US20200359573A1 - Apparatus and Method for Constrained Plant Cultivation - Google Patents

Apparatus and Method for Constrained Plant Cultivation Download PDF

Info

Publication number
US20200359573A1
US20200359573A1 US16/983,944 US202016983944A US2020359573A1 US 20200359573 A1 US20200359573 A1 US 20200359573A1 US 202016983944 A US202016983944 A US 202016983944A US 2020359573 A1 US2020359573 A1 US 2020359573A1
Authority
US
United States
Prior art keywords
plant
mesh
growth
vegetation
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/983,944
Inventor
Darryn Yost
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US16/983,944 priority Critical patent/US20200359573A1/en
Publication of US20200359573A1 publication Critical patent/US20200359573A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/249Lighting means
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/26Electric devices
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G13/00Protecting plants
    • A01G13/02Protective coverings for plants; Coverings for the ground; Devices for laying-out or removing coverings
    • A01G13/0206Canopies, i.e. devices providing a roof above the plants
    • A01G13/0212Canopies, i.e. devices providing a roof above the plants for individual plants, e.g. for plants in pots
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/08Devices for filling-up flower-pots or pots for seedlings; Devices for setting plants or seeds in pots
    • A01G9/088Handling or transferring pots
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/12Supports for plants; Trellis for strawberries or the like

Definitions

  • This invention relates to the field of horticulture or plant cultivation.
  • a flowering angiosperm life cycle has several phases, including the seedling germination and sprouting phase, the vegetation phase, and the reproduction or fruiting phase.
  • the cultivation of various parts of the plant leads to differing methods for optimizing growth, depending on what part of the plant is being harvested, such as the leaves, the flower, the fruit or the seeds.
  • the apparatus includes a mesh to constrain vertical growth of the cultivated plant and a mechanism for raising, lowering and rotating the plant or the constraining mesh with respect to the other.
  • the mesh is moved with respect to the plant during the vegetation phase of the plant and is immobile during the flowering phase of the plant.
  • the mesh/plant motion may be controlled by artificial light, timing, the detection of natural light or by analog based or digitized image analysis of the plant during its growth phases.
  • FIG. 1 shows an embodiment with the basic components of the system shown including the constraining mesh, plant container, base and motion mechanisms.
  • FIG. 2 shows a component diagram of an exemplary embodiment.
  • FIGS. 3A-D show perspective views of how the respective motion of the constraining mesh and plant container operate during phases of plant growth.
  • FIGS. 4A-D show side views of how the respective motion of the constraining mesh and multiple plant containers operate during phases of plant growth.
  • FIG. 5 shows a flow chart of an exemplary embodiment of the cultivation method.
  • FIG. 6 shows a top view of an embodiment with multiple individual plant containers under a single mesh.
  • Certain varieties of angiosperm including quinoa and amaranth, are harvested for vertical flowering portions of their anatomy.
  • Quinoa is known to be a “superfood” which is a complete protein and high in iron, fiber and potassium. It is an ideal food for cultivating in conditions with limited options.
  • Various embodiments disclosed provide advantages for cultivating plants such as quinoa with harvested vertical flowering, but also herbs which may be harvested for their leafy vegetation, such as basil or the mint family. As will be apparent, the invention can be implemented with numerous vegetation species.
  • angiosperms After germination and the seedling stage, angiosperms begin a period of vegetation to develop substantial surfaces of the plant (leaves) for energy production by photosynthesis.
  • plant vegetation is constrained, or trained to a maximum height and the vegetation is spread across an area much larger than during unconstrained growth. In various embodiments, this is accomplished by periodically moving a screen or mesh in a manner which drags any vegetation which is growing through the mesh underneath the mesh, constraining the growth height.
  • the mesh is defined to be a structure which is transparent or nearly transparent to light, allows vertical growth of plant sprouts or flowers and may restrict vegetation growth by movement of the plant or the structure.
  • the movement of the mesh may be linear, vertical or rotational with respect to the plant and plant's growth medium (soil or hydroponic).
  • soil or hydroponic By periodically dragging the vegetation back under the constraining mesh a “canopy” of vegetation is created which optimizes the energy production area while minimizing growth height.
  • the cultivation environment which may utilize artificial lighting may make effective use of this advantage such that multiple growing environments may be layered vertically in a confined space.
  • the automatic periodic mesh/plant movement may continue until harvesting, at which point the mesh is removed.
  • reproduction triggers are either identified or incorporated into the apparatus operation such that the vertical constraint is stopped during flowering and fruiting phases of the plant.
  • the timing of artificial lighting is used to trigger the plant's reproduction phase.
  • the constraint movement of the apparatus is stopped when at the same time the apparatus lighting timing is altered to trigger reproduction.
  • Lighting triggers for flowering are species dependent, but in certain species a schedule of 12 hours of illumination and 12 hours of darkness triggers the reproductive phase. This coincides with vernal or autumnal equinox in the northern hemisphere.
  • quinoa In natural environments, quinoa is typically planted in early spring, and is known for its slow growth during various growth periods. Germination happens in less than a week, with true leaves forming at about 3-4 weeks. Vegetative growth occurs for the 4-6 weeks with the reproductive period beginning in late summer. For quinoa, this is called florescence. Over the next 4-6 weeks, the plant reaches maturity and goes to seed by late fall.
  • manual operation of the system is initiated when the vegetation reaches a chosen level at which the vegetation stems are sufficiently developed to support horizontally trained growth. For various species, this may be from 15-24 inches.
  • the system begins periodic motion, either laterally or laterally and vertically. In exemplary applications, this motion occurs at selectable times and lateral/vertical distances. Modeled systems indicate that motion may be initiated for as infrequently as once per week or as frequently as once per day, depending on how quickly growth occurs in a particular environment. Empirical studies have determined that for various species, an optimal vegetation coverage is 2 ⁇ 3 of the area of the constraining mesh.
  • the reproduction phase may be triggered or manipulated by environmental conditions such as ambient temperature, air flow, water, or hours of lighting, among others. For various species, natural light that occurs near the summer solstice with long exposure time may trigger the reproduction phase.
  • the constraint motion of the system may be stopped manually when the onset of the reproduction phase is noted, or may be triggered by the sensors which detect the hours of daily illumination. For natural light settings, growth continues until the natural maturation of the plant, in the fall, when the seeds begin to dry.
  • angiosperms have been tested under artificial environment settings, including hydroponic or soiled based growth medium, artificially controlled nutrient delivery, and artificial lighting.
  • the following exemplary specifications have been shown to be effective.
  • Plant growth is constrained to 8′′-18′′ above the growth medium.
  • Mesh openings are 1′′ ⁇ 1′′ to 2′′ ⁇ 3′′.
  • the training or constraining motion of the mesh occurs once every 3-7 days and rotates the mesh 45-90 degrees and raises and lowers the mesh by 1-3′′ during the rotation.
  • the vegetation covers approximately 2 ⁇ 3 of the mesh area and reproductive growth is triggered by changing the artificial lighting to a 12 hour on/12 hour off schedule.
  • Training/constraining is stopped within 1-3 days of modifying the lighting schedule 6)
  • Plant may be harvested of the flowering or pre-flowering portions after another 6-12 weeks of growth.
  • FIG. 1 a basic embodiment is depicted 1 , which includes the plant container 9 , a light 2 , the constraining mesh 3 , a support mechanism 7 for raising and lowering the mesh 3 , a telescoping or screw driven portion 5 of the mesh support, a turntable 11 for rotating the container 9 and a motor 13 for driving the turntable, and a base 15 for the apparatus.
  • the apparatus operates to spread vegetation growth into a “canopy” during the vegetation phase, and to allow the vertical growth of a flower for harvesting during the reproductive phase.
  • FIG. 2 shows the basic components of certain embodiments of the system, which include a programmable system controller 31 , a lighting controller module 33 , a light 9 , a motion controlling module 35 , a rotational turntable motor 39 and powered mesh elevation or height motor 37 .
  • the lighting and mesh height and container rotation operate to cultivate a restricted plant height or “canopy” and operate to allow for vertical growth of the flowering portion during the reproductive phase.
  • FIG. 3A-D shows simplified perspective views of the apparatus and plants during different phases of operation of the apparatus and growth of the plants.
  • the apparatus for controlling motion of the mesh/container have been omitted.
  • FIG. 3A shows a simplified view of the container 9 , plant 21 and mesh 3 .
  • the sprout or tip 23 of the plant's vegetation is protruding through the mesh 3 .
  • the mesh 3 is periodically raised off the plant 21 by the apparatus mechanism, as is shown in FIG. 3B . In other embodiments the mesh is not raised completely free of the plant.
  • the time period between mesh motion operations is programmed according to the species being cultivated for vegetation growth.
  • the rotational speed, lift height, and the entire vegetation growth period may be programmed according to the cultivated species and empirical data.
  • the vegetation period may be indicated manually or may be determined by digital image processing, for example if a digital image is determined to have sufficient amount of green in the image area.
  • the mesh motion is stopped, to allow the vertical bloom of the flower bud, flower, or fruit 25 to protrude vertically through the mesh and be harvested as shown in FIG. 3D .
  • FIG. 4A-D shows simplified side views of the apparatus and plants during different phases of operation of the apparatus and growth of the plants.
  • multiple plant containers are depicted.
  • the apparatus for controlling motion of the mesh/containers has been omitted.
  • FIG. 4A shows a simplified view of the containers 9 , plant 21 , mesh 3 , and light 2 from the side.
  • the tip of a plant's vegetation or sprout 23 grows through the mesh 3 .
  • multiple plants are shown 21 A 21 B in separate containers.
  • multiple plants may be grown in a single container.
  • the mesh 3 is periodically raised off the plant by the apparatus mechanism, as is shown in FIG. 4B .
  • the vegetation daily time period and growth phase time periods are programmed according to the species being cultivated for vegetation growth.
  • the vegetation period may be indicated manually or may be determined by digital image processing, for example if a digital image is determined to have a sufficient amount of green in the image area.
  • the mesh 3 motion is stopped, to allow the vertical bloom 25 of the flower bud, flower, or fruit to protrude vertically through the mesh and be harvested as shown in FIG.
  • flowering portions 25 may sprout from a single location or from multiple locations on a single plant as shown in 4 D.
  • FIG. 5 shows a flow chart depicting operation of the system and apparatus.
  • the system begins operation by initiating all components 51 .
  • the vegetation growth phase 71 begins.
  • the constraining mesh remains motionless 55 .
  • vegetation growth begins to protrude through the constraining mesh.
  • the mesh may then be raised, sometimes above the vegetation 57 to release it from older growth and then lowered and rotated back down onto the vegetation 59 , dragging the vegetation back under the mesh.
  • the vegetation growth is considered complete 61 .
  • the short term growth cycle 71 is repeated to develop the vegetation canopy. Once vegetation is considered complete 63 , lighting daylight cycles are altered to mimic the natural lighting cycle that triggers the flowering or reproduction phase 63 . At this point motion of the constraining mesh is stopped 65 so that the flowering portion of the plant may be allowed to grow vertically unhindered by the movement of the mesh 67 . When the flower, fruit, grain or seeds reach the desired maturity, they may be harvested 69 .
  • FIG. 6 shows a top view of top view of an embodiment utilizing multiple plants 21 and multiple containers 9 .
  • 9 plants 21 and 9 containers 9 are shown under a single mesh 3 .
  • Various apparatus for moving plants with respect to the constraining mesh may be implemented as described above and below. Such apparatus may be configured for moving the mesh in rotation as well as lifting and lowering it in relation to the plants. Such apparatus may further be configured to cause the same relative movements by moving the plants. In addition, relative movements may be split between the moving the mesh and the plants. For example, rotation may be executed by rotating the mesh while lifting and lowering could be executed by lifting and lowering the plants, and this split movement may be reversed.
  • the constraining mesh is rotated instead of the container.
  • the constraining mesh is rotated and raised and lowered by a single central post, which may utilize an angular or pitched thread to perform both rotation and height changes simultaneously.
  • multiple plant containers may be used underneath the constraining mesh.
  • flowers, vegetables, leaves, herbs, grain, seeds or fruit may be the objective plant component to be harvested.
  • an annular cam track is used to raise and lower the constraining mesh or turntable according to the cam track geometry.
  • support structures are located under the mesh to support the plant stalks or vines from below as the plant vegetation is spread underneath or in proximity to the constraining mesh.
  • the mesh or turntable is moved manually, such as by hand crank.
  • the mesh opening may be rectangular, square, circular or other geometric shape and between 1 ⁇ 8′′ and 5 ′′ across.
  • routines and/or instructions that may be executed by the one or more processing units to implement embodiments of the invention, whether implemented as part of an operating system or a specific application, component, program, object, module, or sequence of operations executed by each processing unit, will be referred to herein as “program modules”, “computer program code” or simply “modules” or “program code.”
  • program modules may include routines, programs, objects, components, logic, data structures, and so on that perform particular tasks or implement particular abstract data types.
  • Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object-oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages.
  • each block in a flowchart, block diagram, or sequence diagram may represent a segment or portion of program code, which comprises one or more executable instructions for implementing the specified logical function(s) and/or act(s).
  • Program code may be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the blocks of the flowcharts, sequence diagrams, and/or block diagrams herein.
  • the functions noted in the blocks may occur in a different order than shown and described. For example, a pair of blocks described and shown as consecutively executed may be instead executed concurrently, or the two blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
  • Each block and combinations of blocks can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
  • the program code embodied in any of the applications described herein is capable of being individually or collectively distributed as a program product in a variety of different forms.
  • the program code may be distributed using a computer readable media, which may include computer readable storage media and communication media.
  • Computer readable storage media which is inherently non-transitory, may include volatile and non-volatile, and removable and non-removable tangible media implemented in any method or technology for storage of information, such as computer-readable instructions, data structures, program modules, or other data.
  • Computer readable storage media may further include RAM, ROM, erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other solid state memory technology, portable compact disc read-only memory (CD-ROM), or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store the desired information and which can be read by a computer.
  • Communication media may embody computer readable instructions, data structures or other program modules.
  • communication media may include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of any of the above may also be included within the scope of computer readable media.

Abstract

Method and system for cultivating angiosperms in a limited space in natural or artificial light by a dynamic growth constraint apparatus that limits vertical growth during the vegetation phase but allows vertical growth during the flowering phase, such that the flower or fruit may be optimally harvested. In various embodiments, the apparatus includes a mesh to constrain vertical growth of the cultivated plant and a mechanism for raising, lowering and rotating the plant or constraining mesh with respect to the other. In various embodiments, the mesh is moved with respect to the plant during the vegetation phase of the plant and immobile during the flowering phase of the plant. Plant phase and thus the mesh/plant motion may be controlled by artificial light timing, the detection of natural light, or by digitized image analysis of the plant during its growth phases.

Description

    RELATED APPLICATIONS
  • This application is a divisional of U.S. application Ser. No. 15/650,814 filed on Jul. 14, 2017 from which priority and benefit is claimed.
  • FIELD OF THE INVENTION
  • This invention relates to the field of horticulture or plant cultivation.
  • BACKGROUND
  • It has long been a goal to optimize plant growth in limited space. Various means and methods have been used with varying degrees of effectiveness.
  • A flowering angiosperm life cycle has several phases, including the seedling germination and sprouting phase, the vegetation phase, and the reproduction or fruiting phase. The cultivation of various parts of the plant leads to differing methods for optimizing growth, depending on what part of the plant is being harvested, such as the leaves, the flower, the fruit or the seeds.
  • SUMMARY
  • Disclosed are a method and system for cultivating angiosperms in a limited space by a dynamic growth constraint apparatus that limits vertical growth during the vegetation phase but allows vertical growth during the flowering phase, such that the flower or fruit may be optimally exposed to light without being self-shadowed by future plant vegetation and may be more conveniently harvested. In various embodiments, the apparatus includes a mesh to constrain vertical growth of the cultivated plant and a mechanism for raising, lowering and rotating the plant or the constraining mesh with respect to the other. In various embodiments, the mesh is moved with respect to the plant during the vegetation phase of the plant and is immobile during the flowering phase of the plant. Thus the mesh/plant motion may be controlled by artificial light, timing, the detection of natural light or by analog based or digitized image analysis of the plant during its growth phases.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows an embodiment with the basic components of the system shown including the constraining mesh, plant container, base and motion mechanisms.
  • FIG. 2 shows a component diagram of an exemplary embodiment.
  • FIGS. 3A-D show perspective views of how the respective motion of the constraining mesh and plant container operate during phases of plant growth.
  • FIGS. 4A-D show side views of how the respective motion of the constraining mesh and multiple plant containers operate during phases of plant growth.
  • FIG. 5 shows a flow chart of an exemplary embodiment of the cultivation method.
  • FIG. 6 shows a top view of an embodiment with multiple individual plant containers under a single mesh.
  • DETAILED DESCRIPTION
  • Certain varieties of angiosperm, including quinoa and amaranth, are harvested for vertical flowering portions of their anatomy. Quinoa is known to be a “superfood” which is a complete protein and high in iron, fiber and potassium. It is an ideal food for cultivating in conditions with limited options. Various embodiments disclosed provide advantages for cultivating plants such as quinoa with harvested vertical flowering, but also herbs which may be harvested for their leafy vegetation, such as basil or the mint family. As will be apparent, the invention can be implemented with numerous vegetation species.
  • After germination and the seedling stage, angiosperms begin a period of vegetation to develop substantial surfaces of the plant (leaves) for energy production by photosynthesis. In various embodiments, plant vegetation is constrained, or trained to a maximum height and the vegetation is spread across an area much larger than during unconstrained growth. In various embodiments, this is accomplished by periodically moving a screen or mesh in a manner which drags any vegetation which is growing through the mesh underneath the mesh, constraining the growth height. The mesh is defined to be a structure which is transparent or nearly transparent to light, allows vertical growth of plant sprouts or flowers and may restrict vegetation growth by movement of the plant or the structure. In various embodiments, the movement of the mesh may be linear, vertical or rotational with respect to the plant and plant's growth medium (soil or hydroponic). By periodically dragging the vegetation back under the constraining mesh a “canopy” of vegetation is created which optimizes the energy production area while minimizing growth height. In various embodiments, the cultivation environment, which may utilize artificial lighting may make effective use of this advantage such that multiple growing environments may be layered vertically in a confined space.
  • For embodiments which are directed to cultivating and harvesting plant leafy vegetation, the automatic periodic mesh/plant movement may continue until harvesting, at which point the mesh is removed.
  • For the embodiments which are utilized for cultivating and harvesting the flowering or fruiting portion of the plant, reproduction triggers are either identified or incorporated into the apparatus operation such that the vertical constraint is stopped during flowering and fruiting phases of the plant. For example, in various embodiments, after a period of vegetation growth, the timing of artificial lighting is used to trigger the plant's reproduction phase. In this example, the constraint movement of the apparatus is stopped when at the same time the apparatus lighting timing is altered to trigger reproduction. Lighting triggers for flowering are species dependent, but in certain species a schedule of 12 hours of illumination and 12 hours of darkness triggers the reproductive phase. This coincides with vernal or autumnal equinox in the northern hemisphere.
  • For the specific angiosperm mentioned above, namely quinoa, details of an exemplary embodiment are provided here. In natural environments, quinoa is typically planted in early spring, and is known for its slow growth during various growth periods. Germination happens in less than a week, with true leaves forming at about 3-4 weeks. Vegetative growth occurs for the 4-6 weeks with the reproductive period beginning in late summer. For quinoa, this is called florescence. Over the next 4-6 weeks, the plant reaches maturity and goes to seed by late fall. In various embodiments, when the disclosed system is utilized in a natural environment, manual operation of the system is initiated when the vegetation reaches a chosen level at which the vegetation stems are sufficiently developed to support horizontally trained growth. For various species, this may be from 15-24 inches. After the vegetation constraint mode is initiated, the system begins periodic motion, either laterally or laterally and vertically. In exemplary applications, this motion occurs at selectable times and lateral/vertical distances. Modeled systems indicate that motion may be initiated for as infrequently as once per week or as frequently as once per day, depending on how quickly growth occurs in a particular environment. Empirical studies have determined that for various species, an optimal vegetation coverage is ⅔ of the area of the constraining mesh. For various species, the reproduction phase may be triggered or manipulated by environmental conditions such as ambient temperature, air flow, water, or hours of lighting, among others. For various species, natural light that occurs near the summer solstice with long exposure time may trigger the reproduction phase. In various embodiments, the constraint motion of the system may be stopped manually when the onset of the reproduction phase is noted, or may be triggered by the sensors which detect the hours of daily illumination. For natural light settings, growth continues until the natural maturation of the plant, in the fall, when the seeds begin to dry.
  • Other species of angiosperms have been tested under artificial environment settings, including hydroponic or soiled based growth medium, artificially controlled nutrient delivery, and artificial lighting. For these plant species for which the early flower portion is harvested, the following exemplary specifications have been shown to be effective. 1) Plant growth is constrained to 8″-18″ above the growth medium. 2) Mesh openings are 1″×1″ to 2″×3″. 3) The training or constraining motion of the mesh occurs once every 3-7 days and rotates the mesh 45-90 degrees and raises and lowers the mesh by 1-3″ during the rotation. 4) After 2-4 weeks of vegetation growth and training, the vegetation covers approximately ⅔ of the mesh area and reproductive growth is triggered by changing the artificial lighting to a 12 hour on/12 hour off schedule. 5) Training/constraining is stopped within 1-3 days of modifying the lighting schedule 6) Plant may be harvested of the flowering or pre-flowering portions after another 6-12 weeks of growth.
  • In FIG. 1 a basic embodiment is depicted 1, which includes the plant container 9, a light 2, the constraining mesh 3, a support mechanism 7 for raising and lowering the mesh 3, a telescoping or screw driven portion 5 of the mesh support, a turntable 11 for rotating the container 9 and a motor 13 for driving the turntable, and a base 15 for the apparatus. In this embodiment and as will be shown in the diagrammatic drawings, the apparatus operates to spread vegetation growth into a “canopy” during the vegetation phase, and to allow the vertical growth of a flower for harvesting during the reproductive phase.
  • FIG. 2 shows the basic components of certain embodiments of the system, which include a programmable system controller 31, a lighting controller module 33, a light 9, a motion controlling module 35, a rotational turntable motor 39 and powered mesh elevation or height motor 37. In various embodiments, the lighting and mesh height and container rotation operate to cultivate a restricted plant height or “canopy” and operate to allow for vertical growth of the flowering portion during the reproductive phase.
  • FIG. 3A-D shows simplified perspective views of the apparatus and plants during different phases of operation of the apparatus and growth of the plants. In these drawings the apparatus for controlling motion of the mesh/container have been omitted. FIG. 3A shows a simplified view of the container 9, plant 21 and mesh 3. As shown, during this phase of growth, the sprout or tip 23 of the plant's vegetation is protruding through the mesh 3. In various embodiments, the mesh 3 is periodically raised off the plant 21 by the apparatus mechanism, as is shown in FIG. 3B. In other embodiments the mesh is not raised completely free of the plant. In various embodiments, as the mesh 3 is lowered back onto the plant vegetation as it is rotated, matting and pulling down the plant vegetation 21 to spread it and create the aforementioned “canopy” effect as shown in FIG. 3C. In various embodiments, the time period between mesh motion operations is programmed according to the species being cultivated for vegetation growth. Likewise, the rotational speed, lift height, and the entire vegetation growth period may be programmed according to the cultivated species and empirical data. In other embodiments, the vegetation period may be indicated manually or may be determined by digital image processing, for example if a digital image is determined to have sufficient amount of green in the image area. For those plants which are cultivated for their flowering or fruiting portions when the end of the primary vegetation growth is determined, the mesh motion is stopped, to allow the vertical bloom of the flower bud, flower, or fruit 25 to protrude vertically through the mesh and be harvested as shown in FIG. 3D.
  • FIG. 4A-D shows simplified side views of the apparatus and plants during different phases of operation of the apparatus and growth of the plants. In this embodiment, multiple plant containers are depicted. In these drawings the apparatus for controlling motion of the mesh/containers has been omitted. FIG. 4A shows a simplified view of the containers 9, plant 21, mesh 3, and light 2 from the side. As shown, during this phase of growth, the tip of a plant's vegetation or sprout 23 grows through the mesh 3. In this embodiment, multiple plants are shown 21 A 21B in separate containers. In various embodiments, multiple plants may be grown in a single container. In various embodiments, the mesh 3 is periodically raised off the plant by the apparatus mechanism, as is shown in FIG. 4B. In various embodiments, as the mesh is lowered back onto the plant vegetation it is rotated, matting down the plant vegetation 21 to spread it and create the “canopy” effect as shown in FIG. 4C. In various embodiments, the vegetation daily time period and growth phase time periods are programmed according to the species being cultivated for vegetation growth. In other embodiments, the vegetation period may be indicated manually or may be determined by digital image processing, for example if a digital image is determined to have a sufficient amount of green in the image area. For those plants which are cultivated for their flowering or fruiting portions 25, when the end of the primary vegetation growth is determined, the mesh 3 motion is stopped, to allow the vertical bloom 25 of the flower bud, flower, or fruit to protrude vertically through the mesh and be harvested as shown in FIG. 4D. As shown, the stages 4A-4B-4C are repeated during the vegetation phase. Once the decision is made to trigger flowering, the cycle moves to stage 4D and the motion of the constraining mesh stops. As determined according to the specific species of plant cultivated, flowering portions 25 may sprout from a single location or from multiple locations on a single plant as shown in 4D.
  • FIG. 5 shows a flow chart depicting operation of the system and apparatus. The system begins operation by initiating all components 51. After the plant seeds germinate 53 and the seedlings reach and begin to reach the constraining mesh, the vegetation growth phase 71 begins. First, the constraining mesh remains motionless 55. After a programmed period of growth which may be determined empirically, vegetation growth begins to protrude through the constraining mesh. The mesh may then be raised, sometimes above the vegetation 57 to release it from older growth and then lowered and rotated back down onto the vegetation 59, dragging the vegetation back under the mesh. After a longer term period for vegetation growth, which may be determined empirically or detected by automatic means such as machine vision, the vegetation growth is considered complete 61. Until vegetation growth is completed, the short term growth cycle 71 is repeated to develop the vegetation canopy. Once vegetation is considered complete 63, lighting daylight cycles are altered to mimic the natural lighting cycle that triggers the flowering or reproduction phase 63. At this point motion of the constraining mesh is stopped 65 so that the flowering portion of the plant may be allowed to grow vertically unhindered by the movement of the mesh 67. When the flower, fruit, grain or seeds reach the desired maturity, they may be harvested 69.
  • FIG. 6 shows a top view of top view of an embodiment utilizing multiple plants 21 and multiple containers 9. In this example configuration, 9 plants 21 and 9 containers 9 are shown under a single mesh 3. Various apparatus for moving plants with respect to the constraining mesh may be implemented as described above and below. Such apparatus may be configured for moving the mesh in rotation as well as lifting and lowering it in relation to the plants. Such apparatus may further be configured to cause the same relative movements by moving the plants. In addition, relative movements may be split between the moving the mesh and the plants. For example, rotation may be executed by rotating the mesh while lifting and lowering could be executed by lifting and lowering the plants, and this split movement may be reversed.
  • In alternative embodiments, the constraining mesh is rotated instead of the container. In other embodiments, the constraining mesh is rotated and raised and lowered by a single central post, which may utilize an angular or pitched thread to perform both rotation and height changes simultaneously. In other embodiments, multiple plant containers may be used underneath the constraining mesh. In various embodiments, flowers, vegetables, leaves, herbs, grain, seeds or fruit may be the objective plant component to be harvested. In another embodiment, an annular cam track is used to raise and lower the constraining mesh or turntable according to the cam track geometry. In another embodiment, support structures are located under the mesh to support the plant stalks or vines from below as the plant vegetation is spread underneath or in proximity to the constraining mesh. In an alternative embodiment, the mesh or turntable is moved manually, such as by hand crank. In various embodiments, the mesh opening may be rectangular, square, circular or other geometric shape and between ⅛″ and 5″ across.
  • The routines and/or instructions that may be executed by the one or more processing units to implement embodiments of the invention, whether implemented as part of an operating system or a specific application, component, program, object, module, or sequence of operations executed by each processing unit, will be referred to herein as “program modules”, “computer program code” or simply “modules” or “program code.” Generally, program modules may include routines, programs, objects, components, logic, data structures, and so on that perform particular tasks or implement particular abstract data types. Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object-oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. Given the many ways in which computer code may be organized into routines, procedures, methods, modules, objects, and the like, as well as the various manners in which program functionality may be allocated among various software layers that are resident within a typical computer (e.g., operating systems, libraries, API's, applications, applets, etc.), it should be appreciated that the embodiments of the invention are not limited to the specific organization and allocation of program functionality described herein.
  • The flowcharts, block diagrams, and sequence diagrams herein illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present invention. In this regard, each block in a flowchart, block diagram, or sequence diagram may represent a segment or portion of program code, which comprises one or more executable instructions for implementing the specified logical function(s) and/or act(s). Program code may be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the blocks of the flowcharts, sequence diagrams, and/or block diagrams herein. In certain alternative implementations, the functions noted in the blocks may occur in a different order than shown and described. For example, a pair of blocks described and shown as consecutively executed may be instead executed concurrently, or the two blocks may sometimes be executed in the reverse order, depending upon the functionality involved. Each block and combinations of blocks can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
  • The program code embodied in any of the applications described herein is capable of being individually or collectively distributed as a program product in a variety of different forms. In particular, the program code may be distributed using a computer readable media, which may include computer readable storage media and communication media. Computer readable storage media, which is inherently non-transitory, may include volatile and non-volatile, and removable and non-removable tangible media implemented in any method or technology for storage of information, such as computer-readable instructions, data structures, program modules, or other data. Computer readable storage media may further include RAM, ROM, erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other solid state memory technology, portable compact disc read-only memory (CD-ROM), or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store the desired information and which can be read by a computer. Communication media may embody computer readable instructions, data structures or other program modules. By way of example, and not limitation, communication media may include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of any of the above may also be included within the scope of computer readable media.
  • The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the embodiments of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. Furthermore, to the extent that the terms “includes”, “having”, “has”, “with”, “comprised of”, or variants thereof are used in either the detailed description or the claims, such terms are intended to be inclusive in a manner similar to the term “comprising.”
  • While the invention has been illustrated by a description of various embodiments and while these embodiments have been described in considerable detail, it is not the intention of the applicants to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. For example, the embodiments of the invention may be used in conjunction with other cultivation related applications. The invention in its broader aspects is therefore not limited to the specific details, representative methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of applicants' general inventive concept.

Claims (21)

1. A system for dynamic control of a plant cultivation comprising:
a light source;
a container wherein the plant grows in a growth medium contained in the container;
a constraining mesh positioned in proximity to the container, wherein the constraining mesh and plant are periodically moved with respect to each other during the growth of the plant;
whereby the plant growth is constrained under the mesh during periods when the motion is performed.
2. A system as in claim 1 wherein the movement of the mesh with respect to the plant is rotational.
3. A system as in claim 1 wherein the movement of the mesh with respect to the plant is linear.
4. A system as in claim 1 wherein the mesh openings are between ⅛″ and 5″ across.
5. A system as in claim 2 also comprising:
a rotational motor wherein the rotational motor drives at least part of the motion and wherein at least part of the motion of the container with the respect to the constraining mesh is rotational.
6. A system as in claim 1 also comprising:
a lift motor which periodically raises the constraining mesh relative to the plant and periodically lowers the constraining mesh relative to the plant.
7. A system as in claim 5 also comprising:
a turntable supporting the container wherein the rotational motor drives the turntable.
8. A system as in claim 1 wherein the rotation of the constraining mesh relative to the plant is stopped when a reproductive phase of the plant begins.
9. A system as in claim 1 wherein the rotation of the mesh relative to the plant is stopped when a reproductive phase of the plant begins, wherein the beginning of the reproductive phase of the plant is triggered by timing of an artificial light.
10. A system for dynamically constraining the growth of a plant comprising:
a means for illuminating the plant;
a means for periodically constraining the growth of the plant.
11. A system as in claim 8 also comprising:
a means for stopping the means for constraining the plant during the reproductive phase of the plant growth.
12. A system for controlling growth of a plant in a growth medium, by constrained cultivation of the plant to limit vertical growth during a vegetative phase of growth and by allowing vertical growth during a reproductive phase comprising:
a container containing growth medium having a plant planted in the growth medium, the growth medium being positioned relative to a light source, the light source being adapted to provide growth to the plant;
a constraining mesh in a position above the growth medium in a path of growth of the plant wherein;
means for implementing relative movement between the mesh and the plant in the following movement modes;
a dynamic growth constraining mode during a vegetation phase of the plant in which the mesh is positioned in contact with the vegetation of the plant to constrain growth, thereby matting down the plant vegetation and allowing horizontal vegetation growth and controlling vertical growth periodically, and as the plant vegetation grows vertically protruding through the mesh, providing constraint relative movement by moving one or more of the mesh and the plant relative to the other, to restore constraint on the vegetation; and
a free growth mode during a reproduction phase of the plant in which the constraint relative movement is stopped and the reproduction portion of the plant is allowed to grow free of any inhibitions from the vegetation that has been constrained;
a periodically operated mechanism adapted to perform the movement modes.
13. The system of claim 12 further comprising a programmable controller adapted to provide a timing operation that operates the light and the constraint relative movement according to selectee reproduction phase triggering timing and stopping the constraint relative movement during the reproduction phase.
14. The system of claim 12 wherein the movement modes are done by the group consisting of:
the mesh moving vertically relative to the plant,
the mesh moving both vertically and rotationally relative to the plant,
the plant moving rotationally relative to the mesh,
the mesh moving vertically and the plant moving rotationally,
both the plant and the mesh moving vertically
15. The system of claim 12 further comprising wherein the constraint relative movement is rotational and wherein the periodically operated mechanism comprises a rotational motor.
16. The system of claim 12 wherein the constraint relative movement is linear along the direction of growth of the plant.
17. The system of claim 12 further comprising a periodically operated lift apparatus and wherein the constraint relative movement comprises raising the mesh relative to the plant by the periodically operated lift apparatus and lowering the mesh relative to the plant by the periodically operated lift mechanism.
18. The system of claim 15 further comprising a rotatable turntable underneath the container and the turntable is driven by the rotational motor.
19. The system of claim 12 wherein the light is artificial and is positioned above the mesh thereby to provide light on the plant from above.
20. The system of claim 12 wherein the motion of the mesh relative to the plant is stopped approximately timed to when the reproductive phase of the pant begins and further wherein the beginning of the reproductive phase of the plant is triggered by timing of the artificial light.
21. The system of claim 12 wherein the light is artificial and wherein the light and the periodically operated mechanism are controlled by a programmable controller which is programmable to provide timing cycles for the light and the constraint relative movement wherein the timing cycles are selected for a vegetation phase and for a reproduction phase of the plant growth.
US16/983,944 2017-07-14 2020-08-03 Apparatus and Method for Constrained Plant Cultivation Abandoned US20200359573A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/983,944 US20200359573A1 (en) 2017-07-14 2020-08-03 Apparatus and Method for Constrained Plant Cultivation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/650,814 US10757869B1 (en) 2017-07-14 2017-07-14 Apparatus and method for constrained plant cultivation
US16/983,944 US20200359573A1 (en) 2017-07-14 2020-08-03 Apparatus and Method for Constrained Plant Cultivation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/650,814 Division US10757869B1 (en) 2017-07-14 2017-07-14 Apparatus and method for constrained plant cultivation

Publications (1)

Publication Number Publication Date
US20200359573A1 true US20200359573A1 (en) 2020-11-19

Family

ID=72241424

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/650,814 Active 2038-05-25 US10757869B1 (en) 2017-07-14 2017-07-14 Apparatus and method for constrained plant cultivation
US16/983,944 Abandoned US20200359573A1 (en) 2017-07-14 2020-08-03 Apparatus and Method for Constrained Plant Cultivation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/650,814 Active 2038-05-25 US10757869B1 (en) 2017-07-14 2017-07-14 Apparatus and method for constrained plant cultivation

Country Status (1)

Country Link
US (2) US10757869B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200187429A1 (en) * 2015-10-30 2020-06-18 Christopher di Muro Plant support and growth directing apparatus and method of use
WO2024064777A1 (en) * 2022-09-20 2024-03-28 Rackt Llc. Agricultural harvesting and drying system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3057414A1 (en) * 2017-04-18 2018-10-25 Trella Technologies LLC System and method for automated plant training
US11277977B2 (en) * 2019-04-22 2022-03-22 Colonel WARDLAW Multi-tiered plant growing aid and methods of use thereof
US11700794B2 (en) * 2020-07-16 2023-07-18 The Human Connexion, Llc Plant growth via vibrations
US20220369570A1 (en) * 2021-05-19 2022-11-24 David Lord Rotating Planter
CN116171840B (en) * 2023-01-18 2023-09-08 广州市林业和园林科学研究院 Method for regulating flowering phase of bougainvillea

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US863620A (en) * 1906-10-29 1907-08-20 Charles H Martens Flower-support.
US941894A (en) * 1909-02-20 1909-11-30 Llewellyn Barlow Stetson Frame.
US1619791A (en) * 1926-06-26 1927-03-01 Oscar G Fritch Greenhouse plant-suspension frame
US1874207A (en) * 1931-01-20 1932-08-30 Purplaw Rolf Plant bed
US4250666A (en) * 1979-04-10 1981-02-17 Rakestraw Roy R Supporting structure for plants
US4969290A (en) * 1989-05-09 1990-11-13 Rudolph Skoretz Apparatus for even exposure of plants to sunlight
US6446385B1 (en) * 2001-06-12 2002-09-10 William C. Crutcher Greenhouse system with co-generation power supply, heating and exhaust gas fertilization
DE10350369B3 (en) * 2003-10-28 2005-05-19 Petra, Elke, Dipl.-Ing. Pot plant support device provided by mesh plant basket fitting into plant pot with attached vertical support rods for plant
JP4110157B2 (en) * 2004-12-14 2008-07-02 寿雄 福山 Variable space effective utilization type cultivation method
PL375477A1 (en) * 2005-06-02 2006-12-11 Włodzimierz Gajewski Set for fastening climbing plants
US20170359969A1 (en) * 2011-12-03 2017-12-21 Jacob Slevkoff Portable Suspended Trellis and Planter System
US20130326950A1 (en) * 2012-06-08 2013-12-12 Steven M. Nilles Vertical Agricultural Structure
US20140305040A1 (en) * 2013-04-11 2014-10-16 John Jeffrey Hall Mobile plant growing device and kit
US20160235014A1 (en) * 2015-02-17 2016-08-18 Biovantage International, Inc. Light distribution system
US20160278303A1 (en) * 2015-03-26 2016-09-29 Brady Calsbeek Horticultural Plant Bending Apparatus
EP3117707B1 (en) * 2015-07-16 2018-10-03 GGGevelgroen BVBA A system and the related method for limiting the growth of creeper plants
US9456689B1 (en) * 2015-07-17 2016-10-04 Michael Robert Tinsley Plant growing heavy weight bearing support assembly, apparatus and system
WO2017019962A1 (en) * 2015-07-30 2017-02-02 Heliohex, Llc Lighting device, assembly and method
US20170188524A1 (en) * 2015-10-30 2017-07-06 Christopher di Muro Plant support and growth directing apparatus and method of use
US10798882B2 (en) * 2016-01-06 2020-10-13 Randall Lee Paige, Sr. Tree and shrub protector reservoir
US20180084738A1 (en) * 2016-09-29 2018-03-29 Shu-Shyang Kuo Three-dimensional dynamic plant cultivating apparatus and implementing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200187429A1 (en) * 2015-10-30 2020-06-18 Christopher di Muro Plant support and growth directing apparatus and method of use
WO2024064777A1 (en) * 2022-09-20 2024-03-28 Rackt Llc. Agricultural harvesting and drying system

Also Published As

Publication number Publication date
US10757869B1 (en) 2020-09-01

Similar Documents

Publication Publication Date Title
US20200359573A1 (en) Apparatus and Method for Constrained Plant Cultivation
US11006585B2 (en) Automated terrarium
JP6530065B2 (en) Hydroponic equipment
JP5699460B2 (en) Plant growth model generation system, plant cultivation plant, and plant growth model generation method
US20210251161A1 (en) Automated terrarium
JP2015133971A (en) Plant cultivation plant
JP6651191B1 (en) Cultivation support system, controller and control method
JP2003102274A (en) Apparatus for reproducing information, method for supporting growth of plant, and recording medium
CN218999081U (en) Cultivation facility suitable for leaf vegetable plants of assembly line gathering
WO2021236012A1 (en) System for cultivation of plants
RU2698657C1 (en) Sweet cherry growing method on hydroponics
KR20180054239A (en) Smart-farm system for Sprout ginseng
CN103503647B (en) Method for regulating flowering time of Lycoris sprengeri Comes ex Baker
JP7315217B2 (en) Cultivation support system, controller and control method
Dhiman et al. Effect of different black-out materials on off-season pot mum production of chrysanthemum (Dendranthema grandiflora)
KR20200138555A (en) Cultivation device for flowerpot plants
JP7367482B2 (en) Seedling growing method and seedling growing system
Carvalho et al. Interactive effects of duration of long-day period and plant density on external quality of cut chrysanthemum
JP2019068768A (en) Method and system for growing trees
JP2022136900A (en) Cultivation facility and cultivation method
JP2022136899A (en) Cultivation device and cultivation method
JPH0327214A (en) Control of diapause of saffron and culture
JP2020031585A (en) Plant raising apparatus, plant raising program, and plant raising method
JPS63188332A (en) Irrigation control method of spray culture
Healy et al. Controlling shoot elongation of potted alstroemeria

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION UNDERGOING PREEXAM PROCESSING

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION