US20200322411A1 - Bandwidth usage reduction employing media treading with reductive edging - Google Patents

Bandwidth usage reduction employing media treading with reductive edging Download PDF

Info

Publication number
US20200322411A1
US20200322411A1 US16/376,346 US201916376346A US2020322411A1 US 20200322411 A1 US20200322411 A1 US 20200322411A1 US 201916376346 A US201916376346 A US 201916376346A US 2020322411 A1 US2020322411 A1 US 2020322411A1
Authority
US
United States
Prior art keywords
media
user
client device
receiving
streaming information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/376,346
Other versions
US11032347B2 (en
Inventor
Bhumik Sanghavi
Alex Hwang
Joel Freeman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Interactive Entertainment LLC
Original Assignee
Sony Interactive Entertainment LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Interactive Entertainment LLC filed Critical Sony Interactive Entertainment LLC
Priority to US16/376,346 priority Critical patent/US11032347B2/en
Assigned to Sony Interactive Entertainment LLC reassignment Sony Interactive Entertainment LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SANGHAVI, BHUMIK
Assigned to Sony Interactive Entertainment LLC reassignment Sony Interactive Entertainment LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FREEMAN, JOEL
Assigned to Sony Interactive Entertainment LLC reassignment Sony Interactive Entertainment LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HWANG, Alex
Priority to PCT/US2020/023992 priority patent/WO2020205288A1/en
Publication of US20200322411A1 publication Critical patent/US20200322411A1/en
Application granted granted Critical
Publication of US11032347B2 publication Critical patent/US11032347B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/25Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
    • H04N21/262Content or additional data distribution scheduling, e.g. sending additional data at off-peak times, updating software modules, calculating the carousel transmission frequency, delaying a video stream transmission, generating play-lists
    • H04N21/26258Content or additional data distribution scheduling, e.g. sending additional data at off-peak times, updating software modules, calculating the carousel transmission frequency, delaying a video stream transmission, generating play-lists for generating a list of items to be played back in a given order, e.g. playlist, or scheduling item distribution according to such list
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/16Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks using machine learning or artificial intelligence
    • H04L65/4084
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/61Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
    • H04L65/612Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio for unicast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/231Content storage operation, e.g. caching movies for short term storage, replicating data over plural servers, prioritizing data for deletion
    • H04N21/23106Content storage operation, e.g. caching movies for short term storage, replicating data over plural servers, prioritizing data for deletion involving caching operations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/239Interfacing the upstream path of the transmission network, e.g. prioritizing client content requests
    • H04N21/2393Interfacing the upstream path of the transmission network, e.g. prioritizing client content requests involving handling client requests
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/24Monitoring of processes or resources, e.g. monitoring of server load, available bandwidth, upstream requests
    • H04N21/2408Monitoring of the upstream path of the transmission network, e.g. client requests
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/25Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
    • H04N21/251Learning process for intelligent management, e.g. learning user preferences for recommending movies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/25Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
    • H04N21/258Client or end-user data management, e.g. managing client capabilities, user preferences or demographics, processing of multiple end-users preferences to derive collaborative data
    • H04N21/25866Management of end-user data
    • H04N21/25891Management of end-user data being end-user preferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/433Content storage operation, e.g. storage operation in response to a pause request, caching operations
    • H04N21/4331Caching operations, e.g. of an advertisement for later insertion during playback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/83Generation or processing of protective or descriptive data associated with content; Content structuring
    • H04N21/845Structuring of content, e.g. decomposing content into time segments
    • H04N21/8456Structuring of content, e.g. decomposing content into time segments by decomposing the content in the time domain, e.g. in time segments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level

Definitions

  • aspects of the present disclosure generally relate to streaming media and more particularly to reduction of bandwidth usage in streaming media using reductive edging techniques.
  • a user's watch habits often reflect that they do not fully watch an episode, show, program or content in one continuous session and jump to the next one.
  • players reflect a greedy behavior where they download all available media segments of an asset that is being played.
  • a TCP protocol would fully download a progressive mp 4 asset on a browser environment on a laptop device even if the video is paused.
  • This inherent greedy behavior of the streaming media devices is to ensure best playback experience on the user device and reduce network errors.
  • these algorithms do not consider the user's watch habits when downloading media segments. More often, a user does not fully watch the program and the content downloaded ends up as simply being a waste of network and provider bandwidth.
  • FIG. 1 is a block diagram showing the network lay of a reductive edging system according to aspects of the present disclosure.
  • FIG. 2 is flow diagram that depicts the method for bandwidth usage reduction in media streaming according to aspects of the present disclosure.
  • FIG. 3 is a block system diagram that shows a standalone Reductive Edging device according to aspects of the present disclosure
  • FIG. 4 is a block system diagram that depicts an embedded Reductive Edging system according to aspects of the present disclosure
  • aspects of the present disclosure involve prospectively requesting media segments based on a user model before receiving a request for the media segments.
  • the user model is based on user streaming information that reflects a user's media consumption habits.
  • the probability of a user abandoning a video at the onset is much higher and decreases as the user spends more time watching the content.
  • the time spent by a user watching streaming content is therefore a good indicator of engagement and may be a valid metric of user behavior with respect to consumption of media.
  • the type of video can also play a role in this.
  • the model may also take into account historical information regarding how much time a user spends consuming media content (e.g., watching videos or listening to audio or reading text) before switching to other content. Alternatively, the model may take into account historical information regarding what fraction of an item of content the user tends to consume.
  • FIG. 1 is a block diagram showing the network lay of a reductive edging system according to aspects of the present disclosure.
  • a remote reductive edging device 102 may be a connected to a network 105 and communicatively coupled to a client device 104 and a Content Delivery Network Server (CDN) 101 through the network 105 .
  • the client device 104 is directly connected to an OTT device 103 through for example and without limitation, an Ethernet cable, Universal Serial Bus (USB) cable, or similar.
  • the directly connected OTT device 103 may be a reductive edging device communicative coupled to the CDN 101 through the network 105 .
  • the OTT device 103 is also communicatively coupled to the remote reductive edging device 102 .
  • a reductive edging device having a predictive user model that decreases the bandwidth usage during streaming and while prospectively caching media segments.
  • a reductive edger works across all client devices to improve streaming media start times.
  • the reductive edger generally improves streaming media times by performing network handshaking operations and storing network information before a client device requires these operations.
  • the reductive edger may also employ prospective caching of media segments before the media segments are requested by the client device.
  • FIG. 2 depicts the method for bandwidth usage reduction in media streaming according to aspects of the present disclosure.
  • the reductive edger device having a predictive user model may prospectively download playlists and media segments as discussed above. Playlists and media segments are sent to the client device upon request 201 . While streaming media segments the Reductive Edging device (RE) may monitor the streaming progress of the client device 202 using user streaming information received from the client device.
  • RE Reductive Edging device
  • the RE may monitor requests for segments sent to RE from the client device.
  • the RE may compare the length of a media segment to the length of time between the time the media segment was sent and the next media segment request is received to determine the user's behavior.
  • a time length between sending the media segment and receiving a request for another media segment may indicate that the user has paused or stopped the stream.
  • the RE may also monitor the media information requested by the client device to determine when the user has stopped streaming one media title and begun streaming another different media title. For example and without limitation after sending a media segment to a client device a request for a media playlist for a different media title indicates that the user has stopped streaming a first media title.
  • the client device may communicate to the RE the position of the play head of the media player during playback of the media segments.
  • the RE may be made aware of all video related requests from a client. Monitoring connotes reading or even capturing information. The key here is what to infer or learn from the captured information.
  • the RE may take the user streaming information and store it 203 .
  • the user streaming information is then used to refine a user model 204 .
  • One of the RE's capabilities is to remediate a client's shortcomings.
  • a client might be very greedy and buffer an unnecessarily large amount of video data that is ultimately wasted. In such situations, the may temper a client's requests knowing, for example, a client already received and buffered a significant amount of data and additional acquisition is likely to be wasteful. By moderating excessive requests, waste may be minimized without risking a user's experience.
  • the RE may have a user model that describes the user's streaming habits.
  • This user model may include by way of example and not by way of limitation a series of thresholds describing the amount of media segments to be downloaded and held in the cache at time points during streaming. These thresholds may represent the average length of time the user streams a media title based on the current position of the media player in a media title.
  • user streaming information such as the length of time the media title has been streaming and point at which the user has stopped streaming may be averaged with the user model at the relevant thresholds to refine the user model.
  • Each user model may be customized based on: client device, user biographical information, or user identifier such as a user account or user identification number.
  • the model may be customized based on factors such as a user's viewing habits (e.g., scrolling, trick playback, etc.), content, genre, time of day, week, month, year, current events (natural disaster, elections, etc.)
  • the model may be customized based on sporting event schedules, e.g., NFL, MLB etc. For example, suppose a user regularly watches a DVR of Formula One racing every Saturday morning at approximately the same time. When the Formula One racing season starts the model could predict that the user is likely to watch this content from start to finish, as opposed to on a Wednesday where the user is more likely to Channel/Content Surf.
  • the user model also accounts for media genre and each threshold in the user model may be different depending on the genre of the media title.
  • the user model is a Neural Network trained to predict the amount of media segments to be downloaded and cached based on the length of time a media title has been watched.
  • the user streaming information may be provided to the neural network and a machine-learning algorithm may be used to further train the neural network with user streaming information. All of the previously mentioned factors can be input to the neural net model.
  • the neural model may be modest, e.g., a shallow learning model, since it is only about a given user and the ‘training’ process can work in the background.
  • the client device may initiate streaming on another media title 205 .
  • the RE uses the refined user model to cache media segments before receiving a request for the media segments from the client device 206 .
  • the RE Upon receiving a request for a media segment, the RE sends the media segment to the client device 207 .
  • additional media segments may be downloaded before being requested by the client device based on the refined user model.
  • FIG. 3 shows a standalone Reductive Edging device according to aspects of the present disclosure.
  • the standalone Reductive Edging device or Edger 300 may be coupled to a local OTT device or client device 302 through a network interface 307 over a LAN or WAN.
  • the standalone Reductive Edging device may be in communication through the network interface 307 with a non-local device 303 e.g., servers or another client, through a large network 304 such as the internet.
  • the client device is connected to the stand alone Reductive Edging device through a communication bus (not shown) such as, without limitation, a peripheral interconnect (PCI) bus, PCI express bus, Universal Serial Bus (USB), Ethernet port, Fire-wire connector or similar interface.
  • PCI peripheral interconnect
  • USB Universal Serial Bus
  • the standalone Reductive Edging device 300 may include one or more processor units 306 , which may be configured according to well-known architectures, such as, e.g., single-core, dual-core, quad-core, multi-core, processor-coprocessor, cell processor, and the like.
  • the standalone Reductive Edging device 300 may also include one or more memory units 305 (e.g., random access memory (RAM), dynamic random access memory (DRAM), read-only memory (ROM), and the like).
  • RAM random access memory
  • DRAM dynamic random access memory
  • ROM read-only memory
  • the processor unit 306 may execute one or more instructions 308 , portions of which may be stored in the memory 305 and the processor 306 may be operatively coupled to the memory through a bus or bus type connection.
  • the instructions 308 may be configured to implement the method for bandwidth usage reduction in streaming systems shown in FIG. 2 as well as instructions for refining a user model.
  • the Memory 305 may contain instructions for storing Playlists and Link locations and a Protocol Stack defining HLS server locations.
  • the Memory 305 may also contain the HLS Library 310 , user streaming data 314 , a Protocol Stack 311 , and a user model 312 .
  • the user model 312 could be static for simplicity or dynamic like a shallow learning neural net, as discussed above. Once a user model has been formed, one merely supplies the input and the model can produce guidance on whether to temper user requests to better manage bandwidth usage.
  • the term “protocol stack” or network stack refers to an implementation of a computer networking protocol suite or protocol family.
  • a protocol suite is a definition of a communication protocol
  • a protocol stack is the software implementation of the protocol suite.
  • Individual protocols within a suite are often designed as software modules, each having a single purpose in mind to facilitate design and evaluation. Because each protocol module usually communicates with two others, they are commonly imagined as layers in a stack of protocols. The lowest level protocol deals with low-level interaction with the communications hardware. Higher layers add more features and capability. User applications usually deal only with the topmost layers.
  • the protocol stack 311 may include the following protocols at the following layers: Hyper Text Transfer Protocol (HTTP) at the Application layer; Transfer Control Protocol (TCP) at the Transport layer; Internet Protocol (IP) at the Internet/Network Layer; Ethernet at the Data Link/Link layer; and IEEE 802.3u at the Physical layer.
  • HTTP Hyper Text Transfer Protocol
  • TCP Transfer Control Protocol
  • IP Internet Protocol
  • Ethernet Ethernet at the Data Link/Link layer
  • IEEE 802.3u at the Physical layer.
  • the instructions 308 may further implement analyzing link locations within web resources and storing the URL of the links and location of the links within the converted video frame 314 .
  • the Cache 309 may also be located in memory 305 .
  • the standalone Reductive Edging device 300 may include a network interface 307 to facilitate communication via an electronic communications network 304 .
  • the network interface 307 may be configured to implement wired or wireless communication over local area networks and wide area networks such as the Internet.
  • the device 300 may send and receive data and/or requests for files via one or more message packets over the network 304 .
  • Message packets sent over the network 304 may temporarily be stored in a cache 309 in memory 305 .
  • the client device 302 may connect through the network interface 307 to the electronic communications network 304 .
  • the client device 303 may be in communication with the standalone Reductive Edging device 300 over the electronic communication network 304 .
  • FIG. 4 depicts an embedded Reductive Edging system 400 according to aspects of the present disclosure.
  • the Reductive Edging System 400 may be embedded anywhere that can access both content and the client device.
  • the embedded Reductive Edging system may be embedded in a CDN server, an OTT device, e.g., a television, coupled to a user's input device 402 .
  • the user's input device 402 may be a controller, touch screen, microphone, keyboard, mouse, joystick or other device that allows the user to input information including sound data in to the system.
  • the computing device of the embedded Reductive Edging system 400 may include one or more processor units 403 , which may be configured according to well-known architectures, such as, e.g., single-core, dual-core, quad-core, multi-core, processor-coprocessor, cell processor, and the like.
  • the computing device may also include one or more memory units 404 (e.g., random access memory (RAM), dynamic random access memory (DRAM), read-only memory (ROM), and the like).
  • RAM random access memory
  • DRAM dynamic random access memory
  • ROM read-only memory
  • the processor unit 403 may execute one or more programs, portions of which may be stored in the memory 404 and the processor 403 may be operatively coupled to the memory, e.g., by accessing the memory via a data bus 405 .
  • the programs may be configured to implement streaming media through HLS systems 408 .
  • the Memory 404 may contain information about connections between the system and one or more streaming servers 410 .
  • the Memory 404 may also contain a buffer of media segments 409 .
  • the Media segments and connection information may also be stored as data 418 in the Mass Store 418 .
  • the computing device 400 may also include well-known support circuits, such as input/output (I/O) 407 , circuits, power supplies (P/S) 411 , a clock (CLK) 412 , and cache 413 , which may communicate with other components of the system, e.g., via the bus 405 .
  • the computing device may include a network interface 414 .
  • the processor unit 403 and network interface 414 may be configured to implement a local area network (LAN) or personal area network (PAN), via a suitable network protocol, e.g., Bluetooth, for a PAN.
  • LAN local area network
  • PAN personal area network
  • the computing device may optionally include a mass storage device 415 such as a disk drive, CD-ROM drive, tape drive, flash memory, or the like, and the mass storage device may store programs and/or data.
  • the computing device may also include a user interface 416 to facilitate interaction between the system and a user.
  • the user interface may include a monitor, Television screen, speakers, headphones or other devices that communicate information to the user.
  • the computing device 400 may include a network interface 414 to facilitate communication via an electronic communications network 420 .
  • the network interface 414 may be configured to implement wired or wireless communication over local area networks and wide area networks such as the Internet.
  • the device 400 may send and receive data and/or requests for files via one or more message packets over the network 420 .
  • Message packets sent over the network 420 may temporarily be stored in a buffer 409 in memory 404 .
  • the embedded Reductive Edging or embedded Edger 421 may be an embedded hardware component of a CDN server 400 , which may be coupled to the main processor via the bus and requests may be received from applications, e.g., streaming applications, running on the client device.
  • the embedded Edger 421 may initiate and intercept network communications directed toward a CDN or other servers.
  • the embedded Edger 421 may lack a network interface or the network interface may not be used.
  • the embedded Edger, the functions of the edger may be implemented in streaming software 408 stored in the memory 404 or in programs 417 stored in the mass store 415 and executed on the processor 403 .
  • the embedded Edger 421 may be an external device coupled to the client device 400 , e.g., via a local non-network connection, such as the I/O functions 407 .
  • the processor of the embedded Edger unit 421 may execute one or more instructions 424 , portions of which may be stored in the edger memory 422 and the processor 423 may be operatively coupled to the memory 422 through a bus or bus type connection.
  • the instructions 424 may be configured to implement the method for implementing interactive video in non-browser based streaming systems shown in FIG. 2 .
  • the Memory 422 may contain instructions for storing Playlists and a Protocol Stack defining HLS server locations.
  • the Memory 422 may also contain the HLS Library 310 , the Protocol Stack 311 , user streaming data 314 and a user model 312 .
  • the instructions 324 may further implement storage of media segments as data 325 during operation.
  • the instructions 424 may further implement using user information for refinement of a user model 314 .
  • the HLS Library, Protocol stack and media segments may be stored on the client device 400 in the buffer 408 or as connection information 408 in memory 404 or as data 418 in the Mass Store 415 .
  • the components, process steps, and/or data structures may be implemented using various types of operating systems; computing platforms; user interfaces/displays, including personal or laptop computers, video game consoles, PDAs and other handheld devices, such as cellular telephones, tablet computers, portable gaming devices; and/or general purpose machines.
  • computing platforms including personal or laptop computers, video game consoles, PDAs and other handheld devices, such as cellular telephones, tablet computers, portable gaming devices; and/or general purpose machines.
  • devices of a less general purpose nature such as hardwired devices, field programmable gate arrays (FOGs), application specific integrated circuits (ASICs), or the like, may also be used without departing from the scope and spirit of the inventive concepts disclosed herein.
  • FOGs field programmable gate arrays
  • ASICs application specific integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Computer Graphics (AREA)
  • Information Transfer Between Computers (AREA)

Abstract

A method system and computer program product for bandwidth usage reduction in media streaming, comprises, receiving user streaming information from a client device and refining a user model with the user streaming information. The user streaming information reflects a user's media consumption habits. Subsequently a request for a media playlist from the client device is received and media segments are prospectively requested based on the user model before receiving a request for the media segments. The requested media playlist is sent to the client device; and the prospectively requested media segments are sent upon receiving a request for a media segment from the client device.

Description

    FIELD OF THE INVENTION
  • Aspects of the present disclosure generally relate to streaming media and more particularly to reduction of bandwidth usage in streaming media using reductive edging techniques.
  • BACKGROUND OF THE INVENTION
  • A user's watch habits often reflect that they do not fully watch an episode, show, program or content in one continuous session and jump to the next one. Depending on the encoding standard and/or the buffer available on the client devices, players reflect a greedy behavior where they download all available media segments of an asset that is being played.
  • For example, a TCP protocol would fully download a progressive mp4 asset on a browser environment on a laptop device even if the video is paused. This inherent greedy behavior of the streaming media devices is to ensure best playback experience on the user device and reduce network errors. However, these algorithms do not consider the user's watch habits when downloading media segments. More often, a user does not fully watch the program and the content downloaded ends up as simply being a waste of network and provider bandwidth.
  • It is within this context that aspects of the present disclosure arise.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Objects and advantages of aspects of the present disclosure will become apparent upon reading, the following detailed description and upon reference to the accompanying drawings in which:
  • FIG. 1 is a block diagram showing the network lay of a reductive edging system according to aspects of the present disclosure.
  • FIG. 2 is flow diagram that depicts the method for bandwidth usage reduction in media streaming according to aspects of the present disclosure.
  • FIG. 3 is a block system diagram that shows a standalone Reductive Edging device according to aspects of the present disclosure
  • FIG. 4 is a block system diagram that depicts an embedded Reductive Edging system according to aspects of the present disclosure
  • DESCRIPTION OF THE SPECIFIC EMBODIMENTS
  • Although the following detailed description contains many specific details for the purposes of illustration, anyone of ordinary skill in the art will appreciate that many variations and alterations to the following details are within the scope of the invention. Accordingly, the exemplary embodiments of the invention described below are set forth without any loss of generality to, and without imposing limitations upon, the claimed invention.
  • Introduction
  • Aspects of the present disclosure involve prospectively requesting media segments based on a user model before receiving a request for the media segments. The user model is based on user streaming information that reflects a user's media consumption habits. By way of example, and not by way of limitation, the probability of a user abandoning a video at the onset is much higher and decreases as the user spends more time watching the content. The time spent by a user watching streaming content is therefore a good indicator of engagement and may be a valid metric of user behavior with respect to consumption of media. In some implementations, the type of video can also play a role in this. For example if historical data shows that the user binge watches a certain television series this information can be used as a metric in the algorithm when playing that show as opposed to a new show the user has never seen before. The model may also take into account historical information regarding how much time a user spends consuming media content (e.g., watching videos or listening to audio or reading text) before switching to other content. Alternatively, the model may take into account historical information regarding what fraction of an item of content the user tends to consume.
  • FIG. 1 is a block diagram showing the network lay of a reductive edging system according to aspects of the present disclosure. A remote reductive edging device 102 may be a connected to a network 105 and communicatively coupled to a client device 104 and a Content Delivery Network Server (CDN) 101 through the network 105. In other embodiments, the client device 104 is directly connected to an OTT device 103 through for example and without limitation, an Ethernet cable, Universal Serial Bus (USB) cable, or similar. In some embodiments, the directly connected OTT device 103 may be a reductive edging device communicative coupled to the CDN 101 through the network 105. In other embodiments, the OTT device 103 is also communicatively coupled to the remote reductive edging device 102.
  • According to aspects of the present disclosure, a reductive edging device having a predictive user model that decreases the bandwidth usage during streaming and while prospectively caching media segments. A reductive edger works across all client devices to improve streaming media start times. The reductive edger generally improves streaming media times by performing network handshaking operations and storing network information before a client device requires these operations. The reductive edger may also employ prospective caching of media segments before the media segments are requested by the client device. These operations are described in Co-pending application No. 16/191,341 the contents of which are incorporated by reference herein for all purposes.
  • Method for Bandwidth Usage Reduction
  • FIG. 2 depicts the method for bandwidth usage reduction in media streaming according to aspects of the present disclosure. Initially the reductive edger device having a predictive user model may prospectively download playlists and media segments as discussed above. Playlists and media segments are sent to the client device upon request 201. While streaming media segments the Reductive Edging device (RE) may monitor the streaming progress of the client device 202 using user streaming information received from the client device.
  • By way of example and not by way of limitation the RE may monitor requests for segments sent to RE from the client device. The RE may compare the length of a media segment to the length of time between the time the media segment was sent and the next media segment request is received to determine the user's behavior. By way of example, and not by way of limitation, a time length between sending the media segment and receiving a request for another media segment may indicate that the user has paused or stopped the stream. The RE may also monitor the media information requested by the client device to determine when the user has stopped streaming one media title and begun streaming another different media title. For example and without limitation after sending a media segment to a client device a request for a media playlist for a different media title indicates that the user has stopped streaming a first media title. In some embodiments of the present disclosure, the client device may communicate to the RE the position of the play head of the media player during playback of the media segments. The RE may be made aware of all video related requests from a client. Monitoring connotes reading or even capturing information. The key here is what to infer or learn from the captured information.
  • The RE may take the user streaming information and store it 203. The user streaming information is then used to refine a user model 204. One of the RE's capabilities is to remediate a client's shortcomings. A client might be very greedy and buffer an unnecessarily large amount of video data that is ultimately wasted. In such situations, the may temper a client's requests knowing, for example, a client already received and buffered a significant amount of data and additional acquisition is likely to be wasteful. By moderating excessive requests, waste may be minimized without risking a user's experience.
  • By way of example and not by way of limitation the RE may have a user model that describes the user's streaming habits. This user model may include by way of example and not by way of limitation a series of thresholds describing the amount of media segments to be downloaded and held in the cache at time points during streaming. These thresholds may represent the average length of time the user streams a media title based on the current position of the media player in a media title. In this case user streaming information such as the length of time the media title has been streaming and point at which the user has stopped streaming may be averaged with the user model at the relevant thresholds to refine the user model. Each user model may be customized based on: client device, user biographical information, or user identifier such as a user account or user identification number. In addition to the static demographic information, the model may be customized based on factors such as a user's viewing habits (e.g., scrolling, trick playback, etc.), content, genre, time of day, week, month, year, current events (natural disaster, elections, etc.) In some implementations the model may be customized based on sporting event schedules, e.g., NFL, MLB etc. For example, suppose a user regularly watches a DVR of Formula One racing every Saturday morning at approximately the same time. When the Formula One racing season starts the model could predict that the user is likely to watch this content from start to finish, as opposed to on a Wednesday where the user is more likely to Channel/Content Surf.
  • In some embodiments, the user model also accounts for media genre and each threshold in the user model may be different depending on the genre of the media title. In alternative embodiments, the user model is a Neural Network trained to predict the amount of media segments to be downloaded and cached based on the length of time a media title has been watched. The user streaming information may be provided to the neural network and a machine-learning algorithm may be used to further train the neural network with user streaming information. All of the previously mentioned factors can be input to the neural net model. The neural model may be modest, e.g., a shallow learning model, since it is only about a given user and the ‘training’ process can work in the background.
  • Subsequently, the client device may initiate streaming on another media title 205. The RE uses the refined user model to cache media segments before receiving a request for the media segments from the client device 206. Upon receiving a request for a media segment, the RE sends the media segment to the client device 207. As streaming continues, additional media segments may be downloaded before being requested by the client device based on the refined user model.
  • System for Bandwidth Usage Reduction
  • FIG. 3 shows a standalone Reductive Edging device according to aspects of the present disclosure. The standalone Reductive Edging device or Edger 300 may be coupled to a local OTT device or client device 302 through a network interface 307 over a LAN or WAN. In other alternative implementation the standalone Reductive Edging device may be in communication through the network interface 307 with a non-local device 303 e.g., servers or another client, through a large network 304 such as the internet. In some implementations the client device is connected to the stand alone Reductive Edging device through a communication bus (not shown) such as, without limitation, a peripheral interconnect (PCI) bus, PCI express bus, Universal Serial Bus (USB), Ethernet port, Fire-wire connector or similar interface.
  • The standalone Reductive Edging device 300 may include one or more processor units 306, which may be configured according to well-known architectures, such as, e.g., single-core, dual-core, quad-core, multi-core, processor-coprocessor, cell processor, and the like. The standalone Reductive Edging device 300 may also include one or more memory units 305 (e.g., random access memory (RAM), dynamic random access memory (DRAM), read-only memory (ROM), and the like).
  • The processor unit 306 may execute one or more instructions 308, portions of which may be stored in the memory 305 and the processor 306 may be operatively coupled to the memory through a bus or bus type connection. The instructions 308 may be configured to implement the method for bandwidth usage reduction in streaming systems shown in FIG. 2 as well as instructions for refining a user model. Additionally the Memory 305 may contain instructions for storing Playlists and Link locations and a Protocol Stack defining HLS server locations.
  • The Memory 305 may also contain the HLS Library 310, user streaming data 314, a Protocol Stack 311, and a user model 312. The user model 312 could be static for simplicity or dynamic like a shallow learning neural net, as discussed above. Once a user model has been formed, one merely supplies the input and the model can produce guidance on whether to temper user requests to better manage bandwidth usage. As used, herein, the term “protocol stack” or network stack refers to an implementation of a computer networking protocol suite or protocol family. In general terms, a protocol suite is a definition of a communication protocol, and a protocol stack is the software implementation of the protocol suite. Individual protocols within a suite are often designed as software modules, each having a single purpose in mind to facilitate design and evaluation. Because each protocol module usually communicates with two others, they are commonly imagined as layers in a stack of protocols. The lowest level protocol deals with low-level interaction with the communications hardware. Higher layers add more features and capability. User applications usually deal only with the topmost layers.
  • By way of example, and not by way of limitation, the protocol stack 311 may include the following protocols at the following layers: Hyper Text Transfer Protocol (HTTP) at the Application layer; Transfer Control Protocol (TCP) at the Transport layer; Internet Protocol (IP) at the Internet/Network Layer; Ethernet at the Data Link/Link layer; and IEEE 802.3u at the Physical layer.
  • The instructions 308 may further implement analyzing link locations within web resources and storing the URL of the links and location of the links within the converted video frame 314. The Cache 309 may also be located in memory 305.
  • The standalone Reductive Edging device 300 may include a network interface 307 to facilitate communication via an electronic communications network 304. The network interface 307 may be configured to implement wired or wireless communication over local area networks and wide area networks such as the Internet. The device 300 may send and receive data and/or requests for files via one or more message packets over the network 304. Message packets sent over the network 304 may temporarily be stored in a cache 309 in memory 305. The client device 302 may connect through the network interface 307 to the electronic communications network 304. Alternatively, the client device 303 may be in communication with the standalone Reductive Edging device 300 over the electronic communication network 304.
  • FIG. 4 depicts an embedded Reductive Edging system 400 according to aspects of the present disclosure. In general, the Reductive Edging System 400 may be embedded anywhere that can access both content and the client device. By way of example, and not by way of limitation, the embedded Reductive Edging system may be embedded in a CDN server, an OTT device, e.g., a television, coupled to a user's input device 402. The user's input device 402 may be a controller, touch screen, microphone, keyboard, mouse, joystick or other device that allows the user to input information including sound data in to the system.
  • The computing device of the embedded Reductive Edging system 400 may include one or more processor units 403, which may be configured according to well-known architectures, such as, e.g., single-core, dual-core, quad-core, multi-core, processor-coprocessor, cell processor, and the like. The computing device may also include one or more memory units 404 (e.g., random access memory (RAM), dynamic random access memory (DRAM), read-only memory (ROM), and the like).
  • The processor unit 403 may execute one or more programs, portions of which may be stored in the memory 404 and the processor 403 may be operatively coupled to the memory, e.g., by accessing the memory via a data bus 405. The programs may be configured to implement streaming media through HLS systems 408. Additionally the Memory 404 may contain information about connections between the system and one or more streaming servers 410. The Memory 404 may also contain a buffer of media segments 409. The Media segments and connection information may also be stored as data 418 in the Mass Store 418.
  • The computing device 400 may also include well-known support circuits, such as input/output (I/O) 407, circuits, power supplies (P/S) 411, a clock (CLK) 412, and cache 413, which may communicate with other components of the system, e.g., via the bus 405. The computing device may include a network interface 414. The processor unit 403 and network interface 414 may be configured to implement a local area network (LAN) or personal area network (PAN), via a suitable network protocol, e.g., Bluetooth, for a PAN. The computing device may optionally include a mass storage device 415 such as a disk drive, CD-ROM drive, tape drive, flash memory, or the like, and the mass storage device may store programs and/or data. The computing device may also include a user interface 416 to facilitate interaction between the system and a user. The user interface may include a monitor, Television screen, speakers, headphones or other devices that communicate information to the user.
  • The computing device 400 may include a network interface 414 to facilitate communication via an electronic communications network 420. The network interface 414 may be configured to implement wired or wireless communication over local area networks and wide area networks such as the Internet. The device 400 may send and receive data and/or requests for files via one or more message packets over the network 420. Message packets sent over the network 420 may temporarily be stored in a buffer 409 in memory 404.
  • In some implementations, the embedded Reductive Edging or embedded Edger 421 may be an embedded hardware component of a CDN server 400, which may be coupled to the main processor via the bus and requests may be received from applications, e.g., streaming applications, running on the client device. In some implementations, the embedded Edger 421 may initiate and intercept network communications directed toward a CDN or other servers. In these implementations, the embedded Edger 421 may lack a network interface or the network interface may not be used. In other implementations, the embedded Edger, the functions of the edger may be implemented in streaming software 408 stored in the memory 404 or in programs 417 stored in the mass store 415 and executed on the processor 403.
  • In some alternative implementation the embedded Edger 421 may be an external device coupled to the client device 400, e.g., via a local non-network connection, such as the I/O functions 407.
  • The processor of the embedded Edger unit 421 may execute one or more instructions 424, portions of which may be stored in the edger memory 422 and the processor 423 may be operatively coupled to the memory 422 through a bus or bus type connection. The instructions 424 may be configured to implement the method for implementing interactive video in non-browser based streaming systems shown in FIG. 2. Additionally the Memory 422 may contain instructions for storing Playlists and a Protocol Stack defining HLS server locations. The Memory 422 may also contain the HLS Library 310, the Protocol Stack 311, user streaming data 314 and a user model 312. The instructions 324 may further implement storage of media segments as data 325 during operation. The instructions 424 may further implement using user information for refinement of a user model 314. Alternatively the HLS Library, Protocol stack and media segments may be stored on the client device 400 in the buffer 408 or as connection information 408 in memory 404 or as data 418 in the Mass Store 415.
  • In the interest of clarity, not all of the routine features of the implementations described herein are shown and described. It will be understood by those skilled in the art that in the development of any such implementations, numerous implementation-specific decisions must be made in order to achieve the developer's specific goals, such as compliance with application- and business-related constraints, and that these specific goals will vary from one implementation to another and from one developer to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking of engineering for those of ordinary skill in the art having the benefit of the present disclosure.
  • In accordance with aspects of the present disclosure, the components, process steps, and/or data structures may be implemented using various types of operating systems; computing platforms; user interfaces/displays, including personal or laptop computers, video game consoles, PDAs and other handheld devices, such as cellular telephones, tablet computers, portable gaming devices; and/or general purpose machines. In addition, those of ordinary skill in the art will recognize that devices of a less general purpose nature, such as hardwired devices, field programmable gate arrays (FOGs), application specific integrated circuits (ASICs), or the like, may also be used without departing from the scope and spirit of the inventive concepts disclosed herein.
  • While the above is a complete description of the preferred embodiment of the present invention, it is possible to use various alternatives, modifications and equivalents. Therefore, the scope of the present invention should be determined not with reference to the above description but should, instead, be determined with reference to the appended claims, along with their full scope of equivalents. Any feature, whether preferred or not, may be combined with any other feature, whether preferred or not. In the claims that follow, the indefinite article “A”, or “An” refers to a quantity of one or more of the item following the article, except where expressly stated otherwise. The appended claims are not to be interpreted as including means-plus-function limitations, unless such a limitation is explicitly recited in a given claim using the phrase “means for.”

Claims (20)

1. A method for bandwidth usage reduction in media streaming, comprising:
receiving user streaming information from a client device, wherein the user streaming information reflects a user's media consumption habits;
refining a user model with the user streaming information wherein the user model includes at least one threshold for an amount of media segments to be downloaded and held in the cache at a time point during streaming;
receiving a request for a media playlist from the client device;
prospectively requesting a media segment based on the user model before receiving a request for the media segments;
sending the requested media playlist to the client device; and
sending the prospectively requested media segments upon receiving a request for a media segment from the client device.
2. The method of claim 1 wherein receiving user streaming information includes at least requests for media segments from the client device and determining the time between requests for media segments and the time length of each media segment.
3. The method of claim 2 wherein receiving user streaming information also includes media information.
4. The method of claim 1, wherein receiving user streaming information includes the play head position for the media playing on the client device.
5. The method of claim 1 wherein refining a user mode with the user streaming information includes at least changing a threshold level for segments in a cache based on the user streaming information.
6. The method of claim 2 wherein the user model changes based on the media information.
7. The method of claim 1 wherein refining a user model includes training a neural network using a machine learning algorithm.
8. A system for bandwidth usage reduction in media streaming comprising:
a processor;
memory coupled to the processor;
non-transitory instructions in the memory that when executed cause the processor to carry out the method comprising:
receiving user streaming information from a client device, wherein the user streaming information reflects a user's media consumption habits;
refining a user model with the user streaming information wherein the user model includes at least one threshold for an amount of media segments to be downloaded and held in the cache at a time point during streaming;
receiving a request for a media playlist from the client device;
prospectively requesting a media segment based on the user model before receiving a request for the media segments;
sending the requested media playlist to the client device; and
sending the prospectively requested media segments upon receiving a request for a media segment from the client device.
9. The system of claim 8 wherein receiving user streaming information includes at least requests for media segments from the client device and determining the time between requests for media segments and the time length of each media segment.
10. The system of claim 9 wherein receiving user streaming information also includes media information.
11. The system of claim 8, wherein receiving user streaming information includes the play head position for the media playing on the client device.
12. The system of claim 8 wherein refining a user mode with the user streaming information includes at least changing a threshold level for segments in a cache based on the user streaming information.
13. The system of claim 9 wherein the user model changes based on the media information.
14. The system of claim 8 wherein refining a user model includes training a neural network using a machine learning algorithm.
15. Instructions embedded in a non-transitory computer readable medium that cause a computer to carry out the method comprising:
receiving user streaming information from a client device, wherein the user streaming information reflects a user's media consumption habits;
refining a user model with the user streaming information wherein the user model includes at least one threshold for an amount of media segments to be downloaded and held in the cache at a time point during streaming;
receiving a request for a media playlist from the client device;
prospectively requesting a media segment based on the user model before receiving a request for the media segments;
sending the requested media playlist to the client device; and
sending the prospectively requested media segments upon receiving a request for a media segment from the client device.
16. The instructions of claim 15 wherein receiving user streaming information includes at least requests for media segments from the client device and determining the time between requests for media segments and the time length of each media segment.
17. The instructions of claim 16 wherein receiving user streaming information also includes media information.
18. The instructions of claim 15, wherein receiving user streaming information includes the play head position for the media playing on the client device.
19. The instructions of claim 15 wherein refining a user mode with the user streaming information includes at least changing a threshold level for segments in a cache based on the user streaming information.
20. The instructions of claim 16 wherein the user model changes based on the media information.
US16/376,346 2019-04-05 2019-04-05 Bandwidth usage reduction employing media treading with reductive edging Active US11032347B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/376,346 US11032347B2 (en) 2019-04-05 2019-04-05 Bandwidth usage reduction employing media treading with reductive edging
PCT/US2020/023992 WO2020205288A1 (en) 2019-04-05 2020-03-20 Bandwidth usage reduction employing media treading with reductive edging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16/376,346 US11032347B2 (en) 2019-04-05 2019-04-05 Bandwidth usage reduction employing media treading with reductive edging

Publications (2)

Publication Number Publication Date
US20200322411A1 true US20200322411A1 (en) 2020-10-08
US11032347B2 US11032347B2 (en) 2021-06-08

Family

ID=72662608

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/376,346 Active US11032347B2 (en) 2019-04-05 2019-04-05 Bandwidth usage reduction employing media treading with reductive edging

Country Status (2)

Country Link
US (1) US11032347B2 (en)
WO (1) WO2020205288A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220191601A1 (en) * 2019-07-12 2022-06-16 Carrier Corporation A system and method for streaming video/s

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6947935B1 (en) * 2001-04-04 2005-09-20 Microsoft Corporation Training, inference and user interface for guiding the caching of media content on local stores
CA2938849C (en) * 2007-02-01 2022-10-18 Invidi Technologies Corporation Verifying and encouraging asset consumption in a communications network
US20170104840A1 (en) * 2015-10-08 2017-04-13 Perry M. Spagnola Adaptive system cache
WO2017124083A1 (en) * 2016-01-15 2017-07-20 Vid Scale, Inc. Scalable coding based video distribution
JP6684419B2 (en) * 2016-03-02 2020-04-22 北川工業株式会社 contact
US10979778B2 (en) * 2017-02-01 2021-04-13 Rovi Guides, Inc. Systems and methods for selecting type of secondary content to present to a specific subset of viewers of a media asset
US10158891B1 (en) * 2017-06-05 2018-12-18 Verizon Digital Media Services Inc. Prefetcher with adaptive stream segment prefetch window based on client associated thresholds
US20180365270A1 (en) * 2017-06-19 2018-12-20 Get Attached, Inc. Context aware digital media browsing
US10819645B2 (en) * 2017-09-20 2020-10-27 Futurewei Technologies, Inc. Combined method for data rate and field of view size adaptation for virtual reality and 360 degree video streaming
US11036357B2 (en) * 2017-09-27 2021-06-15 Salesforce.Com, Inc. Generating or updating cross-community streams
US11196669B2 (en) * 2018-05-17 2021-12-07 At&T Intellectual Property I, L.P. Network routing of media streams based upon semantic contents

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220191601A1 (en) * 2019-07-12 2022-06-16 Carrier Corporation A system and method for streaming video/s
US11622164B2 (en) * 2019-07-12 2023-04-04 Carrier Corporation System and method for streaming video/s

Also Published As

Publication number Publication date
US11032347B2 (en) 2021-06-08
WO2020205288A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
US10397293B2 (en) Dynamic chunking for delivery instances
US8645504B2 (en) Dynamic chunking for delivery instances
US20190261039A1 (en) Live video streaming system and method
US9344517B2 (en) Downloading and adaptive streaming of multimedia content to a device with cache assist
US8615630B2 (en) Systems and methods for managing data storage
CN111277869B (en) Video playing method, device, equipment and storage medium
US9544346B1 (en) Systems and methods for selecting a node for media streaming
CA2888218C (en) Playback stall avoidance in adaptive media streaming
US10205984B1 (en) Dynamic bitrate selection for streaming media
US20130238740A1 (en) Caching of Fragmented Streaming Media
US20130104024A1 (en) Optimization of web page content including video
KR20160032109A (en) Game clip popularity based control
US10985988B2 (en) Profile generation for bandwidth management
US9325761B1 (en) Content provider selection system
CA2867161C (en) Dynamic chunking for delivery instances
US11637883B2 (en) Method to insert program boundaries in linear video for adaptive bitrate streaming
CN107734356A (en) Video image quality adjustment method, device, terminal device and storage medium
US11032347B2 (en) Bandwidth usage reduction employing media treading with reductive edging
Phong et al. Joint preloading and bitrate adaptation for short video streaming
KR20190032100A (en) Method and apparatus for providing advertisement image
US10992975B1 (en) Techniques for short buffer adaptive bitrate streaming
Hou et al. Gamora: Learning-Based Buffer-Aware Preloading for Adaptive Short Video Streaming
WO2014137639A1 (en) Dynamic chunking for delivery instances

Legal Events

Date Code Title Description
AS Assignment

Owner name: SONY INTERACTIVE ENTERTAINMENT LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FREEMAN, JOEL;REEL/FRAME:048809/0741

Effective date: 20190404

Owner name: SONY INTERACTIVE ENTERTAINMENT LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HWANG, ALEX;REEL/FRAME:048809/0794

Effective date: 20190405

Owner name: SONY INTERACTIVE ENTERTAINMENT LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SANGHAVI, BHUMIK;REEL/FRAME:048809/0642

Effective date: 20190403

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE