US20200365500A1 - Wiring structure and method for manufacturing the same - Google Patents

Wiring structure and method for manufacturing the same Download PDF

Info

Publication number
US20200365500A1
US20200365500A1 US16/410,872 US201916410872A US2020365500A1 US 20200365500 A1 US20200365500 A1 US 20200365500A1 US 201916410872 A US201916410872 A US 201916410872A US 2020365500 A1 US2020365500 A1 US 2020365500A1
Authority
US
United States
Prior art keywords
conductive structure
layer
dielectric layer
circuit layer
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/410,872
Other versions
US10861780B1 (en
Inventor
Wen Hung HUANG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Semiconductor Engineering Inc
Original Assignee
Advanced Semiconductor Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Semiconductor Engineering Inc filed Critical Advanced Semiconductor Engineering Inc
Priority to US16/410,872 priority Critical patent/US10861780B1/en
Assigned to ADVANCED SEMICONDUCTOR ENGINEERING, INC. reassignment ADVANCED SEMICONDUCTOR ENGINEERING, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUANG, WEN HUNG
Priority to CN202010343046.9A priority patent/CN111933613A/en
Publication of US20200365500A1 publication Critical patent/US20200365500A1/en
Application granted granted Critical
Publication of US10861780B1 publication Critical patent/US10861780B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/486Via connections through the substrate with or without pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • H01L23/5283Cross-sectional geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/535Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including internal interconnections, e.g. cross-under constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0047Drilling of holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0052Depaneling, i.e. dividing a panel into circuit boards; Working of the edges of circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4623Manufacturing multilayer circuits by laminating two or more circuit boards the circuit boards having internal via connections between two or more circuit layers before lamination, e.g. double-sided circuit boards
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/0959Plated through-holes or plated blind vias filled with insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/06Lamination
    • H05K2203/061Lamination of previously made multilayered subassemblies
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/429Plated through-holes specially for multilayer circuits, e.g. having connections to inner circuit layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4661Adding a circuit layer by direct wet plating, e.g. electroless plating; insulating materials adapted therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4682Manufacture of core-less build-up multilayer circuits on a temporary carrier or on a metal foil

Abstract

A wiring structure includes an upper conductive structure, a lower conductive structure, a lower encapsulant and an intermediate layer. The upper conductive structure includes at least one upper dielectric layer and at least one upper circuit layer in contact with the upper dielectric layer. The lower conductive structure includes at least one lower dielectric layer and at least one lower circuit layer in contact with the lower dielectric layer. The lower encapsulant surrounds a lateral peripheral surface of the lower conductive structure. The intermediate layer is disposed between the upper conductive structure and the lower conductive structure to bond the upper conductive structure and the lower conductive structure together. The upper conductive structure is electrically connected to the lower conductive structure.

Description

    BACKGROUND 1. Field of the Disclosure
  • The present disclosure relates to a wiring structure and a manufacturing method, and to a wiring structure including at least two conductive structures attached or bonded together by an intermediate layer, and a method for manufacturing the same.
  • 2. Description of the Related Art
  • Along with the rapid development in electronics industry and the progress of semiconductor processing technologies, semiconductor chips are integrated with an increasing number of electronic components to achieve improved electrical performance and additional functions. Accordingly, the semiconductor chips are provided with more input/output (I/O) connections. To manufacture semiconductor packages including semiconductor chips with an increased number of I/O connections, circuit layers of semiconductor substrates used for carrying the semiconductor chips may correspondingly increase in size. Thus, a thickness and a warpage of a semiconductor substrate may correspondingly increase, and a yield of the semiconductor substrate may decrease.
  • SUMMARY
  • In some embodiments, a wiring structure includes: (a) an upper conductive structure including at least one upper dielectric layer and at least one upper circuit layer in contact with the upper dielectric layer; (b) a lower conductive structure including at least one lower dielectric layer and at least one lower circuit layer in contact with the lower dielectric layer; (c) a lower encapsulant surrounding a lateral peripheral surface of the lower conductive structure; and (d) an intermediate layer disposed between the upper conductive structure and the lower conductive structure and bonding the upper conductive structure and the lower conductive structure together, wherein the upper conductive structure is electrically connected to the lower conductive structure.
  • In some embodiments, a method for manufacturing a wiring structure includes: (a) providing a lower substrate including at least one lower conductive structure, wherein the lower conductive structure includes at least one dielectric layer and at least one circuit layer in contact with the dielectric layer; (b) providing a plurality of upper strips, wherein each of the upper strips includes at least one upper conductive structure, and the upper conductive structure includes at least one dielectric layer and at least one circuit layer in contact with the dielectric layer; (c) attaching the upper strips to the lower substrate side by side, wherein a position of the upper conductive structure of the upper strip corresponds to a position of the lower conductive structure of the lower substrate; (d) electrically connecting the upper conductive structure of the upper strip and the lower conductive structure of the lower substrate; and (e) conducting a singulation process to form a plurality of wiring structures.
  • In some embodiments, a method for manufacturing a wiring structure includes: (a) providing a plurality of lower conductive structures, wherein each of the lower conductive structures includes at least one dielectric layer and at least one circuit layer in contact with the dielectric layer; (b) forming a lower encapsulant to encapsulate a plurality of known good lower conductive structures to form a lower module; (c) providing a plurality of upper conductive structures, wherein each of the upper conductive structures includes at least one dielectric layer and at least one circuit layer in contact with the dielectric layer of the upper conductive structure; (d) attaching the upper conductive structures to the known good lower conductive structures of the lower module respectively; and electrically connecting the upper conductive structures and the known good lower conductive structures of the lower module; and (f) conducting a singulation process to form a plurality of wiring structures.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Aspects of some embodiments of the present disclosure are readily understood from the following detailed description when read with the accompanying figures. It is noted that various structures may not be drawn to scale, and dimensions of the various structures may be arbitrarily increased or reduced for clarity of discussion.
  • FIG. 1 illustrates a perspective view of a wiring structure according to some embodiments of the present disclosure.
  • FIG. 2 illustrates a top view of the wiring structure of FIG. 1.
  • FIG. 3 illustrates an exploded view of the wiring structure of FIG. 1.
  • FIG. 4 illustrates a cross-sectional view of a portion of the wiring structure of FIG. 1.
  • FIG. 5 illustrates a cross-sectional view of a wiring structure according to some embodiments of the present disclosure.
  • FIG. 6 illustrates a cross-sectional view of a wiring structure according to some embodiments of the present disclosure.
  • FIG. 7 illustrates a cross-sectional view of a wiring structure according to some embodiments of the present disclosure.
  • FIG. 8 illustrates a cross-sectional view of a wiring structure according to some embodiments of the present disclosure.
  • FIG. 9 illustrates a cross-sectional view of a wiring structure according to some embodiments of the present disclosure.
  • FIG. 10 illustrates a cross-sectional view of a wiring structure according to some embodiments of the present disclosure.
  • FIG. 11 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 12 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 13 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 14 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 15 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 16 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 17 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 18 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 19 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 20 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 21 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 22 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 23 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 24 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 25 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 26 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 27 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 28 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 29 illustrates one or more stages of an example of a method for manufacturing wiring structure according to some embodiments of the present disclosure.
  • FIG. 30 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 31 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 32 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 33 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 34 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 35 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 36 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 37 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 38 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 39 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 40 illustrates one or more stages of an example of a method for manufacturing wiring structure according to some embodiments of the present disclosure.
  • FIG. 41 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 42 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 43 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 44 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 45 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 46 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 47 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 48 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 49 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 50 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 51 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 52 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 53 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 54 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 55 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 56 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 57 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 58 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 59 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 60 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 61 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 62 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 63 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 64 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • FIG. 65 illustrates one or more stages of an example of a method for manufacturing a wiring structure according to some embodiments of the present disclosure.
  • DETAILED DESCRIPTION
  • Common reference numerals are used throughout the drawings and the detailed description to indicate the same or similar components. Embodiments of the present disclosure will be readily understood from the following detailed description taken in conjunction with the accompanying drawings.
  • The following disclosure provides many different embodiments, or examples, for implementing different features of the provided subject matter. Specific examples of components and arrangements are described below to explain certain aspects of the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed or disposed in direct contact, and may also include embodiments in which additional features may be formed or disposed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
  • To meet the specification of increasing I/O counts, a number of dielectric layers of a substrate should increase. In some comparative embodiments, a manufacturing process of a core substrate may include the following stages. Firstly, a core with two copper foils disposed on two sides thereof is provided. Then, a plurality of dielectric layers and a plurality of circuit layers are formed or stacked on the two copper foils. One circuit layer may be embedded in one corresponding dielectric layer. Therefore, the core substrate may include a plurality of stacked dielectric layers and a plurality of circuit layers embedded in the dielectric layers on both sides of the core. Since a line width/line space (L/S) of the circuit layers of such core substrate may be greater than or equal to 10 micrometers (μm)/10 μm, the number of the dielectric layers of such core substrate is relatively large. Although the manufacturing cost of such core substrate is low, the manufacturing yield for the circuit layers and the dielectric layers of such core substrate is also low, and, thus, the yield of such core substrate is low. In addition, each dielectric layer is relatively thick, and, thus, such core substrate is relatively thick. In some comparative embodiments, if a package has 10000 I/O counts, such core substrate may include twelve layers of circuit layers and dielectric layers. The manufacturing yield for one layer (including one circuit layer and one dielectric layer) of such core substrate may be 90%. Thus, the yield of such core substrate may be (0.9)12=28.24%. In addition, warpage of the twelve layers of circuit layers and dielectric layers may be accumulated, and, thus, the top several layers may have severe warpage. As a result, the yield of such core substrate may be further reduced.
  • To address the above concerns, in some comparative embodiments, a coreless substrate is provided. The coreless substrate may include a plurality of dielectric layers and a plurality of fan-out circuit layers. In some embodiments, a manufacturing process of a coreless substrate may include the following stages. Firstly, a carrier is provided. Then, a plurality of dielectric layers and a plurality of fan-out circuit layers are formed or stacked on a surface of the carrier. One fan-out circuit layer may be embedded in one corresponding dielectric layer. Then, the carrier is removed. Therefore, the coreless substrate may include a plurality of stacked dielectric layers and a plurality of fan-out circuit layers embedded in the dielectric layers. Since a line width/line space (L/S) of the fan-out circuit layers of such coreless substrate may be less than or equal to 2 μm/2 μm, the number of the dielectric layers of such coreless substrate can be reduced. Further, the manufacturing yield for the fan-out circuit layers and the dielectric layers of such coreless substrate is high. For example, the manufacturing yield for one layer (including one fan-out circuit layer and one dielectric layer) of such coreless substrate may be 99%. However, the manufacturing cost of such coreless substrate is relatively high.
  • At least some embodiments of the present disclosure provide for a wiring structure which has an advantageous compromise of yield and manufacturing cost. In some embodiments, the wiring structure includes an upper conductive structure and a lower conductive structure bonded to the upper conductive structure through an intermediate layer. At least some embodiments of the present disclosure further provide for techniques for manufacturing the wiring structure.
  • FIG. 1 illustrates a perspective view of a wiring structure 1 according to some embodiments of the present disclosure. FIG. 2 illustrates a top view of the wiring structure 1 of FIG. 1. FIG. 3 illustrates an exploded view of the wiring structure 1 of FIG. 1. FIG. 4 illustrates a cross-sectional view of a portion of the wiring structure 1 of FIG. 1. The wiring structure 1 includes a plurality of upper strips 2, a lower substrate 3, an intermediate layer 12 and at least one upper through via 14.
  • As shown in FIG. 1 to FIG. 3, the upper strips 2 are disposed on the lower substrate 3 side by side. In some embodiments, the upper strips 2 are attached to the lower substrate 3 through the intermediate layer 12. Each of the upper strips 2 includes at least one upper conductive structure 2 a. For example, each of the upper strips 2 may include a plurality of upper conductive structures 2 a arranged in a row. It is noted that the upper strip 2 is in a strip type before a singulation process, and may be also referred to as an upper conductive structure. The upper conductive structure 2 a may be a die unit after a singulation process.
  • As shown in FIG. 4, the upper conductive structure 2 a includes at least one dielectric layer (including, for example, two first dielectric layers 20 and a second dielectric layer 26) and at least one circuit layer (including, for example, three first circuit layers 24 and a second circuit layer 28 formed of a metal, a metal alloy, or other conductive material) in contact with the dielectric layer (e.g., the first dielectric layers 20 and the second dielectric layer 26). In some embodiments, the upper conductive structure 2 a may be similar to a coreless substrate. The upper conductive structure 2 a may be also referred to as “a stacked structure” or “a high-density conductive structure” or “a high-density stacked structure”. The circuit layer (including, for example, the three circuit layers 24) of the upper conductive structure 2 a may be also referred to as “a high-density circuit layer”. In some embodiments, a density of a circuit line (including, for example, a trace or a pad) of the high-density circuit layer is greater than a density of a circuit line of a low-density circuit layer. That is, the count of the circuit line (including, for example, a trace or a pad) in a unit area of the high-density circuit layer is greater than the count of the circuit line in an equal unit area of the low-density circuit layer, such as about 1.2 times or greater, about 1.5 times or greater, or about 2 times or greater. Alternatively, or in combination, a line width/line space (L/S) of the high-density circuit layer is less than a L/S of the low-density circuit layer, such as about 90% or less, about 50% or less, or about 20% or less. Further, the conductive structure that includes the high-density circuit layer may be designated as the “high-density conductive structure”, and the conductive structure that includes the low-density circuit layer may be designated as a “low-density conductive structure”.
  • The upper conductive structure 2 a has a top surface 21 and a bottom surface 22 opposite to the top surface 21, and defines at least one through hole 23, each of which is a single, continuous through hole. The upper conductive structure 2 a includes a plurality of dielectric layers (e.g., the two first dielectric layers 20 and the second dielectric layer 26), a plurality of circuit layers (e.g., the three first circuit layers 24 and the second circuit layer 28) and at least one inner via 25. The dielectric layers (e.g., the first dielectric layers 20 and the second dielectric layer 26) are stacked on one another. For example, the second dielectric layer 26 is disposed on the first dielectric layers 20, and, thus, the second dielectric layer 26 is the topmost dielectric layer. In some embodiments, a material of the dielectric layers (e.g., the first dielectric layers 20 and the second dielectric layer 26) is transparent, and can be seen through by human eyes or machine. That is, a mark disposed adjacent to the bottom surface 22 of the upper conductive structure 2 a can be recognized or detected from the top surface 21 of the upper conductive structure 2 a by human eyes or machine. In some embodiments, a transparent material of the dielectric layers has a light transmission for a wavelength in the visible range (or other pertinent wavelength for detection of a mark) of at least about 60%, at least about 70%, or at least about 80%.
  • In addition, each of the first dielectric layers 20 has a top surface 201 and a bottom surface 202 opposite to the top surface 201, and defines a through hole 203 having an inner surface 2031. The second dielectric layer 26 has a top surface 261 and a bottom surface 262 opposite to the top surface 261, and defines a through hole 263 having an inner surface 2631. The bottom surface 262 of the second dielectric layer 26 is disposed on and contacts the top surface 201 of the adjacent first dielectric layer 20. Thus, the top surface 21 of the upper conductive structure 2 a is the top surface 261 of the second dielectric layer 26, and the bottom surface 22 of the upper conductive structure 2 a is the bottom surface 202 of the bottommost first dielectric layer 20.
  • As shown in FIG. 4, each of the through holes 203 of the first dielectric layers 20 tapers downwardly along a direction from the top surface 21 towards the bottom surface 22 of the upper conductive structure 2 a; that is, a size of a top portion of the through hole 203 is greater than a size of a bottom portion of the through hole 203. The through hole 263 of the second dielectric layer 26 also tapers downwardly; that is, a size of a top portion of the through hole 263 is greater than a size of a bottom portion of the through hole 263. Further, the through hole 263 of the second dielectric layer 26 is aligned with and in communication with the through holes 203 of the first dielectric layers 20. The bottom portion of the through hole 263 of the second dielectric layer 26 is disposed adjacent to or connected to the top portion of the through hole 203 of the first dielectric layer 20 under the second dielectric layer 26. The size of the bottom portion of the through hole 263 of the second dielectric layer 26 is substantially equal to the size of the top portion of the through hole 203 of the first dielectric layer 20 under the second dielectric layer 26. Thus, the inner surface 2631 of the through hole 263 of the second dielectric layer 26 is coplanar with or aligned with the inner surfaces 2031 of the through holes 203 of the first dielectric layers 20. It is noted that the above-mentioned “coplanar” surfaces need not be flat. In some embodiments, the inner surface 2631 of the through hole 263 of the second dielectric layer 26 and the inner surfaces 2031 of the through holes 203 of the first dielectric layers 20 may be curved surfaces, and are portions of an inner surface 231 of the single, continuous through hole 23 for accommodating the upper through via 14. The through hole 263 of the second dielectric layer 26 and the through holes 203 of the first dielectric layers 20 are collectively configured to form or define a portion of the single through hole 23. As shown in FIG. 4, cross-sectional views of one side of the inner surface 2631 of the through hole 263 of the second dielectric layer 26 and the inner surfaces 2031 of the through holes 203 of the first dielectric layers 20 are segments of a substantially straight line. That is, cross-sectional views of one side of the inner surface 2631 of the through hole 263 of the second dielectric layer 26 and the inner surfaces 2031 of the through holes 203 of the first dielectric layers 20 may extend along the same substantially straight line. The single through hole 23 extends through the upper conductive structure 2; that is, the single through hole 23 extends from the top surface 21 of the upper conductive structure 2 a to the bottom surface 22 of the upper conductive structure 2 a. The single through hole 23 tapers downwardly.
  • The first circuit layers 24 may be fan-out circuit layers or redistribution layers (RDLs), and an L/S of the first circuit layers 24 may be less than or equal to about 2 μm/about 2 μm, or less than or equal to about 1.8 μm/about 1.8 μm. Each of the first circuit layers 24 has a top surface 241 and a bottom surface 242 opposite to the top surface 241. In some embodiments, the first circuit layer 24 is embedded in the corresponding first dielectric layer 20, and the top surface 241 of the first circuit layer 24 may be substantially coplanar with the top surface 201 of the first dielectric layer 20. In some embodiments, each first circuit layer 24 may include a seed layer 243 and a conductive metallic material 244 disposed on the seed layer 243. As shown in FIG. 4, the bottommost first circuit layer 24 is disposed on and protrudes from the bottom surface 22 of the upper conductive structure 2 a (e.g., the bottom surface 202 of the bottommost first dielectric layer 20). In addition, the second circuit layer 28 is disposed on and protrudes from the top surface 21 of the upper conductive structure 2 a (e.g., the top surface 261 of the second dielectric layer 26). An L/S of the second circuit layer 28 may be greater than or equal to the L/S of the first circuit layer 24. As illustrated in the embodiment of FIG. 4, a horizontally connecting or extending circuit layer is omitted in the second dielectric layer 26.
  • The upper conductive structure 2 a includes a plurality of inner vias 25. Some of the inner vias 25 are disposed between two adjacent first circuit layers 24 for electrically connecting the two first circuit layers 24. Some of the inner vias 25 are disposed between the first circuit layer 24 and the second circuit layer 28 for electrically connecting the first circuit layer 24 and the second circuit layer 28. In some embodiments, each inner via 25 may include a seed layer 251 and a conductive metallic material 252 disposed on the seed layer 251. In some embodiments, each inner via 25 and the corresponding first circuit layer 24 may be formed integrally as a monolithic or one-piece structure. Each inner via 25 tapers upwardly along a direction from the bottom surface 22 towards the top surface 21 of the upper conductive structure 2. That is, a size (e.g., a width) of a top portion of the inner via 25 is less than a size (e.g., a width) of a bottom portion of the inner via 25 that is closer towards the bottom surface 22. In some embodiments, a maximum width of the inner via 25 (e.g., at the bottom portion) may be less than or equal to about 25 μm, such as about 25 μm, about 20 μm about 15 μm or about 10 μm.
  • As shown in FIG. 1 to FIG. 3, the lower substrate 3 includes at least one lower conductive structure 3 a. For example, the lower substrate 3 may include a plurality of lower conductive structures 3 a arranged in an array. Alternatively, the lower substrate 3 may be a panel type. It is noted that the lower substrate 3 is in a substrate type before a singulation process, and may be also referred to as a lower conductive structure. The lower conductive structure 3 a may be a die unit after a singulation process. A position of the upper conductive structure 2 a corresponds to a position of the lower conductive structure 3 a. In some embodiments, the upper conductive structure 2 a may be disposed right above the lower conductive structure 3 a, and a central axis of the upper conductive structure 2 a may be aligned with a central axis of the lower conductive structure 3 a.
  • As shown in FIG. 4, the lower conductive structure 3 a includes at least one dielectric layer (including, for example, one first upper dielectric layer 30, one second upper dielectric layer 36, one first lower dielectric layer 30 a and one second lower dielectric layer 36 a) and at least one circuit layer (including, for example, one first upper circuit layer 34, two second upper circuit layers 38, 38′, one first lower circuit layer 34 a and two second lower circuit layers 38 a, 38 a′ formed of a metal, a metal alloy, or other conductive material) in contact with the dielectric layer (e.g., the first upper dielectric layer 30, the second upper dielectric layer 36, the first lower dielectric layer 30 a and the second lower dielectric layer 36 a). In some embodiments, the lower conductive structure 3 a may be similar to a core substrate that further includes a core portion 37. The lower conductive structure 3 a may be also referred to as “a stacked structure” or “a low-density conductive structure” or “a low-density stacked structure”. The circuit layer (including, for example, the first upper circuit layer 34, the two second upper circuit layers 38, 38′, the first lower circuit layer 34 a and the two second lower circuit layers 38 a, 38 a′) of the lower conductive structure 3 a may be also referred to as “a low-density circuit layer”. As shown in FIG. 4, the lower conductive structure 3 a has a top surface 31 and a bottom surface 32 opposite to the top surface 31. The lower conductive structure 3 a includes a plurality of dielectric layers (for example, the first upper dielectric layer 30, the second upper dielectric layer 36, the first lower dielectric layer 30 a and the second lower dielectric layer 36 a), a plurality of circuit layers (for example, the first upper circuit layer 34, the two second upper circuit layers 38, 38′, the first lower circuit layer 34 a and the two second lower circuit layers 38 a, 38 a′) and at least one inner via (including, for example, a plurality of upper interconnection vias 35 and a plurality of lower interconnection vias 35 a).
  • The core portion 37 has a top surface 371 and a bottom surface 372 opposite to the top surface 371, and defines a plurality of through holes 373 extending through the core portion 37. An interconnection via 39 is disposed or formed in each through hole 373 for vertical connection. In some embodiments, each interconnection via 39 includes a base metallic layer 391 and an insulation material 392. The base metallic layer 391 is disposed or formed on a side wall of the through hole 373, and defines a central through hole. The insulation material 392 fills the central through hole defined by the base metallic layer 391. In some embodiments, the interconnection via 39 may omit an insulation material, and may include a bulk metallic material that fills the through hole 373.
  • The first upper dielectric layer 30 is disposed on the top surface 371 of the core portion 37, and has a top surface 301 and a bottom surface 302 opposite to the top surface 301. Thus, the bottom surface 302 of the first upper dielectric layer 30 contacts the top surface 371 of the core portion 37. The second upper dielectric layer 36 is stacked or disposed on the first upper dielectric layer 30, and has a top surface 361 and a bottom surface 362 opposite to the top surface 361. Thus, the bottom surface 362 of the second upper dielectric layer 36 contacts the top surface 301 of the first upper dielectric layer 30, and the second upper dielectric layer 36 is the topmost dielectric layer. In addition, the first lower dielectric layer 30 a is disposed on the bottom surface 372 of the core portion 37, and has a top surface 301 a and a bottom surface 302 a opposite to the top surface 301 a. Thus, the top surface 301 a of the first lower dielectric layer 30 a contacts the bottom surface 372 of the core portion 37. The second lower dielectric layer 36 a is stacked or disposed on the first lower dielectric layer 30 a, and has a top surface 361 a and a bottom surface 362 a opposite to the top surface 361 a. Thus, the top surface 361 a of the second lower dielectric layer 36 a contacts the bottom surface 302 a of the first lower dielectric layer 30 a, and the second lower dielectric layer 36 a is the bottommost dielectric layer. As shown in FIG. 4, the top surface 31 of the lower conductive structure 3 a is the top surface 361 of the second upper dielectric layer 36, and the bottom surface 32 of the lower conductive structure 3 a is the bottom surface 362 a of the second lower dielectric layer 36 a.
  • A thickness of each of the dielectric layers (e.g., the first dielectric layers 20 and the second dielectric layer 26) of the upper conductive structure 2 a is less than or equal to about 40%, less than or equal to about 35%, less than or equal to about 30% of a thickness of each of the dielectric layers (e.g., the first upper dielectric layer 30, the second upper dielectric layer 36, the first lower dielectric layer 30 a and the second lower dielectric layer 36 a) of the lower conductive structure 3 a. For example, a thickness of each of the dielectric layers (e.g., the first dielectric layers 20 and the second dielectric layer 26) of the upper conductive structure 2 a may be less than or equal to about 7 μm, and a thickness of each of the dielectric layers (e.g., the first upper dielectric layer 30, the second upper dielectric layer 36, the first lower dielectric layer 30 a and the second lower dielectric layer 36 a) of the lower conductive structure 3 a may be about 40 μm.
  • An L/S of the first upper circuit layer 34 may be greater than or equal to about 10 μm/about 10 μm. Thus, the L/S of the first upper circuit layer 34 may be greater than or equal to about five times the L/S of the first circuit layers 24 of the upper conductive structure 2 a. The first upper circuit layer 34 has a top surface 341 and a bottom surface 342 opposite to the top surface 341. In some embodiments, the first upper circuit layer 34 is formed or disposed on the top surface 371 of the core portion 37, and covered by the first upper dielectric layer 30. The bottom surface 342 of the first upper circuit layer 34 contacts the top surface 371 of the core portion 37. In some embodiments, the first upper circuit layer 34 may include a first metallic layer 343, a second metallic layer 344 and a third metallic layer 345. The first metallic layer 343 is disposed on the top surface 371 of the core portion 37, and may be formed from a copper foil (e.g., may constitute a portion of the copper foil). The second metallic layer 344 is disposed on the first metallic layer 343, and may be a plated copper layer. The third metallic layer 345 is disposed on the second metallic layer 344, and may be another plated copper layer. In some embodiments, the third metallic layer 345 may be omitted.
  • An L/S of the second upper circuit layer 38 may be greater than or equal to about 10 μm/about 10 μm. Thus, the L/S of the second upper circuit layer 38 may be substantially equal to the L/S of the first upper circuit layer 34, and may be greater than or equal to about five times the L/S of the first circuit layers 24 of the upper conductive structure 2 a. The second upper circuit layer 38 has a top surface 381 and a bottom surface 382 opposite to the top surface 381. In some embodiments, the second upper circuit layer 38 is formed or disposed on the top surface 301 of the first upper dielectric layer 30, and covered by the second upper dielectric layer 36. The bottom surface 382 of the second upper circuit layer 38 contacts the top surface 301 of the first upper dielectric layer 30. In some embodiments, the second upper circuit layer 38 is electrically connected to the first upper circuit layer 34 through the upper interconnection vias 35. That is, the upper interconnection vias 35 are disposed between the second upper circuit layer 38 and the first upper circuit layer 34 for electrically connecting the second upper circuit layer 38 and the first upper circuit layer 34. In some embodiments, the second upper circuit layer 38 and the upper interconnection vias 35 are formed integrally as a monolithic or one-piece structure. Each upper interconnection via 35 tapers downwardly along a direction from the top surface 31 towards the bottom surface 32 of the lower conductive structure 3 a.
  • In addition, in some embodiments, the second upper circuit layer 38′ is disposed on and protrudes from the top surface 361 of the second upper dielectric layer 36. In some embodiments, the second upper circuit layer 38 is electrically connected to the second upper circuit layer 38′ through the upper interconnection vias 35. That is, the upper interconnection vias 35 are disposed between the second upper circuit layers 38, 38′ for electrically connecting the second upper circuit layers 38, 38′. In some embodiments, the second upper circuit layer 38′ and the upper interconnection vias 35 are formed integrally as a monolithic or one-piece structure.
  • An L/S of the first lower circuit layer 34 a may be greater than or equal to about 10 μm/about 10 μm. Thus, the L/S of the first lower circuit layer 34 a may be greater than or equal to about five times the L/S of the first circuit layers 24 of the upper conductive structure 2 a. The first lower circuit layer 34 a has a top surface 341 a and a bottom surface 342 a opposite to the top surface 341 a. In some embodiments, the first lower circuit layer 34 a is formed or disposed on the bottom surface 372 of the core portion 37, and covered by the first lower dielectric layer 30 a. The top surface 341 a of the first lower circuit layer 34 a contacts the bottom surface 372 of the core portion 37. In some embodiments, the first lower circuit layer 34 a may include a first metallic layer 343 a, a second metallic layer 344 a and a third metallic layer 345 a. The first metallic layer 343 a is disposed on the bottom surface 372 of the core portion 37, and may be formed from a copper foil. The second metallic layer 344 a is disposed on the first metallic layer 343 a, and may be a plated copper layer. The third metallic layer 345 a is disposed on the second metallic layer 344 a, and may be another plated copper layer. In some embodiments, the third metallic layer 345 a may be omitted.
  • An L/S of the second lower circuit layer 38 a may be greater than or equal to about 10 μm/about 10 μm. Thus, the L/S of the second lower circuit layer 38 a may be substantially equal to the L/S of the first upper circuit layer 34, and may be greater than or equal to about five times the L/S of the first circuit layers 24 of the upper conductive structure 2 a. The second lower circuit layer 38 a has a top surface 381 a and a bottom surface 382 a opposite to the top surface 381 a. In some embodiments, the second lower circuit layer 38 a is formed or disposed on the bottom surface 302 a of the first lower dielectric layer 30 a, and covered by the second lower dielectric layer 36 a. The top surface 381 a of the second lower circuit layer 38 a contacts the bottom surface 302 a of the first lower dielectric layer 30 a. In some embodiments, the second lower circuit layer 38 a is electrically connected to the first lower circuit layer 34 a through the lower interconnection vias 35 a. That is, the lower interconnection vias 35 a are disposed between the second lower circuit layer 38 a and the first lower circuit layer 34 a for electrically connecting the second lower circuit layer 38 a and the first lower circuit layer 34 a. In some embodiments, the second lower circuit layer 38 a and the lower interconnection vias 35 a are formed integrally as a monolithic or one-piece structure. The lower interconnection vias 35 a tapers upwardly along a direction from the bottom surface 32 towards the top surface 31 of the lower conductive structure 3 a.
  • In addition, in some embodiments, the second lower circuit layer 38 a′ is disposed on and protrudes from the bottom surface 362 a of the second lower dielectric layer 36 a. In some embodiments, the second lower circuit layer 38 a′ is electrically connected to the second lower circuit layer 38 a through the lower interconnection vias 35 a. That is, the lower interconnection vias 35 a are disposed between the second lower circuit layers 38 a, 38 a′ for electrically connecting the second lower circuit layers 38 a, 38 a′. In some embodiments, the second lower circuit layer 38 a′ and the lower interconnection vias 35 a are formed integrally as a monolithic or one-piece structure.
  • In some embodiments, each interconnection via 39 electrically connects the first upper circuit layer 34 and the first lower circuit layer 34 a. The base metallic layer 391 of the interconnection via 39, the second metallic layer 344 of the first upper circuit layer 34 and the second metallic layer 344 a the first lower circuit layer 34 a may be formed integrally and concurrently as a monolithic or one-piece structure.
  • The intermediate layer 12 is interposed or disposed between the upper strips 2 and the lower substrate 3 to bond the upper strips 2 and the lower substrate 3 together. That is, the intermediate layer 12 adheres to the bottom surface 22 of the upper conductive structure 2 a and the top surface 31 of the lower conductive structure 3 a. In some embodiments, the intermediate layer 12 may be an adhesion layer that is cured from an adhesive material (e.g., includes a cured adhesive material such as an adhesive polymeric material). The intermediate layer 12 has a top surface 121 and a bottom surface 122 opposite to the top surface 121, and defines at least one through hole 123 having an inner surface 1231. The top surface 121 of the intermediate layer 12 contacts the bottom surface 22 of the upper conductive structure 2 a (that is, the bottom surface 22 of the upper conductive structure 2 a is attached to the top surface 121 of the intermediate layer 12), and the bottom surface 122 of the intermediate layer 12 contacts the top surface 31 of the lower conductive structure 3 a. Thus, the bottommost first circuit layer 24 of the upper conductive structure 2 a and the topmost circuit layer 38′ (e.g., the second upper circuit layer 38′) of the lower conductive structure 3 a are embedded in the intermediate layer 12. In some embodiments, a bonding force between two adjacent dielectric layers (e.g., two adjacent first dielectric layers 20) of the upper conductive structure 2 a is greater than a bonding force between a dielectric layer (e.g., the bottommost first dielectric layers 20) of the upper conductive structure 2 a and the intermediate layer 12. A surface roughness of a boundary between two adjacent dielectric layers (e.g., two adjacent first dielectric layers 20) of the upper conductive structure 2 a is greater than a surface roughness of a boundary between a dielectric layer (e.g., the bottommost first dielectric layers 20) of the upper conductive structure 2 a and the intermediate layer 12, such as about 1.1 times or greater, about 1.3 times or greater, or about 1.5 times or greater in terms of root mean squared surface roughness.
  • In some embodiments, a material of the intermediate layer 12 is transparent, and can be seen through by human eyes or machine. That is, a mark disposed adjacent to the top surface 31 of the lower conductive structure 3 a can be recognized or detected from the top surface 21 of the upper conductive structure 2 a by human eyes or machine. In addition, a material of the intermediate layer 12 may include an insulating film, such as Ajinomoto build-up film (ABF).
  • The through hole 123 extends through the intermediate layer 12. In some embodiments, the through hole 123 of the intermediate layer 12 may extend through the bottommost first circuit layer 24 of the upper conductive structure 2 a and terminate at or on a topmost circuit layer (e.g., the second upper circuit layer 38′) of the lower conductive structure 3 a. That is, the through hole 123 of the intermediate layer 12 does not extend through the topmost circuit layer (e.g., the second upper circuit layer 38′) of the lower conductive structure 3 a. The through hole 123 of the intermediate layer 12 may expose a portion of the topmost circuit layer (e.g., the top surface of the second upper circuit layer 38′) of the lower conductive structure 3 a.
  • As shown in FIG. 4, the through hole 123 of the intermediate layer 12 tapers downwardly along a direction from the top surface 121 towards the bottom surface 122 of the intermediate layer 12; that is, a size of a top portion of the through hole 123 is greater than a size of a bottom portion of the through hole 123. Further, the through hole 123 of the intermediate layer 12 is aligned with and in communication with the through holes 203 of the first dielectric layers 20 and the through hole 263 of the second dielectric layer 26. The bottom portion of the through hole 203 of the bottommost first dielectric layer 20 is disposed adjacent to or connected to the top portion of the through hole 123 of the intermediate layer 12. The size of the bottom portion of the through hole 203 of the bottommost first dielectric layer 20 is substantially equal to the size of the top portion of the through hole 123 of the intermediate layer 12. Thus, the inner surface 1231 of the through hole 123 of the intermediate layer 12 is coplanar or aligned with the inner surfaces 2031 of the through holes 203 of the first dielectric layers 20 and the inner surface 2631 of the through hole 263 of the second dielectric layer 26. In some embodiments, inner surface 1231 of the through hole 123 of the intermediate layer 12 may be a curved surface, and is a portion of an inner surface 231 of the single, continuous through hole 23 for accommodating the upper through via 14. The through hole 123 of the intermediate layer 12, the through hole 203 of the first dielectric layer 20 and the through hole 263 of the second dielectric layer 26 are collectively configured to form or define the single through hole 23. Thus, the single through hole 23 includes the through hole 123 of the intermediate layer 12, the through hole 203 of the first dielectric layer 20 and the through hole 263 of the second dielectric layer 26.
  • As shown in FIG. 4, cross-sectional views of one side of the through hole 123 of the intermediate layer 12, the inner surfaces 2031 of the through holes 203 of the first dielectric layers 20 and the inner surface 2631 of the through hole 263 of the second dielectric layer 26 are segments of a substantially straight line. That is, cross-sectional views of one side of the inner surface 1231 of the through hole 123 of the intermediate layer 12, the inner surfaces 2031 of the through holes 203 of the first dielectric layers 20 and the inner surface 2631 of the through hole 263 of the second dielectric layer 26 may extend along the same substantially straight line. The single through hole 23 extends through the upper conductive structure 2 a and the intermediate layer 12; that is, the single through hole 23 extends from the top surface 21 of the upper conductive structure 2 a to the bottom portion of the intermediate layer 12 to expose a portion of the topmost circuit layer (e.g., the top surface of the second upper circuit layer 38′) of the lower conductive structure 3 a. The single through hole 23 tapers downwardly. A maximum width (e.g., at the top portion) of the single through hole 23 may be about 25 μm to about 60 μm.
  • The upper through via 14 is formed or disposed in the corresponding single through hole 23, and is formed of a metal, a metal alloy, or other conductive material. Thus, the upper through via 14 extends through at least a portion of the upper conductive structure 2 a and the intermediate layer 12, and is electrically connected to the topmost circuit layer (e.g., the top surface of the second upper circuit layer 38′) of the lower conductive structure 3 a. As shown in FIG. 4, the upper through via 14 extends through and contacts the bottommost first circuit layer 24 of the upper conductive structure 2 a, and terminates at or on, and contacts a portion of the topmost circuit layer (e.g., the top surface of the second upper circuit layer 38′) of the lower conductive structure 3 a. The upper through via 14 extends from the top surface 21 of the upper conductive structure 2 a to the bottom surface 122 of the intermediate layer 12. Thus, the upper through via 14 extends to contact a portion of the lower conductive structure 3 a, and the upper through via 14 does not extend through the lower conductive structure 3 a. In some embodiments, a low-density circuit layer (e.g., the second upper circuit layer 38′) of the low-density conductive structure (e.g., the lower conductive structure 3 a) is electrically connected to a high-density circuit layer (e.g., the bottommost first circuit layer 24) of the high-density conductive structure (e.g., the upper conductive structure 2 a) solely by the upper through via 14 extending through the high-density circuit layer (e.g., the bottommost first circuit layer 24) of the high-density conductive structure (e.g., the upper conductive structure 2 a). A length (along a longitudinal axis) of the upper through via 14 is greater than a thickness of the high-density conductive structure (e.g., the upper conductive structure 2 a). Further, the upper through via 14 tapers downwardly; that is, a size of a top portion of the upper through via 14 is greater than a size of a bottom portion of the upper through via 14. Thus, a tapering direction of the inner via 25 of the upper conductive structure 2 a is different from a tapering direction of the upper through via 14. In some embodiments, the upper through via 14 is a monolithic structure or a one-piece structure having a homogeneous material composition, and a peripheral surface of the upper through via 14 is a substantially continuous surface without boundaries. The upper through via 14 and the second circuit layer 28 may be formed integrally as a monolithic or one-piece structure. In some embodiments, a maximum width of the upper through via 14 may be less than about 40 such as about 30 μm or about 20
  • As shown in the embodiment illustrated in FIG. 1 to FIG. 4, the wiring structure 1 is a combination of the upper strips 2 and the lower substrate 3 (e.g., the upper conductive structure 2 a and the lower conductive structure 3 a), in which the first circuit layer 24 of the upper strip 2 (e.g., the upper conductive structure 2 a) has fine pitch, high yield and low thickness; and the circuit layers (e.g., the first upper circuit layer 34, the second upper circuit layers 38, 38′, the first lower circuit layer 34 a and the second lower circuit layers 38 a, 38 a′) of the lower substrate 3 (e.g., the lower conductive structure 3 a) have low manufacturing cost. Thus, the wiring structure 1 has an advantageous compromise of yield and manufacturing cost, and the wiring structure 1 has a relatively low thickness. In some embodiments, if a package has 10000 I/O counts, the wiring structure 1 includes three layers of the first circuit layers 24 of the upper strip 2 (e.g., the upper conductive structure 2 a) and six layers of the circuit layers (e.g., the first upper circuit layer 34, the second upper circuit layers 38, 38′, the first lower circuit layer 34 a and the second lower circuit layers 38 a, 38 a′) of the lower substrate 3 (e.g., the lower conductive structure 3 a). The manufacturing yield for one layer of the first circuit layers 24 of the upper strip 2 (e.g., the upper conductive structure 2 a) may be 99%, and the manufacturing yield for one layer of the circuit layers (e.g., the first upper circuit layer 34, the second upper circuit layers 38, 38′, the first lower circuit layer 34 a and the second lower circuit layers 38 a, 38 a′) of the lower substrate 3 (e.g., the lower conductive structure 3 a) may be 90%. Thus, the yield of the wiring structure 1 may be improved.
  • In addition, the warpage of the upper strip 2 (e.g., the upper conductive structure 2 a) and the warpage of the lower substrate 3 (e.g., the lower conductive structure 3 a) are separated and will not influence each other. In some embodiments, a warpage shape of the upper strip 2 (e.g., the upper conductive structure 2 a) may be different from a warpage shape of the lower substrate 3 (e.g., the lower conductive structure 3 a). For example, the warpage shape of the upper strip 2 (e.g., the upper conductive structure 2 a) may be a convex shape, and the warpage shape of the lower substrate 3 (e.g., the lower conductive structure 3 a) may be a concave shape. In some embodiments, the warpage shape of the upper strip 2 (e.g., the upper conductive structure 2 a) may be the same as the warpage shape of the lower substrate 3 (e.g., the lower conductive structure 3 a); however, the warpage of the lower substrate 3 (e.g., the lower conductive structure 3 a) will not be accumulated onto the warpage of the upper strip 2 (e.g., the upper conductive structure 2 a). Thus, the yield of the wiring structure 1 may be further improved.
  • In addition, during a manufacturing process, the lower substrate 3 (e.g., the lower conductive structure 3 a) and the upper strip 2 (e.g., the upper conductive structure 2 a) may be tested individually before being bonded together. Therefore, known good lower substrate 3 (e.g., the lower conductive structure 3 a) and known good upper strip 2 (e.g., the upper conductive structure 2 a) may be selectively bonded together. Bad (or unqualified) lower substrate 3 (e.g., the lower conductive structure 3 a) and bad (or unqualified) upper strip 2 (e.g., the upper conductive structure 2 a) may be discarded. As a result, the yield of the wiring structure 1 may be further improved.
  • In addition, during a manufacturing process, the relative positions of the upper strips 2 are separated and will not influence each other. In some embodiments, if one or some of the upper strips 2 may be shifted with respect to a predetermined position of the lower substrate 3, the other upper strips 2 still can be disposed on a predetermined position of the lower substrate 3. In addition, the design of the upper strips 2 can increase effective area of the lower substrate 3. That is, the lower substrate 3 can carry more upper strips 2 (or upper conductive structures 2 a) as compared with a panel type of upper conductive structure.
  • FIG. 5 illustrates a cross-sectional view of a wiring structure 1 a according to some embodiments of the present disclosure. The wiring structure 1 a is similar to the wiring structure 1 shown in FIG. 4, except for structures of an upper conductive structure 2 a and a lower conductive structure 3 a. As shown in FIG. 5, the upper conductive structure 2 a and the lower conductive structure 3 a are both die units after a singulation process. In addition, a lateral peripheral surface 27 of the upper conductive structure 2 a, a lateral peripheral surface 125 of the intermediate layer 12 and a lateral peripheral surface 33 of the lower conductive structure 3 a are substantially coplanar with each other. That is, a size of the upper conductive structure 2 a is equal to a size of the lower conductive structure 3 a.
  • FIG. 6 illustrates a cross-sectional view of a wiring structure 1 b according to some embodiments of the present disclosure. The wiring structure 1 b is similar to the wiring structure 1 a shown in FIG. 5, except for a structure of at least one through via 16. The through via 16 is disposed in a single, continuous through hole 17. The single through hole 17 extends through the upper conductive structure 2 a, the intermediate layer 12 and the lower conductive structure 3 a (including the second lower circuit layer 38 a′); that is, the single through hole 17 extends from the top surface 21 of the upper conductive structure 2 a to the bottom surface 32 of the lower conductive structure 3 a. A maximum width of the single through hole 17 may be about 100 μm to about 1000 μm. In some embodiments, the single through hole 17 may be formed by mechanical drilling. Thus, the through hole 17 may not taper, and the inner surface 171 of the through hole 17 may be substantially perpendicular to the top surface 21 of the upper conductive structure 2 a and/or the bottom surface 32 of the lower conductive structure 3 a.
  • Each through via 16 is formed or disposed in the corresponding through hole 17, and is formed of a metal, a metal alloy, or other conductive material. Thus, the through via 16 extends through the upper conductive structure 2 a, the intermediate layer 12 and the lower conductive structure 3 a. As shown in FIG. 6, the lower through via 16 extends through and contacts the bottommost circuit layer 24 of the upper conductive structure 2 a, the topmost circuit layer (e.g., the second upper circuit layer 38′) of the lower conductive structure 3 a, and the bottommost circuit layer (e.g., the second lower circuit layer 38 a′) of the lower conductive structure 3 a. In some embodiments, a low-density circuit layer (e.g., the second upper circuit layer 38′) of the low-density conductive structure (e.g., the lower conductive structure 3 a) is electrically connected to a high-density circuit layer (e.g., the first circuit layer 24) of the high-density conductive structure (e.g., the upper conductive structure 2 a) solely by the through via 16. In some embodiments, the through via 16 is a monolithic structure or one-piece structure having a homogeneous material composition, and a peripheral surface 163 of the through via 16 is a substantially continuous surface without boundaries. The through via 16 and the outer circuit layer 28 may be formed integrally.
  • FIG. 7 illustrates a cross-sectional view of a wiring structure 1 c according to some embodiments of the present disclosure. The wiring structure 1 c is similar to the wiring structure 1 a shown in FIG. 5, except for structures of an upper conductive structure 2 c, a lower conductive structure 3 c and a lower encapsulant 80. A size of the upper conductive structure 2 c is substantially equal to a size of the lower conductive structure 3 c. Thus, a width W2 of the upper conductive structure 2 c is substantially equal to a width W3 of the lower conductive structure 3 c. The lateral peripheral surface 27 of the upper conductive structure 2 c is substantially coplanar with the lateral peripheral surface 33 of the lower conductive structure 3 c. The lower encapsulant 80 surrounds the lateral peripheral surface 33 of the lower conductive structure 3 c. In some embodiments, the lower encapsulant 80 may be a molding compound, and may cover and contact the lateral peripheral surface 33 of the lower conductive structure 3 c. Thus, the lateral peripheral surface 27 of the upper conductive structure 2 c is not coplanar with (e.g., is inwardly recessed from or otherwise displaced from) a lateral peripheral surface 803 of the lower encapsulant 80. In addition, a portion of the intermediate layer 12 covers a top surface 801 of the lower encapsulant 80. Thus, the lateral peripheral surface 27 of the upper conductive structure 2 c is not coplanar with (e.g., is inwardly recessed from or otherwise displaced from) the lateral peripheral surface 125 of the intermediate layer 12. In some embodiments, during a manufacturing process, a plurality of lower conductive structures 3 c may be known good die units and are reconstituted and encapsulated in the lower encapsulant 80. Then, a plurality of known good upper conductive structures 2 c are attached to the lower conductive structures 3 c respectively. Then, a singulation process is conducted along the lower encapsulant 80. Thus, a portion of the lower encapsulant 80 remains on the lateral peripheral surface 33 of the lower conductive structure 3 c.
  • FIG. 8 illustrates a cross-sectional view of a wiring structure 1 d according to some embodiments of the present disclosure. The wiring structure 1 d is similar to the wiring structure 1 c shown in FIG. 7, except for a structure of an upper conductive structure 2 d. A size of the upper conductive structure 2 d is smaller than a size of the lower conductive structure 3 c. Thus, a width W2′ of the upper conductive structure 2 d is less than the width W3 of the lower conductive structure 3 c. The lateral peripheral surface 27 of the upper conductive structure 2 d is not coplanar with (e.g., is inwardly recessed from or otherwise displaced from) the lateral peripheral surface 33 of the lower conductive structure 3 c.
  • FIG. 9 illustrates a cross-sectional view of a wiring structure 1 e according to some embodiments of the present disclosure. The wiring structure 1 e is similar to the wiring structure 1 c shown in FIG. 7, except that an upper encapsulant 82 is further included. The upper encapsulant 82 surrounds the lateral peripheral surface 27 of the upper conductive structure 2 c. In some embodiments, the upper encapsulant 82 may be a molding compound, and may cover and contact the lateral peripheral surface 27 of the upper conductive structure 2 c. Thus, a lateral peripheral surface 823 of the upper encapsulant 82 is substantially coplanar with the lateral peripheral surface 803 of the lower encapsulant 80. In addition, the upper encapsulant 82 may cover and contact a portion a top surface of the intermediate layer 12. In some embodiments, during a manufacturing process, a plurality of lower conductive structures 3 c may be known good die units and are reconstituted and encapsulated in the lower encapsulant 80, and a plurality of upper conductive structures 2 c may be known good die units and are reconstituted and encapsulated in the upper encapsulant 82. Then, the conductive structures 2 c with the upper encapsulant 82 are attached to the lower conductive structures 3 c with the lower encapsulant 80. Then, a singulation process is conducted along the upper encapsulant 82 and the lower encapsulant 80. Thus, a portion of the upper encapsulant 82 remains on the lateral peripheral surface 27 of the upper conductive structure 2 c, and a portion of the lower encapsulant 80 remains on the lateral peripheral surface 33 of the lower conductive structure 3 c.
  • FIG. 10 illustrates a cross-sectional view of a wiring structure if according to some embodiments of the present disclosure. The wiring structure if is similar to the wiring structure 1 e shown in FIG. 9, except for a structure of an upper conductive structure 2 f. A size of the upper conductive structure 2 f is smaller than a size of the lower conductive structure 3 c. Thus, a width W2′ of the upper conductive structure 2 f is less than the width W3 of the lower conductive structure 3 c. The lateral peripheral surface 27 of the upper conductive structure 2 f is not coplanar with (e.g., is inwardly recessed from or otherwise displaced from) the lateral peripheral surface 33 of the lower conductive structure 3 c.
  • FIG. 11 through FIG. 51 illustrate a method for manufacturing a wiring structure according to some embodiments of the present disclosure. In some embodiments, the method is for manufacturing the wiring structure 1 shown in FIG. 4 and/or the wiring structure 1 a shown in FIG. 5.
  • Referring to FIG. 11 through FIG. 31, a lower substrate 3 is provided. The lower substrate 3 is manufactured as follows. Referring to FIG. 11, a core portion 37 with a top copper foil 50 and a bottom copper foil 52 is provided. The core portion 37 has a top surface 371 and a bottom surface 372 opposite to the top surface 371. The top copper foil 50 is disposed on the top surface 371 of the core portion 37, and the bottom copper foil 52 is disposed on the bottom surface 372 of the core portion 37.
  • Referring to FIG. 12, a plurality of through holes 373 are formed to extend through the core portion 37, the top copper foil 50 and the bottom copper foil 52 by a drilling technique (such as laser drilling or mechanical drilling) or other suitable techniques.
  • Referring to FIG. 13, a second metallic layer 54 is formed or disposed on the top copper foil 50, the bottom copper foil 52 and side walls of the first through holes 373 by a plating technique or other suitable techniques. A portion of the second metallic layer 54 on the side wall of each first through hole 373 defines a central through hole.
  • Referring to FIG. 14, an insulation material 392 is disposed to fill the central through hole defined by the second metallic layer 54.
  • Referring to FIG. 15, a top third metallic layer 56 and a bottom third metallic layer 56 a are formed or disposed on the second metallic layer 54 by a plating technique or other suitable techniques. The third metallic layers 56, 56 a cover the insulation material 392.
  • Referring to FIG. 16, a top photoresist layer 57 is formed or disposed on the top third metallic layer 56, and a bottom photoresist layer 57 a is formed or disposed on the bottom third metallic layer 56 a. Then, the photoresist layers 57, 57 a are patterned by exposure and development.
  • Referring to FIG. 17, portions of the top copper foil 50, the second metallic layer 54 and the top third metallic layer 56 that are not covered by the top photoresist layer 57 are removed by an etching technique or other suitable techniques. Portions of the top copper foil 50, the second metallic layer 54 and the top third metallic layer 56 that are covered by the top photoresist layer 57 remain to form a first upper circuit layer 34. Meanwhile, portions of the bottom copper foil 52, the second metallic layer 54 and the bottom third metallic layer 56 a that are not covered by the bottom photoresist layer 57 a are removed by an etching technique or other suitable techniques. Portions of the bottom copper foil 52, the second metallic layer 54 and the bottom third metallic layer 56 a that are covered by the bottom photoresist layer 57 a remain to form a first lower circuit layer 34 a. Meanwhile, portions of the second metallic layer 54 and the insulation material 392 that are disposed in the through hole 373 form an interconnection via 39. The interconnection via 39 electrically connects the first upper circuit layer 34 and the first lower circuit layer 34 a.
  • Referring to FIG. 18, the top photoresist layer 57 and the bottom photoresist layer 57 a are removed by a stripping technique or other suitable techniques.
  • Referring to FIG. 19, a first upper dielectric layer 30 is formed or disposed on the top surface 371 of the core portion 37 to cover the top surface 371 of the core portion 37 and the first upper circuit layer 34 by a lamination technique or other suitable techniques. Meanwhile, a first lower dielectric layer 30 a is formed or disposed on the bottom surface 372 of the core portion 37 to cover the bottom surface 372 of the core portion 37 and the first lower circuit layer 34 a by a lamination technique or other suitable techniques.
  • Referring to FIG. 20, at least one through hole 303 is formed to extend through the first upper dielectric layer 30 to expose a portion of the first upper circuit layer 34 by a drilling technique or other suitable techniques. Meanwhile, at least one through hole 303 a is formed to extend through the first lower dielectric layer 30 a to expose a portion of the first lower circuit layer 34 a by a drilling technique or other suitable techniques.
  • Referring to FIG. 21, a top metallic layer 58 is formed on the first upper dielectric layer 30 and in the through hole 303 to form an upper interconnection via 35 by a plating technique or other suitable techniques. Meanwhile, a bottom metallic layer 60 is formed on the first lower dielectric layer 30 a and in the through hole 303 a to form a lower interconnection via 35 a by a plating technique or other suitable techniques.
  • Referring to FIG. 22, a top photoresist layer 59 is formed or disposed on the top metallic layer 58, and a bottom photoresist layer 59 a is formed or disposed on the bottom metallic layer 60. Then, the photoresist layers 59, 59 a are patterned by exposure and development.
  • Referring to FIG. 23, portions of the top metallic layer 58 that are not covered by the top photoresist layer 59 are removed by an etching technique or other suitable techniques. Portions of the top metallic layer 58 that are covered by the top photoresist layer 59 remain to form a second upper circuit layer 38. Meanwhile, portions of the bottom metallic layer 60 that are not covered by the bottom photoresist layer 59 a are removed by an etching technique or other suitable techniques. Portions of the bottom metallic layer 60 that are covered by the bottom photoresist layer 59 a remain to form a second lower circuit layer 38 a.
  • Referring to FIG. 24, the top photoresist layer 59 and the bottom photoresist layer 59 a are removed by a stripping technique or other suitable techniques.
  • Referring to FIG. 25, a second upper dielectric layer 36 is formed or disposed on the top surface 301 of the first upper dielectric layer 30 to cover the top surface 301 of the first upper dielectric layer 30 and the second upper circuit layer 38 by a lamination technique or other suitable techniques. Meanwhile, a second lower dielectric layer 36 a is formed or disposed on the bottom surface 302 a of the first lower dielectric layer 30 a to cover the bottom surface 302 a of the first lower dielectric layer 30 a and the second lower circuit layer 38 a by a lamination technique or other suitable techniques.
  • Referring to FIG. 26, at least one through hole 363 is formed to extend through the second upper dielectric layer 36 to expose a portion of the second upper circuit layer 38 by a drilling technique or other suitable techniques. Meanwhile, at least one through hole 363 a is formed to extend through the second lower dielectric layer 36 a to expose a portion of the second lower circuit layer 38 a by a drilling technique or other suitable techniques.
  • Referring to FIG. 27, a top metallic layer 62 is formed on the second upper dielectric layer 36 and in the through hole 363 to form an upper interconnection via 35 by a plating technique or other suitable techniques. Meanwhile, a bottom metallic layer 64 is formed on the second lower dielectric layer 36 a and in the through hole 363 a to form a lower interconnection via 35 a by a plating technique or other suitable techniques.
  • Referring to FIG. 28, a top photoresist layer 63 is formed or disposed on the top metallic layer 62, and a bottom photoresist layer 63 a is formed or disposed on the bottom metallic layer 64. Then, the photoresist layers 63, 63 a are patterned by exposure and development.
  • Referring to FIG. 29, portions of the top metallic layer 62 that are not covered by the top photoresist layer 63 are removed by an etching technique or other suitable techniques. Portions of the top metallic layer 62 that are covered by the top photoresist layer 63 remain to form a second upper circuit layer 38′. Meanwhile, portions of the bottom metallic layer 64 that are not covered by the bottom photoresist layer 63 a are removed by an etching technique or other suitable techniques. Portions of the bottom metallic layer 64 that are covered by the bottom photoresist layer 63 a remain to form a second lower circuit layer 38 a′.
  • Referring to FIG. 30, the top photoresist layer 63 and the bottom photoresist layer 63 a are removed by a stripping technique or other suitable techniques. Meanwhile, the lower substrate 3 with at least one lower conductive structure 3 a is formed.
  • Referring to FIG. 30 and FIG. 31, wherein FIG. 31 illustrates a perspective view of the lower substrate 3 of FIG. 30. The lower substrate 3 includes at least one lower conductive structure 3 a. For example, the lower substrate 3 may include a plurality of lower conductive structures 3 a arranged in an array. The lower substrate 3 includes a plurality of strip areas 3′. Then, an electrical property (such as open circuit/short circuit) of the lower substrate 3 (e.g., the lower conductive structures 3 a of the strip areas 3′) is tested.
  • Referring to FIG. 32 through FIG. 44, a plurality of upper strips 2 are provided. The upper strips 2 are manufactured as follows. Referring to FIG. 32, a carrier 65 is provided. The carrier 65 may be a glass carrier, and may be in a wafer type or a panel type.
  • Referring to FIG. 33, a release layer 66 is coated on a bottom surface of the carrier 65.
  • Referring to FIG. 34, a conductive layer 67 (e.g., a seed layer) is formed or disposed on the release layer 66 by a physical vapor deposition (PVD) technique or other suitable techniques.
  • Referring to FIG. 35, a second dielectric layer 26 is formed on the conductive layer 67 by a coating technique or other suitable techniques.
  • Referring to FIG. 36, at least one through hole 264 is formed to extend through the second dielectric layer 26 to expose a portion of the conductive layer 67 by an exposure and development technique or other suitable techniques.
  • Referring to FIG. 37, a seed layer 68 is formed on a bottom surface 262 of the second dielectric layer 26 and in the through hole 264 by a PVD technique or other suitable techniques.
  • Referring to FIG. 38, a photoresist layer 69 is formed on the seed layer 68. Then, the photoresist layer 69 is patterned to expose portions of the seed layer 68 by an exposure and development technique or other suitable techniques. The photoresist layer 69 defines a plurality of openings 691. At least one opening 691 of the photoresist layer 69 corresponds to, and is aligned with, the through hole 264 of the second dielectric layer 26.
  • Referring to FIG. 39, a conductive material 70 (e.g., a metallic material) is disposed in the openings 691 of the photoresist layer 69 and on the seed layer 68 by a plating technique or other suitable techniques.
  • Referring to FIG. 40, the photoresist layer 69 is removed by a stripping technique or other suitable techniques.
  • Referring to FIG. 41, portions of the seed layer 68 that are not covered by the conductive material 70 are removed by an etching technique or other suitable techniques. Meanwhile, a circuit layer 24 and at least one inner via 25 are formed. The circuit layer 24 may be a fan-out circuit layer or an RDL, and an L/S of the circuit layer 24 may be less than or equal to about 2 μm/about 2 μm, or less than or equal to about 1.8 μm/about 1.8 μm. The inner via 25 is disposed in the through hole 264 of the second dielectric layer 26. In some embodiments, the inner via 25 tapers upwardly.
  • Referring to FIG. 42, a plurality of first dielectric layers 20 and a plurality of circuit layers 24 are formed by repeating the stages of FIG. 35 to FIG. 41. In some embodiments, each circuit layer 24 is embedded in the corresponding first dielectric layer 20, and a top surface 241 of the circuit layer 24 may be substantially coplanar with a top surface 201 of the first dielectric layer 20. Meanwhile, a conductive structure 2′ is formed. Then, an electrical property (such as open circuit/short circuit) of the conductive structure 2′ is tested. It is noted that the conductive structure 2′ may be in a wafer type or a panel type.
  • Referring to FIG. 43 and FIG. 44, wherein FIG. 44 illustrates perspective views of the upper strips 2 of FIG. 43. The conductive structure 2′ and the carrier 65 are cut to form a plurality of upper strips 2 with a plurality of carrier strips 65 a. Each of the upper strips 2 includes at least one upper conductive structure 2 a. For example, each of the upper strips 2 may include a plurality of upper conductive structures 2 a arranged in a row. It is noted that the upper strip 2 is in a strip type.
  • Referring to FIG. 45, an adhesive layer 12 is formed or applied on the top surface 31 of the lower substrate 3. A material of the adhesive layer 12 may include an insulating film, such as ABF. In some embodiments, the lower substrate 3 may have a plurality of cutting lines 87.
  • Referring to FIG. 46, the upper strips 2 and the carrier strips 65 a are attached to the strip areas 3′ of the lower substrate 3 side by side through the adhesive layer 12. The upper strips 2 face the lower substrate 3. A position of the upper conductive structure 2 a of the upper strip 2 and the carrier strip 65 a corresponds to a position of the lower conductive structure 3 a of the lower substrate 3. That is, the upper conductive structure 2 a is disposed right above the lower conductive structure 3 a. In some embodiments, known good upper strip 2′ is selectively attached to known good strip area 3′ of the lower substrate 3. For example, a desired yield of the wiring structure 1 a (FIG. 5) may be set to be 80%. That is, (the yield of the upper strip 2)×(the yield of the strip area 3′ of the lower substrate 3) is set to be greater than or equal to 80%. If a yield of the upper strip 2 is less than a predetermined yield such as 80% (which is specified as bad or unqualified component), then, the bad (or unqualified) upper strip 2 is discarded. If a yield of the upper strip 2 is greater than or equal to the predetermined yield such as 80% (which is specified as known good or qualified component), then the known good upper strip 2 can be used. In addition, if a yield of the strip area 3′ of the lower substrate 3 is less than a predetermined yield such as 80% (which is specified as bad or unqualified component), then the bad (or unqualified) strip area 3′ is marked and will not be bonded with any upper strip 2. If a yield of the strip area 3′ of the lower substrate 3 is greater than or equal to the predetermined yield such as 80% (which is specified as known good component or qualified component), then the known good upper strip 2 can be bonded to the known good strip area 3′ of the lower substrate 3. It is noted that the upper strip 2 having a yield of 80% will not be bonded to the strip area 3′ of the lower substrate 3 having a yield of 80%, since the resultant yield of the wiring structure 1 a (FIG. 5) is 64%, which is lower than the desired yield of 80%. The upper strip 2 having a yield of 80% can be bonded to the strip area 3′ of the lower substrate 3 having a yield of 100%; thus, the resultant yield of the wiring structure 1 a (FIG. 5) can be 80%. In addition, an upper strip 2 having a yield of 90% can be bonded to the strip area 3′ of the lower substrate 3 having a yield of greater than 90%, since the resultant yield of the wiring structure 1 a (FIG. 5) can be greater than 80%.
  • In addition, the relative positions of the upper strips 2 are separated and will not influence each other. In some embodiments, if one or some of the upper strips 2 may be shifted with respect to a predetermined position of the lower substrate 3, the other upper strips 2 still can be disposed on a predetermined position of the lower substrate 3.
  • Then, the adhesive layer 12 is cured to form an intermediate layer 12.
  • Referring to FIG. 47, the carrier strips 65 a, the release layer 66 and the conductive layer 67 are removed so as to expose a portion of the inner via 25.
  • Referring to FIG. 48, at least one through hole 23 is formed to extend through at least a portion of the upper conductive structure 2 and the intermediate layer 12 by drilling (such as laser drilling) to exposes a circuit layer (e.g., second upper circuit layer 38′) of the lower conductive structure 3. The through hole 23 may include a through hole 263 of the second dielectric layer 26, a plurality of through holes 203 of the first dielectric layers 20 and a through hole 123 of the intermediate layer 12. In some embodiments, the through hole 23 extends through the bottommost first circuit layer 24 of the upper conductive structure 2 and terminates at or on a topmost circuit layer (e.g., the second upper circuit layer 38′) of the lower conductive structure 3. That is, the through hole 23 does not extend through the topmost circuit layer (e.g., the second upper circuit layer 38′) of the lower conductive structure 3. The through hole 23 may expose a portion of the topmost circuit layer (e.g., the top surface of the second upper circuit layer 38′) of the lower conductive structure 3. As shown in FIG. 48, the through hole 23 tapers downwardly; that is, a size of a top portion of the through hole 23 is greater than a size of a bottom portion of the through hole 23. In addition, an inner surface 1231 of the through hole 123 of the intermediate layer 12 is coplanar with or aligned with inner surfaces 2031 of the through holes 203 of the first dielectric layers 20 and an inner surface 2631 of the through hole 263 of the second dielectric layer 26.
  • Referring to FIG. 49, a metallic layer 72 is formed on the surface 21 of the upper conductive structure 2 and in the through hole 23 to form at least one upper through via 14 in the through hole 23 by a plating technique or other suitable techniques. Thus, the upper conductive structure 2 a of the upper strip 2 is electrically connected to the lower conductive structure 3 a of the lower substrate 3 through the upper through via 14.
  • Referring to FIG. 50, a top photoresist layer 73 is formed or disposed on the metallic layer 72, and a bottom photoresist layer 73 a is formed or disposed on the bottom surface 32 of the lower conductive structure 3. Then, the top photoresist layer 73 is patterned by an exposure and development technique or other suitable techniques.
  • Referring to FIG. 51, portions of the metallic layer 72 that are not covered by the top photoresist layer 73 are removed by an etching technique or other suitable techniques. Portions of the metallic layer 72 that are covered by the top photoresist layer 73 remain to form a second circuit layer 28. Then, the top photoresist layer 73 and the bottom photoresist layer 73 a are removed by a stripping technique or other suitable techniques, so as to obtain the wiring structure 1 of FIG. 1 to FIG. 4.
  • In some embodiments, a singulation process is conducted to the lower conductive structure 3 and the intermediate layer 12 along the cutting lines 87 to obtain a plurality of wiring structure 1 a of FIG. 5.
  • FIG. 52 through FIG. 59 illustrate a method for manufacturing a wiring structure according to some embodiments of the present disclosure. In some embodiments, the method is for manufacturing the wiring structure 1 c shown in FIG. 7. The initial stages of the illustrated process are the same as, or similar to, the stages illustrated in FIG. 11 to FIG. 31. FIG. 52 depicts a stage subsequent to that depicted in FIG. 31.
  • Referring to FIG. 52, a top view of the lower substrate 3 is illustrated. After a testing process, the lower conductive structures 3 a that pass the testing are marked as known good die units or qualified die units. Meanwhile, the lower conductive structures 3 a′ that fail to pass the testing are marked as known bad die units or unqualified die units.
  • Referring to FIG. 53, the known good lower conductive structures 3 a are singulated and picked up from the lower substrate 3 to form a plurality of openings 84 in the lower substrate 3. In addition, the known bad lower conductive structures 3 a′ remain in the lower substrate 3, and may be discarded.
  • Referring to FIG. 54, the known good lower conductive structures 3 a are selectively constituted and rearranged is an array. Then, a lower encapsulant 80 (e.g., molding compound) is formed to encapsulate the known good lower conductive structures 3 a to form a lower module 86.
  • The following stages of the illustrated process are the same as, or similar to, the stages illustrated in FIG. 32 to FIG. 42. FIG. 55 depicts a stage subsequent to that depicted in FIG. 42. Referring to FIG. 55, the conductive structure 2′ and the carrier 65 of FIG. 42 are cut to form a plurality of upper conductive structures 2 a. It is noted that each of the upper conductive structures 2 a is a die unit.
  • Referring to FIG. 56, FIG. 57 and FIG. 58, wherein FIG. 57 illustrates a perspective view of FIG. 56, and FIG. 58 illustrates a cross-sectional view a portion of FIG. 56. The upper conductive structures 2 a and the carrier 65 are attached to the lower module 86 through an adhesive layer 12. The upper conductive structures 2 a face the lower module 86. Then, the adhesive layer 12 is cured to form an intermediate layer 12. Then, the carrier strips 65, the release layer 66 and the conductive layer 67 are removed so as to expose a portion of the inner via 25. As shown in FIG. 56 and FIG. 58, the lower module 86 may include a plurality of cutting lines 87 crossed with each other.
  • Referring to FIG. 59, at least one upper through via 14 is formed to extend through the upper conductive structure 2 a and the intermediate layer 12. Thus, the upper conductive structures 2 a are electrically connected to the lower conductive structures 3 a of the lower module 86 through the upper through via 14.
  • Then, a singulation process is conducted to singulate the lower module 86 along the cutting lines 87 to form a plurality of wiring structures 1 c of FIG. 7.
  • FIG. 60 through FIG. 65 illustrate a method for manufacturing a wiring structure according to some embodiments of the present disclosure. In some embodiments, the method is for manufacturing the wiring structure 1 e shown in FIG. 9. The initial stages of the illustrated process are the same as, or similar to, the stages illustrated in FIG. 11 to FIG. 31, FIG. 52 to FIG. 54, and FIG. 32 to FIG. 42. FIG. 60 depicts a stage subsequent to that depicted in FIG. 42.
  • Referring to FIG. 60, a top view of the conductive structure 2′ is illustrated. After a testing process, the upper conductive structures 2 a that pass the testing are marked as known good die units or qualified die units. Meanwhile, the upper conductive structures 2 a′ that fail to pass the testing are marked as known bad die units or unqualified die units.
  • Referring to FIG. 61, the known good upper conductive structures 2 a are singulated and picked up from the conductive structure 2′ to form a plurality of openings 88 in the conductive structure 2′. In addition, the known bad upper conductive structures 2 a′ remain in the conductive structure 2′, and may be discarded.
  • Referring to FIG. 62, the known good upper conductive structures 2 a are selectively constituted and rearranged is an array. Then, an upper encapsulant 82 (e.g., molding compound) is formed to encapsulate the known good upper conductive structures 2 a to form an upper module 90.
  • Referring to FIG. 63 and FIG. 64, wherein FIG. 64 illustrates a cross-sectional view of a portion of FIG. 63. The upper module 90 is attached to the lower module 86 through an adhesive layer 12. Thus, the known good upper conductive structures 2 a are attached to the known good lower conductive structures 3 a respectively. Then, the adhesive layer 12 is cured to form an intermediate layer 12.
  • Referring to FIG. 65, at least one upper through via 14 is formed to extend through the upper conductive structure 2 a and the intermediate layer 12. Thus, the upper conductive structures 2 a of the upper module 90 are electrically connected to the lower conductive structures 3 a of the lower module 86 through the upper through via 14.
  • Then, a singulation process is conducted to singulate the lower module 86, the intermediate layer 12 and the upper module 90 along the cutting lines to form a plurality of wiring structures 1 e of FIG. 9.
  • Spatial descriptions, such as “above,” “below,” “up,” “left,” “right,” “down,” “top,” “bottom,” “vertical,” “horizontal,” “side,” “higher,” “lower,” “upper,” “over,” “under,” and so forth, are indicated with respect to the orientation shown in the figures unless otherwise specified. It should be understood that the spatial descriptions used herein are for purposes of illustration only, and that practical implementations of the structures described herein can be spatially arranged in any orientation or manner, provided that the merits of embodiments of this disclosure are not deviated from by such an arrangement.
  • As used herein, the terms “approximately,” “substantially,” “substantial” and “about” are used to describe and account for small variations. When used in conjunction with an event or circumstance, the terms can refer to instances in which the event or circumstance occurs precisely as well as instances in which the event or circumstance occurs to a close approximation. For example, when used in conjunction with a numerical value, the terms can refer to a range of variation less than or equal to ±10% of that numerical value, such as less than or equal to ±5%, less than or equal to ±4%, less than or equal to ±3%, less than or equal to ±2%, less than or equal to ±1%, less than or equal to ±0.5%, less than or equal to ±0.1%, or less than or equal to ±0.05%. For example, a first numerical value can be deemed to be “substantially” the same or equal to a second numerical value if the first numerical value is within a range of variation of less than or equal to ±10% of the second numerical value, such as less than or equal to ±5%, less than or equal to ±4%, less than or equal to ±3%, less than or equal to ±2%, less than or equal to ±1%, less than or equal to ±0.5%, less than or equal to ±0.1%, or less than or equal to ±0.05%. For example, “substantially” perpendicular can refer to a range of angular variation relative to 90° that is less than or equal to ±10°, such as less than or equal to ±5°, less than or equal to ±4°, less than or equal to ±3°, less than or equal to ±2°, less than or equal to ±1°, less than or equal to ±0.5°, less than or equal to ±0.1°, or less than or equal to ±0.05°.
  • Two surfaces can be deemed to be coplanar or substantially coplanar if a displacement between the two surfaces is no greater than 5 μm, no greater than 2 μm, no greater than 1 μm, or no greater than 0.5 μm. A surface can be deemed to be substantially flat if a displacement between a highest point and a lowest point of the surface is no greater than 5 μm, no greater than 2 μm, no greater than 1 μm, or no greater than 0.5 μm.
  • As used herein, the singular terms “a,” “an,” and “the” may include plural referents unless the context clearly dictates otherwise.
  • As used herein, the terms “conductive,” “electrically conductive” and “electrical conductivity” refer to an ability to transport an electric current. Electrically conductive materials typically indicate those materials that exhibit little or no opposition to the flow of an electric current. One measure of electrical conductivity is Siemens per meter (S/m). Typically, an electrically conductive material is one having a conductivity greater than approximately 104 S/m, such as at least 105 S/m or at least 106 S/m. The electrical conductivity of a material can sometimes vary with temperature. Unless otherwise specified, the electrical conductivity of a material is measured at room temperature.
  • Additionally, amounts, ratios, and other numerical values are sometimes presented herein in a range format. It is to be understood that such range format is used for convenience and brevity and should be understood flexibly to include numerical values explicitly specified as limits of a range, but also to include all individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly specified.
  • While the present disclosure has been described and illustrated with reference to specific embodiments thereof, these descriptions and illustrations are not limiting. It should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the present disclosure as defined by the appended claims. The illustrations may not be necessarily drawn to scale. There may be distinctions between the artistic renditions in the present disclosure and the actual apparatus due to manufacturing processes and tolerances. There may be other embodiments of the present disclosure which are not specifically illustrated. The specification and drawings are to be regarded as illustrative rather than restrictive. Modifications may be made to adapt a particular situation, material, composition of matter, method, or process to the objective, spirit and scope of the present disclosure. All such modifications are intended to be within the scope of the claims appended hereto. While the methods disclosed herein have been described with reference to particular operations performed in a particular order, it will be understood that these operations may be combined, sub-divided, or re-ordered to form an equivalent method without departing from the teachings of the present disclosure. Accordingly, unless specifically indicated herein, the order and grouping of the operations are not limitations of the present disclosure.

Claims (30)

1. A wiring structure, comprising:
an upper conductive structure including at least one upper dielectric layer and at least one upper circuit layer in contact with the upper dielectric layer;
a lower conductive structure including at least one lower dielectric layer and at least one lower circuit layer in contact with the lower dielectric layer;
a lower encapsulant surrounding a lateral peripheral surface of the lower conductive structure; and
an intermediate layer disposed between the upper conductive structure and the lower conductive structure and bonding the upper conductive structure and the lower conductive structure together, wherein the upper conductive structure is electrically connected to the lower conductive structure,
wherein a lateral peripheral surface of the intermediate layer is substantially coplanar with a lateral peripheral surface of the lower encapsulant.
2. The wiring structure of claim 1, wherein a lateral peripheral surface of the upper conductive structure is inwardly recessed from the lateral peripheral surface of the lower encapsulant.
3. The wiring structure of claim 1, wherein a lateral peripheral surface of the upper conductive structure is substantially coplanar with a lateral peripheral surface of the lower conductive structure.
4. The wiring structure of claim 1, wherein a lateral peripheral surface of the upper conductive structure is inwardly recessed from a lateral peripheral surface of the lower conductive structure.
5. The wiring structure of claim 1, wherein a portion of the intermediate layer covers a top surface of the lower encapsulant.
6. The wiring structure of claim 1, further comprising an upper encapsulant surrounding a lateral peripheral surface of the upper conductive structure.
7. The wiring structure of claim 6, wherein a lateral peripheral surface of the upper encapsulant is substantially coplanar with the lateral peripheral surface of the lower encapsulant.
8. The wiring structure of claim 6, wherein the lateral peripheral surface of the upper conductive structure is substantially coplanar with a lateral peripheral surface of the lower conductive structure.
9. The wiring structure of claim 6, wherein the lateral peripheral surface of the upper conductive structure is inwardly recessed from a lateral peripheral surface of the lower conductive structure.
10. The wiring structure of claim 1, wherein a line space of the lower circuit layer of the lower conductive structure is greater than a line space of the upper circuit layer of the upper conductive structure.
11. A method for manufacturing a wiring structure, comprising:
(a) providing a lower substrate including at least one lower conductive structure, wherein the lower conductive structure includes at least one dielectric layer and at least one circuit layer in contact with the dielectric layer;
(b) providing a plurality of upper strips, wherein each of the upper strips includes at least one upper conductive structure, and the upper conductive structure includes at least one dielectric layer and at least one circuit layer in contact with the dielectric layer;
(c) attaching the upper strips to the lower substrate side by side, wherein a position of the upper conductive structure of the upper strip corresponds to a position of the lower conductive structure of the lower substrate;
(d) electrically connecting the upper conductive structure of the upper strip and the lower conductive structure of the lower substrate; and
(e) conducting a singulation process to form a plurality of wiring structures.
12. The method of claim 11, wherein (b) comprises:
(b1) forming a conductive structure on a carrier; and
(b2) cutting the conductive structure and the carrier to form the upper strips with a plurality of carrier strips;
wherein in (c), the upper strips and the carrier strips are attached to the lower substrate, wherein the upper strips face the lower substrate;
wherein after (c), the method further comprises:
(c1) removing the carrier strips.
13. The method of claim 11, wherein after (a), the method further comprises:
(a1) testing an electrical property of the lower conductive structure of the lower substrate; and
wherein after (b), the method further comprises:
(b1) testing an electrical property of the upper conductive structure of the upper strip.
14. The method of claim 11, wherein in (c), the upper strips are attached to the lower substrate through an adhesive layer.
15. The method of claim 11, wherein (d) includes:
(d1) forming at least one through hole to extend through the upper conductive structure of the upper strip by drilling; and
(d2) forming at least one upper through via in the through hole.
16. A method for manufacturing a wiring structure, comprising:
(a) providing a plurality of lower conductive structures, wherein each of the lower conductive structures includes at least one dielectric layer and at least one circuit layer in contact with the dielectric layer;
(b) forming a lower encapsulant to encapsulate a plurality of known good lower conductive structures to form a lower module;
(c) providing a plurality of upper conductive structures, wherein each of the upper conductive structures includes at least one dielectric layer and at least one circuit layer in contact with the dielectric layer of the upper conductive structure;
(d) attaching the upper conductive structures to the known good lower conductive structures of the lower module respectively;
(e) electrically connecting the upper conductive structures and the known good lower conductive structures of the lower module; and
(f) conducting a singulation process to form a plurality of wiring structures.
17. The method of claim 16, wherein (c) comprises:
(c1) forming a conductive structure on a carrier; and
(c2) cutting the conductive structure and the carrier to form the plurality of upper conductive structures;
wherein in (d), the upper conductive structures and the carrier are attached to the lower module, wherein the upper conductive structures face the lower module;
wherein after (d), the method further comprises:
(d1) removing the carrier.
18. The method of claim 16, wherein after (c), the method further comprises:
(c1) forming an upper encapsulant to encapsulate a plurality of known good upper conductive structures to form an upper module.
19. The method of claim 18, wherein (d) comprises:
(d1) attaching the upper module to the lower module.
20. The method of claim 16, wherein in (d), the upper conductive structures are attached to the known good lower conductive structures of the lower module through an adhesive layer.
21. A wiring structure, comprising:
a high-density conductive structure including at least one dielectric layer and at least one circuit layer in contact with the dielectric layer;
a low-density conductive structure bonded to and electrically connected to the high-density conductive structure, and including at least one dielectric layer and at least one circuit layer in contact with the dielectric layer;
a lower encapsulant surrounding a lateral peripheral surface of the low-density conductive structure; and
an intermediate layer disposed between the high-density conductive structure and the low-density conductive structure and bonding the high-density conductive structure and the low-density conductive structure together, wherein a lateral peripheral surface of the intermediate layer is substantially coplanar with a lateral peripheral surface of the lower encapsulant.
22. The wiring structure of claim 21, wherein the low-density conductive structure further includes a core portion, the at least one dielectric layer and the at least one circuit layer of the low-density conductive structure are disposed adjacent to a surface of the core portion.
23. The wiring structure of claim 21, wherein a line space of the circuit layer of the low-density conductive structure is greater than a line space of the circuit layer of the high-density conductive structure.
24. The wiring structure of claim 21, further comprising at least one upper through via extending through at least a portion of the high-density conductive structure, and electrically connected to the circuit layer of the low-density conductive structure.
25. A wiring structure, comprising:
an upper conductive structure including at least one upper dielectric layer and at least one upper circuit layer in contact with the upper dielectric layer;
a lower conductive structure electrically connected to the upper conductive structure, and including at least one lower dielectric layer and at least one lower circuit layer in contact with the lower dielectric layer;
an intermediate layer disposed between the upper conductive structure and the lower conductive structure and bonding the upper conductive structure and the lower conductive structure together; and
a lower encapsulant covering a lateral peripheral surface of the lower conductive structure and being in contact with a portion of the intermediate layer,
wherein a lateral peripheral surface of the intermediate layer is substantially coplanar with a lateral peripheral surface of the lower encapsulant.
26. The wiring structure of claim 25, wherein a lateral peripheral surface of the upper conductive structure is inwardly recessed from the lateral peripheral surface of the lower encapsulant.
27. The wiring structure of claim 25, further comprising an upper encapsulant surrounding a lateral peripheral surface of the upper conductive structure.
28. The wiring structure of claim 25, wherein the lower conductive structure further includes a core portion, the at least one lower dielectric layer and the at least one lower circuit layer of the lower conductive structure are disposed adjacent to a surface of the core portion.
29. The wiring structure of claim 25, wherein a line space of the lower circuit layer of the lower conductive structure is greater than a line space of the upper circuit layer of the upper conductive structure.
30. The wiring structure of claim 25, further comprising at least one upper through via extending through at least a portion of the upper conductive structure and the intermediate layer, and electrically connected to the lower circuit layer of the lower conductive structure.
US16/410,872 2019-05-13 2019-05-13 Wiring structure and method for manufacturing the same Active US10861780B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/410,872 US10861780B1 (en) 2019-05-13 2019-05-13 Wiring structure and method for manufacturing the same
CN202010343046.9A CN111933613A (en) 2019-05-13 2020-04-27 Wiring structure and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16/410,872 US10861780B1 (en) 2019-05-13 2019-05-13 Wiring structure and method for manufacturing the same

Publications (2)

Publication Number Publication Date
US20200365500A1 true US20200365500A1 (en) 2020-11-19
US10861780B1 US10861780B1 (en) 2020-12-08

Family

ID=73245347

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/410,872 Active US10861780B1 (en) 2019-05-13 2019-05-13 Wiring structure and method for manufacturing the same

Country Status (2)

Country Link
US (1) US10861780B1 (en)
CN (1) CN111933613A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220217841A1 (en) * 2021-01-07 2022-07-07 Unimicron Technology Corp. Circuit board and manufacture method of the circuit board

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130175699A1 (en) * 2012-01-09 2013-07-11 Invensas Corporation Stackable microelectronic package structures

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7167373B1 (en) * 2004-03-08 2007-01-23 Virtium Technology, Inc. Stacking multiple devices using flexible circuit
JP4431747B2 (en) * 2004-10-22 2010-03-17 富士通株式会社 Manufacturing method of semiconductor device
JP5296590B2 (en) 2009-03-30 2013-09-25 新光電気工業株式会社 Manufacturing method of semiconductor package
KR101798571B1 (en) * 2012-02-16 2017-11-16 삼성전자주식회사 Semiconductor Packages
JP6158676B2 (en) * 2013-10-15 2017-07-05 新光電気工業株式会社 WIRING BOARD, SEMICONDUCTOR DEVICE, AND WIRING BOARD MANUFACTURING METHOD
US9935026B2 (en) * 2016-08-31 2018-04-03 Qorvo Us, Inc. Air-cavity package with dual signal-transition sides
US10217728B2 (en) * 2016-11-22 2019-02-26 Advanced Semiconductor Engineering, Inc. Semiconductor package and semiconductor process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130175699A1 (en) * 2012-01-09 2013-07-11 Invensas Corporation Stackable microelectronic package structures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220217841A1 (en) * 2021-01-07 2022-07-07 Unimicron Technology Corp. Circuit board and manufacture method of the circuit board
US11483925B2 (en) * 2021-01-07 2022-10-25 Unimicron Technology Corp. Circuit board and manufacture method of the circuit board

Also Published As

Publication number Publication date
US10861780B1 (en) 2020-12-08
CN111933613A (en) 2020-11-13

Similar Documents

Publication Publication Date Title
US11721634B2 (en) Conductive structure and wiring structure including the same
US10892213B2 (en) Wiring structure and method for manufacturing the same
US10748843B2 (en) Semiconductor substrate including embedded component and method of manufacturing the same
US11329007B2 (en) Wiring structure and method for manufacturing the same
US11398419B2 (en) Wiring structure and method for manufacturing the same
US20230011464A1 (en) Wiring structure and method for manufacturing the same
US20230386990A1 (en) Wiring structure and method for manufacturing the same
US10978417B2 (en) Wiring structure and method for manufacturing the same
US11101203B2 (en) Wiring structure comprising intermediate layer including a plurality of sub-layers
US10861780B1 (en) Wiring structure and method for manufacturing the same
US20200279804A1 (en) Wiring structure and method for manufacturing the same
US11062985B2 (en) Wiring structure having an intermediate layer between an upper conductive structure and conductive structure
US11217520B2 (en) Wiring structure, assembly structure and method for manufacturing the same
US11069605B2 (en) Wiring structure having low and high density stacked structures
US11532542B2 (en) Wiring structure and method for manufacturing the same
US11355426B2 (en) Wiring structure and method for manufacturing the same
US11257742B2 (en) Wiring structure and method for manufacturing the same
US11211316B1 (en) Wiring structure and method for manufacturing the same
US11139232B2 (en) Wiring structure and method for manufacturing the same
US11894293B2 (en) Circuit structure and electronic structure
US20220148954A1 (en) Wiring structure and method for manufacturing the same
CN114068475A (en) Fan-out type packaging structure

Legal Events

Date Code Title Description
AS Assignment

Owner name: ADVANCED SEMICONDUCTOR ENGINEERING, INC., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HUANG, WEN HUNG;REEL/FRAME:049163/0700

Effective date: 20190507

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE