US20200316265A1 - Multiphase gel - Google Patents
Multiphase gel Download PDFInfo
- Publication number
- US20200316265A1 US20200316265A1 US16/863,775 US202016863775A US2020316265A1 US 20200316265 A1 US20200316265 A1 US 20200316265A1 US 202016863775 A US202016863775 A US 202016863775A US 2020316265 A1 US2020316265 A1 US 2020316265A1
- Authority
- US
- United States
- Prior art keywords
- gel
- composition
- tissue
- solid
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012071 phase Substances 0.000 claims abstract description 98
- 239000007790 solid phase Substances 0.000 claims abstract description 82
- 210000001519 tissue Anatomy 0.000 claims description 131
- 239000000203 mixture Substances 0.000 claims description 116
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 56
- 239000007943 implant Substances 0.000 claims description 51
- 230000002209 hydrophobic effect Effects 0.000 claims description 50
- 230000004888 barrier function Effects 0.000 claims description 20
- 230000007704 transition Effects 0.000 claims description 10
- 239000000758 substrate Substances 0.000 claims description 8
- 210000004872 soft tissue Anatomy 0.000 claims description 7
- 230000007423 decrease Effects 0.000 claims description 6
- 230000002787 reinforcement Effects 0.000 claims 1
- 230000000452 restraining effect Effects 0.000 claims 1
- 239000000499 gel Substances 0.000 abstract description 234
- 229920000642 polymer Polymers 0.000 abstract description 110
- 239000007787 solid Substances 0.000 abstract description 47
- 230000015572 biosynthetic process Effects 0.000 abstract description 38
- 230000035876 healing Effects 0.000 abstract description 31
- 239000000017 hydrogel Substances 0.000 abstract description 28
- 208000031737 Tissue Adhesions Diseases 0.000 abstract description 12
- 238000013461 design Methods 0.000 abstract description 6
- 238000000034 method Methods 0.000 description 64
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 57
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical group Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 55
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 46
- 150000004676 glycans Chemical class 0.000 description 43
- -1 hydroxyl compounds Chemical class 0.000 description 42
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 39
- 229920002674 hyaluronan Polymers 0.000 description 39
- 239000000284 extract Substances 0.000 description 37
- 239000007788 liquid Substances 0.000 description 37
- 241001608538 Boswellia Species 0.000 description 36
- 235000018062 Boswellia Nutrition 0.000 description 36
- KIUKXJAPPMFGSW-MNSSHETKSA-N hyaluronan Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)C1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H](C(O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-MNSSHETKSA-N 0.000 description 36
- 229940099552 hyaluronan Drugs 0.000 description 35
- 229920001282 polysaccharide Polymers 0.000 description 34
- 239000005017 polysaccharide Substances 0.000 description 34
- 108090000623 proteins and genes Proteins 0.000 description 34
- 210000004027 cell Anatomy 0.000 description 33
- 230000003196 chaotropic effect Effects 0.000 description 32
- 239000000463 material Substances 0.000 description 32
- 239000000243 solution Substances 0.000 description 31
- 238000007792 addition Methods 0.000 description 30
- 125000005442 diisocyanate group Chemical group 0.000 description 30
- 102000004169 proteins and genes Human genes 0.000 description 29
- 239000000126 substance Substances 0.000 description 29
- 230000008569 process Effects 0.000 description 28
- 239000000047 product Substances 0.000 description 28
- 235000018102 proteins Nutrition 0.000 description 28
- 238000006243 chemical reaction Methods 0.000 description 26
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 26
- 239000010410 layer Substances 0.000 description 26
- 229920002635 polyurethane Polymers 0.000 description 25
- 239000004814 polyurethane Substances 0.000 description 25
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 24
- 239000003446 ligand Substances 0.000 description 24
- 230000008439 repair process Effects 0.000 description 23
- 159000000000 sodium salts Chemical class 0.000 description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 22
- 229920001983 poloxamer Polymers 0.000 description 22
- 239000003795 chemical substances by application Substances 0.000 description 21
- 230000000694 effects Effects 0.000 description 20
- 229920001059 synthetic polymer Polymers 0.000 description 20
- 239000003814 drug Substances 0.000 description 19
- 230000029663 wound healing Effects 0.000 description 18
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 17
- 239000002253 acid Substances 0.000 description 17
- 229920001222 biopolymer Polymers 0.000 description 17
- 230000001413 cellular effect Effects 0.000 description 17
- 238000006731 degradation reaction Methods 0.000 description 17
- 229960000502 poloxamer Drugs 0.000 description 17
- 230000015556 catabolic process Effects 0.000 description 16
- 150000001875 compounds Chemical class 0.000 description 15
- 239000000654 additive Substances 0.000 description 14
- 239000000470 constituent Substances 0.000 description 14
- 238000009826 distribution Methods 0.000 description 14
- 230000006870 function Effects 0.000 description 14
- 239000002245 particle Substances 0.000 description 14
- 230000007547 defect Effects 0.000 description 13
- 238000004925 denaturation Methods 0.000 description 13
- 230000036425 denaturation Effects 0.000 description 13
- 230000004044 response Effects 0.000 description 13
- 239000011343 solid material Substances 0.000 description 13
- 230000036755 cellular response Effects 0.000 description 12
- 229920001577 copolymer Polymers 0.000 description 12
- 238000001727 in vivo Methods 0.000 description 12
- 229920000570 polyether Polymers 0.000 description 12
- 229920001223 polyethylene glycol Polymers 0.000 description 12
- 235000001014 amino acid Nutrition 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 11
- 150000002148 esters Chemical class 0.000 description 11
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 11
- 125000005647 linker group Chemical group 0.000 description 11
- 239000011159 matrix material Substances 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- 238000001356 surgical procedure Methods 0.000 description 11
- OMDQUFIYNPYJFM-XKDAHURESA-N (2r,3r,4s,5r,6s)-2-(hydroxymethyl)-6-[[(2r,3s,4r,5s,6r)-4,5,6-trihydroxy-3-[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]methoxy]oxane-3,4,5-triol Chemical group O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O[C@H]2[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)[C@H](O)[C@H](O)[C@H](O)O1 OMDQUFIYNPYJFM-XKDAHURESA-N 0.000 description 10
- 239000004721 Polyphenylene oxide Substances 0.000 description 10
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 10
- 150000001413 amino acids Chemical class 0.000 description 10
- 239000005557 antagonist Substances 0.000 description 10
- 230000008859 change Effects 0.000 description 10
- 150000002009 diols Chemical class 0.000 description 10
- 230000003993 interaction Effects 0.000 description 10
- 150000004804 polysaccharides Polymers 0.000 description 10
- 230000017423 tissue regeneration Effects 0.000 description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 9
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 9
- 238000004132 cross linking Methods 0.000 description 9
- 239000006185 dispersion Substances 0.000 description 9
- 238000002513 implantation Methods 0.000 description 9
- 239000003112 inhibitor Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 229920000926 Galactomannan Polymers 0.000 description 8
- 229920002683 Glycosaminoglycan Polymers 0.000 description 8
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 8
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 8
- 208000027418 Wounds and injury Diseases 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- 230000000975 bioactive effect Effects 0.000 description 8
- 230000005754 cellular signaling Effects 0.000 description 8
- 238000005859 coupling reaction Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 239000000178 monomer Substances 0.000 description 8
- 238000006116 polymerization reaction Methods 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 238000011477 surgical intervention Methods 0.000 description 8
- 239000002407 tissue scaffold Substances 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- 239000002202 Polyethylene glycol Substances 0.000 description 7
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 7
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 7
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 7
- 206010052428 Wound Diseases 0.000 description 7
- 239000013543 active substance Substances 0.000 description 7
- 239000000556 agonist Substances 0.000 description 7
- 239000012620 biological material Substances 0.000 description 7
- 230000021164 cell adhesion Effects 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005194 fractionation Methods 0.000 description 7
- 238000011065 in-situ storage Methods 0.000 description 7
- PBGKTOXHQIOBKM-FHFVDXKLSA-N insulin (human) Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@H]1CSSC[C@H]2C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@H](C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3C=CC(O)=CC=3)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3NC=NC=3)NC(=O)[C@H](CO)NC(=O)CNC1=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O)=O)CSSC[C@@H](C(N2)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](NC(=O)CN)[C@@H](C)CC)[C@@H](C)CC)[C@@H](C)O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 PBGKTOXHQIOBKM-FHFVDXKLSA-N 0.000 description 7
- 210000000265 leukocyte Anatomy 0.000 description 7
- 230000004807 localization Effects 0.000 description 7
- 230000007774 longterm Effects 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 230000002503 metabolic effect Effects 0.000 description 7
- 229920001451 polypropylene glycol Polymers 0.000 description 7
- 230000002265 prevention Effects 0.000 description 7
- 102000004196 processed proteins & peptides Human genes 0.000 description 7
- 108090000765 processed proteins & peptides Proteins 0.000 description 7
- 239000011541 reaction mixture Substances 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 241000894007 species Species 0.000 description 7
- 230000035882 stress Effects 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 108090001061 Insulin Proteins 0.000 description 6
- 102000004877 Insulin Human genes 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 6
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 6
- 230000002411 adverse Effects 0.000 description 6
- 230000000181 anti-adherent effect Effects 0.000 description 6
- 239000006227 byproduct Substances 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 230000001010 compromised effect Effects 0.000 description 6
- 239000012975 dibutyltin dilaurate Substances 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 238000012377 drug delivery Methods 0.000 description 6
- 230000003176 fibrotic effect Effects 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 239000003102 growth factor Substances 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000000314 lubricant Substances 0.000 description 6
- 238000013508 migration Methods 0.000 description 6
- 229920000728 polyester Polymers 0.000 description 6
- 230000001737 promoting effect Effects 0.000 description 6
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 231100000241 scar Toxicity 0.000 description 6
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 6
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 5
- 206010061218 Inflammation Diseases 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 5
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 235000010443 alginic acid Nutrition 0.000 description 5
- 229920000615 alginic acid Polymers 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 239000002775 capsule Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000013270 controlled release Methods 0.000 description 5
- 239000000412 dendrimer Substances 0.000 description 5
- 229920000736 dendritic polymer Polymers 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 238000005538 encapsulation Methods 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 5
- 208000015181 infectious disease Diseases 0.000 description 5
- 208000014674 injury Diseases 0.000 description 5
- 239000012948 isocyanate Substances 0.000 description 5
- 230000005012 migration Effects 0.000 description 5
- 239000010452 phosphate Substances 0.000 description 5
- 229920000747 poly(lactic acid) Polymers 0.000 description 5
- 125000003367 polycyclic group Chemical group 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 5
- 238000002054 transplantation Methods 0.000 description 5
- 229960004528 vincristine Drugs 0.000 description 5
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 5
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 4
- XKJMBINCVNINCA-UHFFFAOYSA-N Alfalone Chemical compound CON(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XKJMBINCVNINCA-UHFFFAOYSA-N 0.000 description 4
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 4
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 4
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 4
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 4
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 4
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 4
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 108020004459 Small interfering RNA Proteins 0.000 description 4
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 150000007513 acids Chemical group 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- 230000000845 anti-microbial effect Effects 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 230000003416 augmentation Effects 0.000 description 4
- 230000006399 behavior Effects 0.000 description 4
- 230000036770 blood supply Effects 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 210000002808 connective tissue Anatomy 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 210000002744 extracellular matrix Anatomy 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000001879 gelation Methods 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 229960003160 hyaluronic acid Drugs 0.000 description 4
- 229920001477 hydrophilic polymer Polymers 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- 230000008595 infiltration Effects 0.000 description 4
- 238000001764 infiltration Methods 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- 230000028709 inflammatory response Effects 0.000 description 4
- 239000004026 insulin derivative Substances 0.000 description 4
- 150000002513 isocyanates Chemical class 0.000 description 4
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 4
- 229920002521 macromolecule Polymers 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 229960000485 methotrexate Drugs 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000003232 mucoadhesive effect Effects 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 108020004707 nucleic acids Proteins 0.000 description 4
- 102000039446 nucleic acids Human genes 0.000 description 4
- 150000007523 nucleic acids Chemical class 0.000 description 4
- 230000000269 nucleophilic effect Effects 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 230000001575 pathological effect Effects 0.000 description 4
- 239000004626 polylactic acid Substances 0.000 description 4
- 230000000379 polymerizing effect Effects 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 230000008733 trauma Effects 0.000 description 4
- FFTVPQUHLQBXQZ-KVUCHLLUSA-N (4s,4as,5ar,12ar)-4,7-bis(dimethylamino)-1,10,11,12a-tetrahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1C2=C(N(C)C)C=CC(O)=C2C(O)=C2[C@@H]1C[C@H]1[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]1(O)C2=O FFTVPQUHLQBXQZ-KVUCHLLUSA-N 0.000 description 3
- DGHHQBMTXTWTJV-BQAIUKQQSA-N 119413-54-6 Chemical compound Cl.C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 DGHHQBMTXTWTJV-BQAIUKQQSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 description 3
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 3
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 108030001720 Bontoxilysin Proteins 0.000 description 3
- AIRYAONNMGRCGJ-FHFVDXKLSA-N CC[C@H](C)[C@H](NC(=O)CN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H]1CSSC[C@@H]2NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CSSC[C@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](Cc3c[nH]cn3)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)Cc3ccccc3)C(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](Cc3c[nH]cn3)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](Cc3ccc(O)cc3)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](Cc3ccc(O)cc3)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](Cc3ccc(O)cc3)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC2=O)C(=O)N[C@@H](CC(N)=O)C(O)=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](Cc2ccccc2)C(=O)N[C@@H](Cc2ccccc2)C(=O)N[C@@H](Cc2ccc(O)cc2)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)N2CCC[C@H]2C(=O)N[C@@H]([C@@H](C)O)C(O)=O)NC1=O)[C@@H](C)O)[C@@H](C)CC Chemical compound CC[C@H](C)[C@H](NC(=O)CN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H]1CSSC[C@@H]2NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CSSC[C@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](Cc3c[nH]cn3)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)Cc3ccccc3)C(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](Cc3c[nH]cn3)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](Cc3ccc(O)cc3)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](Cc3ccc(O)cc3)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](Cc3ccc(O)cc3)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC2=O)C(=O)N[C@@H](CC(N)=O)C(O)=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](Cc2ccccc2)C(=O)N[C@@H](Cc2ccccc2)C(=O)N[C@@H](Cc2ccc(O)cc2)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)N2CCC[C@H]2C(=O)N[C@@H]([C@@H](C)O)C(O)=O)NC1=O)[C@@H](C)O)[C@@H](C)CC AIRYAONNMGRCGJ-FHFVDXKLSA-N 0.000 description 3
- 102000000844 Cell Surface Receptors Human genes 0.000 description 3
- 108010001857 Cell Surface Receptors Proteins 0.000 description 3
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 3
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 3
- 108010036949 Cyclosporine Proteins 0.000 description 3
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical class [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 108010011459 Exenatide Proteins 0.000 description 3
- 229940126656 GS-4224 Drugs 0.000 description 3
- 108010069236 Goserelin Proteins 0.000 description 3
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 3
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 description 3
- 239000005058 Isophorone diisocyanate Substances 0.000 description 3
- 108010007859 Lisinopril Proteins 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 3
- 229940121359 adenosine receptor antagonist Drugs 0.000 description 3
- 102000019997 adhesion receptor Human genes 0.000 description 3
- 108010013985 adhesion receptor Proteins 0.000 description 3
- 229940035674 anesthetics Drugs 0.000 description 3
- 230000003712 anti-aging effect Effects 0.000 description 3
- 229940121363 anti-inflammatory agent Drugs 0.000 description 3
- 239000002260 anti-inflammatory agent Substances 0.000 description 3
- 230000003110 anti-inflammatory effect Effects 0.000 description 3
- 229940121375 antifungal agent Drugs 0.000 description 3
- 229940006133 antiglaucoma drug and miotics carbonic anhydrase inhibitors Drugs 0.000 description 3
- 239000002246 antineoplastic agent Substances 0.000 description 3
- 239000003443 antiviral agent Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 239000002876 beta blocker Substances 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 239000003489 carbonate dehydratase inhibitor Substances 0.000 description 3
- 230000000747 cardiac effect Effects 0.000 description 3
- 230000030833 cell death Effects 0.000 description 3
- 230000008614 cellular interaction Effects 0.000 description 3
- 230000033077 cellular process Effects 0.000 description 3
- 229960001265 ciclosporin Drugs 0.000 description 3
- 235000009508 confectionery Nutrition 0.000 description 3
- 229930182912 cyclosporin Natural products 0.000 description 3
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 3
- 230000002939 deleterious effect Effects 0.000 description 3
- 206010012601 diabetes mellitus Diseases 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 210000002889 endothelial cell Anatomy 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 229960001519 exenatide Drugs 0.000 description 3
- 229960002949 fluorouracil Drugs 0.000 description 3
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 description 3
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 description 3
- 230000009368 gene silencing by RNA Effects 0.000 description 3
- 239000003193 general anesthetic agent Substances 0.000 description 3
- 229920000669 heparin Polymers 0.000 description 3
- 229960002897 heparin Drugs 0.000 description 3
- 229960004716 idoxuridine Drugs 0.000 description 3
- 230000028993 immune response Effects 0.000 description 3
- 230000002757 inflammatory effect Effects 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 239000002608 ionic liquid Substances 0.000 description 3
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 3
- HPJKCIUCZWXJDR-UHFFFAOYSA-N letrozole Chemical compound C1=CC(C#N)=CC=C1C(N1N=CN=C1)C1=CC=C(C#N)C=C1 HPJKCIUCZWXJDR-UHFFFAOYSA-N 0.000 description 3
- RLAWWYSOJDYHDC-BZSNNMDCSA-N lisinopril Chemical compound C([C@H](N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 RLAWWYSOJDYHDC-BZSNNMDCSA-N 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229960004023 minocycline Drugs 0.000 description 3
- 229960002653 nilutamide Drugs 0.000 description 3
- XWXYUMMDTVBTOU-UHFFFAOYSA-N nilutamide Chemical compound O=C1C(C)(C)NC(=O)N1C1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 XWXYUMMDTVBTOU-UHFFFAOYSA-N 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920001184 polypeptide Polymers 0.000 description 3
- 235000013824 polyphenols Nutrition 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 3
- 230000004224 protection Effects 0.000 description 3
- 239000000296 purinergic P1 receptor antagonist Substances 0.000 description 3
- 230000001172 regenerating effect Effects 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- JJICLMJFIKGAAU-UHFFFAOYSA-M sodium;2-amino-9-(1,3-dihydroxypropan-2-yloxymethyl)purin-6-olate Chemical compound [Na+].NC1=NC([O-])=C2N=CN(COC(CO)CO)C2=N1 JJICLMJFIKGAAU-UHFFFAOYSA-M 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 150000003431 steroids Chemical class 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 230000009974 thixotropic effect Effects 0.000 description 3
- 239000003106 tissue adhesive Substances 0.000 description 3
- DDYAPMZTJAYBOF-ZMYDTDHYSA-N (3S)-4-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-4-amino-1-[[(2S,3R)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-4-amino-1-[[(2S)-1-[[(2S)-4-amino-1-[[(2S)-4-amino-1-[[(2S,3S)-1-[[(1S)-1-carboxyethyl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-4-methylsulfanyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S,3R)-2-[[2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-amino-3-(1H-imidazol-4-yl)propanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]acetyl]amino]-3-hydroxybutanoyl]amino]-3-phenylpropanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-3-hydroxypropanoyl]amino]hexanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-methylpentanoyl]amino]-3-carboxypropanoyl]amino]-3-hydroxypropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-carbamimidamidopentanoyl]amino]propanoyl]amino]-5-oxopentanoyl]amino]-4-oxobutanoic acid Chemical class [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O DDYAPMZTJAYBOF-ZMYDTDHYSA-N 0.000 description 2
- YJBVHJIKNLBFDX-MQURJEHKSA-N (3r,4r,4ar,6ar,6bs,8ar,11r,12s,12ar,14ar,14br)-3-acetyloxy-4,6a,6b,8a,11,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picene-4-carboxylic acid Chemical compound C1C[C@@H](OC(C)=O)[C@](C)(C(O)=O)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C)CC[C@@H](C)[C@H](C)[C@H]5C4=CC[C@@H]3[C@]21C YJBVHJIKNLBFDX-MQURJEHKSA-N 0.000 description 2
- DEQANNDTNATYII-OULOTJBUSA-N (4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-19-[[(2r)-2-amino-3-phenylpropanoyl]amino]-16-benzyl-n-[(2r,3r)-1,3-dihydroxybutan-2-yl]-7-[(1r)-1-hydroxyethyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicosane-4-carboxa Chemical compound C([C@@H](N)C(=O)N[C@H]1CSSC[C@H](NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](CC=2C3=CC=CC=C3NC=2)NC(=O)[C@H](CC=2C=CC=CC=2)NC1=O)C(=O)N[C@H](CO)[C@H](O)C)C1=CC=CC=C1 DEQANNDTNATYII-OULOTJBUSA-N 0.000 description 2
- HGHOBRRUMWJWCU-FXQIFTODSA-N (4s)-4-[[(2s)-2-aminopropanoyl]amino]-5-[[(2s)-3-carboxy-1-(carboxymethylamino)-1-oxopropan-2-yl]amino]-5-oxopentanoic acid Chemical compound C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(O)=O HGHOBRRUMWJWCU-FXQIFTODSA-N 0.000 description 2
- LKJPYSCBVHEWIU-KRWDZBQOSA-N (R)-bicalutamide Chemical compound C([C@@](O)(C)C(=O)NC=1C=C(C(C#N)=CC=1)C(F)(F)F)S(=O)(=O)C1=CC=C(F)C=C1 LKJPYSCBVHEWIU-KRWDZBQOSA-N 0.000 description 2
- GJJVAFUKOBZPCB-ZGRPYONQSA-N (r)-3,4-dihydro-2-methyl-2-(4,8,12-trimethyl-3,7,11-tridecatrienyl)-2h-1-benzopyran-6-ol Chemical class OC1=CC=C2OC(CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)(C)CCC2=C1 GJJVAFUKOBZPCB-ZGRPYONQSA-N 0.000 description 2
- BFPYWIDHMRZLRN-UHFFFAOYSA-N 17alpha-ethynyl estradiol Natural products OC1=CC=C2C3CCC(C)(C(CC4)(O)C#C)C4C3CCC2=C1 BFPYWIDHMRZLRN-UHFFFAOYSA-N 0.000 description 2
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 2
- NBGQZFQREPIKMG-UHFFFAOYSA-N 3beta-hydroxy-beta-boswellic acid Natural products C1CC(O)C(C)(C(O)=O)C2CCC3(C)C4(C)CCC5(C)CCC(C)C(C)C5C4=CCC3C21C NBGQZFQREPIKMG-UHFFFAOYSA-N 0.000 description 2
- XRYJULCDUUATMC-CYBMUJFWSA-N 4-[4-[[(1r)-1-phenylethyl]amino]-7h-pyrrolo[2,3-d]pyrimidin-6-yl]phenol Chemical compound N([C@H](C)C=1C=CC=CC=1)C(C=1C=2)=NC=NC=1NC=2C1=CC=C(O)C=C1 XRYJULCDUUATMC-CYBMUJFWSA-N 0.000 description 2
- USSIQXCVUWKGNF-UHFFFAOYSA-N 6-(dimethylamino)-4,4-diphenylheptan-3-one Chemical compound C=1C=CC=CC=1C(CC(C)N(C)C)(C(=O)CC)C1=CC=CC=C1 USSIQXCVUWKGNF-UHFFFAOYSA-N 0.000 description 2
- WLCZTRVUXYALDD-IBGZPJMESA-N 7-[[(2s)-2,6-bis(2-methoxyethoxycarbonylamino)hexanoyl]amino]heptoxy-methylphosphinic acid Chemical compound COCCOC(=O)NCCCC[C@H](NC(=O)OCCOC)C(=O)NCCCCCCCOP(C)(O)=O WLCZTRVUXYALDD-IBGZPJMESA-N 0.000 description 2
- 208000030507 AIDS Diseases 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 229940080778 Adenosine deaminase inhibitor Drugs 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- BFYIZQONLCFLEV-DAELLWKTSA-N Aromasine Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC(=C)C2=C1 BFYIZQONLCFLEV-DAELLWKTSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 2
- NBGQZFQREPIKMG-PONOSELZSA-N Boswellic acid Chemical compound C1C[C@@H](O)[C@](C)(C(O)=O)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C)CC[C@@H](C)[C@H](C)[C@H]5C4=CC[C@@H]3[C@]21C NBGQZFQREPIKMG-PONOSELZSA-N 0.000 description 2
- 239000002083 C09CA01 - Losartan Substances 0.000 description 2
- GHOSNRCGJFBJIB-UHFFFAOYSA-N Candesartan cilexetil Chemical compound C=12N(CC=3C=CC(=CC=3)C=3C(=CC=CC=3)C3=NNN=N3)C(OCC)=NC2=CC=CC=1C(=O)OC(C)OC(=O)OC1CCCCC1 GHOSNRCGJFBJIB-UHFFFAOYSA-N 0.000 description 2
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 description 2
- 241001227713 Chiron Species 0.000 description 2
- JZUFKLXOESDKRF-UHFFFAOYSA-N Chlorothiazide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC2=C1NCNS2(=O)=O JZUFKLXOESDKRF-UHFFFAOYSA-N 0.000 description 2
- GJSURZIOUXUGAL-UHFFFAOYSA-N Clonidine Chemical compound ClC1=CC=CC(Cl)=C1NC1=NCCN1 GJSURZIOUXUGAL-UHFFFAOYSA-N 0.000 description 2
- 229960005500 DHA-paclitaxel Drugs 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 101100192865 Drosophila melanogaster GlyP gene Proteins 0.000 description 2
- 101100256637 Drosophila melanogaster senju gene Proteins 0.000 description 2
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 description 2
- 108010008165 Etanercept Proteins 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- BFPYWIDHMRZLRN-SLHNCBLASA-N Ethinyl estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 BFPYWIDHMRZLRN-SLHNCBLASA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- HTQBXNHDCUEHJF-XWLPCZSASA-N Exenatide Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)NCC(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 HTQBXNHDCUEHJF-XWLPCZSASA-N 0.000 description 2
- 206010016654 Fibrosis Diseases 0.000 description 2
- UUOUOERPONYGOS-CLCRDYEYSA-N Fluocinolone Chemical compound O=C1C=C[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@]([C@H](O)C4)(O)C(=O)CO)[C@@H]4[C@@H]3C[C@H](F)C2=C1 UUOUOERPONYGOS-CLCRDYEYSA-N 0.000 description 2
- 108010088406 Glucagon-Like Peptides Proteins 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- BLCLNMBMMGCOAS-URPVMXJPSA-N Goserelin Chemical compound C([C@@H](C(=O)N[C@H](COC(C)(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N1[C@@H](CCC1)C(=O)NNC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 BLCLNMBMMGCOAS-URPVMXJPSA-N 0.000 description 2
- 108010009202 Growth Factor Receptors Proteins 0.000 description 2
- 102000009465 Growth Factor Receptors Human genes 0.000 description 2
- 102000005561 Human Isophane Insulin Human genes 0.000 description 2
- 108010084048 Human Isophane Insulin Proteins 0.000 description 2
- 102000013266 Human Regular Insulin Human genes 0.000 description 2
- 108010090613 Human Regular Insulin Proteins 0.000 description 2
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 description 2
- 235000003325 Ilex Nutrition 0.000 description 2
- 241000209035 Ilex Species 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 108010057186 Insulin Glargine Proteins 0.000 description 2
- 108010065920 Insulin Lispro Proteins 0.000 description 2
- COCFEDIXXNGUNL-RFKWWTKHSA-N Insulin glargine Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@H]1CSSC[C@H]2C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@H](C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3C=CC(O)=CC=3)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3NC=NC=3)NC(=O)[C@H](CO)NC(=O)CNC1=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(=O)NCC(O)=O)=O)CSSC[C@@H](C(N2)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](NC(=O)CN)[C@@H](C)CC)[C@@H](C)CC)[C@@H](C)O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 COCFEDIXXNGUNL-RFKWWTKHSA-N 0.000 description 2
- 229940123038 Integrin antagonist Drugs 0.000 description 2
- 108010078049 Interferon alpha-2 Proteins 0.000 description 2
- 241000764238 Isis Species 0.000 description 2
- SHGAZHPCJJPHSC-NUEINMDLSA-N Isotretinoin Chemical compound OC(=O)C=C(C)/C=C/C=C(C)C=CC1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-NUEINMDLSA-N 0.000 description 2
- 239000005411 L01XE02 - Gefitinib Substances 0.000 description 2
- 239000005551 L01XE03 - Erlotinib Substances 0.000 description 2
- 108010000817 Leuprolide Proteins 0.000 description 2
- JAQUASYNZVUNQP-USXIJHARSA-N Levorphanol Chemical compound C1C2=CC=C(O)C=C2[C@]23CCN(C)[C@H]1[C@@H]2CCCC3 JAQUASYNZVUNQP-USXIJHARSA-N 0.000 description 2
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 2
- XADCESSVHJOZHK-UHFFFAOYSA-N Meperidine Chemical compound C=1C=CC=CC=1C1(C(=O)OCC)CCN(C)CC1 XADCESSVHJOZHK-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- FQISKWAFAHGMGT-SGJOWKDISA-M Methylprednisolone sodium succinate Chemical compound [Na+].C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@](O)(C(=O)COC(=O)CCC([O-])=O)CC[C@H]21 FQISKWAFAHGMGT-SGJOWKDISA-M 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 2
- 108010016076 Octreotide Proteins 0.000 description 2
- 229930012538 Paclitaxel Natural products 0.000 description 2
- 208000002193 Pain Diseases 0.000 description 2
- 229920002009 Pluronic® 31R1 Polymers 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 2
- 108010001267 Protein Subunits Proteins 0.000 description 2
- 102000002067 Protein Subunits Human genes 0.000 description 2
- 108010067787 Proteoglycans Proteins 0.000 description 2
- 102000016611 Proteoglycans Human genes 0.000 description 2
- 241000220317 Rosa Species 0.000 description 2
- SEQDDYPDSLOBDC-UHFFFAOYSA-N Temazepam Chemical compound N=1C(O)C(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 SEQDDYPDSLOBDC-UHFFFAOYSA-N 0.000 description 2
- BPEGJWRSRHCHSN-UHFFFAOYSA-N Temozolomide Chemical compound O=C1N(C)N=NC2=C(C(N)=O)N=CN21 BPEGJWRSRHCHSN-UHFFFAOYSA-N 0.000 description 2
- 239000004098 Tetracycline Substances 0.000 description 2
- IVTVGDXNLFLDRM-HNNXBMFYSA-N Tomudex Chemical compound C=1C=C2NC(C)=NC(=O)C2=CC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)S1 IVTVGDXNLFLDRM-HNNXBMFYSA-N 0.000 description 2
- 238000005411 Van der Waals force Methods 0.000 description 2
- BZKPWHYZMXOIDC-UHFFFAOYSA-N acetazolamide Chemical compound CC(=O)NC1=NN=C(S(N)(=O)=O)S1 BZKPWHYZMXOIDC-UHFFFAOYSA-N 0.000 description 2
- 229960001138 acetylsalicylic acid Drugs 0.000 description 2
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 239000002487 adenosine deaminase inhibitor Substances 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 2
- 230000010062 adhesion mechanism Effects 0.000 description 2
- 229940009456 adriamycin Drugs 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 108010084217 alanyl-glutamyl-aspartyl-glycine Proteins 0.000 description 2
- 239000003288 aldose reductase inhibitor Substances 0.000 description 2
- 229940090865 aldose reductase inhibitors used in diabetes Drugs 0.000 description 2
- 229940072056 alginate Drugs 0.000 description 2
- 229940100198 alkylating agent Drugs 0.000 description 2
- 239000002168 alkylating agent Substances 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- 229940035676 analgesics Drugs 0.000 description 2
- YBBLVLTVTVSKRW-UHFFFAOYSA-N anastrozole Chemical compound N#CC(C)(C)C1=CC(C(C)(C#N)C)=CC(CN2N=CN=C2)=C1 YBBLVLTVTVSKRW-UHFFFAOYSA-N 0.000 description 2
- 229960001232 anecortave Drugs 0.000 description 2
- 230000033115 angiogenesis Effects 0.000 description 2
- 239000004037 angiogenesis inhibitor Substances 0.000 description 2
- 229940121369 angiogenesis inhibitor Drugs 0.000 description 2
- 230000000964 angiostatic effect Effects 0.000 description 2
- 230000003042 antagnostic effect Effects 0.000 description 2
- 239000000730 antalgic agent Substances 0.000 description 2
- 230000000340 anti-metabolite Effects 0.000 description 2
- 229940044684 anti-microtubule agent Drugs 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 229940125715 antihistaminic agent Drugs 0.000 description 2
- 239000000739 antihistaminic agent Substances 0.000 description 2
- 229940030600 antihypertensive agent Drugs 0.000 description 2
- 239000002220 antihypertensive agent Substances 0.000 description 2
- 229960005475 antiinfective agent Drugs 0.000 description 2
- 239000003430 antimalarial agent Substances 0.000 description 2
- 229940033495 antimalarials Drugs 0.000 description 2
- 229940100197 antimetabolite Drugs 0.000 description 2
- 239000002256 antimetabolite Substances 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- 229940034982 antineoplastic agent Drugs 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 229940121357 antivirals Drugs 0.000 description 2
- KUCQYCKVKVOKAY-CTYIDZIISA-N atovaquone Chemical compound C1([C@H]2CC[C@@H](CC2)C2=C(C(C3=CC=CC=C3C2=O)=O)O)=CC=C(Cl)C=C1 KUCQYCKVKVOKAY-CTYIDZIISA-N 0.000 description 2
- 229960003159 atovaquone Drugs 0.000 description 2
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 2
- WZPBZJONDBGPKJ-VEHQQRBSSA-N aztreonam Chemical compound O=C1N(S([O-])(=O)=O)[C@@H](C)[C@@H]1NC(=O)C(=N/OC(C)(C)C(O)=O)\C1=CSC([NH3+])=N1 WZPBZJONDBGPKJ-VEHQQRBSSA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 229940030611 beta-adrenergic blocking agent Drugs 0.000 description 2
- NWIUTZDMDHAVTP-UHFFFAOYSA-N betaxolol Chemical compound C1=CC(OCC(O)CNC(C)C)=CC=C1CCOCC1CC1 NWIUTZDMDHAVTP-UHFFFAOYSA-N 0.000 description 2
- 229960004324 betaxolol Drugs 0.000 description 2
- 229960000997 bicalutamide Drugs 0.000 description 2
- 230000008827 biological function Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- RMRJXGBAOAMLHD-IHFGGWKQSA-N buprenorphine Chemical compound C([C@]12[C@H]3OC=4C(O)=CC=C(C2=4)C[C@@H]2[C@]11CC[C@]3([C@H](C1)[C@](C)(O)C(C)(C)C)OC)CN2CC1CC1 RMRJXGBAOAMLHD-IHFGGWKQSA-N 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 229960000484 ceftazidime Drugs 0.000 description 2
- NMVPEQXCMGEDNH-TZVUEUGBSA-N ceftazidime pentahydrate Chemical compound O.O.O.O.O.S([C@@H]1[C@@H](C(N1C=1C([O-])=O)=O)NC(=O)\C(=N/OC(C)(C)C(O)=O)C=2N=C(N)SC=2)CC=1C[N+]1=CC=CC=C1 NMVPEQXCMGEDNH-TZVUEUGBSA-N 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 2
- 235000019365 chlortetracycline Nutrition 0.000 description 2
- 208000037976 chronic inflammation Diseases 0.000 description 2
- 230000006020 chronic inflammation Effects 0.000 description 2
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 2
- 229960002626 clarithromycin Drugs 0.000 description 2
- AGOYDEPGAOXOCK-KCBOHYOISA-N clarithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@](C)([C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)OC)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 AGOYDEPGAOXOCK-KCBOHYOISA-N 0.000 description 2
- KDLRVYVGXIQJDK-AWPVFWJPSA-N clindamycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@H](C)Cl)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 KDLRVYVGXIQJDK-AWPVFWJPSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 229920006037 cross link polymer Polymers 0.000 description 2
- VFLDPWHFBUODDF-FCXRPNKRSA-N curcumin Chemical compound C1=C(O)C(OC)=CC(\C=C\C(=O)CC(=O)\C=C\C=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-FCXRPNKRSA-N 0.000 description 2
- 229960004397 cyclophosphamide Drugs 0.000 description 2
- 229960000684 cytarabine Drugs 0.000 description 2
- 229960000975 daunorubicin Drugs 0.000 description 2
- WHBIGIKBNXZKFE-UHFFFAOYSA-N delavirdine Chemical compound CC(C)NC1=CC=CN=C1N1CCN(C(=O)C=2NC3=CC=C(NS(C)(=O)=O)C=C3C=2)CC1 WHBIGIKBNXZKFE-UHFFFAOYSA-N 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 229960003957 dexamethasone Drugs 0.000 description 2
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 2
- LRCZQSDQZJBHAF-PUBGEWHCSA-N dha-paclitaxel Chemical compound N([C@H]([C@@H](OC(=O)CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CC)C(=O)O[C@@H]1C(=C2[C@@H](OC(C)=O)C(=O)[C@]3(C)[C@@H](O)C[C@H]4OC[C@]4([C@H]3[C@H](OC(=O)C=3C=CC=CC=3)[C@](C2(C)C)(O)C1)OC(C)=O)C)C=1C=CC=CC=1)C(=O)C1=CC=CC=C1 LRCZQSDQZJBHAF-PUBGEWHCSA-N 0.000 description 2
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 2
- BOBLHFUVNSFZPJ-JOYXJVLSSA-N diflorasone diacetate Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@H](C)[C@@](C(=O)COC(C)=O)(OC(C)=O)[C@@]2(C)C[C@@H]1O BOBLHFUVNSFZPJ-JOYXJVLSSA-N 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 229940121647 egfr inhibitor Drugs 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 229960001904 epirubicin Drugs 0.000 description 2
- XOZIUKBZLSUILX-GIQCAXHBSA-N epothilone D Chemical compound O1C(=O)C[C@H](O)C(C)(C)C(=O)[C@H](C)[C@@H](O)[C@@H](C)CCC\C(C)=C/C[C@H]1C(\C)=C\C1=CSC(C)=N1 XOZIUKBZLSUILX-GIQCAXHBSA-N 0.000 description 2
- 229940082789 erbitux Drugs 0.000 description 2
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 description 2
- 229960003276 erythromycin Drugs 0.000 description 2
- AEUTYOVWOVBAKS-UWVGGRQHSA-N ethambutol Chemical compound CC[C@@H](CO)NCCN[C@@H](CC)CO AEUTYOVWOVBAKS-UWVGGRQHSA-N 0.000 description 2
- 229960002568 ethinylestradiol Drugs 0.000 description 2
- 230000006355 external stress Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 230000004761 fibrosis Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 229960004884 fluconazole Drugs 0.000 description 2
- RFHAOTPXVQNOHP-UHFFFAOYSA-N fluconazole Chemical compound C1=NC=NN1CC(C=1C(=CC(F)=CC=1)F)(O)CN1C=NC=N1 RFHAOTPXVQNOHP-UHFFFAOYSA-N 0.000 description 2
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 2
- AAXVEMMRQDVLJB-BULBTXNYSA-N fludrocortisone Chemical compound O=C1CC[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 AAXVEMMRQDVLJB-BULBTXNYSA-N 0.000 description 2
- 229960002011 fludrocortisone Drugs 0.000 description 2
- OFBIFZUFASYYRE-UHFFFAOYSA-N flumazenil Chemical compound C1N(C)C(=O)C2=CC(F)=CC=C2N2C=NC(C(=O)OCC)=C21 OFBIFZUFASYYRE-UHFFFAOYSA-N 0.000 description 2
- 229940043075 fluocinolone Drugs 0.000 description 2
- 229960002074 flutamide Drugs 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 229960002963 ganciclovir Drugs 0.000 description 2
- 229960002584 gefitinib Drugs 0.000 description 2
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 2
- 229960005277 gemcitabine Drugs 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 239000000122 growth hormone Substances 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 229940022353 herceptin Drugs 0.000 description 2
- 210000003630 histaminocyte Anatomy 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 229940103471 humulin Drugs 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- WVLOADHCBXTIJK-YNHQPCIGSA-N hydromorphone Chemical compound O([C@H]1C(CC[C@H]23)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O WVLOADHCBXTIJK-YNHQPCIGSA-N 0.000 description 2
- 229960000908 idarubicin Drugs 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- CBVCZFGXHXORBI-PXQQMZJSSA-N indinavir Chemical class C([C@H](N(CC1)C[C@@H](O)C[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H]2C3=CC=CC=C3C[C@H]2O)C(=O)NC(C)(C)C)N1CC1=CC=CN=C1 CBVCZFGXHXORBI-PXQQMZJSSA-N 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- GURKHSYORGJETM-WAQYZQTGSA-N irinotecan hydrochloride (anhydrous) Chemical compound Cl.C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 GURKHSYORGJETM-WAQYZQTGSA-N 0.000 description 2
- 229960005280 isotretinoin Drugs 0.000 description 2
- 229960004752 ketorolac Drugs 0.000 description 2
- OZWKMVRBQXNZKK-UHFFFAOYSA-N ketorolac Chemical compound OC(=O)C1CCN2C1=CC=C2C(=O)C1=CC=CC=C1 OZWKMVRBQXNZKK-UHFFFAOYSA-N 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- GFIJNRVAKGFPGQ-LIJARHBVSA-N leuprolide Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 GFIJNRVAKGFPGQ-LIJARHBVSA-N 0.000 description 2
- 229960004338 leuprorelin Drugs 0.000 description 2
- 229960003406 levorphanol Drugs 0.000 description 2
- 229960004194 lidocaine Drugs 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- PSIFNNKUMBGKDQ-UHFFFAOYSA-N losartan Chemical compound CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C=2NN=NN=2)C=C1 PSIFNNKUMBGKDQ-UHFFFAOYSA-N 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229960004584 methylprednisolone Drugs 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- BMGQWWVMWDBQGC-IIFHNQTCSA-N midostaurin Chemical compound CN([C@H]1[C@H]([C@]2(C)O[C@@H](N3C4=CC=CC=C4C4=C5C(=O)NCC5=C5C6=CC=CC=C6N2C5=C43)C1)OC)C(=O)C1=CC=CC=C1 BMGQWWVMWDBQGC-IIFHNQTCSA-N 0.000 description 2
- 229950010895 midostaurin Drugs 0.000 description 2
- 230000003547 miosis Effects 0.000 description 2
- 239000003604 miotic agent Substances 0.000 description 2
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 2
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 description 2
- 208000031225 myocardial ischemia Diseases 0.000 description 2
- NETZHAKZCGBWSS-CEDHKZHLSA-N nalbuphine Chemical compound C([C@]12[C@H]3OC=4C(O)=CC=C(C2=4)C[C@@H]2[C@]1(O)CC[C@@H]3O)CN2CC1CCC1 NETZHAKZCGBWSS-CEDHKZHLSA-N 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000004081 narcotic agent Substances 0.000 description 2
- 230000001338 necrotic effect Effects 0.000 description 2
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 229940053934 norethindrone Drugs 0.000 description 2
- VIKNJXKGJWUCNN-XGXHKTLJSA-N norethisterone Chemical compound O=C1CC[C@@H]2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 VIKNJXKGJWUCNN-XGXHKTLJSA-N 0.000 description 2
- 229940103453 novolin Drugs 0.000 description 2
- 229940112879 novolog Drugs 0.000 description 2
- 239000012038 nucleophile Substances 0.000 description 2
- 229920001542 oligosaccharide Polymers 0.000 description 2
- 150000002482 oligosaccharides Chemical class 0.000 description 2
- 230000006508 oncogene activation Effects 0.000 description 2
- 238000011275 oncology therapy Methods 0.000 description 2
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 2
- 229960001592 paclitaxel Drugs 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- 108700037519 pegvisomant Proteins 0.000 description 2
- 230000006320 pegylation Effects 0.000 description 2
- 229940056360 penicillin g Drugs 0.000 description 2
- FPVKHBSQESCIEP-JQCXWYLXSA-N pentostatin Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC[C@H]2O)=C2N=C1 FPVKHBSQESCIEP-JQCXWYLXSA-N 0.000 description 2
- NDTYTMIUWGWIMO-UHFFFAOYSA-N perillyl alcohol Chemical compound CC(=C)C1CCC(CO)=CC1 NDTYTMIUWGWIMO-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 210000003800 pharynx Anatomy 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 150000008442 polyphenolic compounds Chemical class 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229960005205 prednisolone Drugs 0.000 description 2
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 2
- 229950003608 prinomastat Drugs 0.000 description 2
- YKPYIPVDTNNYCN-INIZCTEOSA-N prinomastat Chemical compound ONC(=O)[C@H]1C(C)(C)SCCN1S(=O)(=O)C(C=C1)=CC=C1OC1=CC=NC=C1 YKPYIPVDTNNYCN-INIZCTEOSA-N 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 150000003180 prostaglandins Chemical class 0.000 description 2
- 230000012846 protein folding Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- NHZMQXZHNVQTQA-UHFFFAOYSA-N pyridoxamine Chemical compound CC1=NC=C(CO)C(CN)=C1O NHZMQXZHNVQTQA-UHFFFAOYSA-N 0.000 description 2
- 229960004432 raltitrexed Drugs 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229960004889 salicylic acid Drugs 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000036573 scar formation Effects 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 230000009919 sequestration Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 229940094938 stannous 2-ethylhexanoate Drugs 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical compound CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 description 2
- 229910021653 sulphate ion Inorganic materials 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 229960001603 tamoxifen Drugs 0.000 description 2
- FQZYTYWMLGAPFJ-OQKDUQJOSA-N tamoxifen citrate Chemical compound [H+].[H+].[H+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 FQZYTYWMLGAPFJ-OQKDUQJOSA-N 0.000 description 2
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 2
- 239000003277 telomerase inhibitor Substances 0.000 description 2
- 210000002435 tendon Anatomy 0.000 description 2
- 229960002180 tetracycline Drugs 0.000 description 2
- 235000019364 tetracycline Nutrition 0.000 description 2
- 229930101283 tetracycline Natural products 0.000 description 2
- 150000003522 tetracyclines Chemical class 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 description 2
- 230000008467 tissue growth Effects 0.000 description 2
- 150000003611 tocopherol derivatives Chemical class 0.000 description 2
- 229930003802 tocotrienol Natural products 0.000 description 2
- 239000011731 tocotrienol Substances 0.000 description 2
- 229940068778 tocotrienols Drugs 0.000 description 2
- 235000019148 tocotrienols Nutrition 0.000 description 2
- 210000000515 tooth Anatomy 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 229960000303 topotecan Drugs 0.000 description 2
- 229960005267 tositumomab Drugs 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- YDGHCKHAXOUQOS-BTJKTKAUSA-N trimipramine maleate Chemical compound [O-]C(=O)\C=C/C([O-])=O.C1CC2=CC=CC=C2[NH+](CC(C[NH+](C)C)C)C2=CC=CC=C21 YDGHCKHAXOUQOS-BTJKTKAUSA-N 0.000 description 2
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 2
- 239000005483 tyrosine kinase inhibitor Substances 0.000 description 2
- 229960005486 vaccine Drugs 0.000 description 2
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 2
- JXLYSJRDGCGARV-CFWMRBGOSA-N vinblastine Chemical compound C([C@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-CFWMRBGOSA-N 0.000 description 2
- 239000003932 viscosupplement Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 230000037314 wound repair Effects 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- WWYNJERNGUHSAO-XUDSTZEESA-N (+)-Norgestrel Chemical compound O=C1CC[C@@H]2[C@H]3CC[C@](CC)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 WWYNJERNGUHSAO-XUDSTZEESA-N 0.000 description 1
- NIDRYBLTWYFCFV-FMTVUPSXSA-N (+)-calanolide A Chemical compound C1=CC(C)(C)OC2=C1C(O[C@H](C)[C@@H](C)[C@@H]1O)=C1C1=C2C(CCC)=CC(=O)O1 NIDRYBLTWYFCFV-FMTVUPSXSA-N 0.000 description 1
- DNXHEGUUPJUMQT-UHFFFAOYSA-N (+)-estrone Natural products OC1=CC=C2C3CCC(C)(C(CC4)=O)C4C3CCC2=C1 DNXHEGUUPJUMQT-UHFFFAOYSA-N 0.000 description 1
- XEEQGYMUWCZPDN-DOMZBBRYSA-N (-)-(11S,2'R)-erythro-mefloquine Chemical compound C([C@@H]1[C@@H](O)C=2C3=CC=CC(=C3N=C(C=2)C(F)(F)F)C(F)(F)F)CCCN1 XEEQGYMUWCZPDN-DOMZBBRYSA-N 0.000 description 1
- WMBWREPUVVBILR-WIYYLYMNSA-N (-)-Epigallocatechin-3-o-gallate Chemical compound O([C@@H]1CC2=C(O)C=C(C=C2O[C@@H]1C=1C=C(O)C(O)=C(O)C=1)O)C(=O)C1=CC(O)=C(O)C(O)=C1 WMBWREPUVVBILR-WIYYLYMNSA-N 0.000 description 1
- 229930007631 (-)-perillyl alcohol Natural products 0.000 description 1
- PFJFPBDHCFMQPN-MKGIUFNRSA-N (16R)-3-[1-[2-(aminomethyl)-1,3-thiazol-4-yl]prop-1-en-2-yl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione Chemical compound CC1CCC[C@@]2(C(O2)CC(OC(=O)CC(C(C(=O)C(C1O)C)(C)C)O)C(=CC3=CSC(=N3)CN)C)C PFJFPBDHCFMQPN-MKGIUFNRSA-N 0.000 description 1
- VQJMAIZOEPPELO-KYGIZGOZSA-N (1S,2S,6R,14R,15R,16R)-5-(cyclopropylmethyl)-16-(2-hydroxy-5-methylhexan-2-yl)-15-methoxy-13-oxa-5-azahexacyclo[13.2.2.12,8.01,6.02,14.012,20]icosa-8(20),9,11-trien-11-ol hydrochloride Chemical compound Cl.CO[C@]12CC[C@@]3(C[C@@H]1C(C)(O)CCC(C)C)[C@H]1Cc4ccc(O)c5O[C@@H]2[C@]3(CCN1CC1CC1)c45 VQJMAIZOEPPELO-KYGIZGOZSA-N 0.000 description 1
- XMAYWYJOQHXEEK-OZXSUGGESA-N (2R,4S)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-OZXSUGGESA-N 0.000 description 1
- GTXSRFUZSLTDFX-HRCADAONSA-N (2s)-n-[(2s)-3,3-dimethyl-1-(methylamino)-1-oxobutan-2-yl]-4-methyl-2-[[(2s)-2-sulfanyl-4-(3,4,4-trimethyl-2,5-dioxoimidazolidin-1-yl)butanoyl]amino]pentanamide Chemical compound CNC(=O)[C@H](C(C)(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](S)CCN1C(=O)N(C)C(C)(C)C1=O GTXSRFUZSLTDFX-HRCADAONSA-N 0.000 description 1
- WCDDVEOXEIYWFB-VXORFPGASA-N (2s,3s,4r,5r,6r)-3-[(2s,3r,5s,6r)-3-acetamido-5-hydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4,5,6-trihydroxyoxane-2-carboxylic acid Chemical class CC(=O)N[C@@H]1C[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](C(O)=O)O[C@@H](O)[C@H](O)[C@H]1O WCDDVEOXEIYWFB-VXORFPGASA-N 0.000 description 1
- UPTAPIKFKZGAGM-UHFFFAOYSA-N (3alpha,5alpha,17alphaOH)-3,17,21-Trihydroxypregnan-20-one Natural products C1C(O)CCC2(C)C3CCC(C)(C(CC4)(O)C(=O)CO)C4C3CCC21 UPTAPIKFKZGAGM-UHFFFAOYSA-N 0.000 description 1
- WCGUUGGRBIKTOS-GPOJBZKASA-N (3beta)-3-hydroxyurs-12-en-28-oic acid Chemical compound C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C(O)=O)CC[C@@H](C)[C@H](C)[C@H]5C4=CC[C@@H]3[C@]21C WCGUUGGRBIKTOS-GPOJBZKASA-N 0.000 description 1
- OEMFBCQMOLVLCR-YYLQXJDASA-N (3r,4r,4ar,6as,6br,8ar,11r,12s,12ar,14bs)-3-acetyloxy-4,6a,6b,8a,11,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a-dodecahydro-1h-picene-4-carboxylic acid Chemical compound C1C[C@@H](OC(C)=O)[C@](C)(C(O)=O)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C)CC[C@@H](C)[C@H](C)[C@H]5C4=CC=C3[C@]21C OEMFBCQMOLVLCR-YYLQXJDASA-N 0.000 description 1
- DIWRORZWFLOCLC-HNNXBMFYSA-N (3s)-7-chloro-5-(2-chlorophenyl)-3-hydroxy-1,3-dihydro-1,4-benzodiazepin-2-one Chemical compound N([C@H](C(NC1=CC=C(Cl)C=C11)=O)O)=C1C1=CC=CC=C1Cl DIWRORZWFLOCLC-HNNXBMFYSA-N 0.000 description 1
- TZVDWGXUGGUMCE-JVHXOXOBSA-N (3s,4ar,6as,6bs,8ar,11r,12s,12ar,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,7,8,9,10,11,12,12a,13,14,14a-tetradecahydro-1h-picen-3-ol Chemical compound CC1(C)[C@@H](O)CC[C@]2(C)[C@@H](CC[C@]3(C)[C@]4(C)CC[C@@]5(C)CC[C@H]([C@@H]([C@H]53)C)C)C4=CC[C@H]21 TZVDWGXUGGUMCE-JVHXOXOBSA-N 0.000 description 1
- CWVMWSZEMZOUPC-JUAXIXHSSA-N (3s,5s,8r,9s,10s,13s,14s,16r)-16-bromo-3-hydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,14,15,16-tetradecahydrocyclopenta[a]phenanthren-17-one Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H]3CC[C@](C)(C([C@H](Br)C4)=O)[C@@H]4[C@@H]3CC[C@H]21 CWVMWSZEMZOUPC-JUAXIXHSSA-N 0.000 description 1
- UMYJVVZWBKIXQQ-QALSDZMNSA-N (4aS,6aR,6bR,8aR,12aR,12bR,14aS)-2,2,6a,6b,9,9,12a-heptamethyl-10-oxo-2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14,14a-icosahydropicene-4a-carboxylic acid Chemical compound C1CC(=O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C(O)=O)CCC(C)(C)C=C5[C@H]4CC[C@@H]3[C@]21C UMYJVVZWBKIXQQ-QALSDZMNSA-N 0.000 description 1
- UXDWYQAXEGVSPS-GFUIURDCSA-N (4s)-6-chloro-4-[(e)-2-cyclopropylethenyl]-4-(trifluoromethyl)-1,3-dihydroquinazolin-2-one Chemical compound C(/[C@]1(C2=CC(Cl)=CC=C2NC(=O)N1)C(F)(F)F)=C\C1CC1 UXDWYQAXEGVSPS-GFUIURDCSA-N 0.000 description 1
- SGKRLCUYIXIAHR-AKNGSSGZSA-N (4s,4ar,5s,5ar,6r,12ar)-4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1=CC=C2[C@H](C)[C@@H]([C@H](O)[C@@H]3[C@](C(O)=C(C(N)=O)C(=O)[C@H]3N(C)C)(O)C3=O)C3=C(O)C2=C1O SGKRLCUYIXIAHR-AKNGSSGZSA-N 0.000 description 1
- GUXHBMASAHGULD-SEYHBJAFSA-N (4s,4as,5as,6s,12ar)-7-chloro-4-(dimethylamino)-1,6,10,11,12a-pentahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1([C@H]2O)=C(Cl)C=CC(O)=C1C(O)=C1[C@@H]2C[C@H]2[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]2(O)C1=O GUXHBMASAHGULD-SEYHBJAFSA-N 0.000 description 1
- WDLWHQDACQUCJR-ZAMMOSSLSA-N (6r,7r)-7-[[(2r)-2-azaniumyl-2-(4-hydroxyphenyl)acetyl]amino]-8-oxo-3-[(e)-prop-1-enyl]-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)/C=C/C)C(O)=O)=CC=C(O)C=C1 WDLWHQDACQUCJR-ZAMMOSSLSA-N 0.000 description 1
- MMRINLZOZVAPDZ-LSGRDSQZSA-N (6r,7r)-7-[[(2z)-2-(2-amino-1,3-thiazol-4-yl)-2-methoxyiminoacetyl]amino]-3-[(1-methylpyrrolidin-1-ium-1-yl)methyl]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid;chloride Chemical compound Cl.S([C@@H]1[C@@H](C(N1C=1C([O-])=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1C[N+]1(C)CCCC1 MMRINLZOZVAPDZ-LSGRDSQZSA-N 0.000 description 1
- FPVKHBSQESCIEP-UHFFFAOYSA-N (8S)-3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol Natural products C1C(O)C(CO)OC1N1C(NC=NCC2O)=C2N=C1 FPVKHBSQESCIEP-UHFFFAOYSA-N 0.000 description 1
- YQACAXHKQZCEOI-UDCWSGSHSA-N (8s,9s,10r,13s,14s,17s)-10,13-dimethyl-3-oxo-1,2,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthrene-17-carboxylic acid Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)C(O)=O)[C@@H]4[C@@H]3CCC2=C1 YQACAXHKQZCEOI-UDCWSGSHSA-N 0.000 description 1
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 1
- METKIMKYRPQLGS-GFCCVEGCSA-N (R)-atenolol Chemical compound CC(C)NC[C@@H](O)COC1=CC=C(CC(N)=O)C=C1 METKIMKYRPQLGS-GFCCVEGCSA-N 0.000 description 1
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- TVYLLZQTGLZFBW-ZBFHGGJFSA-N (R,R)-tramadol Chemical compound COC1=CC=CC([C@]2(O)[C@H](CCCC2)CN(C)C)=C1 TVYLLZQTGLZFBW-ZBFHGGJFSA-N 0.000 description 1
- NWIUTZDMDHAVTP-KRWDZBQOSA-N (S)-betaxolol Chemical compound C1=CC(OC[C@@H](O)CNC(C)C)=CC=C1CCOCC1CC1 NWIUTZDMDHAVTP-KRWDZBQOSA-N 0.000 description 1
- WHTVZRBIWZFKQO-AWEZNQCLSA-N (S)-chloroquine Chemical compound ClC1=CC=C2C(N[C@@H](C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-AWEZNQCLSA-N 0.000 description 1
- XUBOMFCQGDBHNK-JTQLQIEISA-N (S)-gatifloxacin Chemical compound FC1=CC(C(C(C(O)=O)=CN2C3CC3)=O)=C2C(OC)=C1N1CCN[C@@H](C)C1 XUBOMFCQGDBHNK-JTQLQIEISA-N 0.000 description 1
- TWBNMYSKRDRHAT-RCWTXCDDSA-N (S)-timolol hemihydrate Chemical compound O.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1 TWBNMYSKRDRHAT-RCWTXCDDSA-N 0.000 description 1
- WLRMANUAADYWEA-NWASOUNVSA-N (S)-timolol maleate Chemical compound OC(=O)\C=C/C(O)=O.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1 WLRMANUAADYWEA-NWASOUNVSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- VPVXHAANQNHFSF-UHFFFAOYSA-N 1,4-dioxan-2-one Chemical compound O=C1COCCO1 VPVXHAANQNHFSF-UHFFFAOYSA-N 0.000 description 1
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 description 1
- IWEGDQUCWQFKHS-UHFFFAOYSA-N 1-(1,3-dioxolan-2-ylmethyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrazole Chemical compound O1C(C)(C)C(C)(C)OB1C1=CN(CC2OCCO2)N=C1 IWEGDQUCWQFKHS-UHFFFAOYSA-N 0.000 description 1
- UBCHPRBFMUDMNC-UHFFFAOYSA-N 1-(1-adamantyl)ethanamine Chemical class C1C(C2)CC3CC2CC1(C(N)C)C3 UBCHPRBFMUDMNC-UHFFFAOYSA-N 0.000 description 1
- UUFAJPMQSFXDFR-UHFFFAOYSA-N 1-phenyl-n-prop-2-ynylpropan-2-amine Chemical group C#CCNC(C)CC1=CC=CC=C1 UUFAJPMQSFXDFR-UHFFFAOYSA-N 0.000 description 1
- LEZWWPYKPKIXLL-UHFFFAOYSA-N 1-{2-(4-chlorobenzyloxy)-2-(2,4-dichlorophenyl)ethyl}imidazole Chemical compound C1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 LEZWWPYKPKIXLL-UHFFFAOYSA-N 0.000 description 1
- FUFLCEKSBBHCMO-UHFFFAOYSA-N 11-dehydrocorticosterone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 FUFLCEKSBBHCMO-UHFFFAOYSA-N 0.000 description 1
- YIMHGPSYDOGBPI-YZCVQEKWSA-N 11-keto-β-boswellic acid Chemical compound C1C[C@@H](O)[C@](C)(C(O)=O)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C)CC[C@@H](C)[C@H](C)[C@H]5C4=CC(=O)[C@@H]3[C@]21C YIMHGPSYDOGBPI-YZCVQEKWSA-N 0.000 description 1
- JYGXADMDTFJGBT-MKIDGPAKSA-N 11alpha-Hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-MKIDGPAKSA-N 0.000 description 1
- DBPWSSGDRRHUNT-UHFFFAOYSA-N 17alpha-hydroxy progesterone Natural products C1CC2=CC(=O)CCC2(C)C2C1C1CCC(C(=O)C)(O)C1(C)CC2 DBPWSSGDRRHUNT-UHFFFAOYSA-N 0.000 description 1
- DBPWSSGDRRHUNT-CEGNMAFCSA-N 17α-hydroxyprogesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)C)(O)[C@@]1(C)CC2 DBPWSSGDRRHUNT-CEGNMAFCSA-N 0.000 description 1
- SVUOLADPCWQTTE-UHFFFAOYSA-N 1h-1,2-benzodiazepine Chemical compound N1N=CC=CC2=CC=CC=C12 SVUOLADPCWQTTE-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- QLWBKUUORSULMI-UHFFFAOYSA-N 2-(5-acetyloxy-4,6,7-trimethyl-2,3-dihydro-1-benzofuran-2-yl)acetic acid Chemical compound CC1=C(C)C(OC(=O)C)=C(C)C2=C1OC(CC(O)=O)C2 QLWBKUUORSULMI-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- VHVPQPYKVGDNFY-DFMJLFEVSA-N 2-[(2r)-butan-2-yl]-4-[4-[4-[4-[[(2r,4s)-2-(2,4-dichlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-1,2,4-triazol-3-one Chemical compound O=C1N([C@H](C)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@@H]3O[C@](CN4N=CN=C4)(OC3)C=3C(=CC(Cl)=CC=3)Cl)=CC=2)C=C1 VHVPQPYKVGDNFY-DFMJLFEVSA-N 0.000 description 1
- RTQWWZBSTRGEAV-PKHIMPSTSA-N 2-[[(2s)-2-[bis(carboxymethyl)amino]-3-[4-(methylcarbamoylamino)phenyl]propyl]-[2-[bis(carboxymethyl)amino]propyl]amino]acetic acid Chemical compound CNC(=O)NC1=CC=C(C[C@@H](CN(CC(C)N(CC(O)=O)CC(O)=O)CC(O)=O)N(CC(O)=O)CC(O)=O)C=C1 RTQWWZBSTRGEAV-PKHIMPSTSA-N 0.000 description 1
- MSWZFWKMSRAUBD-GASJEMHNSA-N 2-amino-2-deoxy-D-galactopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@H](O)[C@@H]1O MSWZFWKMSRAUBD-GASJEMHNSA-N 0.000 description 1
- SPCKHVPPRJWQRZ-UHFFFAOYSA-N 2-benzhydryloxy-n,n-dimethylethanamine;2-hydroxypropane-1,2,3-tricarboxylic acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 SPCKHVPPRJWQRZ-UHFFFAOYSA-N 0.000 description 1
- QEJORCUFWWJJPP-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO.CCCCOCCO QEJORCUFWWJJPP-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- 229940093475 2-ethoxyethanol Drugs 0.000 description 1
- PRZSCQILOMKPHY-UHFFFAOYSA-N 2-propoxyethanol Chemical compound [CH2]CCOCCO PRZSCQILOMKPHY-UHFFFAOYSA-N 0.000 description 1
- HMMGKOVEOFBCAU-BCDBGHSCSA-N 3-Acetyl-11-keto-beta-boswellic acid Chemical compound C1C[C@@H](OC(C)=O)[C@](C)(C(O)=O)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C)CC[C@@H](C)[C@H](C)[C@H]5C4=CC(=O)[C@@H]3[C@]21C HMMGKOVEOFBCAU-BCDBGHSCSA-N 0.000 description 1
- GKZSILIAFXNPRA-UHFFFAOYSA-N 3-O-acetyl-11-hydroxy-beta-boswellic acid Natural products C1CC(OC(C)=O)C(C)(C(O)=O)C2CCC3(C)C4(C)CCC5(C)CCC(C)C(C)C5C4=CC(O)C3C21C GKZSILIAFXNPRA-UHFFFAOYSA-N 0.000 description 1
- OEMFBCQMOLVLCR-UHFFFAOYSA-N 3-O-acetyl-9,11-dehydro-beta-boswellic acid Natural products C1CC(OC(C)=O)C(C)(C(O)=O)C2CCC3(C)C4(C)CCC5(C)CCC(C)C(C)C5C4=CC=C3C21C OEMFBCQMOLVLCR-UHFFFAOYSA-N 0.000 description 1
- WEVYNIUIFUYDGI-UHFFFAOYSA-N 3-[6-[4-(trifluoromethoxy)anilino]-4-pyrimidinyl]benzamide Chemical compound NC(=O)C1=CC=CC(C=2N=CN=C(NC=3C=CC(OC(F)(F)F)=CC=3)C=2)=C1 WEVYNIUIFUYDGI-UHFFFAOYSA-N 0.000 description 1
- KUEYYIJXBRWZIB-UHFFFAOYSA-N 3-[bis(4-methoxyphenyl)methylidene]-1H-indol-2-one Chemical compound C1=CC(OC)=CC=C1C(C=1C=CC(OC)=CC=1)=C1C2=CC=CC=C2NC1=O KUEYYIJXBRWZIB-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-M 3-carboxy-2,3-dihydroxypropanoate Chemical compound OC(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-M 0.000 description 1
- UPTAPIKFKZGAGM-FAIYVORSSA-N 3alpha,17alpha,21-Trihydroxy-5beta-pregnan-20-one Chemical compound C1[C@H](O)CC[C@]2(C)[C@H]3CC[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CC[C@@H]21 UPTAPIKFKZGAGM-FAIYVORSSA-N 0.000 description 1
- TWPITYZFXPKIQX-UHFFFAOYSA-N 3alpha-hydroxy-urs-9,12-diene-24-oic acid Natural products C1CC(O)C(C)(C(O)=O)C2CCC3(C)C4(C)CCC5(C)CCC(C)C(C)C5C4=CC=C3C21C TWPITYZFXPKIQX-UHFFFAOYSA-N 0.000 description 1
- MIJYXULNPSFWEK-GTOFXWBISA-N 3beta-hydroxyolean-12-en-28-oic acid Chemical compound C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C(O)=O)CCC(C)(C)C[C@H]5C4=CC[C@@H]3[C@]21C MIJYXULNPSFWEK-GTOFXWBISA-N 0.000 description 1
- LHCOVOKZWQYODM-CPEOKENHSA-N 4-amino-1-[(2r,5s)-2-(hydroxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one;1-[(2r,4s,5s)-4-azido-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione Chemical compound O=C1N=C(N)C=CN1[C@H]1O[C@@H](CO)SC1.O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](N=[N+]=[N-])C1 LHCOVOKZWQYODM-CPEOKENHSA-N 0.000 description 1
- HSBKFSPNDWWPSL-CAHLUQPWSA-N 4-amino-5-fluoro-1-[(2r,5s)-5-(hydroxymethyl)-2,5-dihydrofuran-2-yl]pyrimidin-2-one Chemical compound C1=C(F)C(N)=NC(=O)N1[C@H]1C=C[C@@H](CO)O1 HSBKFSPNDWWPSL-CAHLUQPWSA-N 0.000 description 1
- WUBBRNOQWQTFEX-UHFFFAOYSA-N 4-aminosalicylic acid Chemical compound NC1=CC=C(C(O)=O)C(O)=C1 WUBBRNOQWQTFEX-UHFFFAOYSA-N 0.000 description 1
- OUTUZEBQXNEVGY-UHFFFAOYSA-N 5,5-diethyl-1,3-diazinane-2,4,6-trione;4-(dimethylamino)-1,5-dimethyl-2-phenylpyrazol-3-one Chemical compound CCC1(CC)C(=O)NC(=O)NC1=O.O=C1C(N(C)C)=C(C)N(C)N1C1=CC=CC=C1 OUTUZEBQXNEVGY-UHFFFAOYSA-N 0.000 description 1
- GSDSWSVVBLHKDQ-UHFFFAOYSA-N 9-fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid Chemical compound FC1=CC(C(C(C(O)=O)=C2)=O)=C3N2C(C)COC3=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-UHFFFAOYSA-N 0.000 description 1
- 208000004639 AIDS-Related Opportunistic Infections Diseases 0.000 description 1
- HMMGKOVEOFBCAU-UHFFFAOYSA-N AKBA Natural products C1CC(OC(C)=O)C(C)(C(O)=O)C2CCC3(C)C4(C)CCC5(C)CCC(C)C(C)C5C4=CC(=O)C3C21C HMMGKOVEOFBCAU-UHFFFAOYSA-N 0.000 description 1
- 108010042708 Acetylmuramyl-Alanyl-Isoglutamine Proteins 0.000 description 1
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 1
- 101150078577 Adora2b gene Proteins 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 201000004384 Alopecia Diseases 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 description 1
- BCFCRXOJOFDUMZ-ONKRVSLGSA-N Anecortave Chemical compound O=C1CC[C@]2(C)C3=CC[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 BCFCRXOJOFDUMZ-ONKRVSLGSA-N 0.000 description 1
- YUWPMEXLKGOSBF-GACAOOTBSA-N Anecortave acetate Chemical compound O=C1CC[C@]2(C)C3=CC[C@]4(C)[C@](C(=O)COC(=O)C)(O)CC[C@H]4[C@@H]3CCC2=C1 YUWPMEXLKGOSBF-GACAOOTBSA-N 0.000 description 1
- 108090000644 Angiozyme Proteins 0.000 description 1
- WZPBZJONDBGPKJ-UHFFFAOYSA-N Antibiotic SQ 26917 Natural products O=C1N(S(O)(=O)=O)C(C)C1NC(=O)C(=NOC(C)(C)C(O)=O)C1=CSC(N)=N1 WZPBZJONDBGPKJ-UHFFFAOYSA-N 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 108091023037 Aptamer Proteins 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- MBUVEWMHONZEQD-UHFFFAOYSA-N Azeptin Chemical compound C1CN(C)CCCC1N1C(=O)C2=CC=CC=C2C(CC=2C=CC(Cl)=CC=2)=N1 MBUVEWMHONZEQD-UHFFFAOYSA-N 0.000 description 1
- 239000012664 BCL-2-inhibitor Substances 0.000 description 1
- IWLJRULODREZBY-UHFFFAOYSA-N Bauerenol Natural products CC1CCC2(C)CCC3(C)C(CCC4C3=CCC5C(C)(C)C(O)CCC45C)C2C1C IWLJRULODREZBY-UHFFFAOYSA-N 0.000 description 1
- 102100026596 Bcl-2-like protein 1 Human genes 0.000 description 1
- 229940123711 Bcl2 inhibitor Drugs 0.000 description 1
- KUVIULQEHSCUHY-XYWKZLDCSA-N Beclometasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)COC(=O)CC)(OC(=O)CC)[C@@]1(C)C[C@@H]2O KUVIULQEHSCUHY-XYWKZLDCSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 108010020326 Caspofungin Proteins 0.000 description 1
- GNWUOVJNSFPWDD-XMZRARIVSA-M Cefoxitin sodium Chemical compound [Na+].N([C@]1(OC)C(N2C(=C(COC(N)=O)CS[C@@H]21)C([O-])=O)=O)C(=O)CC1=CC=CS1 GNWUOVJNSFPWDD-XMZRARIVSA-M 0.000 description 1
- KEJCWVGMRLCZQQ-YJBYXUATSA-N Cefuroxime axetil Chemical compound N([C@@H]1C(N2C(=C(COC(N)=O)CS[C@@H]21)C(=O)OC(C)OC(C)=O)=O)C(=O)\C(=N/OC)C1=CC=CO1 KEJCWVGMRLCZQQ-YJBYXUATSA-N 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 239000004099 Chlortetracycline Substances 0.000 description 1
- 208000000094 Chronic Pain Diseases 0.000 description 1
- VWFCHDSQECPREK-LURJTMIESA-N Cidofovir Chemical compound NC=1C=CN(C[C@@H](CO)OCP(O)(O)=O)C(=O)N=1 VWFCHDSQECPREK-LURJTMIESA-N 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- HZZVJAQRINQKSD-UHFFFAOYSA-N Clavulanic acid Natural products OC(=O)C1C(=CCO)OC2CC(=O)N21 HZZVJAQRINQKSD-UHFFFAOYSA-N 0.000 description 1
- 206010009900 Colitis ulcerative Diseases 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 241000759568 Corixa Species 0.000 description 1
- MFYSYFVPBJMHGN-ZPOLXVRWSA-N Cortisone Chemical compound O=C1CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFYSYFVPBJMHGN-ZPOLXVRWSA-N 0.000 description 1
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 description 1
- ITRJWOMZKQRYTA-RFZYENFJSA-N Cortisone acetate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)CC2=O ITRJWOMZKQRYTA-RFZYENFJSA-N 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 229930105110 Cyclosporin A Natural products 0.000 description 1
- LAJXCUNOQSHRJO-ZYGJITOWSA-N Cytochalasin E Chemical compound C([C@H]1[C@@H]2[C@@H]([C@]3(O[C@H]3[C@@H]3/C=C/C[C@H](C)C(=O)[C@](C)(O)/C=C/OC(=O)O[C@@]23C(=O)N1)C)C)C1=CC=CC=C1 LAJXCUNOQSHRJO-ZYGJITOWSA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 108010092160 Dactinomycin Proteins 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- 206010012289 Dementia Diseases 0.000 description 1
- FMTDIUIBLCQGJB-UHFFFAOYSA-N Demethylchlortetracyclin Natural products C1C2C(O)C3=C(Cl)C=CC(O)=C3C(=O)C2=C(O)C2(O)C1C(N(C)C)C(O)=C(C(N)=O)C2=O FMTDIUIBLCQGJB-UHFFFAOYSA-N 0.000 description 1
- 229920000045 Dermatan sulfate Polymers 0.000 description 1
- 206010012438 Dermatitis atopic Diseases 0.000 description 1
- 208000037408 Device failure Diseases 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- BXZVVICBKDXVGW-NKWVEPMBSA-N Didanosine Chemical compound O1[C@H](CO)CC[C@@H]1N1C(NC=NC2=O)=C2N=C1 BXZVVICBKDXVGW-NKWVEPMBSA-N 0.000 description 1
- IIUZTXTZRGLYTI-UHFFFAOYSA-N Dihydrogriseofulvin Natural products COC1CC(=O)CC(C)C11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 IIUZTXTZRGLYTI-UHFFFAOYSA-N 0.000 description 1
- 206010013883 Dwarfism Diseases 0.000 description 1
- 108010066486 EGF Family of Proteins Proteins 0.000 description 1
- 102000018386 EGF Family of Proteins Human genes 0.000 description 1
- 101150029707 ERBB2 gene Proteins 0.000 description 1
- XQSPYNMVSIKCOC-NTSWFWBYSA-N Emtricitabine Chemical compound C1=C(F)C(N)=NC(=O)N1[C@H]1O[C@@H](CO)SC1 XQSPYNMVSIKCOC-NTSWFWBYSA-N 0.000 description 1
- 102000002045 Endothelin Human genes 0.000 description 1
- 108050009340 Endothelin Proteins 0.000 description 1
- 108010032976 Enfuvirtide Proteins 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- 102400001368 Epidermal growth factor Human genes 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 206010071309 Epidural fibrosis Diseases 0.000 description 1
- JKLISIRFYWXLQG-UHFFFAOYSA-N Epioleonolsaeure Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C(O)=O)CCC(C)(C)CC5C4CCC3C21C JKLISIRFYWXLQG-UHFFFAOYSA-N 0.000 description 1
- XOZIUKBZLSUILX-SDMHVBBESA-N Epothilone D Natural products O=C1[C@H](C)[C@@H](O)[C@@H](C)CCC/C(/C)=C/C[C@@H](/C(=C\c2nc(C)sc2)/C)OC(=O)C[C@H](O)C1(C)C XOZIUKBZLSUILX-SDMHVBBESA-N 0.000 description 1
- 244000166124 Eucalyptus globulus Species 0.000 description 1
- PLDUPXSUYLZYBN-UHFFFAOYSA-N Fluphenazine Chemical compound C1CN(CCO)CCN1CCCN1C2=CC(C(F)(F)F)=CC=C2SC2=CC=CC=C21 PLDUPXSUYLZYBN-UHFFFAOYSA-N 0.000 description 1
- 208000005422 Foreign-Body reaction Diseases 0.000 description 1
- VWUXBMIQPBEWFH-WCCTWKNTSA-N Fulvestrant Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3[C@H](CCCCCCCCCS(=O)CCCC(F)(F)C(F)(F)F)CC2=C1 VWUXBMIQPBEWFH-WCCTWKNTSA-N 0.000 description 1
- WMBWREPUVVBILR-UHFFFAOYSA-N GCG Natural products C=1C(O)=C(O)C(O)=CC=1C1OC2=CC(O)=CC(O)=C2CC1OC(=O)C1=CC(O)=C(O)C(O)=C1 WMBWREPUVVBILR-UHFFFAOYSA-N 0.000 description 1
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 102000007446 Glucagon-Like Peptide-1 Receptor Human genes 0.000 description 1
- 108010086246 Glucagon-Like Peptide-1 Receptor Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229920002527 Glycogen Polymers 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 239000000579 Gonadotropin-Releasing Hormone Substances 0.000 description 1
- 108060003393 Granulin Proteins 0.000 description 1
- UXWOXTQWVMFRSE-UHFFFAOYSA-N Griseoviridin Natural products O=C1OC(C)CC=C(C(NCC=CC=CC(O)CC(O)C2)=O)SCC1NC(=O)C1=COC2=N1 UXWOXTQWVMFRSE-UHFFFAOYSA-N 0.000 description 1
- 108010051696 Growth Hormone Proteins 0.000 description 1
- 229940122853 Growth hormone antagonist Drugs 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- WYCLKVQLVUQKNZ-UHFFFAOYSA-N Halazepam Chemical compound N=1CC(=O)N(CC(F)(F)F)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 WYCLKVQLVUQKNZ-UHFFFAOYSA-N 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 229920002971 Heparan sulfate Polymers 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000765923 Homo sapiens Bcl-2-like protein 1 Proteins 0.000 description 1
- 108010003272 Hyaluronate lyase Proteins 0.000 description 1
- 102000001974 Hyaluronidases Human genes 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 208000037147 Hypercalcaemia Diseases 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 229940123534 Interleukin 13 receptor agonist Drugs 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 229920006309 Invista Polymers 0.000 description 1
- 102000036770 Islet Amyloid Polypeptide Human genes 0.000 description 1
- 108010041872 Islet Amyloid Polypeptide Proteins 0.000 description 1
- PWWVAXIEGOYWEE-UHFFFAOYSA-N Isophenergan Chemical compound C1=CC=C2N(CC(C)N(C)C)C3=CC=CC=C3SC2=C1 PWWVAXIEGOYWEE-UHFFFAOYSA-N 0.000 description 1
- 229920000288 Keratan sulfate Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-L L-tartrate(2-) Chemical compound [O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O FEWJPZIEWOKRBE-JCYAYHJZSA-L 0.000 description 1
- 239000005517 L01XE01 - Imatinib Substances 0.000 description 1
- OJMMVQQUTAEWLP-UHFFFAOYSA-N Lincomycin Natural products CN1CC(CCC)CC1C(=O)NC(C(C)O)C1C(O)C(O)C(O)C(SC)O1 OJMMVQQUTAEWLP-UHFFFAOYSA-N 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- YSDQQAXHVYUZIW-QCIJIYAXSA-N Liraglutide Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCNC(=O)CC[C@H](NC(=O)CCCCCCCCCCCCCCC)C(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=C(O)C=C1 YSDQQAXHVYUZIW-QCIJIYAXSA-N 0.000 description 1
- 108010019598 Liraglutide Proteins 0.000 description 1
- 208000004852 Lung Injury Diseases 0.000 description 1
- 108010073521 Luteinizing Hormone Proteins 0.000 description 1
- 102000009151 Luteinizing Hormone Human genes 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 229920000057 Mannan Polymers 0.000 description 1
- ZRVUJXDFFKFLMG-UHFFFAOYSA-N Meloxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=NC=C(C)S1 ZRVUJXDFFKFLMG-UHFFFAOYSA-N 0.000 description 1
- 201000009906 Meningitis Diseases 0.000 description 1
- 101710170181 Metalloproteinase inhibitor Proteins 0.000 description 1
- 102100026261 Metalloproteinase inhibitor 3 Human genes 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- ZFMITUMMTDLWHR-UHFFFAOYSA-N Minoxidil Chemical compound NC1=[N+]([O-])C(N)=CC(N2CCCCC2)=N1 ZFMITUMMTDLWHR-UHFFFAOYSA-N 0.000 description 1
- KLPWJLBORRMFGK-UHFFFAOYSA-N Molindone Chemical compound O=C1C=2C(CC)=C(C)NC=2CCC1CN1CCOCC1 KLPWJLBORRMFGK-UHFFFAOYSA-N 0.000 description 1
- UMYJVVZWBKIXQQ-UHFFFAOYSA-N Moronic acid Natural products C1CC(=O)C(C)(C)C2CCC3(C)C4(C)CCC5(C(O)=O)CCC(C)(C)C=C5C4CCC3C21C UMYJVVZWBKIXQQ-UHFFFAOYSA-N 0.000 description 1
- 101100523539 Mus musculus Raf1 gene Proteins 0.000 description 1
- 241000186367 Mycobacterium avium Species 0.000 description 1
- OUSFTKFNBAZUKL-UHFFFAOYSA-N N-(5-{[(5-tert-butyl-1,3-oxazol-2-yl)methyl]sulfanyl}-1,3-thiazol-2-yl)piperidine-4-carboxamide Chemical compound O1C(C(C)(C)C)=CN=C1CSC(S1)=CN=C1NC(=O)C1CCNCC1 OUSFTKFNBAZUKL-UHFFFAOYSA-N 0.000 description 1
- LKJPYSCBVHEWIU-UHFFFAOYSA-N N-[4-cyano-3-(trifluoromethyl)phenyl]-3-[(4-fluorophenyl)sulfonyl]-2-hydroxy-2-methylpropanamide Chemical compound C=1C=C(C#N)C(C(F)(F)F)=CC=1NC(=O)C(O)(C)CS(=O)(=O)C1=CC=C(F)C=C1 LKJPYSCBVHEWIU-UHFFFAOYSA-N 0.000 description 1
- FTFRZXFNZVCRSK-UHFFFAOYSA-N N4-(3-chloro-4-fluorophenyl)-N6-(1-methyl-4-piperidinyl)pyrimido[5,4-d]pyrimidine-4,6-diamine Chemical compound C1CN(C)CCC1NC1=NC=C(N=CN=C2NC=3C=C(Cl)C(F)=CC=3)C2=N1 FTFRZXFNZVCRSK-UHFFFAOYSA-N 0.000 description 1
- BLXXJMDCKKHMKV-UHFFFAOYSA-N Nabumetone Chemical compound C1=C(CCC(C)=O)C=CC2=CC(OC)=CC=C21 BLXXJMDCKKHMKV-UHFFFAOYSA-N 0.000 description 1
- DDUHZTYCFQRHIY-UHFFFAOYSA-N Negwer: 6874 Natural products COC1=CC(=O)CC(C)C11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-UHFFFAOYSA-N 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 102400001103 Neurotensin Human genes 0.000 description 1
- 101800001814 Neurotensin Proteins 0.000 description 1
- RRJHESVQVSRQEX-SUYBPPKGSA-N O-formylcefamandole Chemical compound CN1N=NN=C1SCC1=C(C(O)=O)N2C(=O)[C@@H](NC(=O)[C@H](OC=O)C=3C=CC=CC=3)[C@H]2SC1 RRJHESVQVSRQEX-SUYBPPKGSA-N 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- YBRJHZPWOMJYKQ-UHFFFAOYSA-N Oleanolic acid Natural products CC1(C)CC2C3=CCC4C5(C)CCC(O)C(C)(C)C5CCC4(C)C3(C)CCC2(C1)C(=O)O YBRJHZPWOMJYKQ-UHFFFAOYSA-N 0.000 description 1
- MIJYXULNPSFWEK-UHFFFAOYSA-N Oleanolinsaeure Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C(O)=O)CCC(C)(C)CC5C4=CCC3C21C MIJYXULNPSFWEK-UHFFFAOYSA-N 0.000 description 1
- 229940123282 Oncogene inhibitor Drugs 0.000 description 1
- 102000004264 Osteopontin Human genes 0.000 description 1
- 108010081689 Osteopontin Proteins 0.000 description 1
- BRUQQQPBMZOVGD-XFKAJCMBSA-N Oxycodone Chemical compound O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(OC)C2=C5[C@@]13CCN4C BRUQQQPBMZOVGD-XFKAJCMBSA-N 0.000 description 1
- 239000004100 Oxytetracycline Substances 0.000 description 1
- WVXOAWPSZWSWDX-UHFFFAOYSA-K P(=O)(=O)C(=O)[O-].[Na+].[Na+].[Na+].P(=O)(=O)C(=O)[O-].P(=O)(=O)C(=O)[O-] Chemical compound P(=O)(=O)C(=O)[O-].[Na+].[Na+].[Na+].P(=O)(=O)C(=O)[O-].P(=O)(=O)C(=O)[O-] WVXOAWPSZWSWDX-UHFFFAOYSA-K 0.000 description 1
- 208000023610 Pelvic Floor disease Diseases 0.000 description 1
- 239000004186 Penicillin G benzathine Substances 0.000 description 1
- 239000004107 Penicillin G sodium Substances 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 240000006711 Pistacia vera Species 0.000 description 1
- 235000003447 Pistacia vera Nutrition 0.000 description 1
- 102000013566 Plasminogen Human genes 0.000 description 1
- 108010051456 Plasminogen Proteins 0.000 description 1
- 241000233872 Pneumocystis carinii Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 108010093965 Polymyxin B Proteins 0.000 description 1
- MWQCHHACWWAQLJ-UHFFFAOYSA-N Prazepam Chemical compound O=C1CN=C(C=2C=CC=CC=2)C2=CC(Cl)=CC=C2N1CC1CC1 MWQCHHACWWAQLJ-UHFFFAOYSA-N 0.000 description 1
- KNAHARQHSZJURB-UHFFFAOYSA-N Propylthiouracile Chemical compound CCCC1=CC(=O)NC(=S)N1 KNAHARQHSZJURB-UHFFFAOYSA-N 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 208000025844 Prostatic disease Diseases 0.000 description 1
- 229940123924 Protein kinase C inhibitor Drugs 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 1
- 206010038910 Retinitis Diseases 0.000 description 1
- 208000025747 Rheumatic disease Diseases 0.000 description 1
- 229940127395 Ribonucleotide Reductase Inhibitors Drugs 0.000 description 1
- 206010040954 Skin wrinkling Diseases 0.000 description 1
- 102100038803 Somatotropin Human genes 0.000 description 1
- 241000252794 Sphinx Species 0.000 description 1
- UIRKNQLZZXALBI-MSVGPLKSSA-N Squalamine Chemical compound C([C@@H]1C[C@H]2O)[C@@H](NCCCNCCCCN)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@H](C)CC[C@H](C(C)C)OS(O)(=O)=O)[C@@]2(C)CC1 UIRKNQLZZXALBI-MSVGPLKSSA-N 0.000 description 1
- UIRKNQLZZXALBI-UHFFFAOYSA-N Squalamine Natural products OC1CC2CC(NCCCNCCCCN)CCC2(C)C2C1C1CCC(C(C)CCC(C(C)C)OS(O)(=O)=O)C1(C)CC2 UIRKNQLZZXALBI-UHFFFAOYSA-N 0.000 description 1
- 101000857870 Squalus acanthias Gonadoliberin Proteins 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- XNKLLVCARDGLGL-JGVFFNPUSA-N Stavudine Chemical compound O=C1NC(=O)C(C)=CN1[C@H]1C=C[C@@H](CO)O1 XNKLLVCARDGLGL-JGVFFNPUSA-N 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- WKDDRNSBRWANNC-UHFFFAOYSA-N Thienamycin Natural products C1C(SCCN)=C(C(O)=O)N2C(=O)C(C(O)C)C21 WKDDRNSBRWANNC-UHFFFAOYSA-N 0.000 description 1
- KLBQZWRITKRQQV-UHFFFAOYSA-N Thioridazine Chemical compound C12=CC(SC)=CC=C2SC2=CC=CC=C2N1CCC1CCCCN1C KLBQZWRITKRQQV-UHFFFAOYSA-N 0.000 description 1
- GFBKORZTTCHDGY-UWVJOHFNSA-N Thiothixene Chemical compound C12=CC(S(=O)(=O)N(C)C)=CC=C2SC2=CC=CC=C2\C1=C\CCN1CCN(C)CC1 GFBKORZTTCHDGY-UWVJOHFNSA-N 0.000 description 1
- 108010031429 Tissue Inhibitor of Metalloproteinase-3 Proteins 0.000 description 1
- IWEQQRMGNVVKQW-OQKDUQJOSA-N Toremifene citrate Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.C1=CC(OCCN(C)C)=CC=C1C(\C=1C=CC=CC=1)=C(\CCCl)C1=CC=CC=C1 IWEQQRMGNVVKQW-OQKDUQJOSA-N 0.000 description 1
- 201000005485 Toxoplasmosis Diseases 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- 206010069363 Traumatic lung injury Diseases 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- XGMPVBXKDAHORN-RBWIMXSLSA-N Triamcinolone diacetate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](OC(C)=O)[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O XGMPVBXKDAHORN-RBWIMXSLSA-N 0.000 description 1
- TZIZWYVVGLXXFV-FLRHRWPCSA-N Triamcinolone hexacetonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H]3OC(C)(C)O[C@@]3(C(=O)COC(=O)CC(C)(C)C)[C@@]1(C)C[C@@H]2O TZIZWYVVGLXXFV-FLRHRWPCSA-N 0.000 description 1
- 108010057266 Type A Botulinum Toxins Proteins 0.000 description 1
- GBOGMAARMMDZGR-UHFFFAOYSA-N UNPD149280 Natural products N1C(=O)C23OC(=O)C=CC(O)CCCC(C)CC=CC3C(O)C(=C)C(C)C2C1CC1=CC=CC=C1 GBOGMAARMMDZGR-UHFFFAOYSA-N 0.000 description 1
- 201000006704 Ulcerative Colitis Diseases 0.000 description 1
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 1
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 1
- 206010046798 Uterine leiomyoma Diseases 0.000 description 1
- HDOVUKNUBWVHOX-QMMMGPOBSA-N Valacyclovir Chemical class N1C(N)=NC(=O)C2=C1N(COCCOC(=O)[C@@H](N)C(C)C)C=N2 HDOVUKNUBWVHOX-QMMMGPOBSA-N 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- 102000016549 Vascular Endothelial Growth Factor Receptor-2 Human genes 0.000 description 1
- 108010053099 Vascular Endothelial Growth Factor Receptor-2 Proteins 0.000 description 1
- 101710110937 Vegetative protein Proteins 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- 108010031318 Vitronectin Proteins 0.000 description 1
- 102100035140 Vitronectin Human genes 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- WREGKURFCTUGRC-POYBYMJQSA-N Zalcitabine Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO)CC1 WREGKURFCTUGRC-POYBYMJQSA-N 0.000 description 1
- JMNXSNUXDHHTKQ-QVMSTPCGSA-N [(3r,6r)-6-[(3s,5r,7r,8r,9s,10s,13r,14s,17r)-3-[3-(4-aminobutylamino)propylamino]-7-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-17-yl]-2-methylheptan-3-yl] hydrogen sulfate;(2s)-2-hydroxypropanoic ac Chemical compound C[C@H](O)C(O)=O.C([C@@H]1C[C@H]2O)[C@@H](NCCCNCCCCN)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@H](C)CC[C@H](C(C)C)OS(O)(=O)=O)[C@@]2(C)CC1 JMNXSNUXDHHTKQ-QVMSTPCGSA-N 0.000 description 1
- ZWBTYMGEBZUQTK-PVLSIAFMSA-N [(7S,9E,11S,12R,13S,14R,15R,16R,17S,18S,19E,21Z)-2,15,17,32-tetrahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-1'-(2-methylpropyl)-6,23-dioxospiro[8,33-dioxa-24,27,29-triazapentacyclo[23.6.1.14,7.05,31.026,30]tritriaconta-1(32),2,4,9,19,21,24,26,30-nonaene-28,4'-piperidine]-13-yl] acetate Chemical compound CO[C@H]1\C=C\O[C@@]2(C)Oc3c(C2=O)c2c4NC5(CCN(CC(C)C)CC5)N=c4c(=NC(=O)\C(C)=C/C=C/[C@H](C)[C@H](O)[C@@H](C)[C@@H](O)[C@@H](C)[C@H](OC(C)=O)[C@@H]1C)c(O)c2c(O)c3C ZWBTYMGEBZUQTK-PVLSIAFMSA-N 0.000 description 1
- RRDRHWJDBOGQHN-JWCTVYNTSA-N [2-[(2s,5r,8s,11s,14r,17s,22s)-17-[(1r)-1-hydroxyethyl]-22-[[(2s)-2-[[(2s,3r)-3-hydroxy-2-[[(2s)-2-[6-methyloctanoyl(sulfomethyl)amino]-4-(sulfomethylamino)butanoyl]amino]butyl]amino]-4-(sulfomethylamino)butanoyl]amino]-5,8-bis(2-methylpropyl)-3,6,9,12,15 Chemical compound CCC(C)CCCCC(=O)N(CS(O)(=O)=O)[C@@H](CCNCS(O)(=O)=O)C(=O)N[C@H]([C@@H](C)O)CN[C@@H](CCNCS(O)(=O)=O)C(=O)N[C@H]1CCNC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](CCNCS(O)(=O)=O)NC(=O)[C@H](CCNCS(O)(=O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CCNCS(O)(=O)=O)NC1=O RRDRHWJDBOGQHN-JWCTVYNTSA-N 0.000 description 1
- WMHSRBZIJNQHKT-FFKFEZPRSA-N abacavir sulfate Chemical compound OS(O)(=O)=O.C=12N=CN([C@H]3C=C[C@@H](CO)C3)C2=NC(N)=NC=1NC1CC1.C=12N=CN([C@H]3C=C[C@@H](CO)C3)C2=NC(N)=NC=1NC1CC1 WMHSRBZIJNQHKT-FFKFEZPRSA-N 0.000 description 1
- 238000012084 abdominal surgery Methods 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 229960000571 acetazolamide Drugs 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 1
- LRESHPOWNLIPRR-WYBDTLHZSA-N acetyl-11-keto-beta-boswellic acid Natural products C[C@@H]1CC[C@]2(C)CC[C@]3(C)C(=CC(=O)[C@@H]4[C@@]5(C)CC[C@@H](C(=O)C)[C@@](C)([C@@H]5CC[C@@]34C)C(=O)O)[C@@H]2[C@H]1C LRESHPOWNLIPRR-WYBDTLHZSA-N 0.000 description 1
- 229960004150 aciclovir Drugs 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 1
- 229940112258 acular Drugs 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 210000004100 adrenal gland Anatomy 0.000 description 1
- 229940064305 adrucil Drugs 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 208000011341 adult acute respiratory distress syndrome Diseases 0.000 description 1
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 1
- JZMHCANOTJFLQJ-IEQBYLOXSA-A affinitac Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP([O-])(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(N=C(N)C=C2)=O)COP([O-])(=S)O[C@@H]2[C@H](O[C@H](C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP([O-])(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(N=C(N)C=C2)=O)COP([O-])(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP([O-])(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(N=C(N)C=C2)=O)COP([O-])(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP([O-])(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP([O-])(=S)O[C@@H]2[C@H](O[C@H](C2)N2C3=C(C(NC(N)=N3)=O)N=C2)CO)[C@@H](OP([S-])(=O)OC[C@@H]2[C@H](C[C@@H](O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP([O-])(=S)OC[C@@H]2[C@H](C[C@@H](O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP([O-])(=S)OC[C@@H]2[C@H](C[C@@H](O2)N2C(NC(=O)C(C)=C2)=O)OP([O-])(=S)OC[C@@H]2[C@H](C[C@@H](O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP([O-])(=S)OC[C@@H]2[C@H](C[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)OP([O-])(=S)OC[C@@H]2[C@H](C[C@@H](O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP([O-])(=S)OC[C@@H]2[C@H](C[C@@H](O2)N2C(NC(=O)C(C)=C2)=O)OP([O-])(=S)OC[C@@H]2[C@H](C[C@@H](O2)N2C(NC(=O)C(C)=C2)=O)OP([O-])(=S)OC[C@@H]2[C@H](C[C@@H](O2)N2C(NC(=O)C(C)=C2)=O)OP([O-])(=S)OC[C@@H]2[C@H](C[C@@H](O2)N2C(N=C(N)C=C2)=O)OP([O-])(=S)OC[C@@H]2[C@H](C[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)C1 JZMHCANOTJFLQJ-IEQBYLOXSA-A 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 229960003601 alatrofloxacin mesylate Drugs 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- IAJILQKETJEXLJ-QTBDOELSSA-N aldehydo-D-glucuronic acid Chemical compound O=C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-QTBDOELSSA-N 0.000 description 1
- 108700025316 aldesleukin Proteins 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical group 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- 231100000360 alopecia Toxicity 0.000 description 1
- GZCGUPFRVQAUEE-UHFFFAOYSA-N alpha-D-galactose Natural products OCC(O)C(O)C(O)C(O)C=O GZCGUPFRVQAUEE-UHFFFAOYSA-N 0.000 description 1
- 229960004538 alprazolam Drugs 0.000 description 1
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 1
- 229950010817 alvocidib Drugs 0.000 description 1
- BIIVYFLTOXDAOV-YVEFUNNKSA-N alvocidib Chemical compound O[C@@H]1CN(C)CC[C@@H]1C1=C(O)C=C(O)C2=C1OC(C=1C(=CC=CC=1)Cl)=CC2=O BIIVYFLTOXDAOV-YVEFUNNKSA-N 0.000 description 1
- WOLHOYHSEKDWQH-UHFFFAOYSA-N amantadine hydrochloride Chemical compound [Cl-].C1C(C2)CC3CC2CC1([NH3+])C3 WOLHOYHSEKDWQH-UHFFFAOYSA-N 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 229960004909 aminosalicylic acid Drugs 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229960003022 amoxicillin Drugs 0.000 description 1
- LSQZJLSUYDQPKJ-NJBDSQKTSA-N amoxicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 LSQZJLSUYDQPKJ-NJBDSQKTSA-N 0.000 description 1
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 1
- 229960003942 amphotericin b Drugs 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 229960001830 amprenavir Drugs 0.000 description 1
- YMARZQAQMVYCKC-OEMFJLHTSA-N amprenavir Chemical compound C([C@@H]([C@H](O)CN(CC(C)C)S(=O)(=O)C=1C=CC(N)=CC=1)NC(=O)O[C@@H]1COCC1)C1=CC=CC=C1 YMARZQAQMVYCKC-OEMFJLHTSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229960002932 anastrozole Drugs 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 230000002491 angiogenic effect Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 235000021120 animal protein Nutrition 0.000 description 1
- 210000003423 ankle Anatomy 0.000 description 1
- NUZWLKWWNNJHPT-UHFFFAOYSA-N anthralin Chemical compound C1C2=CC=CC(O)=C2C(=O)C2=C1C=CC=C2O NUZWLKWWNNJHPT-UHFFFAOYSA-N 0.000 description 1
- 239000000058 anti acne agent Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000002280 anti-androgenic effect Effects 0.000 description 1
- 230000002424 anti-apoptotic effect Effects 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229940046836 anti-estrogen Drugs 0.000 description 1
- 230000001833 anti-estrogenic effect Effects 0.000 description 1
- 230000001384 anti-glaucoma Effects 0.000 description 1
- 230000036436 anti-hiv Effects 0.000 description 1
- 230000002058 anti-hyperglycaemic effect Effects 0.000 description 1
- 230000002924 anti-infective effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 230000002965 anti-thrombogenic effect Effects 0.000 description 1
- 229940124340 antiacne agent Drugs 0.000 description 1
- 239000000051 antiandrogen Substances 0.000 description 1
- 229940030495 antiandrogen sex hormone and modulator of the genital system Drugs 0.000 description 1
- 229940125713 antianxiety drug Drugs 0.000 description 1
- 238000009175 antibody therapy Methods 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 230000010100 anticoagulation Effects 0.000 description 1
- 239000003472 antidiabetic agent Substances 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 239000000030 antiglaucoma agent Substances 0.000 description 1
- 229940030999 antipsoriatics Drugs 0.000 description 1
- 239000000164 antipsychotic agent Substances 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 229940121383 antituberculosis agent Drugs 0.000 description 1
- 239000002249 anxiolytic agent Substances 0.000 description 1
- 230000009118 appropriate response Effects 0.000 description 1
- 239000012223 aqueous fraction Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- UVJYAKBJSGRTHA-ZCRGAIPPSA-N arglabin Chemical compound C1C[C@H]2C(=C)C(=O)O[C@@H]2[C@@H]2C(C)=CC[C@]32O[C@]31C UVJYAKBJSGRTHA-ZCRGAIPPSA-N 0.000 description 1
- UVJYAKBJSGRTHA-UHFFFAOYSA-N arglabin Natural products C1CC2C(=C)C(=O)OC2C2C(C)=CCC32OC31C UVJYAKBJSGRTHA-UHFFFAOYSA-N 0.000 description 1
- 229940087620 aromasin Drugs 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- MCGDSOGUHLTADD-UHFFFAOYSA-N arzoxifene Chemical compound C1=CC(OC)=CC=C1C1=C(OC=2C=CC(OCCN3CCCCC3)=CC=2)C2=CC=C(O)C=C2S1 MCGDSOGUHLTADD-UHFFFAOYSA-N 0.000 description 1
- 229950005529 arzoxifene Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 229940058087 atacand Drugs 0.000 description 1
- 229960002274 atenolol Drugs 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 229940120638 avastin Drugs 0.000 description 1
- 229960004574 azelastine Drugs 0.000 description 1
- 229960004099 azithromycin Drugs 0.000 description 1
- MQTOSJVFKKJCRP-BICOPXKESA-N azithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)N(C)C[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 MQTOSJVFKKJCRP-BICOPXKESA-N 0.000 description 1
- 229960003644 aztreonam Drugs 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 229950000210 beclometasone dipropionate Drugs 0.000 description 1
- 229940092705 beclomethasone Drugs 0.000 description 1
- NBMKJKDGKREAPL-DVTGEIKXSA-N beclomethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O NBMKJKDGKREAPL-DVTGEIKXSA-N 0.000 description 1
- BTNNPSLJPBRMLZ-LGMDPLHJSA-N benfotiamine Chemical compound C=1C=CC=CC=1C(=O)SC(/CCOP(O)(O)=O)=C(/C)N(C=O)CC1=CN=C(C)N=C1N BTNNPSLJPBRMLZ-LGMDPLHJSA-N 0.000 description 1
- 229960002873 benfotiamine Drugs 0.000 description 1
- 229940049706 benzodiazepine Drugs 0.000 description 1
- 239000000749 benzodiazepine receptor blocking agent Substances 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- BVGLIYRKPOITBQ-ANPZCEIESA-N benzylpenicillin benzathine Chemical compound C=1C=CC=CC=1C[NH2+]CC[NH2+]CC1=CC=CC=C1.N([C@H]1[C@H]2SC([C@@H](N2C1=O)C([O-])=O)(C)C)C(=O)CC1=CC=CC=C1.N([C@H]1[C@H]2SC([C@@H](N2C1=O)C([O-])=O)(C)C)C(=O)CC1=CC=CC=C1 BVGLIYRKPOITBQ-ANPZCEIESA-N 0.000 description 1
- WHRVRSCEWKLAHX-LQDWTQKMSA-N benzylpenicillin procaine Chemical class [H+].CCN(CC)CCOC(=O)C1=CC=C(N)C=C1.N([C@H]1[C@H]2SC([C@@H](N2C1=O)C([O-])=O)(C)C)C(=O)CC1=CC=CC=C1 WHRVRSCEWKLAHX-LQDWTQKMSA-N 0.000 description 1
- 229940097320 beta blocking agent Drugs 0.000 description 1
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-RWOPYEJCSA-N beta-D-mannose Chemical group OC[C@H]1O[C@@H](O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-RWOPYEJCSA-N 0.000 description 1
- YIMHGPSYDOGBPI-UHFFFAOYSA-N beta-KBA Natural products C1CC(O)C(C)(C(O)=O)C2CCC3(C)C4(C)CCC5(C)CCC(C)C(C)C5C4=CC(=O)C3C21C YIMHGPSYDOGBPI-UHFFFAOYSA-N 0.000 description 1
- TZVDWGXUGGUMCE-UHFFFAOYSA-N beta-baurenol Natural products CC1(C)C(O)CCC2(C)C(CCC3(C)C4(C)CCC5(C)CCC(C(C53)C)C)C4=CCC21 TZVDWGXUGGUMCE-UHFFFAOYSA-N 0.000 description 1
- 229960002537 betamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-DVTGEIKXSA-N betamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-DVTGEIKXSA-N 0.000 description 1
- 229960000397 bevacizumab Drugs 0.000 description 1
- AQOKCDNYWBIDND-FTOWTWDKSA-N bimatoprost Chemical compound CCNC(=O)CCC\C=C/C[C@H]1[C@@H](O)C[C@@H](O)[C@@H]1\C=C\[C@@H](O)CCC1=CC=CC=C1 AQOKCDNYWBIDND-FTOWTWDKSA-N 0.000 description 1
- 229960002470 bimatoprost Drugs 0.000 description 1
- 239000012867 bioactive agent Substances 0.000 description 1
- 239000000227 bioadhesive Substances 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 208000029162 bladder disease Diseases 0.000 description 1
- UBJAHGAUPNGZFF-XOVTVWCYSA-N bms-184476 Chemical compound O([C@H]1[C@@H]2[C@]3(OC(C)=O)CO[C@@H]3C[C@@H]([C@]2(C(=O)[C@H](OC(C)=O)C2=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)C=3C=CC=CC=3)C=3C=CC=CC=3)C[C@]1(O)C2(C)C)C)OCSC)C(=O)C1=CC=CC=C1 UBJAHGAUPNGZFF-XOVTVWCYSA-N 0.000 description 1
- GMJWGJSDPOAZTP-MIDYMNAOSA-N bms-188797 Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](OC(C)=O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)C=4C=CC=CC=4)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)OC)C(=O)C1=CC=CC=C1 GMJWGJSDPOAZTP-MIDYMNAOSA-N 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- GXJABQQUPOEUTA-RDJZCZTQSA-N bortezomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)B(O)O)NC(=O)C=1N=CC=NC=1)C1=CC=CC=C1 GXJABQQUPOEUTA-RDJZCZTQSA-N 0.000 description 1
- 229940089093 botox Drugs 0.000 description 1
- 229940053031 botulinum toxin Drugs 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 229960001724 brimonidine tartrate Drugs 0.000 description 1
- 229960000722 brinzolamide Drugs 0.000 description 1
- HCRKCZRJWPKOAR-JTQLQIEISA-N brinzolamide Chemical compound CCN[C@H]1CN(CCCOC)S(=O)(=O)C2=C1C=C(S(N)(=O)=O)S2 HCRKCZRJWPKOAR-JTQLQIEISA-N 0.000 description 1
- 229960005520 bryostatin Drugs 0.000 description 1
- MJQUEDHRCUIRLF-TVIXENOKSA-N bryostatin 1 Chemical compound C([C@@H]1CC(/[C@@H]([C@@](C(C)(C)/C=C/2)(O)O1)OC(=O)/C=C/C=C/CCC)=C\C(=O)OC)[C@H]([C@@H](C)O)OC(=O)C[C@H](O)C[C@@H](O1)C[C@H](OC(C)=O)C(C)(C)[C@]1(O)C[C@@H]1C\C(=C\C(=O)OC)C[C@H]\2O1 MJQUEDHRCUIRLF-TVIXENOKSA-N 0.000 description 1
- MUIWQCKLQMOUAT-AKUNNTHJSA-N bryostatin 20 Natural products COC(=O)C=C1C[C@@]2(C)C[C@]3(O)O[C@](C)(C[C@@H](O)CC(=O)O[C@](C)(C[C@@]4(C)O[C@](O)(CC5=CC(=O)O[C@]45C)C(C)(C)C=C[C@@](C)(C1)O2)[C@@H](C)O)C[C@H](OC(=O)C(C)(C)C)C3(C)C MUIWQCKLQMOUAT-AKUNNTHJSA-N 0.000 description 1
- 229940087828 buprenex Drugs 0.000 description 1
- 229960001736 buprenorphine Drugs 0.000 description 1
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 1
- PPKJUHVNTMYXOD-PZGPJMECSA-N c49ws9n75l Chemical compound O=C([C@@H]1N(C2=O)CC[C@H]1S(=O)(=O)CCN(CC)CC)O[C@H](C(C)C)[C@H](C)\C=C\C(=O)NC\C=C\C(\C)=C\[C@@H](O)CC(=O)CC1=NC2=CO1.N([C@@H]1C(=O)N[C@@H](C(N2CCC[C@H]2C(=O)N(C)[C@@H](CC=2C=CC(=CC=2)N(C)C)C(=O)N2C[C@@H](CS[C@H]3C4CCN(CC4)C3)C(=O)C[C@H]2C(=O)N[C@H](C(=O)O[C@@H]1C)C=1C=CC=CC=1)=O)CC)C(=O)C1=NC=CC=C1O PPKJUHVNTMYXOD-PZGPJMECSA-N 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 229940112129 campath Drugs 0.000 description 1
- 125000002382 camphene group Chemical group 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 229940088954 camptosar Drugs 0.000 description 1
- 229960004349 candesartan cilexetil Drugs 0.000 description 1
- 229960004117 capecitabine Drugs 0.000 description 1
- FFGPTBGBLSHEPO-UHFFFAOYSA-N carbamazepine Chemical compound C1=CC2=CC=CC=C2N(C(=O)N)C2=CC=CC=C21 FFGPTBGBLSHEPO-UHFFFAOYSA-N 0.000 description 1
- 229960000623 carbamazepine Drugs 0.000 description 1
- 229960003669 carbenicillin Drugs 0.000 description 1
- FPPNZSSZRUTDAP-UWFZAAFLSA-N carbenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C(C(O)=O)C1=CC=CC=C1 FPPNZSSZRUTDAP-UWFZAAFLSA-N 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000007942 carboxylates Chemical group 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 210000003321 cartilage cell Anatomy 0.000 description 1
- 229940097647 casodex Drugs 0.000 description 1
- 229960000730 caspofungin acetate Drugs 0.000 description 1
- 230000006652 catabolic pathway Effects 0.000 description 1
- ADRVNXBAWSRFAJ-UHFFFAOYSA-N catechin Natural products OC1Cc2cc(O)cc(O)c2OC1c3ccc(O)c(O)c3 ADRVNXBAWSRFAJ-UHFFFAOYSA-N 0.000 description 1
- 235000005487 catechin Nutrition 0.000 description 1
- 125000004403 catechin group Chemical group 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229960005361 cefaclor Drugs 0.000 description 1
- QYIYFLOTGYLRGG-GPCCPHFNSA-N cefaclor Chemical compound C1([C@H](C(=O)N[C@@H]2C(N3C(=C(Cl)CS[C@@H]32)C(O)=O)=O)N)=CC=CC=C1 QYIYFLOTGYLRGG-GPCCPHFNSA-N 0.000 description 1
- 229960004841 cefadroxil Drugs 0.000 description 1
- NBFNMSULHIODTC-CYJZLJNKSA-N cefadroxil monohydrate Chemical compound O.C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=C(O)C=C1 NBFNMSULHIODTC-CYJZLJNKSA-N 0.000 description 1
- 229960002440 cefamandole nafate Drugs 0.000 description 1
- 229960001139 cefazolin Drugs 0.000 description 1
- MLYYVTUWGNIJIB-BXKDBHETSA-N cefazolin Chemical compound S1C(C)=NN=C1SCC1=C(C(O)=O)N2C(=O)[C@@H](NC(=O)CN3N=NN=C3)[C@H]2SC1 MLYYVTUWGNIJIB-BXKDBHETSA-N 0.000 description 1
- 229960003719 cefdinir Drugs 0.000 description 1
- RTXOFQZKPXMALH-GHXIOONMSA-N cefdinir Chemical compound S1C(N)=NC(C(=N\O)\C(=O)N[C@@H]2C(N3C(=C(C=C)CS[C@@H]32)C(O)=O)=O)=C1 RTXOFQZKPXMALH-GHXIOONMSA-N 0.000 description 1
- 229960002100 cefepime Drugs 0.000 description 1
- 229960002129 cefixime Drugs 0.000 description 1
- OKBVVJOGVLARMR-QSWIMTSFSA-N cefixime Chemical compound S1C(N)=NC(C(=N\OCC(O)=O)\C(=O)N[C@@H]2C(N3C(=C(C=C)CS[C@@H]32)C(O)=O)=O)=C1 OKBVVJOGVLARMR-QSWIMTSFSA-N 0.000 description 1
- 229960004682 cefoperazone Drugs 0.000 description 1
- GCFBRXLSHGKWDP-XCGNWRKASA-N cefoperazone Chemical compound O=C1C(=O)N(CC)CCN1C(=O)N[C@H](C=1C=CC(O)=CC=1)C(=O)N[C@@H]1C(=O)N2C(C(O)=O)=C(CSC=3N(N=NN=3)C)CS[C@@H]21 GCFBRXLSHGKWDP-XCGNWRKASA-N 0.000 description 1
- 229960004261 cefotaxime Drugs 0.000 description 1
- AZZMGZXNTDTSME-JUZDKLSSSA-M cefotaxime sodium Chemical compound [Na+].N([C@@H]1C(N2C(=C(COC(C)=O)CS[C@@H]21)C([O-])=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 AZZMGZXNTDTSME-JUZDKLSSSA-M 0.000 description 1
- 229960005495 cefotetan Drugs 0.000 description 1
- SRZNHPXWXCNNDU-RHBCBLIFSA-N cefotetan Chemical compound N([C@]1(OC)C(N2C(=C(CSC=3N(N=NN=3)C)CS[C@@H]21)C(O)=O)=O)C(=O)C1SC(=C(C(N)=O)C(O)=O)S1 SRZNHPXWXCNNDU-RHBCBLIFSA-N 0.000 description 1
- 229960002682 cefoxitin Drugs 0.000 description 1
- LTINZAODLRIQIX-FBXRGJNPSA-N cefpodoxime proxetil Chemical compound N([C@H]1[C@@H]2N(C1=O)C(=C(CS2)COC)C(=O)OC(C)OC(=O)OC(C)C)C(=O)C(=N/OC)\C1=CSC(N)=N1 LTINZAODLRIQIX-FBXRGJNPSA-N 0.000 description 1
- 229960004797 cefpodoxime proxetil Drugs 0.000 description 1
- 229960002580 cefprozil Drugs 0.000 description 1
- 229960004086 ceftibuten Drugs 0.000 description 1
- UNJFKXSSGBWRBZ-BJCIPQKHSA-N ceftibuten Chemical compound S1C(N)=NC(C(=C\CC(O)=O)\C(=O)N[C@@H]2C(N3C(=CCS[C@@H]32)C(O)=O)=O)=C1 UNJFKXSSGBWRBZ-BJCIPQKHSA-N 0.000 description 1
- 229960001991 ceftizoxime Drugs 0.000 description 1
- NNULBSISHYWZJU-LLKWHZGFSA-N ceftizoxime Chemical compound N([C@@H]1C(N2C(=CCS[C@@H]21)C(O)=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 NNULBSISHYWZJU-LLKWHZGFSA-N 0.000 description 1
- ADLFUPFRVXCDMO-LIGXYSTNSA-M ceftizoxime sodium Chemical compound [Na+].N([C@@H]1C(N2C(=CCS[C@@H]21)C([O-])=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 ADLFUPFRVXCDMO-LIGXYSTNSA-M 0.000 description 1
- 229960004755 ceftriaxone Drugs 0.000 description 1
- VAAUVRVFOQPIGI-SPQHTLEESA-N ceftriaxone Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1CSC1=NC(=O)C(=O)NN1C VAAUVRVFOQPIGI-SPQHTLEESA-N 0.000 description 1
- 229960001668 cefuroxime Drugs 0.000 description 1
- JFPVXVDWJQMJEE-IZRZKJBUSA-N cefuroxime Chemical compound N([C@@H]1C(N2C(=C(COC(N)=O)CS[C@@H]21)C(O)=O)=O)C(=O)\C(=N/OC)C1=CC=CO1 JFPVXVDWJQMJEE-IZRZKJBUSA-N 0.000 description 1
- 229960002620 cefuroxime axetil Drugs 0.000 description 1
- 229960000590 celecoxib Drugs 0.000 description 1
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000004656 cell transport Effects 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- MLIFNJABMANKEU-UHFFFAOYSA-N cep-5214 Chemical compound C1=CC=C2C3=C(C(=O)NC4)C4=C(C=4C(=CC=C(C=4)COC(C)C)N4CCCO)C4=C3CC2=C1 MLIFNJABMANKEU-UHFFFAOYSA-N 0.000 description 1
- 229940106164 cephalexin Drugs 0.000 description 1
- ZAIPMKNFIOOWCQ-UEKVPHQBSA-N cephalexin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=CC=C1 ZAIPMKNFIOOWCQ-UEKVPHQBSA-N 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 229960005395 cetuximab Drugs 0.000 description 1
- CYETUYYEVKNSHZ-LGOOQLFJSA-N chembl1200498 Chemical compound CS(O)(=O)=O.C([C@@H]1[C@H]([C@@H]1C1)NC(=O)[C@H](C)NC(=O)[C@@H](N)C)N1C(C(=CC=1C(=O)C(C(O)=O)=C2)F)=NC=1N2C1=CC=C(F)C=C1F CYETUYYEVKNSHZ-LGOOQLFJSA-N 0.000 description 1
- JUFFVKRROAPVBI-PVOYSMBESA-N chembl1210015 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(=O)N[C@H]1[C@@H]([C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO[C@]3(O[C@@H](C[C@H](O)[C@H](O)CO)[C@H](NC(C)=O)[C@@H](O)C3)C(O)=O)O2)O)[C@@H](CO)O1)NC(C)=O)C(=O)NCC(=O)NCC(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 JUFFVKRROAPVBI-PVOYSMBESA-N 0.000 description 1
- JQXXHWHPUNPDRT-BQVAUQFYSA-N chembl1523493 Chemical compound O([C@](C1=O)(C)O\C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)/C=C\C=C(C)/C(=O)NC=2C(O)=C3C(O)=C4C)C)OC)C4=C1C3=C(O)C=2C=NN1CCN(C)CC1 JQXXHWHPUNPDRT-BQVAUQFYSA-N 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000003399 chemotactic effect Effects 0.000 description 1
- 230000000663 chemotropic effect Effects 0.000 description 1
- 229960004630 chlorambucil Drugs 0.000 description 1
- 229960004782 chlordiazepoxide Drugs 0.000 description 1
- ANTSCNMPPGJYLG-UHFFFAOYSA-N chlordiazepoxide Chemical compound O=N=1CC(NC)=NC2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 ANTSCNMPPGJYLG-UHFFFAOYSA-N 0.000 description 1
- 229960003677 chloroquine Drugs 0.000 description 1
- WHTVZRBIWZFKQO-UHFFFAOYSA-N chloroquine Natural products ClC1=CC=C2C(NC(C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-UHFFFAOYSA-N 0.000 description 1
- CYDMQBQPVICBEU-UHFFFAOYSA-N chlorotetracycline Natural products C1=CC(Cl)=C2C(O)(C)C3CC4C(N(C)C)C(O)=C(C(N)=O)C(=O)C4(O)C(O)=C3C(=O)C2=C1O CYDMQBQPVICBEU-UHFFFAOYSA-N 0.000 description 1
- ZPEIMTDSQAKGNT-UHFFFAOYSA-N chlorpromazine Chemical compound C1=C(Cl)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 ZPEIMTDSQAKGNT-UHFFFAOYSA-N 0.000 description 1
- 229960001076 chlorpromazine Drugs 0.000 description 1
- 229960004475 chlortetracycline Drugs 0.000 description 1
- CYDMQBQPVICBEU-XRNKAMNCSA-N chlortetracycline Chemical compound C1=CC(Cl)=C2[C@](O)(C)[C@H]3C[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O CYDMQBQPVICBEU-XRNKAMNCSA-N 0.000 description 1
- 239000000544 cholinesterase inhibitor Substances 0.000 description 1
- 230000012085 chronic inflammatory response Effects 0.000 description 1
- 229960003749 ciclopirox Drugs 0.000 description 1
- SCKYRAXSEDYPSA-UHFFFAOYSA-N ciclopirox Chemical compound ON1C(=O)C=C(C)C=C1C1CCCCC1 SCKYRAXSEDYPSA-UHFFFAOYSA-N 0.000 description 1
- 229960000724 cidofovir Drugs 0.000 description 1
- DHSUYTOATWAVLW-WFVMDLQDSA-N cilastatin Chemical compound CC1(C)C[C@@H]1C(=O)N\C(=C/CCCCSC[C@H](N)C(O)=O)C(O)=O DHSUYTOATWAVLW-WFVMDLQDSA-N 0.000 description 1
- 229960004912 cilastatin Drugs 0.000 description 1
- 229960003405 ciprofloxacin Drugs 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- HZZVJAQRINQKSD-PBFISZAISA-N clavulanic acid Chemical compound OC(=O)[C@H]1C(=C/CO)/O[C@@H]2CC(=O)N21 HZZVJAQRINQKSD-PBFISZAISA-N 0.000 description 1
- 229960003324 clavulanic acid Drugs 0.000 description 1
- 229960002227 clindamycin Drugs 0.000 description 1
- 229960001200 clindamycin hydrochloride Drugs 0.000 description 1
- 229960002896 clonidine Drugs 0.000 description 1
- 229960004362 clorazepate Drugs 0.000 description 1
- XDDJGVMJFWAHJX-UHFFFAOYSA-N clorazepic acid Chemical compound C12=CC(Cl)=CC=C2NC(=O)C(C(=O)O)N=C1C1=CC=CC=C1 XDDJGVMJFWAHJX-UHFFFAOYSA-N 0.000 description 1
- 229960004022 clotrimazole Drugs 0.000 description 1
- VNFPBHJOKIVQEB-UHFFFAOYSA-N clotrimazole Chemical compound ClC1=CC=CC=C1C(N1C=NC=C1)(C=1C=CC=CC=1)C1=CC=CC=C1 VNFPBHJOKIVQEB-UHFFFAOYSA-N 0.000 description 1
- QZUDBNBUXVUHMW-UHFFFAOYSA-N clozapine Chemical compound C1CN(C)CCN1C1=NC2=CC(Cl)=CC=C2NC2=CC=CC=C12 QZUDBNBUXVUHMW-UHFFFAOYSA-N 0.000 description 1
- 229960004170 clozapine Drugs 0.000 description 1
- 229940108538 colistimethate Drugs 0.000 description 1
- 108700028201 colistinmethanesulfonic acid Proteins 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 229960005527 combretastatin A-4 phosphate Drugs 0.000 description 1
- WDOGQTQEKVLZIJ-WAYWQWQTSA-N combretastatin a-4 phosphate Chemical compound C1=C(OP(O)(O)=O)C(OC)=CC=C1\C=C/C1=CC(OC)=C(OC)C(OC)=C1 WDOGQTQEKVLZIJ-WAYWQWQTSA-N 0.000 description 1
- 150000004814 combretastatins Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 229940035811 conjugated estrogen Drugs 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 229940124558 contraceptive agent Drugs 0.000 description 1
- 239000003433 contraceptive agent Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- ALEXXDVDDISNDU-JZYPGELDSA-N cortisol 21-acetate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O ALEXXDVDDISNDU-JZYPGELDSA-N 0.000 description 1
- 229960004544 cortisone Drugs 0.000 description 1
- 229960003290 cortisone acetate Drugs 0.000 description 1
- 229940097499 cozaar Drugs 0.000 description 1
- 229940088900 crixivan Drugs 0.000 description 1
- 229960000265 cromoglicic acid Drugs 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 229940109262 curcumin Drugs 0.000 description 1
- 235000012754 curcumin Nutrition 0.000 description 1
- 239000004148 curcumin Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 239000002875 cyclin dependent kinase inhibitor Substances 0.000 description 1
- 229940043378 cyclin-dependent kinase inhibitor Drugs 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- GBOGMAARMMDZGR-TYHYBEHESA-N cytochalasin B Chemical compound C([C@H]1[C@@H]2[C@@H](C([C@@H](O)[C@@H]3/C=C/C[C@H](C)CCC[C@@H](O)/C=C/C(=O)O[C@@]23C(=O)N1)=C)C)C1=CC=CC=C1 GBOGMAARMMDZGR-TYHYBEHESA-N 0.000 description 1
- GBOGMAARMMDZGR-JREHFAHYSA-N cytochalasin B Natural products C[C@H]1CCC[C@@H](O)C=CC(=O)O[C@@]23[C@H](C=CC1)[C@H](O)C(=C)[C@@H](C)[C@@H]2[C@H](Cc4ccccc4)NC3=O GBOGMAARMMDZGR-JREHFAHYSA-N 0.000 description 1
- DZPQCIIHBSGJDD-QZPZKAQASA-N cytochalasin-E Natural products C[C@@H]1CC=C[C@@H]2[C@H](O)[C@@H](C)C(=C3[C@H](Cc4ccccc4)NC(=O)[C@@]23OC(=O)OC=C[C@](C)(O)C1=O)C DZPQCIIHBSGJDD-QZPZKAQASA-N 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 239000002619 cytotoxin Substances 0.000 description 1
- 229960003901 dacarbazine Drugs 0.000 description 1
- 229960000640 dactinomycin Drugs 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 229960000860 dapsone Drugs 0.000 description 1
- 229940078435 darvocet Drugs 0.000 description 1
- 229940107841 daunoxome Drugs 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 206010061428 decreased appetite Diseases 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 229960005319 delavirdine Drugs 0.000 description 1
- 229960003715 demecarium bromide Drugs 0.000 description 1
- YHKBUDZECQDYBR-UHFFFAOYSA-L demecarium bromide Chemical compound [Br-].[Br-].C=1C=CC([N+](C)(C)C)=CC=1OC(=O)N(C)CCCCCCCCCCN(C)C(=O)OC1=CC=CC([N+](C)(C)C)=C1 YHKBUDZECQDYBR-UHFFFAOYSA-L 0.000 description 1
- 229960002398 demeclocycline Drugs 0.000 description 1
- 229940080861 demerol Drugs 0.000 description 1
- AVJBPWGFOQAPRH-FWMKGIEWSA-L dermatan sulfate Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@H](OS([O-])(=O)=O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](C([O-])=O)O1 AVJBPWGFOQAPRH-FWMKGIEWSA-L 0.000 description 1
- 229940051593 dermatan sulfate Drugs 0.000 description 1
- 229960004976 desogestrel Drugs 0.000 description 1
- RPLCPCMSCLEKRS-BPIQYHPVSA-N desogestrel Chemical compound C1CC[C@@H]2[C@H]3C(=C)C[C@](CC)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 RPLCPCMSCLEKRS-BPIQYHPVSA-N 0.000 description 1
- XOZIUKBZLSUILX-UHFFFAOYSA-N desoxyepothilone B Natural products O1C(=O)CC(O)C(C)(C)C(=O)C(C)C(O)C(C)CCCC(C)=CCC1C(C)=CC1=CSC(C)=N1 XOZIUKBZLSUILX-UHFFFAOYSA-N 0.000 description 1
- XLMALTXPSGQGBX-GCJKJVERSA-N dextropropoxyphene Chemical compound C([C@](OC(=O)CC)([C@H](C)CN(C)C)C=1C=CC=CC=1)C1=CC=CC=C1 XLMALTXPSGQGBX-GCJKJVERSA-N 0.000 description 1
- 229960004193 dextropropoxyphene Drugs 0.000 description 1
- 125000004427 diamine group Chemical group 0.000 description 1
- 229940099238 diamox Drugs 0.000 description 1
- 229960003529 diazepam Drugs 0.000 description 1
- AAOVKJBEBIDNHE-UHFFFAOYSA-N diazepam Chemical compound N=1CC(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 AAOVKJBEBIDNHE-UHFFFAOYSA-N 0.000 description 1
- 229960001259 diclofenac Drugs 0.000 description 1
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 1
- 229960005081 diclofenamide Drugs 0.000 description 1
- GJQPMPFPNINLKP-UHFFFAOYSA-N diclofenamide Chemical compound NS(=O)(=O)C1=CC(Cl)=C(Cl)C(S(N)(=O)=O)=C1 GJQPMPFPNINLKP-UHFFFAOYSA-N 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- VFLDPWHFBUODDF-UHFFFAOYSA-N diferuloylmethane Natural products C1=C(O)C(OC)=CC(C=CC(=O)CC(=O)C=CC=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229960004154 diflorasone Drugs 0.000 description 1
- 229960002124 diflorasone diacetate Drugs 0.000 description 1
- 229960000616 diflunisal Drugs 0.000 description 1
- HUPFGZXOMWLGNK-UHFFFAOYSA-N diflunisal Chemical compound C1=C(O)C(C(=O)O)=CC(C=2C(=CC(F)=CC=2)F)=C1 HUPFGZXOMWLGNK-UHFFFAOYSA-N 0.000 description 1
- XYYVYLMBEZUESM-UHFFFAOYSA-N dihydrocodeine Natural products C1C(N(CCC234)C)C2C=CC(=O)C3OC2=C4C1=CC=C2OC XYYVYLMBEZUESM-UHFFFAOYSA-N 0.000 description 1
- 229940099212 dilaudid Drugs 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 229960000520 diphenhydramine Drugs 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- WLOHNSSYAXHWNR-NXPDYKKBSA-N dirithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H]2O[C@H](COCCOC)N[C@H]([C@@H]2C)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 WLOHNSSYAXHWNR-NXPDYKKBSA-N 0.000 description 1
- 229960004100 dirithromycin Drugs 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- VLARUOGDXDTHEH-UHFFFAOYSA-L disodium cromoglycate Chemical compound [Na+].[Na+].O1C(C([O-])=O)=CC(=O)C2=C1C=CC=C2OCC(O)COC1=CC=CC2=C1C(=O)C=C(C([O-])=O)O2 VLARUOGDXDTHEH-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 229960002311 dithranol Drugs 0.000 description 1
- 239000003534 dna topoisomerase inhibitor Substances 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 229940072340 dolophine Drugs 0.000 description 1
- 229960003933 dorzolamide Drugs 0.000 description 1
- IAVUPMFITXYVAF-XPUUQOCRSA-N dorzolamide Chemical compound CCN[C@H]1C[C@H](C)S(=O)(=O)C2=C1C=C(S(N)(=O)=O)S2 IAVUPMFITXYVAF-XPUUQOCRSA-N 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 229960003722 doxycycline Drugs 0.000 description 1
- 238000000612 dual polarization interferometry Methods 0.000 description 1
- 229940073153 duraclon Drugs 0.000 description 1
- 229960003913 econazole Drugs 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 229940087477 ellence Drugs 0.000 description 1
- 229940001018 emtriva Drugs 0.000 description 1
- 229940073621 enbrel Drugs 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 206010014599 encephalitis Diseases 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- ZUBDGKVDJUIMQQ-UBFCDGJISA-N endothelin-1 Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)NC(=O)[C@H]1NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@@H](CC=2C=CC(O)=CC=2)NC(=O)[C@H](C(C)C)NC(=O)[C@H]2CSSC[C@@H](C(N[C@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N2)=O)NC(=O)[C@@H](CO)NC(=O)[C@H](N)CSSC1)C1=CNC=N1 ZUBDGKVDJUIMQQ-UBFCDGJISA-N 0.000 description 1
- PEASPLKKXBYDKL-FXEVSJAOSA-N enfuvirtide Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(C)=O)[C@@H](C)O)[C@@H](C)CC)C1=CN=CN1 PEASPLKKXBYDKL-FXEVSJAOSA-N 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 210000001339 epidermal cell Anatomy 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- 229940030275 epigallocatechin gallate Drugs 0.000 description 1
- 229930013356 epothilone Natural products 0.000 description 1
- HESCAJZNRMSMJG-KKQRBIROSA-N epothilone A Chemical class C/C([C@@H]1C[C@@H]2O[C@@H]2CCC[C@@H]([C@@H]([C@@H](C)C(=O)C(C)(C)[C@@H](O)CC(=O)O1)O)C)=C\C1=CSC(C)=N1 HESCAJZNRMSMJG-KKQRBIROSA-N 0.000 description 1
- QXRSDHAAWVKZLJ-PVYNADRNSA-N epothilone B Chemical compound C/C([C@@H]1C[C@@H]2O[C@]2(C)CCC[C@@H]([C@@H]([C@@H](C)C(=O)C(C)(C)[C@@H](O)CC(=O)O1)O)C)=C\C1=CSC(C)=N1 QXRSDHAAWVKZLJ-PVYNADRNSA-N 0.000 description 1
- 229950009760 epratuzumab Drugs 0.000 description 1
- 229960001433 erlotinib Drugs 0.000 description 1
- 229930182833 estradiol Natural products 0.000 description 1
- 229960005309 estradiol Drugs 0.000 description 1
- IIUMCNJTGSMNRO-VVSKJQCTSA-L estramustine sodium phosphate Chemical compound [Na+].[Na+].ClCCN(CCCl)C(=O)OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)OP([O-])([O-])=O)[C@@H]4[C@@H]3CCC2=C1 IIUMCNJTGSMNRO-VVSKJQCTSA-L 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 239000000328 estrogen antagonist Substances 0.000 description 1
- 239000002834 estrogen receptor modulator Substances 0.000 description 1
- VUCAHVBMSFIGAI-ZFINNJDLSA-M estrone sodium sulfate Chemical compound [Na+].[O-]S(=O)(=O)OC1=CC=C2[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 VUCAHVBMSFIGAI-ZFINNJDLSA-M 0.000 description 1
- 229960000403 etanercept Drugs 0.000 description 1
- 229960000285 ethambutol Drugs 0.000 description 1
- AEOCXXJPGCBFJA-UHFFFAOYSA-N ethionamide Chemical compound CCC1=CC(C(N)=S)=CC=N1 AEOCXXJPGCBFJA-UHFFFAOYSA-N 0.000 description 1
- 229960002001 ethionamide Drugs 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- JYILPERKVHXLNF-QMNUTNMBSA-N ethynodiol Chemical compound O[C@H]1CC[C@@H]2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 JYILPERKVHXLNF-QMNUTNMBSA-N 0.000 description 1
- 229960005293 etodolac Drugs 0.000 description 1
- XFBVBWWRPKNWHW-UHFFFAOYSA-N etodolac Chemical compound C1COC(CC)(CC(O)=O)C2=N[C]3C(CC)=CC=CC3=C21 XFBVBWWRPKNWHW-UHFFFAOYSA-N 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- LIQODXNTTZAGID-OCBXBXKTSA-N etoposide phosphate Chemical compound COC1=C(OP(O)(O)=O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 LIQODXNTTZAGID-OCBXBXKTSA-N 0.000 description 1
- 229960000752 etoposide phosphate Drugs 0.000 description 1
- 229960004945 etoricoxib Drugs 0.000 description 1
- MNJVRJDLRVPLFE-UHFFFAOYSA-N etoricoxib Chemical compound C1=NC(C)=CC=C1C1=NC=C(Cl)C=C1C1=CC=C(S(C)(=O)=O)C=C1 MNJVRJDLRVPLFE-UHFFFAOYSA-N 0.000 description 1
- HQMNCQVAMBCHCO-DJRRULDNSA-N etretinate Chemical compound CCOC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)C=C(OC)C(C)=C1C HQMNCQVAMBCHCO-DJRRULDNSA-N 0.000 description 1
- 229960002199 etretinate Drugs 0.000 description 1
- 229960000218 etynodiol Drugs 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229960000255 exemestane Drugs 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229960004396 famciclovir Drugs 0.000 description 1
- GGXKWVWZWMLJEH-UHFFFAOYSA-N famcyclovir Chemical class N1=C(N)N=C2N(CCC(COC(=O)C)COC(C)=O)C=NC2=C1 GGXKWVWZWMLJEH-UHFFFAOYSA-N 0.000 description 1
- 229940043168 fareston Drugs 0.000 description 1
- 229940087861 faslodex Drugs 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229940087476 femara Drugs 0.000 description 1
- 229960002428 fentanyl Drugs 0.000 description 1
- IVLVTNPOHDFFCJ-UHFFFAOYSA-N fentanyl citrate Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.C=1C=CC=CC=1N(C(=O)CC)C(CC1)CCN1CCC1=CC=CC=C1 IVLVTNPOHDFFCJ-UHFFFAOYSA-N 0.000 description 1
- RWTNPBWLLIMQHL-UHFFFAOYSA-N fexofenadine Chemical compound C1=CC(C(C)(C(O)=O)C)=CC=C1C(O)CCCN1CCC(C(O)(C=2C=CC=CC=2)C=2C=CC=CC=2)CC1 RWTNPBWLLIMQHL-UHFFFAOYSA-N 0.000 description 1
- 229960003592 fexofenadine Drugs 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- DBEPLOCGEIEOCV-WSBQPABSSA-N finasteride Chemical compound N([C@@H]1CC2)C(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H](C(=O)NC(C)(C)C)[C@@]2(C)CC1 DBEPLOCGEIEOCV-WSBQPABSSA-N 0.000 description 1
- 229960004039 finasteride Drugs 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 229960004413 flucytosine Drugs 0.000 description 1
- XRECTZIEBJDKEO-UHFFFAOYSA-N flucytosine Chemical compound NC1=NC(=O)NC=C1F XRECTZIEBJDKEO-UHFFFAOYSA-N 0.000 description 1
- 229960000390 fludarabine Drugs 0.000 description 1
- 229960005304 fludarabine phosphate Drugs 0.000 description 1
- SYWHXTATXSMDSB-GSLJADNHSA-N fludrocortisone acetate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O SYWHXTATXSMDSB-GSLJADNHSA-N 0.000 description 1
- 229960004381 flumazenil Drugs 0.000 description 1
- 229960003336 fluorocortisol acetate Drugs 0.000 description 1
- 229960002690 fluphenazine Drugs 0.000 description 1
- 229960003528 flurazepam Drugs 0.000 description 1
- SAADBVWGJQAEFS-UHFFFAOYSA-N flurazepam Chemical compound N=1CC(=O)N(CCN(CC)CC)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1F SAADBVWGJQAEFS-UHFFFAOYSA-N 0.000 description 1
- 210000002683 foot Anatomy 0.000 description 1
- 229960004421 formestane Drugs 0.000 description 1
- OSVMTWJCGUFAOD-KZQROQTASA-N formestane Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1O OSVMTWJCGUFAOD-KZQROQTASA-N 0.000 description 1
- 210000003918 fraction a Anatomy 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 229940099052 fuzeon Drugs 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 235000010382 gamma-tocopherol Nutrition 0.000 description 1
- 229960003923 gatifloxacin Drugs 0.000 description 1
- 229960003297 gemtuzumab ozogamicin Drugs 0.000 description 1
- 238000002682 general surgery Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 229940080856 gleevec Drugs 0.000 description 1
- 229940097043 glucuronic acid Drugs 0.000 description 1
- 229940096919 glycogen Drugs 0.000 description 1
- XLXSAKCOAKORKW-AQJXLSMYSA-N gonadorelin Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)NCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 XLXSAKCOAKORKW-AQJXLSMYSA-N 0.000 description 1
- 229940121381 gonadotrophin releasing hormone (gnrh) antagonists Drugs 0.000 description 1
- 229940035638 gonadotropin-releasing hormone Drugs 0.000 description 1
- 229960002913 goserelin Drugs 0.000 description 1
- 229960003690 goserelin acetate Drugs 0.000 description 1
- DDUHZTYCFQRHIY-RBHXEPJQSA-N griseofulvin Chemical compound COC1=CC(=O)C[C@@H](C)[C@@]11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-RBHXEPJQSA-N 0.000 description 1
- 229960002867 griseofulvin Drugs 0.000 description 1
- 229960002158 halazepam Drugs 0.000 description 1
- 229960003878 haloperidol Drugs 0.000 description 1
- 230000009442 healing mechanism Effects 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 210000005003 heart tissue Anatomy 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002439 hemostatic effect Effects 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 210000001624 hip Anatomy 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- 229940038661 humalog Drugs 0.000 description 1
- 229940084776 humulin n Drugs 0.000 description 1
- 229940084769 humulin r Drugs 0.000 description 1
- 229960002773 hyaluronidase Drugs 0.000 description 1
- 229940088013 hycamtin Drugs 0.000 description 1
- LLPOLZWFYMWNKH-CMKMFDCUSA-N hydrocodone Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)CC(=O)[C@@H]1OC1=C2C3=CC=C1OC LLPOLZWFYMWNKH-CMKMFDCUSA-N 0.000 description 1
- 229960000240 hydrocodone Drugs 0.000 description 1
- OROGSEYTTFOCAN-UHFFFAOYSA-N hydrocodone Natural products C1C(N(CCC234)C)C2C=CC(O)C3OC2=C4C1=CC=C2OC OROGSEYTTFOCAN-UHFFFAOYSA-N 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 229960001067 hydrocortisone acetate Drugs 0.000 description 1
- 229960001410 hydromorphone Drugs 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- XXSMGPRMXLTPCZ-UHFFFAOYSA-N hydroxychloroquine Chemical compound ClC1=CC=C2C(NC(C)CCCN(CCO)CC)=CC=NC2=C1 XXSMGPRMXLTPCZ-UHFFFAOYSA-N 0.000 description 1
- 229960004171 hydroxychloroquine Drugs 0.000 description 1
- 229950000801 hydroxyprogesterone caproate Drugs 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 230000000148 hypercalcaemia Effects 0.000 description 1
- 229960001001 ibritumomab tiuxetan Drugs 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 229940099279 idamycin Drugs 0.000 description 1
- 208000008384 ileus Diseases 0.000 description 1
- KTUFNOKKBVMGRW-UHFFFAOYSA-N imatinib Chemical compound C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 KTUFNOKKBVMGRW-UHFFFAOYSA-N 0.000 description 1
- 229960002182 imipenem Drugs 0.000 description 1
- ZSKVGTPCRGIANV-ZXFLCMHBSA-N imipenem Chemical compound C1C(SCC\N=C\N)=C(C(O)=O)N2C(=O)[C@H]([C@H](O)C)[C@H]21 ZSKVGTPCRGIANV-ZXFLCMHBSA-N 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 229940125721 immunosuppressive agent Drugs 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 229960001936 indinavir Drugs 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- 230000004968 inflammatory condition Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229960004717 insulin aspart Drugs 0.000 description 1
- 229960002869 insulin glargine Drugs 0.000 description 1
- 229960002068 insulin lispro Drugs 0.000 description 1
- 108010071003 insulin-related factor Proteins 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 230000005732 intercellular adhesion Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 229960003521 interferon alfa-2a Drugs 0.000 description 1
- 229960003507 interferon alfa-2b Drugs 0.000 description 1
- 108010010648 interferon alfacon-1 Proteins 0.000 description 1
- 229960003358 interferon alfacon-1 Drugs 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 230000008863 intramolecular interaction Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229960005386 ipilimumab Drugs 0.000 description 1
- 229940084651 iressa Drugs 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 210000004153 islets of langerhan Anatomy 0.000 description 1
- 229960003350 isoniazid Drugs 0.000 description 1
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229960004130 itraconazole Drugs 0.000 description 1
- FABUFPQFXZVHFB-CFWQTKTJSA-N ixabepilone Chemical compound C/C([C@@H]1C[C@@H]2O[C@]2(C)CCC[C@@H]([C@@H]([C@H](C)C(=O)C(C)(C)[C@H](O)CC(=O)N1)O)C)=C\C1=CSC(C)=N1 FABUFPQFXZVHFB-CFWQTKTJSA-N 0.000 description 1
- 229960002014 ixabepilone Drugs 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- UHEBDUAFKQHUBV-UHFFFAOYSA-N jspy-st000261 Chemical compound C1=CC=C2C3=C(C(=O)NC4)C4=C(C=4C(=CC=C(C=4)COC(C)C)N4CCCOC(=O)CN(C)C)C4=C3CC2=C1 UHEBDUAFKQHUBV-UHFFFAOYSA-N 0.000 description 1
- KXCLCNHUUKTANI-RBIYJLQWSA-N keratan Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@H](COS(O)(=O)=O)O[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@H](O[C@@H](O[C@H]3[C@H]([C@@H](COS(O)(=O)=O)O[C@@H](O)[C@@H]3O)O)[C@H](NC(C)=O)[C@H]2O)COS(O)(=O)=O)O[C@H](COS(O)(=O)=O)[C@@H]1O KXCLCNHUUKTANI-RBIYJLQWSA-N 0.000 description 1
- 229960004125 ketoconazole Drugs 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- DKYWVDODHFEZIM-UHFFFAOYSA-N ketoprofen Chemical compound OC(=O)C(C)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 DKYWVDODHFEZIM-UHFFFAOYSA-N 0.000 description 1
- 229960000991 ketoprofen Drugs 0.000 description 1
- BWHLPLXXIDYSNW-UHFFFAOYSA-N ketorolac tromethamine Chemical compound OCC(N)(CO)CO.OC(=O)C1CCN2C1=CC=C2C(=O)C1=CC=CC=C1 BWHLPLXXIDYSNW-UHFFFAOYSA-N 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 229940060975 lantus Drugs 0.000 description 1
- 210000000867 larynx Anatomy 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 229960001160 latanoprost Drugs 0.000 description 1
- GGXICVAJURFBLW-CEYXHVGTSA-N latanoprost Chemical compound CC(C)OC(=O)CCC\C=C/C[C@H]1[C@@H](O)C[C@@H](O)[C@@H]1CC[C@@H](O)CCC1=CC=CC=C1 GGXICVAJURFBLW-CEYXHVGTSA-N 0.000 description 1
- 201000010260 leiomyoma Diseases 0.000 description 1
- 229960003881 letrozole Drugs 0.000 description 1
- 229940063725 leukeran Drugs 0.000 description 1
- 230000023404 leukocyte cell-cell adhesion Effects 0.000 description 1
- 229960004771 levobetaxolol Drugs 0.000 description 1
- 229960004400 levonorgestrel Drugs 0.000 description 1
- OJMMVQQUTAEWLP-KIDUDLJLSA-N lincomycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@@H](C)O)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 OJMMVQQUTAEWLP-KIDUDLJLSA-N 0.000 description 1
- 229960005287 lincomycin Drugs 0.000 description 1
- 229960003907 linezolid Drugs 0.000 description 1
- TYZROVQLWOKYKF-ZDUSSCGKSA-N linezolid Chemical compound O=C1O[C@@H](CNC(=O)C)CN1C(C=C1F)=CC=C1N1CCOCC1 TYZROVQLWOKYKF-ZDUSSCGKSA-N 0.000 description 1
- 229960002701 liraglutide Drugs 0.000 description 1
- 229960002394 lisinopril Drugs 0.000 description 1
- DHMTURDWPRKSOA-RUZDIDTESA-N lonafarnib Chemical compound C1CN(C(=O)N)CCC1CC(=O)N1CCC([C@@H]2C3=C(Br)C=C(Cl)C=C3CCC3=CC(Br)=CN=C32)CC1 DHMTURDWPRKSOA-RUZDIDTESA-N 0.000 description 1
- 229960001977 loracarbef Drugs 0.000 description 1
- JAPHQRWPEGVNBT-UTUOFQBUSA-N loracarbef Chemical compound C1([C@H](C(=O)N[C@@H]2C(N3C(=C(Cl)CC[C@@H]32)C([O-])=O)=O)[NH3+])=CC=CC=C1 JAPHQRWPEGVNBT-UTUOFQBUSA-N 0.000 description 1
- 229960004391 lorazepam Drugs 0.000 description 1
- 229960004773 losartan Drugs 0.000 description 1
- 229960000423 loxapine Drugs 0.000 description 1
- YQZBAXDVDZTKEQ-UHFFFAOYSA-N loxapine succinate Chemical compound [H+].[H+].[O-]C(=O)CCC([O-])=O.C1CN(C)CCN1C1=NC2=CC=CC=C2OC2=CC=C(Cl)C=C12 YQZBAXDVDZTKEQ-UHFFFAOYSA-N 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 229940076783 lucentis Drugs 0.000 description 1
- 229960000994 lumiracoxib Drugs 0.000 description 1
- KHPKQFYUPIUARC-UHFFFAOYSA-N lumiracoxib Chemical compound OC(=O)CC1=CC(C)=CC=C1NC1=C(F)C=CC=C1Cl KHPKQFYUPIUARC-UHFFFAOYSA-N 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 231100000515 lung injury Toxicity 0.000 description 1
- PKGKOZOYXQMJNG-UHFFFAOYSA-N lupeol Natural products CC(=C)C1CC2C(C)(CCC3C4(C)CCC5C(C)(C)C(O)CCC5(C)C4CCC23C)C1 PKGKOZOYXQMJNG-UHFFFAOYSA-N 0.000 description 1
- MQYXUWHLBZFQQO-QGTGJCAVSA-N lupeol Chemical compound C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C)CC[C@@H](C(=C)C)[C@@H]5[C@H]4CC[C@@H]3[C@]21C MQYXUWHLBZFQQO-QGTGJCAVSA-N 0.000 description 1
- 229940040129 luteinizing hormone Drugs 0.000 description 1
- 229940092110 macugen Drugs 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- LUEWUZLMQUOBSB-GFVSVBBRSA-N mannan Chemical class O[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@H]3[C@H](O[C@@H](O)[C@@H](O)[C@H]3O)CO)[C@@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O LUEWUZLMQUOBSB-GFVSVBBRSA-N 0.000 description 1
- 125000000311 mannosyl group Chemical group C1([C@@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 229950008959 marimastat Drugs 0.000 description 1
- OCSMOTCMPXTDND-OUAUKWLOSA-N marimastat Chemical compound CNC(=O)[C@H](C(C)(C)C)NC(=O)[C@H](CC(C)C)[C@H](O)C(=O)NO OCSMOTCMPXTDND-OUAUKWLOSA-N 0.000 description 1
- 229940121386 matrix metalloproteinase inhibitor Drugs 0.000 description 1
- 239000003771 matrix metalloproteinase inhibitor Substances 0.000 description 1
- 229950008001 matuzumab Drugs 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 229960004616 medroxyprogesterone Drugs 0.000 description 1
- FRQMUZJSZHZSGN-HBNHAYAOSA-N medroxyprogesterone Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2CC[C@]2(C)[C@@](O)(C(C)=O)CC[C@H]21 FRQMUZJSZHZSGN-HBNHAYAOSA-N 0.000 description 1
- 229960001962 mefloquine Drugs 0.000 description 1
- 229960001929 meloxicam Drugs 0.000 description 1
- 229940101513 menest Drugs 0.000 description 1
- 229960002260 meropenem Drugs 0.000 description 1
- DMJNNHOOLUXYBV-PQTSNVLCSA-N meropenem Chemical compound C=1([C@H](C)[C@@H]2[C@H](C(N2C=1C(O)=O)=O)[C@H](O)C)S[C@@H]1CN[C@H](C(=O)N(C)C)C1 DMJNNHOOLUXYBV-PQTSNVLCSA-N 0.000 description 1
- SLVMESMUVMCQIY-UHFFFAOYSA-N mesoridazine Chemical compound CN1CCCCC1CCN1C2=CC(S(C)=O)=CC=C2SC2=CC=CC=C21 SLVMESMUVMCQIY-UHFFFAOYSA-N 0.000 description 1
- 229960000300 mesoridazine Drugs 0.000 description 1
- 229940126170 metalloproteinase inhibitor Drugs 0.000 description 1
- 239000003475 metalloproteinase inhibitor Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 229960001797 methadone Drugs 0.000 description 1
- DASQOOZCTWOQPA-GXKRWWSZSA-L methotrexate disodium Chemical compound [Na+].[Na+].C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC([O-])=O)C([O-])=O)C=C1 DASQOOZCTWOQPA-GXKRWWSZSA-L 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- PLBHSZGDDKCEHR-LFYFAGGJSA-N methylprednisolone acetate Chemical compound C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@](O)(C(=O)COC(C)=O)CC[C@H]21 PLBHSZGDDKCEHR-LFYFAGGJSA-N 0.000 description 1
- 229960001293 methylprednisolone acetate Drugs 0.000 description 1
- 229960000282 metronidazole Drugs 0.000 description 1
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 229960003632 minoxidil Drugs 0.000 description 1
- CFCUWKMKBJTWLW-BKHRDMLASA-N mithramycin Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@H](O)[C@H](O[C@@H]3O[C@H](C)[C@@H](O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@@H](O)[C@H](O)[C@@H](C)O1 CFCUWKMKBJTWLW-BKHRDMLASA-N 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000002829 mitogen activated protein kinase inhibitor Substances 0.000 description 1
- 229960001156 mitoxantrone Drugs 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 229960004938 molindone Drugs 0.000 description 1
- 229960002744 mometasone furoate Drugs 0.000 description 1
- WOFMFGQZHJDGCX-ZULDAHANSA-N mometasone furoate Chemical compound O([C@]1([C@@]2(C)C[C@H](O)[C@]3(Cl)[C@@]4(C)C=CC(=O)C=C4CC[C@H]3[C@@H]2C[C@H]1C)C(=O)CCl)C(=O)C1=CC=CO1 WOFMFGQZHJDGCX-ZULDAHANSA-N 0.000 description 1
- 229960005181 morphine Drugs 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229960003702 moxifloxacin Drugs 0.000 description 1
- FABPRXSRWADJSP-MEDUHNTESA-N moxifloxacin Chemical compound COC1=C(N2C[C@H]3NCCC[C@H]3C2)C(F)=CC(C(C(C(O)=O)=C2)=O)=C1N2C1CC1 FABPRXSRWADJSP-MEDUHNTESA-N 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- BSOQXXWZTUDTEL-ZUYCGGNHSA-N muramyl dipeptide Chemical compound OC(=O)CC[C@H](C(N)=O)NC(=O)[C@H](C)NC(=O)[C@@H](C)O[C@H]1[C@H](O)[C@@H](CO)O[C@@H](O)[C@@H]1NC(C)=O BSOQXXWZTUDTEL-ZUYCGGNHSA-N 0.000 description 1
- IVPPTWCRAFCOFJ-RTBURBONSA-N n-[(1s)-1-[(4s)-2,2-dimethyl-1,3-dioxolan-4-yl]-2-[4-[4-(trifluoromethoxy)phenoxy]phenyl]sulfonylethyl]-n-hydroxyformamide Chemical compound O1C(C)(C)OC[C@@H]1[C@H](N(O)C=O)CS(=O)(=O)C(C=C1)=CC=C1OC1=CC=C(OC(F)(F)F)C=C1 IVPPTWCRAFCOFJ-RTBURBONSA-N 0.000 description 1
- BLCLNMBMMGCOAS-UHFFFAOYSA-N n-[1-[[1-[[1-[[1-[[1-[[1-[[1-[2-[(carbamoylamino)carbamoyl]pyrrolidin-1-yl]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-[(2-methylpropan-2-yl)oxy]-1-oxopropan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amin Chemical compound C1CCC(C(=O)NNC(N)=O)N1C(=O)C(CCCN=C(N)N)NC(=O)C(CC(C)C)NC(=O)C(COC(C)(C)C)NC(=O)C(NC(=O)C(CO)NC(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)C(CC=1NC=NC=1)NC(=O)C1NC(=O)CC1)CC1=CC=C(O)C=C1 BLCLNMBMMGCOAS-UHFFFAOYSA-N 0.000 description 1
- 229960004270 nabumetone Drugs 0.000 description 1
- OZGNYLLQHRPOBR-DHZHZOJOSA-N naftifine Chemical compound C=1C=CC2=CC=CC=C2C=1CN(C)C\C=C\C1=CC=CC=C1 OZGNYLLQHRPOBR-DHZHZOJOSA-N 0.000 description 1
- 229960004313 naftifine Drugs 0.000 description 1
- 229960000805 nalbuphine Drugs 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229960004398 nedocromil Drugs 0.000 description 1
- RQTOOFIXOKYGAN-UHFFFAOYSA-N nedocromil Chemical compound CCN1C(C(O)=O)=CC(=O)C2=C1C(CCC)=C1OC(C(O)=O)=CC(=O)C1=C2 RQTOOFIXOKYGAN-UHFFFAOYSA-N 0.000 description 1
- 230000003880 negative regulation of appetite Effects 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 201000008383 nephritis Diseases 0.000 description 1
- 210000000944 nerve tissue Anatomy 0.000 description 1
- 210000003061 neural cell Anatomy 0.000 description 1
- PCJGZPGTCUMMOT-ISULXFBGSA-N neurotensin Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 PCJGZPGTCUMMOT-ISULXFBGSA-N 0.000 description 1
- 229940109551 nipent Drugs 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229940085033 nolvadex Drugs 0.000 description 1
- 229960001180 norfloxacin Drugs 0.000 description 1
- OGJPXUAPXNRGGI-UHFFFAOYSA-N norfloxacin Chemical compound C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNCC1 OGJPXUAPXNRGGI-UHFFFAOYSA-N 0.000 description 1
- 210000001331 nose Anatomy 0.000 description 1
- 229940098815 novolin n Drugs 0.000 description 1
- 229940098893 novolin r Drugs 0.000 description 1
- VOMXSOIBEJBQNF-UTTRGDHVSA-N novorapid Chemical compound C([C@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CS)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H](CO)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CS)NC(=O)[C@H](CS)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](NC(=O)CN)[C@@H](C)CC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(O)=O)C1=CC=C(O)C=C1.C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CS)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CS)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 VOMXSOIBEJBQNF-UTTRGDHVSA-N 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical group CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 229960002700 octreotide Drugs 0.000 description 1
- 229960001699 ofloxacin Drugs 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- 229940100243 oleanolic acid Drugs 0.000 description 1
- 229960004114 olopatadine Drugs 0.000 description 1
- JBIMVDZLSHOPLA-LSCVHKIXSA-N olopatadine Chemical compound C1OC2=CC=C(CC(O)=O)C=C2C(=C/CCN(C)C)\C2=CC=CC=C21 JBIMVDZLSHOPLA-LSCVHKIXSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 1
- 229960001756 oxaliplatin Drugs 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 229960000625 oxytetracycline Drugs 0.000 description 1
- IWVCMVBTMGNXQD-PXOLEDIWSA-N oxytetracycline Chemical compound C1=CC=C2[C@](O)(C)[C@H]3[C@H](O)[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-PXOLEDIWSA-N 0.000 description 1
- 235000019366 oxytetracycline Nutrition 0.000 description 1
- LSQZJLSUYDQPKJ-UHFFFAOYSA-N p-Hydroxyampicillin Natural products O=C1N2C(C(O)=O)C(C)(C)SC2C1NC(=O)C(N)C1=CC=C(O)C=C1 LSQZJLSUYDQPKJ-UHFFFAOYSA-N 0.000 description 1
- 102000002574 p38 Mitogen-Activated Protein Kinases Human genes 0.000 description 1
- 108010068338 p38 Mitogen-Activated Protein Kinases Proteins 0.000 description 1
- 238000012536 packaging technology Methods 0.000 description 1
- 230000003119 painkilling effect Effects 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- ZFLIKDUSUDBGCD-UHFFFAOYSA-N parabanic acid Chemical class O=C1NC(=O)C(=O)N1 ZFLIKDUSUDBGCD-UHFFFAOYSA-N 0.000 description 1
- 229960005489 paracetamol Drugs 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 229960003407 pegaptanib Drugs 0.000 description 1
- 229960003931 peginterferon alfa-2b Drugs 0.000 description 1
- 108010092851 peginterferon alfa-2b Proteins 0.000 description 1
- 229960002995 pegvisomant Drugs 0.000 description 1
- WVUNYSQLFKLYNI-AATRIKPKSA-N pelitinib Chemical compound C=12C=C(NC(=O)\C=C\CN(C)C)C(OCC)=CC2=NC=C(C#N)C=1NC1=CC=C(F)C(Cl)=C1 WVUNYSQLFKLYNI-AATRIKPKSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- HIANJWSAHKJQTH-UHFFFAOYSA-N pemirolast Chemical compound CC1=CC=CN(C2=O)C1=NC=C2C=1N=NNN=1 HIANJWSAHKJQTH-UHFFFAOYSA-N 0.000 description 1
- 229960004439 pemirolast Drugs 0.000 description 1
- 235000019371 penicillin G benzathine Nutrition 0.000 description 1
- 235000019369 penicillin G sodium Nutrition 0.000 description 1
- 229940056365 penicillin g benzathine Drugs 0.000 description 1
- 229960002340 pentostatin Drugs 0.000 description 1
- SZFPYBIJACMNJV-UHFFFAOYSA-N perifosine Chemical compound CCCCCCCCCCCCCCCCCCOP([O-])(=O)OC1CC[N+](C)(C)CC1 SZFPYBIJACMNJV-UHFFFAOYSA-N 0.000 description 1
- 229950010632 perifosine Drugs 0.000 description 1
- 235000005693 perillyl alcohol Nutrition 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229960000490 permethrin Drugs 0.000 description 1
- RLLPVAHGXHCWKJ-UHFFFAOYSA-N permethrin Chemical compound CC1(C)C(C=C(Cl)Cl)C1C(=O)OCC1=CC=CC(OC=2C=CC=CC=2)=C1 RLLPVAHGXHCWKJ-UHFFFAOYSA-N 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 229960000482 pethidine Drugs 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- YVUQSNJEYSNKRX-UHFFFAOYSA-N pimozide Chemical compound C1=CC(F)=CC=C1C(C=1C=CC(F)=CC=1)CCCN1CCC(N2C(NC3=CC=CC=C32)=O)CC1 YVUQSNJEYSNKRX-UHFFFAOYSA-N 0.000 description 1
- 229960003634 pimozide Drugs 0.000 description 1
- 229960002292 piperacillin Drugs 0.000 description 1
- WCMIIGXFCMNQDS-IDYPWDAWSA-M piperacillin sodium Chemical compound [Na+].O=C1C(=O)N(CC)CCN1C(=O)N[C@H](C=1C=CC=CC=1)C(=O)N[C@@H]1C(=O)N2[C@@H](C([O-])=O)C(C)(C)S[C@@H]21 WCMIIGXFCMNQDS-IDYPWDAWSA-M 0.000 description 1
- 229960003073 pirfenidone Drugs 0.000 description 1
- ISWRGOKTTBVCFA-UHFFFAOYSA-N pirfenidone Chemical compound C1=C(C)C=CC(=O)N1C1=CC=CC=C1 ISWRGOKTTBVCFA-UHFFFAOYSA-N 0.000 description 1
- 229960002702 piroxicam Drugs 0.000 description 1
- QYSPLQLAKJAUJT-UHFFFAOYSA-N piroxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 QYSPLQLAKJAUJT-UHFFFAOYSA-N 0.000 description 1
- 235000020233 pistachio Nutrition 0.000 description 1
- 229960003171 plicamycin Drugs 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920000024 polymyxin B Polymers 0.000 description 1
- 229960005266 polymyxin b Drugs 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920000909 polytetrahydrofuran Polymers 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 229960004856 prazepam Drugs 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- VJZLQIPZNBPASX-OJJGEMKLSA-L prednisolone sodium phosphate Chemical compound [Na+].[Na+].O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)COP([O-])([O-])=O)[C@@H]4[C@@H]3CCC2=C1 VJZLQIPZNBPASX-OJJGEMKLSA-L 0.000 description 1
- 229960002943 prednisolone sodium phosphate Drugs 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 229940063238 premarin Drugs 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 229940088953 prinivil Drugs 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229960005385 proguanil Drugs 0.000 description 1
- SSOLNOMRVKKSON-UHFFFAOYSA-N proguanil Chemical compound CC(C)\N=C(/N)N=C(N)NC1=CC=C(Cl)C=C1 SSOLNOMRVKKSON-UHFFFAOYSA-N 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 229940087463 proleukin Drugs 0.000 description 1
- 229960003910 promethazine Drugs 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- HZLWUYJLOIAQFC-UHFFFAOYSA-N prosapogenin PS-A Natural products C12CC(C)(C)CCC2(C(O)=O)CCC(C2(CCC3C4(C)C)C)(C)C1=CCC2C3(C)CCC4OC1OCC(O)C(O)C1O HZLWUYJLOIAQFC-UHFFFAOYSA-N 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 230000009979 protective mechanism Effects 0.000 description 1
- 230000010069 protein adhesion Effects 0.000 description 1
- 239000003528 protein farnesyltransferase inhibitor Substances 0.000 description 1
- 239000003881 protein kinase C inhibitor Substances 0.000 description 1
- 229960005206 pyrazinamide Drugs 0.000 description 1
- IPEHBUMCGVEMRF-UHFFFAOYSA-N pyrazinecarboxamide Chemical compound NC(=O)C1=CN=CC=N1 IPEHBUMCGVEMRF-UHFFFAOYSA-N 0.000 description 1
- 235000008151 pyridoxamine Nutrition 0.000 description 1
- 239000011699 pyridoxamine Substances 0.000 description 1
- HNWCOANXZNKMLR-UHFFFAOYSA-N pyridoxamine dihydrochloride Chemical compound Cl.Cl.CC1=NC=C(CO)C(CN)=C1O HNWCOANXZNKMLR-UHFFFAOYSA-N 0.000 description 1
- 229960000611 pyrimethamine Drugs 0.000 description 1
- WKSAUQYGYAYLPV-UHFFFAOYSA-N pyrimethamine Chemical compound CCC1=NC(N)=NC(N)=C1C1=CC=C(Cl)C=C1 WKSAUQYGYAYLPV-UHFFFAOYSA-N 0.000 description 1
- 108010071077 quinupristin-dalfopristin Proteins 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 229960003876 ranibizumab Drugs 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- 229950001514 raxofelast Drugs 0.000 description 1
- 239000002464 receptor antagonist Substances 0.000 description 1
- 229940044551 receptor antagonist Drugs 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 230000009719 regenerative response Effects 0.000 description 1
- 230000003716 rejuvenation Effects 0.000 description 1
- 239000003488 releasing hormone Substances 0.000 description 1
- 229940116176 remicade Drugs 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- 230000000552 rheumatic effect Effects 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- WBHHMMIMDMUBKC-QJWNTBNXSA-M ricinoleate Chemical class CCCCCC[C@@H](O)C\C=C/CCCCCCCC([O-])=O WBHHMMIMDMUBKC-QJWNTBNXSA-M 0.000 description 1
- 229960000885 rifabutin Drugs 0.000 description 1
- 229960001225 rifampicin Drugs 0.000 description 1
- 229960000888 rimantadine Drugs 0.000 description 1
- 229960004641 rituximab Drugs 0.000 description 1
- 229960000371 rofecoxib Drugs 0.000 description 1
- RZJQGNCSTQAWON-UHFFFAOYSA-N rofecoxib Chemical compound C1=CC(S(=O)(=O)C)=CC=C1C1=C(C=2C=CC=CC=2)C(=O)OC1 RZJQGNCSTQAWON-UHFFFAOYSA-N 0.000 description 1
- 229940098196 romazicon Drugs 0.000 description 1
- OMXJXAHPPQYWRS-OGCSMFTJSA-N rpr-130401 Chemical compound COC1=CC=CC=C1C(=C)C(=O)N1C[C@](C(O)=O)([C@H]2C3=CC=CC=C3[C@]3(C=4C=CC(C)=CC=4)CC2)[C@H]3C1 OMXJXAHPPQYWRS-OGCSMFTJSA-N 0.000 description 1
- 150000003873 salicylate salts Chemical class 0.000 description 1
- 229940072272 sandostatin Drugs 0.000 description 1
- QWAXKHKRTORLEM-UGJKXSETSA-N saquinavir Chemical class C([C@@H]([C@H](O)CN1C[C@H]2CCCC[C@H]2C[C@H]1C(=O)NC(C)(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)C=1N=C2C=CC=CC2=CC=1)C1=CC=CC=C1 QWAXKHKRTORLEM-UGJKXSETSA-N 0.000 description 1
- 229960001852 saquinavir Drugs 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- BTIHMVBBUGXLCJ-OAHLLOKOSA-N seliciclib Chemical compound C=12N=CN(C(C)C)C2=NC(N[C@@H](CO)CC)=NC=1NCC1=CC=CC=C1 BTIHMVBBUGXLCJ-OAHLLOKOSA-N 0.000 description 1
- 229940007115 shark cartilage extract Drugs 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 1
- 210000004927 skin cell Anatomy 0.000 description 1
- 210000003625 skull Anatomy 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229940074404 sodium succinate Drugs 0.000 description 1
- ZDQYSKICYIVCPN-UHFFFAOYSA-L sodium succinate (anhydrous) Chemical compound [Na+].[Na+].[O-]C(=O)CCC([O-])=O ZDQYSKICYIVCPN-UHFFFAOYSA-L 0.000 description 1
- RMLUKZWYIKEASN-UHFFFAOYSA-M sodium;2-amino-9-(2-hydroxyethoxymethyl)purin-6-olate Chemical compound [Na+].O=C1[N-]C(N)=NC2=C1N=CN2COCCO RMLUKZWYIKEASN-UHFFFAOYSA-M 0.000 description 1
- MIXCUJKCXRNYFM-UHFFFAOYSA-M sodium;diiodomethanesulfonate;n-propyl-n-[2-(2,4,6-trichlorophenoxy)ethyl]imidazole-1-carboxamide Chemical compound [Na+].[O-]S(=O)(=O)C(I)I.C1=CN=CN1C(=O)N(CCC)CCOC1=C(Cl)C=C(Cl)C=C1Cl MIXCUJKCXRNYFM-UHFFFAOYSA-M 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 229940099077 somavert Drugs 0.000 description 1
- 229940061368 sonata Drugs 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 210000001032 spinal nerve Anatomy 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 229950001248 squalamine Drugs 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229960001203 stavudine Drugs 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 230000003637 steroidlike Effects 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- FKENQMMABCRJMK-RITPCOANSA-N sulbactam Chemical compound O=S1(=O)C(C)(C)[C@H](C(O)=O)N2C(=O)C[C@H]21 FKENQMMABCRJMK-RITPCOANSA-N 0.000 description 1
- 229960005256 sulbactam Drugs 0.000 description 1
- 229960002673 sulfacetamide Drugs 0.000 description 1
- SKIVFJLNDNKQPD-UHFFFAOYSA-N sulfacetamide Chemical compound CC(=O)NS(=O)(=O)C1=CC=C(N)C=C1 SKIVFJLNDNKQPD-UHFFFAOYSA-N 0.000 description 1
- 229960005404 sulfamethoxazole Drugs 0.000 description 1
- JFNWFXVFBDDWCX-UHFFFAOYSA-N sulfisoxazole acetyl Chemical compound C=1C=C(N)C=CC=1S(=O)(=O)N(C(=O)C)C=1ON=C(C)C=1C JFNWFXVFBDDWCX-UHFFFAOYSA-N 0.000 description 1
- 229950006904 sulfisoxazole acetyl Drugs 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 125000004354 sulfur functional group Chemical group 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229960000894 sulindac Drugs 0.000 description 1
- MLKXDPUZXIRXEP-MFOYZWKCSA-N sulindac Chemical compound CC1=C(CC(O)=O)C2=CC(F)=CC=C2\C1=C/C1=CC=C(S(C)=O)C=C1 MLKXDPUZXIRXEP-MFOYZWKCSA-N 0.000 description 1
- JLKIGFTWXXRPMT-UHFFFAOYSA-N sulphamethoxazole Chemical compound O1C(C)=CC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 JLKIGFTWXXRPMT-UHFFFAOYSA-N 0.000 description 1
- 230000003075 superhydrophobic effect Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 229940118176 surmontil Drugs 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 239000012438 synthetic essential oil Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 229960003454 tamoxifen citrate Drugs 0.000 description 1
- 229920002258 tannic acid Polymers 0.000 description 1
- 235000015523 tannic acid Nutrition 0.000 description 1
- 229940120982 tarceva Drugs 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 229940063683 taxotere Drugs 0.000 description 1
- 229940090016 tegretol Drugs 0.000 description 1
- 229960003188 temazepam Drugs 0.000 description 1
- 229940061353 temodar Drugs 0.000 description 1
- 229960004964 temozolomide Drugs 0.000 description 1
- DOMXUEMWDBAQBQ-WEVVVXLNSA-N terbinafine Chemical compound C1=CC=C2C(CN(C\C=C\C#CC(C)(C)C)C)=CC=CC2=C1 DOMXUEMWDBAQBQ-WEVVVXLNSA-N 0.000 description 1
- IWVCMVBTMGNXQD-UHFFFAOYSA-N terramycin dehydrate Natural products C1=CC=C2C(O)(C)C3C(O)C4C(N(C)C)C(O)=C(C(N)=O)C(=O)C4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-UHFFFAOYSA-N 0.000 description 1
- MODVSQKJJIBWPZ-VLLPJHQWSA-N tesetaxel Chemical compound O([C@H]1[C@@H]2[C@]3(OC(C)=O)CO[C@@H]3CC[C@@]2(C)[C@H]2[C@@H](C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C(=CC=CN=4)F)C[C@]1(O)C3(C)C)O[C@H](O2)CN(C)C)C(=O)C1=CC=CC=C1 MODVSQKJJIBWPZ-VLLPJHQWSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 229960004546 thiabendazole Drugs 0.000 description 1
- 235000010296 thiabendazole Nutrition 0.000 description 1
- 239000004308 thiabendazole Substances 0.000 description 1
- WJCNZQLZVWNLKY-UHFFFAOYSA-N thiabendazole Chemical compound S1C=NC(C=2NC3=CC=CC=C3N=2)=C1 WJCNZQLZVWNLKY-UHFFFAOYSA-N 0.000 description 1
- 229960002784 thioridazine Drugs 0.000 description 1
- 150000007873 thujene derivatives Chemical class 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 229960004659 ticarcillin Drugs 0.000 description 1
- OHKOGUYZJXTSFX-KZFFXBSXSA-N ticarcillin Chemical compound C=1([C@@H](C(O)=O)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)C=CSC=1 OHKOGUYZJXTSFX-KZFFXBSXSA-N 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 229960004605 timolol Drugs 0.000 description 1
- 229960005221 timolol maleate Drugs 0.000 description 1
- 239000012974 tin catalyst Substances 0.000 description 1
- 229960005013 tiotixene Drugs 0.000 description 1
- PLHJCIYEEKOWNM-HHHXNRCGSA-N tipifarnib Chemical compound CN1C=NC=C1[C@](N)(C=1C=C2C(C=3C=C(Cl)C=CC=3)=CC(=O)N(C)C2=CC=1)C1=CC=C(Cl)C=C1 PLHJCIYEEKOWNM-HHHXNRCGSA-N 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 230000008354 tissue degradation Effects 0.000 description 1
- 230000009772 tissue formation Effects 0.000 description 1
- 230000005944 tissue migration Effects 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 229960000707 tobramycin Drugs 0.000 description 1
- NLVFBUXFDBBNBW-PBSUHMDJSA-N tobramycin Chemical compound N[C@@H]1C[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N NLVFBUXFDBBNBW-PBSUHMDJSA-N 0.000 description 1
- 229960001017 tolmetin Drugs 0.000 description 1
- UPSPUYADGBWSHF-UHFFFAOYSA-N tolmetin Chemical compound C1=CC(C)=CC=C1C(=O)C1=CC=C(CC(O)=O)N1C UPSPUYADGBWSHF-UHFFFAOYSA-N 0.000 description 1
- 229940044693 topoisomerase inhibitor Drugs 0.000 description 1
- 229960005026 toremifene Drugs 0.000 description 1
- XFCLJVABOIYOMF-QPLCGJKRSA-N toremifene Chemical compound C1=CC(OCCN(C)C)=CC=C1C(\C=1C=CC=CC=1)=C(\CCCl)C1=CC=CC=C1 XFCLJVABOIYOMF-QPLCGJKRSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
- 229960004380 tramadol Drugs 0.000 description 1
- TVYLLZQTGLZFBW-GOEBONIOSA-N tramadol Natural products COC1=CC=CC([C@@]2(O)[C@@H](CCCC2)CN(C)C)=C1 TVYLLZQTGLZFBW-GOEBONIOSA-N 0.000 description 1
- LLPOLZWFYMWNKH-UHFFFAOYSA-N trans-dihydrocodeinone Natural products C1C(N(CCC234)C)C2CCC(=O)C3OC2=C4C1=CC=C2OC LLPOLZWFYMWNKH-UHFFFAOYSA-N 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000004642 transportation engineering Methods 0.000 description 1
- 229960000575 trastuzumab Drugs 0.000 description 1
- 229960002368 travoprost Drugs 0.000 description 1
- MKPLKVHSHYCHOC-AHTXBMBWSA-N travoprost Chemical compound CC(C)OC(=O)CCC\C=C/C[C@H]1[C@@H](O)C[C@@H](O)[C@@H]1\C=C\[C@@H](O)COC1=CC=CC(C(F)(F)F)=C1 MKPLKVHSHYCHOC-AHTXBMBWSA-N 0.000 description 1
- 125000000647 trehalose group Chemical group 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- 229960005294 triamcinolone Drugs 0.000 description 1
- GFNANZIMVAIWHM-OBYCQNJPSA-N triamcinolone Chemical compound O=C1C=C[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@]([C@H](O)C4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 GFNANZIMVAIWHM-OBYCQNJPSA-N 0.000 description 1
- YNDXUCZADRHECN-JNQJZLCISA-N triamcinolone acetonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O YNDXUCZADRHECN-JNQJZLCISA-N 0.000 description 1
- 229960002117 triamcinolone acetonide Drugs 0.000 description 1
- GUYPYYARYIIWJZ-CYEPYHPTSA-N triamcinolone benetonide Chemical compound O=C([C@]12[C@H](OC(C)(C)O1)C[C@@H]1[C@@]2(C[C@H](O)[C@]2(F)[C@@]3(C)C=CC(=O)C=C3CC[C@H]21)C)COC(=O)C(C)CNC(=O)C1=CC=CC=C1 GUYPYYARYIIWJZ-CYEPYHPTSA-N 0.000 description 1
- 229950006782 triamcinolone benetonide Drugs 0.000 description 1
- 229960004221 triamcinolone hexacetonide Drugs 0.000 description 1
- 229960003386 triazolam Drugs 0.000 description 1
- JOFWLTCLBGQGBO-UHFFFAOYSA-N triazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1Cl JOFWLTCLBGQGBO-UHFFFAOYSA-N 0.000 description 1
- 229920000428 triblock copolymer Polymers 0.000 description 1
- 150000005691 triesters Chemical class 0.000 description 1
- VSQQQLOSPVPRAZ-RRKCRQDMSA-N trifluridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(C(F)(F)F)=C1 VSQQQLOSPVPRAZ-RRKCRQDMSA-N 0.000 description 1
- 229960003962 trifluridine Drugs 0.000 description 1
- 238000005829 trimerization reaction Methods 0.000 description 1
- IEDVJHCEMCRBQM-UHFFFAOYSA-N trimethoprim Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(N)=NC=2)N)=C1 IEDVJHCEMCRBQM-UHFFFAOYSA-N 0.000 description 1
- 229960001082 trimethoprim Drugs 0.000 description 1
- 229960002835 trimipramine maleate Drugs 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- FQCQGOZEWWPOKI-UHFFFAOYSA-K trisalicylate-choline Chemical compound [Mg+2].C[N+](C)(C)CCO.OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O FQCQGOZEWWPOKI-UHFFFAOYSA-K 0.000 description 1
- 229960000281 trometamol Drugs 0.000 description 1
- DYNZICQDCVYXFW-AHZSKCOESA-N trovafloxacin mesylate Chemical compound CS(O)(=O)=O.C([C@H]1[C@@H]([C@H]1C1)N)N1C(C(=CC=1C(=O)C(C(O)=O)=C2)F)=NC=1N2C1=CC=C(F)C=C1F DYNZICQDCVYXFW-AHZSKCOESA-N 0.000 description 1
- 229960005021 trovafloxacin mesylate Drugs 0.000 description 1
- 239000000814 tuberculostatic agent Substances 0.000 description 1
- 150000004917 tyrosine kinase inhibitor derivatives Chemical class 0.000 description 1
- 210000003954 umbilical cord Anatomy 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 229940096998 ursolic acid Drugs 0.000 description 1
- PLSAJKYPRJGMHO-UHFFFAOYSA-N ursolic acid Natural products CC1CCC2(CCC3(C)C(C=CC4C5(C)CCC(O)C(C)(C)C5CCC34C)C2C1C)C(=O)O PLSAJKYPRJGMHO-UHFFFAOYSA-N 0.000 description 1
- 229940093257 valacyclovir Drugs 0.000 description 1
- 229960002004 valdecoxib Drugs 0.000 description 1
- LNPDTQAFDNKSHK-UHFFFAOYSA-N valdecoxib Chemical compound CC=1ON=C(C=2C=CC=CC=2)C=1C1=CC=C(S(N)(=O)=O)C=C1 LNPDTQAFDNKSHK-UHFFFAOYSA-N 0.000 description 1
- 229940070710 valerate Drugs 0.000 description 1
- ZOCKGBMQLCSHFP-KQRAQHLDSA-N valrubicin Chemical compound O([C@H]1C[C@](CC2=C(O)C=3C(=O)C4=CC=CC(OC)=C4C(=O)C=3C(O)=C21)(O)C(=O)COC(=O)CCCC)[C@H]1C[C@H](NC(=O)C(F)(F)F)[C@H](O)[C@H](C)O1 ZOCKGBMQLCSHFP-KQRAQHLDSA-N 0.000 description 1
- 229960000653 valrubicin Drugs 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 1
- 210000003556 vascular endothelial cell Anatomy 0.000 description 1
- 229950000578 vatalanib Drugs 0.000 description 1
- YCOYDOIWSSHVCK-UHFFFAOYSA-N vatalanib Chemical compound C1=CC(Cl)=CC=C1NC(C1=CC=CC=C11)=NN=C1CC1=CC=NC=C1 YCOYDOIWSSHVCK-UHFFFAOYSA-N 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 229940099039 velcade Drugs 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- SYOKIDBDQMKNDQ-XWTIBIIYSA-N vildagliptin Chemical compound C1C(O)(C2)CC(C3)CC1CC32NCC(=O)N1CCC[C@H]1C#N SYOKIDBDQMKNDQ-XWTIBIIYSA-N 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- GBABOYUKABKIAF-GHYRFKGUSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-GHYRFKGUSA-N 0.000 description 1
- 229960002066 vinorelbine Drugs 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- QYSXJUFSXHHAJI-YRZJJWOYSA-N vitamin D3 Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C\C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-YRZJJWOYSA-N 0.000 description 1
- 235000005282 vitamin D3 Nutrition 0.000 description 1
- 239000011647 vitamin D3 Substances 0.000 description 1
- 229940021056 vitamin d3 Drugs 0.000 description 1
- 229940054953 vitrase Drugs 0.000 description 1
- OGUJBRYAAJYXQP-IJFZAWIJSA-N vuw370o5qe Chemical compound CC(O)=O.CC(O)=O.C1([C@H](O)[C@@H](O)[C@H]2C(=O)N[C@H](C(=O)N3CC[C@H](O)[C@H]3C(=O)N[C@H](NCCN)[C@H](O)C[C@@H](C(N[C@H](C(=O)N3C[C@H](O)C[C@H]3C(=O)N2)[C@@H](C)O)=O)NC(=O)CCCCCCCC[C@@H](C)C[C@@H](C)CC)[C@H](O)CCN)=CC=C(O)C=C1 OGUJBRYAAJYXQP-IJFZAWIJSA-N 0.000 description 1
- 239000003357 wound healing promoting agent Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
- 229940053867 xeloda Drugs 0.000 description 1
- 229960000523 zalcitabine Drugs 0.000 description 1
- HUNXMJYCHXQEGX-UHFFFAOYSA-N zaleplon Chemical compound CCN(C(C)=O)C1=CC=CC(C=2N3N=CC(=C3N=CC=2)C#N)=C1 HUNXMJYCHXQEGX-UHFFFAOYSA-N 0.000 description 1
- 229960004010 zaleplon Drugs 0.000 description 1
- 229940072252 zestril Drugs 0.000 description 1
- 229940052255 ziagen Drugs 0.000 description 1
- 229960002555 zidovudine Drugs 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
- 229940033942 zoladex Drugs 0.000 description 1
- 150000003785 γ-tocopherols Chemical class 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/041—Mixtures of macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/12—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L31/125—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
- A61L31/129—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix containing macromolecular fillers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/145—Hydrogels or hydrocolloids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/148—Materials at least partially resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/16—Biologically active materials, e.g. therapeutic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
- C08L75/06—Polyurethanes from polyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
- C08L75/08—Polyurethanes from polyethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/30—Compounds of undetermined constitution extracted from natural sources, e.g. Aloe Vera
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/41—Anti-inflammatory agents, e.g. NSAIDs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/412—Tissue-regenerating or healing or proliferative agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/424—Anti-adhesion agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/80—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special chemical form
- A61L2300/802—Additives, excipients, e.g. cyclodextrins, fatty acids, surfactants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/18—Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/06—Biodegradable
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/02—Applications for biomedical use
Definitions
- the present disclosure relates generally to biomedical and pharmaceutical applications of absorbable or biodegradable multiphasic hydrogels, where optionally one or more phases are not absorbable in situ. More particularly, the present invention relates to systems of multiphase hydrogels comprising both gel and nongel phases, wherein these phases may be coupled mechanically, hydrophobically, by metal ions, or by covalent bonds.
- ground substance is the non-cellular components of extracellular matrix. Cells are surrounded by extracellular matrix in tissues, which acts as a support for the cells. Ground substance traditionally does not include collagen but does include all the other proteinaceous components, including proteoglycans, matrix proteins and water. Ground substance is amorphous, gel-like, and is primarily composed of glycosaminoglycans (most notably hyaluronan), proteoglycans, and glycoproteins. The formation of tissue adhesions can best be described as a process of denaturation, and more specifically protein denaturation.
- Denaturation is a process in which proteins or nucleic acids lose the tertiary structure and secondary structure which is present in their native state, by application of some external stress or compound such as an acid or base, a concentrated inorganic salt, an organic solvent, exposure to air, or temperature change.
- tissue When a surgical procedure is performed external stress is applied to tissue, which can be oxidative, change the ionic equilibrium, create necrotic byproducts, or otherwise increase the entropy of the tissue. If proteins in a living cell are denatured, this results in disruption of cell activity and possibly cell death (which occurs in all surgical procedures). Denatured proteins can exhibit a wide range of characteristics, from loss of solubility to communal aggregation. These two effects tend to create scaffolds on which bridges between living tissues are formed.
- Denaturation occurs at different levels of the protein structure.
- protein subunits are dissociated and/or the spatial arrangement of protein subunits is disrupted. This can lead to cell death, which promote upregulation of reaction oxygen species as well as providing an environment for microbial proliferation.
- the tertiary structure denaturation involves the disruption of covalent interactions between amino acid sidechains (such as disulfide bridges between cysteine groups), noncovalent dipoledipole interactions between polar amino acid sidechains, and Van der Waals (induced dipole) interactions between nonpolar amino acid sidechains.
- proteins lose all regular repeating patterns such as alphahelices and betapleated sheets, and adopt a random coil configuration. This contributes to the higher entropic state associated with chronic inflammation and thick capsule formation.
- chaotropic compounds such as hydroxyl compounds, for example polyethylene glycol
- salts can have chaotropic properties by shielding charges and preventing the stabilization of salt bridges.
- Hydrogen bonding is stronger in nonpolar media, so salts, which increase the chemical polarity of the solvent, can also destabilize hydrogen bonding.
- the loss of hydrogen bonding disassociates the delimiters of tissue layers, promoting translayer bridge formation.
- adhesions is promoted due to insufficient water molecules to effectively solvate the ions resulting from surgical tissue disruption. This can result in iondipole interactions between the salts and hydrogen bonding species which are more favorable than normal hydrogen bonds, which accordingly promote bridging between tissue layers over promotion of tissue layer boundaries.
- an antiadhesion prosthetic that is absorbable not contribute to a chaotropic effect. Granted much of the denaturation due to surgical intervention is due to disruption of tissue layers, cell death and perturbation of the ionic and hydrophobic equilibrium established in living tissue. Thus, a barrier material should be chemically neutral and reestablish the structural aspects of the tissue perturbed by surgical intervention. Since this intervention is intended to be temporary, then the elimination of the barrier material itself must not be chaotropic. This is where most absorbable materials fail. In cases where an implant is intended to disappear to minimize site colonization by endogenous bacteria, and the implant serves a mechanical function, then such chaotropic effects may be acceptable in a risk/benefit analysis. But where a material is specifically implanted for the purpose of reestablishing normal tissue structure, such chemotropic effects may not be ignored.
- U.S. Pat. No. 6,399,700 discloses comb copolymers comprising hydrophobic polymer backbones and hydrophilic noncell binding side chains which can be endcapped with cell-signaling ligands that guide cellular response.
- U.S. Pat. No. 6,413,539 discloses hydrogelforming, selfsolvating, absorbable polyester copolymers capable of selective, segmental association into compliant hydrogels upon contacting an aqueous environment.
- U.S. Pat. No. 6,465,513 discloses compounds useful in the treatment of inflammatory diseases.
- U.S. Pat. No. 6,486,140 discloses the use of chitosan and a polysaccharide immobilized thereto selected from heparin, heparin sulphate and dextran sulphate for the manufacture of an agent capable of preventing or substantially reducing undesirable adhesion of damaged tissue with adjacent or surrounding tissues in connection with wound healing; and a process for the use of such agent.
- U.S. Pat. No. 6,486,285 discloses a water-swellable polymer gel prepared by reacting an ester of a carboxyl group containing polysaccharide with a compound having at least two.alpha.amino groups, which is derived from a natural amino acid, and a foamed article thereof.
- U.S. Pat. No. 6,514,522 discloses polysaccharide polymers, for example, chitosanarabinogalactan and polysaccharide amine polymers are disclosed.
- the polymers can be used to prevent wound adhesion, to provide scaffolds for tissue transplantation and carriers for cell culture.
- U.S. Pat. No. 6,642,363 discloses materials which contain polysaccharide chains, particularly alginate or modified alginate chains.
- the polysaccharide chains may be included as side chains or auxiliary chains from a backbone polymer chain, which may also be a polysaccharide. Further, the polysaccharide chains may be crosslinked between side chains, auxiliary chains and/or backbone chains.
- U.S. Pat. No. 6,903,199 discloses waterinsoluble, crosslinked amide derivatives of hyaluronic acid and manufacturing method thereof, where the amide derivatives of hyaluronic acid are characterized by crosslinking, of polymer or oligomer having two or more amine groups, with hyaluronic acid or its hyaluronate salts through amidation reaction.
- U.S. Pat. No. 6,923,961 discloses carboxypolysaccharides including carboxymethyl cellulose and their derivatives are provided that can be made into sponges, gels, membranes, particulates and other forms, for a variety of antiadhesion, antithrombogenic, drug delivery and/or hemostatic applications during surgery and pharmacological therapeutics.
- U.S. Pat. No. 7,026,284 discloses a polyphenol useful as a gene complex, cell adhesion inhibitor or immune tolerogen.
- the polyphenol of forming the agent is selected from catechin group consisting of epigallocatechingallate, tannic acids, or proantodianisidine
- a protein of the protein complex is selected from proteins consisting of animal proteins composed of polypeptide chain of peptidecombined amino acids, vegetative proteins, nucleus proteins, glycogen proteins, lipoproteins and metal proteins
- the gene complex comprises by compositing genes by polyphenol catechins in order to introduce genes to cells of animals or human bodies
- a cell composed of the cell adhesion inhibitor is selected from cells consisting of an animal cell including a stem cell, skin cell, mucosa cell, hepatocyte, islet cell, neural cell, cartilage cell, endothelial cell, or epidermal cell.
- U.S. Pat. No. 7,265,098 discloses methods for delivering bioadhesive, bioresorbable, antiadhesion compositions.
- Antiadhesion compositions can be made of intermacromolecular complexes of carboxylcontaining polysaccharides, polyethers, polyacids, polyalkylene oxides, multivalent cations and/or polycations.
- U.S. Pat. No. 7,316,845 discloses compositions for coating biological and nonbiological surfaces, which minimize or prevent cell-cell contact and tissue adhesion, and methods of preparation and use thereof, are disclosed.
- Embodiments include polyethylene glycol/polylysine block or comb-type copolymers with high molecular weight PLL (greater than 1000, more preferably greater than 100,000); PEG/PLL copolymers in which the PLL is a dendrimer which is attached to one end of the PEG; and multilayer compositions including alternating layers of polycationic and polyanionic materials.
- U.S. Pat. No. 7,569,643 discloses novel polymeric compositions based upon A.sub.n(BCB)A.sub.n polyester/polyether multiblocks.
- U.S. Pat. No. 7,879,356 discloses novel bioabsorbable polymeric compositions based upon AB polyester polyether or related diblocks and triblocks.
- U.S. Pat. No. 7,883,694 discloses crosslinked polymer compositions that include a first synthetic polymer containing multiple nucleophilic groups covalently bound to a second synthetic polymer containing multiple electrophilic groups.
- the first synthetic polymer is preferably a synthetic polypeptide or a polyethylene glycol that has been modified to contain multiple nucleophilic groups, such as primary amino (NH.sub.2) or thiol (SH) groups.
- the second synthetic polymer may be a hydrophilic or hydrophobic synthetic polymer, which contains or has been derivatized to contain, two or more electrophilic groups, such as succinimidyl groups.
- U.S. Pat. No. 7,994,116 discloses to a method for prevention or reduction of scar tissue and/or adhesion formation wherein a therapeutically effective amount of a substance that inhibits a proinflammatory cytokine.
- U.S. Pat. No. 8,003,782 discloses that a pharmaceutical composition containing complex carbohydrates with or without natural or synthetic essential oils can work effectively as a topical, oral or mucosal pharmaceutical composition.
- U.S. Pat. No. 8,048,444 discloses an implant introduced into a surgical site of a patient to prevent postsurgical adhesions.
- U.S. Pub. No. 20090208589 discloses new biopolymers which mimic the properties of natural polysaccharides found in vivo.
- inventive polysaccharides can be used as viscosupplements, viscoelastics, tissue space fillers, and/or antiadhesive agents.
- U.S. Pub. No. 20100160960 discloses hydrogel tissue adhesive is formed by reacting an oxidized polysaccharide with a waterdispersible, multiarm amine in the presence of a polyol additive, which retards the degradation of the hydrogel.
- U.S. Pub. No. 20110166089 discloses provide a solution for tissue adhesion prevention and a method for tissue adhesion prevention that are applicable to general surgery and in which covering condition during surgery is stable and convenient.
- the invention is the solution for tissue adhesion prevention of which the active ingredient is trehalose.
- U.S. Pub.No. 20110237542 discloses to a composition for preventing tissue adhesion which comprises a biocompatible hyaluronic acid and a polymer compound. More specifically, the invention is a composition containing hyaluronic acid which has not been modified by a chemical crosslinking agent.
- U.S. Pub.No. 20110243883 discloses provides branched polymers which can be used as lubricants or shock absorbers in vivo.
- inventive polymers can be used as viscosupplements, viscoelastics, tissue space fillers, and/or antiadhesive agents.
- a gel optionally comprising at least one solid phase and optionally comprising a biologically active aspect.
- the bioactive aspect can be geometrical, chemical, or mechanical.
- Yet another object of the present invention is to provide a gel polymer optionally terminated with a biologically active agent.
- a further object of the present invention is to provide a gel polymer capable of the controlledrelease or presentation at an implant surface of a biologically active agent/drug for modulating cellular events, such as, wound healing and tissue regeneration.
- a further object of the present invention is to provide a gel polymer capable of the controlledrelease or presentation at an implant surface of a biologically active agent/drug for therapeutic treatment of diseases.
- a further object of the present invention is to provide a gel polymer which is capable of being extruded onto or injected into living tissue for providing a protective barrier with or without an anti-inflammatory agent or an agent which inhibits fibrotic tissue production for treating conditions, such as, postsurgical adhesion.
- a further object of the present invention is to provide a gel polymer which is capable of being extruded onto or injected into living tissue for providing a protective barrier with or
- a further object of the present invention is to provide a gel polymer which is capable of being extruded onto or injected into living tissue for providing a first protective barrier aspect and a second tissue scaffold aspect, wherein each aspect comprises a separate phase.
- a further object of this invention is to provide a gel polymer for delivering a botanical extract possessing anti-inflammatory or wound healing properties, for example extracts derived from the genus Boswellia.
- a further object of the present invention is to provide a gel polymer comprising distinct phases, each of the phases designed to a specific absorption rate to achieve a specific functional aspect.
- a further object of the present invention is to provide a gel polymer comprising distinct phases wherein the gel phase is tissue adhesive to achieve localization and prevent migration of the gel after implantation at an intended site.
- a further object of the present invention is to provide a gel polymer comprising distinct phases wherein the gel phase is lubricious, and minimizes the irritation associated between adjacent layers of tissue created during a surgical operation that involves tissue dissection.
- a further object of the present invention is to provide a gel polymer comprising distinct phases wherein the different phases are temporarily linked such that as the ionic linker is solvated in vivo, the linking strength is diminished.
- a further object of the present invention is to provide a gel polymer comprising distinct phases wherein the solid phase binds the gel phase, such that the gel phase is not free to spread or swell without limit.
- a further object of the present invention is to provide a gel polymer comprising distinct phases wherein the solid phase and gel phase possess shape memory and the shape achieved during manufacturing and formation of the gel system is a low energy state of the gel system.
- a further object of the present invention is to provide a gel polymer comprising distinct phases wherein the combination of phases
- This present disclosure generally addresses methods of treating tissue defects and modulating cell to cell interactions and tissue to tissue interactions by administration of a polymeric gel material incorporating nongel phases which optionally may contain bioactive molecules to facilitate the repair of a tissue surface.
- the present disclosure further provides biomedical and pharmaceutical applications of absorbable or biodegradable multiphasic hydrogels, where optionally one or more phases are not absorbable in situ. More particularly, the present invention relates to multiphasic systems of hydrogels comprising gel and non-gel phases, wherein these phases may be coupled mechanically, hydrophobically, by metal ions, or by covalent bonds.
- the disclosure further provides methods of using multiphasic gels in humans for providing: a) a protective barrier to prevent postsurgical adhesion, b) a carrier of tissue scaffolding, c) a sealant for isolating layers of tissue chemically, d) a lubricious aspect to ameliorate or reduce tissue inflammation, e) an ordering aspect to reduce the entropy of the healing process, and f) a controlled composition for delivery of biologically active agents for modulating cellular signaling such as wound healing and tissue regeneration or therapeutic treatment of diseases such as cancer and infection.
- the disclosure relates to materials that contain polysaccharide chains or polyester chains, particularly hyaluronan or galactomannan chains, but includes modified cellulose, alginate, polylactic acid, polyurethane, and ethylene or propylene moieties.
- polysaccharide particularly hyaluronan or galactomannan chains may be included as side chains or auxiliary chains linking phases, and in particular gel and solid phases.
- the gel phase backbone is typically an ether, containing ethylene and/or propylene structure.
- a backbone can comprise a poloxamer.
- the backbone may also be a polysaccharide, such as hyaluronan associated with galactomannan.
- Hyaluronan is a polymer of disaccharides, themselves composed of Dglucuronic acid and D-Nacetylglucosamine, linked via alternating beta1,4 and beta1,3 glycosidic bonds.
- Galactomannans are polysaccharides consisting of a mannose backbone with galactose side groups (more specifically, a (14) linked betaDmannopyranose backbone with branch points from the 6positions linked to alphaDgalactose. Any combination of these subunits comprising hyaluronan and galactomannan are contemplated by the present disclosure.
- polysaccharide chains may be crosslinked between side chains, auxiliary chains and/or backbone chains. These materials are advantageously modified by covalent bonding thereto of biologically active molecules for cell adhesion signaling or other cellular messaging.
- This disclosure relates also to derivatized carboxypolysaccharides (CPS). Specifically, the disclosure relates to derivatized carboxypolysaccharides and uses in manufacturing gels incorporating polyethylene oxide (PEO) or polypropylene oxide (PPO) for drug delivery and for antiadhesion preparations. More specifically, this invention relates to antiadhesion and healing compositions comprising composites of biofunctionalized CPS, PEO and PPO.
- PEO polyethylene oxide
- PPO polypropylene oxide
- One embodiment is directed to a multiphasic gel, whererin the gel phase comprises a poloxamer polymer backbone to which is linked polysaccharide groups, particularly of hyaluronan or galactomannan.
- the polysaccharide groups are present as side chains or alternating with the poloxamer in a chain configuration.
- the chains may be polymerized into rings, thus eliminating any endgroups.
- the gel polymers provide synthetically modified polysaccharides exhibiting controllable mechanical and charge distribution properties to which an organic moiety may be attached.
- the idisclosure is directed to processes for preparing such polymers including an organic moiety and to the use of such polymers, for example, as cell transplantation matrices, preformed hydrogels for cell transplantation, nondegradable matrices for immunoisolated cell transplantation, vehicles for drug delivery, wound dressings and antiadhesion prosthetics.
- Another embodiment is directed to polysaccharides, particularly hyaluronan, which are modified by being crosslinked with an organic bioactive moiety.
- the hyaluronan may further be modified by covalent bonding thereto of a biologically active molecule for cell adhesion, cell repulsion, or other cellular interaction.
- Crosslinking of the hyaluronan with a poloxamer can particularly provide polysaccharide/polyether materials with controlled mechanical properties and shape memory properties which greatly expand their range of use.
- a gel tends to take the shape of the vessel which contains it, but a system of solid torus, polymerized into the gel matrix so as to form a chainmaillike configuration, can internally constrain a gel dimensionally to prevent gel thinning, clumping, or partitioning.
- Another embodiment is directed to modified polysaccharides, such as polymers containing a poloxamer backbone with the above described side chain hyaluronan or crosslinked hyaluronan, modified by covalent bonding thereto of a biologically active molecule for mitigation of cell adhesion or other cellular interaction, which is particularly advantageous for maintenance, viability and directed expression of desirable patterns of gene expression.
- a terminal group that stimulates nitric oxide production and promotes angiogenesis.
- a biofunctional molecules optionally could be those obtained from various extracts and purification of Boswellia genus botanicals. More particularly, the extracts have a polycyclic structure with one or more pendant hydroxyl groups. These biofunctional molecules are covalently bonded, using the hydroxyl group, to join a polymeric backbone or side chain to the biofunctional molecules.
- the biofunctional molecule is chiral. The chirality can be due to an odd number of cyclic structures, or an asymmetric terminal chain.
- the biofunctional molecules may include synthetic analogues of naturally occurring structures.
- compositions according to the present invention are preferably advantageously used, for example, in the reduction or prevention of adhesion formation subsequent to medical procedures such as surgery and as lubricants and sealants.
- compositions according to the present invention may be used as coatings and transient barriers in the body, for materials which control the release of bioactive agents in the body (drug delivery applications), for wound and burn dressings and for producing biodegradable and nonbiodegradable articles, among numerous others.
- the present disclosure includes a multiphasic structure; each of the phases may be directed to a different cellular response or purpose.
- a gel aspect may provide an antiadhesive functionality which resorbs in the body.
- a solid phase can provide a tissue scaffold aspect, which aids in the ordering of tissue repair and rejuvenation, such that metabolic functionality is encouraged over fibrosis and walling off of the repair site.
- the present disclosure incorporates a solid phase that provides a lubricious aspect unattainable with a homogenous gel phase.
- the solid phase acts as a mechanical analogue to ball bearings, and the gel phase acts as a lubricant.
- freshly excised tissue surfaces are both sealed and hydrated while the solid phase prevents tissue bridging by contact and a dimensional rolling aspect, which serves to separate as well as facilitate differential motion, which is common between dissected layers of tissue.
- the chemical structures and methods of the disclosure concern gels, more particularly hydrogels, comprising hydrophilic blocks, hydrophobic blocks and biofunctional moiety.
- the hydrogels of the present invention are intended for implantation in a mammalian body and may be absorbable or alternatively relatively persistent. These hydrogels are characterized by possessing at least two distinct phases, be they liquid, solid, gas, or distinctly a gel.
- a hydrogel is a polymeric material with a high tendency for water absorption and/or association, which maintains mechanical integrity through physical crosslinks or polymeric entanglements which are reversible or degradable in vivo.
- the hydrophobic blocks may be absorbable polyester chain blocks, polyoxypropylene blocks, urethane segments and botanical extract molecules.
- cyclic lactones for example glycolide, Ilactide, dllactide, epsilon.caprolactone, and p dioxanone.
- polycyclic structures are of particular interest, for example boswellic acid derived from Boswellia. Examples include, boswellic acids, tirucalic acids, thujenes, champhenes, and the like, or their synthetic analogs.
- the hydrophilic blocks may be polyoxyethylene blocks, polysaccharides, or derivatives hereof.
- the length of the hydrophilic block and its weight fractions can be varied to modulate the in situ volume equilibrium of the gel, its modulus, its water content, diffusivity of bioactive drug through it, its adhesiveness to surrounding tissue, and bioabsorbability.
- the polymers constructed from these constituents are typically long chains with multiple pendant end groups, commonly referred to as comb or brushtype copolymers that elicit controlled cellular response.
- brush type polymers are hyaluronan and galactomannan.
- the backbone or chain portion of the polymer can be biodegradable or nonbiodegradable, depending on the intended application. Biodegradable backbones are preferred for most tissue engineering, drug delivery and wound healing device applications, while nonbiodegradable backbones are desirable for permanent implant applications.
- a portion of the side chains can be endcapped with cellsignaling polycyclic structures functionalized with ligands to control the degree of cell adhesion and tissue healing. The cellsignaling can be elicited at a phasic polymer surface or released into the surrounding tissue through degradation of a portion of the polymer.
- the overall comb copolymer should have a molecular weight sufficiently high as to confer good mechanical properties to the polymer in the hydrated state through chain entanglement. That is, its molecular weight should be above the entanglement molecular weight, as defined by one of ordinary skill in the art.
- the overall molecular weight of the comb copolymer should thus be above about 30,000 Daltons, more preferably above 100,000 Daltons, and more preferably still above 1 million Daltons.
- the side chains are preferably hydrophilic and degradable, and the polymer backbone contains a multiplicity of hydrophilic, degradable blocks.
- the density of the hydrophilic side chains along the backbone of the polymers depends on the length of the side chains and the watersolubility characteristics of the final polymer.
- the total percentage by weight of the hydrophilic side chains is between 10 and 50 percent of the total copolymer composition, preferably around 30 percent by weight.
- the hydrophilic side chains associate with water and form a hydrated layer which repels proteins and hence resists cellular adhesion.
- the side chains of the comb polymer can be endcapped with cellsignaling
- Ligands capable of bonding to hydroxyl groups for example diisocyanates, can be covalently attached to the hydroxyls of biofunctional molecules and in turn attached to the hydroxyl groups of the polymer side chains.
- a defined fraction of biofunctionalized side chains can be obtained by using appropriate stoichiometric control during the coupling of the ligands to the polymers, by protecting the endgroups on those side chains which are not to be endcapped with the biofunctional molecule, or by combinations of these approaches.
- the ligands are attached to the biofunctional molecule first, which then enables the biofunctional molecules to link to the polymer side chains without leaving exposed ligands which may promote protein attachment and subsequently adhesions.
- the number of phases in a gel system are two, comprising a gel fraction and a solid fraction.
- the number of phases is unlimited, and may include phases of different degradation rates.
- the gel aspects of the present invention possess a characteristic viscosity, that viscosity can change with temperature and pH.
- the gel systems of the present invention are nonNewtonian, and more typically are thixotropic.
- the gels can be constituted to be antithixotropic, as in starch suspensions.
- the particulate fraction is typically longer lasting and structural.
- tori are of particular utility since they possess high symmetry and can act as pivots in a gel system. Also importantly, they can act as chainmail, linking gel domains while providing both translational and rotational freedom. They are particularly useful when the gel is surface polymerized to the solid.
- the solid aspect can be a sphere, wherein there is no interpenetration of he gel through the solid, and all the coupling, if any, is surface mediated.
- the spheres act as stress reliever, allowing for rotational freedom in a gel where stresses may develop differentially between surfaces.
- the solid surfaces may be polyhedral, wherein at a certain compressional density or thinning as a result of forces between adjacent tissue layers, the solid particle lock together, providing a step function resistant to further thinning or mobilization of the gel phase.
- any of the above basic geometric considerations can be further enhanced by texturing a solid phase surface.
- a solid phase surface For example, several micron sized solids can be texturized with nanometer scale structure.
- Such surface nanoscale structures could be in the shape protrusions. Examples of protrusions are pyramids, hooks, bumps, or undulations.
- the surface features could be in the shape of indentations. Examples of indentations include recessions of every geometric shape, in particular cylindrical depressions, conical depressions and the like.
- a hybrid of protrusions and depressions are considered.
- a reference plane may be established, wherein there are alternating depressions and protrusions separated by a flat planar surface of relatively small total surface area.
- structures of the present invention may be of any genus. Long strands of many tori contacting at an edge may be considered, as well as closed forms such as loops and even three dimensional forms such as icosahedrons, and the like. Any platonic solid is contemplated.
- the solid phase may be composite, that is, coated or comprising layers.
- the coating may facilitate a short term bonding between solid and gel phases.
- the surface may provide an initial interaction with the gel phase that dissipates by absorption.
- the surface may achieve a mechanical aspect that upon absorption transitions to a tissue reactive aspect.
- a monofilament torus may degrade into a multifilament torus, wherein once the outer coating is resorbed the loosely toroid multifilamentous structure facilitates tissue association.
- the coating itself may comprise yet smaller solid phase structures that absorb or disperse within the gel component. These smaller dimensional structure may carry a chemically active moiety.
- the solid phase may be principally responsible for an adhesive aspect, and this aspect may be modified by time.
- the particles may be first adhesive and later antiadhesive.
- the particles may be structure such that they migrate toward high energy surfaces, for example the interface between the gel system and a tissue surface. It may be advantageous that the solid phase and the gel phase be constituted of essentially the same chemical constituents, and only differing in the crosslink density or degree of association with water.
- the total gel system of the present invention can be designed for resorption times on the order of hours to several months.
- the gel system of the present invention is preferably resorbed in an amorphous state, in particular crystalline states are explicitly to be avoided.
- design considerations such as considerations of chirality are preferably employed, as known in the art, to avoid a fracture degradation pathway.
- the formation of hard particulate matter, except when intended is to be avoided.
- the degradation products of a gel system do not form numerous, spherical, highly fibrotic centers. And in particular, it is especially to be avoided, the formation of said centers wherein the implant matter is sequestered from normal degradation processes, and persist for an extended period. Such centers have been associated with late stage endogenous infection.
- the disclosure provides a backbone of polyoxyethylene, polyoxypropylene, or combinations of these in chain form with multiple hydroxyl groups to which are covalently attached side chains of polysaccharides. It is not necessary tha the polysaccharides exhibit the gelling behavior of alginates, since the backbone can alternatively form a hydrogel. In this case the main function of the polysaccharide would be to control the degradation rate, provide a tissue adhesive functionality and modify the hydrophobicity of biofunctional end groups.
- Another embodiment provides a polymeric backbone section to which is bonded a side chain, preferably multiple side chains, of polymerized, optionally modified hyaluronan and galactomannan.
- the modified polysaccharides preferably maintain the mild gelling behavior of conventional hyaluronan sulfate.
- the linkage between the polymeric backbone section and the side chains may be provided by difunctional or multifunctional linker compounds, for example diisocyanates, or by groups incorporated within the polymeric backbone section reactive with the polysaccharide units or by groups on the polysaccharide units or derivatives thereof reactive with groups on the polymeric backbone section.
- the polymers may advantageously further comprise biologically active molecules bonded to the side chains, particularly preferably bonded through the hydroxyl groups on hyaluronan and galactomannan.
- the side chains are hyaluronan
- the biologically active molecules exhibit cell antiadhesion properties
- the polymers provide a mucoadhesivity for localizing the hydrogel in vivo without forming tissue adhesions.
- the side chains are hyaluronan
- the biologically active molecules are of two types, some of which exhibit cell antiadhesion properties and others exhibit angiogenic properties
- the polymers provide a mucoadhesivity for localizing the hydrogel in vivo to repair a wound site and protect the healing wound site from tissue adhesions.
- linker groups may be selected from any divalent moieties which are compatible with the ultimate use of the polymer and which provide for covalent bonding between the polymeric backbone section and the polysaccharide side chains and additionally any biofunctional end groups. Additionally, the liner groups may link to the other phasic fractions, in particular, a solid phase of absorbable polyurethane.
- the linker group may be selected to significantly affect the biodegradability of the polymer depending upon the extent of hydrolyzability of groups in the linker chain.
- amino acid linkers are frequently used due to the controllability of the degradation interval.
- amino acid linker groups such as glycine
- amino acid linker groups will provide ester linkages which are readily hydrolyzable and, thus, facilitate degradation of the polymer in an aqueous environment, whereas, amino alcohols provide an ether linkage which is significantly less degradable.
- Amino aldehydes are also useful linker groups. The substituent groups on the amino acids will also affect the rate of degradability of the linkage.
- the linker group may also be varied in chain length depending upon the desired properties. Linkages providing, for example, from 10 to 20 atoms between the backbone and side chain, are typical, although longer linkage chains are possible. Additionally, the linker may be branched to provide for clustering of multiple side chains. These structures are typically referred to as dendritic in structure because they may provide a multiplicity of branching points.
- the polymeric backbone section, linkages, side chains and biofunctional end groups may be provided in a number of hydrophilic and hydrophobic configurations which will largely determine the stability of the resulting hydrogel.
- the polymeric backbone itself may comprise Iternating hydrophobic and hydrophilic blocks. Since the biofunctional endgroups are typically hydrophobic, it is generally useful to modify their hydrophobicity by attaching them to hydrophilic side chains.
- FIG. 1 depicts a multiphase gel polymer system 100 of the present disclosure.
- FIG. 2 depicts a bifurcating sequence 200 .
- FIG. 3 depicts mixtures 300 of dendritic 302 and comb 304 polymers.
- FIG. 4 is an image of a toroid multiphase gel structure according to the present disclosure.
- Homogenous adhesion barrier gels should not admit tissue in-growth initially upon implantation, otherwise their efficacy relating to establishing separate tissue layers would be obviated.
- a tissue scaffold in particular a tissue scaffold that has an appreciably longer duration than the gel barrier, such that when the gel has been resorbed, or nearly so, the second scaffold aspect come increasingly more dominant.
- the gel in the initial time course may be highly absorbable, and correspondingly chaotropic, due to release of byproducts that disrupt local equilibrium.
- a barrier layer may be more important than chaotropic considerations.
- the antiadhesion barrier it is desirable that the antiadhesion barrier not contribute to chronic inflammation and any aspect of entropy increase.
- the gel aspect transition to a tissue scaffold aspect, wherein order is presented or reestablished to the tissue surface, wherein normal barrier layers may be stabilized or promoted.
- complex carbohydrates are defined as any polymer comprising more than two sugar moieties including such classes of compounds as polysaccharides and oligosaccharides.
- Polysaccharides include mucopolysaccharides and mannans whereas oligosaccharides comprise branched polysaccharides such as sialylated sugars including milk sugars.
- Mucopolysaccharides are glycosaminoglycans, which can be obtained from numerous sources (e.g. rooster combs, trachea, umbilical cords, skin, articular fluids and certain bacteria such as Streptococci).
- glycosaminoglycans hyaluronic acid, chondroiti sulfates A, B, and C, heparin sulfate, heparin, keratan sulfate, dermatan sulfate, etc.
- nacetylglucosamine glucuronic acid and nacetyl galactosamine these are known as nonsulfated glycosaminoglycans.
- glycosaminoglycans contain sulfur groups they are known as sulfated glycosaminoglycans. All of these can be combined with other polysaccharides or with alkane groups.
- the present application combines bioactive groups with biocompatible groups to address wound healing through a positive physiological reaction that may restore anatomy and function of various tissues after trauma without inflammatory interference.
- the trauma may be accidental, the result of surgical intervention or the effect of a disease or genetic condition.
- the ideal end result of wound healing is restoration of tissues morphology. Restoration of tissue morphology requires directing a functional aspect as well as reducing high entropy responses, such as scar formation.
- connective tissues or scar tissue may support the healing tissues during wound healing and regeneration.
- the newly formed connective tissues may interfere negatively with the normal function of the tissue intended to be healed.
- tissue responses are characterized by a high degree of disorder, and characteristically lack a metabolic component, wherein the tissue formed is primarily avascular.
- Wound healing, with the formation of connective tissues may also induce adhesions that may induce pathological conditions.
- scar tissue may induce cosmetically undesirable results such as cheloid formation. Examples of adhesions and scarring may be found virtually in any organ or tissue undergoing wound healing after trauma or surgery. Following abdominal surgery and following gynecological surgery it is not uncommon that the surgical procedure may induce adhesions that may both make later surgery more difficult and induce pathological conditions such as ileus.
- epidural fibrosis In spinal surgery it is common to have a situation with a dense scar formation called epidural fibrosis. This may in certain cases induce significant difficulties for repeated surgery and can induce compression of the adjacent nerve tissue. In other organs excessive wound healing may induce unwanted fixation of tissues and structures that may reduce function and induce pathological conditions.
- a method for controlling wound healing particularly the reduction of cellular random scar tissue and adhesions, would be of a great value in most cases of posttraumatic or postsurgical wound healing.
- it is insufficient to merely reduce the stimulus to the formation of scar and adhesions by blocking such formation or providing an ameliorative coating, but also a repair of the surgically corrected defect must be facilitated or directed which includes a metabolic aspect such that repeated resorption and modification of the repair site is reduced.
- Intercellular adhesion mediated by VLA4 and other cell surface receptors is associated with a number of inflammatory responses.
- activated vascular endothelial cells express molecules that are adhesive for leukocytes.
- the mechanics of leukocyte adhesion to endothelial cells involves, in part, the recognition and binding of cell surface receptors on leukocytes to the corresponding cell surface molecules on endothelial cells. Once bound, the leukocytes migrate across the blood vessel wall to enter the injured site and release chemical mediators to combat infection.
- a polymer that mitigates fibrosis, while promoting endothelial and leukocyte infiltration, can be promotional to wound healing and antimicrobial.Surprising, it has been discovered that a single phase antiadhesion substance can be insufficient in several aspects.
- an aspect that is distinct from the mechanical characteristics of a gel barrier can serve as a structural impetus, encouraging avenues of repair not realized in homogenous materials.
- tissue damage occurs that elicits an adhesion mechanism that results in migration or activation of leukocytes that can be damaging.
- the initial insult following myocardial ischemia to heart tissue is complicated by leukocyte entry to the injured tissue causing still further insult.
- Inflammatory conditions mediated by adhesion mechanisms are almost always deleterious, for example, asthma, Alzheimer's disease, atherosclerosis, AIDS dementia, diabetes, inflammatory bowel disease (including ulcerative colitis and Crohn's disease), multiple sclerosis, rheumatoid arthritis, tissue transplantation, tumor metastasis, meningitis, encephalitis, stroke, and other cerebral traumas, nephritis, retinitis, atopic dermatitis, psoriasis, myocardial ischemia and acute leukocytemediated lung injury such as that which occurs in adult respiratory distress syndrome. Therefore, it is desirable to develop a hydrogel which combines a barrier aspect with a structural biofunctional aspect and optionally a chemical biofunctional aspect which also affects cellular adhesion and prevents clinically adverse tissue adhesions.
- One difficulty associated with implantable hydrogel compositions is that optimizing the composition to relative to gel mechanical characteristics, in particular the absorbability may worsen tissue inflammation at the site of administration.
- a possible explanation for this effect is that highly reductive compositions are capable of promoting rapid leukocyte infiltration which may adversely affect tissue responses.
- the hydrogel aspect of the present disclosure is hydrophilic and avoids the adverse events of polymers currently in use for biomedical applications which are generally hydrophobic.
- a relatively more hydrophobic component with a structural aspect, such as tori polymerized within a gel matrix may provide a tissue regenerative response associated with the reformation of functional and metabolic tissue.
- hydrophobic refers to a material that repels water and exhibits a static contact angle with water greater than 60 degrees at 20 degrees C., and has a water permeability less than 3 ⁇ 10 10 cm 3 (STP) cm/(cm 2 s Pa). Hydrophobicity can give rise to uncontrolled interactions between cells and adsorbed proteins at the surface of an implanted material, which can result in a chronic inflammatory response that can lead to failure of implants and even promote tumorigenicity.
- the polymeric material used to form a biodegradable scaffold for cells promote cell adhesion, migration, growth and differentiation while providing adequate morphological stimulus; and without promoting an inflammatory response.
- synthetic scaffold materials such as polylactide, polyglycolide, etc., and copolymers thereof, have suitable mechanical, processing and biodegradation properties, their hydrophobic nature and acid byproducts leads to protein adsorption and denaturing of proteins attached to the material surface which elicits uncontrolled inflammatory response.
- the present disclosure couples tissue directing materials with hydrophilic moieties to reduce protein adhesion to the implant during the first highly reactive phase, and additionally may contain a selective bioactive material which can down regulate inflammation and promote tissue migration into a tissue defect to heal the defect rather than promote aggressive cellular response to the implant.
- the ideal antiadhesive surface for many biomaterials applications resists protein adsorption while providing molecules with specific chemical signals to guide tissue regeneration, survival, growth, migration and differentiation in an adjacent tissue defect.
- biomaterial refers to a material used in a medical device intended to interact with a biological system.
- Such biomaterial with biofunctionality may be chemical in nature, or structural, wherein the shape promotes a desired cellular response.
- a typical biomaterial is modified with polyethylene oxide, which has been studied in recent years for the reduction of protein adsorption at the surface of biomaterials. The objective of these surface modification schemes is the elimination of nonspecific interactions of cells with implant materials.
- Polyethers can be combined with hydrophobic biomaterials to shield the hydrophobic biomaterials from the foreign body response, and thus provide them to the body directly rather than through a fibrotic capsule.
- activation-specific chemical signals can be relayed to cells at a surface through tethered ligands of cell surface receptors. These signals are presented in a localized manner at a controlled dose without diffusive loss.
- the mimicry of tethered ligands through the addition of bioactive moieties may provide more constant stimulation to cells by avoiding the downregulation present when soluble ligands are internalized by cells. Control over spatial distribution of ligands on surfaces may also be key to guiding cell behavior.
- these ligands may be associated with a chemical biofunctional moiety or with a structural biofunctional phase.
- molecules with dimeric adhesion receptors are particularly useful as ligands and include approximately ten known alpha chains paired with one of approximately six known beta chains, which are known to mediate a wide range of interactions between cells and extracellular matrix and control cell behaviors as diverse as migration, growth, and differentiation, providing a permissive environment for the action of growth factors.
- molecules with dimeric adhesion receptors are particularly useful as ligands and include approximately ten known alpha chains paired with one of approximately six known beta chains, which are known to mediate a wide range of interactions between cells and extracellular matrix and control cell behaviors as diverse as migration, growth, and differentiation, providing a permissive environment for the action of growth factors.
- such molecules are particularly useful in facilitating a healing response, especially when deployed in a multiphasic system.
- a hierarchical hydrophobichydrophilic domain structured polymer endcapped with a biofunctional molecule can beneficially undergo morphological changes which are associated with the hydration of the hydrophilic domains and formation of pseudocrosslinks via the hydrophobic component of the system.
- Such polymeric structures form biocompatible gels in vivo with extended persistence by virtue of the pseudocrosslinks. Domain separation can be enhanced by the inclusion of multiphasic domains, with and without structural aspects.
- Hydrophobichydrophilic polymer morphology has been reported to be responsible for enhanced biocompatibility and superior mechanical strength due to formation of twophase structure comprising hydrophilic and hydrophobic domains.
- Such domains are a generic feature of many polyurethane systems, where the twophase structure is commonly referred to as amorphous and crystalline segments.
- This molecular structure can be mimicked in a macroscopic way, by incorporating solid hydrophobic structural elements in a hydrophilic gel phase.
- Hydrophobic-hydrophilic polymer morphology can be affected by temperature and pH, especially for extended and hydrated systems, and is responsible for thermoreversible gels. In order for these gels to maintain their shortterm structure in vivo, regardless of their longerterm biodegradability, involves covalent bonds between watersoluble and waterinsoluble blocks.
- Some of the gels of the present invention are responsive to temperature and pH changes. For example, those containing poloxamers will shrink in size in a base environment and expand in an acidic environment. Similarly, higher temperature tends to cause the gels of the present invention to contracts, whereas lower temperature causes them to become more diffuse. In some instances, a low enough temperature causes them to solubilize and lose their thixotropic aspect.
- hydrophilic blocks and hydrophobic blocks are a mixture or blend and not polymerized together, the desired structural aspects are not achieved since the hydrophilic component rapidly disperses in tissue.
- Polymers comprising covalently bonded hydrophilic and hydrophobic domains exhibit a hydrationdehydration equilibrium which can be altered by changes in temperature or pH.
- the equilibrium structures are characteristic of hydrogels.
- hydrogels of the present invention in the absence of hydrophobic/hydrophilic covalent bonding, the hydrophilic blocks undergo intermolecular segmental mixing with the neighboring hydrophobic blocks to produce a viscous liquid.
- hydrophobic/hydrophilic covalent bonding competition between the water as an extrinsic solvent and the hydrophilic block forces the hydration of the hydrophobic block, and results in aggregation or association of the hydrophobic blocks to establish pseudocrosslinks which maintain a 3-dimensional integrity.
- Three-dimensional stability can also be achieved by the use of metal ionic crosslinks, as is common in the preparation of alginates, and similar polysaccharides.
- the mechanism of gel formation for in vivo administration is associated with orientation of the hydrophobic blocks toward the exterior of the gel and the interface with the adjoining tissues can be used to establish an adhesive joint, which prevents gel migration from target site and sustains its intended efficacy.
- a mucoadhesive functionality is desirable and achieved with most polysaccharide copolymerizations.
- this effect can be enhanced by the insertion of a biofunctional structural form which is relatively more hydrophobic than the remaining gel portion of a polymeric chain of hydrophobic and hydrophilic blocks.
- the biofunctional moiety is presented preferentially at the phase discontinuities within the hydrogel and is predisposed to segmentation within the tissue.
- Chemical bonding between phasic components can be carried out by a chemical reaction, e.g. gelation with a polyfunctional reagent; crosslinking using a coordinate bond, e.g. gelation by calcium ions of alginic acid; crosslinking using a hydrophobic bond, e.g. gelation by heating methyl cellulose or hydroxypropyl cellulose; crosslinking using intermolecular association, e.g. cooling of agar or carrageenan to cause the gelation, or the like.
- the density of crosslinking can impact water absorbability and strength of the resulting gel as well as rate of degradation in vivo.
- Such crosslinks can be important in associating several phasic constituents of a gel.
- multiphasic hydrogels can be formed without the use of crosslinking at all and which rely on entanglement. Entanglement and the formation of pseudobonds between hydrophobic segments require the hydrophobic and hydrophilic segments to be covalently bonded together in long structures. The covalent bonding prevents the separation of the hydrophobic and hydrophilic components.
- poly(propylene oxide) refers to nonionic triblock copolymers composed of a central hydrophobic chain of polyoxypropylene (poly(propylene oxide)) flanked by two hydrophilic chains of polyoxyethylene (poly(ethylene oxide)). Poloxamers are also known by the trade names Pluronics and Kolliphor.
- thixotropy is the property of certain gels or fluids that are viscous under normal conditions, but flow (become less viscous) under shear stress. Some thixotropi gels exhibit a nonNewtonian pseudoplastic flow and a timedependent change in viscosity.
- a thixotropic fluid is a fluid which takes a finite time to attain equilibrium viscosity when introduced to a step change in shear rate.
- multiphase and “multiphasic” refer to a gel composition comprise of at least one gel phase and at least one solid phase, and optionally a liquid phase and/or a ga phase.
- the various phases may be interpenetrating such that mechanically one or more of the phases cannot be separated without altering the gel composition.
- cytophylactic polymer refers to a polymeric system able to direct cellular activity in such a way as to augment the natural cellular processes.
- These polymers are denominated stimuliresponsive or environmentally sensitive polymers in the sense that they elicit a biologically appropriate response to a wide variety of cellular environments. Temperature, pH, ionic strength and electric field are among the most important stimuli, causing phase or shape changes which dramatically affects the optical, mechanical or transport properties of the present compositions.
- diamine groups such a biocompatible lysine can be used at polymerizing links in isocyanate functionalized polymeric backbones, side chains, and biofunctional end groups.
- the reactive monomer can include a leaving group that can be displaced with a nucleophilic group on a hydrophilic polymer.
- epichlorohydrin can be used during the polymerization step. The monomer is incorporated into the polymer backbone, and the chloride group is present on the backbone for subsequent reaction with nucleophiles.
- An example of a suitable hydrophilic polymer containing a nucleophilic group is a polyethylene glycol with a terminal amine group.
- PEGNH.sub.2 can react with the chloride groups on the polymer backbone to provide a desired density of PEGylation on the polymer backbone.
- Pegylation in general, is suitable to the botanical extracts of the present invention, since many of them are poorly incorporated in biological tissue, and can be toxic in the absence of hydrophilic modification.
- polymer backbones which include suitable leaving groups or nucleophiles for subsequent coupling reactions with suitably functionalized hydrophilicpolymers.
- FIG. 1 Examples of useful configurations between solid and gel phase gel systems are shown in FIG. 1 although the invention is not limited to such configurations and further configurations using the basic structural units can be provided according to the invention.
- FIG. 1 depicts a multiphase gel polymer system 100 of the present invention comprising: a polymeric backbone 102 which defines the overall polymeric morphology of the gel 103 (not drawn to scale), linkage groups 104 , side chains 106 , and biofunctional end groups 108 .
- the backbone 102 generally comrpises hydrophobic 110 and hydrophilic 112 group segments, some or all of which can be biodegradable.
- Solid phase polymer 113 is depicted as a torus, and comprising pendant hydroxyl groups 115 .
- Linkage groups 104 form bridges 114 between the backbones 102 and solid phase polymer 113 , and the solid phase may be of an entirely different composition than the backbone.
- the bridges comprise linkage groups 104 and side chains 106 , wherein the backbones 102 are joined to side chains 106 through linkage groups 104 .
- the biofunctional group 108 may optionally be located on the ends 116 of the backbone 102 , on the ends 118 of pendant side chains 120 , sandwiched 121 between linkage groups 104 which in turn links to a side chain 106 .
- Biofunctional groups 108 may be located at the junction of two side chains 106 connected by linkage groups 104 .
- gel polymer 103 is formed during manufacturing in the presence of solid polymer 113 such that gel 103 passes through, as illustrated at 124 , the toroidal opening 126 of solid polymer 113 .
- the gel fraction 103 is a contiguous macromolecule that interpenetrates the solid polymer 113 .
- One preferred embodiment is polymers wherein the backbone itself is a polysaccharide, for example hyaluronan.
- the side chains may be galactomannan.
- a particular example involves chains comprising hyaluronan units to which are attached galactomannan side chains functionalized with a diisocyanate linker.
- Dendritic polymers and comb polymer backbones can be provided by the polymerization product of difunctional and higher functional prepolymers.
- linear chains of polysaccharide pendant hydroxyl groups can be polymerized with triol endcapped with isocyanate groups.
- FIG. 2 illustrates a bifurcating sequence 200 wherein a polymer backbone 202 has a 3-armed structure 204 comprising two side chains 206 .
- the terminus of each arm of the 3-armed structure 204 is linked to another 3armed structure 204 through linkage group 208 .
- At the final terminus of the bifurcating structure are located pendant biofunctional groups 210 , optionally linked to a solid phase 212 . Structures are not drawn to scale.
- Dendrimers are of particular interest due to their propensity for entanglement and the formation of hydrogels that are relatively stable in the implant environment.
- mixtures 300 of dendritic 302 and comb 304 polymers are possible wherein the dendritic portion serves as a scaffold to the more mobile comb structures. Therefore, the dendritic fraction may be principally endcapped with antiadhesion end groups 306 and the comb fraction may be coupled to a solid phase 308 .
- the comb fraction may be a hyaluronan based gel and the dendritic fraction a poloxamer gel. Polymers containing hyaluronan are known to act as tissue scaffolds, mimicking their biological function in living extracellular matrix.
- a further useful backbone structure is comb polymers which contain many side chains extending from a polymer backbone.
- Polyvinyl alcohol provides a particularly useful backbone for comb polymers.
- the alcohol groups of polyvinyl alcohol can be esterified and subjected to a carbodiimide linkage chemistry to provide the side chain linkages.
- the gel phase may be terminated at least partially with biofunctional molecules.
- extracts derived from genus Boswellia can be bound to the terminal ends of hydrogel structures, other botanical extracts are contemplated.
- Useful botanicals include, camphenes, camphor, coneole and eucal (derived from eucalyptus ), moronic acid (derived from pistachio), and like structures.
- polycyclic structures with an odd number of cycles is useful in the present invention. More particularly, chiral polycyclic structures of 3 or 5 rings are of interest.
- the 5cyclic structures include, ⁇ Boswellic acid, 3O Acetyl ⁇ boswellic acid, 11Keto ⁇ boswellic acid, 30 Acetyl11keto ⁇ boswellic acid, 11Hydroxy ⁇ boswellic acid, 3O Acetoxy11methoxy ⁇ boswellic acid, 3O Acetyl11hydroxy ⁇ boswellic acid, 9,11Dehydro ⁇ boswellic acid, 3O Acetyl9,11dehydro ⁇ boswellic acid, aBoswellic acid, 3O Acetylaboswellic acid, Oleanolic acid, Ursolic acid, Baurenol, Lupeol, 11Hydroxyaboswellic acid, 9,11Dehydroaboswellic acid, 3O Acetyl9,11dehydro
- the density of the hydrophilic side chains along the polymer backbone depends in part on the molecular weight of the side chains.
- the total percent of the hydrophilic units to the hydrophobic units in the present polymers is between 10 and 50 percent by weight, preferably around 30 percent by weight.
- hydrophilic to hydrophobic units One relevant consideration when determining an appropriate ratio of hydrophilic to hydrophobic units is that the overall polymer, when the hydrophilic side chains are not endcapped with cellsignaling moieties, has some noncell binding properties and preferably incorporates a hallo of water around the polymeric construct when implanted in a mammalian body.
- a relatively high density of 500 Dalton or less hydrophilic side chains can provide the same degree of resistance to cellular adhesion as a lower density of higher molecular weight side chains.
- Those of skill in the art can adjust the molecular weight and density of the polymers taking these factors into consideration.
- the side chains of the present invention can be optionally bonded to the solid phases, or polymerized around the solid phases.
- the solid phase can be cellsignaling regarding its geometrical shape.
- Chemical ligands can be added to the solid phase in order to elicit specific cell responses.
- Ligands such as adhesion peptides or growth factors can be covalently or ionically attached to the solid phase or mixed within.
- a defined fraction of ligandbearing solid phases can be obtained by using appropriate stoichiometric control during the coupling of the ligands to the solid phase, by protecting one or more constituents of the solid phase from reaction with ligands, or by a combination of these approaches.
- Comb and dendritic polymers can comprise the solid phase as well as the gel phase.
- hyaluronan is coupled to a comb or dendritic polymer morphology, cells attach and spread readily on the polymer surface. Accordingly, the solid phase may be coated with these structures.
- cellular proliferation due to the solid is delayed, typically by about 14 days postimplant, so as not to promote tissue adhesion. Adhesion in biological systems is primarily an acute response to a significant disruption of biological structure. Such disruption is associated with release of cytokines that trigger a multiplicity of cellular responses.
- the gel system is designed to repair or correct the condition responsible for initiation of the acute cellular response, there is a need to down regulate that response, particularly because it tends to be counter to organized cellular repair and healing.
- a first palliative interval associated with the gel fraction wherein affected tissue surfaces are physically separated, and where the usual cellular communications are disrupted.
- the requirement is nonspecific, and usually a crude physical barrier is sufficient.
- this deprives the underlying damaged tissue from important nutrient and oxygenation associated with tissue formation.
- the purpose of the present invention is to initially block using relatively convention gel approaches coupled with a solid aspect that is released in delayed fashion by degradation of the gel fraction or encounter only subsequently by infiltrating tissue, such that a healing response is promoted.
- angiogenesis provides the metabolic capacity for repair.
- angiogenesis provides the metabolic capacity for repair.
- the degree of cell spreading and proliferation on the surface of the polymeric implant or the release of constituents that induce such a response within the surrounding tissue can be controlled by mixing within the solid phase, relatively hydrophobic copolymers with strongly hydrophilic dendritic or comb polymers.
- the size of the biofunctional solid phase and the spatial density of the biofunctional solid phase within the gel is dictated by the rate of absorption of the gel phase.
- copolymers described herein can be blended with other polymers that do not elicit controlled cell responses.
- the polymers may be processed to achieve segregation of bioactive moieties.
- a biodegradable implant is preferably dismantled either at the surface or volumetrically in discrete small molecular weight units.
- the macroscopic appearance of the implant does not change, but rather its volume decreases.
- a hard candy sweet wherein the candy transitions from a hard solid without a peripheral boundary of diffuse structure.
- This desired effect can be achieved volumetrically as well, wherein the shape of the implant does not change appreciably, but the tensile strength and molecular weight of the implant diminishes.
- the solid phase should not contribute to the ultimate fractionation of the gel system in vivo. More particularly, the solid phase should not act as a nidus for fractionation of the implant. If the implant should ultimately fractionate, the resulting particulate formation should have a modulus substantially below that of tissue. There are two ways to achieve this endpoint. Firstly, the solid phase transforms into the gel phase, and the resulting gel phase resorbs in a homogeneous fashion analogous to the original gel phase. Secondly, the solid phase becomes a structural element of the healing tissue. For example, solid fibrils within the gel are comprising a cellular constituent, for example hyaluronan, wherein they are directly incorporated into the tissue structure.
- the solid phase is fed upon by cells, providing both a directional stimulus and a nutrient or chemical advantage to local cells.
- the soli phase can be considered a nutrient or chemical supplement that aids in regenerative processes.
- Such supplemental effects may include cellular signaling, both at the energetic level and at the amino acid instructional level.
- fractionation of the implant by release of a solid phase is not necessarily disadvantageous, especially when such release in original form or a degraded form, stimulates a path that results in reduced disorder of the regenerating tissue.
- the desired function of an implant is not to create boundaries between tissues, since essentially the human body is a freely intercommunication structure.
- crystalline structures within the body are nonbiologic, generally. Any process that results in the formation of atomically dense polyhedral molecular structures is to be avoided. These structures can be individual, or comprise a macroscopic volume. However, their density and strong internal binding, resulting in the regular geometric shape, are inhibitory to cellular processes. They are identified as foreign, and incite a strong foreign body response which creates a multiplicity of avascular tissue encapsulations. These encapsulations are benign at the time of their formation, but are problematic in the long term since they are not connected to the protective and restorative processes of living tissue.
- this mode of resorption is preferred since the low density at the periphery allows for some degree of cellular infiltration.
- this cellular infiltration is associated with a low degree of inflammation, primarily due to the absence of a welldefined implant border. While it is preferred that the solid phase contribute positively to the ordered regeneration of the affected tissue, in absence of this ideal, a reduced foreign body reaction and a low levelof inflammatory activity is much preferred to usual modes of implant resorption.
- the repair process can be of long duration, especially in those situations where blood supply is low.
- tendons are a classic example of high stress low metabolic activity.
- the tendon can actually be compromised further by the addition of fibrotic tissue, resulting in an increasingly more painful situation.
- a shock absorber functionality it may be useful, but not necessarily physiologic, to provide a lubricant that may act beyond organic moieties to reduce stressrelated degradation of an already compromised biologic tissue. In these situations the pressures/stresses may be extreme for short durations.
- a shock absorber functionality For example, consider a gel phase that serves the purpose of providing lubricity and a degree of separation between injured tissue, which without separation may be joined by tissue and compromised further. In this case, even if the addition of solid particulate to the gel construct does not aid in maximum freedom of movement, its function as a solid, and not easily deformed from its designed shape, makes it ideal as a shock absorber.
- a residual solid particulate fraction would provide a high modulus layer of protection, wherein surfaces do not abrade or impart their maximum kinetic energy.
- the particulate fraction serves only an auxiliary function, they do not contribute to wound repair but rather provide a safeguard, wherein when forces exceed a certain threshold they prevent a bottoming action that may result in further tissue degradation.
- a second gel fraction can be of longer duration of small volume, and principally serving as a coupling mechanism between particles, where in the final stages there is remaining only a thin layer of less resorbable gel coupling a solid phase with a clinically useful modulus not achieved in the bulk gel implantation.
- the primary dislocation of gels implanted in the body for a specific function is the effect of gravitational slumping. Stated simply, the lower energy state of any sufficiently dense implant, is for the implant to migrate to lower elevations within the body. This slumping effect can be exacerbated by the presence of defects or voids between tissue layers. In many cases, the slumping of an implanted gel results in the gel being displaced to a location where pressures are low and where the gel is essentially not needed. Furthermore, in cases where the gel pools into generally spherical volumes, the implant can result in regions where microbial growth is sequestrated from normal cellular protective mechanism. Thus, there is a need for a gel implant to retain its shape, and more importantly adhere to the tissue surfaces designated by a surgeon.
- mucoadhesive systems have been considered. They offer good initial localization of an implant. However, longer term, the fluids present in the body equilibrate with the van der Waals forces essential to the mucoadhesive functionality and eventually render mucoadhesivity ineffective. In many cases a shortterm adhesive functionality is clinically useful, and many polysaccharide compositions of the present invention fulfill this need.
- the present invention discloses an novel tissue adherent mechanism, analogous to the CassieWenzel effect in air, whereby the differences in surface energy between the two constituents creates a localization of the implant in vivo which is not saturated in the body.
- the surface texture may additionally serve as a tissue scaffolding technology. Accordingly, not all of the solid phase surface need be devoted to a localization effect, other surface elements or other surface particulates may be devoted to the scaffolding aspect.
- the implant must provide an ordering effect, not in terms of setting things identically, but in terms of providing continuity to the surrounding tissue structure.
- order in a biologic system does not mean simplifying, or minimizing variability, it simply means matching the dimensional aspects of the surrounding tissue.
- the dimensional aspects being the number and range of hierarchical structures present in tissue, understanding the energetic and fluid mechanical needs of living cells, and stemming the short term needs without disrupting the normal cellular repair process.
- the multiphasic gel comprises a biofunctional molecule at a concentration from about 5% to about 50% of the implant by weight.
- the molecule may be incorporated in the gel fraction if it is water soluble, and in the solid fraction if not water soluble.
- the gel phase may be loaded with excipients to control drug release both from the soli phase and the gel phase.
- Excipients useful in the present invention are tocopherol isomers and/or their esters; tocotrienols and/or their esters; benzyl alcohol; benzyl benzoate; those dibenzoate esters of poly(oxyethylene) diols having low water solubility; dimethyl sulfone; poly(oxypropylene) diols having low water solubility; the mono, di, and triesters of Oacetylcitric acid with straight and branched chain aliphatic alcohols; and liquid and semisolid polycarbonate oligomers.
- the biofunctional agent of the present invention is selected from the group consisting of analgesics, anesthetics, narcotics, angiostatic steroids, anti-inflammatory steroids, angiogenesis inhibitors, nonsteroidal antiinflammatories, antiinfective agents, antifungals, antimalarials, antitublerculosis agents, antivirals, alpha androgenergic agonists, beta adrenergic blocking agents, carbonic anhydrase inhibitors, mast cell stabilizers, miotics, prostaglandins, antihistamines, antimicrotubule agents, antineoplastic agents, antipoptotics, aldose reductase inhibitors, antihypertensives, antioxidants, growth hormone agonists and antagonists, vitrectomy agents, adenosine receptor antagonists, adenosine deaminase inhibitor, glycosylation antagonists, anti aging peptides, topoisemerase inhibitors, antimetabolites, alkylating agents, antiandrigen
- Specific areas of the human or animal body to be targeted for injection or implantation or topical applications of these multiphasic gel system include, but are not limited to: heart, brain, spinal nerves, vertebral column, skull, neck, head, eye, ear organs of hearing and balance, nose, throat, skin, viscara, hair, shoulder, elbow, hand, wrist, hip, knee, ankle, foot, teeth, gums, liver, kidney, pancreas, prostate, testicles, ovaries, thymus, adrenal glands, pharynx, larynx, bones, bone marrow, stomach, bowel, upper and lower intestines, bladder, lungs, mammaries.
- the multiphasic gel system according to the present invention has particular applicability in providing a controlled and sustained release of active agents effective in obtaining a desired local or systemic physiological or pharmacological effect relating at least to the following areas: treatment of cancerous primary tumors, chronic pain, arthritis, rheumatic conditions, hormonal deficiencies such as diabetes and dwarfism, modification of the immune response such as in the prevention and treatment of transplant rejection and in cancer therapy.
- the system is also suitable for use in treating HIV and HIV related opportunistic infections such as CMV, toxoplasmosis, Pneumocystis carinii and Mycobacterium avium intercellular.
- the system may be used to create layers between tissue, in particular between layers of tissue modified by surgical intervention in order to direct or stimulate healing and the separate adjacent tissue layers that would be compromised by the formation of adhesions.
- formulations include, for example, mediating homograft rejection with formulations comprising surolimus or cyclosporine.
- Local cancer therapy may be delivered to, for example, the kidney or liver, using in formulations comprising, for example, adriamycin or small epidermal growth factors.
- Prostate cancer may be treated with formulations including fenasteride.
- Cardiac stents implants, central nervous system implants (e.g., spinal implants), orthopedic implants, etc. may be coated with formulations including growth or differentiation factors, anti-inflammatory agents, or antibiotics.
- botanical extracts known to possess antimicrobial or healing stimulative properties are useful.
- Suitable classes of active agents for use in the system of the present invention include, but are not limited to the following: peptides and proteins such as cyclosporin, insulins, glucagon-like peptides, growth hormones, insulin related growth factor, botulinum toxins, and heat shock proteins; anesthetics and pain killing agents such as lidocaine and related compounds, and benzodiazepam and related compounds; anticancer agents such as 5-fluorouracil, methotrexate and related compounds; anti-inflammatory agents such as 6-mannose phosphate; Antifungal agents such as fluconazole and related compounds; antiviral agents such as trisodium phosphomonoformate, trifluorothymidine, acyclovir, cidofovir, ganciclovir, DDI and AZT; cell transport/mobility impending agents such as colchicines, vincristine, cytochalasin B and related compounds; anti-glaucoma drugs such as beta-blockers: timol
- these multiphasic gel formulations can be coatings on implanted surfaces, such as but not limited to, those on catheters, stents (cardiac, CNS, urinary, etc.), prothesis (artificial joints, cosmetic reconstructions, and the like), tissue growth scaffolding fabrics, or bones and teeth to provide a wide variety of therapeutic properties (such as but not limited to, anti-infection, anticoagulation, anti-inflammation, improved adhesion, improved tissue growth, improved biocompatibility).
- implanted surfaces such as but not limited to, those on catheters, stents (cardiac, CNS, urinary, etc.), prothesis (artificial joints, cosmetic reconstructions, and the like), tissue growth scaffolding fabrics, or bones and teeth to provide a wide variety of therapeutic properties (such as but not limited to, anti-infection, anticoagulation, anti-inflammation, improved adhesion, improved tissue growth, improved biocompatibility).
- These surfaces can be from a wide variety of materials, such as but not limited to, metals, polyethylene, polypropylene, polyurethanes, polycarbonates, polyesters, poly(vinyl actetates), poly(vinyl alcohols), poly(oxyethylenes), poly(oxypropylenes), cellulosics, polypeptides, polyacrylates, polymethacrylates, polycarbonates and the like.
- Active agents, or active ingredients, that may be useful in the present invention include but are not limited to:
- Analgesics, Anesthetics, Narcotics such as acetaminophen; clonidine (Duraclon Roxane) and its hydrochloride, sulfate and phosphate salts; oxycodene (Percolone, Endo) and its hydrochloride, sulfate, phosphate salts; benzodiazepine; benzodiazepine antagonist, flumazenil (Romazicon, Roche); lidocaine; tramadol; carbamazepine (Tegretol, Novartis); meperidine (Demerol, SanofiSynthelabo) and its hydrochloride, sulfate, phosphate salts; zaleplon (Sonata, WyethAyerst); trimipramine maleate (Surmontil, WyethAyerst); buprenorphine (Buprenex, Reckitt Benckiser); nalbuphine (Nubain, Endo) and
- Angiostatic and/or Antiinflammatory Steroids such as anecortive acetate (Retaane®, Alcon, Inc., Fort Worth, Tex.); tetrahydrocortiso; 4,9(11)-pregnadien-17- ⁇ -21-diol-3,20-dione (Anecortave) and its 21-acetate salt; 11-epicortisol; 17- ⁇ -hydroxyprogesterone; tetrahydrocortexolone; cortisone; cortisone acetate; hydrocortisone; hydrocortisone acetate; fludrocortisone; fludrocortisone acetate; fludrocortisone phosphate; prednisone; prednisolone; prednisolone sodium phosphate; methylprednisolone; methylprednisolone acetate; methylprednisolone, sodium succinate; triamcinolone; triamcinolone-16
- Nonsteroidal Antiinflammatories such as naproxin; diclofenac; celecoxib; sulindac; diflunisal; piroxicam; indomethacin; etodolac; meloxicam; ibuprofen; ketoprofen; rflurbiprofen (Myriad); mefenamic; nabumetone; tolmetin, and sodium salts of each of the foregoing; ketorolac bromethamine; ketorolac bromethamine tromethamine (Acular®, Allergan, Inc.); choline magnesium trisalicylate; rofecoxib; valdecoxib; lumiracoxib; etoricoxib; aspirin; salicylic acid and its sodium salt; salicylate esters ofalpha, beta, gammatocopherols and tocotrienols (and all their d, l, and racemic isomers); methyl, ethyl, propyl
- Angiogenesis Inhibitors such as squalamine, squalamine lactate (MS11256F, Genaear) and curcumin; Vascular Endothelial Growth Factor (VEGF) Inhibitors including pegaptanib (Macugen, Eyetech/Pfizer); bevacizumab (Avastin, Genentech/generic); Neovastat (Aeterna); PTK 787 (Schering/Novartis); Angiozyme (RibozymeChiron); AZD 6474 (AstraZeneca); IMC1C11 (Imclone); NM3 (ILEX Oncology); S6668 (Sugen/Pharmacia); CEP7055 (Cephalon); and CEP5214 (Cephalon); Integrin Antagonists such as Vitaxin (Applied Molecular Evolution/Medimmune); S 137 (Pharmacia); S247 (Pharmacia); ST 1646 (Sigma Tau); DPC A803350 (BristolMyers
- beta.3 integrin antagonist (Abbott); urokinase plasminogen activator fragment (A6, Angstrom Pharm.); VEGF antagonist (AAVPEDF, Chiron); kdr tyrosine kinase inhibitor (EG3306, Ark Therapeutics); cytochalasin E (NIH); kallikrininbinding protein (Med. Univ. So. Carolina); combretastatin analog (MV540, Tulane); pigmentepithelium derived growth factor (Med. Univ. S.C.); pigmentepithelium derived growth factor (AdPEDF, GenVec/Diacrin); plasminogen kringle (Med. Univ.
- vascular endothelial growth factor antagonist S.C.
- rapamycin cytokine synthesis inhibitor/p38 mitogenactivated protein kinase inhibitor
- SB220025 GlaxoSmithKline
- vascular endothelial growth factor antagonist SP(V5.2)C, Supratek
- vascular endothelial growth factor antagonist SU10944, Sugen/Pfizer
- vascular endothelial growth factor antagonist vascular endothelial growth factor antagonist.
- Antiinfective Agents such as Antibacterials including aztreonam; cefotetan and its disodium salt; loracarbef; cefoxitin and its sodium salt; cefazolin and its sodium salt; cefaclor; ceftibuten and its sodium salt; ceftizoxime; ceftizoxime sodium salt; cefoperazone and its sodium salt; cefuroxime and its sodium salt; cefuroxime axetil; cefprozil; ceftazidime; cefotaxime and its sodium salt; cefadroxil; ceftazidime and its sodium salt; cephalexin; cefamandole nafate; cefepime and its hydrochloride, sulfate, and phosphate salt; cefdinir and its sodium salt; ceftriaxone and its sodium salt; cefixime and its sodium salt; cefpodoxime proxetil; meropenem and its sodium salt; imi
- Antifungals such as amphotericin B; pyrimethamine; flucytosine; caspofungin acetate; fluconazole; griseofulvin; terbinafin and its hydrochloride, sulfate, or phosphate salt; ketoconazole; micronazole; clotrimazole; econazole; ciclopirox; naftifine; and itraconazole.
- Antimalarials such as chloroquine and its hydrochloride, sulfate or phosphate salt; hydroxychloroquine and its hydrochloride, sulfate or phosphate salt; mefloquine and its hydrochloride, sulfate, or phosphate salt; atovaquone; proguanil and its hydrochloride, sulfate, or phosphate salt forms.
- Antituberculosis Agents such as ethambutol and its hydrochloride, sulfate, or phosphate salt forms; aminosalicylic acid; isoniazid; pyrazinamide′; ethionamide.
- Antivirals such as amprenavir; interferon alfan3; interferon alfa2b; interferon alfacon1; peginterferon alfa2b; interferon alfa2a; lamivudine; zidovudine; amadine (Symmetrel, Endo) and its hydrochloride, sulfate, and phosphate salts; indinavir and its hydrochloride, sulfate, or phosphate salt; ganciclovir; ganciclovir sodium salt; famciclovir; rimantadine and its hydrochloride, sulfate, or phosphate salt; saquinavir; valacyclovir and its hydrochloride, sulfate, or phosphate salt; zinc ester complexes; and zin; acetoacetonate or zinc acetoacetic ester complexes.
- Anti HIV/AIDS agents including stavudine, reverset (Pharmasset), ACH126443 (Achillion), MIV310 (Boehringer Ingelheim), ZeritlR(d4tT) (BristolMeyers Squibb) Ziagen (GlaxoSmithKline), Viroad (Glead), hivid (Roche), Emtriva (Gilead), delavirdine (Pfizer), AG1549 (Pfizer), DPC083 (BristolMyers Squibb), NSC675451 (Advanced Life Sciences), IMC125 (Tibitec), azidicarbonamide, GPGNH2 (Tripep), immunitin (Colthurst), cytolin (Cytodyn), HRG21 (Virionyx), MDX010 (Gilead), TXUPAP (Wayne Hughes Inst), proleukin (Chiron), BAY 504798 (Bayer), BG777 (Virocell), Crixivan (Merck
- Insulins such as Novolog (aspart), Novolin R, Novolin N, Novolin L, Novolin 70/30, and Novolog 70/30 (Novo Nordisk); Humalog (lispro) Humulin R, Humulin N, Humulin L, Humulin 50/50 and 70/30, and Humalog Mix 75/25 and 70/30 (Eli Lilly); Ultralente (Eli Lilly); Lantus (glargine, Aventis); porcine; and bovine insulins.
- Glp1 Receptor stimulators such as exendin4, Exenatide and Exenatide LAR (Amylin Pharma); Liraglutide (Novo Nordisk); ZP10 (Zealand Pharma); Glp1albumin (Conjuchem); and DpplV inhibitors (which inhibit enzyme attack on Glp1) such as LAF237 (Novartis); MK0431 (Merck); BMS477188 (BristolMyers Squibb); and GSK23A (GlaxoSmithKline);
- Alpha Androgenergic Agonist such as brimonidine tartrate
- Beta Adrenergic Blocking Agents such as betaxolol and its hydrochloride, sulfate, or phosphate salt; levobetaxolol and its hydrochloride, sulfate, or phosphate salt; and timolol maleate.
- Carbonic Anhydrase Inhibitors such as brinzolamide; dorzolamide and its drochloride, sulfate, or phosphate salt; and dichlorphenamide.
- Mast Cell Stabilizers such as pemirolast and its potassium salt; nedocromil and its sodium salt; cromolyn and its sodium salt.
- Miotics such as demecarium bromide.
- Prostaglandins such as bimatoprost; travoprost; and latanoprost.
- Antihistamines such as olopatadine and its hydrochloride, sulfate, or phosphate salt forms; fexofenadine and its hydrochloride, sulfate, or phosphate salt; azelastine and its hydrochloride, sulfate, or phosphate forms; diphenhydramine and its hydrochloride, sulfate, or phosphate forms; and promethazine and its hydrochloride, sulfate, or phosphate forms.
- Taxoids including paclitaxel (Taxol, BristolMyers Squibb); vincristine (Oncovin, Eli Lilly & Co.) and its hydrochloride, sulfate, or phosphate salt forms; vinblastine (Velbe, Eli Lilly & Co.) and its hydrochloride, sulfate, or phosphate salt; vinorelbine (Novelbinr, Fabre/GSK); colchicines; docetaxel (Taxotere, Aventis); 109881 (Aventis); LIT 976 (Aventis); BMS 188797 (BristolMyers Squibb); BMS 184476 (BristolMyers Squibb); DJ 927 (Daiichi); DHA paclitaxel (Taxoprexin, Protarga); Epothilones including epothiloneB (EPO 906, Novartis/generic); BMS 247550
- Taxoids including paclit
- Antineoplastic agents such as doxorubicin and its hydrochloride, sulfate, or phosphate salt; idarubicin and its hydrochloride, sulfate, or phosphate salt; daunorubicin and its hydrochloride, sulfate, or phosphate salt; dactinomycin; epirubicin and its hydrochloride, sulfate, or phosphate salt; dacarbazine; plicamycin; mitoxantrone (Novantrone, OSI Pharmaceuticals) and its hydrochloride, sulfate, or phosphate salt; valrubicin; cytarabine; nilutamide; bicalutamide; flutamide; anastrozole; exemestane; toremifene; femara; tamoxifen and tamoxifen citrate; temozolimide (Temador); gemcitabine and its hydrochloride, s
- Antiapoptotics such as desmethyldeprenyl (DES, RetinaPharma).
- Aldose Reductase Inhibitors such as GP1447 (Grelan); NZ314 (parabanic acid derivative, Nippon Zoki); SG210 (Mitsubishi Pharma/Senju); and SJA705 (Senju).
- Antihypertensives such as candesartan cilexetil (Atacand/Biopress, Takeda/AstraZeneca/Abbott); losartan (Cozaar, Merck); and lisinopril (Zestril/Prinivil, Merck/AstraZeneca).
- Antioxidants such as benfotiamine (Albert Einstein Col. Of Med./WorWag Pharma); ascorbic acid and its esters; tocopherol isomers and their esters; and raxofelast (IRF1005, Biomedica Foscama);
- Growth Hormone Antagonists such as octreotide (Sandostatin, Novartis); and pegvisomant (Somavert, Pfizer/Genentech); Vitrectomy Agents such as hyaluronidase (Vitrase, ISTA Pharm./Allergan);
- Adenosine Receptor Antagonist such as A2B adenosine receptor antagonist (754, Adenosine Therapeutics);
- Adenosine Deaminase Inhibitor such as pentostatin (Nipent, Supergen);
- Glycosylation Antagonists such as pyridoxamine (Pyridorin, Biostratum);
- Anti-Ageing Peptides such as AlaGluAspGly (Epitalon, St Louis Inst. Bioreg. and Geron).
- Topoisomerase Inhibitors such as doxorubicin (Adriamycin/Caelyx, Pharmacia/generics); daunorubicin (DaunoXome, Gilead/generics); etoposide (Vepecid/Etopophos, BristolMyers Squibb/generics; idarubicin (Idamycin, Pharmacia); irinotecan (Camptosar, Pharmacia); topotecan (Hycamtin, GlaxoSmithKline); epirubicin (Ellence, Phamacia); and raltitrexed (Tomudex, AstraZeneca).
- doxorubicin Adriamycin/Caelyx, Pharmacia/generics
- daunorubicin DaunoXome, Gilead/generics
- etoposide Vepecid/Etopophos, BristolMyers Squibb/generics
- Antimetabolites such as methotrexate (generic) and its sodium salt; 5fluorouracil (Adrucil, ICN Pharmacia); cytarabine (Cytosar, Pharmacia/generic); fludarabine (Fludara, Schering) and its forms as salts with acids; gemcitabine (Gemsar, Eli Lilly& Co.); capecitabine (Xeloda, Roche); and perillyl alcohol (POH, Endorex).
- Alkylating Agents such as chlorambucil (Leukeran, GlaxoSmithKline); cyclophosphamide (Cytoxan, Pharmacia/BristolMeyers Squibb); methchlorethanine (generic); cisplatin (Platinal, Pharmacia/BristolMeyers Squibb); carboplatin (Paraplatin, BristolMyers Squibb); temozolominde (Temodar) and oxaliplatin (SanofiSynthelabs).
- chlorambucil Leukeran, GlaxoSmithKline
- cyclophosphamide Cytoxan, Pharmacia/BristolMeyers Squibb
- methchlorethanine generic
- cisplatin Platinum
- carboplatin Paraplatin, BristolMyers Squibb
- temozolominde Temodar
- oxaliplatin SanofiSynthelab
- Antiandrogens such as flutamide (Eulexin, AstraZeneca); nilutamide (Anandron, Aventis); bicalutamide (Casodex, AstraZeneca).
- Antiestrogens such as tamoxifen (Nolvadex, AstraZeneca); toremofine (Fareston, Orion/Shire); Faslodex (AstraZeneca); arzoxifene (Eli Lilly & Co.); Arimidex (AstraZeneca); letrozole (Femera, Novartis); Lentaron (Novartis); Aromasin (Pharmacia); Zoladex (AstraZeneca); lasoxifene (CP366,156, Pfizer); ERA92 (Ligand/Wyeth); DCP 974 (DuPont/Bristol Myers Squibb); ZK 235253 (Shering AG); ZK1911703 (Shering AG); and ZK 230211 (Shering AG);
- Oncogene Activation Inhibitors including for example, BcrAbl Kinase Inhibition such as Gleevec (Novartis); Her2 Inhibition such as trastuzumab (Herceptin, Genentech); MDX 210 (Medarex); E1A (Targeted Genetics); ME103 (Pharmexa); 2C4 (Genentech); C11033 (Pfizer); PKI 166 (Novartis); GW572016 (GlaxoSmithKline) and ME104 (Pharmexa); EGFr Inhibitors such as Erbitux (Imclone/BristolMyers Squibb/Merck KgaA); EGFr Tyrosine Kinase Inhibitors such as gefitinib (Iressa ZD 1839, AstraZeneca); cetuximab (Erbitux, Imclone/BMS/Merck KGaA); erlotinib (Tarceva, OSI Pharmaceutical/Genentech/Roche
- Telomerase Inhibitors such as GRN163 (Geron/Kyowa Hakko) and G4T 405 (Aventis); Antibody Therapy including Herceptin (Genentech/Roche); MDXH210 (Medarex); SGN15 (Seattle Genetics); H11 (Viventia); Therex (Antisoma); rituximan (Rituxan, Genentech); Campath (ILEX Oncology/Millennium/Shering); Mylotarg (Celltech/Wyeth); Zevalin (IDEC Pharmaceuticals/Schering); tositumomab (Bexxar, Corixa/SmithKline Beecham/Coulter); epratuzumab (Lymphocide, lmmunomedics/Amgen); Oncolym (Techniclone/Schering AG); Mab Hu1D10 antibody (Protein Design Laboratories); ABXEGF (Abgenix); infleximab (Remicade®, Cento
- Antipsoriasis Agents such as anthralin; vitamin D3; cyclosporine; methotrexate; etretinate, salicylic acid; isotretinoin; and corticosteroids; Antiacne Agents such as retinoic acid; benzoyl peroxide; sulfurresorcinol; azelaic acid; clendamycin; erythromycin; isotretinoin; tetracycline; minocycline; Antiskin parasitic Agents such as permethrin and thiabendazole; Treatments for Alopecia such as minoxidil and finasteride; Contraceptives such as medroxyprogesterone; norgestimol; desogestrel; levonorgestrel; norethindrone; norethindrone; ethynodiol; and ethinyl estradiol; DNAalkyltranferase Agonist including temozolomide; Metalloprotein
- Solid phase can be added to a formed gel or fixed within a gel during polymerization of the pregel liquid state to a gel state.
- Solid phase can be formed within a gel.
- the present invention provides a novel process for producing solid materials based on synthetic polymers and/or biopolymers, in which the synthetic polymers and/or biopolymers are dissolved or dispersed in ionic liquids, optionally together with additives, the synthetic polymers and/or biopolymers are regenerated as solids by contacting the resulting solution or dispersion with a further liquid or gel which is miscible with the ionic liquid but is incapable of dissolving the solid synthetic polymers and/or biopolymers, and freeing the resulting regenerated solids from the synthetic polymers and/or biopolymers of the ionic liquids and the further liquid, which results in the solid materials based on synthetic polymers and/or biopolymers.
- the present process for producing solid materials within gels has the following process steps: (1) solubilizing at least one solid polymer and/or biopolymer (A), or at least one synthetic polymer and/or biopolymer (A) and at least one additive (B), in at least one substantially or completely anhydrous chaotropic liquid (C), (2) contacting the solution or dispersion (AC) or (ABC) obtained in process step (1) with a gel (G) which is miscible with the chaotropic liquid (C), but in which at least the synthetic polymer and/or the biopolymer (A) are substantially or completely insoluble, which results in a solid phase (P) which comprises or consists of solid synthetic polymer and/or biopolymer (A), chaotropic liquid (C) and gel (G), and if appropriate the at least one additive (B), and a gel phase (G) which comprises or consists of chaotropic liquid (C) and gel (G), (3) removing the chaotropic liquid (C) from phase (G), which results
- the solid materials may have a wide variety of different threedimensional forms, sizes and morphologies. For instance, they may be pulverulent, in which case the powder particles may have the form of slabs, spheres, drops, rods, cylinders, needles, flakes, or irregularly shaped particles, especially pellets and tori. These bodies may be more or less compact or highly porous, and may have a high internal surface area.
- the particle size thereof may vary widely. It may be in the range from a few nanometers up to 1 mm.
- the particle size distributions may be monomodal or multimodal and range from very broad to very narrow, preferably very narrow, distributions.
- the solid materials may, however, also be macroscopic particles, i.e. particles with a greatest diameter of >1 mm. They have essentially the same forms as the powder particles.
- the solid materials may have the form of fibers. These may have different lengths, for example from about 5 mm to highly entangled and different thicknesses, for example 1 micron to 1 mm.
- the solid materials may also be provided as films. These may have different thicknesses, for example between 500 nm and 1 mm.
- the films may be essentially compact, nanoporous, microporous, macroporous or in the form of sponge. The films are preferably essentially compact.
- the solid materials are powders.
- the powder particles preferably have a mean particle size measured by sedimentation in a gravitational field of 100 microns to 3 mm, preferably 200 microns to 2.5 mm and especially 300 microns to 2 mm.
- the solubilization in the first process step has no special features, and can be performed with the aid of the customary and known mixing units, such as stirred tanks, Ultraturrax, inline dissolvers, homogenization units such as homogenization nozzles, kneaders or extruders, continuously or in batchwise mode.
- mixing units such as stirred tanks, Ultraturrax, inline dissolvers, homogenization units such as homogenization nozzles, kneaders or extruders, continuously or in batchwise mode.
- the content of polymers (A) in the solution or dispersion (AC) or (ABC) which results in the first process step can likewise vary widely.
- the upper limit of the content is fixed in the individual case by the fact that the viscosity of the solution or dispersion (AC) or (ABC) in question must not become so high that it can no longer be processed.
- the content is preferably 0.1 to 50% by weight, more preferably 0.25 to 30% by weight and especially 0.5 to 20% by weight, based in each case on (AC) or (ABC).
- the solution or dispersion (AC) or (ABC) obtained in the first process step is contacted with a gel (G).
- the gel (G) is miscible with the abovedescribed chaotropic liquid (C), preferably without a miscibility gap, i.e. in any quantitative ratio.
- the polymer (A) is substantially or completely insoluble in (G).
- Any additives (B) present may be soluble or insoluble in (G).
- the chaotropic liquid (C) used is preferably acetone, methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, diethylene glycol, 2methoxyethanol, 2ethoxyethanol, 2propoxyethanol and/or 2butoxyethanol, the nitrile used is preferably acetonitrile and/or propionitrile, the ether used is preferably diethyl ether, dipropyl ether, tetrahydrofuran and/or dioxane, the ketone used is preferably acetone and/or methyl ethyl ketone, the aldehyde used is preferably acetaldehyde and/or propionaldehyde, the sulfoxide used is preferably dimethyl sulfoxide, and the amide used is preferably dimethylformamide, acetamide and/or hexamethylphosphortriamide.
- the solution or dispersion (AC) or (ABC) can be contacted in different ways with gel (G), for example by pouring, dripping or extruding the solution or dispersion (AC) o r (ABC) into the gel (G), or contacting it in the form of a film with gel (G). This can be performed continuously or in batchwise mode.
- the quantitative ratio of solution or dispersion (AC) or (ABC) to gel (G) may vary widely from case to case. It is essential that the quantitative ratio is selected such that the polymer (A) is precipitated or regenerated quantitatively. The person skilled in the art can therefore easily determine the quantitative ratio required on the basis of his or her general technical knowledge, if appropriate with the aid of a few preliminary tests.
- the temperature at which the second process step is performed can likewise vary widely. The temperature is guided primarily by the temperature range within which the gel (G) is in a fluidlike state.
- the solution or dispersion (AC) or (ABC) should also not have excessively high temperatures on contact with (G), because the result may otherwise be abrupt evaporation and/or decomposition of the gel (G) or polymer (A).
- the second process step is preferably likewise performed at temperatures of 0 to 100 degree C., more preferably 10 to 70 degree C., especially preferably 15 to 50 degree C. and especially 20 to 30 degree C.
- the result is a solid phase which comprises or consists of solid polymer (A), chaotropic liquid (C) and gel (G), and if appropriate the at least one additive (B), and also a liquid phase (W) which comprises or consists of chaotropic liquid (C) and gel (G).
- the chaotropic liquid (C) is removed from phase (PG) with the aid of the liquid (W), which results in a gel (PG) based on the polymer (A).
- This can be done by employing the abovedescribed continuous or batchwise method.
- the washing and removal are preferably continued until chaotropic liquid (C) can no longer be detected in the gel (PG) and/or in the wash liquid (W).
- the fourth process step is performed at temperatures at which the resulting gel (PG) is not thermally damaged, more particularly does not age rapidly. Preference is given to employing temperatures of 0 to 100 degree C., more preferably 10 to 70 degree C., especially preferably 15 to 50 degree C. and especially 20 to 30 degree C.
- the resulting gel (PG) preferably already essentially has the appropriate threedimensional form, like the solid material based on polymers (A) to be produced therefrom.
- the gel (PG) is treated with a liquid (W) which is miscible with the chaotropic liquid (C) and with the gel (G), but in which at least the polymer (A) is substantially or completely insoluble.
- liquid (W) which is particularly preferred in accordance with the inventionit is possible to use all of the aboved escribed strongly protic and aprotic polar organic liquids which have a higher vapor pressure than water or a boiling point below 100 degree C. at standard pressure.
- the two liquids (C) and (W) are removed from the gel (PG) by evaporating or fractionation.
- Preference is given to fractionation comparatively slowly under gentle conditions at standard pressure or a slightly reduced pressure between 50 and 100 kPa.
- Preference is given to employing temperatures between 20 and 50 degree C. More particularly, the fractionation is effected at room temperature and under standard pressure.
- the sixth process step it is possible to perform at least one of the process steps of the process according to the invention at a pressure greater than 100 kPa. Preference is given to performing the process according to the invention at standard pressure overall. Owing to the exact adjustability of the dimensions thereof of the solid phase, the resulting solid materials based on synthetic polymers and/or biopolymers (A), especially of absorbable polyurethanes (A), can be joined in a process specific way, in a secure and reliable manner, to give even more complex threedimensional moldings.
- the resulting solid materials based on synthetic polymers and/or biopolymers, especially on absorbable polyurethanes (A), can be modified in a wide variety of different ways for the inventive use.
- the additives (B) may be present in more or less homogeneous distribution in the polymer (A) matrix of the solid materials produced with the aid of the process according to the invention.
- fibrous additives (B) may have an inhomogeneous distribution, in order to vary mechanical properties in a desired manner.
- the situation is similar for catalytically active additives (B), the accessibility of which in the polymer (A) matrix can be improved by an inhomogeneous distribution.
- a very substantially homogeneous distribution in the polymer (A) matrix is advantageous, for instance when plasticizing additives (B) are used.
- the additives (B) may be bonded in a more or less fixed manner to the polymer (A) matrix of the solid materials produced with the aid of the process according to the invention.
- polymeric or particulate additives (B) may be bonded permanently to the polymer (A) matrix.
- the multiphasic gels which are based on synthetic polymers and/or biopolymers (A), and also on polysaccharides (G), and are produced in the inventive procedure can therefore be used advantageously in a wide variety of different technical fields in the context of the inventive use.
- they can be used in synthetic and analytical chemistry, biochemistry and gene technology, biology, pharmacology, medical diagnostics, cosmetics, natural gas and mineral oil extraction technology, process technology, paper technology, packaging technology, electrical engineering, magnet technology, communications technology, broadcasting technology, agricultural technology, aviation and space technology and textile technology, and also construction, land and sea transport and mechanical engineering, especially as construction materials, insulations, fabric, absorbents, adsorbents, membranes, separating materials, barrier layers, controlled release materials, catalysts, cultivation media, catalysts, and also coloring, fluorescent, phosphorescent, electrically conductive, magnetic, microwaveabsorbing and flameretardant materials, or for the production thereof.
- solid phase can be inserted mechanically into an existing gel phase, the gel state can be formed around a distribution of solid phase, the solid phase can be formed within an existing gel state, or in either of these cases the solid phase and gel phase chemically interact to form bonds.
- the solid and gel phases are typically characterized as possessing pendant hydroxyl groups.
- a desired distribution of solid phase and gel phase is obtained to form a multiphasic gel, this state of distribution can be fixed by addition of a crosslinker, for example a diisocyanate.
- the solid or gel phases can possess a surplus of terminal NCO groups such that when one of the gel or solid phases possessing terminal hydroxyl groups is introduced into the state possessing terminal isocyanate groups that spontaneous polymerizations occurs.
- This polymerization can be enhanced by the addition of catalysts known in the art.
- the polymerization that occurs is local, and limited to bonds formed between gel phase molecules and solid phase molecules. In this situation, it is preferred that the distribution of solid phase be sufficiently diffuse that chain extension or polymerization between solid phase structures does not occur, unless a more complex solid phase geometry desired.
- the form of macroscopic crosslinking can achieve any degree desired of constraint on the overall multiphasic gel system.
- the coupling can be strictly local between discrete solid phase and gel domains.
- chain extension can occur, especially if the isocyanate functionality is not localized to either the gel phase or the solid phase.
- hydroxyl rich monomers are to be used in the final fixing of solid state relative to gel state, than any unreacted monomers are to be washed out by the use of a suitable polar solvent, such as water. It is important that the resulting multiphasic gel system be cohesive. In particular, there should be no free small molecule constituents that are not intended to provide a biofunctional aspect. Conversely, no fixing of the gel phase to the solid phase, preferably, alters the functionality or distribution mechanics of a molecular biofunctional constituent intended to be released into a mammalian body.
- DBTL dibutyltindilaurate
- DBTL dibutyltindilaurate
- Pluronic 31 R1 (molecular weight 3250) (BASF, Mt. Olive, N.J.) was dried under vacuum at 85.degree. C. for 12 hr. in a spherical flask, the final water content obtained was below 300 ppm.
- One equivalent of Pluronic 31 R1 was added to 1 ⁇ 5 equivalent (I)Lactide and 0.18 grams catalyst (stannous 2ethyl hexanoate) (0.43%). The reaction was carried out in a sealed flask, under a dry nitrogen saturated atmosphere, for two and half hours at 145 degrees C.
- To the above synthesis is added 2 equivalents of toluene diisocyanate and reacted at 60 degrees C. for 8 hours.
- To this result is added 1 ⁇ 2 equivalent of biofunctional molecule for example a boswellia extract and reacted at 75 degrees C. for 8 hours.
- Polyethylene glycol (molecular weight 3000) was dried in vacuo overnight at 85.degree. C. Thereafter, the PEG was cooled down to room temperature, and the product capped with dry nitrogen.
- One equivalent of PEG was added to 1 ⁇ 5 equivalent (1)Lactide and 0.18 grams catalyst (stannous 2ethyl hexanoate).
- the mixture of PEG and lactide is placed in an oil bath under flowing nitrogen at 140 degree C.and mixed for 3 hours.
- To the above synthesis is added 2 equivalents of toluene diisocyanate and reacted at 60 degrees C. for 8 hours.
- 1 ⁇ 2 equivalent of biofunctional molecule for example a boswellia extract and reacted at 75 degrees C. for 8 hours.
- Multiarmed polymers can be constructed without crosslinking by introducing a triol (T) and linking the triol to poloxamer chains with diisocyanate.
- T triol
- poloxamer chains are introduced into a reactor and endcapped with diisocyanate.
- the resulting poloxamer diisocyanate is then reacted with a low molecular weight triol such a trimethylolpropane.
- the result is a poloxamer triisocyanate which then can be reacted with ester (A).
- the ester is polylactic acid. This yields a gel prepolymer. Gels can be made by adding water and stirring vigorously. Gels comprising up to 95% water can be made.
- Hyaluronan contains repeating segments of C 14 H 21 NO 11 , each containing 5 hydroxyl groups (OH).
- OH hydroxyl groups
- To form a diisocyanate of hyaluronan one reacts a quantity of diisocyanate containing 2 moles of NCO greater than the number of moles of OH.
- a hyaluronan containing 1 unit of C 14 H 21 NO 11 per molecule then 1 mole of hyaluronan molecules if to be reacted with 7 moles of diisocyanate.
- the reaction is performed in an organic solvent, where the hyaluronan is altered by ammonia to make it soluble in an organic solvent, for example tetrahydrofuran.
- a small amount of tin catalyst is added to promote urethane link formation between the hydroxyls of the hyaluronan and the isocyanate groups of the diisocyanate.
- the hyaluronan is first dissolved in organic solvent and set aside. The reactor is charged with catalyst and diisocyanate and heated to 80 degrees C. The hyaluronan solution is slowly added to the reactor and the exotherm monitored. Complete reaction is indicated when the exotherm subsides. Alternatively, one can measure the % NCO at each step to verify all the hydroxyl groups on the hyaluronan are endcapped with isocyanate.
- the desired polydispersity can be obtained by adjusting the amount of NCO used, and verifying with GPC and % NCO measurements.
- the dispersity of molecular weights of product molecules will be Gaussian around a desired mean.
- Multimodal distributions can be obtained by mixing the reaction product of multiple reactions.
- Hyaluronan isocyanates of higher isocyanate functionality can be synthesized by adjusting the ratio of OH groups to isocyanate groups in the reaction mix.
- a castorderived hydroxylterminated ricinoleate derivative is used as the triol.
- One equivalent of polycin T400 (141 g) is combined with 2 equivalent of toluene diisocyanate (174 g) at room temperature (22° C.).
- the mixture is stirred at 100 revolutions per minute and the temperature monitored.
- the mixture will begin to heat up by exothermic reaction and no heat is to be applied to the reactor until the temperature in the reactor ceases to rise.
- the mixture temperature should be increased in 5° C. increments per 1 ⁇ 2 hour until the mixture reaches 60° C.
- the target % NCO is reached when every hydroxyl group in the mixture is reacted with an NCO group.
- the result is a single diol endcapped with two diisocyanates.
- This outcome can be enhanced by slow addition of the diol to the diisocyanate.
- the addition should be in 10 g increments, added when the exotherm from the previous addition has ceased.
- chain extended variations of the above ideal outcome are useful, their primary disadvantage being that the product is slightly higher in viscosity.
- the ideal % NCO is calculated by dividing the weight of the functional isocyanate groups (2 ⁇ 42 Dalton) per product molecule by the total weight of the product molecule (282 Dalton+2 ⁇ 174 Dalton) yielding approximately 13.3%.
- the above reaction will yield a viscous product. A less viscous product can be obtained by adding propylene carbonate to the initial mixture.
- propylene carbonate is available from SigmaAldrich (Milwaukee, Wis.).
- a polyether hydroxylterminated copolymer of 75% ethylene oxide and 35% propylene oxide is used as the triol.
- the target % NCO is reached when every hydroxyl group in the mixture is reacted with an NCO group.
- the result is a single diol endcapped with two diisocyanates. This outcome can be enhanced by slow addition of the diol to the diisocyanate.
- the addition should be in 10 g increments, added when the exotherm from the previous addition has ceased.
- chain extended variations of the above ideal outcome are useful, their primary disadvantage being that the product is slightly higher in viscosity.
- the ideal % NCO is calculated by dividing the weight of the functional isocyanate groups (3 ⁇ 42 Dalton) per product molecule by the total weight of the product molecule (9199 Dalton+3 ⁇ 174 Dalton) yielding approximately 1.3%.
- Multranol 9199 is available from Bayer (Pittsburgh, Pa.).
- any of the diisocyanates prepared above can be trimerized by the addition of a low molecular weight triol such as polycin T400 or trimethylolpropane (TMP).
- TMP trimethylolpropane
- the method is adaptable to any triol.
- Complete trimerization of the diisocyanates of Example 1 and 2 will result in viscous products.
- propylene carbonate can be employed or less triol can be used. In the latter case, a mixture of diisocyanate and triisocyanate is obtained.
- polyether diisocyanate is used.
- One equivalent of polyether diisocyante (682 g) is combined with 0.1 equivalent TMP (44.7 g) at room temperature (22° C.).
- the mixture is stirred at 100 revolutions per minute and the temperature monitored.
- the mixture will begin to heat up by exothermic reaction and no heat is to be applied to the reactor until the temperature in the reactor ceases to rise.
- the mixture temperature should be increased in 5° C. increments per 1 ⁇ 2 hour until the mixture reaches 60° C.
- the target % NCO is reached when every hydroxyl group in the mixture is reacted with an NCO group.
- TMP is available from SigmaAldrich (Milwaukee, Wis.).
- the product of Example 14 is used as the polyether diisocyanate/triisocyanate mixture.
- Example 29 is combined with 1 g of Boswellia extract at room temperature (22° C.) under 90% nitrogen and 10% nitric oxide atmosphere. The mixture is stirred at 100 revolutions per minute and the temperature monitored. The mixture will begin to heat up by exothermic reaction. When the temperature ceases to rise, a % NCO reading is taken.
- % NCO>0 than an additional 1 g of Boswellia extract is to be added.
- a polyether hydroxylterminated copolymer of 75% ethylene oxide and 35% propylene oxide is used as the triol.
- One equivalent of Multranol 9199 (3066 g) is combined with 3 equivalent of toluene diisocyanate (261 g) at room temperature (22° C.). The mixture is stirred at 100 revolutions per minute and the temperature monitored.
- the ideal % NCO is calculated by dividing the weight of the functional isocyanate groups (3 ⁇ 42 Dalton) per product molecule by the total weight of the product molecule (9199 Dalton+3 ⁇ 174 Dalton) yielding approximately 1.3%.
- Multranol 9199 is available from Bayer (Pittsburgh, Pa.).
- any of the above solid phase absorbable polyurethanes may be used.
- the polyurethane is dissolved in acetone in a 20% by weight ratio of polymer to acetone to form a polyurethane solution.
- a beaker is filled with distilled water and placed on a magnetic stirrer. The stir rate is selected to create a vortex in the water.
- a 3 ml syringe with an 18G needle is loaded with polyurethane solution. The tip of the needle is placed in the water and the polyurethane solution is introduced into the water at a rate of 1 ml/minute.
- the polyurethane instantly becomes a solid on contact with the water.
- the lamellar flow of the polyurethane solution through the inner diameter of the needle induces a rolling motion at the exit of the needle.
- the solidifying polyurethane forms into tori upon exit of the needle.
- the rate of introduction of the polyurethane solution to the water can be used to control the thickness of the formed tori.
- Other variables that can be adjusted are the temperature of the water, the dilution of the polyurethane solution, and the selection of solvents other than acetone.
- the diameter of the formed tori can be controlled by selecting needles of different inner diameter. Small inner diameter results in small diameter tori.
- Tori can be harvested from solution using standard filter paper, wherein the tori are captured on the filter paper and dried in an oven at 40° C. The result is dry, flowable tori.
- An image of a torus 400 prepared according to the present methods is shown in FIG. 4 .
- Torus 400 has a diameter of about 500 micron.
- any of the above gel prepolymers can be used.
- a beaker of water is charged with adesired density of solid phase tori and stirred at a rate sufficient to obtain a uniform distribution of tori in the water.
- a solution of gel prepolymer is prepared by making a solution of prepolymer and a solvent. Solvents can be acetone, toluene or an inert addition such as propylene carbonate or a water miscible diol.
- the solution is introduced to the water mixture at 1 cc/minute at 10 minute intervals. Between intervals the pH of the solution is maintained between 6.5 and 7.5 pH using a suitable base, for example sodium hydroxide. This process is continued until a desired viscosity is achieved.
- a multiphase gel which can have all the water removed and be rehydrating to its originally formed ratio of water to polymer.
- the water fraction of the gel can be loaded with salt ions, in particular sodium chloride.
- salt ions in particular sodium chloride.
- reintroduction of the dehydrated gel to distilled water in a ratio of polymer weight to water volume that will result in 0.9% salt (physiologic saline) is useful in implantable applications.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Vascular Medicine (AREA)
- Epidemiology (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Dispersion Chemistry (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Materials For Medical Uses (AREA)
Abstract
Description
- This application claims benefit of U.S. provisional application No. 62/331,286 filed on May 3, 2016 and is a continuation of U.S. patent application Ser. No. 15/586,114 filed May 3, 2017, the contents of which are hereby incorporated by reference in their entirety.
- The present disclosure relates generally to biomedical and pharmaceutical applications of absorbable or biodegradable multiphasic hydrogels, where optionally one or more phases are not absorbable in situ. More particularly, the present invention relates to systems of multiphase hydrogels comprising both gel and nongel phases, wherein these phases may be coupled mechanically, hydrophobically, by metal ions, or by covalent bonds.
- In connective tissue, the term “ground substance” is the non-cellular components of extracellular matrix. Cells are surrounded by extracellular matrix in tissues, which acts as a support for the cells. Ground substance traditionally does not include collagen but does include all the other proteinaceous components, including proteoglycans, matrix proteins and water. Ground substance is amorphous, gel-like, and is primarily composed of glycosaminoglycans (most notably hyaluronan), proteoglycans, and glycoproteins. The formation of tissue adhesions can best be described as a process of denaturation, and more specifically protein denaturation.
- Denaturation is a process in which proteins or nucleic acids lose the tertiary structure and secondary structure which is present in their native state, by application of some external stress or compound such as an acid or base, a concentrated inorganic salt, an organic solvent, exposure to air, or temperature change.
- When a surgical procedure is performed external stress is applied to tissue, which can be oxidative, change the ionic equilibrium, create necrotic byproducts, or otherwise increase the entropy of the tissue. If proteins in a living cell are denatured, this results in disruption of cell activity and possibly cell death (which occurs in all surgical procedures). Denatured proteins can exhibit a wide range of characteristics, from loss of solubility to communal aggregation. These two effects tend to create scaffolds on which bridges between living tissues are formed.
- Denaturation occurs at different levels of the protein structure. In the quaternary structure denaturation, protein subunits are dissociated and/or the spatial arrangement of protein subunits is disrupted. This can lead to cell death, which promote upregulation of reaction oxygen species as well as providing an environment for microbial proliferation. The tertiary structure denaturation involves the disruption of covalent interactions between amino acid sidechains (such as disulfide bridges between cysteine groups), noncovalent dipoledipole interactions between polar amino acid sidechains, and Van der Waals (induced dipole) interactions between nonpolar amino acid sidechains. In the secondary structure denaturation, proteins lose all regular repeating patterns such as alphahelices and betapleated sheets, and adopt a random coil configuration. This contributes to the higher entropic state associated with chronic inflammation and thick capsule formation.
- Primary structure denaturation, such as a sequence of amino acids held together by covalent peptide bonds, is not directly disrupted by denaturation. But the high entropy environment associated with global protein denaturation has been associated with primary structure disruption and pathologies such as cancer.
- Most biological substrates lose their biological function when denatured. For example, enzymes lose their activity, because the substrates can no longer bind to the intended active site, and because amino acid residues involved in stabilizing the substrates' transition states are no longer positioned to be able to do so. The denaturing process and the associated loss of activity can be measured using techniques such as dual polarization interferometry.
- Unfortunately, almost all antiadhesive materials (gel or sheet) used surgically at present are chaotropic agents. These devices disrupt the structure of macromolecules, and denature macromolecules such as proteins and nucleic acids (e.g. DNA and RNA). Chaotropic solutes increase the entropy of the system by interfering with intramolecular interactions mediated by noncovalent forces such as hydrogen bonds, van der Waals forces, and hydrophobic effects. Hydrophobic effects are primary in establishing the boundaries between tissue layers. When the equilibrium of these forces that are established in vital tissue is disrupted, the “healing” stimulus leads to macroscopic cellular structures that are deleterious to clinical success.
- For these reasons it is important that antiadhesion barriers, that are, by their current construction, absorbable, not degrade into byproducts that are chaotropic. Macromolecular structure and function is dependent on the net effect of these forces (for example, protein folding), therefore it follows that an increase in chaotropic solutes precipitated by an implant in a biological system will denature macromolecules, reduce enzymatic activity and induce stress on cells. In particular, tertiary protein folding is dependent on hydrophobic forces from amino acids throughout the sequence of proteins. Chaotropic solutes decrease the net hydrophobic effect of hydrophobic regions because of a disordering of water molecules adjacent to the protein. This solubilizes the hydrophobic region in the solution, thereby denaturing the protein. This is also directly applicable to the hydrophobic region in lipid bilayers; if a critical concentration of a chaotropic solute is reached (in the hydrophobic region of the bilayer) then membrane integrity will be compromised, and the cell (tissue layer) will lyse.
- Many implants that degrade into acids form chaotropic salts that are water soluble and exert chaotropic effects via a variety of mechanisms. Whereas chaotropic compounds such as hydroxyl compounds, for example polyethylene glycol, interfere with noncovalent intramolecular forces, salts can have chaotropic properties by shielding charges and preventing the stabilization of salt bridges. Hydrogen bonding is stronger in nonpolar media, so salts, which increase the chemical polarity of the solvent, can also destabilize hydrogen bonding. The loss of hydrogen bonding disassociates the delimiters of tissue layers, promoting translayer bridge formation. In terms of intersurface dynamics, the formation of adhesions is promoted due to insufficient water molecules to effectively solvate the ions resulting from surgical tissue disruption. This can result in iondipole interactions between the salts and hydrogen bonding species which are more favorable than normal hydrogen bonds, which accordingly promote bridging between tissue layers over promotion of tissue layer boundaries.
- Accordingly, it is important that an antiadhesion prosthetic that is absorbable not contribute to a chaotropic effect. Granted much of the denaturation due to surgical intervention is due to disruption of tissue layers, cell death and perturbation of the ionic and hydrophobic equilibrium established in living tissue. Thus, a barrier material should be chemically neutral and reestablish the structural aspects of the tissue perturbed by surgical intervention. Since this intervention is intended to be temporary, then the elimination of the barrier material itself must not be chaotropic. This is where most absorbable materials fail. In cases where an implant is intended to disappear to minimize site colonization by endogenous bacteria, and the implant serves a mechanical function, then such chaotropic effects may be acceptable in a risk/benefit analysis. But where a material is specifically implanted for the purpose of reestablishing normal tissue structure, such chemotropic effects may not be ignored.
- Additional background information includes the following:
- U.S. Pat. No. 6,312,725 discloses compositions suited for use in a variety of tissue related applications when rapid adhesion to the tissue and gel formation is desired
- U.S. Pat. No. 6,399,700 discloses comb copolymers comprising hydrophobic polymer backbones and hydrophilic noncell binding side chains which can be endcapped with cell-signaling ligands that guide cellular response.
- U.S. Pat. No. 6,413,539 discloses hydrogelforming, selfsolvating, absorbable polyester copolymers capable of selective, segmental association into compliant hydrogels upon contacting an aqueous environment.
- U.S. Pat. No. 6,465,513 discloses compounds useful in the treatment of inflammatory diseases.
- U.S. Pat. No. 6,486,140 discloses the use of chitosan and a polysaccharide immobilized thereto selected from heparin, heparin sulphate and dextran sulphate for the manufacture of an agent capable of preventing or substantially reducing undesirable adhesion of damaged tissue with adjacent or surrounding tissues in connection with wound healing; and a process for the use of such agent.
- U.S. Pat. No. 6,486,285 discloses a water-swellable polymer gel prepared by reacting an ester of a carboxyl group containing polysaccharide with a compound having at least two.alpha.amino groups, which is derived from a natural amino acid, and a foamed article thereof.
- U.S. Pat. No. 6,514,522 discloses polysaccharide polymers, for example, chitosanarabinogalactan and polysaccharide amine polymers are disclosed. The polymers can be used to prevent wound adhesion, to provide scaffolds for tissue transplantation and carriers for cell culture.
- U.S. Pat. No. 6,642,363 discloses materials which contain polysaccharide chains, particularly alginate or modified alginate chains. The polysaccharide chains may be included as side chains or auxiliary chains from a backbone polymer chain, which may also be a polysaccharide. Further, the polysaccharide chains may be crosslinked between side chains, auxiliary chains and/or backbone chains.
- U.S. Pat. No. 6,903,199 discloses waterinsoluble, crosslinked amide derivatives of hyaluronic acid and manufacturing method thereof, where the amide derivatives of hyaluronic acid are characterized by crosslinking, of polymer or oligomer having two or more amine groups, with hyaluronic acid or its hyaluronate salts through amidation reaction.
- U.S. Pat. No. 6,923,961 discloses carboxypolysaccharides including carboxymethyl cellulose and their derivatives are provided that can be made into sponges, gels, membranes, particulates and other forms, for a variety of antiadhesion, antithrombogenic, drug delivery and/or hemostatic applications during surgery and pharmacological therapeutics.
- U.S. Pat. No. 7,026,284 discloses a polyphenol useful as a gene complex, cell adhesion inhibitor or immune tolerogen. The polyphenol of forming the agent is selected from catechin group consisting of epigallocatechingallate, tannic acids, or proantodianisidine, a protein of the protein complex is selected from proteins consisting of animal proteins composed of polypeptide chain of peptidecombined amino acids, vegetative proteins, nucleus proteins, glycogen proteins, lipoproteins and metal proteins, the gene complex comprises by compositing genes by polyphenol catechins in order to introduce genes to cells of animals or human bodies, a cell composed of the cell adhesion inhibitor is selected from cells consisting of an animal cell including a stem cell, skin cell, mucosa cell, hepatocyte, islet cell, neural cell, cartilage cell, endothelial cell, or epidermal cell.
- U.S. Pat. No. 7,265,098 discloses methods for delivering bioadhesive, bioresorbable, antiadhesion compositions. Antiadhesion compositions can be made of intermacromolecular complexes of carboxylcontaining polysaccharides, polyethers, polyacids, polyalkylene oxides, multivalent cations and/or polycations.
- U.S. Pat. No. 7,316,845 discloses compositions for coating biological and nonbiological surfaces, which minimize or prevent cell-cell contact and tissue adhesion, and methods of preparation and use thereof, are disclosed. Embodiments include polyethylene glycol/polylysine block or comb-type copolymers with high molecular weight PLL (greater than 1000, more preferably greater than 100,000); PEG/PLL copolymers in which the PLL is a dendrimer which is attached to one end of the PEG; and multilayer compositions including alternating layers of polycationic and polyanionic materials.
- U.S. Pat. No. 7,569,643 discloses novel polymeric compositions based upon A.sub.n(BCB)A.sub.n polyester/polyether multiblocks.
- U.S. Pat. No. 7,879,356 discloses novel bioabsorbable polymeric compositions based upon AB polyester polyether or related diblocks and triblocks.
- U.S. Pat. No. 7,883,694 discloses crosslinked polymer compositions that include a first synthetic polymer containing multiple nucleophilic groups covalently bound to a second synthetic polymer containing multiple electrophilic groups. The first synthetic polymer is preferably a synthetic polypeptide or a polyethylene glycol that has been modified to contain multiple nucleophilic groups, such as primary amino (NH.sub.2) or thiol (SH) groups. The second synthetic polymer may be a hydrophilic or hydrophobic synthetic polymer, which contains or has been derivatized to contain, two or more electrophilic groups, such as succinimidyl groups.
- U.S. Pat. No. 7,994,116 discloses to a method for prevention or reduction of scar tissue and/or adhesion formation wherein a therapeutically effective amount of a substance that inhibits a proinflammatory cytokine.
- U.S. Pat. No. 8,003,782 discloses that a pharmaceutical composition containing complex carbohydrates with or without natural or synthetic essential oils can work effectively as a topical, oral or mucosal pharmaceutical composition.
- U.S. Pat. No. 8,048,444 discloses an implant introduced into a surgical site of a patient to prevent postsurgical adhesions.
- U.S. Pub. No. 20090208589 discloses new biopolymers which mimic the properties of natural polysaccharides found in vivo. The inventive polysaccharides can be used as viscosupplements, viscoelastics, tissue space fillers, and/or antiadhesive agents.
- U.S. Pub. No. 20100160960 discloses hydrogel tissue adhesive is formed by reacting an oxidized polysaccharide with a waterdispersible, multiarm amine in the presence of a polyol additive, which retards the degradation of the hydrogel.
- U.S. Pub. No. 20110166089 discloses provide a solution for tissue adhesion prevention and a method for tissue adhesion prevention that are applicable to general surgery and in which covering condition during surgery is stable and convenient. The invention is the solution for tissue adhesion prevention of which the active ingredient is trehalose.
- U.S. Pub.No. 20110237542 discloses to a composition for preventing tissue adhesion which comprises a biocompatible hyaluronic acid and a polymer compound. More specifically, the invention is a composition containing hyaluronic acid which has not been modified by a chemical crosslinking agent.
- U.S. Pub.No. 20110243883 discloses provides branched polymers which can be used as lubricants or shock absorbers in vivo. For example, the inventive polymers can be used as viscosupplements, viscoelastics, tissue space fillers, and/or antiadhesive agents.
- In view of the limitations inherent in the above cited patents and status of the art, it is an object of the present invention to provide a gel optionally comprising at least one solid phase and optionally comprising a biologically active aspect. The bioactive aspect can be geometrical, chemical, or mechanical.
- Yet another object of the present invention is to provide a gel polymer optionally terminated with a biologically active agent.
- A further object of the present invention, is to provide a gel polymer capable of the controlledrelease or presentation at an implant surface of a biologically active agent/drug for modulating cellular events, such as, wound healing and tissue regeneration.
- A further object of the present invention, is to provide a gel polymer capable of the controlledrelease or presentation at an implant surface of a biologically active agent/drug for therapeutic treatment of diseases.
- A further object of the present invention, is to provide a gel polymer which is capable of being extruded onto or injected into living tissue for providing a protective barrier with or without an anti-inflammatory agent or an agent which inhibits fibrotic tissue production for treating conditions, such as, postsurgical adhesion.
- A further object of the present invention, is to provide a gel polymer which is capable of being extruded onto or injected into living tissue for providing a protective barrier with or
- without a wound healing agent or an agent which promotes vascularization for treating conditions, such as, repairing a soft tissue defect.
- A further object of the present invention, is to provide a gel polymer which is capable of being extruded onto or injected into living tissue for providing a first protective barrier aspect and a second tissue scaffold aspect, wherein each aspect comprises a separate phase.
- A further object of this invention is to provide a gel polymer for delivering a botanical extract possessing anti-inflammatory or wound healing properties, for example extracts derived from the genus Boswellia.
- A further object of the present invention is to provide a gel polymer comprising distinct phases, each of the phases designed to a specific absorption rate to achieve a specific functional aspect.
- A further object of the present invention is to provide a gel polymer comprising distinct phases wherein the gel phase is tissue adhesive to achieve localization and prevent migration of the gel after implantation at an intended site. A further object of the present invention, is to provide a gel polymer comprising distinct phases wherein the gel phase is lubricious, and minimizes the irritation associated between adjacent layers of tissue created during a surgical operation that involves tissue dissection.
- A further object of the present invention is to provide a gel polymer comprising distinct phases wherein the different phases are temporarily linked such that as the ionic linker is solvated in vivo, the linking strength is diminished.
- A further object of the present invention is to provide a gel polymer comprising distinct phases wherein the solid phase binds the gel phase, such that the gel phase is not free to spread or swell without limit.
- A further object of the present invention is to provide a gel polymer comprising distinct phases wherein the solid phase and gel phase possess shape memory and the shape achieved during manufacturing and formation of the gel system is a low energy state of the gel system.
- A further object of the present invention is to provide a gel polymer comprising distinct phases wherein the combination of phases
- This present disclosure generally addresses methods of treating tissue defects and modulating cell to cell interactions and tissue to tissue interactions by administration of a polymeric gel material incorporating nongel phases which optionally may contain bioactive molecules to facilitate the repair of a tissue surface.
- The present disclosure further provides biomedical and pharmaceutical applications of absorbable or biodegradable multiphasic hydrogels, where optionally one or more phases are not absorbable in situ. More particularly, the present invention relates to multiphasic systems of hydrogels comprising gel and non-gel phases, wherein these phases may be coupled mechanically, hydrophobically, by metal ions, or by covalent bonds. The disclosure further provides methods of using multiphasic gels in humans for providing: a) a protective barrier to prevent postsurgical adhesion, b) a carrier of tissue scaffolding, c) a sealant for isolating layers of tissue chemically, d) a lubricious aspect to ameliorate or reduce tissue inflammation, e) an ordering aspect to reduce the entropy of the healing process, and f) a controlled composition for delivery of biologically active agents for modulating cellular signaling such as wound healing and tissue regeneration or therapeutic treatment of diseases such as cancer and infection.
- The disclosure relates to materials that contain polysaccharide chains or polyester chains, particularly hyaluronan or galactomannan chains, but includes modified cellulose, alginate, polylactic acid, polyurethane, and ethylene or propylene moieties.
- The polysaccharide, particularly hyaluronan or galactomannan chains may be included as side chains or auxiliary chains linking phases, and in particular gel and solid phases.
- The gel phase backbone is typically an ether, containing ethylene and/or propylene structure. For example, a backbone can comprise a poloxamer. In other embodiments, the backbone may also be a polysaccharide, such as hyaluronan associated with galactomannan.
- Hyaluronan is a polymer of disaccharides, themselves composed of Dglucuronic acid and D-Nacetylglucosamine, linked via alternating beta1,4 and beta1,3 glycosidic bonds. Galactomannans are polysaccharides consisting of a mannose backbone with galactose side groups (more specifically, a (14) linked betaDmannopyranose backbone with branch points from the 6positions linked to alphaDgalactose. Any combination of these subunits comprising hyaluronan and galactomannan are contemplated by the present disclosure.
- Further, the polysaccharide chains may be crosslinked between side chains, auxiliary chains and/or backbone chains. These materials are advantageously modified by covalent bonding thereto of biologically active molecules for cell adhesion signaling or other cellular messaging.
- This disclosure relates also to derivatized carboxypolysaccharides (CPS). Specifically, the disclosure relates to derivatized carboxypolysaccharides and uses in manufacturing gels incorporating polyethylene oxide (PEO) or polypropylene oxide (PPO) for drug delivery and for antiadhesion preparations. More specifically, this invention relates to antiadhesion and healing compositions comprising composites of biofunctionalized CPS, PEO and PPO.
- One embodiment is directed to a multiphasic gel, whererin the gel phase comprises a poloxamer polymer backbone to which is linked polysaccharide groups, particularly of hyaluronan or galactomannan. The polysaccharide groups are present as side chains or alternating with the poloxamer in a chain configuration. The chains may be polymerized into rings, thus eliminating any endgroups. The gel polymers provide synthetically modified polysaccharides exhibiting controllable mechanical and charge distribution properties to which an organic moiety may be attached.
- Further, the idisclosure is directed to processes for preparing such polymers including an organic moiety and to the use of such polymers, for example, as cell transplantation matrices, preformed hydrogels for cell transplantation, nondegradable matrices for immunoisolated cell transplantation, vehicles for drug delivery, wound dressings and antiadhesion prosthetics.
- Another embodiment is directed to polysaccharides, particularly hyaluronan, which are modified by being crosslinked with an organic bioactive moiety. The hyaluronan may further be modified by covalent bonding thereto of a biologically active molecule for cell adhesion, cell repulsion, or other cellular interaction. Crosslinking of the hyaluronan with a poloxamer can particularly provide polysaccharide/polyether materials with controlled mechanical properties and shape memory properties which greatly expand their range of use.
- In many applications, such as tissue engineering, size and shape of the matrix is of importance. The modification of the crosslinked polysaccharides with the biologically active molecules can provide a further threedimensional environment. Then finally the addition of a solid phase, with a particular geometry tuned to the healing process, provides essentially a four-dimensional environment. For example, a gel tends to take the shape of the vessel which contains it, but a system of solid torus, polymerized into the gel matrix so as to form a chainmaillike configuration, can internally constrain a gel dimensionally to prevent gel thinning, clumping, or partitioning.
- Another embodiment is directed to modified polysaccharides, such as polymers containing a poloxamer backbone with the above described side chain hyaluronan or crosslinked hyaluronan, modified by covalent bonding thereto of a biologically active molecule for mitigation of cell adhesion or other cellular interaction, which is particularly advantageous for maintenance, viability and directed expression of desirable patterns of gene expression. For example, a terminal group that stimulates nitric oxide production and promotes angiogenesis. Alternatively, a terminal group that comprises a constituent of a botanical extract with healing or antiaging properties.
- In particular, a biofunctional molecules optionally could be those obtained from various extracts and purification of Boswellia genus botanicals. More particularly, the extracts have a polycyclic structure with one or more pendant hydroxyl groups. These biofunctional molecules are covalently bonded, using the hydroxyl group, to join a polymeric backbone or side chain to the biofunctional molecules. Preferably, the biofunctional molecule is chiral. The chirality can be due to an odd number of cyclic structures, or an asymmetric terminal chain. The biofunctional molecules may include synthetic analogues of naturally occurring structures.
- The present compositions are preferably advantageously used, for example, in the reduction or prevention of adhesion formation subsequent to medical procedures such as surgery and as lubricants and sealants. In addition, compositions according to the present invention may be used as coatings and transient barriers in the body, for materials which control the release of bioactive agents in the body (drug delivery applications), for wound and burn dressings and for producing biodegradable and nonbiodegradable articles, among numerous others.
- The present disclosure includes a multiphasic structure; each of the phases may be directed to a different cellular response or purpose. In particular, a gel aspect may provide an antiadhesive functionality which resorbs in the body. Secondly, a solid phase can provide a tissue scaffold aspect, which aids in the ordering of tissue repair and rejuvenation, such that metabolic functionality is encouraged over fibrosis and walling off of the repair site.
- Lastly, the present disclosure incorporates a solid phase that provides a lubricious aspect unattainable with a homogenous gel phase. The solid phase acts as a mechanical analogue to ball bearings, and the gel phase acts as a lubricant. In combination, freshly excised tissue surfaces are both sealed and hydrated while the solid phase prevents tissue bridging by contact and a dimensional rolling aspect, which serves to separate as well as facilitate differential motion, which is common between dissected layers of tissue.
- The chemical structures and methods of the disclosure concern gels, more particularly hydrogels, comprising hydrophilic blocks, hydrophobic blocks and biofunctional moiety. The hydrogels of the present invention are intended for implantation in a mammalian body and may be absorbable or alternatively relatively persistent. These hydrogels are characterized by possessing at least two distinct phases, be they liquid, solid, gas, or distinctly a gel.
- A hydrogel is a polymeric material with a high tendency for water absorption and/or association, which maintains mechanical integrity through physical crosslinks or polymeric entanglements which are reversible or degradable in vivo. The hydrophobic blocks may be absorbable polyester chain blocks, polyoxypropylene blocks, urethane segments and botanical extract molecules. Of particular interest are cyclic lactones, for example glycolide, Ilactide, dllactide, epsilon.caprolactone, and p dioxanone. With respect to botanical extracts, polycyclic structures are of particular interest, for example boswellic acid derived from Boswellia. Examples include, boswellic acids, tirucalic acids, thujenes, champhenes, and the like, or their synthetic analogs.
- The hydrophilic blocks may be polyoxyethylene blocks, polysaccharides, or derivatives hereof. The length of the hydrophilic block and its weight fractions can be varied to modulate the in situ volume equilibrium of the gel, its modulus, its water content, diffusivity of bioactive drug through it, its adhesiveness to surrounding tissue, and bioabsorbability.
- The polymers constructed from these constituents are typically long chains with multiple pendant end groups, commonly referred to as comb or brushtype copolymers that elicit controlled cellular response. Examples of brush type polymers are hyaluronan and galactomannan. The backbone or chain portion of the polymer can be biodegradable or nonbiodegradable, depending on the intended application. Biodegradable backbones are preferred for most tissue engineering, drug delivery and wound healing device applications, while nonbiodegradable backbones are desirable for permanent implant applications. A portion of the side chains can be endcapped with cellsignaling polycyclic structures functionalized with ligands to control the degree of cell adhesion and tissue healing. The cellsignaling can be elicited at a phasic polymer surface or released into the surrounding tissue through degradation of a portion of the polymer.
- In the preferred embodiment, the overall comb copolymer should have a molecular weight sufficiently high as to confer good mechanical properties to the polymer in the hydrated state through chain entanglement. That is, its molecular weight should be above the entanglement molecular weight, as defined by one of ordinary skill in the art.
- The overall molecular weight of the comb copolymer should thus be above about 30,000 Daltons, more preferably above 100,000 Daltons, and more preferably still above 1 million Daltons. The side chains are preferably hydrophilic and degradable, and the polymer backbone contains a multiplicity of hydrophilic, degradable blocks. The density of the hydrophilic side chains along the backbone of the polymers depends on the length of the side chains and the watersolubility characteristics of the final polymer. The total percentage by weight of the hydrophilic side chains is between 10 and 50 percent of the total copolymer composition, preferably around 30 percent by weight. Preferably, the hydrophilic side chains associate with water and form a hydrated layer which repels proteins and hence resists cellular adhesion.
- The side chains of the comb polymer can be endcapped with cellsignaling
- Molecules modified by chemical ligands in order to elicit controlled cell responses. Ligands capable of bonding to hydroxyl groups, for example diisocyanates, can be covalently attached to the hydroxyls of biofunctional molecules and in turn attached to the hydroxyl groups of the polymer side chains.
- A defined fraction of biofunctionalized side chains can be obtained by using appropriate stoichiometric control during the coupling of the ligands to the polymers, by protecting the endgroups on those side chains which are not to be endcapped with the biofunctional molecule, or by combinations of these approaches. Generally, the ligands are attached to the biofunctional molecule first, which then enables the biofunctional molecules to link to the polymer side chains without leaving exposed ligands which may promote protein attachment and subsequently adhesions.
- Typically the number of phases in a gel system are two, comprising a gel fraction and a solid fraction. However, the number of phases is unlimited, and may include phases of different degradation rates. While the gel aspects of the present invention possess a characteristic viscosity, that viscosity can change with temperature and pH. Typically, the gel systems of the present invention are nonNewtonian, and more typically are thixotropic. Alternatively, the gels can be constituted to be antithixotropic, as in starch suspensions.
- In the case of solid particles suspended, polymerized, or encapsulated within a gel phase, the particulate fraction is typically longer lasting and structural. In a structural aspect, tori are of particular utility since they possess high symmetry and can act as pivots in a gel system. Also importantly, they can act as chainmail, linking gel domains while providing both translational and rotational freedom. They are particularly useful when the gel is surface polymerized to the solid.
- Alternatively, the solid aspect can be a sphere, wherein there is no interpenetration of he gel through the solid, and all the coupling, if any, is surface mediated. In this configuration, the spheres act as stress reliever, allowing for rotational freedom in a gel where stresses may develop differentially between surfaces.
- Additionally, the solid surfaces may be polyhedral, wherein at a certain compressional density or thinning as a result of forces between adjacent tissue layers, the solid particle lock together, providing a step function resistant to further thinning or mobilization of the gel phase.
- In refined aspects, any of the above basic geometric considerations can be further enhanced by texturing a solid phase surface. For example, several micron sized solids can be texturized with nanometer scale structure. Such surface nanoscale structures could be in the shape protrusions. Examples of protrusions are pyramids, hooks, bumps, or undulations. Alternatively, the surface features could be in the shape of indentations. Examples of indentations include recessions of every geometric shape, in particular cylindrical depressions, conical depressions and the like. Clearly, a hybrid of protrusions and depressions are considered. In particular, a reference plane may be established, wherein there are alternating depressions and protrusions separated by a flat planar surface of relatively small total surface area.
- Regarding tori and related structures, structures of the present invention may be of any genus. Long strands of many tori contacting at an edge may be considered, as well as closed forms such as loops and even three dimensional forms such as icosahedrons, and the like. Any platonic solid is contemplated.
- The solid phase may be composite, that is, coated or comprising layers. The coating may facilitate a short term bonding between solid and gel phases. The surface may provide an initial interaction with the gel phase that dissipates by absorption. The surface may achieve a mechanical aspect that upon absorption transitions to a tissue reactive aspect. In particular, a monofilament torus may degrade into a multifilament torus, wherein once the outer coating is resorbed the loosely toroid multifilamentous structure facilitates tissue association. The coating itself may comprise yet smaller solid phase structures that absorb or disperse within the gel component. These smaller dimensional structure may carry a chemically active moiety. The solid phase may be principally responsible for an adhesive aspect, and this aspect may be modified by time. In particular, the particles may be first adhesive and later antiadhesive.
- The particles may be structure such that they migrate toward high energy surfaces, for example the interface between the gel system and a tissue surface. It may be advantageous that the solid phase and the gel phase be constituted of essentially the same chemical constituents, and only differing in the crosslink density or degree of association with water.
- Accordingly, aspects such as resorption time, viscosity, hydrophobicity, etc. can be modified in a layered approach, and by the selection of multiple phasic elements. The total gel system of the present invention can be designed for resorption times on the order of hours to several months. The gel system of the present invention is preferably resorbed in an amorphous state, in particular crystalline states are explicitly to be avoided. For example, design considerations such as considerations of chirality are preferably employed, as known in the art, to avoid a fracture degradation pathway. Whenever possible, the formation of hard particulate matter, except when intended, is to be avoided. For example, it is preferred that the degradation products of a gel system do not form numerous, spherical, highly fibrotic centers. And in particular, it is especially to be avoided, the formation of said centers wherein the implant matter is sequestered from normal degradation processes, and persist for an extended period. Such centers have been associated with late stage endogenous infection.
- In one embodiment, the disclosure provides a backbone of polyoxyethylene, polyoxypropylene, or combinations of these in chain form with multiple hydroxyl groups to which are covalently attached side chains of polysaccharides. It is not necessary tha the polysaccharides exhibit the gelling behavior of alginates, since the backbone can alternatively form a hydrogel. In this case the main function of the polysaccharide would be to control the degradation rate, provide a tissue adhesive functionality and modify the hydrophobicity of biofunctional end groups.
- Another embodiment provides a polymeric backbone section to which is bonded a side chain, preferably multiple side chains, of polymerized, optionally modified hyaluronan and galactomannan. The modified polysaccharides preferably maintain the mild gelling behavior of conventional hyaluronan sulfate. The linkage between the polymeric backbone section and the side chains may be provided by difunctional or multifunctional linker compounds, for example diisocyanates, or by groups incorporated within the polymeric backbone section reactive with the polysaccharide units or by groups on the polysaccharide units or derivatives thereof reactive with groups on the polymeric backbone section. The polymers may advantageously further comprise biologically active molecules bonded to the side chains, particularly preferably bonded through the hydroxyl groups on hyaluronan and galactomannan.
- In a particularly preferred embodiment, the side chains are hyaluronan, the biologically active molecules exhibit cell antiadhesion properties and the polymers provide a mucoadhesivity for localizing the hydrogel in vivo without forming tissue adhesions.
- In a yet more preferred embodiment, the side chains are hyaluronan, the biologically active molecules are of two types, some of which exhibit cell antiadhesion properties and others exhibit angiogenic properties, and the polymers provide a mucoadhesivity for localizing the hydrogel in vivo to repair a wound site and protect the healing wound site from tissue adhesions.
- When a linker group or ligand is used, such linker groups may be selected from any divalent moieties which are compatible with the ultimate use of the polymer and which provide for covalent bonding between the polymeric backbone section and the polysaccharide side chains and additionally any biofunctional end groups. Additionally, the liner groups may link to the other phasic fractions, in particular, a solid phase of absorbable polyurethane.
- When polysaccharides are used, it is conventional for the polysaccharide to be bonded through a carboxylate group. In this case, the linker group may be selected to significantly affect the biodegradability of the polymer depending upon the extent of hydrolyzability of groups in the linker chain. For example, amino acid linkers are frequently used due to the controllability of the degradation interval. For example, amino acid linker groups, such as glycine, will provide ester linkages which are readily hydrolyzable and, thus, facilitate degradation of the polymer in an aqueous environment, whereas, amino alcohols provide an ether linkage which is significantly less degradable. Amino aldehydes are also useful linker groups. The substituent groups on the amino acids will also affect the rate of degradability of the linkage.
- The linker group may also be varied in chain length depending upon the desired properties. Linkages providing, for example, from 10 to 20 atoms between the backbone and side chain, are typical, although longer linkage chains are possible. Additionally, the linker may be branched to provide for clustering of multiple side chains. These structures are typically referred to as dendritic in structure because they may provide a multiplicity of branching points.
- The polymeric backbone section, linkages, side chains and biofunctional end groups may be provided in a number of hydrophilic and hydrophobic configurations which will largely determine the stability of the resulting hydrogel. The polymeric backbone itself may comprise Iternating hydrophobic and hydrophilic blocks. Since the biofunctional endgroups are typically hydrophobic, it is generally useful to modify their hydrophobicity by attaching them to hydrophilic side chains.
-
FIG. 1 depicts a multiphasegel polymer system 100 of the present disclosure. -
FIG. 2 depicts a bifurcatingsequence 200. -
FIG. 3 , depictsmixtures 300 of dendritic 302 and comb 304 polymers. -
FIG. 4 is an image of a toroid multiphase gel structure according to the present disclosure. - Homogenous adhesion barrier gels should not admit tissue in-growth initially upon implantation, otherwise their efficacy relating to establishing separate tissue layers would be obviated. Thus, as the homogenous gel portion resorbs, there may be need for a tissue scaffold, in particular a tissue scaffold that has an appreciably longer duration than the gel barrier, such that when the gel has been resorbed, or nearly so, the second scaffold aspect come increasingly more dominant.
- For example, the gel in the initial time course may be highly absorbable, and correspondingly chaotropic, due to release of byproducts that disrupt local equilibrium. However, at this early stage, when tissues are far from normal equilibrium states, a barrier layer may be more important than chaotropic considerations. However, as the surgical intervention aspect is resolved, it is desirable that the antiadhesion barrier not contribute to chronic inflammation and any aspect of entropy increase. Furthermore, it is advantageous that the gel aspect transition to a tissue scaffold aspect, wherein order is presented or reestablished to the tissue surface, wherein normal barrier layers may be stabilized or promoted.
- Naturally, this consideration calls for a two stage repair, in which first a barrier aspect is temporarily presented and subsequently replaced by an ordering and chemically neutral aspect. It should be appreciated that by chemically neutral we do not mean that the second ordering aspect is strictly permanent, but rather that its degradation byproducts are either sufficiently chemically neutral or that the degradation period sufficiently long, such that normal tissue structures are reestablished without interlayer bridging.
- Compounds useful in the present disclosure are generally classified as complex carbohydrates. For purposes of this invention complex carbohydrates are defined as any polymer comprising more than two sugar moieties including such classes of compounds as polysaccharides and oligosaccharides. Polysaccharides include mucopolysaccharides and mannans whereas oligosaccharides comprise branched polysaccharides such as sialylated sugars including milk sugars.
- Mucopolysaccharides are glycosaminoglycans, which can be obtained from numerous sources (e.g. rooster combs, trachea, umbilical cords, skin, articular fluids and certain bacteria such as Streptococci). Most glycosaminoglycans (hyaluronic acid, chondroiti sulfates A, B, and C, heparin sulfate, heparin, keratan sulfate, dermatan sulfate, etc.) are composed of repeating sugars such as nacetylglucosamine glucuronic acid and nacetyl galactosamine (these are known as nonsulfated glycosaminoglycans). If such glycosaminoglycans contain sulfur groups they are known as sulfated glycosaminoglycans. All of these can be combined with other polysaccharides or with alkane groups.
- The present application combines bioactive groups with biocompatible groups to address wound healing through a positive physiological reaction that may restore anatomy and function of various tissues after trauma without inflammatory interference. The trauma may be accidental, the result of surgical intervention or the effect of a disease or genetic condition. The ideal end result of wound healing is restoration of tissues morphology. Restoration of tissue morphology requires directing a functional aspect as well as reducing high entropy responses, such as scar formation.
- One prevalent part of the wound healing process is to form connective tissues or scar tissue that may support the healing tissues during wound healing and regeneration. However, in many cases during wound healing, the newly formed connective tissues (scar tissue) may interfere negatively with the normal function of the tissue intended to be healed. In general, such tissue responses are characterized by a high degree of disorder, and characteristically lack a metabolic component, wherein the tissue formed is primarily avascular. Wound healing, with the formation of connective tissues may also induce adhesions that may induce pathological conditions. For example, scar tissue may induce cosmetically undesirable results such as cheloid formation. Examples of adhesions and scarring may be found virtually in any organ or tissue undergoing wound healing after trauma or surgery. Following abdominal surgery and following gynecological surgery it is not uncommon that the surgical procedure may induce adhesions that may both make later surgery more difficult and induce pathological conditions such as ileus.
- In spinal surgery it is common to have a situation with a dense scar formation called epidural fibrosis. This may in certain cases induce significant difficulties for repeated surgery and can induce compression of the adjacent nerve tissue. In other organs excessive wound healing may induce unwanted fixation of tissues and structures that may reduce function and induce pathological conditions.
- In general, a method for controlling wound healing, particularly the reduction of cellular random scar tissue and adhesions, would be of a great value in most cases of posttraumatic or postsurgical wound healing. Thus, it is insufficient to merely reduce the stimulus to the formation of scar and adhesions by blocking such formation or providing an ameliorative coating, but also a repair of the surgically corrected defect must be facilitated or directed which includes a metabolic aspect such that repeated resorption and modification of the repair site is reduced.
- Intercellular adhesion mediated by VLA4 and other cell surface receptors is associated with a number of inflammatory responses. At the site of an injury or other inflammatory stimulus, activated vascular endothelial cells express molecules that are adhesive for leukocytes. The mechanics of leukocyte adhesion to endothelial cells involves, in part, the recognition and binding of cell surface receptors on leukocytes to the corresponding cell surface molecules on endothelial cells. Once bound, the leukocytes migrate across the blood vessel wall to enter the injured site and release chemical mediators to combat infection. A polymer that mitigates fibrosis, while promoting endothelial and leukocyte infiltration, can be promotional to wound healing and antimicrobial.Surprising, it has been discovered that a single phase antiadhesion substance can be insufficient in several aspects. In particular, an aspect that is distinct from the mechanical characteristics of a gel barrier can serve as a structural impetus, encouraging avenues of repair not realized in homogenous materials.
- In intraorgan systems, tissue damage occurs that elicits an adhesion mechanism that results in migration or activation of leukocytes that can be damaging. For example, the initial insult following myocardial ischemia to heart tissue is complicated by leukocyte entry to the injured tissue causing still further insult. Inflammatory conditions mediated by adhesion mechanisms are almost always deleterious, for example, asthma, Alzheimer's disease, atherosclerosis, AIDS dementia, diabetes, inflammatory bowel disease (including ulcerative colitis and Crohn's disease), multiple sclerosis, rheumatoid arthritis, tissue transplantation, tumor metastasis, meningitis, encephalitis, stroke, and other cerebral traumas, nephritis, retinitis, atopic dermatitis, psoriasis, myocardial ischemia and acute leukocytemediated lung injury such as that which occurs in adult respiratory distress syndrome. Therefore, it is desirable to develop a hydrogel which combines a barrier aspect with a structural biofunctional aspect and optionally a chemical biofunctional aspect which also affects cellular adhesion and prevents clinically adverse tissue adhesions.
- One difficulty associated with implantable hydrogel compositions is that optimizing the composition to relative to gel mechanical characteristics, in particular the absorbability may worsen tissue inflammation at the site of administration. A possible explanation for this effect is that highly reductive compositions are capable of promoting rapid leukocyte infiltration which may adversely affect tissue responses.
- Accordingly, the hydrogel aspect of the present disclosure is hydrophilic and avoids the adverse events of polymers currently in use for biomedical applications which are generally hydrophobic. However, a relatively more hydrophobic component with a structural aspect, such as tori polymerized within a gel matrix, may provide a tissue regenerative response associated with the reformation of functional and metabolic tissue.
- As defined herein, hydrophobic refers to a material that repels water and exhibits a static contact angle with water greater than 60 degrees at 20 degrees C., and has a water permeability less than 3×10 10 cm 3 (STP) cm/(cm 2 s Pa). Hydrophobicity can give rise to uncontrolled interactions between cells and adsorbed proteins at the surface of an implanted material, which can result in a chronic inflammatory response that can lead to failure of implants and even promote tumorigenicity. Therefore, it is advantageous to encapsulate such materials, even mildly hydrophobic materials, within a gel matrix which provides initial sequestration, until normal cellular responses are reestablished, and radical foreign body responses are minimized, and a normal regenerative function characterized by a low degree of entropy can be established.
- On the other hand, for tissue healing applications, it is desirable that the polymeric material used to form a biodegradable scaffold for cells, promote cell adhesion, migration, growth and differentiation while providing adequate morphological stimulus; and without promoting an inflammatory response. Though commonly used synthetic scaffold materials such as polylactide, polyglycolide, etc., and copolymers thereof, have suitable mechanical, processing and biodegradation properties, their hydrophobic nature and acid byproducts leads to protein adsorption and denaturing of proteins attached to the material surface which elicits uncontrolled inflammatory response.
- The present disclosure couples tissue directing materials with hydrophilic moieties to reduce protein adhesion to the implant during the first highly reactive phase, and additionally may contain a selective bioactive material which can down regulate inflammation and promote tissue migration into a tissue defect to heal the defect rather than promote aggressive cellular response to the implant. The ideal antiadhesive surface for many biomaterials applications resists protein adsorption while providing molecules with specific chemical signals to guide tissue regeneration, survival, growth, migration and differentiation in an adjacent tissue defect.
- As used herein, the term “biomaterial” refers to a material used in a medical device intended to interact with a biological system. Such biomaterial with biofunctionality may be chemical in nature, or structural, wherein the shape promotes a desired cellular response. For example, a typical biomaterial is modified with polyethylene oxide, which has been studied in recent years for the reduction of protein adsorption at the surface of biomaterials. The objective of these surface modification schemes is the elimination of nonspecific interactions of cells with implant materials. Polyethers can be combined with hydrophobic biomaterials to shield the hydrophobic biomaterials from the foreign body response, and thus provide them to the body directly rather than through a fibrotic capsule. Reduction of a fibrotic capsule is paramount, since these capsules are avascular, and serve to sequester implants from normal protective functions of the body. Implants associated with thick capsules are also associate many years after implantation. Thus, the teachings of the present disclosure are instructive regarding absorbable implants as well as permanent implants.
- Regarding the chemical aspect of biofunctionalization of an implant, activation-specific chemical signals can be relayed to cells at a surface through tethered ligands of cell surface receptors. These signals are presented in a localized manner at a controlled dose without diffusive loss. The mimicry of tethered ligands through the addition of bioactive moieties may provide more constant stimulation to cells by avoiding the downregulation present when soluble ligands are internalized by cells. Control over spatial distribution of ligands on surfaces may also be key to guiding cell behavior. Thus systems which will allow spatial control of local ligand density through multiphasic architectures, or the creation of clusters of ligands on select surfaces, in addition to providing control over the average surface density of ligands on said surfaces, are highly desirable. In the present invention these ligands may be associated with a chemical biofunctional moiety or with a structural biofunctional phase.
- Additionally, molecules with dimeric adhesion receptors are particularly useful as ligands and include approximately ten known alpha chains paired with one of approximately six known beta chains, which are known to mediate a wide range of interactions between cells and extracellular matrix and control cell behaviors as diverse as migration, growth, and differentiation, providing a permissive environment for the action of growth factors. Thus, such molecules are particularly useful in facilitating a healing response, especially when deployed in a multiphasic system.
- An important aspect of healing involves cross-communication between adhesion and growth factor receptors, and it is hypothesized that these factors work competitively at a site of wound healing. Therefore, by favoring growth factor expression over adhesion formation a wound may be repaired prior to significant adhesion formation, thus shutting down significantly or entirely the stimulus for adhesion formation. The favoring of growth factor expression can be achieved chemically as well as structurally. Therefore, a biofunctional geometry delivered in close proximity to adhesion and growth factor receptors in the focal healing complex can modulate the flow of both positive and negative regulatory signals between the two. In particular, a hierarchical hydrophobichydrophilic domain structured polymer endcapped with a biofunctional molecule can beneficially undergo morphological changes which are associated with the hydration of the hydrophilic domains and formation of pseudocrosslinks via the hydrophobic component of the system. Such polymeric structures form biocompatible gels in vivo with extended persistence by virtue of the pseudocrosslinks. Domain separation can be enhanced by the inclusion of multiphasic domains, with and without structural aspects.
- Hydrophobichydrophilic polymer morphology has been reported to be responsible for enhanced biocompatibility and superior mechanical strength due to formation of twophase structure comprising hydrophilic and hydrophobic domains. Such domains are a generic feature of many polyurethane systems, where the twophase structure is commonly referred to as amorphous and crystalline segments. This molecular structure can be mimicked in a macroscopic way, by incorporating solid hydrophobic structural elements in a hydrophilic gel phase.
- Hydrophobic-hydrophilic polymer morphology can be affected by temperature and pH, especially for extended and hydrated systems, and is responsible for thermoreversible gels. In order for these gels to maintain their shortterm structure in vivo, regardless of their longerterm biodegradability, involves covalent bonds between watersoluble and waterinsoluble blocks. Some of the gels of the present invention are responsive to temperature and pH changes. For example, those containing poloxamers will shrink in size in a base environment and expand in an acidic environment. Similarly, higher temperature tends to cause the gels of the present invention to contracts, whereas lower temperature causes them to become more diffuse. In some instances, a low enough temperature causes them to solubilize and lose their thixotropic aspect. These considerations can be important in conditioning gel systems for implantation, since typically a hysteresis is associated with certain pH and thermal modifications, and some of these modifications can be considered irreversible below a certain energy threshold. Alternatively, such reversible modifications can be useful in manufacturing aspects in terms of purification, removal of residual monomeric components, and the preparation of gel precursors suitable for shelflife stability. In this later aspect, ionic constituents, such as salts, can achieve a similar effect.
- In the case where the hydrophilic blocks and hydrophobic blocks are a mixture or blend and not polymerized together, the desired structural aspects are not achieved since the hydrophilic component rapidly disperses in tissue. Polymers comprising covalently bonded hydrophilic and hydrophobic domains exhibit a hydrationdehydration equilibrium which can be altered by changes in temperature or pH. The equilibrium structures are characteristic of hydrogels. Thus, hydrogels of the present invention, in the absence of hydrophobic/hydrophilic covalent bonding, the hydrophilic blocks undergo intermolecular segmental mixing with the neighboring hydrophobic blocks to produce a viscous liquid. With hydrophobic/hydrophilic covalent bonding, competition between the water as an extrinsic solvent and the hydrophilic block forces the hydration of the hydrophobic block, and results in aggregation or association of the hydrophobic blocks to establish pseudocrosslinks which maintain a 3-dimensional integrity.
- Three-dimensional stability can also be achieved by the use of metal ionic crosslinks, as is common in the preparation of alginates, and similar polysaccharides. The mechanism of gel formation for in vivo administration is associated with orientation of the hydrophobic blocks toward the exterior of the gel and the interface with the adjoining tissues can be used to establish an adhesive joint, which prevents gel migration from target site and sustains its intended efficacy. In some cases, a mucoadhesive functionality is desirable and achieved with most polysaccharide copolymerizations. Additionally, this effect can be enhanced by the insertion of a biofunctional structural form which is relatively more hydrophobic than the remaining gel portion of a polymeric chain of hydrophobic and hydrophilic blocks. Thus, the biofunctional moiety is presented preferentially at the phase discontinuities within the hydrogel and is predisposed to segmentation within the tissue.
- Chemical bonding between phasic components can be carried out by a chemical reaction, e.g. gelation with a polyfunctional reagent; crosslinking using a coordinate bond, e.g. gelation by calcium ions of alginic acid; crosslinking using a hydrophobic bond, e.g. gelation by heating methyl cellulose or hydroxypropyl cellulose; crosslinking using intermolecular association, e.g. cooling of agar or carrageenan to cause the gelation, or the like. The density of crosslinking can impact water absorbability and strength of the resulting gel as well as rate of degradation in vivo. Such crosslinks can be important in associating several phasic constituents of a gel.
- However, multiphasic hydrogels can be formed without the use of crosslinking at all and which rely on entanglement. Entanglement and the formation of pseudobonds between hydrophobic segments require the hydrophobic and hydrophilic segments to be covalently bonded together in long structures. The covalent bonding prevents the separation of the hydrophobic and hydrophilic components. The following are patents descriptive of the above background information.
- The term “poloxamer” refers to nonionic triblock copolymers composed of a central hydrophobic chain of polyoxypropylene (poly(propylene oxide)) flanked by two hydrophilic chains of polyoxyethylene (poly(ethylene oxide)). Poloxamers are also known by the trade names Pluronics and Kolliphor.
- The term “thixotropy” is the property of certain gels or fluids that are viscous under normal conditions, but flow (become less viscous) under shear stress. Some thixotropi gels exhibit a nonNewtonian pseudoplastic flow and a timedependent change in viscosity. A thixotropic fluid is a fluid which takes a finite time to attain equilibrium viscosity when introduced to a step change in shear rate.
- The terms “multiphase” and “multiphasic” refer to a gel composition comprise of at least one gel phase and at least one solid phase, and optionally a liquid phase and/or a ga phase. The various phases may be interpenetrating such that mechanically one or more of the phases cannot be separated without altering the gel composition.
- The term “cytophylactic polymer” refers to a polymeric system able to direct cellular activity in such a way as to augment the natural cellular processes. These polymers are denominated stimuliresponsive or environmentally sensitive polymers in the sense that they elicit a biologically appropriate response to a wide variety of cellular environments. Temperature, pH, ionic strength and electric field are among the most important stimuli, causing phase or shape changes which dramatically affects the optical, mechanical or transport properties of the present compositions. A number of molecular mechanisms exist which can cause sharp transitions and water plays a crucial role in most of them. These include: ionization, ion exchange, release or formation of hydrophobically bound water and helixcoil transition.
- Additionally, diamine groups such a biocompatible lysine can be used at polymerizing links in isocyanate functionalized polymeric backbones, side chains, and biofunctional end groups. Alternatively, the reactive monomer can include a leaving group that can be displaced with a nucleophilic group on a hydrophilic polymer. For example, epichlorohydrin can be used during the polymerization step. The monomer is incorporated into the polymer backbone, and the chloride group is present on the backbone for subsequent reaction with nucleophiles. An example of a suitable hydrophilic polymer containing a nucleophilic group is a polyethylene glycol with a terminal amine group. PEGNH.sub.2 can react with the chloride groups on the polymer backbone to provide a desired density of PEGylation on the polymer backbone. Pegylation, in general, is suitable to the botanical extracts of the present invention, since many of them are poorly incorporated in biological tissue, and can be toxic in the absence of hydrophilic modification.
- Using the chemistry described herein, along with the general knowledge of those of skill in the art, one can prepare polymer backbones which include suitable leaving groups or nucleophiles for subsequent coupling reactions with suitably functionalized hydrophilicpolymers.
- Examples of useful configurations between solid and gel phase gel systems are shown in
FIG. 1 although the invention is not limited to such configurations and further configurations using the basic structural units can be provided according to the invention. -
FIG. 1 depicts a multiphasegel polymer system 100 of the present invention comprising: apolymeric backbone 102 which defines the overall polymeric morphology of the gel 103 (not drawn to scale),linkage groups 104,side chains 106, andbiofunctional end groups 108. Thebackbone 102 generally comrpises hydrophobic 110 and hydrophilic 112 group segments, some or all of which can be biodegradable.Solid phase polymer 113 is depicted as a torus, and comprising pendant hydroxyl groups 115.Linkage groups 104 form bridges 114 between thebackbones 102 andsolid phase polymer 113, and the solid phase may be of an entirely different composition than the backbone. Typically the bridges compriselinkage groups 104 andside chains 106, wherein thebackbones 102 are joined toside chains 106 throughlinkage groups 104. Thebiofunctional group 108 may optionally be located on theends 116 of thebackbone 102, on theends 118 ofpendant side chains 120, sandwiched 121 betweenlinkage groups 104 which in turn links to aside chain 106.Biofunctional groups 108 may be located at the junction of twoside chains 106 connected bylinkage groups 104. It is important to notegel polymer 103 is formed during manufacturing in the presence ofsolid polymer 113 such thatgel 103 passes through, as illustrated at 124, the toroidal opening 126 ofsolid polymer 113. Thus, thegel fraction 103 is a contiguous macromolecule that interpenetrates thesolid polymer 113. - One preferred embodiment is polymers wherein the backbone itself is a polysaccharide, for example hyaluronan. The side chains, for example, may be galactomannan. A particular example involves chains comprising hyaluronan units to which are attached galactomannan side chains functionalized with a diisocyanate linker. Dendritic polymers and comb polymer backbones can be provided by the polymerization product of difunctional and higher functional prepolymers. For example linear chains of polysaccharide pendant hydroxyl groups can be polymerized with triol endcapped with isocyanate groups. These structures can provide a highly crosslinked polymer which would rapidly degrade to low molecular weight components and readily be cleared by the body.
- For example,
FIG. 2 illustrates a bifurcatingsequence 200 wherein apolymer backbone 202 has a 3-armed structure 204 comprising twoside chains 206. The terminus of each arm of the 3-armed structure 204 is linked to another3armed structure 204 throughlinkage group 208. At the final terminus of the bifurcating structure are located pendantbiofunctional groups 210, optionally linked to a solid phase 212. Structures are not drawn to scale. - Dendrimers are of particular interest due to their propensity for entanglement and the formation of hydrogels that are relatively stable in the implant environment. Referring to
FIG. 3 ,mixtures 300 of dendritic 302 and comb 304 polymers are possible wherein the dendritic portion serves as a scaffold to the more mobile comb structures. Therefore, the dendritic fraction may be principally endcapped withantiadhesion end groups 306 and the comb fraction may be coupled to asolid phase 308. Alternatively, the comb fraction may be a hyaluronan based gel and the dendritic fraction a poloxamer gel. Polymers containing hyaluronan are known to act as tissue scaffolds, mimicking their biological function in living extracellular matrix. - A further useful backbone structure is comb polymers which contain many side chains extending from a polymer backbone. Polyvinyl alcohol provides a particularly useful backbone for comb polymers. The alcohol groups of polyvinyl alcohol can be esterified and subjected to a carbodiimide linkage chemistry to provide the side chain linkages.
- Although the principle interest of the present invention is the attachment of biofunctional solid phase to a gel phase, the gel phase may be terminated at least partially with biofunctional molecules. For example, extracts derived from genus Boswellia can be bound to the terminal ends of hydrogel structures, other botanical extracts are contemplated. Useful botanicals include, camphenes, camphor, coneole and eucal (derived from eucalyptus), moronic acid (derived from pistachio), and like structures.
- In particular, polycyclic structures with an odd number of cycles is useful in the present invention. More particularly, chiral polycyclic structures of 3 or 5 rings are of interest. The 5cyclic structures include, βBoswellic acid, 3O Acetylβboswellic acid, 11Ketoβboswellic acid, 30 Acetyl11ketoβboswellic acid, 11Hydroxyβboswellic acid, 3O Acetoxy11methoxyβboswellic acid, 3O Acetyl11hydroxyβboswellic acid, 9,11Dehydroβboswellic acid, 3O Acetyl9,11dehydroβboswellic acid, aBoswellic acid, 3O Acetylaboswellic acid, Oleanolic acid, Ursolic acid, Baurenol, Lupeol, 11Hydroxyaboswellic acid, 9,11Dehydroaboswellic acid, 3O Acetyl9,11dehydroaboswellic acid, 3Hydroxy8,9,24,25tetradehydrotirucallic acid, 3O Acetyl8,9,24,25tetradehydrotirucallic acid, and 3Oxo8,9,24,25tetradehydrotirucallic acid.
- The density of the hydrophilic side chains along the polymer backbone depends in part on the molecular weight of the side chains. The total percent of the hydrophilic units to the hydrophobic units in the present polymers is between 10 and 50 percent by weight, preferably around 30 percent by weight.
- One relevant consideration when determining an appropriate ratio of hydrophilic to hydrophobic units is that the overall polymer, when the hydrophilic side chains are not endcapped with cellsignaling moieties, has some noncell binding properties and preferably incorporates a hallo of water around the polymeric construct when implanted in a mammalian body. A relatively high density of 500 Dalton or less hydrophilic side chains can provide the same degree of resistance to cellular adhesion as a lower density of higher molecular weight side chains. Those of skill in the art can adjust the molecular weight and density of the polymers taking these factors into consideration.
- The side chains of the present invention can be optionally bonded to the solid phases, or polymerized around the solid phases. The solid phase can be cellsignaling regarding its geometrical shape. Chemical ligands can be added to the solid phase in order to elicit specific cell responses. Ligands such as adhesion peptides or growth factors can be covalently or ionically attached to the solid phase or mixed within. A defined fraction of ligandbearing solid phases can be obtained by using appropriate stoichiometric control during the coupling of the ligands to the solid phase, by protecting one or more constituents of the solid phase from reaction with ligands, or by a combination of these approaches.
- Comb and dendritic polymers can comprise the solid phase as well as the gel phase. When hyaluronan is coupled to a comb or dendritic polymer morphology, cells attach and spread readily on the polymer surface. Accordingly, the solid phase may be coated with these structures. Preferably, cellular proliferation due to the solid is delayed, typically by about 14 days postimplant, so as not to promote tissue adhesion. Adhesion in biological systems is primarily an acute response to a significant disruption of biological structure. Such disruption is associated with release of cytokines that trigger a multiplicity of cellular responses. Given that the gel system is designed to repair or correct the condition responsible for initiation of the acute cellular response, there is a need to down regulate that response, particularly because it tends to be counter to organized cellular repair and healing. Thus, there is a need for a first palliative interval associated with the gel fraction wherein affected tissue surfaces are physically separated, and where the usual cellular communications are disrupted. The requirement is nonspecific, and usually a crude physical barrier is sufficient. However, this deprives the underlying damaged tissue from important nutrient and oxygenation associated with tissue formation. Thus the purpose of the present invention is to initially block using relatively convention gel approaches coupled with a solid aspect that is released in delayed fashion by degradation of the gel fraction or encounter only subsequently by infiltrating tissue, such that a healing response is promoted.
- An important aspect in healing is angiogenesis which provides the metabolic capacity for repair. With respect to this second interval of tissue interaction, the degree of cell spreading and proliferation on the surface of the polymeric implant or the release of constituents that induce such a response within the surrounding tissue can be controlled by mixing within the solid phase, relatively hydrophobic copolymers with strongly hydrophilic dendritic or comb polymers.
- The size of the biofunctional solid phase and the spatial density of the biofunctional solid phase within the gel is dictated by the rate of absorption of the gel phase.
- The copolymers described herein can be blended with other polymers that do not elicit controlled cell responses. In applications where it is desirable to use a biofunctionalized copolymer to modify the surface of a second polymer, the polymers may be processed to achieve segregation of bioactive moieties.
- Returning to the original thesis, wherein a gel system provides order to the healing process and avoids chaotropic effect, it is important to consider the degradation and resorption process of the gel/biological system as a whole. It is recognized that certain clinically useful functionalities, such as the blocking of adhesion formation either by chemotactic sequestration or by physical barrier, are desired; it is important to consider the system as a whole. Many absorbable implants degrade by forming numerous particulate, other absorbables degrade by a surface reaction wherein the tissue exposed surface decreases in molecular weight and forms a diffuse cloud of degradation byproducts. Ideally neither outcome is achieved. A biodegradable implant is preferably dismantled either at the surface or volumetrically in discrete small molecular weight units. In particular, the macroscopic appearance of the implant does not change, but rather its volume decreases. One can imagine the analogy to a hard candy sweet, wherein the candy transitions from a hard solid without a peripheral boundary of diffuse structure. This desired effect can be achieved volumetrically as well, wherein the shape of the implant does not change appreciably, but the tensile strength and molecular weight of the implant diminishes. However, even if this desired result is achieved initially, it is not desirable for the implant to ultimately fractionate. It is more desirable for the tensile strength to decrease and the final product to be in a gellike state and highly tenuous without fractionation.
- Accordingly, the solid phase should not contribute to the ultimate fractionation of the gel system in vivo. More particularly, the solid phase should not act as a nidus for fractionation of the implant. If the implant should ultimately fractionate, the resulting particulate formation should have a modulus substantially below that of tissue. There are two ways to achieve this endpoint. Firstly, the solid phase transforms into the gel phase, and the resulting gel phase resorbs in a homogeneous fashion analogous to the original gel phase. Secondly, the solid phase becomes a structural element of the healing tissue. For example, solid fibrils within the gel are comprising a cellular constituent, for example hyaluronan, wherein they are directly incorporated into the tissue structure. In other aspects, the solid phase is fed upon by cells, providing both a directional stimulus and a nutrient or chemical advantage to local cells. Thus, the soli phase can be considered a nutrient or chemical supplement that aids in regenerative processes. Such supplemental effects may include cellular signaling, both at the energetic level and at the amino acid instructional level.
- In consideration of the above, if the solid phase is small enough, fractionation of the implant by release of a solid phase is not necessarily disadvantageous, especially when such release in original form or a degraded form, stimulates a path that results in reduced disorder of the regenerating tissue.
- In particular, the desired function of an implant is not to create boundaries between tissues, since essentially the human body is a freely intercommunication structure. Processes leading to formation of fibrotic encapsulation, especially encapsulants that are devoid of blood vessels, create zones that are segregated from the normal immunological protections of the body. Such zones have been shown clinically to be sites of endogenous infection, sometimes many years after implantation.
- Large scale crystalline structures within the body are nonbiologic, generally. Any process that results in the formation of atomically dense polyhedral molecular structures is to be avoided. These structures can be individual, or comprise a macroscopic volume. However, their density and strong internal binding, resulting in the regular geometric shape, are inhibitory to cellular processes. They are identified as foreign, and incite a strong foreign body response which creates a multiplicity of avascular tissue encapsulations. These encapsulations are benign at the time of their formation, but are problematic in the long term since they are not connected to the protective and restorative processes of living tissue.
- In the case of amorphous degradation, generally this mode of resorption is preferred since the low density at the periphery allows for some degree of cellular infiltration. In the late stage of degradation, this cellular infiltration is associated with a low degree of inflammation, primarily due to the absence of a welldefined implant border. While it is preferred that the solid phase contribute positively to the ordered regeneration of the affected tissue, in absence of this ideal, a reduced foreign body reaction and a low levelof inflammatory activity is much preferred to usual modes of implant resorption.
- There are many clinical applications where a long term lubricant, especially at joint surfaces would be beneficial. Unfortunately, no implantable gel, whether comprises absorbable or nonabsorbable chemical units, is permanent. The body is essentially self-maintaining. There is not biologic locus where a lubricating substance persists for the life of the individual. It is unrealistic to expect a longterm synthetic material to exceed the capabilities of the regenerative biologic system. The best outcome is the restoration of functionality to the site, and in many cases this entails reduction of an inflammatory response that in most cases results in separation of tissue volumes and the inhibition of restorative processes.
- However, the repair process can be of long duration, especially in those situations where blood supply is low. For example, tendons are a classic example of high stress low metabolic activity. In this situation, the tendon can actually be compromised further by the addition of fibrotic tissue, resulting in an increasingly more painful situation.
- Accordingly, it may be useful, but not necessarily physiologic, to provide a lubricant that may act beyond organic moieties to reduce stressrelated degradation of an already compromised biologic tissue. In these situations the pressures/stresses may be extreme for short durations. There is need for a shock absorber functionality. For example, consider a gel phase that serves the purpose of providing lubricity and a degree of separation between injured tissue, which without separation may be joined by tissue and compromised further. In this case, even if the addition of solid particulate to the gel construct does not aid in maximum freedom of movement, its function as a solid, and not easily deformed from its designed shape, makes it ideal as a shock absorber. Thus in those situation where stress is extreme and local, and normal gels would be thinned to the point of being ineffective, a residual solid particulate fraction would provide a high modulus layer of protection, wherein surfaces do not abrade or impart their maximum kinetic energy. In this situation, the particulate fraction serves only an auxiliary function, they do not contribute to wound repair but rather provide a safeguard, wherein when forces exceed a certain threshold they prevent a bottoming action that may result in further tissue degradation. In the case where the gel is quickly resorbed in one fraction, a second gel fraction can be of longer duration of small volume, and principally serving as a coupling mechanism between particles, where in the final stages there is remaining only a thin layer of less resorbable gel coupling a solid phase with a clinically useful modulus not achieved in the bulk gel implantation.
- The primary dislocation of gels implanted in the body for a specific function is the effect of gravitational slumping. Stated simply, the lower energy state of any sufficiently dense implant, is for the implant to migrate to lower elevations within the body. This slumping effect can be exacerbated by the presence of defects or voids between tissue layers. In many cases, the slumping of an implanted gel results in the gel being displaced to a location where pressures are low and where the gel is essentially not needed. Furthermore, in cases where the gel pools into generally spherical volumes, the implant can result in regions where microbial growth is sequestrated from normal cellular protective mechanism. Thus, there is a need for a gel implant to retain its shape, and more importantly adhere to the tissue surfaces designated by a surgeon.
- Gravitational slumping can be avoided to a considerable degree by engineering a preferred shape into the gel construct. However, that shape is not always a priori known, and a surgeon would like the implant to assume the shape of the tissue to which it is applied. In this case, an in situ polymerizing gel construct offers several advantages. Given the extremely challenging regulatory environment for in situ polymerizing products, other avenues are commercially more viable.
- For example, mucoadhesive systems have been considered. They offer good initial localization of an implant. However, longer term, the fluids present in the body equilibrate with the van der Waals forces essential to the mucoadhesive functionality and eventually render mucoadhesivity ineffective. In many cases a shortterm adhesive functionality is clinically useful, and many polysaccharide compositions of the present invention fulfill this need.
- However, there is a need for an implant localizing mechanism which is not rendered ineffective by the body. Such methodologies, in the absence of chemical bonding, constitute high energy surfaces, which precipitate a protein denaturation, and consequently a permanent localization of a surface with respect to tissue.
- Generally, as described previously, denaturation of proteins is not a desired outcome. However, when it is surface specific, and of limited volume its utility exceeds is disadvantages. To this end, it is instructive to consider the biological world, and in particular superhydrophobic surfaces. For example, in the case of a rose petal, a droplet is immobilized on the rose petal surface. This effect, known as the CassieWenzel effect relies on a three phase juxtaposition between the solid of the petal surface, the liquid in a spherical geometry, and the air which serves to localized the liquid/solid interface my means of a nanostructure.
- In the body we do not have three phases available, gases are absent. However, there is a distinction to be made between polar water and hydrophobic substances such as oils and fats. In the body, there is an abundance of segregated hydrophobic and hydrophilic domains. These substances behave similarly to the relationship between gas and solids. They essentially do not interact. Thus when a structure is juxtaposed between two nonreacting media, such as water between as solid/gas interface, the results can be localization of the water. In the case of living tissue, a substance can be interposed between the hydrophilic and hydrophobic constituents of the body. That substance must possess a hierarchy of structural surfaces, some of which are predisposed to attracting the hydrophilic fraction and other which is predisposed to attracting the hydrophobic fraction. Thus we define a liquidliquid analogue to the CassieWenzel effect, wherein the essential geometry remains the same.
- The present invention discloses an novel tissue adherent mechanism, analogous to the CassieWenzel effect in air, whereby the differences in surface energy between the two constituents creates a localization of the implant in vivo which is not saturated in the body.
- Additionally, wherein the localization is maintained for an extended period, the surface texture may additionally serve as a tissue scaffolding technology. Accordingly, not all of the solid phase surface need be devoted to a localization effect, other surface elements or other surface particulates may be devoted to the scaffolding aspect.
- In summary, there are three ways to localize a gel in situ: 1) sticky, e.g., mucoadhesive, 2) frictional, the opposite of lubricious, and 3) in situ polymerizing, where bonds are formed between implant and living tissue.
- Any system liberating heat increases the entropy of that system. In the body, the healing process liberates large amount of heat, both in the reparative process and in the degradation of failed cellular constituents. It is a challenge in the medical sciences to enhance the healing process without increasing it entropy.
- Historically, the case of mesh augmented soft tissue repair is instructive. Initially it was thought that placing an antagonistic material in the body, such as polypropylene, would enhance the healing process by increasing the energy dissipation at the wound site by an upregulated foreign body response. While increase heat output and increased cellular activity were achieved, these endpoints did not result in product wound healing.
- In the case where dense encapsulation occurred due to the antagonistic nature of the implant material, blood supply was eliminated or severely curtailed to the implant site. As a result, bacteria which preferentially adhere to such high energy sites, proliferated, whether they be there as a result of the initial implantation or by an endogenous source.
- It is noteworthy to recognize that in such environments, bacterial counts too low to exceed the normal bodily responses exceed them in such a high energy environment. The combination of high surface energy, necrotic tissue debris, and the inhibit of regular antimicrobial cellular processes, results in a highly disorder wound repair, as well as possible systemic adverse events.
- This clinical experience has resulted in the generally accepted belief that less is more, and that mesh prosthetics intended to strengthen soft tissue defects are beneficially constructed when they contain less material, leading to the now generally accepted criterion of areal density. Reduced areal density is considered a positive, although this results in a vastly decreased tensile strength. Thus the original intension of soft tissue augmentation prosthetics has be supplanted by the desire for a more normal and ordered repair. The reason for this is that disordered repairs often fail since they are not metabolically viable. Common to both concerns is the avoidance of dense, avascular tissue that shields the implant from antimicrobial processes and also prevents an ordered repair of the tissue site.
- While the gels of the present invention are not intended to provide a reinforcing benefit initially, they can achieve this result in the longer term. There is presently no successful replacement for tissue to correct a tissue defect. Synthetics undergo encapsulation, shrinkage, and ultimately provide no support to the affect region. Biologics degrade quickly, and provide only minimal support during their short tenure within the body. In fact, these approaches have been fundamentally misdirected in that they seek to provide a mechanical enhancement, while neglecting the fact that such mechanical enhancement is fundamentally opposed to normal tissue restoration. These repairs have certainly found utility in extremely pathologic cases or in individuals where normal healing is compromised. But far too often, these mesh are implanted in individuals where a simple suture repair of the defect would suffice; and this is especially true in women of childbearing age where regenerative processes are naturally elevated.
- One can appreciate the truth in the concept of “less is more”, if that concept means no mechanical support is more. In essence, what is needed in healthy individuals is a support for normal healing, and not a replacement. Necessarily, to support a site means to be present at a site, and one of the main disadvantages of current gel technologies is that they gravitationally migrate from the site needing support. The support is not one of reducing forces or bridging tissue layers. The support is one of correcting the abiological instance of surgical intervention. While the actual treatment of the defective tissue site may be beneficial, surgically getting to that site initiates a cascade of cellular responses that are, at least in the short term, deleterious. For example, infection is never a concern for individuals that rejuvenate without the need for surgical intervention. Similarly remodeling of tissue, and the ballingup of surgical implants never occurs in injured tissue without the presence of a prosthetic. These observations indicate that promoting healing is more beneficial to a patient that mechanically reinforcing a softtissue defect.
- In short, there is no methodology at present that supersedes the effectiveness of normal tissue repair. In considering this observation, what differentiates normal tissue repair from synthetic tissue augmentation? If one looks at the tissue site 3 months after the initial insult in any repair where normal healing occurs and synthetic augmentation was instituted, it is always the case that in the normal healing instance the entropic state or the ordered appearance of the tissue is always greater in the normal healing case. This is not to say that there are not cases where the tissue defect is so extreme that it can be repaired by normal processes. Thus, whether one advocates for minimal surgical intervention or otherwise, the main criteria for success are not how strong the repair methodology is, but rather the orderliness of the repair, and this is supported by the recent popularity in using reduced areal density mesh, even though these mesh are insufficient in cases where the normal reparative mechanism is insufficient.
- It is not sufficient to not interfere in the normal healing process, if that was sufficient surgeons would never have opted for the various tissue augmentation methodologies available on the market. Thus, beyond the need to block adverse tissue layer to tissue layer adhesion, there is a greater need to promote and accelerate normal tissue healing mechanism. Chief among these criteria are the need for blood supply, because without blood supply no metabolic mechanism can be employed in tissue repair. In fact, it is likely in all situations that a prosthetic that promotes blood delivery to a region accomplishes more than any other therapeutic treatment regarding optimal repair of soft tissue defects Clinically the industry has concentrated on pain, and not surprisingly, since all synthetic interventions provide a short term mechanical benefit at the cost of long term insufficiency on many levels. Long term risk/benefit is just now being realized. To avoid the long term adverse events one must minimize the synthetic intervention, even if it means compromising tissue repair in the short term and this is essentially the program currently in vogue concerning light weight mesh. However, merely reducing the chaotropic effect is not in itself a benefit.
- To be clinically useful, the implant must provide an ordering effect, not in terms of setting things identically, but in terms of providing continuity to the surrounding tissue structure. Thus, establishing order in a biologic system does not mean simplifying, or minimizing variability, it simply means matching the dimensional aspects of the surrounding tissue. The dimensional aspects being the number and range of hierarchical structures present in tissue, understanding the energetic and fluid mechanical needs of living cells, and stemming the short term needs without disrupting the normal cellular repair process. There are clearly enhancements over these essential needs, many of which are currently under study, and therefore we include in this largely physical set of considerations the biological considerations regarding the chemical signaling of cells.
- In another aspect of the invention, the multiphasic gel comprises a biofunctional molecule at a concentration from about 5% to about 50% of the implant by weight. The molecule may be incorporated in the gel fraction if it is water soluble, and in the solid fraction if not water soluble. The gel phase may be loaded with excipients to control drug release both from the soli phase and the gel phase. Excipients useful in the present invention are tocopherol isomers and/or their esters; tocotrienols and/or their esters; benzyl alcohol; benzyl benzoate; those dibenzoate esters of poly(oxyethylene) diols having low water solubility; dimethyl sulfone; poly(oxypropylene) diols having low water solubility; the mono, di, and triesters of Oacetylcitric acid with straight and branched chain aliphatic alcohols; and liquid and semisolid polycarbonate oligomers.
- The biofunctional agent of the present invention is selected from the group consisting of analgesics, anesthetics, narcotics, angiostatic steroids, anti-inflammatory steroids, angiogenesis inhibitors, nonsteroidal antiinflammatories, antiinfective agents, antifungals, antimalarials, antitublerculosis agents, antivirals, alpha androgenergic agonists, beta adrenergic blocking agents, carbonic anhydrase inhibitors, mast cell stabilizers, miotics, prostaglandins, antihistamines, antimicrotubule agents, antineoplastic agents, antipoptotics, aldose reductase inhibitors, antihypertensives, antioxidants, growth hormone agonists and antagonists, vitrectomy agents, adenosine receptor antagonists, adenosine deaminase inhibitor, glycosylation antagonists, anti aging peptides, topoisemerase inhibitors, antimetabolites, alkylating agents, antiandrigens, antioestogens, oncogene activation inhibitors, telomerase inhibitors, antibodies or portions thereof, antisense oligonucleotides, fusion proteins, luteinizing hormone releasing hormones agonists, gonadotropin releasing hormone agonists, tyrosine kinase inhibitors, epidermal growth factor inhibitors, ribonucleotide reductase inhibitors, cytotoxins, IL2 therapeutics, neurotensin antagonists, peripheral sigma ligands, endothelin ETA/receptor antagonists, antihyperglycemics, antiglaucoma agents, antichromatin modifying enzymes, insulins, glucagonlikepeptides, obesity management agents, anemia therapeutics, emesis therapeutics, neutropaenia therapeutics, tumorinduced hypercalcaemia therapeutics, blood anticoagulants, immunosuppressive agents, tissue repair agents, psychotherapeutic agents, botulinum toxins (Botox, Allergan), and nucleic acids such as siRNA and RNAi.
- Specific areas of the human or animal body to be targeted for injection or implantation or topical applications of these multiphasic gel system include, but are not limited to: heart, brain, spinal nerves, vertebral column, skull, neck, head, eye, ear organs of hearing and balance, nose, throat, skin, viscara, hair, shoulder, elbow, hand, wrist, hip, knee, ankle, foot, teeth, gums, liver, kidney, pancreas, prostate, testicles, ovaries, thymus, adrenal glands, pharynx, larynx, bones, bone marrow, stomach, bowel, upper and lower intestines, bladder, lungs, mammaries.
- The multiphasic gel system according to the present invention has particular applicability in providing a controlled and sustained release of active agents effective in obtaining a desired local or systemic physiological or pharmacological effect relating at least to the following areas: treatment of cancerous primary tumors, chronic pain, arthritis, rheumatic conditions, hormonal deficiencies such as diabetes and dwarfism, modification of the immune response such as in the prevention and treatment of transplant rejection and in cancer therapy.
- The system is also suitable for use in treating HIV and HIV related opportunistic infections such as CMV, toxoplasmosis, Pneumocystis carinii and Mycobacterium avium intercellular. The system may be used to create layers between tissue, in particular between layers of tissue modified by surgical intervention in order to direct or stimulate healing and the separate adjacent tissue layers that would be compromised by the formation of adhesions.
- Other uses of the formulations include, for example, mediating homograft rejection with formulations comprising surolimus or cyclosporine. Local cancer therapy may be delivered to, for example, the kidney or liver, using in formulations comprising, for example, adriamycin or small epidermal growth factors. Prostate cancer may be treated with formulations including fenasteride. Cardiac stents implants, central nervous system implants (e.g., spinal implants), orthopedic implants, etc., may be coated with formulations including growth or differentiation factors, anti-inflammatory agents, or antibiotics. In particular, botanical extracts known to possess antimicrobial or healing stimulative properties are useful.
- Suitable classes of active agents for use in the system of the present invention include, but are not limited to the following: peptides and proteins such as cyclosporin, insulins, glucagon-like peptides, growth hormones, insulin related growth factor, botulinum toxins, and heat shock proteins; anesthetics and pain killing agents such as lidocaine and related compounds, and benzodiazepam and related compounds; anticancer agents such as 5-fluorouracil, methotrexate and related compounds; anti-inflammatory agents such as 6-mannose phosphate; Antifungal agents such as fluconazole and related compounds; antiviral agents such as trisodium phosphomonoformate, trifluorothymidine, acyclovir, cidofovir, ganciclovir, DDI and AZT; cell transport/mobility impending agents such as colchicines, vincristine, cytochalasin B and related compounds; anti-glaucoma drugs such as beta-blockers: timolol, betaxolol atenolol; immunological response modifiers such as muramyl dipeptide and related compounds; steroidal compounds such as dexamethasone, prednisolone, and related compounds; and carbonic anhydrase inhibitors.
- It is also contemplated that these multiphasic gel formulations can be coatings on implanted surfaces, such as but not limited to, those on catheters, stents (cardiac, CNS, urinary, etc.), prothesis (artificial joints, cosmetic reconstructions, and the like), tissue growth scaffolding fabrics, or bones and teeth to provide a wide variety of therapeutic properties (such as but not limited to, anti-infection, anticoagulation, anti-inflammation, improved adhesion, improved tissue growth, improved biocompatibility).
- These surfaces can be from a wide variety of materials, such as but not limited to, metals, polyethylene, polypropylene, polyurethanes, polycarbonates, polyesters, poly(vinyl actetates), poly(vinyl alcohols), poly(oxyethylenes), poly(oxypropylenes), cellulosics, polypeptides, polyacrylates, polymethacrylates, polycarbonates and the like.
- Active agents, or active ingredients, that may be useful in the present invention, as determined by one of ordinary skill in the art in light of this specification without undue experimentation, include but are not limited to:
- Analgesics, Anesthetics, Narcotics such as acetaminophen; clonidine (Duraclon Roxane) and its hydrochloride, sulfate and phosphate salts; oxycodene (Percolone, Endo) and its hydrochloride, sulfate, phosphate salts; benzodiazepine; benzodiazepine antagonist, flumazenil (Romazicon, Roche); lidocaine; tramadol; carbamazepine (Tegretol, Novartis); meperidine (Demerol, SanofiSynthelabo) and its hydrochloride, sulfate, phosphate salts; zaleplon (Sonata, WyethAyerst); trimipramine maleate (Surmontil, WyethAyerst); buprenorphine (Buprenex, Reckitt Benckiser); nalbuphine (Nubain, Endo) and its hydrochloride, sulfate, phosphate salts; pentazocain and hydrochloride, sulfate, phosphate salts thereof; fentanyl and its citrate, hydrochloride, sulfate, phosphate salts; propoxyphene and its hydrochloride and napsylate salts (Darvocet, Eli Lilly& Co.); hydromorphone (Dilaudid, Abbott) and its hydrochloride, sulfate, and phosphate salts; methadone (Dolophine, Roxane) and its hydrochloride, sulfate, phosphate salts; morphine and its hydrochloride, sulfate, phosphate salts; levorphanol (Levodromoran, ICN) and its tartrate, hydrochloride, sulfate, and phosphate salts; hydrocodone and its bitartrate, hydrochloride, sulfate, phosphate salts;
- Angiostatic and/or Antiinflammatory Steroids such as anecortive acetate (Retaane®, Alcon, Inc., Fort Worth, Tex.); tetrahydrocortiso; 4,9(11)-pregnadien-17-α-21-diol-3,20-dione (Anecortave) and its 21-acetate salt; 11-epicortisol; 17-α-hydroxyprogesterone; tetrahydrocortexolone; cortisone; cortisone acetate; hydrocortisone; hydrocortisone acetate; fludrocortisone; fludrocortisone acetate; fludrocortisone phosphate; prednisone; prednisolone; prednisolone sodium phosphate; methylprednisolone; methylprednisolone acetate; methylprednisolone, sodium succinate; triamcinolone; triamcinolone-16,21-diacetate; triamcinolone acetonide and its 21-acetate, 21-disodium phosphate, and 21-hemisuccinate forms; triamcinolone benetonide; triamcinolone hexacetonide; fluocinolone and fluocinolone acetate; dexamethasone and its 21-acetate, 21-(3,3dimethylbutyrate), 21-phosphate disodium salt, 21-diethylaminoacetate, 21-isonicotinate, 21-dipropionate, and 21-palmitate forms; betamethasone and its 21-acetate, 21-adamantoate, 17-benzoate, 17,21-dipropionate, 17-valerate, and 21-phosphate disodium salts; beclomethasone; beclomethasone dipropionate; diflorasone; diflorasone diacetate; mometasone furoate; and acetazolamide (Diamox® Lederle Parenterals, Inc., Carolina, Puerto Rico; several other manufacturers); 21-nor-5-β-pregnan 3-α-17-α-20-triol-3-acetate; 21-nor-β-pregnan-3-α-17-α-20-triol-3-phosphate; 21-nor-5-β-pregn-17-20)en-3-α-,16-diol; 21-nor-5-β-pregnan-3-α-,17-β-,20-triol; 20-acetamide-21-nor-5-β-pregnan 3-α-,17-α-diol-3-acetate; 3-β-acetamido-5-β-pregnan-11-β-,17-α-,21-triol-20-one-21-acetate, 21-nor-5-α-pregnan-3-α-17-β-20-triol; 21-α-methyl-β-pregnan-3-α-,11-β-17-α-21-tetrol-20-one-21-methyl ether; 20-azido-21-nor-5-β-pregnan-3-α-,17-α-diol; 20-(carbethoxymethyl)-thio-21-nor-5-β-pregnan-3-α-.,17-α-diol; 20-(4-fluorophenyl)-thio-21-nor-5-β-pregnan-3-α-17.alpha.diol; 16-α-(2-hydroxyethyl)-17-β-methyl-5-β-androstan-3-α-,17-α-diol; 20-cyano-21-nor-5-
ω -pregnan-3-α-,17-α-diol; 17-α-methyl-5-β-androstan-3-α-.,17-β-diol; 21-nor-5-β-pregn-17(-20)en-3-α-ol; 21or 5-β-pregn-17(20)en-3-α-ol-3-acetate; 21-nor-5-pregn-17(20)-en-3-α-ol-16-acetic acid 3-acetate; 3-β-azido-5-β-pregnan-11-β-,17-α-,21-triol-20-one-21-acetate; an 5-β-pregnan-11-β-17-α-,21-triol-20-one; 4-androsten-3one-17-β-carboxylic acid; 17-α-ethynyl5(10)estren17-β-ol3one; and 17-α-ethynyl1,3,5(10)estratrien3,17-β-diol. - Nonsteroidal Antiinflammatories such as naproxin; diclofenac; celecoxib; sulindac; diflunisal; piroxicam; indomethacin; etodolac; meloxicam; ibuprofen; ketoprofen; rflurbiprofen (Myriad); mefenamic; nabumetone; tolmetin, and sodium salts of each of the foregoing; ketorolac bromethamine; ketorolac bromethamine tromethamine (Acular®, Allergan, Inc.); choline magnesium trisalicylate; rofecoxib; valdecoxib; lumiracoxib; etoricoxib; aspirin; salicylic acid and its sodium salt; salicylate esters ofalpha, beta, gammatocopherols and tocotrienols (and all their d, l, and racemic isomers); methyl, ethyl, propyl, isopropyl, nbutyl, secbutyl, tbutyl, esters of acetylsalicylic acid.
- Angiogenesis Inhibitors such as squalamine, squalamine lactate (MS11256F, Genaear) and curcumin; Vascular Endothelial Growth Factor (VEGF) Inhibitors including pegaptanib (Macugen, Eyetech/Pfizer); bevacizumab (Avastin, Genentech/generic); Neovastat (Aeterna); PTK 787 (Schering/Novartis); Angiozyme (RibozymeChiron); AZD 6474 (AstraZeneca); IMC1C11 (Imclone); NM3 (ILEX Oncology); S6668 (Sugen/Pharmacia); CEP7055 (Cephalon); and CEP5214 (Cephalon); Integrin Antagonists such as Vitaxin (Applied Molecular Evolution/Medimmune); S 137 (Pharmacia); S247 (Pharmacia); ST 1646 (Sigma Tau); DPC A803350 (BristolMyers Squibb); and oguanudines (3D Pharmaceuticals/generic); matrix metalloproteinase inhibitors such as prinomastat (AG 3340, Pfizer/generic), (ISV616, InSite Vision), (TIMP3, NIH); S3304 (Shionogi); BMS 275291 (Celltech/BristolMyers Squibb); SC 77964 (Pharmacia); ranibizumab (Lucentis, Genentech); ABT 518 (Abbott); CV 247 (Ivy Medical); shark cartilage extract (Neovastat, Aeterna); NX278L antiVEGF aptamer (EyeTech); 2′Omethoxyethyl antisense Craf oncogene inhibitor (ISIS13650) vitronectin and osteopontin antagonists (3D Pharm); combretstatin A4 phosphate (CA4P, Oxigene); fab fragment.alpha.V/beta.1 integrin antagonist (Eos200Protein Design Labs); .alpha.v/. beta.3 integrin antagonist (Abbott); urokinase plasminogen activator fragment (A6, Angstrom Pharm.); VEGF antagonist (AAVPEDF, Chiron); kdr tyrosine kinase inhibitor (EG3306, Ark Therapeutics); cytochalasin E (NIH); kallikrininbinding protein (Med. Univ. So. Carolina); combretastatin analog (MV540, Tulane); pigmentepithelium derived growth factor (Med. Univ. S.C.); pigmentepithelium derived growth factor (AdPEDF, GenVec/Diacrin); plasminogen kringle (Med. Univ. S.C.); rapamycin; cytokine synthesis inhibitor/p38 mitogenactivated protein kinase inhibitor (SB220025, GlaxoSmithKline); vascular endothelial growth factor antagonist (SP(V5.2)C, Supratek); vascular endothelial growth factor antagonist (SU10944, Sugen/Pfizer); vascular endothelial growth factor antagonist.
- Antiinfective Agents such as Antibacterials including aztreonam; cefotetan and its disodium salt; loracarbef; cefoxitin and its sodium salt; cefazolin and its sodium salt; cefaclor; ceftibuten and its sodium salt; ceftizoxime; ceftizoxime sodium salt; cefoperazone and its sodium salt; cefuroxime and its sodium salt; cefuroxime axetil; cefprozil; ceftazidime; cefotaxime and its sodium salt; cefadroxil; ceftazidime and its sodium salt; cephalexin; cefamandole nafate; cefepime and its hydrochloride, sulfate, and phosphate salt; cefdinir and its sodium salt; ceftriaxone and its sodium salt; cefixime and its sodium salt; cefpodoxime proxetil; meropenem and its sodium salt; imipenem and its sodium salt; cilastatin and its sodium salt; azithromycin; clarithromycin; dirithromycin; erythromycin and hydrochloride, sulfate, or phosphate salts ethylsuccinate, and stearate forms thereof; clindamycin; clindamycin hydrochloride, sulfate, or phosphate salt; lincomycin and hydrochloride, sulfate, or phosphate salt thereof; tobramycin and its hydrochloride, sulfate, or phosphate salt; streptomycin and its hydrochloride, sulfate, or phosphate salt; vancomycin and its hydrochloride, sulfate, or phosphate salt; neomycin and its hydrochloride, sulfate, or phosphate salt; acetyl sulfisoxazole; colistimethate and its sodium salt; quinupristin dalfopristin; amoxicillin; ampicillin and its sodium salt; clavulanic acid and its sodium or potassium salt; penicillin G; penicillin G benzathine, or procaine salt; penicillin G sodium or potassium salt; carbenicillin and its disodium or indanyl disodium salt; piperacillin and its sodium salt; ticarcillin and its disodium salt; sulbactam and its sodium salt; moxifloxacin; ciprofloxacin; ofloxacin; levofloxacins; norfloxacin; gatifloxacin; trovafloxacin mesylate; alatrofloxacin mesylate; trimethoprim; sulfamethoxazole; demeclocycline and its hydrochloride, sulfate, or phosphate salt; doxycycline and its hydrochloride, sulfate, or phosphate salt; minocycline and its hydrochloride, sulfate, or phosphate salt; tetracycline and its hydrochloride, sulfate, or phosphate salt; oxytetracycline and its hydrochloride, sulfate, or phosphate salt; chlortetracycline and its hydrochloride, sulfate, or phosphate salt; metronidazole; rifampin; dapsone atovaquone; rifabutin; linezolide; polymyxin B and its hydrochloride, sulfate, or phosphate salt; sulfacetamide and its sodium salt; minocycline; and clarithromycin:
- Antifungals such as amphotericin B; pyrimethamine; flucytosine; caspofungin acetate; fluconazole; griseofulvin; terbinafin and its hydrochloride, sulfate, or phosphate salt; ketoconazole; micronazole; clotrimazole; econazole; ciclopirox; naftifine; and itraconazole.
- Antimalarials such as chloroquine and its hydrochloride, sulfate or phosphate salt; hydroxychloroquine and its hydrochloride, sulfate or phosphate salt; mefloquine and its hydrochloride, sulfate, or phosphate salt; atovaquone; proguanil and its hydrochloride, sulfate, or phosphate salt forms.
- Antituberculosis Agents such as ethambutol and its hydrochloride, sulfate, or phosphate salt forms; aminosalicylic acid; isoniazid; pyrazinamide′; ethionamide.
- Antivirals such as amprenavir; interferon alfan3; interferon alfa2b; interferon alfacon1; peginterferon alfa2b; interferon alfa2a; lamivudine; zidovudine; amadine (Symmetrel, Endo) and its hydrochloride, sulfate, and phosphate salts; indinavir and its hydrochloride, sulfate, or phosphate salt; ganciclovir; ganciclovir sodium salt; famciclovir; rimantadine and its hydrochloride, sulfate, or phosphate salt; saquinavir; valacyclovir and its hydrochloride, sulfate, or phosphate salt; zinc ester complexes; and zin; acetoacetonate or zinc acetoacetic ester complexes.
- Anti HIV/AIDS agents including stavudine, reverset (Pharmasset), ACH126443 (Achillion), MIV310 (Boehringer Ingelheim), ZeritlR(d4tT) (BristolMeyers Squibb) Ziagen (GlaxoSmithKline), Viroad (Glead), hivid (Roche), Emtriva (Gilead), delavirdine (Pfizer), AG1549 (Pfizer), DPC083 (BristolMyers Squibb), NSC675451 (Advanced Life Sciences), IMC125 (Tibitec), azidicarbonamide, GPGNH2 (Tripep), immunitin (Colthurst), cytolin (Cytodyn), HRG21 (Virionyx), MDX010 (Gilead), TXUPAP (Wayne Hughes Inst), proleukin (Chiron), BAY 504798 (Bayer), BG777 (Virocell), Crixivan (Merck), Fuzeon (HoffLaRoche), WF10 (Oxo Chemie), Ad5 Gag vaccine (Merck), APIA00003 and 047 (Wyeth), Remunex (Immune Response Corp.), MVABN Nef (Bavarian Nordic), GTU MultyHIV vaccine (FIT Biotech).
- Insulins such as Novolog (aspart), Novolin R, Novolin N, Novolin L, Novolin 70/30, and Novolog 70/30 (Novo Nordisk); Humalog (lispro) Humulin R, Humulin N, Humulin L, Humulin 50/50 and 70/30, and Humalog Mix 75/25 and 70/30 (Eli Lilly); Ultralente (Eli Lilly); Lantus (glargine, Aventis); porcine; and bovine insulins.
- Glucagonlike Peptidel (Glp1) and analogs (for diabetes therapy and appetite suppression, cardiac protection) (see Keiffer et al., 20 Endocr Rev., 876913 (1999) Glp1 Receptor stimulators such as exendin4, Exenatide and Exenatide LAR (Amylin Pharma); Liraglutide (Novo Nordisk); ZP10 (Zealand Pharma); Glp1albumin (Conjuchem); and DpplV inhibitors (which inhibit enzyme attack on Glp1) such as LAF237 (Novartis); MK0431 (Merck); BMS477188 (BristolMyers Squibb); and GSK23A (GlaxoSmithKline);
- Alpha Androgenergic Agonist such as brimonidine tartrate; Beta Adrenergic Blocking Agents such as betaxolol and its hydrochloride, sulfate, or phosphate salt; levobetaxolol and its hydrochloride, sulfate, or phosphate salt; and timolol maleate.
- Carbonic Anhydrase Inhibitors such as brinzolamide; dorzolamide and its drochloride, sulfate, or phosphate salt; and dichlorphenamide.
- Mast Cell Stabilizers such as pemirolast and its potassium salt; nedocromil and its sodium salt; cromolyn and its sodium salt.
- Miotics (Cholinesterase Inhibitors) such as demecarium bromide.
- Prostaglandins such as bimatoprost; travoprost; and latanoprost.
- Antihistamines such as olopatadine and its hydrochloride, sulfate, or phosphate salt forms; fexofenadine and its hydrochloride, sulfate, or phosphate salt; azelastine and its hydrochloride, sulfate, or phosphate forms; diphenhydramine and its hydrochloride, sulfate, or phosphate forms; and promethazine and its hydrochloride, sulfate, or phosphate forms.
- Antimicrotubule Agents such as Taxoids including paclitaxel (Taxol, BristolMyers Squibb); vincristine (Oncovin, Eli Lilly & Co.) and its hydrochloride, sulfate, or phosphate salt forms; vinblastine (Velbe, Eli Lilly & Co.) and its hydrochloride, sulfate, or phosphate salt; vinorelbine (Novelbinr, Fabre/GSK); colchicines; docetaxel (Taxotere, Aventis); 109881 (Aventis); LIT 976 (Aventis); BMS 188797 (BristolMyers Squibb); BMS 184476 (BristolMyers Squibb); DJ 927 (Daiichi); DHA paclitaxel (Taxoprexin, Protarga); Epothilones including epothiloneB (EPO 906, Novartis/generic); BMS 247550 (BristolMyers Squibb); BMS 310705 (BristolMyers Squibb); epothilone D (KOS 862, Kosan/generic); and ZK EPO (Schering AG).
- Antineoplastic agents such as doxorubicin and its hydrochloride, sulfate, or phosphate salt; idarubicin and its hydrochloride, sulfate, or phosphate salt; daunorubicin and its hydrochloride, sulfate, or phosphate salt; dactinomycin; epirubicin and its hydrochloride, sulfate, or phosphate salt; dacarbazine; plicamycin; mitoxantrone (Novantrone, OSI Pharmaceuticals) and its hydrochloride, sulfate, or phosphate salt; valrubicin; cytarabine; nilutamide; bicalutamide; flutamide; anastrozole; exemestane; toremifene; femara; tamoxifen and tamoxifen citrate; temozolimide (Temador); gemcitabine and its hydrochloride, sulfate, or phosphate salt; topotecan and its hydrochloride, sulfate, or phosphate salt; vincristine and its hydrochloride, sulfate, or phosphate salt; liposomal vincristine (OncoTCS, Inex/Elan); methotrexate and methotrexate sodium salt; cyclophosphamide; estramustine sodium phosphate; leuprolide and leuprolide acetate; goserelin and goserelin acetate; estradiol; ethinyl estradiol; Menest esterified estrogens; Premarin conjugated estrogens; 5flurouracil; bortezamib (Velcade, Millenium Pharmaceuticals).
- Antiapoptotics such as desmethyldeprenyl (DES, RetinaPharma).
- Aldose Reductase Inhibitors such as GP1447 (Grelan); NZ314 (parabanic acid derivative, Nippon Zoki); SG210 (Mitsubishi Pharma/Senju); and SJA705 (Senju).
- Antihypertensives such as candesartan cilexetil (Atacand/Biopress, Takeda/AstraZeneca/Abbott); losartan (Cozaar, Merck); and lisinopril (Zestril/Prinivil, Merck/AstraZeneca).
- Antioxidants such as benfotiamine (Albert Einstein Col. Of Med./WorWag Pharma); ascorbic acid and its esters; tocopherol isomers and their esters; and raxofelast (IRF1005, Biomedica Foscama);
- Growth Hormone Antagonists such as octreotide (Sandostatin, Novartis); and pegvisomant (Somavert, Pfizer/Genentech); Vitrectomy Agents such as hyaluronidase (Vitrase, ISTA Pharm./Allergan);
- Adenosine Receptor Antagonist such as A2B adenosine receptor antagonist (754, Adenosine Therapeutics);
- Adenosine Deaminase Inhibitor such s pentostatin (Nipent, Supergen);
- Glycosylation Antagonists such as pyridoxamine (Pyridorin, Biostratum);
- Anti-Ageing Peptides, such as AlaGluAspGly (Epitalon, St Petersburg Inst. Bioreg. and Geron).
- Topoisomerase Inhibitors such as doxorubicin (Adriamycin/Caelyx, Pharmacia/generics); daunorubicin (DaunoXome, Gilead/generics); etoposide (Vepecid/Etopophos, BristolMyers Squibb/generics; idarubicin (Idamycin, Pharmacia); irinotecan (Camptosar, Pharmacia); topotecan (Hycamtin, GlaxoSmithKline); epirubicin (Ellence, Phamacia); and raltitrexed (Tomudex, AstraZeneca).
- Antimetabolites such as methotrexate (generic) and its sodium salt; 5fluorouracil (Adrucil, ICN Pharmacia); cytarabine (Cytosar, Pharmacia/generic); fludarabine (Fludara, Schering) and its forms as salts with acids; gemcitabine (Gemsar, Eli Lilly& Co.); capecitabine (Xeloda, Roche); and perillyl alcohol (POH, Endorex).
- Alkylating Agents such as chlorambucil (Leukeran, GlaxoSmithKline); cyclophosphamide (Cytoxan, Pharmacia/BristolMeyers Squibb); methchlorethanine (generic); cisplatin (Platinal, Pharmacia/BristolMeyers Squibb); carboplatin (Paraplatin, BristolMyers Squibb); temozolominde (Temodar) and oxaliplatin (SanofiSynthelabs).
- Antiandrogens such as flutamide (Eulexin, AstraZeneca); nilutamide (Anandron, Aventis); bicalutamide (Casodex, AstraZeneca).
- Antiestrogens such as tamoxifen (Nolvadex, AstraZeneca); toremofine (Fareston, Orion/Shire); Faslodex (AstraZeneca); arzoxifene (Eli Lilly & Co.); Arimidex (AstraZeneca); letrozole (Femera, Novartis); Lentaron (Novartis); Aromasin (Pharmacia); Zoladex (AstraZeneca); lasoxifene (CP366,156, Pfizer); ERA92 (Ligand/Wyeth); DCP 974 (DuPont/Bristol Myers Squibb); ZK 235253 (Shering AG); ZK1911703 (Shering AG); and ZK 230211 (Shering AG);
- Oncogene Activation Inhibitors, including for example, BcrAbl Kinase Inhibition such as Gleevec (Novartis); Her2 Inhibition such as trastuzumab (Herceptin, Genentech); MDX 210 (Medarex); E1A (Targeted Genetics); ME103 (Pharmexa); 2C4 (Genentech); C11033 (Pfizer); PKI 166 (Novartis); GW572016 (GlaxoSmithKline) and ME104 (Pharmexa); EGFr Inhibitors such as Erbitux (Imclone/BristolMyers Squibb/Merck KgaA); EGFr Tyrosine Kinase Inhibitors such as gefitinib (Iressa ZD 1839, AstraZeneca); cetuximab (Erbitux, Imclone/BMS/Merck KGaA); erlotinib (Tarceva, OSI Pharmaceutical/Genentech/Roche) ABXEGF (Abgenix); C11033 (Pfizer); EMD 72000 (Merck KgaA); GW572016 (GlaxoSmithKline); EKB 569 (Wyeth); PKI 166 (Novartis); and BIBX 1382 (Boehringer Ingleheim); Farnesyl Transferase Inhibitors such as tipifamib (Zarnestra, Johnson & Johnson); ionafarnib (Sarasar, ScheringPlough) BMS214,662 (BristolMyers Squibb); AZ3409 (AstraZeneca); CP609,754 (OSI Pharmaceuticals); CP663,427 (OSI Pharmaceuticals/Pfizer); Arglabin (NuOncology); RPR130401 (Aventis); A 176120 (Abbott); BIM 46228 (Biomeasure); LB 42708 (LG Chem); LB 42909 (LG Chem); PD 169451 (Pfizer); and SCH226374 (ScheringPlough); Bcl2 Inhibitors such as BCLX (Isis); ODN 2009 (Novartis); GX 011 (Gemin X); and TAS 301 (Taiho); Cyclin Dependent Kinase Inhibitors such as flavopiridol (generic, Aventis); CYC202 (Cyciacel); BMS 387032 (BristolMyers Squibb); BMS 239091 (BristolMyers Squibb); BMS 250904 (BristolMyers Squibb); CGP 79807 (Novartis); NP102 (Nicholas Piramal); and NU 6102 (AstraZeneca); Protein Kinase C Inhibitors such as Affinitac (Isis, Eli Lilly & Co.); midostaurin (PKC 412, Novartis/generic); bryostatin (NCl/GPC Biotech/generic); KW 2401 (NCl/Kyowa Hakko); LY 317615 (Eli Lilly & Co.); perifosine (ASIA Medica/Baxter/generic); and SPC 100840 (Sphinx);
- Telomerase Inhibitors such as GRN163 (Geron/Kyowa Hakko) and G4T 405 (Aventis); Antibody Therapy including Herceptin (Genentech/Roche); MDXH210 (Medarex); SGN15 (Seattle Genetics); H11 (Viventia); Therex (Antisoma); rituximan (Rituxan, Genentech); Campath (ILEX Oncology/Millennium/Shering); Mylotarg (Celltech/Wyeth); Zevalin (IDEC Pharmaceuticals/Schering); tositumomab (Bexxar, Corixa/SmithKline Beecham/Coulter); epratuzumab (Lymphocide, lmmunomedics/Amgen); Oncolym (Techniclone/Schering AG); Mab Hu1D10 antibody (Protein Design Laboratories); ABXEGF (Abgenix); infleximab (Remicade®, Centocor) and etanercept (Enbrel, WyethAyerst).
- Antipsoriasis Agents such as anthralin; vitamin D3; cyclosporine; methotrexate; etretinate, salicylic acid; isotretinoin; and corticosteroids; Antiacne Agents such as retinoic acid; benzoyl peroxide; sulfurresorcinol; azelaic acid; clendamycin; erythromycin; isotretinoin; tetracycline; minocycline; Antiskin parasitic Agents such as permethrin and thiabendazole; Treatments for Alopecia such as minoxidil and finasteride; Contraceptives such as medroxyprogesterone; norgestimol; desogestrel; levonorgestrel; norethindrone; norethindrone; ethynodiol; and ethinyl estradiol; DNAalkyltranferase Agonist including temozolomide; Metalloproteinase Inhibitor such as marimastat; Agents for management of wrinkles, bladder, prostatic and pelvic floor disorders such as botulinum toxin; Agents for management of uterine fibroids such as pirfenidone, human interferinalpha, GnRH antagonists, Redoxifene, estrogenreceptor modulators; Transferrin Agonist including TransMID (Xenova Biomedix); TfCRM107 (KS Biomedix); Interleukin13 Receptor Agonist such as IL13PE38QQR (Neopharm); Nucleic acids such as small interfering RNAs (siRNA) or RNA interference (RNAi), particularly, for example siRNAs that interfere with VEGF expression; and Psychotherapeutic Agents including Antianxiety drugs such as chlordiazepoxide; diazepam; chlorazepate; flurazepam; halazepam; prazepam; clorazepam; quarzepam; alprazolam; lorazepam; orazepam; temazepam; and triazolam; and Antipsychotic drugs such as chlorpromazine; thioridazine; mesoridazine; trifluorperazine; fluphenazine; loxapine; molindone; thiothixene; haloperidol; pimozide; and clozapine.
- Consideration of Forming Solid Phase within a Gel
- Solid phase can be added to a formed gel or fixed within a gel during polymerization of the pregel liquid state to a gel state. Solid phase can be formed within a gel. The present invention provides a novel process for producing solid materials based on synthetic polymers and/or biopolymers, in which the synthetic polymers and/or biopolymers are dissolved or dispersed in ionic liquids, optionally together with additives, the synthetic polymers and/or biopolymers are regenerated as solids by contacting the resulting solution or dispersion with a further liquid or gel which is miscible with the ionic liquid but is incapable of dissolving the solid synthetic polymers and/or biopolymers, and freeing the resulting regenerated solids from the synthetic polymers and/or biopolymers of the ionic liquids and the further liquid, which results in the solid materials based on synthetic polymers and/or biopolymers.
- Accordingly, the present process for producing solid materials within gels has the following process steps: (1) solubilizing at least one solid polymer and/or biopolymer (A), or at least one synthetic polymer and/or biopolymer (A) and at least one additive (B), in at least one substantially or completely anhydrous chaotropic liquid (C), (2) contacting the solution or dispersion (AC) or (ABC) obtained in process step (1) with a gel (G) which is miscible with the chaotropic liquid (C), but in which at least the synthetic polymer and/or the biopolymer (A) are substantially or completely insoluble, which results in a solid phase (P) which comprises or consists of solid synthetic polymer and/or biopolymer (A), chaotropic liquid (C) and gel (G), and if appropriate the at least one additive (B), and a gel phase (G) which comprises or consists of chaotropic liquid (C) and gel (G), (3) removing the chaotropic liquid (C) from phase (G), which results in a multiphasic gel (PG) based on synthetic polymer and/or biopolymer (A), (5) impregnating the multiphasic gel (PG) with a liquid (W) which is miscible both with the chaotropic liquid (C) and with the gel (G), but in which at least the synthetic polymer and biopolymer (A) are substantially or completely insoluble, and (6) removing the two liquids (C) and (W) from the multiphasic gel (PG) by evaporating.
- The solid materials may have a wide variety of different threedimensional forms, sizes and morphologies. For instance, they may be pulverulent, in which case the powder particles may have the form of slabs, spheres, drops, rods, cylinders, needles, flakes, or irregularly shaped particles, especially pellets and tori. These bodies may be more or less compact or highly porous, and may have a high internal surface area.
- The particle size thereof may vary widely. It may be in the range from a few nanometers up to 1 mm. The particle size distributions may be monomodal or multimodal and range from very broad to very narrow, preferably very narrow, distributions.
- The solid materials may, however, also be macroscopic particles, i.e. particles with a greatest diameter of >1 mm. They have essentially the same forms as the powder particles.
- In addition, the solid materials may have the form of fibers. These may have different lengths, for example from about 5 mm to highly entangled and different thicknesses, for example 1 micron to 1 mm.
- The solid materials may also be provided as films. These may have different thicknesses, for example between 500 nm and 1 mm. The films may be essentially compact, nanoporous, microporous, macroporous or in the form of sponge. The films are preferably essentially compact.
- In particular, the solid materials are powders. The powder particles preferably have a mean particle size measured by sedimentation in a gravitational field of 100 microns to 3 mm, preferably 200 microns to 2.5 mm and especially 300 microns to 2 mm.
- For the performance of the process according to the invention, basically all synthetic polymers and/or biopolymers (A) are suitable, provided that they are soluble in one of the chaotropic liquids (C) described and insoluble in the gel (G) and liquid (W). In terms of method, the solubilization in the first process step has no special features, and can be performed with the aid of the customary and known mixing units, such as stirred tanks, Ultraturrax, inline dissolvers, homogenization units such as homogenization nozzles, kneaders or extruders, continuously or in batchwise mode.
- The content of polymers (A) in the solution or dispersion (AC) or (ABC) which results in the first process step can likewise vary widely. In general, the upper limit of the content is fixed in the individual case by the fact that the viscosity of the solution or dispersion (AC) or (ABC) in question must not become so high that it can no longer be processed. The content is preferably 0.1 to 50% by weight, more preferably 0.25 to 30% by weight and especially 0.5 to 20% by weight, based in each case on (AC) or (ABC).
- Later in the process according to the invention, in the second process step, the solution or dispersion (AC) or (ABC) obtained in the first process step is contacted with a gel (G). The gel (G) is miscible with the abovedescribed chaotropic liquid (C), preferably without a miscibility gap, i.e. in any quantitative ratio. In contrast, the polymer (A) is substantially or completely insoluble in (G). Any additives (B) present may be soluble or insoluble in (G).
- The chaotropic liquid (C) used is preferably acetone, methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, diethylene glycol, 2methoxyethanol, 2ethoxyethanol, 2propoxyethanol and/or 2butoxyethanol, the nitrile used is preferably acetonitrile and/or propionitrile, the ether used is preferably diethyl ether, dipropyl ether, tetrahydrofuran and/or dioxane, the ketone used is preferably acetone and/or methyl ethyl ketone, the aldehyde used is preferably acetaldehyde and/or propionaldehyde, the sulfoxide used is preferably dimethyl sulfoxide, and the amide used is preferably dimethylformamide, acetamide and/or hexamethylphosphortriamide.
- Particular preference is given to using strongly protic and aprotic polar organic liquids which already have a comparatively high vapor pressure or a boiling point below 100 degree C. as the liquid (C).
- Very particular preference is given to using ethanol and/or water, but especially water, as the liquid (W)
- The solution or dispersion (AC) or (ABC) can be contacted in different ways with gel (G), for example by pouring, dripping or extruding the solution or dispersion (AC) o r (ABC) into the gel (G), or contacting it in the form of a film with gel (G). This can be performed continuously or in batchwise mode. The quantitative ratio of solution or dispersion (AC) or (ABC) to gel (G) may vary widely from case to case. It is essential that the quantitative ratio is selected such that the polymer (A) is precipitated or regenerated quantitatively. The person skilled in the art can therefore easily determine the quantitative ratio required on the basis of his or her general technical knowledge, if appropriate with the aid of a few preliminary tests.
- The temperature at which the second process step is performed can likewise vary widely. The temperature is guided primarily by the temperature range within which the gel (G) is in a fluidlike state. The solution or dispersion (AC) or (ABC) should also not have excessively high temperatures on contact with (G), because the result may otherwise be abrupt evaporation and/or decomposition of the gel (G) or polymer (A). The second process step is preferably likewise performed at temperatures of 0 to 100 degree C., more preferably 10 to 70 degree C., especially preferably 15 to 50 degree C. and especially 20 to 30 degree C. In the second process step, the result is a solid phase which comprises or consists of solid polymer (A), chaotropic liquid (C) and gel (G), and if appropriate the at least one additive (B), and also a liquid phase (W) which comprises or consists of chaotropic liquid (C) and gel (G).
- Later in the process according to the invention, in the fourth process step, the chaotropic liquid (C) is removed from phase (PG) with the aid of the liquid (W), which results in a gel (PG) based on the polymer (A). Preference is given to removing the chaotropic liquid (C) by extracting phase (W) by washing at least once with the liquid (W), and the wash liquid (W) is then removed from phase (PG). This can be done by employing the abovedescribed continuous or batchwise method. The washing and removal are preferably continued until chaotropic liquid (C) can no longer be detected in the gel (PG) and/or in the wash liquid (W).
- Preferably, the fourth process step is performed at temperatures at which the resulting gel (PG) is not thermally damaged, more particularly does not age rapidly. Preference is given to employing temperatures of 0 to 100 degree C., more preferably 10 to 70 degree C., especially preferably 15 to 50 degree C. and especially 20 to 30 degree C. The resulting gel (PG) preferably already essentially has the appropriate threedimensional form, like the solid material based on polymers (A) to be produced therefrom.
- Later in the process according to the invention, in the fifth process step, the gel (PG) is treated with a liquid (W) which is miscible with the chaotropic liquid (C) and with the gel (G), but in which at least the polymer (A) is substantially or completely insoluble.
- When, for example, water is used as the liquid (W)which is particularly preferred in accordance with the inventionit is possible to use all of the aboved escribed strongly protic and aprotic polar organic liquids which have a higher vapor pressure than water or a boiling point below 100 degree C. at standard pressure.
- Later in the process according to the invention, in the sixth process step, the two liquids (C) and (W) are removed from the gel (PG) by evaporating or fractionation. Preference is given to fractionation comparatively slowly under gentle conditions at standard pressure or a slightly reduced pressure between 50 and 100 kPa. Preference is given to employing temperatures between 20 and 50 degree C. More particularly, the fractionation is effected at room temperature and under standard pressure.
- Apart from the sixth process step, it is possible to perform at least one of the process steps of the process according to the invention at a pressure greater than 100 kPa. Preference is given to performing the process according to the invention at standard pressure overall. Owing to the exact adjustability of the dimensions thereof of the solid phase, the resulting solid materials based on synthetic polymers and/or biopolymers (A), especially of absorbable polyurethanes (A), can be joined in a process specific way, in a secure and reliable manner, to give even more complex threedimensional moldings.
- By virtue of the abovedescribed additives (B), the resulting solid materials based on synthetic polymers and/or biopolymers, especially on absorbable polyurethanes (A), can be modified in a wide variety of different ways for the inventive use. The additives (B) may be present in more or less homogeneous distribution in the polymer (A) matrix of the solid materials produced with the aid of the process according to the invention. For example, it may be advantageous when fibrous additives (B) have an inhomogeneous distribution, in order to vary mechanical properties in a desired manner. The situation is similar for catalytically active additives (B), the accessibility of which in the polymer (A) matrix can be improved by an inhomogeneous distribution. In many cases, however, a very substantially homogeneous distribution in the polymer (A) matrix is advantageous, for instance when plasticizing additives (B) are used.
- The additives (B) may be bonded in a more or less fixed manner to the polymer (A) matrix of the solid materials produced with the aid of the process according to the invention. For instance, especially polymeric or particulate additives (B) may be bonded permanently to the polymer (A) matrix. In contrast, especially in the case of the low molecular weight additives (B), it may be advantageous when they are not bonded permanently to the polymer (A) matrix, and are instead released again in the manner of a slow release or controlled release.
- The multiphasic gels which are based on synthetic polymers and/or biopolymers (A), and also on polysaccharides (G), and are produced in the inventive procedure can therefore be used advantageously in a wide variety of different technical fields in the context of the inventive use. For instance, they can be used in synthetic and analytical chemistry, biochemistry and gene technology, biology, pharmacology, medical diagnostics, cosmetics, natural gas and mineral oil extraction technology, process technology, paper technology, packaging technology, electrical engineering, magnet technology, communications technology, broadcasting technology, agricultural technology, aviation and space technology and textile technology, and also construction, land and sea transport and mechanical engineering, especially as construction materials, insulations, fabric, absorbents, adsorbents, membranes, separating materials, barrier layers, controlled release materials, catalysts, cultivation media, catalysts, and also coloring, fluorescent, phosphorescent, electrically conductive, magnetic, microwaveabsorbing and flameretardant materials, or for the production thereof.
- The following are examples provided to illustrate the method and multiphasic systems of the present invention. The constituents of the following examples are available from SigmaAldrich, unless otherwise indicated. In some cases equivalent weights are used rather than gram amounts. When equivalent weights are used, the equivalent is defined with respect to a functional group, for example hydroxyl groups, isocyanate groups, amine groups and the like. The relevant functional group should be obvious to one skilled in the art of the synthesis of polymeric gels. When the word “equivalent” is used, it is meant equivalent weight.
- Aforementioned, solid phase can be inserted mechanically into an existing gel phase, the gel state can be formed around a distribution of solid phase, the solid phase can be formed within an existing gel state, or in either of these cases the solid phase and gel phase chemically interact to form bonds.
- The solid and gel phases are typically characterized as possessing pendant hydroxyl groups. When a desired distribution of solid phase and gel phase is obtained to form a multiphasic gel, this state of distribution can be fixed by addition of a crosslinker, for example a diisocyanate.
- Alternatively, the solid or gel phases can possess a surplus of terminal NCO groups such that when one of the gel or solid phases possessing terminal hydroxyl groups is introduced into the state possessing terminal isocyanate groups that spontaneous polymerizations occurs. This polymerization can be enhanced by the addition of catalysts known in the art. The polymerization that occurs is local, and limited to bonds formed between gel phase molecules and solid phase molecules. In this situation, it is preferred that the distribution of solid phase be sufficiently diffuse that chain extension or polymerization between solid phase structures does not occur, unless a more complex solid phase geometry desired.
- The form of macroscopic crosslinking can achieve any degree desired of constraint on the overall multiphasic gel system. For example, the coupling can be strictly local between discrete solid phase and gel domains. Alternatively, and especially with diffusion of soluble hydroxyl rich monomers in the gel matrix, chain extension can occur, especially if the isocyanate functionality is not localized to either the gel phase or the solid phase. If hydroxyl rich monomers are to be used in the final fixing of solid state relative to gel state, than any unreacted monomers are to be washed out by the use of a suitable polar solvent, such as water. It is important that the resulting multiphasic gel system be cohesive. In particular, there should be no free small molecule constituents that are not intended to provide a biofunctional aspect. Conversely, no fixing of the gel phase to the solid phase, preferably, alters the functionality or distribution mechanics of a molecular biofunctional constituent intended to be released into a mammalian body.
- In a 3neck flask are placed 400 g of a PLADiol (Mn=1000) and 200 g of Terathane 2000 (Invista, Wichita, Kans.). Toluene is added in excess, and the mixture gently heated to remove toluene to obtain a 20% w/w solution. After cooling to room temperature, 650 g of isophorone diisocyanate was added and mixed under dry nitrogen. To the mixture was then added 5 g of dibutyltindilaurate (DBTL) and the mixture was heated to 75.degree.C. After 5 hours, 128.7 g of 1,4butane diol is added and the reaction mixture is diluted with toluene to get concentration of all components of approximately 15% Subsequently, the temperature is raised to 80.degree.C. After 10 hours the mixture is allowed to cool to room temperature. The toluene is driven off under vacuum until a clear solid polyurethane is obtained.
- In a 3neck flask are placed 400 g of a PLADiol (Mn=1000) and 400 g of polyethylene glycol (Mn=2000). Toluene is added in excess, and the mixture gently heated to remove toluene to obtain a 20% w/w solution. After cooling to room temperature, 650 g of isophorone diisocyanate was added and mixed under dry nitrogen. To the mixture was then added 5 g of dibutyltindilaurate (DBTL) and the mixture was heated to 75 degrees C. After 5 hours, 128.5 g of 1,4butane diol is added and the reaction mixture is diluted with toluene to get concentration of all components of approximately 15% Subsequently, the temperature is raised to 80.degree.C. After 10 hours the mixture is allowed to cool to room temperature. The toluene is driven off under vacuum until a clear solid polyurethane is obtained.
- In a 3neck flask was placed 200 g of a PLADiol (Mn=2000), 200 g of polycaprolactone (Mn=2000) and 400 g of polyethylene glycol (Mn=2000). Toluene is added in excess, and the mixture gently heated to remove toluene to obtain a 20% w/w solution. After cooling to room temperature, 505 g of isophorone diisocyanate was added and mixed under dry nitrogen. To the mixture was then added 7 g of dibutyltindilaurate (DBTL and the mixture was heated to 75 degrees C. After 5 hours, 128.5 g of 1,4butane diolis added and the reaction mixture is diluted with toluene to get concentration of all components of approximately 15%. Subsequently, the temperature is raised to 80 degrees C. After 10 hours the mixture is allowed to cool to room temperature. The toluene is driven off under vacuum until a clear solid polyurethane is obtained.
- Pluronic 31 R1 (molecular weight 3250) (BASF, Mt. Olive, N.J.) was dried under vacuum at 85.degree. C. for 12 hr. in a spherical flask, the final water content obtained was below 300 ppm. One equivalent of Pluronic 31 R1 was added to ⅕ equivalent (I)Lactide and 0.18 grams catalyst (stannous 2ethyl hexanoate) (0.43%). The reaction was carried out in a sealed flask, under a dry nitrogen saturated atmosphere, for two and half hours at 145 degrees C. To the above synthesis is added 2 equivalents of toluene diisocyanate and reacted at 60 degrees C. for 8 hours. To this result is added ½ equivalent of biofunctional molecule, for example a boswellia extract and reacted at 75 degrees C. for 8 hours.
- Polyethylene glycol (molecular weight 3000) was dried in vacuo overnight at 85.degree. C. Thereafter, the PEG was cooled down to room temperature, and the product capped with dry nitrogen. One equivalent of PEG was added to ⅕ equivalent (1)Lactide and 0.18 grams catalyst (stannous 2ethyl hexanoate). The mixture of PEG and lactide is placed in an oil bath under flowing nitrogen at 140 degree C.and mixed for 3 hours. To the above synthesis is added 2 equivalents of toluene diisocyanate and reacted at 60 degrees C. for 8 hours. To this result is added ½ equivalent of biofunctional molecule, for example a boswellia extract and reacted at 75 degrees C. for 8 hours.
- In a reactor equipped with stir rod, place 2 moles of diisocyanate under nitrogen. Heat the volume to 60.degree.0 and slowly add 1 mole of poloxamer diol. The poloxamer should be added at a rate slow enough such that the volume temperature does not rise above 65.degree.C. If the poloxamer is a solid at 60.degree.C, then a solvent can be used. When all the poloxamer has been added to the reaction volume the mixture should be reacted until the isocyanate content corresponds to two available NCO groups per poloxamer molecule. Adding the poloxamer slowly ensures each poloxamer molecule is endcapped with two diisocyanate molecules, because the majority of the reaction is done in an excess of diisocyanate, and chain extension of the poloxamer is less probable. If prevention of chain extension is important a large excess of diisocyanate can be employed, and the excess diisocyanate evaporated at the termination of the reaction. Once the poloxamer diisocyanate is prepared as described above, 1 mole can be loaded into a reactor under nitrogen, heated to 85.degree.0 and two moles of dilactide (A) or more generally an ester added slowly, and as before preventing an excessive exotherm. To this result is added ½ equivalent of biofunctional molecule, for example a boswellia extract and reacted at 75 degrees C. for 8 hours.
- While poloxamers of many varied combinations of ethylene oxide (B) and propylene oxide (C) are commercially available, there are practical limits on constructing these chains with monomeric ethylene oxide and propylene oxide. Greater control is afforded by starting with diisocyanates (D) of the monomers, for example DBD or DCD. To these B or C can be arbitrarily added in any combination by forming urethane links between the addition monomer and the diisocyanate end capped chain. Through a stepwise sequence of chain extensions with monomers and subsequent end capping with diisocyanate and combination of B and C can be obtained. One drawback is that the resulting polymer will be more hydrophobic that a chain obtained by direct polymerization of ethylene oxide and propylene oxide. However, this drawback can be compensated in most cases by using less propylene glycol.
- Multiarmed polymers can be constructed without crosslinking by introducing a triol (T) and linking the triol to poloxamer chains with diisocyanate. For example, poloxamer chains are introduced into a reactor and endcapped with diisocyanate. The resulting poloxamer diisocyanate is then reacted with a low molecular weight triol such a trimethylolpropane. The result is a poloxamer triisocyanate which then can be reacted with ester (A). Preferably, the ester is polylactic acid. This yields a gel prepolymer. Gels can be made by adding water and stirring vigorously. Gels comprising up to 95% water can be made.
- The prepolymer of EXAMPLE 7 wherein the polylactic acid is substituted with sodium hyaluronan. Gels can be made by adding water and stirring vigorously. Gels comprising up to 95% water can be made.
- The prepolymer of EXAMPLE 7 wherein the polylactic acid is substituted with any of the above Solid Phases
- Hyaluronan contains repeating segments of C14H21NO11, each containing 5 hydroxyl groups (OH). To form a diisocyanate of hyaluronan one reacts a quantity of diisocyanate containing 2 moles of NCO greater than the number of moles of OH. Thus, a hyaluronan containing 1 unit of C 14 H 21 NO 11 per molecule, then 1 mole of hyaluronan molecules if to be reacted with 7 moles of diisocyanate. The reaction is performed in an organic solvent, where the hyaluronan is altered by ammonia to make it soluble in an organic solvent, for example tetrahydrofuran. A small amount of tin catalyst is added to promote urethane link formation between the hydroxyls of the hyaluronan and the isocyanate groups of the diisocyanate. To discourage chain extension, the hyaluronan is first dissolved in organic solvent and set aside. The reactor is charged with catalyst and diisocyanate and heated to 80 degrees C. The hyaluronan solution is slowly added to the reactor and the exotherm monitored. Complete reaction is indicated when the exotherm subsides. Alternatively, one can measure the % NCO at each step to verify all the hydroxyl groups on the hyaluronan are endcapped with isocyanate. When all the hyaluronan is added to the reactor the reaction is run until the desired % NCO is reached. % NCO is measured by conventionally by dibutylamine titration. The reaction is complete when 2 moles of NCO are measured for every mole of product molecule. Ideally there is only 1 C 14 H 21 NO 11 unit per product molecule. However, in
- other applications a spectrum of product molecules containing a range of C 14 H 21 NO 11 unit per product molecule is desired. The desired polydispersity can be obtained by adjusting the amount of NCO used, and verifying with GPC and % NCO measurements.
- In any one reaction, the dispersity of molecular weights of product molecules will be Gaussian around a desired mean. Multimodal distributions can be obtained by mixing the reaction product of multiple reactions. Hyaluronan isocyanates of higher isocyanate functionality can be synthesized by adjusting the ratio of OH groups to isocyanate groups in the reaction mix.
- In this example a castorderived hydroxylterminated ricinoleate derivative is used as the triol. One equivalent of polycin T400 (141 g) is combined with 2 equivalent of toluene diisocyanate (174 g) at room temperature (22° C.). The mixture is stirred at 100 revolutions per minute and the temperature monitored. The mixture will begin to heat up by exothermic reaction and no heat is to be applied to the reactor until the temperature in the reactor ceases to rise. Then the mixture temperature should be increased in 5° C. increments per ½ hour until the mixture reaches 60° C. The reaction should be continued until the % NCO=13.3%. The target % NCO is reached when every hydroxyl group in the mixture is reacted with an NCO group. Ideally, the result is a single diol endcapped with two diisocyanates. This outcome can be enhanced by slow addition of the diol to the diisocyanate. The addition should be in 10 g increments, added when the exotherm from the previous addition has ceased. However, chain extended variations of the above ideal outcome are useful, their primary disadvantage being that the product is slightly higher in viscosity. The ideal % NCO is calculated by dividing the weight of the functional isocyanate groups (2×42 Dalton) per product molecule by the total weight of the product molecule (282 Dalton+2×174 Dalton) yielding approximately 13.3%. The above reaction will yield a viscous product. A less viscous product can be obtained by adding propylene carbonate to the initial mixture. Additions up to 100% by weight of propylene carbonate are useful. Adjustment to the target NCO of the mixture must be performed using standard methods, or the propylene carbonate may be added after reaching the target % NCO. Propylene carbonate is available from SigmaAldrich (Milwaukee, Wis.).
- In this example a polyether hydroxylterminated copolymer of 75% ethylene oxide and 35% propylene oxide is used as the triol. One equivalent of Multranol 9199 (3066 g) is combined with 3 equivalent of toluene diisocyanate (261 g) at room temperature (22° C.). The mixture is stirred at 100 revolutions per minute and the temperature monitored. The mixture will begin to heat up by exothermic reaction and no heat is to be applied to the reactor until the temperature in the reactor ceases to rise. Then the mixture temperature should be increased in 5° C. increments per ½ hour until the mixture reaches 60° C. The reaction should be continued until the % NCO=1.3%. The target % NCO is reached when every hydroxyl group in the mixture is reacted with an NCO group. Ideally, the result is a single diol endcapped with two diisocyanates. This outcome can be enhanced by slow addition of the diol to the diisocyanate. The addition should be in 10 g increments, added when the exotherm from the previous addition has ceased. However, chain extended variations of the above ideal outcome are useful, their primary disadvantage being that the product is slightly higher in viscosity. The ideal % NCO is calculated by dividing the weight of the functional isocyanate groups (3×42 Dalton) per product molecule by the total weight of the product molecule (9199 Dalton+3×174 Dalton) yielding approximately 1.3%. Multranol 9199 is available from Bayer (Pittsburgh, Pa.).
- Any of the diisocyanates prepared above can be trimerized by the addition of a low molecular weight triol such as polycin T400 or trimethylolpropane (TMP). In this example TMP is used, but the method is adaptable to any triol. Complete trimerization of the diisocyanates of Example 1 and 2 will result in viscous products. To yield a lower viscosity product propylene carbonate can be employed or less triol can be used. In the latter case, a mixture of diisocyanate and triisocyanate is obtained.
- In this example the preceding polyether diisocyanate is used. One equivalent of polyether diisocyante (682 g) is combined with 0.1 equivalent TMP (44.7 g) at room temperature (22° C.). The mixture is stirred at 100 revolutions per minute and the temperature monitored. The mixture will begin to heat up by exothermic reaction and no heat is to be applied to the reactor until the temperature in the reactor ceases to rise. Then the mixture temperature should be increased in 5° C. increments per ½ hour until the mixture reaches 60° C. The reaction should be continued until the % NCO=5.8%. The target % NCO is reached when every hydroxyl group in the mixture is reacted with an NCO group. The ideal % NCO is calculated by dividing the weight fraction of the functional isocyanate groups 10%(3×42 Dalton) and 90%(2×42) per product molecule by the total weight fraction of the product molecule (3×1364 Dalton+134 Dalton)+1364 yielding approximately 0.3%+5.5%=5.8%. TMP is available from SigmaAldrich (Milwaukee, Wis.).
- The hydroxyl number of Boswellia extract will vary depending on extraction method, species of Boswellia extracted, and even variations within species. The goal is to obtain a product with no NCO functionality, so all reaction mixtures should be reacted until the final % NCO=0.
- One hundred grams of the preceding polyether triisocyanate is combined with 1 g of Boswellia extract at room temperature (22° C.) under 90% nitrogen and 10% nitric oxide atmosphere. The mixture is stirred at 100 revolutions per minute and the temperature monitored. The mixture will begin to heat up by exothermic reaction. When the temperature ceases to rise, a % NCO reading is taken. If % NCO>0 than an additional 1 g of Boswellia extract is to be added. By a series of Boswellia addition one calculates the change in % NCO as a function of 1 g additions of Boswellia extract, a linear plot is obtained from which the total amount of Boswellia extract addition necessary to bring the % NCO to zero is obtained. This amount of Boswellia extract is added to the mixture and the mixture is reacted so that % NCO=0 is obtained.
- Preparation of a modified Boswellia extract using the triisocyanate/diisocyanate of Example 14.
- The hydroxyl number of Boswellia extract will vary depending on extraction method, species of Boswellia extracted, and even variations within species. The goal is to obtain a product with no NCO functionality, so all reaction mixtures should be reacted until the final % NCO=0. In this example the product of Example 14 is used as the polyether diisocyanate/triisocyanate mixture. One hundred grams of Example 29 is combined with 1 g of Boswellia extract at room temperature (22° C.) under 90% nitrogen and 10% nitric oxide atmosphere. The mixture is stirred at 100 revolutions per minute and the temperature monitored. The mixture will begin to heat up by exothermic reaction. When the temperature ceases to rise, a % NCO reading is taken. If % NCO>0 than an additional 1 g of Boswellia extract is to be added. By a series of Boswellia addition one calculates the change in % NCO as a function of 1 g additions of Boswellia extract, a linear plot is obtained from which the total amount of Boswellia extract addition necessary to bring the % NCO to zero is obtained. This amount of Boswellia extract is added to the mixture and the mixture is reacted so that % NCO=0 is obtained.
- In this example a polyether hydroxylterminated copolymer of 75% ethylene oxide and 35% propylene oxide is used as the triol. One equivalent of Multranol 9199 (3066 g) is combined with 3 equivalent of toluene diisocyanate (261 g) at room temperature (22° C.). The mixture is stirred at 100 revolutions per minute and the temperature monitored.
- The mixture will begin to heat up by exothermic reaction and no heat is to be applied to the reactor until the temperature in the reactor ceases to rise. Then the mixture temperature should be increased in 5° C. increments per ½ hour until the mixture reaches 60° C. The reaction should be continued until the % NCO=1.3%. The target % NCO is reached when every hydroxyl group in the mixture is reacted with an NCO group. Ideally, the result is a single diol endcapped with two diisocyanates. This outcome can be enhanced by slow addition of the diol to the diisocyanate. The addition should be in 10 g increments, added when the exotherm from the previous addition has ceased. However, chain extended variations of the above ideal outcome are useful, their primary disadvantage being that the product is slightly higher in viscosity. The ideal % NCO is calculated by dividing the weight of the functional isocyanate groups (3×42 Dalton) per product molecule by the total weight of the product molecule (9199 Dalton+3×174 Dalton) yielding approximately 1.3%. Multranol 9199 is available from Bayer (Pittsburgh, Pa.).
- The hydroxyl number of Boswellia extract will vary depending on extraction method, species of Boswellia extracted, and even variations within species. The goal is to obtain a product with no NCO functionality, so all reaction mixtures should be reacted until the final % NCO=0.
- One hundred grams of above triisocyanate is combined with 1 g of Boswellia extract at room temperature (22° C.) under 90% nitrogen and 10% nitric oxide atmosphere. The mixture is stirred at 100 revolutions per minute and the temperature monitored. The mixture will begin to heat up by exothermic reaction. When the temperature ceases to rise, a % NCO reading is taken. If % NCO>0 than an additional 1 g of Boswellia extract is to be added. By a series of Boswellia addition one calculates the change in % NCO as a function of 1 g additions of Boswellia extract, a linear plot is obtained from which the total amount of Boswellia extract addition necessary to bring the % NCO to zero is obtained. This amount of Boswellia extract is added to the mixture and the mixture is reacted so that % NCO=0 is obtained.
- Any of the above solid phase absorbable polyurethanes may be used. The polyurethane is dissolved in acetone in a 20% by weight ratio of polymer to acetone to form a polyurethane solution. A beaker is filled with distilled water and placed on a magnetic stirrer. The stir rate is selected to create a vortex in the water. A 3 ml syringe with an 18G needle is loaded with polyurethane solution. The tip of the needle is placed in the water and the polyurethane solution is introduced into the water at a rate of 1 ml/minute.
- The polyurethane instantly becomes a solid on contact with the water. The lamellar flow of the polyurethane solution through the inner diameter of the needle induces a rolling motion at the exit of the needle. The solidifying polyurethane forms into tori upon exit of the needle. The rate of introduction of the polyurethane solution to the water can be used to control the thickness of the formed tori. Other variables that can be adjusted are the temperature of the water, the dilution of the polyurethane solution, and the selection of solvents other than acetone. The diameter of the formed tori can be controlled by selecting needles of different inner diameter. Small inner diameter results in small diameter tori.
- After each introduction of 3 ml of polyurethane solution to 100 ml of water, the stirring of the water is halted. The water at this point appears milky with homogenously distributed microtori. During this standing period the acetone is drawn out of the polyurethane by the water. A period of approximately 1 hour is allocated for the acetone to leave the polyurethane sufficiently to prevent clumping and adhesion of the tori. The tori may be filter from the water suspension, or another bolus of polyurethane solution may be administered. Up to approximately 15 ml of polyurethane solution can be introduced into the water if single tori are desired. Higher genus solid phase can be obtained by allowing the tori density to increase to the point where newly formed tori have a high probability of joining with an existing torus in solution while the introduced polyurethane is still in a relatively solvated state.
- Tori can be harvested from solution using standard filter paper, wherein the tori are captured on the filter paper and dried in an oven at 40° C. The result is dry, flowable tori. An image of a torus 400 prepared according to the present methods is shown in
FIG. 4 . Torus 400 has a diameter of about 500 micron. - Any of the above gel prepolymers can be used. A beaker of water is charged with adesired density of solid phase tori and stirred at a rate sufficient to obtain a uniform distribution of tori in the water. A solution of gel prepolymer is prepared by making a solution of prepolymer and a solvent. Solvents can be acetone, toluene or an inert addition such as propylene carbonate or a water miscible diol. The solution is introduced to the water mixture at 1 cc/minute at 10 minute intervals. Between intervals the pH of the solution is maintained between 6.5 and 7.5 pH using a suitable base, for example sodium hydroxide. This process is continued until a desired viscosity is achieved. Slower additions are successful, but faster additions may result in the formation of inhomogeneities in the forming gel. The formed gel is then washed in distilled water several time to remove the solvent and sodium ions. If a volatile solvent is used, vacuum can be used to remove solvent. It is important that the gel does not desiccate, since many gels will not rehydrate fully.
- In some instances it is desirable to obtain a multiphase gel which can have all the water removed and be rehydrating to its originally formed ratio of water to polymer. To achieve this result, the water fraction of the gel can be loaded with salt ions, in particular sodium chloride. Under rehydration, reintroduction of the dehydrated gel to distilled water in a ratio of polymer weight to water volume that will result in 0.9% salt (physiologic saline) is useful in implantable applications.
- Although there have been described particular embodiments of the present invention of a new and useful MULTIPHASE GEL it is not intended that such references be construed as limitations upon the scope of this invention except as set forth in the following claims.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/863,775 US20200316265A1 (en) | 2016-05-03 | 2020-04-30 | Multiphase gel |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662331286P | 2016-05-03 | 2016-05-03 | |
US15/586,114 US10668190B2 (en) | 2016-05-03 | 2017-05-03 | Multiphase gel |
US16/863,775 US20200316265A1 (en) | 2016-05-03 | 2020-04-30 | Multiphase gel |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/586,114 Continuation US10668190B2 (en) | 2016-05-03 | 2017-05-03 | Multiphase gel |
Publications (1)
Publication Number | Publication Date |
---|---|
US20200316265A1 true US20200316265A1 (en) | 2020-10-08 |
Family
ID=58739355
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/586,114 Active 2037-09-09 US10668190B2 (en) | 2016-05-03 | 2017-05-03 | Multiphase gel |
US16/863,775 Pending US20200316265A1 (en) | 2016-05-03 | 2020-04-30 | Multiphase gel |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/586,114 Active 2037-09-09 US10668190B2 (en) | 2016-05-03 | 2017-05-03 | Multiphase gel |
Country Status (5)
Country | Link |
---|---|
US (2) | US10668190B2 (en) |
EP (1) | EP3452127A1 (en) |
CN (1) | CN110087705B (en) |
TW (2) | TWI841843B (en) |
WO (1) | WO2017192753A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020077554A1 (en) * | 2018-10-17 | 2020-04-23 | Dow Global Technologies Llc | Gel comprising phase change materials |
CN111437444B (en) * | 2020-04-12 | 2021-03-12 | 南方医科大学 | Preparation method of intestinal adhesion-resistant double-layer biogel and double-layer biogel |
US12005134B2 (en) | 2021-06-30 | 2024-06-11 | Abe Pharmaceutical | Composition for stimulating facial hair growth and methods of manufacturing a composition for stimulating facial hair growth |
CN114642287B (en) * | 2022-05-12 | 2024-07-23 | 佛山科学技术学院 | High-barrier detachable mask with independent multifunctional layer |
CN115895155B (en) * | 2023-01-29 | 2024-03-01 | 天津科技大学 | Poly (p-dioxanone)/polyvinyl alcohol hydrogel and preparation method thereof |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6486140B2 (en) | 1994-07-19 | 2002-11-26 | Medicarb Ab | Agents, and methods employing them, for the prevention or reduction of tissue adhesion at a wound site |
US6413539B1 (en) | 1996-10-31 | 2002-07-02 | Poly-Med, Inc. | Hydrogel-forming, self-solvating absorbable polyester copolymers, and methods for use thereof |
DE69636289T2 (en) | 1995-12-18 | 2007-05-10 | Angiodevice International Gmbh | NETWORKED POLYMERISATE MATERIALS AND METHOD FOR THEIR USE |
US6642363B1 (en) | 1996-09-19 | 2003-11-04 | The Regents Of The University Of Michigan | Polymers containing polysaccharides such as alginates or modified alginates |
ES2353840T3 (en) | 1997-04-21 | 2011-03-07 | California Institute Of Technology | MULTIFUNCTIONAL POLYMER TISSULAR COATINGS. |
US6211249B1 (en) | 1997-07-11 | 2001-04-03 | Life Medical Sciences, Inc. | Polyester polyether block copolymers |
US6514522B2 (en) | 1998-04-08 | 2003-02-04 | Chondros, Inc. | Polymer constructs |
AU752942B2 (en) | 1998-04-13 | 2002-10-03 | Massachusetts Institute Of Technology | Comb copolymers for regulating cell-surface interactions |
CA2357781A1 (en) | 1999-01-22 | 2000-07-27 | Elan Pharmaceuticals, Inc. | Multicyclic compounds which inhibit leukocyte adhesion mediated by vla-4 |
CA2361268C (en) | 1999-02-01 | 2014-06-10 | Dermal Research Laboratories, Inc. | A pharmaceutical composition of complex carbohydrates and essential oils and methods of using the same |
US6312725B1 (en) | 1999-04-16 | 2001-11-06 | Cohesion Technologies, Inc. | Rapid gelling biocompatible polymer composition |
US6579951B1 (en) | 1999-06-08 | 2003-06-17 | Life Medical Sciences, Inc. | Chain-extended or crosslinked polyethylene oxide/polypropylene oxide/polyethylene oxide block polymer with optional polyester blocks |
US6566345B2 (en) | 2000-04-28 | 2003-05-20 | Fziomed, Inc. | Polyacid/polyalkylene oxide foams and gels and methods for their delivery |
KR100721752B1 (en) | 2000-01-24 | 2007-05-25 | 쿠라레 메디카루 가부시키가이샤 | Water-swellable polymer gel and process for preparing the same |
KR100375299B1 (en) | 2000-10-10 | 2003-03-10 | 주식회사 엘지생명과학 | Crosslinked derivatives of hyaluronic acid by amide formation and their preparation methods |
JP5013152B2 (en) | 2001-02-28 | 2012-08-29 | 株式会社ビーエムジー | Protein complex forming agent |
SE0200667D0 (en) | 2002-03-05 | 2002-03-05 | A & Science Invest Ab | Novel use of cytokine inhibitors |
US6923961B2 (en) | 2002-04-30 | 2005-08-02 | Fziomed, Inc. | Chemically activated carboxypolysaccharides and methods for use to inhibit adhesion formation and promote hemostasis |
US8048444B2 (en) | 2002-07-31 | 2011-11-01 | Mast Biosurgery Ag | Apparatus and method for preventing adhesions between an implant and surrounding tissues |
IL155866A0 (en) * | 2003-05-12 | 2003-12-23 | Yissum Res Dev Co | Responsive polymeric system |
MY142987A (en) | 2005-06-08 | 2011-02-14 | Hayashibara Biochem Lab | Solution for tissue adhesion prevention and method for tissue adhesion prevention |
WO2007089484A2 (en) | 2006-01-26 | 2007-08-09 | Promethean Surgical Devices Inc. | Reversibly gelling polyurethane composition for surgical repair and augmentation |
EP2543340A1 (en) | 2006-05-19 | 2013-01-09 | Trustees Of Boston University | Novel hydrophilic polymers as medical lubricants and gels |
US8071663B2 (en) | 2008-02-29 | 2011-12-06 | Ethicon, Inc. | Medically acceptable formulation of a diisocyanate terminated macromer for use as an internal adhesive or sealant |
WO2010033137A1 (en) | 2008-09-19 | 2010-03-25 | Trustees Of Boston University | Polymeric biolubricants for medical use |
KR101062068B1 (en) | 2008-12-01 | 2011-09-02 | 포항공과대학교 산학협력단 | Anti-adhesion Composition |
US20100160960A1 (en) | 2008-12-19 | 2010-06-24 | E. I. Du Pont De Nemours And Company | Hydrogel tissue adhesive having increased degradation time |
US20100215700A1 (en) * | 2009-02-25 | 2010-08-26 | Conopco, Inc., D/B/A Unilever | Shear Gels and Compositions Comprising Shear Gels |
WO2012006720A1 (en) * | 2010-07-15 | 2012-01-19 | The Governors Of The University Of Alberta | Cellulose composite gels |
ES2571735T3 (en) * | 2010-10-20 | 2016-05-26 | Dsm Ip Assets Bv | Biodegradable compositions that support hanging hydrophilic group and related devices |
WO2012177825A1 (en) | 2011-06-21 | 2012-12-27 | Bvw Holding Ag | Medical device comprising boswellic acid |
TWI641396B (en) * | 2011-09-23 | 2018-11-21 | Bvw控股公司 | Medical copolymer |
TWI561535B (en) | 2011-10-06 | 2016-12-11 | Bvw Holding Ag | Copolymers of hydrophobic and hydrophilic segments that reduce protein adsorption |
US8936784B2 (en) * | 2011-10-17 | 2015-01-20 | Poly-Med, Inc. | Absorbable in situ gel-forming system, method of making and use thereof |
CA2852386C (en) * | 2011-10-17 | 2019-05-21 | Poly-Med, Inc. | Absorbable in situ gel-forming system, method of making and use thereof |
WO2013112381A2 (en) * | 2012-01-24 | 2013-08-01 | Bvw Holding Ag | New class of anti-adhesion hydrogels with healing aspects |
US8927079B2 (en) * | 2012-11-28 | 2015-01-06 | Aerogel Technologies, Llc | Porous polyurethane networks and methods of preparation |
DE102012223416A1 (en) * | 2012-12-17 | 2014-07-03 | Polymaterials Ag | Chain extended poloxamers, thermoreversible hydrogels formed therefrom with biological materials, and medical applications thereof |
-
2017
- 2017-05-03 US US15/586,114 patent/US10668190B2/en active Active
- 2017-05-03 TW TW110118242A patent/TWI841843B/en active
- 2017-05-03 TW TW106114679A patent/TWI731076B/en active
- 2017-05-03 CN CN201780041720.4A patent/CN110087705B/en active Active
- 2017-05-03 EP EP17724673.3A patent/EP3452127A1/en active Pending
- 2017-05-03 WO PCT/US2017/030892 patent/WO2017192753A1/en unknown
-
2020
- 2020-04-30 US US16/863,775 patent/US20200316265A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
TW201815427A (en) | 2018-05-01 |
CN110087705A (en) | 2019-08-02 |
WO2017192753A1 (en) | 2017-11-09 |
CN110087705B (en) | 2022-08-05 |
TWI731076B (en) | 2021-06-21 |
US10668190B2 (en) | 2020-06-02 |
TW202202180A (en) | 2022-01-16 |
US20170319751A1 (en) | 2017-11-09 |
EP3452127A1 (en) | 2019-03-13 |
TWI841843B (en) | 2024-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200316265A1 (en) | Multiphase gel | |
US20230312764A1 (en) | Functionalized and crosslinked polymers | |
Domb et al. | Biodegradable polymers in clinical use and clinical development | |
US8980248B2 (en) | Injectable polymer composition for use as a cell delivery vehicle | |
JP2021107420A (en) | Implantable drug delivery compositions and methods of use thereof | |
US9358301B2 (en) | Reverse thermal gels and uses therefor | |
US20060115457A1 (en) | Biocompatible hydrogel compositions | |
US20080187568A1 (en) | Polymerization with precipitation of proteins for elution in physiological solution | |
AU2017394923A1 (en) | Methods and systems for treating a site of a medical implant | |
JP2008520783A (en) | Active substance delivery system comprising a hydrogel matrix and a microcarrier | |
Wei et al. | A combination of hybrid polydopamine-human keratinocyte growth factor nanoparticles and sodium hyaluronate for the efficient prevention of postoperative abdominal adhesion formation | |
WO2018187286A1 (en) | A biodegradable, porous, thermally responsive injectable hydrogel as soft tissue defect filler | |
US20240033283A1 (en) | Functionalized and crosslinked polymers | |
Moscovici et al. | Bacterial polysaccharides versatile medical uses | |
WO2016140626A1 (en) | Composite material for drug delivery | |
Adams et al. | Pharmaceutical and biomedical polymers: Basics, modifications, and applications | |
Saadat | Pharmaceutical implants: from concept to commercialization | |
Datea | Joseph S. Adamsa, Yogesh Sutara, Sagar Dhoblea, Chiranjit Maitia, Sonali Nitin Hanjankarb, Rajeswari Dasa, Vandana Patravaleb, and | |
Tamboli et al. | Biodegradable polymers for ophthalmic applications | |
Carrêlo et al. | Injectable Composite Systems Based on Microparticles in Hydrogels for Bioactive Cargo Controlled Delivery. Gels 2021, 7, 147 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BVW HOLDING AG, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BLUECHER, LUKAS;MILBOCKER, MICHAEL;REEL/FRAME:052600/0385 Effective date: 20200507 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |