US20200352167A1 - Flucarbazone sodium hemihydrate method and composition - Google Patents

Flucarbazone sodium hemihydrate method and composition Download PDF

Info

Publication number
US20200352167A1
US20200352167A1 US16/961,377 US201916961377A US2020352167A1 US 20200352167 A1 US20200352167 A1 US 20200352167A1 US 201916961377 A US201916961377 A US 201916961377A US 2020352167 A1 US2020352167 A1 US 2020352167A1
Authority
US
United States
Prior art keywords
hemihydrate
canceled
flucarbazone sodium
treatment
mustard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/961,377
Other versions
US10827756B1 (en
Inventor
Vic Prasad
Christopher L. Larson
Cameron Seath Gibb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arysta LifeScience Inc
Original Assignee
Arysta LifeScience Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arysta LifeScience Inc filed Critical Arysta LifeScience Inc
Priority to US16/961,377 priority Critical patent/US10827756B1/en
Assigned to ARYSTA LIFESCIENCE INC reassignment ARYSTA LIFESCIENCE INC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PRASAD, VIC, DR., GIBB, CAMERON SEATH, DR., LARSON, CHRISTOPHER L.
Application granted granted Critical
Publication of US10827756B1 publication Critical patent/US10827756B1/en
Publication of US20200352167A1 publication Critical patent/US20200352167A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/28Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N<
    • A01N47/38Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N< containing the group >N—CO—N< where at least one nitrogen atom is part of a heterocyclic ring; Thio analogues thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • A01N25/04Dispersions, emulsions, suspoemulsions, suspension concentrates or gels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N41/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom
    • A01N41/02Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom containing a sulfur-to-oxygen double bond
    • A01N41/04Sulfonic acids; Derivatives thereof
    • A01N41/06Sulfonic acid amides
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles

Definitions

  • Sulfonylaminocarbonyl triazolinones are well known in the art, as are processes for their preparation and use as herbicides. However, isolation of salts of these materials from anhydrous conditions for use as herbicides results in a product which is very dusty and difficult to handle during formulation.
  • a method of suppressing growth of grass and broadleaf weeds comprising applying to said grass and weeds at least one dust-free composition comprising flucarbazone sodium-hemihydrate as an active ingredient.
  • a method for preparing flucarbazone sodium-hemihydrate comprising treating 4,5-dihydro-3-methoxy-4-methyl-5-oxo-N-[[2-(trifluoromethoxy)phenyl]sulfonyl]-1H-1,2,4-triazole-1-carboxamide (MSU) with aqueous sodium hydroxide under pH-controlled conditions; and confirming that a hemihydrate flucarbazone sodium of the following formula:
  • Additional embodiments include: the process described above where the treatment is carried out at a temperature of from about ⁇ 20° C. to about 120° C.; the process described above where the treatment is carried out at a temperature of from about 0 C. to about 45° C. (e.g., including 0° C., 5° C., 10° C., 15° C., 20° C., 25° C., 30° C., 35° C., 40° C., and 45° C.); the process described above where the treatment is carried out at a pH of about 5 to about 10; the process described above where the treatment is carried out at a pH of about 5.5 to about 9; and the process described above where the treatment is carried out at a pH of about 6 to about 7.
  • FIG. 1 shows measured x-ray diffraction patterns.
  • FIG. 2 shows single crystal structure input
  • FIG. 3 shows thermal ellipsoids
  • the reaction product unexpectedly forms a hemihydrate of chemical formula C 12 H 11 F 3 N 4 O 65 S when crystallized from aqueous systems. It is also believed that the bulk active ingredient is in one crystal form.
  • the reaction is carried out under pH controlled conditions wherein the base is added to the reaction mixture in an amount such that the pH of the mixture attained is from about 5 to about 10, preferably from about 5.5 to about 9, and most preferably from about 6 to about 7.
  • Flucarbazone-sodium is a highly active herbicide and safe handling for such a product is very important. Isolation of hydrated flucarbazone sodium as described herein provides access to such an easily formulated product. The conventional anhydrous form is dusty and not easily formulated.
  • the flucarbazone sodium is formed by treatment of MSU with aqueous sodium hydroxide under the pH controlled conditions described above. Because it is a two phase reaction stirring is critical. The product crystallizes directly from the mixture and is collected by filtration then dried. Single crystal x-ray analysis confirms the formation of the product as a hemihydrate.
  • solvents such as MIBK (methyl isobutyl ketone), toluene, and/or xylene can also be employed, with MIBK being preferred.
  • grasses which can be suppressed and/or controlled include: green foxtail, wild oat, volunteer tame oat, barnyardgrass, windgrass, cheat (true cheat), California brome, Japanese brome, rattail fescue, downy brome, rescuegrass, Italian ryegrass, Persian darnel, yellow foxtail, common millet, yellow bristle-grass, ryegrass, black grass, and foxtail barley.
  • weeds which can be suppressed and/or controlled include redroot pigweed, wild mustard, black mustard, blue mustard, field pennycress, fixweed, lady's thumb, Pennsylvania smartweed, shepherd's purse, tansy mustard, tumble mustard, volunteer canola, black nightshade, black bindweed, hemp nettle, green smartweed, stinkweed, and wild buckwheat.
  • the x-ray diffraction pattern was measured using data collected on a Bruker D2 Phaser in theta-theta geometry using Cu (K ⁇ 1/K ⁇ 2) radiation and a Ni K ⁇ filter (detector side). Additional beam optics and settings: primary and secondary axial Soller slits (2.5°), fixed 0.6 mm divergence slit, 1 mm anti-scatter-screen, Detector: 1D LYNXEYE with a 5° window, Generator: 30 kV, 10 mA.
  • the software was DIFFRAC.SUITE COMMANDER, Bruker AXS. DIFFRAC.EVA 2.1, Bruker AXS (2010-2012). PDXL2 Version 2.4.2.0, Rigaku Corporation (2007-2015).
  • the x-ray diffraction pattern was measured with Rietveld fit using single crystal structure as input.
  • the data shows that the bulk material is 100% the same as the single crystal structure, with no indications of other phases or impurities.
  • FIG. 3 demonstrates thermal ellipsoids drawn at the 50% probability level. Tables 1 and 2 demonstrate the typical parameters measured.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Zoology (AREA)
  • Plant Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Toxicology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pretreatment Of Seeds And Plants (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

A flucarbazone sodium hemihydrate method and composition. A method of suppressing growth of grass and broadleaf weeds is described including applying to said weeds at least one dust-free composition comprising flucarbazone sodium-hemihydrate as an active ingredient. A method for preparing flucarbazone sodium-hemihydrate is also described including treating 4,5-dihydro-3-methoxy-4-methyl-5-oxo-N-[[2-(trifluoromethoxy)phenyl]sulfonyl]-1H-1,2,4-triazole-1-carboxamide (MSU) with aqueous sodium hydroxide under pH-controlled conditions; and confirming that a hemihydrate flucarbazone sodium has been obtained.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This International Application claims priority of U.S. application Ser. No. 15/879,073 filed Jan. 24, 2018, the disclosure of which is expressly incorporated by reference herein in its entirety.
  • TECHNICAL FIELD
  • The field of art to which this invention generally pertains is herbicidal compositions and methods of making and using the same.
  • BACKGROUND
  • Sulfonylaminocarbonyl triazolinones are well known in the art, as are processes for their preparation and use as herbicides. However, isolation of salts of these materials from anhydrous conditions for use as herbicides results in a product which is very dusty and difficult to handle during formulation.
  • Accordingly, there is a constant search in this area for improvements to these products in all areas, including improvements in safety handling.
  • BRIEF SUMMARY
  • A method of suppressing growth of grass and broadleaf weeds is described comprising applying to said grass and weeds at least one dust-free composition comprising flucarbazone sodium-hemihydrate as an active ingredient.
  • A method for preparing flucarbazone sodium-hemihydrate is also described comprising treating 4,5-dihydro-3-methoxy-4-methyl-5-oxo-N-[[2-(trifluoromethoxy)phenyl]sulfonyl]-1H-1,2,4-triazole-1-carboxamide (MSU) with aqueous sodium hydroxide under pH-controlled conditions; and confirming that a hemihydrate flucarbazone sodium of the following formula:
  • Figure US20200352167A1-20201112-C00001
  • has been obtained.
  • Additional embodiments include: the process described above where the treatment is carried out at a temperature of from about −20° C. to about 120° C.; the process described above where the treatment is carried out at a temperature of from about 0 C. to about 45° C. (e.g., including 0° C., 5° C., 10° C., 15° C., 20° C., 25° C., 30° C., 35° C., 40° C., and 45° C.); the process described above where the treatment is carried out at a pH of about 5 to about 10; the process described above where the treatment is carried out at a pH of about 5.5 to about 9; and the process described above where the treatment is carried out at a pH of about 6 to about 7.
  • These, and additional embodiments, will be apparent from the following descriptions.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows measured x-ray diffraction patterns.
  • FIG. 2 shows single crystal structure input.
  • FIG. 3 shows thermal ellipsoids.
  • DETAILED DESCRIPTION
  • The particulars shown herein are by way of example and for purposes of illustrative discussion of the various embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
  • The present invention will now be described by reference to more detailed embodiments. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
  • Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. All publications, patent applications, patents, and other references mentioned herein are expressly incorporated by reference in their entirety.
  • Unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches.
  • Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
  • Manufacturing processes for flucarbazone sodium and structurally related propoxycarbazone sodium have been described in U.S. Pat. Nos. 6,147,221; 6,147,222; and 6,160,125, the disclosures of which are incorporated herein by reference in their entirety. Both products may be formed by deprotonation of the parent sulfonylurea in the presence of aqueous sodium hydroxide. However, of the two, only flucarbazone sodium forms a stable hydrate under the reaction conditions described therein. Based upon routine analyses of hundreds of samples in the past, the profiles indicated about 94% Flucarbazone-Na and about 4% H2O. These numerical values pointed to Flucarbazone-Na. 1 H2O, that is, a mono-hydrate. However, it has now been found through single crystal X-ray analysis, that by controlling the above-described processes as described herein, the reaction product unexpectedly forms a hemihydrate of chemical formula C12H11F3N4O65S when crystallized from aqueous systems. It is also believed that the bulk active ingredient is in one crystal form. In order to attain the crystal structure desired it is critical that during the conversion step of the sulfonylaminocarbonyl triazolinone intermediate product to a salt that the reaction is carried out under pH controlled conditions wherein the base is added to the reaction mixture in an amount such that the pH of the mixture attained is from about 5 to about 10, preferably from about 5.5 to about 9, and most preferably from about 6 to about 7.
  • Delivery of a solid form of flucarbazone sodium which can be readily formulated is important for widespread applications. Flucarbazone-sodium is a highly active herbicide and safe handling for such a product is very important. Isolation of hydrated flucarbazone sodium as described herein provides access to such an easily formulated product. The conventional anhydrous form is dusty and not easily formulated. The flucarbazone sodium is formed by treatment of MSU with aqueous sodium hydroxide under the pH controlled conditions described above. Because it is a two phase reaction stirring is critical. The product crystallizes directly from the mixture and is collected by filtration then dried. Single crystal x-ray analysis confirms the formation of the product as a hemihydrate.
  • Figure US20200352167A1-20201112-C00002
  • During reaction with aqueous NaOH, solvents such as MIBK (methyl isobutyl ketone), toluene, and/or xylene can also be employed, with MIBK being preferred.
  • In addition to the some of the benefits mentioned above, other representative benefits include reduction in potential dust explosion properties as well as operator industrial hygiene improvements from exposure and handling advantages. There are also resource benefits from associated with not having to dry to anhydrous form for stripping out solvents, and equipment efficiency and from formulation handling (dust loss), all with their potential to realize their associated economic benefits as well. Representative grasses which can be suppressed and/or controlled include: green foxtail, wild oat, volunteer tame oat, barnyardgrass, windgrass, cheat (true cheat), California brome, Japanese brome, rattail fescue, downy brome, rescuegrass, Italian ryegrass, Persian darnel, yellow foxtail, common millet, yellow bristle-grass, ryegrass, black grass, and foxtail barley. Representative broadleaf weeds which can be suppressed and/or controlled include redroot pigweed, wild mustard, black mustard, blue mustard, field pennycress, fixweed, lady's thumb, Pennsylvania smartweed, shepherd's purse, tansy mustard, tumble mustard, volunteer canola, black nightshade, black bindweed, hemp nettle, green smartweed, stinkweed, and wild buckwheat.
  • EXAMPLES
  • In FIG. 1, the x-ray diffraction pattern was measured using data collected on a Bruker D2 Phaser in theta-theta geometry using Cu (Kα1/Kα2) radiation and a Ni Kβ filter (detector side). Additional beam optics and settings: primary and secondary axial Soller slits (2.5°), fixed 0.6 mm divergence slit, 1 mm anti-scatter-screen, Detector: 1D LYNXEYE with a 5° window, Generator: 30 kV, 10 mA. The software was DIFFRAC.SUITE COMMANDER, Bruker AXS. DIFFRAC.EVA 2.1, Bruker AXS (2010-2012). PDXL2 Version 2.4.2.0, Rigaku Corporation (2007-2015).
  • In FIG. 2, the x-ray diffraction pattern was measured with Rietveld fit using single crystal structure as input. The data shows that the bulk material is 100% the same as the single crystal structure, with no indications of other phases or impurities.
  • FIG. 3 demonstrates thermal ellipsoids drawn at the 50% probability level. Tables 1 and 2 demonstrate the typical parameters measured.
  • TABLE 1
    Formulas
    C12H11F3N4NaO6.5S
    C12H10F3N4O6S, Na, 0.5(H2O)
    Dcalc./g cm−3 1.773 Wavelength/Å 0.71073
    μ/mm−1 0.309 Radiation type MoKα
    Formula weight 427.30   Θmin 2.304
    Color Clear colorless Θmax 28.499
    Shape prism Measured Refl. 12063
    Size/mm3 0.10 × 0.04 × 0.03 Independent Refl. 12063
    T/K    100(2) Reflections Used 10838
    Space Group P21/c Parameters 507
    a/Å 22.7820(8) Restraints 3
    b/Å  9.6327(3) Largest Peak 0.402
    c/Å 14.9502(5) Deepest Hole −0.328
    α/° 90    GooF 1.077
    β/° 102.576(4) wR2 (all data) 0.1369
    γ/° 90    wR2 0.1327
    V/Å3  3202.14(19) R1 (all data) 0.0625
    Z 8    R1 0.0540
    Z′ 2   
  • TABLE 2
    Fractional Atomic Coordinates (×104) and Equivalent
    Isotropic Displacement Parameters (Å2 × 103) for
    2017scas0057_R1_100K_twin1_hklf4. Ueq is
    defined as ⅓ of the trace of the orthogonalised Uij.
    Atom x y z Ueg
    C101 7718.9(16) −994(3) 2120(2) 14.0(7)
    C102 8079.6(17) −1177(4)   875(2) 15.8(7)
    C103 8630.7(18) −2451(4)  2266(3) 23.3(8)
    C104 8399.4(19) −992(5) −487(3) 28.7(9)
    C105 6902.3(15)  685(4) 1355(2) 12.9(6)
    C106 5630.9(15) 1357(3) 1901(2) 11.0(6)
    C107 5328.5(16) 1700(4) 1027(2) 16.3(7)
    C108 4772.3(18) 1138(5)  674(3) 26.1(9)
    C109 4522.6(19)  217(5) 1173(3)  30.8(10)
    C110 4818.1(19) −147(4) 2042(3) 26.0(9)
    C111 5368.2(17)  439(4) 2398(2) 15.7(7)
    C112  5457(2)  533(4) 3974(3) 25.5(9)
    C201 6962.4(15) 5702(3) 2567(2) 12.1(6)
    C202 6887.8(16) 6303(3) 1130(2) 14.6(7)
    C203 6189.5(17) 7478(4) 1990(3) 20.8(8)
    C204  6925(2) 6662(4) −391(3) 25.3(9)
    C205 7736.8(15) 3907(3) 2529(2) 12.1(6)
    C206 9176.6(15) 3330(3) 2760(2) 12.2(6)
    C207 9428.9(16) 3063(4) 3663(2) 15.2(7)
    C208 9923.4(18) 3798(4) 4103(3) 21.8(8)
    C209 10162.3(18)  4828(4) 3649(3) 24.0(8)
    C210 9900.1(17) 5131(4) 2753(3) 20.5(8)
    C211 9414.1(16) 4378(4) 2318(2) 14.5(7)
    C212  9412(2) 4553(4)  761(3) 26.3(9)
    F101 4955.3(16) −118(3) 4036(2) 49.8(8)
    F102 5862.2(14)  343(3) 4726.0(17)  44.9(8)
    F103 5317.8(11) 1848(2) 3904.8(15)  26.1(5)
    F201 9798.1(16) 5577(3)  757.4(19) 52.2(9)
    F202 9024.3(14) 4579(3) −24.0(16) 39.1(7)
    F203 9724.6(13) 3390(3)  813.7(18) 36.7(6)
    N101 8155.3(14) −1600(3)  1755(2) 14.8(6)
    N102 7626.6(13) −375(3)  611.3(19) 13.8(6)
    N103 7395.7(13) −235(3) 1397.9(19)  13.3(6)
    N104 6833.4(13) 1007(3) 2197.5(19)  13.7(6)
    N201 6660.1(14) 6540(3) 1884(2) 14.0(6)
    N202 7311.2(13) 5408(3) 1247.9(18)  13.1(6)
    N203 7378.5(13) 5041(3) 2171.6(18)  11.3(6)
    N204 8028.4(13) 3403(3) 1921.5(19)  13.8(6)
    Na1 7650.9(7)  1068.2(14)  3531.6(9) 15.4(3)
    Na2 7073.6(6)  3795.3(14)  4350.3(9) 15.2(3)
    O101 7646.3(12) −1143(2)  2891.8(16)  15.9(5)
    O102 8466.7(12) −1612(3)   402.4(17) 20.4(6)
    O103 6627.3(12) 1053(3)  607.7(16) 18.1(5)
    O104 6344.0(12) 3341(3) 1758.8(18)  19.5(5)
    O105 6427.2(11) 2343(3) 3269.3(17)  19.1(6)
    O106 5682.7(13)  55(3) 3273.5(17)  20.1(5)
    O201 6876.5(11) 5605(2) 3330.9(15)  13.7(5)
    O202 6667.3(13) 7005(3)  384.5(17) 20.3(6)
    O203 7743.5(11) 3535(2) 3311.1(15)  13.1(5)
    O204 8471.3(12) 1289(2) 2836.7(17)  16.3(5)
    O205 8688.1(12) 1844(3) 1359.0(16)  16.8(5)
    O206 9113.6(13) 4686(3) 1422.1(17)  19.6(6)
    S101 6342.1(4)  2128.0(9) 2302.8(6) 12.21(16)
    S201 8552.4(4)  2342.2(8) 2194.3(6) 11.75(16)
    O1W 7671.6(14) 3233(3) −27.4(18) 22.5(6)
  • As described herein, these problems and others in this area are addressed by the invention described herein. Thus, the scope of the invention shall include all modifications and variations that may fall within the scope of the attached claims. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.

Claims (17)

1. (canceled)
2. (canceled)
3. (canceled)
4. (canceled)
5. (canceled)
6. (canceled)
7. (canceled)
8. A method of suppressing growth of grass and broadleaf weeds comprising applying to said weeds at least one dust-free composition comprising flucarbazone sodium-hemihydrate as an active ingredient, wherein the flucarbazone sodium-hemihydrate has the following X-ray crystal structure:
Figure US20200352167A1-20201112-C00003
having fractional atomic coordinates (×104) and equivalent isotropic displacement parameters (Å2×103) as shown in Table below; Ueq defined as ⅓ of the trace of the orthogonalised Uij and
Atom x y z Ueq C101 7718.9(16) −994(3) 2120(2) 14.0(7) C102 8079.6(17) −1177(4)   875(2) 15.8(7) C103 8630.7(18) −2451(4)  2266(3) 23.3(8) C104 8399.4(19) −992(5) −487(3) 28.7(9) C105 6902.3(15)  685(4) 1355(2) 12.9(6) C106 5630.9(15) 1357(3) 1901(2) 11.0(6) C107 5328.5(16) 1700(4) 1027(2) 16.3(7) C108 4772.3(18) 1138(5)  674(3) 26.1(9) C109 4522.6(19)  217(5) 1173(3)  30.8(10) C110 4818.1(19) −147(4) 2042(3) 26.0(9) C111 5368.2(17)  439(4) 2398(2) 15.7(7) C112  5457(2)  533(4) 3974(3) 25.5(9) C201 6962.4(15) 5702(3) 2567(2) 12.1(6) C202 6887.8(16) 6303(3) 1130(2) 14.6(7) C203 6189.5(17) 7478(4) 1990(3) 20.8(8) C204  6925(2) 6662(4) −391(3) 25.3(9) C205 7736.8(15) 3907(3) 2529(2) 12.1(6) C206 9176.6(15) 3330(3) 2760(2) 12.2(6) C207 9428.9(16) 3063(4) 3663(2) 15.2(7) C208 9923.4(18) 3798(4) 4103(3) 21.8(8) C209 10162.3(18)  4828(4) 3649(3) 24.0(8) C210 9900.1(17) 5131(4) 2753(3) 20.5(8) C211 9414.1(16) 4378(4) 2318(2) 14.5(7) C212  9412(2) 4553(4)  761(3) 26.3(9) F101 4955.3(16) −118(3) 4036(2) 49.8(8) F102 5862.2(14)  343(3) 4726.0(17)  44.9(8) F103 5317.8(11) 1848(2) 3904.8(15)  26.1(5) F201 9798.1(16) 5577(3)  757.4(19) 52.2(9) F202 9024.3(14) 4579(3) −24.0(16) 39.1(7) F203 9724.6(13) 3390(3)  813.7(18) 36.7(6) N101 8155.3(14) −1600(3)  1755(2) 14.8(6) N102 7626.6(13) −375(3)  611.3(19) 13.8(6) N103 7395.7(13) −235(3) 1397.9(19)  13.3(6) N104 6833.4(13) 1007(3) 2197.5(19)  13.7(6) N201 6660.1(14) 6540(3) 1884(2) 14.0(6) N202 7311.2(13) 5408(3) 1247.9(18)  13.1(6) N203 7378.5(13) 5041(3) 2171.6(18)  11.3(6) N204 8028.4(13) 3403(3) 1921.5(19)  13.8(6) Na1 7650.9(7)  1068.2(14)  3531.6(9) 15.4(3) Na2 7073.6(6)  3795.3(14)  4350.3(9) 15.2(3) O101 7646.3(12) −1143(2)  2891.8(16)  15.9(5) O102 8466.7(12) −1612(3)   402.4(17) 20.4(6) O103 6627.3(12) 1053(3)  607.7(16) 18.1(5) O104 6344.0(12) 3341(3) 1758.8(18)  19.5(5) O105 6427.2(11) 2343(3) 3269.3(17)  19.1(6) O106 5682.7(13)  55(3) 3273.5(17)  20.1(5) O201 6876.5(11) 5605(2) 3330.9(15)  13.7(5) O202 6667.3(13) 7005(3)  384.5(17) 20.3(6) O203 7743.5(11) 3535(2) 3311.1(15)  13.1(5) O204 8471.3(12) 1289(2) 2836.7(17)  16.3(5) O205 8688.1(12) 1844(3) 1359.0(16)  16.8(5) O206 9113.6(13) 4686(3) 1422.1(17)  19.6(6) S101 6342.1(4)  2128.0(9) 2302.8(6) 12.21(16) S201 8552.4(4)  2342.2(8) 2194.3(6) 11.75(16) O1W 7671.6(14) 3233(3) −27.4(18) 22.5(6)
9. The method of claim 1, wherein the grass is green foxtail, wild oat, volunteer tame oat, barnyardgrass, windgrass, cheat (true cheat), California brome, Japanese brome, rattail fescue, downy brome, rescuegrass, Italian ryegrass, Persian darnel, yellow foxtail, common millet, yellow bristle-grass, ryegrass, black grass, or foxtail barley.
10. The method of claim 1, wherein the broadleaf weed is redroot pigweed, wild mustard, black mustard, blue mustard, field pennycress, fixweed, lady's thumb, Pennsylvania smartweed, shepherd's purse, tansy mustard, tumble mustard, volunteer canola, black nightshade, black bindweed, hemp nettle, green smartweed, stinkweed, or wild buckwheat.
11. A method for preparing flucarbazone sodium-hemihydrate comprising: treating 4,5-dihydro-3-methoxy-4-methyl-5-oxo-N-[[2-(trifluoromethoxy)phenyl]sulfonyl]-1H-1,2,4-triazole-1-carboxamide (MSU) with aqueous sodium hydroxide under pH-controlled conditions; and confirming that a hemihydrate flucarbazone sodium having the following X-ray crystal structure:
Figure US20200352167A1-20201112-C00004
having fractional atomic coordinates (×104) and equivalent isotropic displacement parameters (Å2×103) as shown in Table below; Ueq defined as ⅓ of the trace of the orthogonalised Uij and
Atom x y z Ueq C101 7718.9(16) −994(3) 2120(2) 14.0(7) C102 8079.6(17) −1177(4)   875(2) 15.8(7) C103 8630.7(18) −2451(4)  2266(3) 23.3(8) C104 8399.4(19) −992(5) −487(3) 28.7(9) C105 6902.3(15)  685(4) 1355(2) 12.9(6) C106 5630.9(15) 1357(3) 1901(2) 11.0(6) C107 5328.5(16) 1700(4) 1027(2) 16.3(7) C108 4772.3(18) 1138(5)  674(3) 26.1(9) C109 4522.6(19)  217(5) 1173(3)  30.8(10) C110 4818.1(19) −147(4) 2042(3) 26.0(9) C111 5368.2(17)  439(4) 2398(2) 15.7(7) C112  5457(2)  533(4) 3974(3) 25.5(9) C201 6962.4(15) 5702(3) 2567(2) 12.1(6) C202 6887.8(16) 6303(3) 1130(2) 14.6(7) C203 6189.5(17) 7478(4) 1990(3) 20.8(8) C204  6925(2) 6662(4) −391(3) 25.3(9) C205 7736.8(15) 3907(3) 2529(2) 12.1(6) C206 9176.6(15) 3330(3) 2760(2) 12.2(6) C207 9428.9(16) 3063(4) 3663(2) 15.2(7) C208 9923.4(18) 3798(4) 4103(3) 21.8(8) C209 10162.3(18)  4828(4) 3649(3) 24.0(8) C210 9900.1(17) 5131(4) 2753(3) 20.5(8) C211 9414.1(16) 4378(4) 2318(2) 14.5(7) C212  9412(2) 4553(4)  761(3) 26.3(9) F101 4955.3(16) −118(3) 4036(2) 49.8(8) F102 5862.2(14)  343(3) 4726.0(17)  44.9(8) F103 5317.8(11) 1848(2) 3904.8(15)  26.1(5) F201 9798.1(16) 5577(3)  757.4(19) 52.2(9) F202 9024.3(14) 4579(3) −24.0(16) 39.1(7) F203 9724.6(13) 3390(3)  813.7(18) 36.7(6) N101 8155.3(14) −1600(3)  1755(2) 14.8(6) N102 7626.6(13) −375(3)  611.3(19) 13.8(6) N103 7395.7(13) −235(3) 1397.9(19)  13.3(6) N104 6833.4(13) 1007(3) 2197.5(19)  13.7(6) N201 6660.1(14) 6540(3) 1884(2) 14.0(6) N202 7311.2(13) 5408(3) 1247.9(18)  13.1(6) N203 7378.5(13) 5041(3) 2171.6(18)  11.3(6) N204 8028.4(13) 3403(3) 1921.5(19)  13.8(6) Na1 7650.9(7)  1068.2(14)  3531.6(9) 15.4(3) Na2 7073.6(6)  3795.3(14)  4350.3(9) 15.2(3) O101 7646.3(12) −1143(2)  2891.8(16)  15.9(5) O102 8466.7(12) −1612(3)   402.4(17) 20.4(6) O103 6627.3(12) 1053(3)  607.7(16) 18.1(5) O104 6344.0(12) 3341(3) 1758.8(18)  19.5(5) O105 6427.2(11) 2343(3) 3269.3(17)  19.1(6) O106 5682.7(13)  55(3) 3273.5(17)  20.1(5) O201 6876.5(11) 5605(2) 3330.9(15)  13.7(5) O202 6667.3(13) 7005(3)  384.5(17) 20.3(6) O203 7743.5(11) 3535(2) 3311.1(15)  13.1(5) O204 8471.3(12) 1289(2) 2836.7(17)  16.3(5) O205 8688.1(12) 1844(3) 1359.0(16)  16.8(5) O206 9113.6(13) 4686(3) 1422.1(17)  19.6(6) S101 6342.1(4)  2128.0(9) 2302.8(6) 12.21(16) S201 8552.4(4)  2342.2(8) 2194.3(6) 11.75(16) O1W 7671.6(14) 3233(3) −27.4(18) 22.5(6)
is formed.
12. The method of claim 5 wherein the treatment is carried out at a temperature of from about −20° C. to about 120° C.
13. The process of claim 5, wherein the treatment is carried out at a temperature of from about 0° C. to about 45° C.
14. The process of claim 5, wherein the treatment is carried out at a pH of 5 to 10.
15. The process of claim 5, wherein the treatment is carried out at a pH of 5.5 to 9.
16. The process of claim 5, wherein the treatment is carried out at a pH of 6 to 7.
17. A composition comprising a hemihydrate flucarbazone sodium having the following X-ray crystal structure:
Figure US20200352167A1-20201112-C00005
having fractional atomic coordinates (×104) and equivalent isotropic displacement parameters (Å2×103) as shown in Table below; Ueq defined as ⅓ of the trace of the orthogonalised Uij and
Atom x y z Ueq C101 7718.9(16) −994(3) 2120(2) 14.0(7) C102 8079.6(17) −1177(4)   875(2) 15.8(7) C103 8630.7(18) −2451(4)  2266(3) 23.3(8) C104 8399.4(19) −992(5) −487(3) 28.7(9) C105 6902.3(15)  685(4) 1355(2) 12.9(6) C106 5630.9(15) 1357(3) 1901(2) 11.0(6) C107 5328.5(16) 1700(4) 1027(2) 16.3(7) C108 4772.3(18) 1138(5)  674(3) 26.1(9) C109 4522.6(19)  217(5) 1173(3)  30.8(10) C110 4818.1(19) −147(4) 2042(3) 26.0(9) C111 5368.2(17)  439(4) 2398(2) 15.7(7) C112  5457(2)  533(4) 3974(3) 25.5(9) C201 6962.4(15) 5702(3) 2567(2) 12.1(6) C202 6887.8(16) 6303(3) 1130(2) 14.6(7) C203 6189.5(17) 7478(4) 1990(3) 20.8(8) C204  6925(2) 6662(4) −391(3) 25.3(9) C205 7736.8(15) 3907(3) 2529(2) 12.1(6) C206 9176.6(15) 3330(3) 2760(2) 12.2(6) C207 9428.9(16) 3063(4) 3663(2) 15.2(7) C208 9923.4(18) 3798(4) 4103(3) 21.8(8) C209 10162.3(18)  4828(4) 3649(3) 24.0(8) C210 9900.1(17) 5131(4) 2753(3) 20.5(8) C211 9414.1(16) 4378(4) 2318(2) 14.5(7) C212  9412(2) 4553(4)  761(3) 26.3(9) F101 4955.3(16) −118(3) 4036(2) 49.8(8) F102 5862.2(14)  343(3) 4726.0(17)  44.9(8) F103 5317.8(11) 1848(2) 3904.8(15)  26.1(5) F201 9798.1(16) 5577(3)  757.4(19) 52.2(9) F202 9024.3(14) 4579(3) −24.0(16) 39.1(7) F203 9724.6(13) 3390(3)  813.7(18) 36.7(6) N101 8155.3(14) −1600(3)  1755(2) 14.8(6) N102 7626.6(13) −375(3)  611.3(19) 13.8(6) N103 7395.7(13) −235(3) 1397.9(19)  13.3(6) N104 6833.4(13) 1007(3) 2197.5(19)  13.7(6) N201 6660.1(14) 6540(3) 1884(2) 14.0(6) N202 7311.2(13) 5408(3) 1247.9(18)  13.1(6) N203 7378.5(13) 5041(3) 2171.6(18)  11.3(6) N204 8028.4(13) 3403(3) 1921.5(19)  13.8(6) Na1 7650.9(7)  1068.2(14)  3531.6(9) 15.4(3) Na2 7073.6(6)  3795.3(14)  4350.3(9) 15.2(3) O101 7646.3(12) −1143(2)  2891.8(16)  15.9(5) O102 8466.7(12) −1612(3)   402.4(17) 20.4(6) O103 6627.3(12) 1053(3)  607.7(16) 18.1(5) O104 6344.0(12) 3341(3) 1758.8(18)  19.5(5) O105 6427.2(11) 2343(3) 3269.3(17)  19.1(6) O106 5682.7(13)  55(3) 3273.5(17)  20.1(5) O201 6876.5(11) 5605(2) 3330.9(15)  13.7(5) O202 6667.3(13) 7005(3)  384.5(17) 20.3(6) O203 7743.5(11) 3535(2) 3311.1(15)  13.1(5) O204 8471.3(12) 1289(2) 2836.7(17)  16.3(5) O205 8688.1(12) 1844(3) 1359.0(16)  16.8(5) O206 9113.6(13) 4686(3) 1422.1(17)  19.6(6) S101 6342.1(4)  2128.0(9) 2302.8(6) 12.21(16) S201 8552.4(4)  2342.2(8) 2194.3(6) 11.75(16) O1W 7671.6(14) 3233(3) −27.4(18) 22.5(6)
US16/961,377 2018-01-24 2019-01-23 Flucarbazone sodium hemihydrate method and composition Active US10827756B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/961,377 US10827756B1 (en) 2018-01-24 2019-01-23 Flucarbazone sodium hemihydrate method and composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/879,073 US10238112B1 (en) 2018-01-24 2018-01-24 Flucarbazone sodium hemihydrate method and composition
US16/961,377 US10827756B1 (en) 2018-01-24 2019-01-23 Flucarbazone sodium hemihydrate method and composition
PCT/US2019/014776 WO2019147688A1 (en) 2018-01-24 2019-01-23 Flucarbazone sodium hemihydrate method and composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/879,073 Continuation US10238112B1 (en) 2018-01-24 2018-01-24 Flucarbazone sodium hemihydrate method and composition

Publications (2)

Publication Number Publication Date
US10827756B1 US10827756B1 (en) 2020-11-10
US20200352167A1 true US20200352167A1 (en) 2020-11-12

Family

ID=65811665

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/879,073 Active US10238112B1 (en) 2018-01-24 2018-01-24 Flucarbazone sodium hemihydrate method and composition
US16/961,377 Active US10827756B1 (en) 2018-01-24 2019-01-23 Flucarbazone sodium hemihydrate method and composition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/879,073 Active US10238112B1 (en) 2018-01-24 2018-01-24 Flucarbazone sodium hemihydrate method and composition

Country Status (11)

Country Link
US (2) US10238112B1 (en)
CN (1) CN111050560A (en)
AU (1) AU2019211340B2 (en)
CA (2) CA3058008C (en)
CL (2) CL2019002879A1 (en)
EA (1) EA039211B1 (en)
MX (2) MX2023007657A (en)
TN (1) TN2019000340A1 (en)
UA (1) UA125657C2 (en)
WO (1) WO2019147688A1 (en)
ZA (1) ZA201907027B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10238112B1 (en) * 2018-01-24 2019-03-26 Arysta Lifescience Inc. Flucarbazone sodium hemihydrate method and composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147211A (en) * 1998-10-06 2000-11-14 Novartis Ag Method for treating cyclic phosphate compound
KR100704718B1 (en) * 1999-12-27 2007-04-09 바이엘 코포레이션 A process for the manufacture of the salts of sulfonylaminocarbonyl triazolinones
US6160125A (en) 1999-12-27 2000-12-12 Bayer Corporation Process for the manufacture of sulfonylaminocarbonyl triazolinones in the presence of xylene as solvent
US6147221A (en) 1999-12-27 2000-11-14 Bayer Corporation Process for the manufacture of sulfonylaminocarbonyl triazolinones and salts thereof
US6147222A (en) 1999-12-27 2000-11-14 Bayer Corporation Process for the manufacture of sulfonylaminocarbonyl triazolinones and salts thereof under pH controlled conditions
CN104106589B (en) * 2012-06-28 2016-08-24 永农生物科学有限公司 Containing flucarbazone and picloram or the compound pesticide composition of its salt, preparation and application
US10238112B1 (en) * 2018-01-24 2019-03-26 Arysta Lifescience Inc. Flucarbazone sodium hemihydrate method and composition

Also Published As

Publication number Publication date
ZA201907027B (en) 2021-05-26
AU2019211340B2 (en) 2023-02-02
WO2019147688A1 (en) 2019-08-01
US10827756B1 (en) 2020-11-10
CA3087012A1 (en) 2019-08-01
CA3058008C (en) 2020-07-28
EA039211B1 (en) 2021-12-17
CL2019002879A1 (en) 2020-05-04
CL2020002360A1 (en) 2020-12-28
US10238112B1 (en) 2019-03-26
UA125657C2 (en) 2022-05-11
AU2019211340A1 (en) 2019-10-10
MX2023007660A (en) 2023-07-07
CN111050560A (en) 2020-04-21
EA201992366A1 (en) 2020-03-18
TN2019000340A1 (en) 2021-05-07
CA3058008A1 (en) 2019-08-01
MX2023007657A (en) 2023-07-07

Similar Documents

Publication Publication Date Title
US10827756B1 (en) Flucarbazone sodium hemihydrate method and composition
EP0165537A2 (en) Process for the preparation of heteroaryloxyacetamides
EP0609734A1 (en) Substituted triazolinones and their use as herbicides
JPS61501991A (en) Herbicide aryl triazolinones
DE4435547A1 (en) Sulfonylaminocarbonyltriazolinone with substituents bonded via oxygen and sulfur
EP0039421B1 (en) 1-(trihalogen-methyl-sulfonyl)-4-aryl-1,2,4-triazolidin-5-ones, process for their preparation, fungicides containing them and process for combating fungi with these products
DE2212827A1 (en) Pesticides
EP0021324B1 (en) M-anilido urethanes and herbicidal compositions which contain them
DE2640601A1 (en) COLOR PHOTOGRAPHIC MATERIAL WITH NEW 2-AEQUIVALENT YELLOW COUPLERS
US6147222A (en) Process for the manufacture of sulfonylaminocarbonyl triazolinones and salts thereof under pH controlled conditions
EP1113009B1 (en) A process for the manufacture of the salts of sulfonylaminocarbonyl triazolinones
EP0084665B1 (en) Thiadiazole derivatives, process for their preparation, and their use in combatting unwanted plant growth
DE3407005A1 (en) HYDROXYETHYLAZOLYL OXIME DERIVATES
DE3430215A1 (en) PHENOXYPROPIONIC ACID DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE AS HERBICIDES
SU1681726A3 (en) Method for preparation of iminooxazolidines or theirs additive salts with hydrochloric acid with herbicidal activity
EP0571405B1 (en) Process for preparing 4-alkylsulfonyl-1-alkyl-2-chlorobenzenes and intermediates
EP0119572B1 (en) Substituted phenethyl-triazolyl derivatives, process for their preparation and their use as fungicides
US4204857A (en) 5-Xanthogenato-3-trihalomethyl-1,2,4-thiadiazoles and their use as herbicides
DE3133405A1 (en) 1- (TRIHALOGENMETHYL-SULFENYL) -4-ARYL-1,2,4-TRIAZOLIDIN-5-ONE AND FUNGICIDES CONTAINING THEM
DE68916468T2 (en) 1-Dimethylcarbamoyl-3-substituted-5-substituted-1H-1,2,4-triazoles.
DE3002548C2 (en)
US6147221A (en) Process for the manufacture of sulfonylaminocarbonyl triazolinones and salts thereof
US4228289A (en) Thiolcarbamate derivatives of 3-trihalomethyl-1,2,4-thiadiazoles
CH648307A5 (en) METHOD FOR PRODUCING 3- (N-ARYL-N-ACYL-AMINO) -GAMMA-BUTYROTHIOLACTONES.
EP1911748B1 (en) Method for producing substituted phenylsulfonyl ureas from sulfohalogenides

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: ARYSTA LIFESCIENCE INC, NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PRASAD, VIC, DR.;LARSON, CHRISTOPHER L.;GIBB, CAMERON SEATH, DR.;SIGNING DATES FROM 20181029 TO 20181117;REEL/FRAME:053370/0251

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4