en) * | 2008-12-09 | 2012-06-12 | Nvidia Corporation | Policy based allocation of register file cache to threads in multi-threaded processor |
US20120192200A1 (en) * | 2011-01-21 | 2012-07-26 | Rao Jayanth N | Load Balancing in Heterogeneous Computing Environments |
US20130125097A1 (en) * | 2011-11-15 | 2013-05-16 | Global Supercomputing Corporation | Method and system for converting a single-threaded software program into an application-specific supercomputer |
US20130145124A1 (en) * | 2011-12-06 | 2013-06-06 | Xiaogang Qiu | System and method for performing shaped memory access operations |
US20130159628A1 (en) * | 2011-12-14 | 2013-06-20 | Jack Hilaire Choquette | Methods and apparatus for source operand collector caching |
US20130166939A1 (en) * | 2011-12-22 | 2013-06-27 | Alexander Gendler | Apparatus, system, and method for providing clock signal on demand |
US20130166877A1 (en) * | 2011-12-22 | 2013-06-27 | Jack Hilaire Choquette | Shaped register file reads |
US20130212350A1 (en) * | 2012-02-15 | 2013-08-15 | Advanced Micro Devices, Inc. | Abstracting scratch pad memories as distributed arrays |
US20130238877A1 (en) * | 2011-11-10 | 2013-09-12 | Samsung Electronics Co., Ltd. | Core system for processing an interrupt and method for transmission of vector register file data therefor |
US20130293544A1 (en) * | 2012-05-03 | 2013-11-07 | Richard W. Schreyer | Tiled Forward Shading with Improved Depth Filtering |
US20130305020A1 (en) * | 2011-04-01 | 2013-11-14 | Robert C. Valentine | Vector friendly instruction format and execution thereof |
US20130332666A1 (en) * | 2012-05-23 | 2013-12-12 | Kabushiki Kaisha Toshiba | Information processor, information processing method, and computer program product |
US20130332937A1 (en) * | 2012-05-29 | 2013-12-12 | Advanced Micro Devices, Inc. | Heterogeneous Parallel Primitives Programming Model |
US20130339610A1 (en) * | 2012-06-14 | 2013-12-19 | International Business Machines Corporation | Cache line history tracking using an instruction address register file |
US8683468B2 (en) * | 2011-05-16 | 2014-03-25 | Advanced Micro Devices, Inc. | Automatic kernel migration for heterogeneous cores |
US20140101388A1 (en) * | 2012-10-10 | 2014-04-10 | Advanced Micro Devices, Inc. | Controlling prefetch aggressiveness based on thrash events |
US20140149677A1 (en) * | 2012-11-26 | 2014-05-29 | Advanced Micro Devices, Inc. | Prefetch Kernels on Data-Parallel Processors |
US20140157287A1 (en) * | 2012-11-30 | 2014-06-05 | Advanced Micro Devices, Inc | Optimized Context Switching for Long-Running Processes |
US20140164745A1 (en) * | 2012-12-11 | 2014-06-12 | Nvidia Corporation | Register allocation for clustered multi-level register files |
US20140173216A1 (en) * | 2012-12-18 | 2014-06-19 | Advanced Micro Devices, Inc. | Invalidation of Dead Transient Data in Caches |
US20140181477A1 (en) * | 2012-12-21 | 2014-06-26 | Aniruddha S. Vaidya | Compressing Execution Cycles For Divergent Execution In A Single Instruction Multiple Data (SIMD) Processor |
US20140189191A1 (en) * | 2012-12-28 | 2014-07-03 | Ilan Pardo | Apparatus and method for memory-mapped register caching |
US20140189698A1 (en) * | 2012-12-27 | 2014-07-03 | Nvidia Corporation | Approach for a configurable phase-based priority scheduler |
US20140351551A1 (en) * | 2013-05-24 | 2014-11-27 | Coherent Logix, Incorporated | Memory-network processor with programmable optimizations |
US20140372731A1 (en) * | 2013-06-14 | 2014-12-18 | Arm Limited | Data processing systems |
US20150089156A1 (en) * | 2013-09-26 | 2015-03-26 | Imagination Technologies Limited | Atomic Memory Update Unit & Methods |
US20150093044A1 (en) * | 2013-09-30 | 2015-04-02 | Duelight Llc | Systems, methods, and computer program products for digital photography |
US9015683B2 (en) * | 2009-12-30 | 2015-04-21 | Samsung Electronics Co., Ltd. | Method and apparatus for transforming program code |
US20150121051A1 (en) * | 2013-03-14 | 2015-04-30 | Jeremy Bottleson | Kernel functionality checker |
US20150154106A1 (en) * | 2013-12-02 | 2015-06-04 | The Regents Of The University Of Michigan | Data processing apparatus with memory rename table for mapping memory addresses to registers |
US20150227466A1 (en) * | 2014-02-10 | 2015-08-13 | Renesas Electronics Corporation | Arithmetic control apparatus, arithmetic control method, non-transitory computer readable medium storing program, and open cl device |
US20150268963A1 (en) * | 2014-03-23 | 2015-09-24 | Technion Research & Development Foundation Ltd. | Execution of data-parallel programs on coarse-grained reconfigurable architecture hardware |
US20150324181A1 (en) * | 2013-05-08 | 2015-11-12 | Natalya Segal | Smart wearable devices and system therefor |
US20150348224A1 (en) * | 2014-05-30 | 2015-12-03 | Apple Inc. | Graphics Pipeline State Object And Model |
US20160104009A1 (en) * | 2010-05-25 | 2016-04-14 | Via Technologies, Inc. | Decryption of encrypted instructions using keys selected on basis of instruction fetch address |
US20160104010A1 (en) * | 2010-05-25 | 2016-04-14 | Via Technologies, Inc. | Microprocessor with secure execution mode and store key instructions |
US20160105282A1 (en) * | 2010-05-25 | 2016-04-14 | Via Technologies, Inc. | Key expansion logic using decryption key primitives |
US20160104011A1 (en) * | 2010-05-25 | 2016-04-14 | Via Technologies, Inc. | Microprocessor with on-the-fly switching of decryption keys |
US20160283405A1 (en) * | 2015-03-27 | 2016-09-29 | Intel Corporation | Cache-less split tracker architecture for replay protection trees |
US20160283240A1 (en) * | 2015-03-28 | 2016-09-29 | Intel Corporation | Apparatuses and methods to accelerate vector multiplication |
US20170061569A1 (en) * | 2015-09-02 | 2017-03-02 | Intel Corporation | Compiler optimization to reduce the control flow divergence |
US20170331513A1 (en) * | 2014-11-30 | 2017-11-16 | Shenyang Institute Of Automation, Chinese Academy Of Sciences | Permutation group-based channel rendezvous method for multi-antenna cognitive radio network |
US20180211436A1 (en) * | 2015-07-31 | 2018-07-26 | Arm Limited | Data processing systems |
US20180308206A1 (en) * | 2017-04-24 | 2018-10-25 | Prasoonkumar Surti | Compute optimization mechanism for deep neural networks |
US20180308208A1 (en) * | 2017-04-24 | 2018-10-25 | Intel Corporation | Compute optimization mechanism for deep neural networks |
US20190251682A1 (en) * | 2013-09-30 | 2019-08-15 | Duelight Llc | Systems, methods, and computer program products for digital photography |
US10768935B2 (en) * | 2015-10-29 | 2020-09-08 | Intel Corporation | Boosting local memory performance in processor graphics |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6622232B2 (en) * | 2001-05-18 | 2003-09-16 | Intel Corporation | Apparatus and method for performing non-aligned memory accesses |
US7788468B1 (en) | 2005-12-15 | 2010-08-31 | Nvidia Corporation | Synchronization of threads in a cooperative thread array |
PT105174A (en) * | 2010-06-26 | 2012-02-08 | Paulo Jorge Pimenta Marques | INSTRUMENT AND METHOD FOR CONTINUOUS DATA PROCESSING USING MASSIVELY PARALLEL PROCESSORS |
-
2015
- 2015-10-29 US US15/765,279 patent/US10768935B2/en active Active
- 2015-10-29 WO PCT/US2015/057962 patent/WO2017074377A1/en active Application Filing
-
2020
- 2020-08-06 US US16/986,643 patent/US20200371804A1/en not_active Abandoned
Patent Citations (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5274789A (en) * | 1990-03-19 | 1993-12-28 | Bull Hn Information Systems Italia S.P.A. | Multiprocessor system having distributed shared resources and dynamic and selective global data replication |
US5732241A (en) * | 1990-06-27 | 1998-03-24 | Mos Electronics, Corp. | Random access cache memory controller and system |
US5717944A (en) * | 1990-11-13 | 1998-02-10 | International Business Machines Corporation | Autonomous SIMD/MIMD processor memory elements |
US5542059A (en) * | 1994-01-11 | 1996-07-30 | Exponential Technology, Inc. | Dual instruction set processor having a pipeline with a pipestage functional unit that is relocatable in time and sequence order |
US5537606A (en) * | 1995-01-31 | 1996-07-16 | International Business Machines Corporation | Scalar pipeline replication for parallel vector element processing |
US20010004755A1 (en) * | 1997-04-03 | 2001-06-21 | Henry M Levy | Mechanism for freeing registers on processors that perform dynamic out-of-order execution of instructions using renaming registers |
US6895452B1 (en) * | 1997-06-04 | 2005-05-17 | Marger Johnson & Mccollom, P.C. | Tightly coupled and scalable memory and execution unit architecture |
US6172980B1 (en) * | 1997-09-11 | 2001-01-09 | 3Com Corporation | Multiple protocol support |
US6092175A (en) * | 1998-04-02 | 2000-07-18 | University Of Washington | Shared register storage mechanisms for multithreaded computer systems with out-of-order execution |
US6687254B1 (en) * | 1998-11-10 | 2004-02-03 | Alcatel Canada Inc. | Flexible threshold based buffering system for use in digital communication devices |
US20050149694A1 (en) * | 1998-12-08 | 2005-07-07 | Mukesh Patel | Java hardware accelerator using microcode engine |
US6920562B1 (en) * | 1998-12-18 | 2005-07-19 | Cisco Technology, Inc. | Tightly coupled software protocol decode with hardware data encryption |
US20010049744A1 (en) * | 2000-03-03 | 2001-12-06 | Terrence Hussey | High-speed data processing using internal processor memory space |
US20070118724A1 (en) * | 2000-10-10 | 2007-05-24 | Nazomi Communications Inc. | Java hardware accelerator using microcode engine |
US20020120709A1 (en) * | 2001-02-13 | 2002-08-29 | Matsushita Electric Industrial Co., Ltd. | Shared-memory controller for use in a multimedia processor system |
US20050240915A1 (en) * | 2001-08-24 | 2005-10-27 | Nazomi Communications Inc. | Java hardware accelerator using microcode engine |
US7268785B1 (en) * | 2002-12-19 | 2007-09-11 | Nvidia Corporation | System and method for interfacing graphics program modules |
US20040193838A1 (en) * | 2003-03-31 | 2004-09-30 | Patrick Devaney | Vector instructions composed from scalar instructions |
US20050119837A1 (en) * | 2003-10-14 | 2005-06-02 | Verseon | Method and apparatus for analysis of molecular configurations and combinations |
US20050102659A1 (en) * | 2003-11-06 | 2005-05-12 | Singh Ravi P. | Methods and apparatus for setting up hardware loops in a deeply pipelined processor |
US20050138297A1 (en) * | 2003-12-23 | 2005-06-23 | Intel Corporation | Register file cache |
US20050182915A1 (en) * | 2004-02-12 | 2005-08-18 | Patrick Devaney | Chip multiprocessor for media applications |
US20060010292A1 (en) * | 2004-07-06 | 2006-01-12 | Devale John P | Multi-purpose register cache |
US20060020775A1 (en) * | 2004-07-21 | 2006-01-26 | Carlos Madriles | Multi-version register file for multithreading processors with live-in precomputation |
US7728841B1 (en) * | 2005-12-19 | 2010-06-01 | Nvidia Corporation | Coherent shader output for multiple targets |
US20080235315A1 (en) * | 2006-10-01 | 2008-09-25 | Javaid Aslam | Technique for solving np-hard problems using polynomial sequential time and polylogarithmic parallel time |
US8108659B1 (en) * | 2006-11-03 | 2012-01-31 | Nvidia Corporation | Controlling access to memory resources shared among parallel synchronizable threads |
US20110299317A1 (en) * | 2006-11-29 | 2011-12-08 | Shaeffer Ian P | Integrated circuit heating to effect in-situ annealing |
US20080151992A1 (en) * | 2006-12-25 | 2008-06-26 | Shih-Fang Chuang | Method for dynamically adjusting video frame |
US20080229026A1 (en) * | 2007-03-15 | 2008-09-18 | Taiwan Semiconductor Manufacturing Co., Ltd. | System and method for concurrently checking availability of data in extending memories |
US20080270736A1 (en) * | 2007-04-24 | 2008-10-30 | Kabushiki Kaisha Toshiba | Information processing apparatus and access control method |
US20100138612A1 (en) * | 2007-08-01 | 2010-06-03 | Hangzhou H3C Technologies Co., Ltd. | System and method for implementing cache sharing |
US20100076941A1 (en) * | 2008-09-09 | 2010-03-25 | Microsoft Corporation | Matrix-based scans on parallel processors |
US8200949B1 (en) * | 2008-12-09 | 2012-06-12 | Nvidia Corporation | Policy based allocation of register file cache to threads in multi-threaded processor |
US20100180103A1 (en) * | 2009-01-15 | 2010-07-15 | Shailender Chaudhry | Mechanism for increasing the effective capacity of the working register file |
US20110072243A1 (en) * | 2009-09-24 | 2011-03-24 | Xiaogang Qiu | Unified Collector Structure for Multi-Bank Register File |
US20110161586A1 (en) * | 2009-12-29 | 2011-06-30 | Miodrag Potkonjak | Shared Memories for Energy Efficient Multi-Core Processors |
US9015683B2 (en) * | 2009-12-30 | 2015-04-21 | Samsung Electronics Co., Ltd. | Method and apparatus for transforming program code |
US20110289299A1 (en) * | 2010-05-24 | 2011-11-24 | Qualcomm Incorporated | System and Method to Evaluate a Data Value as an Instruction |
US20160104011A1 (en) * | 2010-05-25 | 2016-04-14 | Via Technologies, Inc. | Microprocessor with on-the-fly switching of decryption keys |
US20160105282A1 (en) * | 2010-05-25 | 2016-04-14 | Via Technologies, Inc. | Key expansion logic using decryption key primitives |
US20160104010A1 (en) * | 2010-05-25 | 2016-04-14 | Via Technologies, Inc. | Microprocessor with secure execution mode and store key instructions |
US20160104009A1 (en) * | 2010-05-25 | 2016-04-14 | Via Technologies, Inc. | Decryption of encrypted instructions using keys selected on basis of instruction fetch address |
US20110296202A1 (en) * | 2010-05-25 | 2011-12-01 | Via Technologies, Inc. | Switch key instruction in a microprocessor that fetches and decrypts encrypted instructions |
US20120054770A1 (en) * | 2010-08-31 | 2012-03-01 | International Business Machines Corporation | High throughput computing in a hybrid computing environment |
US20120054771A1 (en) * | 2010-08-31 | 2012-03-01 | International Business Machines Corporation | Rescheduling workload in a hybrid computing environment |
US20120079200A1 (en) * | 2010-09-24 | 2012-03-29 | William James Dally | Unified streaming multiprocessor memory |
US20120079503A1 (en) * | 2010-09-24 | 2012-03-29 | William James Dally | Two-Level Scheduler for Multi-Threaded Processing |
US20120192200A1 (en) * | 2011-01-21 | 2012-07-26 | Rao Jayanth N | Load Balancing in Heterogeneous Computing Environments |
US20130305020A1 (en) * | 2011-04-01 | 2013-11-14 | Robert C. Valentine | Vector friendly instruction format and execution thereof |
US8683468B2 (en) * | 2011-05-16 | 2014-03-25 | Advanced Micro Devices, Inc. | Automatic kernel migration for heterogeneous cores |
US20130238877A1 (en) * | 2011-11-10 | 2013-09-12 | Samsung Electronics Co., Ltd. | Core system for processing an interrupt and method for transmission of vector register file data therefor |
US20130125097A1 (en) * | 2011-11-15 | 2013-05-16 | Global Supercomputing Corporation | Method and system for converting a single-threaded software program into an application-specific supercomputer |
US20130145124A1 (en) * | 2011-12-06 | 2013-06-06 | Xiaogang Qiu | System and method for performing shaped memory access operations |
US20130159628A1 (en) * | 2011-12-14 | 2013-06-20 | Jack Hilaire Choquette | Methods and apparatus for source operand collector caching |
US20130166939A1 (en) * | 2011-12-22 | 2013-06-27 | Alexander Gendler | Apparatus, system, and method for providing clock signal on demand |
US20130166877A1 (en) * | 2011-12-22 | 2013-06-27 | Jack Hilaire Choquette | Shaped register file reads |
US20130212350A1 (en) * | 2012-02-15 | 2013-08-15 | Advanced Micro Devices, Inc. | Abstracting scratch pad memories as distributed arrays |
US20130293544A1 (en) * | 2012-05-03 | 2013-11-07 | Richard W. Schreyer | Tiled Forward Shading with Improved Depth Filtering |
US20130332666A1 (en) * | 2012-05-23 | 2013-12-12 | Kabushiki Kaisha Toshiba | Information processor, information processing method, and computer program product |
US20130332937A1 (en) * | 2012-05-29 | 2013-12-12 | Advanced Micro Devices, Inc. | Heterogeneous Parallel Primitives Programming Model |
US20130339610A1 (en) * | 2012-06-14 | 2013-12-19 | International Business Machines Corporation | Cache line history tracking using an instruction address register file |
US20140101388A1 (en) * | 2012-10-10 | 2014-04-10 | Advanced Micro Devices, Inc. | Controlling prefetch aggressiveness based on thrash events |
US20140149677A1 (en) * | 2012-11-26 | 2014-05-29 | Advanced Micro Devices, Inc. | Prefetch Kernels on Data-Parallel Processors |
US20140157287A1 (en) * | 2012-11-30 | 2014-06-05 | Advanced Micro Devices, Inc | Optimized Context Switching for Long-Running Processes |
US20140164745A1 (en) * | 2012-12-11 | 2014-06-12 | Nvidia Corporation | Register allocation for clustered multi-level register files |
US20140173216A1 (en) * | 2012-12-18 | 2014-06-19 | Advanced Micro Devices, Inc. | Invalidation of Dead Transient Data in Caches |
US20140181477A1 (en) * | 2012-12-21 | 2014-06-26 | Aniruddha S. Vaidya | Compressing Execution Cycles For Divergent Execution In A Single Instruction Multiple Data (SIMD) Processor |
US20140189698A1 (en) * | 2012-12-27 | 2014-07-03 | Nvidia Corporation | Approach for a configurable phase-based priority scheduler |
US20140189191A1 (en) * | 2012-12-28 | 2014-07-03 | Ilan Pardo | Apparatus and method for memory-mapped register caching |
US20150121051A1 (en) * | 2013-03-14 | 2015-04-30 | Jeremy Bottleson | Kernel functionality checker |
US20150324181A1 (en) * | 2013-05-08 | 2015-11-12 | Natalya Segal | Smart wearable devices and system therefor |
US20140351551A1 (en) * | 2013-05-24 | 2014-11-27 | Coherent Logix, Incorporated | Memory-network processor with programmable optimizations |
US20140372731A1 (en) * | 2013-06-14 | 2014-12-18 | Arm Limited | Data processing systems |
US20150089156A1 (en) * | 2013-09-26 | 2015-03-26 | Imagination Technologies Limited | Atomic Memory Update Unit & Methods |
US20150093044A1 (en) * | 2013-09-30 | 2015-04-02 | Duelight Llc | Systems, methods, and computer program products for digital photography |
US20190251682A1 (en) * | 2013-09-30 | 2019-08-15 | Duelight Llc | Systems, methods, and computer program products for digital photography |
US20150154106A1 (en) * | 2013-12-02 | 2015-06-04 | The Regents Of The University Of Michigan | Data processing apparatus with memory rename table for mapping memory addresses to registers |
US20150227466A1 (en) * | 2014-02-10 | 2015-08-13 | Renesas Electronics Corporation | Arithmetic control apparatus, arithmetic control method, non-transitory computer readable medium storing program, and open cl device |
US20150268963A1 (en) * | 2014-03-23 | 2015-09-24 | Technion Research & Development Foundation Ltd. | Execution of data-parallel programs on coarse-grained reconfigurable architecture hardware |
US20150348224A1 (en) * | 2014-05-30 | 2015-12-03 | Apple Inc. | Graphics Pipeline State Object And Model |
US20170331513A1 (en) * | 2014-11-30 | 2017-11-16 | Shenyang Institute Of Automation, Chinese Academy Of Sciences | Permutation group-based channel rendezvous method for multi-antenna cognitive radio network |
US20160283405A1 (en) * | 2015-03-27 | 2016-09-29 | Intel Corporation | Cache-less split tracker architecture for replay protection trees |
US20160283240A1 (en) * | 2015-03-28 | 2016-09-29 | Intel Corporation | Apparatuses and methods to accelerate vector multiplication |
US20180211436A1 (en) * | 2015-07-31 | 2018-07-26 | Arm Limited | Data processing systems |
US20170061569A1 (en) * | 2015-09-02 | 2017-03-02 | Intel Corporation | Compiler optimization to reduce the control flow divergence |
US10768935B2 (en) * | 2015-10-29 | 2020-09-08 | Intel Corporation | Boosting local memory performance in processor graphics |
US20180308206A1 (en) * | 2017-04-24 | 2018-10-25 | Prasoonkumar Surti | Compute optimization mechanism for deep neural networks |
US20180308208A1 (en) * | 2017-04-24 | 2018-10-25 | Intel Corporation | Compute optimization mechanism for deep neural networks |
Also Published As
Publication number | Publication date |
---|---|
US10768935B2 (en) | 2020-09-08 |
US20180300139A1 (en) | 2018-10-18 |
WO2017074377A1 (en) | 2017-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10140678B2 (en) | Specialized code paths in GPU processing | |
US10262455B2 (en) | Merging fragments for coarse pixel shading using a weighted average of the attributes of triangles | |
US9892544B2 (en) | Method and apparatus for load balancing in a ray tracing architecture | |
US10229468B2 (en) | Automated conversion of GPGPU workloads to 3D pipeline workloads | |
US10068307B2 (en) | Command processing for graphics tile-based rendering | |
US20200371804A1 (en) | Boosting local memory performance in processor graphics | |
US10002455B2 (en) | Optimized depth buffer cache apparatus and method | |
US10789071B2 (en) | Dynamic thread splitting having multiple instruction pointers for the same thread | |
US20160379400A1 (en) | Three-Dimensional Renderer | |
US9632979B2 (en) | Apparatus and method for efficient prefix sum operation | |
US11068401B2 (en) | Method and apparatus to improve shared memory efficiency | |
US9830676B2 (en) | Packet processing on graphics processing units using continuous threads | |
US20170178384A1 (en) | Increasing Thread Payload for 3D Pipeline with Wider SIMD Execution Width | |
US9601092B2 (en) | Dynamically managing memory footprint for tile based rendering | |
US10761819B2 (en) | Optimizing structures to fit into a complete cache line | |
US10269154B2 (en) | Rasterization based on partial spans | |
US10430229B2 (en) | Multiple-patch SIMD dispatch mode for domain shaders | |
US10152452B2 (en) | Source operand read suppression for graphics processors | |
US10417729B2 (en) | Graphics hardware bottleneck identification and event prioritization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |