US20200301481A1 - Accessory devices for portable electronic devices - Google Patents

Accessory devices for portable electronic devices Download PDF

Info

Publication number
US20200301481A1
US20200301481A1 US16/894,681 US202016894681A US2020301481A1 US 20200301481 A1 US20200301481 A1 US 20200301481A1 US 202016894681 A US202016894681 A US 202016894681A US 2020301481 A1 US2020301481 A1 US 2020301481A1
Authority
US
United States
Prior art keywords
hinge
hinge component
segment
panel
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/894,681
Inventor
Kevin M. Robinson
James A. Stryker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Priority to US16/894,681 priority Critical patent/US20200301481A1/en
Publication of US20200301481A1 publication Critical patent/US20200301481A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1675Miscellaneous details related to the relative movement between the different enclosures or enclosure parts
    • G06F1/1681Details related solely to hinges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1632External expansion units, e.g. docking stations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1654Details related to the display arrangement, including those related to the mounting of the display in the housing the display being detachable, e.g. for remote use
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1656Details related to functional adaptations of the enclosure, e.g. to provide protection against EMI, shock, water, or to host detachable peripherals like a mouse or removable expansions units like PCMCIA cards, or to provide access to internal components for maintenance or to removable storage supports like CDs or DVDs, or to mechanically mount accessories
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1656Details related to functional adaptations of the enclosure, e.g. to provide protection against EMI, shock, water, or to host detachable peripherals like a mouse or removable expansions units like PCMCIA cards, or to provide access to internal components for maintenance or to removable storage supports like CDs or DVDs, or to mechanically mount accessories
    • G06F1/166Details related to functional adaptations of the enclosure, e.g. to provide protection against EMI, shock, water, or to host detachable peripherals like a mouse or removable expansions units like PCMCIA cards, or to provide access to internal components for maintenance or to removable storage supports like CDs or DVDs, or to mechanically mount accessories related to integrated arrangements for adjusting the position of the main body with respect to the supporting surface, e.g. legs for adjusting the tilt angle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1662Details related to the integrated keyboard
    • G06F1/1669Detachable keyboards
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/02Input arrangements using manually operated switches, e.g. using keyboards or dials
    • G06F3/0202Constructional details or processes of manufacture of the input device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/04Supports for telephone transmitters or receivers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1626Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/16Indexing scheme relating to G06F1/16 - G06F1/18
    • G06F2200/163Indexing scheme relating to constructional details of the computer
    • G06F2200/1633Protecting arrangement for the entire housing of the computer

Definitions

  • Accessory devices include a panel and a hinge assembly that allows the panel to move relative to remaining structural components of the accessory device.
  • the panel can be stored in an opening of the accessory device, or deployed (using the hinge assembly) and removed from the opening to provide a receiving surface for a portable electronic device.
  • Accessory devices can be used with electronic devices.
  • An accessory device may include mechanical features used to hold an electronic device.
  • an accessory device for a portable electronic device may include a segment that includes an opening that leads to an internal volume.
  • the accessory device may further include a panel capable of receiving the portable electronic device.
  • the accessory device may further include a hinge assembly carried by the segment and coupled with the panel.
  • a first configuration includes the hinge assembly positioned in the internal volume and the panel positioned in the opening and covering the hinge assembly.
  • a second configuration includes the hinge assembly positioned at least partially out of the internal volume and the panel out of the opening.
  • an accessory device for a portable electronic device may include a first segment that includes a keyboard capable of communicating with the portable electronic device.
  • the accessory device may further include a second segment coupled with the first segment.
  • the accessory device may further include a panel that defines a receiving surface for the portable electronic device.
  • the accessory device may further include a hinge assembly secured with the second segment and the panel.
  • the hinge assembly may include a first hinge component.
  • the hinge assembly may further include a second hinge component coupled to the first hinge component.
  • the first hinge component and the second hinge component may be configured to rotate about a pivot point.
  • a rotation about the pivot point includes i) the first hinge component rotating along a surface, and ii) the second hinge component rotating away from the surface and positioning the panel to receive the portable electronic device at the receiving surface.
  • an accessory device for a portable electronic device may include a segment comprising an opening that leads to an internal volume.
  • the accessory device may further include a panel.
  • the accessory device may further include a hinge assembly that rotationally couples the panel with the segment.
  • the accessory device is capable of different configuration.
  • the accessory device defines a stored configuration. In the stored configuration, the panel is positioned in the opening and the hinge assembly is positioned in the segment and covered by the panel.
  • the accessory device defines a deployed configuration. In the deployed configuration, the hinge assembly is at least partially out of the segment and positions the panel such that the panel is capable of receiving the portable electronic device.
  • FIG. 1 illustrates an isometric view of an embodiment of an accessory device, in accordance with some described embodiments
  • FIG. 2 illustrates an isometric view of the accessory device shown in FIG. 1 , showing the panel extended away from the segment;
  • FIG. 3 illustrates an exploded view of the hinge assembly of the accessory device shown in FIGS. 1 and 2 , showing the components of the hinge assembly;
  • FIG. 4 illustrates a plan view of the hinge assembly, showing the components assembled together
  • FIG. 5 illustrates a side view of the accessory device, showing the hinge assembly and the panel within the segment
  • FIG. 6 illustrates a plan view of the hinge assembly, showing an exemplary movement of the hinge assembly
  • FIG. 7 illustrates a side view of the accessory device, showing the hinge assembly supporting and positioning the panel
  • FIG. 8 illustrates a side view of the accessory device, showing the accessory device carrying the portable electronic device, in accordance with some described embodiments
  • FIG. 9 illustrates a plan view of an alternate embodiment of a hinge assembly, in accordance with some described embodiments.
  • FIG. 10 illustrates a side view of an embodiment of an accessory device, showing the accessory device carrying the electronic device, in accordance with some described embodiments;
  • FIG. 11 illustrates a plan view of an alternate embodiment of a hinge assembly, in accordance with some described embodiments.
  • FIG. 12 illustrates a side view of an embodiment of an accessory device with the hinge assembly shown in FIG. 11 , showing the accessory device carrying the electronic device, in accordance with some described embodiments;
  • FIG. 13 illustrates a plan view of an alternate embodiment of a hinge assembly, in accordance with some described embodiments
  • FIG. 14 illustrates a cross sectional view of the hinge assembly shown in FIG. 13 , showing the relationship between the fastener and the hinge component;
  • FIG. 15 illustrates a plan view of the accessory device shown in FIG. 13 , showing an exemplary movement of the hinge assembly
  • FIG. 16 illustrates a plan view of an alternate embodiment of a hinge assembly, in accordance with some described embodiments
  • FIG. 17 illustrates a plan view of the hinge assembly shown in FIG. 16 , showing an exemplary movement of the hinge assembly
  • FIG. 18 illustrates a plan view of an alternate embodiment of a hinge assembly, in accordance with some described embodiments.
  • FIG. 19 illustrates a plan view of the hinge assembly shown in FIG. 18 , showing an exemplary movement of the hinge assembly
  • FIG. 20 illustrates a plan view of an alternate embodiment of a hinge assembly, in accordance with some described embodiments
  • FIG. 21 illustrates a plan view of the hinge assembly shown in FIG. 20 , showing an exemplary movement of the hinge assembly
  • FIG. 22 illustrates a plan view of an alternate embodiment of a hinge assembly, in accordance with some described embodiments.
  • FIG. 23 illustrates a plan view of the hinge assembly shown in FIG. 22 , showing an exemplary movement of the hinge assembly
  • FIG. 24 illustrates a plan view of an alternate embodiment of a hinge assembly, in accordance with some described embodiments.
  • FIG. 25 illustrates a plan view of the hinge assembly shown in FIG. 24 , showing an exemplary movement of the hinge assembly
  • FIG. 26 illustrates an isometric view of an embodiment of an electronic device, showing a panel integrated into a housing of the electronic device, in accordance with some described embodiments;
  • FIG. 27 illustrates an isometric view of the electronic device shown in FIG. 26 , showing the panel extended from the housing;
  • FIG. 28 illustrates a block diagram of an electronic device, in accordance with some described embodiments.
  • Accessory devices described herein may include a hinge assembly and a panel coupled to the hinge assembly.
  • the hinge assembly can be rotationally driven by the hinge assembly to drive the panel away from other structural components of the accessory device.
  • the panel can subsequently provide a receiving surface for an electronic device.
  • the panel may include magnets that magnetically couple with magnets in the electronic device.
  • the accessory device does not require mechanical devices (such as sidewalls that constrain the electronic device) or other interlocking devices, as the magnetic attraction between the magnets provides a sufficient coupling force.
  • the hinge assembly and the panel can be stored in the accessory device.
  • a hinge assembly described herein may include a first hinge component coupled to a second hinge component by a joint.
  • the first and second hinge components may include generally flat components, as compared to the circular friction clips and shafts.
  • the first and second hinge components allow the hinge assembly to transition from a stored configuration to a deployed configuration, and vice versa.
  • the first and second hinge components lie flat, i.e., the first and second hinge components are generally in line with a horizontal plane.
  • both the first and second hinge components are positioned in the accessory device.
  • the panel is positioned in an opening of the accessory device, and generally covers the first and second hinge components.
  • the panel magnets can magnetically couple with the electronic device magnets and the electronic device is in an upright position.
  • the first hinge component When transitioning from the stored configuration to the deployed configuration, the first hinge component rotates about a pivot point, but remains generally flat. However, the rotation of the first hinge component causes the second hinge component to move out of the flat configuration, and lifts the second hinge component into a support configuration for the panel.
  • the second hinge component may rotate about the same pivot point as the first hinge component. Additionally, the second hinge component may rotate about an axis of rotation. The axis of rotation may lie in a plane defined by the first hinge component.
  • the hinge assembly may include a third and fourth hinge component with features similar to those of the first and second hinge components, respectively. In the deployed configuration, the weight of the electronic device is supported by the second and fourth hinge components, which are supported by the first and third hinge components, respectively.
  • hinge assembly further a central component coupled to the panel, as well as the second and fourth hinge components. Accordingly, the central component moves in conjunction with these coupled components.
  • hinge assemblies described herein offer several advantages over traditional hinge assemblies. For instance, hinge assemblies described herein do not rely upon a shaft and associated size (diameter) for frictional support, as the frictional engagement does not occur between a shaft and another elements. Rather, hinge assemblies described herein provide stability in that frictional forces lie outside the components (such as the panel that directly supports the electronic device), and are less dependent upon the size and shape of the hinge components. Also, the configuration of the hinge assemblies described herein change significantly between the stored and deployed configuration. This allows the hinge assembly to lie flat in the accessory device and hidden from view (in the stored configuration), and subsequently transition to a three-dimensional support structure to receive support the electronic device (in the deployed configuration).
  • FIG. 1 illustrates an isometric view of an embodiment of an accessory device 100 , in accordance with some described embodiments.
  • the accessory device 100 is designed for use with portable electronic devices (not shown in FIG. 1 ), such as mobile wireless communication devices (smartphones) and tablet computer devices.
  • the accessory device 100 may be referred to as a case, a cover, a protective case, a protective cover, a folding cover, or the like.
  • the accessory device 100 includes a segment 102 a , a segment 102 b , and a segment 102 c , with the segment 102 c being an optional segment.
  • the segment 102 a and the segment 102 c are rotatable with respect to the segment 102 b .
  • the segment 102 a and the segment 102 b may fold over a front surface or a back surface (not shown in FIG. 1 ) of the segment 102 b , with the back surface being opposite the front surface.
  • This allows the accessory device 100 to reduce its overall profile in the X-Y plane, as shown in FIG. 1 .
  • the segment 102 a , the segment 102 b , and the segment 102 c may combine to define a size and shape of the portable electronic device.
  • the segment 102 a may combine with the segment 102 b to define a size and shape of the portable electronic device.
  • the accessory device 100 may further include a panel 104 designed to extend from the segment 102 a and receive a portable electronic device.
  • the accessory device may include a hinge assembly coupled to the panel 104 . This will be shown later. When stored, the hinge assembly is hidden in the segment 102 a and covered by the panel 104 .
  • the panel 104 may include magnets 106 (shown as dotted lines) that magnetically couple with magnets in the portable electronic device. As shown, the panel 104 is stored in the segment 102 a and is co-planar, or flush, with respect to a surface 110 of the segment 102 a .
  • the panel 104 may include a recess 108 that allows a user to engage and move the panel 104 . Accordingly, the panel 104 may move by manual means.
  • the segment 102 b may include a keyboard 112 designed to provide inputs or commands to the portable electronic device.
  • the keyboard 112 may be in communication with the portable electronic device through electrical contacts (not shown in FIG. 1 ) on the panel 104 that are in contact with electrical contacts (not shown in FIG. 1 ) of the portable electronic device, and/or by wireless communication (such as Bluetooth® communication, as a non-limiting example).
  • the keyboard 112 may be configured in accordance a QWERTY configuration.
  • the panel 104 is driven by a motor (not shown in FIG. 1 ).
  • the command to initiate movement of the panel 104 may be provided through depressing a key of the keyboard 112 , or by depressing a button that can be located on any one of the aforementioned segments.
  • the segment 102 c may include an additional input device (or devices).
  • the segment 102 c may include a touch pad and/or a display that provide a dynamic row of input keys that changes in accordance with a software application running on a display (not shown in FIG. 1 ) of the portable electronic device.
  • FIG. 2 illustrates an isometric view of the accessory device 100 shown in FIG. 1 , showing the panel 104 extended away from the segment 102 a .
  • the accessory device 100 includes a hinge assembly 114 designed to move the panel 104 from a stored configuration (shown in FIG. 1 ) to a deployed configuration (shown in FIG. 2 ) to receive a portable electronic device 180 , and position the portable electronic device 180 in a user-friendly configuration.
  • the hinge assembly 114 extends from an internal volume within the segment 102 a .
  • the panel 104 is moved out of an opening 116 (that leads to the internal volume) and provides a receiving surface 118 for the portable electronic device 180 .
  • magnets 106 in the panel 104 magnetically couple with magnets 186 in the portable electronic device 180 . Accordingly, when the magnets 106 magnetically couple with the magnets 186 , the portable electronic device 180 is held against the receiving surface 118 of the panel 104 . Further, the portable electronic device 180 is positioned such that a display 188 is aligned with the keyboard 112 , and the display 188 and the keyboard 112 are in a desired position for a user.
  • the magnets 106 in the accessory device 100 when the segment 102 a is formed from a magnetically attractable material (such as a ferromagnetic material) or includes a magnet (not shown in FIGS. 1 and 2 ), the magnets 106 , being secured with the panel 104 , are capable of magnetically coupling the panel to the segment 102 a .
  • the resulting magnetic attraction force is used to retain the panel 104 in the segment 102 a , as shown in FIG. 1 . This provide a flush, or co-planar, relationship between the panel 104 and a surface of the segment 102 a.
  • FIG. 3 illustrates an exploded view of the hinge assembly 114 of the accessory device 100 shown in FIGS. 1 and 2 , showing the components of the hinge assembly 114 .
  • the hinge assembly 114 may include multiple (segmented) hinge components that can be joined together.
  • the hinge assembly 114 may include a hinge component 120 a that couples with a hinge component 120 b by a shaft 122 a that passes through the hinge component 120 a and the hinge component 120 b .
  • the shaft 122 a allows for relative movement between through the hinge component 120 a and the hinge component 120 b .
  • the connection between the hinge component 120 a and the hinge component 120 b defines a joint.
  • a fastener 124 a may extend through an opening of the hinge component 120 a.
  • the hinge assembly 114 may further include a hinge component 120 c that couples with a hinge component 120 d by a shaft 122 b that passes through the hinge component 120 c and the hinge component 120 d .
  • the shaft 122 b allows for relative movement between through the hinge component 120 c and the hinge component 120 d .
  • the connection between the hinge component 120 c and the hinge component 120 d defines a joint.
  • a fastener 124 b may extend through an opening of the hinge component 120 c.
  • the hinge assembly 114 may further include a hinge component 120 e .
  • the hinge component 120 e may be referred to as a central component, central hinge component, or a platform, as non-limiting examples.
  • the hinge component 120 e is designed to receive a panel (such as the panel 104 , shown in FIGS. 1 and 2 ).
  • the hinge component 120 e may couple with the hinge component 120 b and the hinge component 120 d by a flexible member 126 a and a flexible member 126 b , respectively.
  • the flexible member 126 a and the flexible member 126 b include one or more flexible materials.
  • the flexible member 126 a may adhesively secure with the hinge component 120 b and the hinge component 120 e , and create a joint that allows movement between the hinge component 120 b and the hinge component 120 e .
  • the flexible member 126 b may adhesively secure with the hinge component 120 d and the hinge component 120 e , and create a joint that allows movement between the hinge component 120 d and the hinge component 120 e .
  • the flexible member 126 a may not be required if the hinge component 120 b is secured with the hinge component 120 e in a manner that allows relative rotational movement between the hinge component 120 b and the hinge component 120 e .
  • the flexible member 126 b may not be required if the hinge component 120 d is secured with the hinge component 120 e in a manner that allows relative rotational movement between the hinge component 120 e and the hinge component 120 e .
  • additional shafts similar to the shaft 122 a and the shaft 122 b ) may be integrated into the hinge assembly 114 to replace the aforementioned flexible members.
  • the hinge components are designed to position a panel in either a stored or a deployed configuration.
  • the hinge components In the stored configuration, the hinge components generally lie flat along a plane defined by the X-Y plane.
  • the hinge components can move simultaneously.
  • the hinge components may move in different directions. For example, when the hinge component 120 a is rotated in a clockwise direction 121 a , the hinge component 120 a remains in the plane and the hinge component 120 b is rotated out of the plane (defined by the X-Y plane) such that the position of the hinge component 120 b includes a three-dimension position in the X-, Y-, and Z-axes.
  • the hinge component 120 a and the hinge component 120 b are designed to rotate about the fastener 124 a .
  • the fastener 124 a may define a common pivot axis, or common pivot point, for the hinge component 120 a and the hinge component 120 b .
  • the hinge component 120 c and the hinge component 120 d are also designed to move.
  • the hinge component 120 c when the hinge component 120 c is rotated in a counter-clockwise direction 121 b , the hinge component 120 c remains in the plane and the hinge component 120 d is rotated out of the plane (defined by the X-Y plane) such that the position of the hinge component 120 d includes a three-dimension position in the X-, Y-, and Z-axes, similar to the hinge component 120 b .
  • the hinge component 120 c and the hinge component 120 d are designed to rotate about the fastener 124 b .
  • the fastener 124 b may define a common pivot axis, or common pivot point, for the hinge component 120 c and the hinge component 120 d .
  • the hinge component 120 b and the hinge component 120 d can combine to move the hinge component 120 e.
  • FIG. 4 illustrates a plan view of the hinge assembly 114 , showing the components assembled together.
  • the hinge assembly 114 can lie flat in a plane (or planar surface) defined by the X-Y plane when the hinge assembly 114 is assembled.
  • the fastener 124 a passes through an opening of the hinge component 120 a to secure with a segment (not shown in FIG. 4 ), and the fastener 124 b passes through an opening of the hinge component 120 c to secure with a segment (not shown in FIG. 4 ).
  • the flexible member 126 a secures with the hinge component 120 b and the hinge component 120 e
  • the flexible member 126 b secures with the hinge component 120 d and the hinge component 120 e.
  • the hinge component 120 b and the hinge component 120 e are designed such that they mate along a diagonal line. This diagonal line, when extended, intersects the fastener 124 a .
  • the shaft 122 a defines a linear path that, when extended, also intersects the fastener 124 a .
  • the hinge component 120 d and the hinge component 120 d are designed such that they mate along a diagonal line that, when extended, intersects the fastener 124 b .
  • the shaft 122 b defines a linear path that, when extended, also intersects the fastener 124 b .
  • the fastener 124 a and the fastener 124 b each define a pivot point for the hinge assembly 114 . This will be further illustrated below.
  • FIG. 5 illustrates a side view of the accessory device 100 , showing the hinge assembly 114 and the panel 104 within the segment 102 a .
  • the panel 104 at least partially covers the hinge assembly 114 .
  • the panel 104 may combine with the surface 110 to fully cover the hinge assembly 114 in the stored configuration, as shown in FIG. 5 .
  • the hinge components may include a metal.
  • the hinge components of the hinge assembly 114 may include a magnetically attractable material, such as ferrite or a rare Earth magnetic material (as non-limiting examples). In this manner, the magnets 106 in the panel 104 can magnetically couple with the hinge assembly 114 .
  • This magnetic coupling may not only provide an attraction force that assists in transitioning the panel 104 and the hinge assembly 114 to the stored configuration, but also provides a force that retains the panel 104 in a manner such that the panel 104 remains co-planar with respect to the surface 110 .
  • the accessory device 100 provides a consistent position, and more aesthetically pleasing configuration, of the panel 104 .
  • FIG. 6 illustrates a plan view of the hinge assembly 114 , showing an exemplary movement of the hinge assembly 114 .
  • the dotted lines represent the original position of the hinge assembly 114 (shown in FIG. 4 ).
  • the hinge component 120 a is rotated clockwise and the hinge component 120 c is rotated counter-clockwise.
  • the hinge component 120 a and the hinge component 120 c remain on, or along, the X-Y plane, and the rotation of the hinge component 120 a and the hinge component 120 c causes the hinge component 120 b and the hinge component 120 d , respectively, to at least partially rotate out of the X-Y plane and into a third dimension defined by the Z-axis.
  • the rotation of the hinge component 120 b and the hinge component 120 d cause the hinge component 120 e to at least partially rotate out of the X-Y plane.
  • the hinge component 120 a and the hinge component 120 b rotate about the fastener 124 a
  • the hinge component 120 c and the hinge component 120 d rotate about the fastener 124 b . Accordingly, both the fastener 124 a and the fastener 124 b each define a pivot point.
  • FIG. 7 illustrates a side view of the accessory device 100 , showing the hinge assembly 114 supporting and positioning the panel 104 .
  • the hinge component 120 a and the hinge component 120 c remain flat or horizontal and parallel (or at least substantially parallel) with respect to the segment 102 a , while the hinge component 120 b and the hinge component 120 d are at least partially out of the opening 116 .
  • the panel 104 is secured to the hinge assembly 114 along the hinge component 120 e , with the hinge component 120 b and the hinge component 120 d providing a three-dimensional support structure.
  • the hinge component 120 b and the hinge component 120 d are positioned diagonally with respect to the hinge component 120 a and the hinge component 120 c , respectively.
  • the hinge component 120 a is in frictional engagement with the segment 102 a , and as a result, the frictional forces between the hinge component 120 a and the segment 102 a support the hinge component 120 b such that the hinge component 120 b remains in an upright position.
  • the hinge component 120 c is in frictional engagement with the segment 102 a , and as a result, the frictional forces between the hinge component 120 c and the segment 102 a support the hinge component 120 d such that the hinge component 120 d remains in an upright position.
  • at least some frictional force are not between the hinge components of the hinge assembly 114 , but rather, with other features external to, or outside, the hinge assembly 114 .
  • the frictional forces used to maintain an upright and deployed position of the hinge assembly 114 are not dependent upon the thickness of the hinge components themselves.
  • FIG. 8 illustrates a side view of the accessory device 100 , showing the accessory device 100 carrying the portable electronic device 180 , in accordance with some described embodiments.
  • the portable electronic device 180 is supported by the hinge assembly 114 .
  • the magnets 106 in the panel 104 are magnetically coupled with the magnets 186 in the portable electronic device 180 .
  • the hinge assembly 114 positions the portable electronic device 180 at an angle 190 with respect to the keyboard 112 .
  • the angle 190 is approximately 100 degrees.
  • the hinge assembly 114 can be designed to position the portable electronic device 180 such that the angle 190 is approximately in the range of 90 to 135 degrees.
  • FIGS. 9-25 illustrate alternate embodiments of hinge assemblies.
  • the accessory device 100 (shown in FIGS. 1 and 2 ) may substitute the hinge assembly 114 (shown in FIG. 2 ) with any of the hinge assemblies shown in FIGS. 9-25 .
  • FIG. 9 illustrates a plan view of an alternate embodiment of a hinge assembly 214 , in accordance with some described embodiments.
  • the hinge assembly 214 may include features previously described herein for another hinge assembly.
  • the hinge assembly 214 includes a hinge component 220 a coupled with a hinge component 220 b by a joint that allows relative movement between the hinge component 220 a and the hinge component 220 b , and a hinge component 220 c coupled with a hinge component 220 d by a joint that allows relative movement between the hinge component 220 c and the hinge component 220 d .
  • a segment of an accessory device not shown in FIG.
  • a fastener 224 a may extend through an opening of the hinge component 220 a .
  • a fastener 224 b may extend through an opening of the hinge component 220 c.
  • the fastener 224 a can define a rotational axis for the hinge component 220 a and the hinge component 220 b
  • the fastener 224 b can define a rotational axis for the hinge component 220 c and the hinge component 220 d
  • the hinge component 220 b and the hinge component 220 e are designed such that they mate along a diagonal line. This diagonal line, when extended, intersects the fastener 224 a
  • a shaft 222 a (connecting the hinge component 220 a with the hinge component 220 b ) defines a linear path that, when extended, also intersects the fastener 224 a .
  • the hinge component 220 d and the hinge component 220 d are designed such that they mate along a diagonal line that, when extended, intersects the fastener 224 b .
  • a shaft 222 b (connecting the hinge component 220 c with the hinge component 220 d ) defines a linear path that, when extended, also intersects the fastener 224 b .
  • the fastener 224 a and the fastener 224 b each define a pivot point for the hinge assembly 214 .
  • the hinge assembly 214 may further include hinge component 220 e .
  • the hinge component 220 e designed to receive a panel (not shown in FIG. 9 ) used as a receiving surface for a portable electronic device.
  • the hinge component 220 e may couple with the hinge component 220 b and the hinge component 220 d by flexible members (not shown in FIG. 9 ) that form joints to allow movement between the hinge component 220 e and both the hinge component 220 b and the hinge component 220 d.
  • the hinge assembly 214 can be positioned in both a stored configuration and a deployed configuration, in a manner previously described. However, the layout of the hinge components may differ as compared the hinge assembly 114 (shown in FIG. 4 ). For example, the hinge component 220 b does not extend end-to-end with the hinge component 220 a , as compared to the hinge component 120 b and the hinge component 120 a (shown in FIG. 4 ). Further, the hinge component 220 d does not extend end-to-end with the hinge component 220 c , as compared to the hinge component 120 c and the hinge component 120 d (shown in FIG. 4 ).
  • the hinge component 220 e extends end-to-end with the hinge component 220 b and the hinge component 220 c , and accordingly, the hinge component 220 e does not extend end-to-end with the hinge component 220 a or the hinge component 220 c .
  • the hinge component 220 b shares a common axis of rotation, defined by the fastener 224 a , with the hinge component 220 a
  • the hinge component 220 d shares a common axis of rotation, defined by the fastener 224 b , with the hinge component 220 c.
  • FIG. 10 illustrates a side view of an embodiment of an accessory device 200 , showing the accessory device 200 carrying the portable electronic device 180 , in accordance with some described embodiments.
  • the accessory device 200 may include any features described herein for an accessory device.
  • the portable electronic device 180 is supported by the hinge assembly 214 (shown in FIG. 9 ).
  • the accessory device 200 includes a panel 204 that includes magnets 206 that magnetically couple with the magnets 186 in the portable electronic device 180 .
  • the hinge assembly 214 positions the portable electronic device 180 at an angle 290 with respect to a keyboard 212 located on a segment 202 b of the accessory device 200 .
  • the angle 290 may include any angle described for the angle 190 (shown in FIG. 8 ).
  • the hinge assembly 214 can carry the portable electronic device 180 such that the portable electronic device 180 is suspended over a segment 202 a of the hinge assembly 214 .
  • the portable electronic device 180 when engaged with the panel 204 and carried by the hinge assembly 214 , is not positioned on the segment 202 b .
  • the hinge component 220 b and the hinge component 220 e do not extend to the segment 202 a , and a space or clearance exists between the hinge assembly 214 and the segment 202 a.
  • FIG. 11 illustrates a plan view of an alternate embodiment of a hinge assembly 314 , in accordance with some described embodiments.
  • the hinge assembly 314 may incorporate features from other hinge assemblies described herein.
  • the hinge assembly 314 includes a hinge component 320 a coupled with a hinge component 320 b by a joint that allows relative movement between the hinge component 320 a and the hinge component 320 b , and a hinge component 320 c coupled with a hinge component 320 d by a joint that allows relative movement between the hinge component 320 c and the hinge component 320 d.
  • the hinge assembly 314 includes modifications.
  • the hinge component 320 a includes a fastener 324 a that passes through a slot 332 a formed in the hinge component 320 a
  • the hinge component 320 c includes a fastener 324 b that passes through a slot 332 b formed in the hinge component 320 b
  • the fastener 324 a and the fastener 324 b may secure the hinge assembly 314 to an accessory device (not shown in FIG. 11 ).
  • the fasteners shown in FIG. 11 do not represent axes of rotation for the hinge components.
  • the axes of rotation of the hinge assembly 314 lie outside the hinge components of the hinge assembly 314 .
  • the hinge component 320 a and the hinge component 320 b share an axis of rotation 328 a .
  • the hinge component 320 c and the hinge component 320 d share an axis of rotation 328 b .
  • the axis of rotation 328 a and the axis of rotation 328 b lie outside the hinge assembly 314 .
  • the hinge assembly 314 may further include hinge component 320 e .
  • the hinge component 320 e designed to receive a panel (not shown in FIG. 11 ) used as a receiving surface for a portable electronic device.
  • the hinge component 320 e may couple with the hinge component 320 b and the hinge component 320 d by flexible members (not shown in FIG. 11 ) that form joints to allow movement between the hinge component 320 e and both the hinge component 320 b and the hinge component 320 d .
  • the dimensions of the slot 332 a and the slot 332 b allow the hinge component 320 a and the hinge component 320 c , respectively, to move.
  • the hinge component 320 a and the hinge component 320 c can be guided at least partially by the fastener 324 a and the fastener 324 b , respectively.
  • FIG. 12 illustrates a side view of an embodiment of an accessory device 300 , showing the accessory device 300 carrying the portable electronic device 180 , in accordance with some described embodiments.
  • the accessory device 300 may include any features described herein for an accessory device.
  • the portable electronic device 180 is supported by the hinge assembly 314 .
  • the accessory device 300 includes a panel 304 that includes magnets 306 that magnetically couple with the magnets 186 in the portable electronic device 180 .
  • the hinge assembly 314 positions the portable electronic device 180 at an angle 390 with respect to a keyboard 312 located on a segment 302 b of the accessory device 300 .
  • the angle 390 may include any angle described for the angle 190 (shown in FIG. 8 ).
  • the hinge assembly 314 can carry the portable electronic device 180 such that the portable electronic device 180 is suspended over a segment 302 a of the hinge assembly 314 . Furthermore, the hinge assembly 314 can carry the portable electronic device 180 such that the portable electronic device 180 is suspended over the keyboard 312 . As shown, the axis of rotation 328 a lies in the segment 302 b and outside of the hinge assembly 314 . The axis of rotation 328 b (not shown in FIG. 12 ) may also lie in the segment 302 b and outside of the hinge assembly 314 .
  • the hinge component 320 b and the hinge component 320 e do not extend to the segment 302 a , and a space or clearance exists between the hinge assembly 314 and the segment 302 a .
  • the accessory device 300 may substitute other hinge assemblies described herein, such as the hinge assembly 514 shown in FIGS. 16 and 17 below.
  • FIG. 13 illustrates a plan view of an alternate embodiment of a hinge assembly 414 , in accordance with some described embodiments.
  • the hinge assembly 414 may include features from other hinge assemblies described herein.
  • the hinge assembly 414 includes a hinge component 420 a coupled with a hinge component 420 b by a joint that allows relative movement between the hinge component 420 a and the hinge component 420 b , and a hinge component 420 c coupled with a hinge component 420 d by a joint that allows relative movement between the hinge component 420 c and the hinge component 420 d .
  • a segment of an accessory device not shown in FIG.
  • a fastener 424 a may extend through an opening of the hinge component 420 a .
  • a fastener 424 b may extend through an opening of the hinge component 420 c .
  • the fastener 424 a can define a rotational axis for the hinge component 420 a and the hinge component 420 b
  • the fastener 424 b can define a rotational axis for the hinge component 420 c and the hinge component 420 d.
  • the hinge assembly 414 may further include hinge component 420 e .
  • the hinge component 420 e is designed to receive a panel (not shown in FIG. 13 ) used as a receiving surface for a portable electronic device.
  • the hinge component 420 e may couple with the hinge component 420 b and the hinge component 420 d by flexible members (not shown in FIG. 13 ) that form joints to allow movement between the hinge component 420 e and both the hinge component 420 b and the hinge component 420 d.
  • the hinge assembly 414 incorporate additional features designed to provide frictional forces.
  • the hinge component 420 a may include a slot 432 a and a fastener 434 a passing through the slot 432 a
  • the hinge component 420 c may include a slot 432 b and a fastener 434 b passing through the slot 432 b
  • the fastener 434 a and the fastener 434 b may provide a clamping force to the hinge component 420 a and the hinge component 420 c , respectively, thereby adding frictional forces.
  • This may provide additional support when the hinge assembly 414 is in a deployed configuration (previously shown for other hinge assemblies) and holding a portable electronic device.
  • the slot 432 a and the slot 432 b can be curved to define a circular arch centered at the fastener 424 a and the fastener 424 b , respectively, as the fasteners each represent an axis of rotation.
  • FIG. 14 illustrates a cross sectional view of the hinge assembly 414 shown in FIG. 13 , showing the relationship between the fastener 434 a and the hinge component 420 a .
  • the fastener 434 a passes through the slot 432 a (labeled in FIG. 13 ) of the hinge component 420 a and couples with a securing member 436 .
  • the fastener 434 a passes through a friction element 438 a and a friction element 438 b , each of which may include a washer.
  • the friction element 438 a and the friction element 438 b engage opposing sides of the hinge component 420 a .
  • the hinge component 420 a moves relative to the friction element 438 a and the friction element 438 b .
  • the friction element 438 a and the friction element 438 b can provide frictional forces that cause the hinge component 420 a to remain in a static position.
  • the friction element 438 a and the friction element 438 b support the hinge component 420 a by resisting movement when, for example, the hinge assembly 414 (and in particular, the hinge component 420 a ) is supporting the weight of a portable electronic device.
  • the hinge component 420 a (as well as other hinge components) need not include added thickness and can remain relatively thin.
  • an accessory device carrying the hinge assembly 414 does not include increased weight due to the hinge assembly 414 .
  • the hinge component 420 c and the fastener 434 b may include similar features described for the hinge component 420 a and the fastener 434 a , respectively.
  • FIG. 15 illustrates a plan view of the hinge assembly 414 shown in FIG. 13 , showing an exemplary movement of the hinge assembly 414 .
  • the hinge component 420 a is rotated clockwise and the hinge component 420 c is rotated counter-clockwise.
  • the hinge component 420 a and the hinge component 420 c remain on, or along, the X-Y plane.
  • the hinge component 420 a Due to the rotation of the hinge component 420 a , the hinge component 420 b is rotated out of the X-Y plane and into a third dimension defined by the Z-axis.
  • the hinge component 420 d is rotated out of the X-Y plane and into a third dimension defined by the Z-axis.
  • the hinge component 420 a and the hinge component 420 b rotate about the fastener 424 a
  • the hinge component 420 c and the hinge component 420 d rotate about the fastener 424 b
  • the rotation of the hinge component 420 b and the hinge component 420 d cause the hinge component 420 e to also rotate out of the X-Y plane.
  • the hinge component 420 a and the hinge component 420 c move/rotate relative to the fastener 434 a and the fastener 434 b , respectively.
  • the fastener 434 a and the fastener 434 b provide a frictional force to the hinge component 420 a and the hinge component 420 c , respectively.
  • the fastener 434 a and the fastener 434 b can be rotationally driven to increase or decrease the frictional forces.
  • FIG. 16 illustrates a plan view of an alternate embodiment of a hinge assembly 514 , in accordance with some described embodiments.
  • the hinge assembly 514 may include features from other hinge assemblies described herein.
  • the hinge assembly 514 includes a hinge component 520 a coupled with a hinge component 520 b by a joint that allows relative movement between the hinge component 220 a and the hinge component 220 b , and a hinge component 520 c coupled with a hinge component 520 d by a joint that allows relative movement between the hinge component 520 c and the hinge component 520 d .
  • the hinge assembly 514 may further include hinge component 520 e .
  • the hinge component 520 e designed to receive a panel (not shown in FIG.
  • the hinge component 520 e may couple with the hinge component 520 b and the hinge component 520 d by flexible members (not shown in FIG. 16 ) that form joints to allow movement between the hinge component 520 e and both the hinge component 520 b and the hinge component 520 d.
  • the hinge assembly 514 may incorporate additional features designed to provide frictional forces.
  • the hinge component 520 a may include a slot 532 a and a fastener 534 a passing through the slot 532 a
  • the hinge component 520 c may include a slot 532 b and a fastener 534 b passing through the slot 532 b
  • the fastener 534 a and the fastener 534 b may provide a clamping force to the hinge component 520 a and the hinge component 520 c , respectively, thereby adding frictional forces. This may provide additional support when the hinge assembly 514 is in a deployed configuration (previously shown for other hinge assemblies) and holding a portable electronic device.
  • the fastener 534 a and the fastener 534 b can be rotationally driven to increase or decrease the frictional forces.
  • the hinge assembly 514 may include different pivot points.
  • the hinge component 520 a may include a fastener 544 a that passes through the slot 532 a
  • the hinge component 520 c may include a fastener 544 b that passes through the slot 532 b .
  • the fastener 544 a and the fastener 544 b may secure the hinge component 520 a and the hinge component 520 c , respectively, to a segment of an accessory device (not shown in FIG. 16 ).
  • the fastener 544 a and the fastener 544 b may define an axis of rotation for the hinge component 520 a and the hinge component 520 c , respectively.
  • the hinge assembly 514 may include an axis of rotation 528 a and an axis of rotation 528 b , both of which lie outside the perimeter of the components of the hinge assembly 514 .
  • the slot 532 a and the slot 532 b can be curved to define a circular arch centered at the axis of rotation 528 a and the axis of rotation 528 a , respectively.
  • FIG. 17 illustrates a plan view of the hinge assembly 514 shown in FIG. 16 , showing an exemplary movement of the hinge assembly 514 .
  • the hinge component 520 a is rotated clockwise and the hinge component 520 c is rotated counter-clockwise. However, the hinge component 520 a and the hinge component 520 c remain on, or along, the X-Y plane. Due to the rotation of the hinge component 520 a , the hinge component 520 b is rotated out of the X-Y plane and into a third dimension defined by the Z-axis. Also, due to the rotation of the hinge component 520 c , the hinge component 520 d is rotated out of the X-Y plane and into a third dimension defined by the Z-axis.
  • the hinge component 520 a and the hinge component 520 c can rotate about the fastener 544 a and the fastener 544 b , respectively. Also, the rotation of the hinge component 520 b and the hinge component 520 d cause the hinge component 520 e to also rotate out of the X-Y plane. By adjusting (for example, rotationally driving) the fastener 534 a and the fastener 534 b , the inclination, or tilt, of the hinge component 520 a and the hinge component 520 c , respectively, can be controlled. Also, the fastener 544 a and the fastener 544 b provide centrally located pivot points for the hinge component 520 a and the hinge component 520 c , respectively. Alternatively, when the axis of rotation 528 a and the axis of rotation 528 b are implemented with the hinge assembly 514 , the hinge components may rotate about the axis of rotation 528 a and the axis of rotation 528 b.
  • FIG. 18 illustrates a plan view of an alternate embodiment of a hinge assembly 614 , in accordance with some described embodiments.
  • the hinge assembly 614 may include features from other hinge assemblies described herein.
  • the hinge assembly 614 includes a hinge component 620 a coupled with a hinge component 620 b by a joint that allows relative movement between the hinge component 620 a and the hinge component 620 b , and a hinge component 620 c coupled with a hinge component 620 d by a joint that allows relative movement between the hinge component 620 c and the hinge component 620 d .
  • a segment of an accessory device not shown in FIG.
  • a fastener 624 a may extend through an opening of the hinge component 620 a .
  • a fastener 624 b may extend through an opening of the hinge component 620 c .
  • the fastener 624 a can define a rotational axis for the hinge component 620 a and the hinge component 620 b
  • the fastener 624 b can define a rotational axis for the hinge component 620 c and the hinge component 620 d .
  • the hinge assembly 614 may further include hinge component 620 e .
  • the hinge component 620 e designed to receive a panel (not shown in FIG. 18 ) used as a receiving surface for a portable electronic device.
  • the hinge component 620 e may couple with the hinge component 620 b and the hinge component 620 d by flexible members (not shown in FIG. 18 ) that allow relative movement between the hinge component 620 e and both hinge component 620 b and the hinge component 620 d.
  • the hinge assembly 614 incorporate additional features designed to place the hinge assembly 614 in discrete positions.
  • the hinge component 620 a may include a slot 632 a and a slot 632 b .
  • the hinge assembly 614 may include a roller element 646 a designed to hold the hinge component 620 a , and in turn, the hinge assembly 614 , in different positions. As shown, the roller element 646 a is in the slot 632 a , and the hinge assembly 614 is in a stored configuration. However, when the hinge assembly 614 transitions to a deployed configuration, the hinge component 620 a rotates relative to the roller element 646 a , and the roller element 646 a moves into the slot 632 b .
  • the hinge component 620 c may include a slot 632 c and a slot 632 d .
  • the hinge assembly 614 may include a roller element 646 b designed to hold the hinge component 620 c , and in turn, the hinge assembly 614 , in different positions. As shown, the roller element 646 b is in the slot 632 c , and the hinge assembly 614 is in a stored configuration. However, when the hinge assembly 614 transitions to a deployed configuration, the hinge component 620 c rotates relative to the roller element 646 b , and the roller element 646 b moves into the slot 632 d.
  • FIG. 19 illustrates a plan view of the hinge assembly 614 shown in FIG. 18 , showing an exemplary movement of the hinge assembly 614 .
  • the hinge component 620 a is rotated clockwise and the hinge component 620 c is rotated counter-clockwise. However, the hinge component 620 a and the hinge component 620 c remain on, or along, the X-Y plane. Due to the rotation of the hinge component 620 a , the hinge component 620 b is rotated out of the X-Y plane and into a third dimension defined by the Z-axis. Also, due to the rotation of the hinge component 620 c , the hinge component 620 d is rotated out of the X-Y plane and into a third dimension defined by the Z-axis.
  • the hinge component 620 a and the hinge component 620 b can rotate about the fastener 624 a
  • the hinge component 620 c and the hinge component 620 d can rotate about the fastener 624 b
  • the rotation of the hinge component 620 b and the hinge component 620 d cause the hinge component 620 e to also rotate out of the X-Y plane.
  • the roller element 646 a moves into the slot 632 b
  • the roller element 646 b moves into the slot 632 d .
  • the roller element 646 a and the roller element 646 b provide a force to the hinge component 620 a and the hinge component 620 c , respectively, to maintain the hinge assembly 614 in the deployed configuration, even when the hinge assembly 614 is supporting the weight of a portable electronic device (not shown in FIG. 19 ).
  • FIG. 20 illustrates a plan view of an alternate embodiment of a hinge assembly 714 , in accordance with some described embodiments.
  • the hinge assembly 714 may include features from other hinge assemblies described herein.
  • the hinge assembly 714 includes a hinge component 720 a coupled with a hinge component 720 b by a joint that allows relative movement between the hinge component 720 a and the hinge component 720 b , and a hinge component 720 c that couples with a hinge component 720 d by a joint that allows relative movement between the hinge component 720 c and the hinge component 720 d .
  • a segment of an accessory device not shown in FIG.
  • a fastener 724 a may extend through an opening of the hinge component 720 a .
  • a fastener 724 b may extend through an opening of the hinge component 720 c .
  • the fastener 724 a can define a rotational axis for the hinge component 720 a and the hinge component 720 b
  • the fastener 724 b can define a rotational axis for the hinge component 720 c and the hinge component 720 d .
  • the hinge assembly 714 may further include hinge component 720 e .
  • the hinge component 720 e designed to receive a panel (not shown in FIG. 20 ) used as a receiving surface for a portable electronic device.
  • the hinge component 720 e may couple with the hinge component 720 b and the hinge component 720 d by flexible members (not shown in FIG. 20 ) that allow relative movement between the hinge component 720 e and both the hinge component 720 b and the hinge component 720 d.
  • the hinge assembly 714 incorporate additional features designed to place the hinge assembly 714 in discrete positions.
  • the hinge component 720 a may include a slot 732 a and a slot 732 b .
  • the hinge assembly 714 may include an engagement element 748 a designed to hold the hinge component 720 a , and in turn, the hinge assembly 714 , in different positions.
  • the engagement element 748 a is in the slot 732 a
  • the hinge assembly 714 is in a stored configuration.
  • the hinge component 720 a rotates relative to the engagement element 748 a
  • the engagement element 748 a moves into the slot 732 b .
  • the slot 732 a and the slot 732 b define a saw tooth slot
  • the engagement element 748 a includes a corresponding saw tooth design.
  • the engagement element 748 a may promote movement from the stored configuration (shown in FIG. 20 ) to a deployed configuration (shown below).
  • the engagement element 748 a may impede movement from the deployed configuration (shown below) to the stored configuration shown in FIG. 20 .
  • the engagement element 748 a resist rotational movement of the hinge component 720 a in the counter-clockwise motion when the hinge assembly 714 transitions from the deployed configuration to the stored configuration.
  • the hinge component 720 c may include a slot 732 c and a slot 732 d .
  • the hinge assembly 714 may include an engagement element 748 b designed to hold the hinge component 720 c , and in turn, the hinge assembly 714 , in different positions. As shown, the engagement element 748 b is in the slot 732 c , and the hinge assembly 714 is in a stored configuration. However, when the hinge assembly 714 transitions to a deployed configuration, the hinge component 720 c rotates relative to the engagement element 748 b , and the engagement element 748 b moves into the slot 732 d .
  • the slot 732 c and the slot 732 d define a saw tooth slot, and the engagement element 748 b includes a corresponding saw tooth design. Further, based upon the design orientation on the slot 732 c and the slot 732 d , the engagement element 748 b may promote movement from the stored configuration (shown in FIG. 20 ) to a deployed configuration (shown below). Moreover, based upon the design orientation on the slot 732 c and the slot 732 d , the engagement element 748 b may impede movement from the deployed configuration (shown below) to the stored configuration shown in FIG. 20 . As a result, the engagement element 748 a resist rotational movement of the hinge component 720 c in the clockwise motion when the hinge assembly 714 transitions from the deployed configuration to the stored configuration.
  • FIG. 21 illustrates a plan view of the hinge assembly 714 shown in FIG. 20 , showing an exemplary movement of the hinge assembly 714 .
  • the hinge component 720 a is rotated clockwise and the hinge component 720 c is rotated counter-clockwise. However, the hinge component 720 a and the hinge component 720 c remain on, or along, the X-Y plane. Due to the rotation of the hinge component 720 a , the hinge component 720 b is rotated out of the X-Y plane and into a third dimension defined by the Z-axis. Also, due to the rotation of the hinge component 720 c , the hinge component 720 d is rotated out of the X-Y plane and into a third dimension defined by the Z-axis.
  • the hinge component 720 a and the hinge component 720 b rotate about the fastener 724 a
  • the hinge component 720 c and the hinge component 720 d rotate about the fastener 724 b
  • the rotation of the hinge component 720 b and the hinge component 720 d cause the hinge component 720 e to also rotate out of the X-Y plane.
  • the engagement element 748 a moves into the slot 732 b
  • the engagement element 748 b moves into the slot 732 d .
  • the engagement element 748 a and the engagement element 748 b provide a force to the hinge component 720 a and the hinge component 720 c , respectively, to maintain the hinge assembly 714 in the deployed configuration, even when the hinge assembly 714 is supporting the weight of a portable electronic device (not shown in FIG. 21 ).
  • the engagement element 748 a and the engagement element 748 b provide the hinge assembly 714 with an asymmetric force profile, as the force required to transition the hinge assembly 714 from the stored configuration to the deployed configuration (shown in FIG. 21 ) is less than the force required to transition the hinge assembly 714 from the deployed configuration to the stored configuration. This may prevent the hinge assembly 714 from an unwanted transition (to the stored configuration) when, for example, the hinge assembly 714 is supporting the portable electronic device.
  • FIG. 22 illustrates a plan view of an alternate embodiment of a hinge assembly 814 , in accordance with some described embodiments.
  • the hinge assembly 814 may include features from other hinge assemblies described herein. As shown, the hinge assembly 814 is positioned over a segment 802 a .
  • the hinge assembly 814 may include a hinge component 820 a coupled with a hinge component 820 b by a joint that allows relative movement between the hinge component 820 a and the hinge component 820 b , and a hinge component 820 c coupled with a hinge component 820 d by a joint that allows relative movement between the hinge component 820 c and the hinge component 820 d .
  • a fastener 824 a may extend through an opening of the hinge component 820 a .
  • a fastener 824 b may extend through an opening of the hinge component 820 c .
  • the fastener 824 a can define a rotational axis for the hinge component 820 a and the hinge component 820 b
  • the fastener 824 b can define a rotational axis for the hinge component 820 c and the hinge component 820 d .
  • the hinge assembly 814 may further include hinge component 820 e .
  • the hinge component 820 e designed to receive a panel (not shown in FIG. 22 ) used to engage and retain a portable electronic device.
  • the hinge component 820 e may couple with the hinge component 820 b and the hinge component 820 d by flexible members (not shown in FIG. 22 ) that allow relative movement between the hinge component 820 e and both the hinge component 820 b and the hinge component 820 d.
  • the hinge assembly 814 may incorporate additional features designed to place the hinge assembly 814 in discrete positions.
  • the hinge component 820 a may include a magnet 852 a and a magnet 852 b .
  • the segment 802 a may include a magnet 854 a and a magnet 854 b designed to magnetically couple with the magnet 852 a and the magnet 852 b , respectively.
  • the segment 802 a may further include a magnet 854 e .
  • the magnetic coupling is designed to hold the hinge component 820 a , and in turn, the hinge assembly 814 , in different positions. As shown, the hinge assembly 814 is in a stored configuration.
  • the hinge component 820 a rotates, and the magnet 852 a in the hinge component 820 a is aligned and magnetically coupled with the magnet 854 e in the segment 802 a .
  • the hinge component 820 c may include a magnet 852 c and a magnet 852 d .
  • the segment 802 a may include a magnet 854 c and a magnet 854 d designed to magnetically couple with the magnet 852 c and the magnet 852 d , respectively.
  • the segment 802 a may further include a magnet 854 f .
  • the magnetic coupling is designed to hold the hinge component 820 c , and in turn, the hinge assembly 814 , in different positions. As shown, the hinge assembly 814 is in a stored configuration. However, when the hinge assembly 814 transitions to a deployed configuration, the hinge component 820 c rotates, and the magnet 852 c in the hinge component 820 a is aligned and magnetically coupled with the magnet 854 f in the segment 802 a . This will be shown below.
  • FIG. 23 illustrates a plan view of the hinge assembly 814 shown in FIG. 22 , showing an exemplary movement of the hinge assembly 814 .
  • the hinge component 820 a is rotated clockwise and the hinge component 820 c is rotated counter-clockwise. However, the hinge component 820 a and the hinge component 820 c remain on, or along, the X-Y plane. Due to the rotation of the hinge component 820 a , the hinge component 820 b is rotated out of the X-Y plane and into a third dimension defined by the Z-axis. Also, due to the rotation of the hinge component 820 c , the hinge component 820 d is rotated out of the X-Y plane and into a third dimension defined by the Z-axis.
  • the hinge component 820 a and the hinge component 820 b rotate about the fastener 824 a
  • the hinge component 820 c and the hinge component 820 d rotate about the fastener 824 b
  • the rotation of the hinge component 820 b and the hinge component 820 d cause the hinge component 820 e to also rotate out of the X-Y plane.
  • the magnet 852 a in the hinge component 820 a is magnetically coupled with the magnet 854 e in the segment 802 a
  • the magnet 852 c in the hinge component 820 c is magnetically coupled with the magnet 854 f in the segment 802 a .
  • the magnetic coupling between the magnets in the hinge components and the magnets in the segment 802 a provide a magnetic attraction force to maintain the hinge assembly 814 in the deployed configuration (shown in FIG. 23 ), even when the hinge assembly 814 is supporting the weight of a portable electronic device (not shown in FIG. 23 ).
  • FIG. 24 illustrates a plan view of an alternate embodiment of a hinge assembly 914 , in accordance with some described embodiments.
  • the hinge assembly 914 may include features from other hinge assemblies described herein.
  • the hinge assembly 914 is positioned over a segment 902 a .
  • the hinge assembly 914 includes a hinge component 920 a coupled with a hinge component 920 b by a joint that allows relative movement between the hinge component 920 a and the hinge component 920 b , and a hinge component 920 c coupled with a hinge component 920 d by a joint that allows relative movement between the hinge component 920 c and the hinge component 920 d .
  • a fastener 924 a may extend through an opening of the hinge component 920 a .
  • a fastener 924 b may extend through an opening of the hinge component 920 c .
  • the fastener 924 a can define a rotational axis for the hinge component 920 a and the hinge component 920 b
  • the fastener 924 b can define a rotational axis for the hinge component 920 c and the hinge component 920 d .
  • the hinge assembly 914 may further include hinge component 920 e .
  • the hinge component 920 e designed to receive a panel (not shown in FIG. 24 ) used to engage and retain a portable electronic device.
  • the hinge component 920 e may couple with the hinge component 920 b and the hinge component 920 d by flexible members (not shown in FIG. 24 ) that allow relative movement between the hinge component 920 e and both the hinge component 920 b and the hinge component 920 d.
  • the segment 902 a may include features that provide the hinge assembly 914 with an asymmetric force profile.
  • the segment 902 a may include a roller assembly 956 a that engages the hinge component 920 a .
  • the hinge assembly 914 is in a stored configuration.
  • the hinge component 920 a rotates relative to the roller assembly 956 a .
  • the rotational movement of the hinge component 920 a causes the roller assembly 956 b to roll along a surface of the hinge component 920 a .
  • the roller assembly 956 a may slide along the surface of the hinge component 920 a , rather than roll.
  • the roller assembly 956 a When the roller assembly 956 a provides frictional engagement via sliding, the movement of the hinge component 920 a is impeded, as compared to the rolling action. In this regard, the force required to transition the hinge assembly 914 from the stored configuration to the deployed configuration is less than the force required to transition the hinge assembly 914 from the deployed configuration to the stored configuration.
  • the segment 902 a may include a roller assembly 956 b that engages the hinge component 920 c .
  • the hinge assembly 914 is in a stored configuration. However, when the hinge assembly 914 transitions to a deployed configuration, the hinge component 920 c rotates relative to the roller assembly 956 b . Furthermore, the rotational movement of the hinge component 920 c causes the roller assembly 956 b to roll along a surface of the hinge component 920 c . However, when the hinge assembly 914 transitions back to the stored configuration, the roller assembly 956 b may slide along the surface of the hinge component 920 c , rather than roll.
  • the roller assembly 956 b provides frictional engagement via sliding, the movement of the hinge component 920 c is impeded, as compared to the rolling action.
  • the force required to transition the hinge assembly 914 from the stored configuration to the deployed configuration is less than the force required to transition the hinge assembly 914 from the deployed configuration to the stored configuration.
  • FIG. 25 illustrates a plan view of the hinge assembly 914 shown in FIG. 24 , showing an exemplary movement of the hinge assembly 914 .
  • the hinge component 920 a is rotated clockwise and the hinge component 920 c is rotated counter-clockwise. However, the hinge component 920 a and the hinge component 920 c remain on, or along, the X-Y plane. Due to the rotation of the hinge component 920 a , the hinge component 920 b is rotated out of the X-Y plane and into a third dimension defined by the Z-axis. Also, due to the rotation of the hinge component 920 c , the hinge component 920 d is rotated out of the X-Y plane and into a third dimension defined by the Z-axis.
  • the hinge component 920 a and the hinge component 920 b rotate about the fastener 924 a
  • the hinge component 920 c and the hinge component 920 d rotate about the fastener 924 b
  • the rotation of the hinge component 920 b and the hinge component 920 d cause the hinge component 920 e to also rotate out of the X-Y plane.
  • the roller assembly 956 a and the roller assembly 956 b are located on different surface location of the hinge component 920 a and the hinge component 920 c , respectively, as compared to the stored configuration (shown in FIG. 24 ).
  • roller assembly 956 a and the roller assembly 956 b provide a force to the hinge component 920 a and the hinge component 920 c , respectively, to maintain the hinge assembly 914 in the deployed configuration, even when the hinge assembly 914 is supporting the weight of a portable electronic device (not shown in FIG. 25 ).
  • the roller assembly 956 a and the roller assembly 956 b provide the hinge assembly 914 with an asymmetric force profile, as the force required to transition the hinge assembly 914 from the stored configuration to the deployed configuration is less than the force required to transition the hinge assembly 914 from the deployed configuration to the stored configuration.
  • FIG. 26 illustrates an isometric view of an embodiment of an electronic device 1080 , showing a panel 1004 integrated into a housing 1082 of the electronic device 1080 , in accordance with some described embodiments.
  • the electronic device 1080 may include a desktop computing device with a display assembly and processing circuitry (not shown in FIG. 26 ) carried by the housing 1082 .
  • the electronic device 1080 may include a stand 1084 coupled to the housing 1082 .
  • FIG. 27 illustrates an isometric view of the electronic device 1080 shown in FIG. 26 , showing the panel 1004 extended from the housing 1082 .
  • the panel 1004 may define a handle that can be grasped by a user to pick up and move the electronic device 1080 .
  • the panel 1004 is coupled to a hinge assembly 1014 , which may include features from any hinge assembly described herein. Accordingly, the hinge assembly 1014 and the panel 1004 may transition from a stored configuration (shown in FIG. 26 ) to a deployed configuration (shown in FIG. 27 ).
  • FIG. 28 illustrates a block diagram of an electronic device 1100 , in accordance with some described embodiments. At least some components shown for the electronic device 1100 in the block diagram may be incorporated into accessory devices and electronic devices described herein.
  • the electronic device 1100 can include a processor 1102 that represents a microprocessor or controller for controlling the overall operation of electronic device 1100 .
  • the electronic device 1100 can also include inputs 1108 . Some of the inputs 1108 allow a user of the electronic device 1100 to interact with the electronic device 1100 .
  • the inputs 1108 can take the form of a variety of user input devices, such as a button, a keypad, a dial, touch screen, audio input interface, visual/image capture input interface, input in the form of sensor data, etc.
  • the electronic device 1100 can include a display 1110 (screen display) that can be controlled by the processor 1102 to present visual information to the user.
  • a data bus 1116 can facilitate data transfer between at least a storage device 1140 , the processor 1102 , and a controller 1113 .
  • the controller 1113 can be used to interface with and control different equipment (not shown in FIG. 28 ) through an equipment control bus 1114 .
  • the electronic device 1100 can also include a network/bus interface 1111 that couples to a data link 1112 .
  • the network/bus interface 1111 can include a wireless transceiver.
  • the electronic device 1100 also includes a storage device 1140 , which may include a single disk or multiple disks (e.g., hard drives), and includes a storage management module that manages one or more partitions within the storage device 1140 .
  • storage device 1140 can include flash memory, semiconductor (solid state) memory or the like.
  • the electronic device 1100 can also include a Random Access Memory (RAM) 1120 and a Read-Only Memory (ROM) 1122 .
  • the ROM 1122 can store programs, utilities or processes to be executed in a non-volatile manner.
  • the RAM 1120 can provide volatile data storage, and stores instructions related to the operation of the electronic device 1100 .
  • the electronic device 1100 also includes a storage device 1140 , which may include a single disk or multiple disks (e.g., hard drives), and includes a storage management module that manages one or more partitions within the storage device 1140 .
  • storage device 1140 can include flash memory, semiconductor (solid state) memory or the like.
  • the electronic device 1100 can also include a Random Access Memory (RAM) 1120 and a Read-Only Memory (ROM) 1122 .
  • the ROM 1122 can store programs, utilities or processes to be executed in a non-volatile manner.
  • the RAM 1120 can provide volatile data storage, and stores instructions related to the operation of the electronic device 1100 .
  • the various aspects, embodiments, implementations or features of the described embodiments can be used separately or in any combination.
  • Various aspects of the described embodiments can be implemented by software, hardware or a combination of hardware and software.
  • the described embodiments can also be embodied as computer readable code on a computer readable medium for controlling manufacturing operations or as computer readable code on a computer readable medium for controlling a manufacturing line.
  • the computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include read-only memory, random-access memory, CD-ROMs, HDDs, DVDs, magnetic tape, and optical data storage devices.
  • the computer readable medium can also be distributed over network-coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Casings For Electric Apparatus (AREA)
  • Telephone Set Structure (AREA)

Abstract

An accessory device for an electronic device is disclosed. The accessory device may include one or more bodies, or segments, that are rotationally coupled to each other. One segment may include a keyboard used to provide an input or command to the electronic device. The accessory device may include an additional segment with a hinge assembly and a panel coupled to the hinge assembly. The panel is designed to receive and couple with the electronic device. The hinge assembly is designed to move the panel into different positions. For instance, the hinge assembly and the panel can be stored with a segment of the accessory device when not in use. The hinge assembly can subsequently deploy, and place the panel in a position to receive the electronic device such that the electronic device is positioned for use with the keyboard.

Description

    CROSS-REFERENCE TO RELATED APPLICATION(S)
  • The present application is a continuation of U.S. application Ser. No. 16/290,655, filed Mar. 1, 2019, entitled “ACCESSORY DEVICES FOR PORTABLE ELECTRONIC DEVICES,” which claims the benefit of U.S. Provisional Application No. 62/735,442, filed on Sep. 24, 2018, titled “ACCESSORY DEVICES FOR PORTABLE ELECTRONIC DEVICES,” the contents of all of which are incorporated by reference herein in their entirety for all purposes.
  • FIELD
  • The following description relates to accessory devices. In particular, the following description relates to accessory devices for portable electronic devices. Accessory devices include a panel and a hinge assembly that allows the panel to move relative to remaining structural components of the accessory device. The panel can be stored in an opening of the accessory device, or deployed (using the hinge assembly) and removed from the opening to provide a receiving surface for a portable electronic device.
  • BACKGROUND
  • Accessory devices can be used with electronic devices. An accessory device may include mechanical features used to hold an electronic device.
  • SUMMARY
  • In one aspect, an accessory device for a portable electronic device is described. The accessory device may include a segment that includes an opening that leads to an internal volume. The accessory device may further include a panel capable of receiving the portable electronic device. The accessory device may further include a hinge assembly carried by the segment and coupled with the panel. In some instances, a first configuration includes the hinge assembly positioned in the internal volume and the panel positioned in the opening and covering the hinge assembly. Also, in some instances, a second configuration includes the hinge assembly positioned at least partially out of the internal volume and the panel out of the opening.
  • In another aspect, an accessory device for a portable electronic device is described. The accessory device may include a first segment that includes a keyboard capable of communicating with the portable electronic device. The accessory device may further include a second segment coupled with the first segment. The accessory device may further include a panel that defines a receiving surface for the portable electronic device. The accessory device may further include a hinge assembly secured with the second segment and the panel. The hinge assembly may include a first hinge component. The hinge assembly may further include a second hinge component coupled to the first hinge component. The first hinge component and the second hinge component may be configured to rotate about a pivot point. In some instances, a rotation about the pivot point includes i) the first hinge component rotating along a surface, and ii) the second hinge component rotating away from the surface and positioning the panel to receive the portable electronic device at the receiving surface.
  • In another aspect, an accessory device for a portable electronic device is described. The accessory device may include a segment comprising an opening that leads to an internal volume. The accessory device may further include a panel. The accessory device may further include a hinge assembly that rotationally couples the panel with the segment. The accessory device is capable of different configuration. For example, in some instances, the accessory device defines a stored configuration. In the stored configuration, the panel is positioned in the opening and the hinge assembly is positioned in the segment and covered by the panel. In some instances, the accessory device defines a deployed configuration. In the deployed configuration, the hinge assembly is at least partially out of the segment and positions the panel such that the panel is capable of receiving the portable electronic device.
  • Other systems, methods, features and advantages of the embodiments will be, or will become, apparent to one of ordinary skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description and this summary, be within the scope of the embodiments, and be protected by the following claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
  • FIG. 1 illustrates an isometric view of an embodiment of an accessory device, in accordance with some described embodiments;
  • FIG. 2 illustrates an isometric view of the accessory device shown in FIG. 1, showing the panel extended away from the segment;
  • FIG. 3 illustrates an exploded view of the hinge assembly of the accessory device shown in FIGS. 1 and 2, showing the components of the hinge assembly;
  • FIG. 4 illustrates a plan view of the hinge assembly, showing the components assembled together;
  • FIG. 5 illustrates a side view of the accessory device, showing the hinge assembly and the panel within the segment;
  • FIG. 6 illustrates a plan view of the hinge assembly, showing an exemplary movement of the hinge assembly;
  • FIG. 7 illustrates a side view of the accessory device, showing the hinge assembly supporting and positioning the panel;
  • FIG. 8 illustrates a side view of the accessory device, showing the accessory device carrying the portable electronic device, in accordance with some described embodiments;
  • FIG. 9 illustrates a plan view of an alternate embodiment of a hinge assembly, in accordance with some described embodiments;
  • FIG. 10 illustrates a side view of an embodiment of an accessory device, showing the accessory device carrying the electronic device, in accordance with some described embodiments;
  • FIG. 11 illustrates a plan view of an alternate embodiment of a hinge assembly, in accordance with some described embodiments;
  • FIG. 12 illustrates a side view of an embodiment of an accessory device with the hinge assembly shown in FIG. 11, showing the accessory device carrying the electronic device, in accordance with some described embodiments;
  • FIG. 13 illustrates a plan view of an alternate embodiment of a hinge assembly, in accordance with some described embodiments;
  • FIG. 14 illustrates a cross sectional view of the hinge assembly shown in FIG. 13, showing the relationship between the fastener and the hinge component;
  • FIG. 15 illustrates a plan view of the accessory device shown in FIG. 13, showing an exemplary movement of the hinge assembly;
  • FIG. 16 illustrates a plan view of an alternate embodiment of a hinge assembly, in accordance with some described embodiments;
  • FIG. 17 illustrates a plan view of the hinge assembly shown in FIG. 16, showing an exemplary movement of the hinge assembly;
  • FIG. 18 illustrates a plan view of an alternate embodiment of a hinge assembly, in accordance with some described embodiments;
  • FIG. 19 illustrates a plan view of the hinge assembly shown in FIG. 18, showing an exemplary movement of the hinge assembly;
  • FIG. 20 illustrates a plan view of an alternate embodiment of a hinge assembly, in accordance with some described embodiments;
  • FIG. 21 illustrates a plan view of the hinge assembly shown in FIG. 20, showing an exemplary movement of the hinge assembly;
  • FIG. 22 illustrates a plan view of an alternate embodiment of a hinge assembly, in accordance with some described embodiments;
  • FIG. 23 illustrates a plan view of the hinge assembly shown in FIG. 22, showing an exemplary movement of the hinge assembly;
  • FIG. 24 illustrates a plan view of an alternate embodiment of a hinge assembly, in accordance with some described embodiments;
  • FIG. 25 illustrates a plan view of the hinge assembly shown in FIG. 24, showing an exemplary movement of the hinge assembly;
  • FIG. 26 illustrates an isometric view of an embodiment of an electronic device, showing a panel integrated into a housing of the electronic device, in accordance with some described embodiments;
  • FIG. 27 illustrates an isometric view of the electronic device shown in FIG. 26, showing the panel extended from the housing; and
  • FIG. 28 illustrates a block diagram of an electronic device, in accordance with some described embodiments.
  • Those skilled in the art will appreciate and understand that, according to common practice, various features of the drawings discussed below are not necessarily drawn to scale, and that dimensions of various features and elements of the drawings may be expanded or reduced to more clearly illustrate the embodiments of the present invention described herein.
  • DETAILED DESCRIPTION
  • Reference will now be made in detail to representative embodiments illustrated in the accompanying drawings. It should be understood that the following descriptions are not intended to limit the embodiments to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as can be included within the spirit and scope of the described embodiments as defined by the appended claims.
  • In the following detailed description, references are made to the accompanying drawings, which form a part of the description and in which are shown, by way of illustration, specific embodiments in accordance with the described embodiments. Although these embodiments are described in sufficient detail to enable one skilled in the art to practice the described embodiments, it is understood that these examples are not limiting such that other embodiments may be used, and changes may be made without departing from the spirit and scope of the described embodiments.
  • The following disclosure relates to accessories devices suitable for use with portable electronic devices, such as mobile wireless communication devices (smartphones) and tablet computer devices. Accessory devices described herein may include a hinge assembly and a panel coupled to the hinge assembly. The hinge assembly can be rotationally driven by the hinge assembly to drive the panel away from other structural components of the accessory device. The panel can subsequently provide a receiving surface for an electronic device. The panel may include magnets that magnetically couple with magnets in the electronic device. In this regard, the accessory device does not require mechanical devices (such as sidewalls that constrain the electronic device) or other interlocking devices, as the magnetic attraction between the magnets provides a sufficient coupling force. When the electronic device is no longer in use, the hinge assembly and the panel can be stored in the accessory device.
  • Traditional hinge assemblies rely upon engagement between a shaft and a clip in frictional engagement with the shaft. The shaft is rotationally driven with respect to the clip (or vice versa), and when the rotation ceases the shaft remains in the same location due to the frictional engagement. However, one drawback of the shaft-clip hinge assembly is that the amount of friction available is dependent upon the diameter of the shaft. In this regard, when the shaft-clip hinge assembly is required to hold a larger electronic device, such as a tablet computer device, the amount of frictional force must increases. This typically requires an increase in shaft diameter to increase the surface area of the shaft, as the frictional force is a function of shaft size. It is generally not desirable to increase the size of these components, particularly when the hinge assembly is located within the accessory device, as space for storing these components is limited.
  • Hinge assemblies described herein overcome these challenges by substituting shafts and friction clips with other components. For instance, a hinge assembly described herein may include a first hinge component coupled to a second hinge component by a joint. The first and second hinge components may include generally flat components, as compared to the circular friction clips and shafts. The first and second hinge components allow the hinge assembly to transition from a stored configuration to a deployed configuration, and vice versa. In the stored configuration, the first and second hinge components lie flat, i.e., the first and second hinge components are generally in line with a horizontal plane. Further, in the stored configuration, both the first and second hinge components are positioned in the accessory device. Also, in the stored configuration, the panel is positioned in an opening of the accessory device, and generally covers the first and second hinge components. In the deployed configuration, the panel is removed from the opening and supported by the hinge assembly, and in particular, the second hinge component. The panel magnets can magnetically couple with the electronic device magnets and the electronic device is in an upright position.
  • When transitioning from the stored configuration to the deployed configuration, the first hinge component rotates about a pivot point, but remains generally flat. However, the rotation of the first hinge component causes the second hinge component to move out of the flat configuration, and lifts the second hinge component into a support configuration for the panel. The second hinge component may rotate about the same pivot point as the first hinge component. Additionally, the second hinge component may rotate about an axis of rotation. The axis of rotation may lie in a plane defined by the first hinge component. The hinge assembly may include a third and fourth hinge component with features similar to those of the first and second hinge components, respectively. In the deployed configuration, the weight of the electronic device is supported by the second and fourth hinge components, which are supported by the first and third hinge components, respectively.
  • In some instances, the second and fourth hinge components are secured to the panel. However, in some embodiments, hinge assembly further a central component coupled to the panel, as well as the second and fourth hinge components. Accordingly, the central component moves in conjunction with these coupled components.
  • Hinge assemblies described offer several advantages over traditional hinge assemblies. For instance, hinge assemblies described herein do not rely upon a shaft and associated size (diameter) for frictional support, as the frictional engagement does not occur between a shaft and another elements. Rather, hinge assemblies described herein provide stability in that frictional forces lie outside the components (such as the panel that directly supports the electronic device), and are less dependent upon the size and shape of the hinge components. Also, the configuration of the hinge assemblies described herein change significantly between the stored and deployed configuration. This allows the hinge assembly to lie flat in the accessory device and hidden from view (in the stored configuration), and subsequently transition to a three-dimensional support structure to receive support the electronic device (in the deployed configuration).
  • These and other embodiments are discussed below with reference to FIGS. 1-28. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these Figures is for explanatory purposes only and should not be construed as limiting.
  • FIG. 1 illustrates an isometric view of an embodiment of an accessory device 100, in accordance with some described embodiments. The accessory device 100 is designed for use with portable electronic devices (not shown in FIG. 1), such as mobile wireless communication devices (smartphones) and tablet computer devices. In this regard, the accessory device 100 may be referred to as a case, a cover, a protective case, a protective cover, a folding cover, or the like. As shown, the accessory device 100 includes a segment 102 a, a segment 102 b, and a segment 102 c, with the segment 102 c being an optional segment. As indicated by the arrows, the segment 102 a and the segment 102 c are rotatable with respect to the segment 102 b. For example, the segment 102 a and the segment 102 b may fold over a front surface or a back surface (not shown in FIG. 1) of the segment 102 b, with the back surface being opposite the front surface. This allows the accessory device 100 to reduce its overall profile in the X-Y plane, as shown in FIG. 1. Also, the segment 102 a, the segment 102 b, and the segment 102 c may combine to define a size and shape of the portable electronic device. In some embodiments, when the segment 102 c is not present, the segment 102 a may combine with the segment 102 b to define a size and shape of the portable electronic device.
  • The accessory device 100 may further include a panel 104 designed to extend from the segment 102 a and receive a portable electronic device. In this regard, the accessory device may include a hinge assembly coupled to the panel 104. This will be shown later. When stored, the hinge assembly is hidden in the segment 102 a and covered by the panel 104. In order to retain the portable electronic device, the panel 104 may include magnets 106 (shown as dotted lines) that magnetically couple with magnets in the portable electronic device. As shown, the panel 104 is stored in the segment 102 a and is co-planar, or flush, with respect to a surface 110 of the segment 102 a. In order to lift and remove the panel 104 from the segment 102 a, the panel 104 may include a recess 108 that allows a user to engage and move the panel 104. Accordingly, the panel 104 may move by manual means.
  • The segment 102 b may include a keyboard 112 designed to provide inputs or commands to the portable electronic device. In this regard, the keyboard 112 may be in communication with the portable electronic device through electrical contacts (not shown in FIG. 1) on the panel 104 that are in contact with electrical contacts (not shown in FIG. 1) of the portable electronic device, and/or by wireless communication (such as Bluetooth® communication, as a non-limiting example). The keyboard 112 may be configured in accordance a QWERTY configuration. In some embodiments, the panel 104 is driven by a motor (not shown in FIG. 1). The command to initiate movement of the panel 104 may be provided through depressing a key of the keyboard 112, or by depressing a button that can be located on any one of the aforementioned segments.
  • Although not shown, the segment 102 c may include an additional input device (or devices). For example, the segment 102 c may include a touch pad and/or a display that provide a dynamic row of input keys that changes in accordance with a software application running on a display (not shown in FIG. 1) of the portable electronic device.
  • FIG. 2 illustrates an isometric view of the accessory device 100 shown in FIG. 1, showing the panel 104 extended away from the segment 102 a. As shown, the accessory device 100 includes a hinge assembly 114 designed to move the panel 104 from a stored configuration (shown in FIG. 1) to a deployed configuration (shown in FIG. 2) to receive a portable electronic device 180, and position the portable electronic device 180 in a user-friendly configuration. In the deployed configuration, the hinge assembly 114 extends from an internal volume within the segment 102 a. Also, in the deployed configuration, the panel 104 is moved out of an opening 116 (that leads to the internal volume) and provides a receiving surface 118 for the portable electronic device 180. Further, in order to hold/suspend the portable electronic device 180, magnets 106 in the panel 104 magnetically couple with magnets 186 in the portable electronic device 180. Accordingly, when the magnets 106 magnetically couple with the magnets 186, the portable electronic device 180 is held against the receiving surface 118 of the panel 104. Further, the portable electronic device 180 is positioned such that a display 188 is aligned with the keyboard 112, and the display 188 and the keyboard 112 are in a desired position for a user.
  • Referring again to the magnets 106 in the accessory device 100, when the segment 102 a is formed from a magnetically attractable material (such as a ferromagnetic material) or includes a magnet (not shown in FIGS. 1 and 2), the magnets 106, being secured with the panel 104, are capable of magnetically coupling the panel to the segment 102 a. The resulting magnetic attraction force is used to retain the panel 104 in the segment 102 a, as shown in FIG. 1. This provide a flush, or co-planar, relationship between the panel 104 and a surface of the segment 102 a.
  • FIG. 3 illustrates an exploded view of the hinge assembly 114 of the accessory device 100 shown in FIGS. 1 and 2, showing the components of the hinge assembly 114. As shown, the hinge assembly 114 may include multiple (segmented) hinge components that can be joined together. For example, the hinge assembly 114 may include a hinge component 120 a that couples with a hinge component 120 b by a shaft 122 a that passes through the hinge component 120 a and the hinge component 120 b. The shaft 122 a allows for relative movement between through the hinge component 120 a and the hinge component 120 b. In this regard, the connection between the hinge component 120 a and the hinge component 120 b defines a joint. In order to secure the hinge component 120 a and the hinge component 120 b to a segment (such as the segment 102 a, shown in FIG. 1), a fastener 124 a may extend through an opening of the hinge component 120 a.
  • The hinge assembly 114 may further include a hinge component 120 c that couples with a hinge component 120 d by a shaft 122 b that passes through the hinge component 120 c and the hinge component 120 d. The shaft 122 b allows for relative movement between through the hinge component 120 c and the hinge component 120 d. In this regard, the connection between the hinge component 120 c and the hinge component 120 d defines a joint. In order to secure the hinge component 120 c and the hinge component 120 d to a segment (such as the segment 102 a, shown in FIG. 1), a fastener 124 b may extend through an opening of the hinge component 120 c.
  • The hinge assembly 114 may further include a hinge component 120 e. The hinge component 120 e may be referred to as a central component, central hinge component, or a platform, as non-limiting examples. The hinge component 120 e is designed to receive a panel (such as the panel 104, shown in FIGS. 1 and 2). The hinge component 120 e may couple with the hinge component 120 b and the hinge component 120 d by a flexible member 126 a and a flexible member 126 b, respectively. The flexible member 126 a and the flexible member 126 b include one or more flexible materials. Also, the flexible member 126 a may adhesively secure with the hinge component 120 b and the hinge component 120 e, and create a joint that allows movement between the hinge component 120 b and the hinge component 120 e. The flexible member 126 b may adhesively secure with the hinge component 120 d and the hinge component 120 e, and create a joint that allows movement between the hinge component 120 d and the hinge component 120 e. It should be noted that the flexible member 126 a may not be required if the hinge component 120 b is secured with the hinge component 120 e in a manner that allows relative rotational movement between the hinge component 120 b and the hinge component 120 e. Similarly, the flexible member 126 b may not be required if the hinge component 120 d is secured with the hinge component 120 e in a manner that allows relative rotational movement between the hinge component 120 e and the hinge component 120 e. For example, although now shown, additional shafts (similar to the shaft 122 a and the shaft 122 b) may be integrated into the hinge assembly 114 to replace the aforementioned flexible members.
  • The hinge components are designed to position a panel in either a stored or a deployed configuration. In the stored configuration, the hinge components generally lie flat along a plane defined by the X-Y plane. When transitioning from the stored to the deployed configuration, the components can move simultaneously. However, the hinge components may move in different directions. For example, when the hinge component 120 a is rotated in a clockwise direction 121 a, the hinge component 120 a remains in the plane and the hinge component 120 b is rotated out of the plane (defined by the X-Y plane) such that the position of the hinge component 120 b includes a three-dimension position in the X-, Y-, and Z-axes. Further, the hinge component 120 a and the hinge component 120 b are designed to rotate about the fastener 124 a. In this regard, the fastener 124 a may define a common pivot axis, or common pivot point, for the hinge component 120 a and the hinge component 120 b. During the described movement of the hinge component 120 a and the hinge component 120 b, the hinge component 120 c and the hinge component 120 d are also designed to move. For example, when the hinge component 120 c is rotated in a counter-clockwise direction 121 b, the hinge component 120 c remains in the plane and the hinge component 120 d is rotated out of the plane (defined by the X-Y plane) such that the position of the hinge component 120 d includes a three-dimension position in the X-, Y-, and Z-axes, similar to the hinge component 120 b. Further, the hinge component 120 c and the hinge component 120 d are designed to rotate about the fastener 124 b. In this regard, the fastener 124 b may define a common pivot axis, or common pivot point, for the hinge component 120 c and the hinge component 120 d. Also, the hinge component 120 b and the hinge component 120 d can combine to move the hinge component 120 e.
  • FIG. 4 illustrates a plan view of the hinge assembly 114, showing the components assembled together. As shown, the hinge assembly 114 can lie flat in a plane (or planar surface) defined by the X-Y plane when the hinge assembly 114 is assembled. The fastener 124 a passes through an opening of the hinge component 120 a to secure with a segment (not shown in FIG. 4), and the fastener 124 b passes through an opening of the hinge component 120 c to secure with a segment (not shown in FIG. 4). Also, the flexible member 126 a secures with the hinge component 120 b and the hinge component 120 e, and the flexible member 126 b secures with the hinge component 120 d and the hinge component 120 e.
  • As shown, the hinge component 120 b and the hinge component 120 e are designed such that they mate along a diagonal line. This diagonal line, when extended, intersects the fastener 124 a. The shaft 122 a defines a linear path that, when extended, also intersects the fastener 124 a. Similarly, the hinge component 120 d and the hinge component 120 d are designed such that they mate along a diagonal line that, when extended, intersects the fastener 124 b. The shaft 122 b defines a linear path that, when extended, also intersects the fastener 124 b. In this manner, the fastener 124 a and the fastener 124 b each define a pivot point for the hinge assembly 114. This will be further illustrated below.
  • FIG. 5 illustrates a side view of the accessory device 100, showing the hinge assembly 114 and the panel 104 within the segment 102 a. As shown, the panel 104 at least partially covers the hinge assembly 114. The panel 104 may combine with the surface 110 to fully cover the hinge assembly 114 in the stored configuration, as shown in FIG. 5. Also, the hinge components may include a metal. Further, the hinge components of the hinge assembly 114 may include a magnetically attractable material, such as ferrite or a rare Earth magnetic material (as non-limiting examples). In this manner, the magnets 106 in the panel 104 can magnetically couple with the hinge assembly 114. This magnetic coupling may not only provide an attraction force that assists in transitioning the panel 104 and the hinge assembly 114 to the stored configuration, but also provides a force that retains the panel 104 in a manner such that the panel 104 remains co-planar with respect to the surface 110. As a result, the accessory device 100 provides a consistent position, and more aesthetically pleasing configuration, of the panel 104.
  • FIG. 6 illustrates a plan view of the hinge assembly 114, showing an exemplary movement of the hinge assembly 114. The dotted lines represent the original position of the hinge assembly 114 (shown in FIG. 4). As shown, the hinge component 120 a is rotated clockwise and the hinge component 120 c is rotated counter-clockwise. However, the hinge component 120 a and the hinge component 120 c remain on, or along, the X-Y plane, and the rotation of the hinge component 120 a and the hinge component 120 c causes the hinge component 120 b and the hinge component 120 d, respectively, to at least partially rotate out of the X-Y plane and into a third dimension defined by the Z-axis. Also, the rotation of the hinge component 120 b and the hinge component 120 d cause the hinge component 120 e to at least partially rotate out of the X-Y plane. Also, the hinge component 120 a and the hinge component 120 b rotate about the fastener 124 a, while the hinge component 120 c and the hinge component 120 d rotate about the fastener 124 b. Accordingly, both the fastener 124 a and the fastener 124 b each define a pivot point.
  • FIG. 7 illustrates a side view of the accessory device 100, showing the hinge assembly 114 supporting and positioning the panel 104. The hinge component 120 a and the hinge component 120 c remain flat or horizontal and parallel (or at least substantially parallel) with respect to the segment 102 a, while the hinge component 120 b and the hinge component 120 d are at least partially out of the opening 116. Also, the panel 104 is secured to the hinge assembly 114 along the hinge component 120 e, with the hinge component 120 b and the hinge component 120 d providing a three-dimensional support structure. Also, the hinge component 120 b and the hinge component 120 d are positioned diagonally with respect to the hinge component 120 a and the hinge component 120 c, respectively. Also, the hinge component 120 a is in frictional engagement with the segment 102 a, and as a result, the frictional forces between the hinge component 120 a and the segment 102 a support the hinge component 120 b such that the hinge component 120 b remains in an upright position. Similarly, the hinge component 120 c is in frictional engagement with the segment 102 a, and as a result, the frictional forces between the hinge component 120 c and the segment 102 a support the hinge component 120 d such that the hinge component 120 d remains in an upright position. In this regard, at least some frictional force are not between the hinge components of the hinge assembly 114, but rather, with other features external to, or outside, the hinge assembly 114. Also, the frictional forces used to maintain an upright and deployed position of the hinge assembly 114 are not dependent upon the thickness of the hinge components themselves.
  • FIG. 8 illustrates a side view of the accessory device 100, showing the accessory device 100 carrying the portable electronic device 180, in accordance with some described embodiments. As shown, the portable electronic device 180 is supported by the hinge assembly 114. Also, the magnets 106 in the panel 104 are magnetically coupled with the magnets 186 in the portable electronic device 180. Also, the hinge assembly 114 positions the portable electronic device 180 at an angle 190 with respect to the keyboard 112. The angle 190 is approximately 100 degrees. Generally, the hinge assembly 114 can be designed to position the portable electronic device 180 such that the angle 190 is approximately in the range of 90 to 135 degrees.
  • FIGS. 9-25 illustrate alternate embodiments of hinge assemblies. The accessory device 100 (shown in FIGS. 1 and 2) may substitute the hinge assembly 114 (shown in FIG. 2) with any of the hinge assemblies shown in FIGS. 9-25.
  • FIG. 9 illustrates a plan view of an alternate embodiment of a hinge assembly 214, in accordance with some described embodiments. The hinge assembly 214 may include features previously described herein for another hinge assembly. As shown, the hinge assembly 214 includes a hinge component 220 a coupled with a hinge component 220 b by a joint that allows relative movement between the hinge component 220 a and the hinge component 220 b, and a hinge component 220 c coupled with a hinge component 220 d by a joint that allows relative movement between the hinge component 220 c and the hinge component 220 d. In order to secure the hinge component 220 a and the hinge component 220 b to a segment of an accessory device (not shown in FIG. 9), a fastener 224 a may extend through an opening of the hinge component 220 a. In order to secure the hinge component 220 c and the hinge component 220 d to a segment of an accessory device (not shown in FIG. 9), a fastener 224 b may extend through an opening of the hinge component 220 c.
  • The fastener 224 a can define a rotational axis for the hinge component 220 a and the hinge component 220 b, and the fastener 224 b can define a rotational axis for the hinge component 220 c and the hinge component 220 d. For example, the hinge component 220 b and the hinge component 220 e are designed such that they mate along a diagonal line. This diagonal line, when extended, intersects the fastener 224 a. A shaft 222 a (connecting the hinge component 220 a with the hinge component 220 b) defines a linear path that, when extended, also intersects the fastener 224 a. Similarly, the hinge component 220 d and the hinge component 220 d are designed such that they mate along a diagonal line that, when extended, intersects the fastener 224 b. A shaft 222 b (connecting the hinge component 220 c with the hinge component 220 d) defines a linear path that, when extended, also intersects the fastener 224 b. In this manner, the fastener 224 a and the fastener 224 b each define a pivot point for the hinge assembly 214.
  • The hinge assembly 214 may further include hinge component 220 e. The hinge component 220 e designed to receive a panel (not shown in FIG. 9) used as a receiving surface for a portable electronic device. The hinge component 220 e may couple with the hinge component 220 b and the hinge component 220 d by flexible members (not shown in FIG. 9) that form joints to allow movement between the hinge component 220 e and both the hinge component 220 b and the hinge component 220 d.
  • The hinge assembly 214 can be positioned in both a stored configuration and a deployed configuration, in a manner previously described. However, the layout of the hinge components may differ as compared the hinge assembly 114 (shown in FIG. 4). For example, the hinge component 220 b does not extend end-to-end with the hinge component 220 a, as compared to the hinge component 120 b and the hinge component 120 a (shown in FIG. 4). Further, the hinge component 220 d does not extend end-to-end with the hinge component 220 c, as compared to the hinge component 120 c and the hinge component 120 d (shown in FIG. 4). Also, the hinge component 220 e extends end-to-end with the hinge component 220 b and the hinge component 220 c, and accordingly, the hinge component 220 e does not extend end-to-end with the hinge component 220 a or the hinge component 220 c. However, the hinge component 220 b shares a common axis of rotation, defined by the fastener 224 a, with the hinge component 220 a, and the hinge component 220 d shares a common axis of rotation, defined by the fastener 224 b, with the hinge component 220 c.
  • FIG. 10 illustrates a side view of an embodiment of an accessory device 200, showing the accessory device 200 carrying the portable electronic device 180, in accordance with some described embodiments. The accessory device 200 may include any features described herein for an accessory device. As shown, the portable electronic device 180 is supported by the hinge assembly 214 (shown in FIG. 9). Also, the accessory device 200 includes a panel 204 that includes magnets 206 that magnetically couple with the magnets 186 in the portable electronic device 180. Also, the hinge assembly 214 positions the portable electronic device 180 at an angle 290 with respect to a keyboard 212 located on a segment 202 b of the accessory device 200. The angle 290 may include any angle described for the angle 190 (shown in FIG. 8).
  • The hinge assembly 214 can carry the portable electronic device 180 such that the portable electronic device 180 is suspended over a segment 202 a of the hinge assembly 214. In other words, the portable electronic device 180, when engaged with the panel 204 and carried by the hinge assembly 214, is not positioned on the segment 202 b. Also, as shown in FIG. 10, based on the dimensions of the hinge component 220 b and the hinge component 220 e, the hinge component 220 b and the hinge component 220 e do not extend to the segment 202 a, and a space or clearance exists between the hinge assembly 214 and the segment 202 a.
  • FIG. 11 illustrates a plan view of an alternate embodiment of a hinge assembly 314, in accordance with some described embodiments. The hinge assembly 314 may incorporate features from other hinge assemblies described herein. As shown, the hinge assembly 314 includes a hinge component 320 a coupled with a hinge component 320 b by a joint that allows relative movement between the hinge component 320 a and the hinge component 320 b, and a hinge component 320 c coupled with a hinge component 320 d by a joint that allows relative movement between the hinge component 320 c and the hinge component 320 d.
  • As compared to prior embodiments, the hinge assembly 314 includes modifications. For example, the hinge component 320 a includes a fastener 324 a that passes through a slot 332 a formed in the hinge component 320 a, and the hinge component 320 c includes a fastener 324 b that passes through a slot 332 b formed in the hinge component 320 b. The fastener 324 a and the fastener 324 b may secure the hinge assembly 314 to an accessory device (not shown in FIG. 11).
  • Unlike prior embodiments, the fasteners shown in FIG. 11 do not represent axes of rotation for the hinge components. Furthermore, the axes of rotation of the hinge assembly 314 lie outside the hinge components of the hinge assembly 314. For example, based upon the geometry of the hinge component 320 b, the hinge component 320 a and the hinge component 320 b share an axis of rotation 328 a. Also, based upon the geometry of the hinge component 320 d, the hinge component 320 c and the hinge component 320 d share an axis of rotation 328 b. As shown, the axis of rotation 328 a and the axis of rotation 328 b lie outside the hinge assembly 314.
  • The hinge assembly 314 may further include hinge component 320 e. The hinge component 320 e designed to receive a panel (not shown in FIG. 11) used as a receiving surface for a portable electronic device. The hinge component 320 e may couple with the hinge component 320 b and the hinge component 320 d by flexible members (not shown in FIG. 11) that form joints to allow movement between the hinge component 320 e and both the hinge component 320 b and the hinge component 320 d. During motion of the hinge assembly 314, the dimensions of the slot 332 a and the slot 332 b allow the hinge component 320 a and the hinge component 320 c, respectively, to move. The hinge component 320 a and the hinge component 320 c can be guided at least partially by the fastener 324 a and the fastener 324 b, respectively.
  • FIG. 12 illustrates a side view of an embodiment of an accessory device 300, showing the accessory device 300 carrying the portable electronic device 180, in accordance with some described embodiments. The accessory device 300 may include any features described herein for an accessory device. As shown, the portable electronic device 180 is supported by the hinge assembly 314. Also, the accessory device 300 includes a panel 304 that includes magnets 306 that magnetically couple with the magnets 186 in the portable electronic device 180. Also, the hinge assembly 314 positions the portable electronic device 180 at an angle 390 with respect to a keyboard 312 located on a segment 302 b of the accessory device 300. The angle 390 may include any angle described for the angle 190 (shown in FIG. 8).
  • The hinge assembly 314 can carry the portable electronic device 180 such that the portable electronic device 180 is suspended over a segment 302 a of the hinge assembly 314. Furthermore, the hinge assembly 314 can carry the portable electronic device 180 such that the portable electronic device 180 is suspended over the keyboard 312. As shown, the axis of rotation 328 a lies in the segment 302 b and outside of the hinge assembly 314. The axis of rotation 328 b (not shown in FIG. 12) may also lie in the segment 302 b and outside of the hinge assembly 314. Also, based upon the dimensions of the hinge component 320 b and the hinge component 320 e, the hinge component 320 b and the hinge component 320 e do not extend to the segment 302 a, and a space or clearance exists between the hinge assembly 314 and the segment 302 a. It should be noted that the accessory device 300 may substitute other hinge assemblies described herein, such as the hinge assembly 514 shown in FIGS. 16 and 17 below.
  • FIG. 13 illustrates a plan view of an alternate embodiment of a hinge assembly 414, in accordance with some described embodiments. The hinge assembly 414 may include features from other hinge assemblies described herein. As shown, the hinge assembly 414 includes a hinge component 420 a coupled with a hinge component 420 b by a joint that allows relative movement between the hinge component 420 a and the hinge component 420 b, and a hinge component 420 c coupled with a hinge component 420 d by a joint that allows relative movement between the hinge component 420 c and the hinge component 420 d. In order to secure the hinge component 420 a and the hinge component 420 b to a segment of an accessory device (not shown in FIG. 13), a fastener 424 a may extend through an opening of the hinge component 420 a. In order to secure the hinge component 420 c and the hinge component 420 d to a segment of an accessory device (not shown in FIG. 13), a fastener 424 b may extend through an opening of the hinge component 420 c. The fastener 424 a can define a rotational axis for the hinge component 420 a and the hinge component 420 b, and the fastener 424 b can define a rotational axis for the hinge component 420 c and the hinge component 420 d.
  • The hinge assembly 414 may further include hinge component 420 e. The hinge component 420 e is designed to receive a panel (not shown in FIG. 13) used as a receiving surface for a portable electronic device. The hinge component 420 e may couple with the hinge component 420 b and the hinge component 420 d by flexible members (not shown in FIG. 13) that form joints to allow movement between the hinge component 420 e and both the hinge component 420 b and the hinge component 420 d.
  • The hinge assembly 414 incorporate additional features designed to provide frictional forces. For example, the hinge component 420 a may include a slot 432 a and a fastener 434 a passing through the slot 432 a, and the hinge component 420 c may include a slot 432 b and a fastener 434 b passing through the slot 432 b. The fastener 434 a and the fastener 434 b may provide a clamping force to the hinge component 420 a and the hinge component 420 c, respectively, thereby adding frictional forces. This may provide additional support when the hinge assembly 414 is in a deployed configuration (previously shown for other hinge assemblies) and holding a portable electronic device. Also, the slot 432 a and the slot 432 b can be curved to define a circular arch centered at the fastener 424 a and the fastener 424 b, respectively, as the fasteners each represent an axis of rotation.
  • FIG. 14 illustrates a cross sectional view of the hinge assembly 414 shown in FIG. 13, showing the relationship between the fastener 434 a and the hinge component 420 a. As shown, the fastener 434 a passes through the slot 432 a (labeled in FIG. 13) of the hinge component 420 a and couples with a securing member 436. Further, the fastener 434 a passes through a friction element 438 a and a friction element 438 b, each of which may include a washer. The friction element 438 a and the friction element 438 b engage opposing sides of the hinge component 420 a. When the hinge assembly 414 transitions from a stored to a deployed configuration (previously shown for other hinge assemblies), the hinge component 420 a moves relative to the friction element 438 a and the friction element 438 b. However, the friction element 438 a and the friction element 438 b can provide frictional forces that cause the hinge component 420 a to remain in a static position. In this regard, the friction element 438 a and the friction element 438 b support the hinge component 420 a by resisting movement when, for example, the hinge assembly 414 (and in particular, the hinge component 420 a) is supporting the weight of a portable electronic device. As a result, the hinge component 420 a (as well as other hinge components) need not include added thickness and can remain relatively thin. Accordingly, an accessory device carrying the hinge assembly 414 does not include increased weight due to the hinge assembly 414. It should be noted that the hinge component 420 c and the fastener 434 b (shown in FIG. 13) may include similar features described for the hinge component 420 a and the fastener 434 a, respectively.
  • FIG. 15 illustrates a plan view of the hinge assembly 414 shown in FIG. 13, showing an exemplary movement of the hinge assembly 414. As shown, the hinge component 420 a is rotated clockwise and the hinge component 420 c is rotated counter-clockwise. However, the hinge component 420 a and the hinge component 420 c remain on, or along, the X-Y plane. Due to the rotation of the hinge component 420 a, the hinge component 420 b is rotated out of the X-Y plane and into a third dimension defined by the Z-axis. Also, due to the rotation of the hinge component 420 c, the hinge component 420 d is rotated out of the X-Y plane and into a third dimension defined by the Z-axis. The hinge component 420 a and the hinge component 420 b rotate about the fastener 424 a, and the hinge component 420 c and the hinge component 420 d rotate about the fastener 424 b. Also, the rotation of the hinge component 420 b and the hinge component 420 d cause the hinge component 420 e to also rotate out of the X-Y plane. The hinge component 420 a and the hinge component 420 c move/rotate relative to the fastener 434 a and the fastener 434 b, respectively. In this regard, the fastener 434 a and the fastener 434 b provide a frictional force to the hinge component 420 a and the hinge component 420 c, respectively. Also, in order to adjust the frictional (clamping) forces provided by the fastener 434 a and the fastener 434 b, the fastener 434 a and the fastener 434 b can be rotationally driven to increase or decrease the frictional forces.
  • FIG. 16 illustrates a plan view of an alternate embodiment of a hinge assembly 514, in accordance with some described embodiments. The hinge assembly 514 may include features from other hinge assemblies described herein. As shown, the hinge assembly 514 includes a hinge component 520 a coupled with a hinge component 520 b by a joint that allows relative movement between the hinge component 220 a and the hinge component 220 b, and a hinge component 520 c coupled with a hinge component 520 d by a joint that allows relative movement between the hinge component 520 c and the hinge component 520 d. The hinge assembly 514 may further include hinge component 520 e. The hinge component 520 e designed to receive a panel (not shown in FIG. 16) used as a receiving surface for a portable electronic device. The hinge component 520 e may couple with the hinge component 520 b and the hinge component 520 d by flexible members (not shown in FIG. 16) that form joints to allow movement between the hinge component 520 e and both the hinge component 520 b and the hinge component 520 d.
  • The hinge assembly 514 may incorporate additional features designed to provide frictional forces. For example, the hinge component 520 a may include a slot 532 a and a fastener 534 a passing through the slot 532 a, and the hinge component 520 c may include a slot 532 b and a fastener 534 b passing through the slot 532 b. The fastener 534 a and the fastener 534 b may provide a clamping force to the hinge component 520 a and the hinge component 520 c, respectively, thereby adding frictional forces. This may provide additional support when the hinge assembly 514 is in a deployed configuration (previously shown for other hinge assemblies) and holding a portable electronic device. Also, in order to adjust the frictional (clamping) forces provided by the fastener 534 a and the fastener 534 b, the fastener 534 a and the fastener 534 b can be rotationally driven to increase or decrease the frictional forces.
  • Also, the hinge assembly 514 may include different pivot points. For example, the hinge component 520 a may include a fastener 544 a that passes through the slot 532 a, and the hinge component 520 c may include a fastener 544 b that passes through the slot 532 b. The fastener 544 a and the fastener 544 b may secure the hinge component 520 a and the hinge component 520 c, respectively, to a segment of an accessory device (not shown in FIG. 16). Also, the fastener 544 a and the fastener 544 b may define an axis of rotation for the hinge component 520 a and the hinge component 520 c, respectively. Alternatively, the hinge assembly 514 may include an axis of rotation 528 a and an axis of rotation 528 b, both of which lie outside the perimeter of the components of the hinge assembly 514. In these instances, the slot 532 a and the slot 532 b can be curved to define a circular arch centered at the axis of rotation 528 a and the axis of rotation 528 a, respectively.
  • FIG. 17 illustrates a plan view of the hinge assembly 514 shown in FIG. 16, showing an exemplary movement of the hinge assembly 514. As shown, the hinge component 520 a is rotated clockwise and the hinge component 520 c is rotated counter-clockwise. However, the hinge component 520 a and the hinge component 520 c remain on, or along, the X-Y plane. Due to the rotation of the hinge component 520 a, the hinge component 520 b is rotated out of the X-Y plane and into a third dimension defined by the Z-axis. Also, due to the rotation of the hinge component 520 c, the hinge component 520 d is rotated out of the X-Y plane and into a third dimension defined by the Z-axis. The hinge component 520 a and the hinge component 520 c can rotate about the fastener 544 a and the fastener 544 b, respectively. Also, the rotation of the hinge component 520 b and the hinge component 520 d cause the hinge component 520 e to also rotate out of the X-Y plane. By adjusting (for example, rotationally driving) the fastener 534 a and the fastener 534 b, the inclination, or tilt, of the hinge component 520 a and the hinge component 520 c, respectively, can be controlled. Also, the fastener 544 a and the fastener 544 b provide centrally located pivot points for the hinge component 520 a and the hinge component 520 c, respectively. Alternatively, when the axis of rotation 528 a and the axis of rotation 528 b are implemented with the hinge assembly 514, the hinge components may rotate about the axis of rotation 528 a and the axis of rotation 528 b.
  • FIG. 18 illustrates a plan view of an alternate embodiment of a hinge assembly 614, in accordance with some described embodiments. The hinge assembly 614 may include features from other hinge assemblies described herein. As shown, the hinge assembly 614 includes a hinge component 620 a coupled with a hinge component 620 b by a joint that allows relative movement between the hinge component 620 a and the hinge component 620 b, and a hinge component 620 c coupled with a hinge component 620 d by a joint that allows relative movement between the hinge component 620 c and the hinge component 620 d. In order to secure the hinge component 620 a and the hinge component 620 b to a segment of an accessory device (not shown in FIG. 18), a fastener 624 a may extend through an opening of the hinge component 620 a. In order to secure the hinge component 620 c and the hinge component 620 d to a segment of an accessory device (not shown in FIG. 18), a fastener 624 b may extend through an opening of the hinge component 620 c. The fastener 624 a can define a rotational axis for the hinge component 620 a and the hinge component 620 b, and the fastener 624 b can define a rotational axis for the hinge component 620 c and the hinge component 620 d. The hinge assembly 614 may further include hinge component 620 e. The hinge component 620 e designed to receive a panel (not shown in FIG. 18) used as a receiving surface for a portable electronic device. The hinge component 620 e may couple with the hinge component 620 b and the hinge component 620 d by flexible members (not shown in FIG. 18) that allow relative movement between the hinge component 620 e and both hinge component 620 b and the hinge component 620 d.
  • The hinge assembly 614 incorporate additional features designed to place the hinge assembly 614 in discrete positions. For example, the hinge component 620 a may include a slot 632 a and a slot 632 b. The hinge assembly 614 may include a roller element 646 a designed to hold the hinge component 620 a, and in turn, the hinge assembly 614, in different positions. As shown, the roller element 646 a is in the slot 632 a, and the hinge assembly 614 is in a stored configuration. However, when the hinge assembly 614 transitions to a deployed configuration, the hinge component 620 a rotates relative to the roller element 646 a, and the roller element 646 a moves into the slot 632 b. Similarly, the hinge component 620 c may include a slot 632 c and a slot 632 d. The hinge assembly 614 may include a roller element 646 b designed to hold the hinge component 620 c, and in turn, the hinge assembly 614, in different positions. As shown, the roller element 646 b is in the slot 632 c, and the hinge assembly 614 is in a stored configuration. However, when the hinge assembly 614 transitions to a deployed configuration, the hinge component 620 c rotates relative to the roller element 646 b, and the roller element 646 b moves into the slot 632 d.
  • FIG. 19 illustrates a plan view of the hinge assembly 614 shown in FIG. 18, showing an exemplary movement of the hinge assembly 614. As shown, the hinge component 620 a is rotated clockwise and the hinge component 620 c is rotated counter-clockwise. However, the hinge component 620 a and the hinge component 620 c remain on, or along, the X-Y plane. Due to the rotation of the hinge component 620 a, the hinge component 620 b is rotated out of the X-Y plane and into a third dimension defined by the Z-axis. Also, due to the rotation of the hinge component 620 c, the hinge component 620 d is rotated out of the X-Y plane and into a third dimension defined by the Z-axis. The hinge component 620 a and the hinge component 620 b can rotate about the fastener 624 a, and the hinge component 620 c and the hinge component 620 d can rotate about the fastener 624 b. The rotation of the hinge component 620 b and the hinge component 620 d cause the hinge component 620 e to also rotate out of the X-Y plane. Also, the roller element 646 a moves into the slot 632 b, and the roller element 646 b moves into the slot 632 d. The roller element 646 a and the roller element 646 b provide a force to the hinge component 620 a and the hinge component 620 c, respectively, to maintain the hinge assembly 614 in the deployed configuration, even when the hinge assembly 614 is supporting the weight of a portable electronic device (not shown in FIG. 19).
  • FIG. 20 illustrates a plan view of an alternate embodiment of a hinge assembly 714, in accordance with some described embodiments. The hinge assembly 714 may include features from other hinge assemblies described herein. As shown, the hinge assembly 714 includes a hinge component 720 a coupled with a hinge component 720 b by a joint that allows relative movement between the hinge component 720 a and the hinge component 720 b, and a hinge component 720 c that couples with a hinge component 720 d by a joint that allows relative movement between the hinge component 720 c and the hinge component 720 d. In order to secure the hinge component 720 a and the hinge component 720 b to a segment of an accessory device (not shown in FIG. 20), a fastener 724 a may extend through an opening of the hinge component 720 a. In order to secure the hinge component 720 c and the hinge component 720 d to a segment of an accessory device (not shown in FIG. 20), a fastener 724 b may extend through an opening of the hinge component 720 c. The fastener 724 a can define a rotational axis for the hinge component 720 a and the hinge component 720 b, and the fastener 724 b can define a rotational axis for the hinge component 720 c and the hinge component 720 d._The hinge assembly 714 may further include hinge component 720 e. The hinge component 720 e designed to receive a panel (not shown in FIG. 20) used as a receiving surface for a portable electronic device. The hinge component 720 e may couple with the hinge component 720 b and the hinge component 720 d by flexible members (not shown in FIG. 20) that allow relative movement between the hinge component 720 e and both the hinge component 720 b and the hinge component 720 d.
  • The hinge assembly 714 incorporate additional features designed to place the hinge assembly 714 in discrete positions. For example, the hinge component 720 a may include a slot 732 a and a slot 732 b. The hinge assembly 714 may include an engagement element 748 a designed to hold the hinge component 720 a, and in turn, the hinge assembly 714, in different positions. As shown, the engagement element 748 a is in the slot 732 a, and the hinge assembly 714 is in a stored configuration. However, when the hinge assembly 714 transitions to a deployed configuration, the hinge component 720 a rotates relative to the engagement element 748 a, and the engagement element 748 a moves into the slot 732 b. Unlike the embodiments shown in FIGS. 18 and 19, the slot 732 a and the slot 732 b define a saw tooth slot, and the engagement element 748 a includes a corresponding saw tooth design. Further, based upon the design orientation on the slot 732 a and the slot 732 b, the engagement element 748 a may promote movement from the stored configuration (shown in FIG. 20) to a deployed configuration (shown below). Moreover, based upon the design orientation on the slot 732 a and the slot 732 b, the engagement element 748 a may impede movement from the deployed configuration (shown below) to the stored configuration shown in FIG. 20. As a result, the engagement element 748 a resist rotational movement of the hinge component 720 a in the counter-clockwise motion when the hinge assembly 714 transitions from the deployed configuration to the stored configuration.
  • Similarly, the hinge component 720 c may include a slot 732 c and a slot 732 d. The hinge assembly 714 may include an engagement element 748 b designed to hold the hinge component 720 c, and in turn, the hinge assembly 714, in different positions. As shown, the engagement element 748 b is in the slot 732 c, and the hinge assembly 714 is in a stored configuration. However, when the hinge assembly 714 transitions to a deployed configuration, the hinge component 720 c rotates relative to the engagement element 748 b, and the engagement element 748 b moves into the slot 732 d. The slot 732 c and the slot 732 d define a saw tooth slot, and the engagement element 748 b includes a corresponding saw tooth design. Further, based upon the design orientation on the slot 732 c and the slot 732 d, the engagement element 748 b may promote movement from the stored configuration (shown in FIG. 20) to a deployed configuration (shown below). Moreover, based upon the design orientation on the slot 732 c and the slot 732 d, the engagement element 748 b may impede movement from the deployed configuration (shown below) to the stored configuration shown in FIG. 20. As a result, the engagement element 748 a resist rotational movement of the hinge component 720 c in the clockwise motion when the hinge assembly 714 transitions from the deployed configuration to the stored configuration.
  • FIG. 21 illustrates a plan view of the hinge assembly 714 shown in FIG. 20, showing an exemplary movement of the hinge assembly 714. As shown, the hinge component 720 a is rotated clockwise and the hinge component 720 c is rotated counter-clockwise. However, the hinge component 720 a and the hinge component 720 c remain on, or along, the X-Y plane. Due to the rotation of the hinge component 720 a, the hinge component 720 b is rotated out of the X-Y plane and into a third dimension defined by the Z-axis. Also, due to the rotation of the hinge component 720 c, the hinge component 720 d is rotated out of the X-Y plane and into a third dimension defined by the Z-axis. The hinge component 720 a and the hinge component 720 b rotate about the fastener 724 a, and the hinge component 720 c and the hinge component 720 d rotate about the fastener 724 b. The rotation of the hinge component 720 b and the hinge component 720 d cause the hinge component 720 e to also rotate out of the X-Y plane. Also, the engagement element 748 a moves into the slot 732 b, and the engagement element 748 b moves into the slot 732 d. The engagement element 748 a and the engagement element 748 b provide a force to the hinge component 720 a and the hinge component 720 c, respectively, to maintain the hinge assembly 714 in the deployed configuration, even when the hinge assembly 714 is supporting the weight of a portable electronic device (not shown in FIG. 21). The engagement element 748 a and the engagement element 748 b provide the hinge assembly 714 with an asymmetric force profile, as the force required to transition the hinge assembly 714 from the stored configuration to the deployed configuration (shown in FIG. 21) is less than the force required to transition the hinge assembly 714 from the deployed configuration to the stored configuration. This may prevent the hinge assembly 714 from an unwanted transition (to the stored configuration) when, for example, the hinge assembly 714 is supporting the portable electronic device.
  • FIG. 22 illustrates a plan view of an alternate embodiment of a hinge assembly 814, in accordance with some described embodiments. The hinge assembly 814 may include features from other hinge assemblies described herein. As shown, the hinge assembly 814 is positioned over a segment 802 a. The hinge assembly 814 may include a hinge component 820 a coupled with a hinge component 820 b by a joint that allows relative movement between the hinge component 820 a and the hinge component 820 b, and a hinge component 820 c coupled with a hinge component 820 d by a joint that allows relative movement between the hinge component 820 c and the hinge component 820 d. In order to secure the hinge component 820 a and the hinge component 820 b to a segment of an accessory device (not shown in FIG. 22), a fastener 824 a may extend through an opening of the hinge component 820 a. In order to secure the hinge component 820 c and the hinge component 820 d to a segment of an accessory device (not shown in FIG. 22), a fastener 824 b may extend through an opening of the hinge component 820 c. The fastener 824 a can define a rotational axis for the hinge component 820 a and the hinge component 820 b, and the fastener 824 b can define a rotational axis for the hinge component 820 c and the hinge component 820 d. The hinge assembly 814 may further include hinge component 820 e. The hinge component 820 e designed to receive a panel (not shown in FIG. 22) used to engage and retain a portable electronic device. The hinge component 820 e may couple with the hinge component 820 b and the hinge component 820 d by flexible members (not shown in FIG. 22) that allow relative movement between the hinge component 820 e and both the hinge component 820 b and the hinge component 820 d.
  • The hinge assembly 814 may incorporate additional features designed to place the hinge assembly 814 in discrete positions. For example, the hinge component 820 a may include a magnet 852 a and a magnet 852 b. The segment 802 a may include a magnet 854 a and a magnet 854 b designed to magnetically couple with the magnet 852 a and the magnet 852 b, respectively. The segment 802 a may further include a magnet 854 e. The magnetic coupling is designed to hold the hinge component 820 a, and in turn, the hinge assembly 814, in different positions. As shown, the hinge assembly 814 is in a stored configuration. However, when the hinge assembly 814 transitions to a deployed configuration, the hinge component 820 a rotates, and the magnet 852 a in the hinge component 820 a is aligned and magnetically coupled with the magnet 854 e in the segment 802 a. This will be shown below. Similarly, the hinge component 820 c may include a magnet 852 c and a magnet 852 d. The segment 802 a may include a magnet 854 c and a magnet 854 d designed to magnetically couple with the magnet 852 c and the magnet 852 d, respectively. The segment 802 a may further include a magnet 854 f. The magnetic coupling is designed to hold the hinge component 820 c, and in turn, the hinge assembly 814, in different positions. As shown, the hinge assembly 814 is in a stored configuration. However, when the hinge assembly 814 transitions to a deployed configuration, the hinge component 820 c rotates, and the magnet 852 c in the hinge component 820 a is aligned and magnetically coupled with the magnet 854 f in the segment 802 a. This will be shown below.
  • FIG. 23 illustrates a plan view of the hinge assembly 814 shown in FIG. 22, showing an exemplary movement of the hinge assembly 814. As shown, the hinge component 820 a is rotated clockwise and the hinge component 820 c is rotated counter-clockwise. However, the hinge component 820 a and the hinge component 820 c remain on, or along, the X-Y plane. Due to the rotation of the hinge component 820 a, the hinge component 820 b is rotated out of the X-Y plane and into a third dimension defined by the Z-axis. Also, due to the rotation of the hinge component 820 c, the hinge component 820 d is rotated out of the X-Y plane and into a third dimension defined by the Z-axis. The hinge component 820 a and the hinge component 820 b rotate about the fastener 824 a, and the hinge component 820 c and the hinge component 820 d rotate about the fastener 824 b. The rotation of the hinge component 820 b and the hinge component 820 d cause the hinge component 820 e to also rotate out of the X-Y plane. Also, the magnet 852 a in the hinge component 820 a is magnetically coupled with the magnet 854 e in the segment 802 a. Also, the magnet 852 c in the hinge component 820 c is magnetically coupled with the magnet 854 f in the segment 802 a. The magnetic coupling between the magnets in the hinge components and the magnets in the segment 802 a provide a magnetic attraction force to maintain the hinge assembly 814 in the deployed configuration (shown in FIG. 23), even when the hinge assembly 814 is supporting the weight of a portable electronic device (not shown in FIG. 23).
  • FIG. 24 illustrates a plan view of an alternate embodiment of a hinge assembly 914, in accordance with some described embodiments. The hinge assembly 914 may include features from other hinge assemblies described herein. As shown, the hinge assembly 914 is positioned over a segment 902 a. As shown, the hinge assembly 914 includes a hinge component 920 a coupled with a hinge component 920 b by a joint that allows relative movement between the hinge component 920 a and the hinge component 920 b, and a hinge component 920 c coupled with a hinge component 920 d by a joint that allows relative movement between the hinge component 920 c and the hinge component 920 d. In order to secure the hinge component 920 a and the hinge component 920 b to a segment of an accessory device (not shown in FIG. 24), a fastener 924 a may extend through an opening of the hinge component 920 a. In order to secure the hinge component 920 c and the hinge component 920 d to a segment of an accessory device (not shown in FIG. 24), a fastener 924 b may extend through an opening of the hinge component 920 c. The fastener 924 a can define a rotational axis for the hinge component 920 a and the hinge component 920 b, and the fastener 924 b can define a rotational axis for the hinge component 920 c and the hinge component 920 d. The hinge assembly 914 may further include hinge component 920 e. The hinge component 920 e designed to receive a panel (not shown in FIG. 24) used to engage and retain a portable electronic device. The hinge component 920 e may couple with the hinge component 920 b and the hinge component 920 d by flexible members (not shown in FIG. 24) that allow relative movement between the hinge component 920 e and both the hinge component 920 b and the hinge component 920 d.
  • The segment 902 a may include features that provide the hinge assembly 914 with an asymmetric force profile. For example, the segment 902 a may include a roller assembly 956 a that engages the hinge component 920 a. As shown, the hinge assembly 914 is in a stored configuration. However, when the hinge assembly 914 transitions to a deployed configuration, the hinge component 920 a rotates relative to the roller assembly 956 a. Furthermore, the rotational movement of the hinge component 920 a causes the roller assembly 956 b to roll along a surface of the hinge component 920 a. However, when the hinge assembly 914 transitions back to the stored configuration, the roller assembly 956 a may slide along the surface of the hinge component 920 a, rather than roll. When the roller assembly 956 a provides frictional engagement via sliding, the movement of the hinge component 920 a is impeded, as compared to the rolling action. In this regard, the force required to transition the hinge assembly 914 from the stored configuration to the deployed configuration is less than the force required to transition the hinge assembly 914 from the deployed configuration to the stored configuration.
  • Similarly, the segment 902 a may include a roller assembly 956 b that engages the hinge component 920 c. As shown, the hinge assembly 914 is in a stored configuration. However, when the hinge assembly 914 transitions to a deployed configuration, the hinge component 920 c rotates relative to the roller assembly 956 b. Furthermore, the rotational movement of the hinge component 920 c causes the roller assembly 956 b to roll along a surface of the hinge component 920 c. However, when the hinge assembly 914 transitions back to the stored configuration, the roller assembly 956 b may slide along the surface of the hinge component 920 c, rather than roll. When the roller assembly 956 b provides frictional engagement via sliding, the movement of the hinge component 920 c is impeded, as compared to the rolling action. In this regard, the force required to transition the hinge assembly 914 from the stored configuration to the deployed configuration is less than the force required to transition the hinge assembly 914 from the deployed configuration to the stored configuration.
  • FIG. 25 illustrates a plan view of the hinge assembly 914 shown in FIG. 24, showing an exemplary movement of the hinge assembly 914. As shown, the hinge component 920 a is rotated clockwise and the hinge component 920 c is rotated counter-clockwise. However, the hinge component 920 a and the hinge component 920 c remain on, or along, the X-Y plane. Due to the rotation of the hinge component 920 a, the hinge component 920 b is rotated out of the X-Y plane and into a third dimension defined by the Z-axis. Also, due to the rotation of the hinge component 920 c, the hinge component 920 d is rotated out of the X-Y plane and into a third dimension defined by the Z-axis. The hinge component 920 a and the hinge component 920 b rotate about the fastener 924 a, and the hinge component 920 c and the hinge component 920 d rotate about the fastener 924 b. The rotation of the hinge component 920 b and the hinge component 920 d cause the hinge component 920 e to also rotate out of the X-Y plane. Also, in the deployed configuration, the roller assembly 956 a and the roller assembly 956 b are located on different surface location of the hinge component 920 a and the hinge component 920 c, respectively, as compared to the stored configuration (shown in FIG. 24). Further, the roller assembly 956 a and the roller assembly 956 b provide a force to the hinge component 920 a and the hinge component 920 c, respectively, to maintain the hinge assembly 914 in the deployed configuration, even when the hinge assembly 914 is supporting the weight of a portable electronic device (not shown in FIG. 25). The roller assembly 956 a and the roller assembly 956 b provide the hinge assembly 914 with an asymmetric force profile, as the force required to transition the hinge assembly 914 from the stored configuration to the deployed configuration is less than the force required to transition the hinge assembly 914 from the deployed configuration to the stored configuration.
  • FIG. 26 illustrates an isometric view of an embodiment of an electronic device 1080, showing a panel 1004 integrated into a housing 1082 of the electronic device 1080, in accordance with some described embodiments. The electronic device 1080 may include a desktop computing device with a display assembly and processing circuitry (not shown in FIG. 26) carried by the housing 1082. Also, the electronic device 1080 may include a stand 1084 coupled to the housing 1082.
  • FIG. 27 illustrates an isometric view of the electronic device 1080 shown in FIG. 26, showing the panel 1004 extended from the housing 1082. The panel 1004 may define a handle that can be grasped by a user to pick up and move the electronic device 1080. The panel 1004 is coupled to a hinge assembly 1014, which may include features from any hinge assembly described herein. Accordingly, the hinge assembly 1014 and the panel 1004 may transition from a stored configuration (shown in FIG. 26) to a deployed configuration (shown in FIG. 27).
  • FIG. 28 illustrates a block diagram of an electronic device 1100, in accordance with some described embodiments. At least some components shown for the electronic device 1100 in the block diagram may be incorporated into accessory devices and electronic devices described herein.
  • As shown in FIG. 28, the electronic device 1100 can include a processor 1102 that represents a microprocessor or controller for controlling the overall operation of electronic device 1100. The electronic device 1100 can also include inputs 1108. Some of the inputs 1108 allow a user of the electronic device 1100 to interact with the electronic device 1100. For example, the inputs 1108 can take the form of a variety of user input devices, such as a button, a keypad, a dial, touch screen, audio input interface, visual/image capture input interface, input in the form of sensor data, etc. Still further, the electronic device 1100 can include a display 1110 (screen display) that can be controlled by the processor 1102 to present visual information to the user. A data bus 1116 can facilitate data transfer between at least a storage device 1140, the processor 1102, and a controller 1113. The controller 1113 can be used to interface with and control different equipment (not shown in FIG. 28) through an equipment control bus 1114. The electronic device 1100 can also include a network/bus interface 1111 that couples to a data link 1112. In the case of a wireless connection, the network/bus interface 1111 can include a wireless transceiver.
  • The electronic device 1100 also includes a storage device 1140, which may include a single disk or multiple disks (e.g., hard drives), and includes a storage management module that manages one or more partitions within the storage device 1140. In some embodiments, storage device 1140 can include flash memory, semiconductor (solid state) memory or the like. The electronic device 1100 can also include a Random Access Memory (RAM) 1120 and a Read-Only Memory (ROM) 1122. The ROM 1122 can store programs, utilities or processes to be executed in a non-volatile manner. The RAM 1120 can provide volatile data storage, and stores instructions related to the operation of the electronic device 1100.
  • The electronic device 1100 also includes a storage device 1140, which may include a single disk or multiple disks (e.g., hard drives), and includes a storage management module that manages one or more partitions within the storage device 1140. In some embodiments, storage device 1140 can include flash memory, semiconductor (solid state) memory or the like. The electronic device 1100 can also include a Random Access Memory (RAM) 1120 and a Read-Only Memory (ROM) 1122. The ROM 1122 can store programs, utilities or processes to be executed in a non-volatile manner. The RAM 1120 can provide volatile data storage, and stores instructions related to the operation of the electronic device 1100.
  • The various aspects, embodiments, implementations or features of the described embodiments can be used separately or in any combination. Various aspects of the described embodiments can be implemented by software, hardware or a combination of hardware and software. The described embodiments can also be embodied as computer readable code on a computer readable medium for controlling manufacturing operations or as computer readable code on a computer readable medium for controlling a manufacturing line. The computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include read-only memory, random-access memory, CD-ROMs, HDDs, DVDs, magnetic tape, and optical data storage devices. The computer readable medium can also be distributed over network-coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
  • The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of the specific embodiments described herein are presented for purposes of illustration and description. They are not targeted to be exhaustive or to limit the embodiments to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.

Claims (20)

What is claimed is:
1. An accessory device suitable for use with a portable electronic device, the accessory device comprising:
a first segment comprising a keyboard and a touch pad;
a second segment coupled with the first segment, the second segment comprising a hinge assembly; and
a panel coupled with the hinge assembly, the panel positioned by the hinge assembly such that when the panel carries the portable electronic device, the first segment lacks contact with the portable electronic device.
2. The accessory device of claim 1, further comprising a magnet carried by the panel, the magnet configured to magnetically couple with a device magnet of the portable electronic device.
3. The accessory device of claim 1, wherein the hinge assembly comprises:
a first hinge component coupled with the panel; and
a second hinge component coupled with the first hinge component and the second segment.
4. The accessory device of claim 1, wherein the hinge assembly is secured with the second segment.
5. The accessory device of claim 4, wherein the hinge assembly extends from the second segment.
6. The accessory device of claim 1, wherein the panel comprises electrical contacts configured to eclectically couple with the portable electronic device.
7. The accessory device of claim 1, wherein the panel is configured to place hover the portable electronic device over the keyboard.
8. An accessory device suitable for use with a portable electronic device, the accessory device comprising:
a first segment comprising a keyboard and a touch pad;
a second segment coupled with the first segment, the second segment defining an opening;
a hinge assembly carried by the second segment; and
a panel coupled to the hinge assembly, wherein:
a first position comprises the panel located in the opening, and
a second position comprises the panel external to the opening by the hinge assembly, and
in the second position, the panel is configured to carry and suspend the portable electronic device over the first segment.
9. The accessory device of claim 8, further comprising a magnet carried by the panel, the magnet configured to magnetically couple with a device magnet of the portable electronic device.
10. The accessory device of claim 8, wherein the panel comprises electrical contacts configured to eclectically couple with the portable electronic device.
11. The accessory device of claim 8, wherein the first position comprises the hinge assembly positioned in the opening and the panel covering the hinge assembly.
12. The accessory device of claim 8, wherein the hinge assembly comprises:
a first hinge component coupled with the panel; and
a second hinge component coupled with the first hinge component and the second segment.
13. The accessory device of claim 8, wherein when the panel carries the portable electronic device, the first segment lacks contacts with the portable electronic device.
14. The accessory device of claim 8, wherein the panel is configured to place hover the portable electronic device over the keyboard.
15. An accessory device suitable for use with a portable electronic device, the accessory device comprising:
a first segment comprising a keyboard and a touch pad;
a second segment coupled with the first segment;
a panel configured to receive the portable electronic device; and
a hinge assembly coupled with the second segment, the hinge assembly comprising:
a first hinge component secured with the second segment by a fastener,
a second hinge component secured with the first segment, and
a third hinge component secured with the second segment and the panel, wherein rotation of the first hinge component within the panel causes the second hinge component and the third hinge component to move away from the second segment and place the panel over the first segment.
16. The accessory device of claim 15, further comprising a magnet carried by the panel, the magnet configured to magnetically couple with a device magnet of the portable electronic device.
17. The accessory device of claim 15, wherein the panel comprises electrical contacts configured to eclectically couple with the portable electronic device.
18. The accessory device of claim 15, further comprising:
a fourth hinge component secured with the second segment by a second fastener; and
a fifth hinge component secured with the fourth hinge component and the third hinge component.
19. The accessory device of claim 15, wherein when the panel carries the portable electronic device, the first segment lacks contacts with the portable electronic device.
20. The accessory device of claim 15, wherein the panel is configured to place hover the portable electronic device over the keyboard.
US16/894,681 2018-09-24 2020-06-05 Accessory devices for portable electronic devices Abandoned US20200301481A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/894,681 US20200301481A1 (en) 2018-09-24 2020-06-05 Accessory devices for portable electronic devices

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862735442P 2018-09-24 2018-09-24
US16/290,655 US10705574B2 (en) 2018-09-24 2019-03-01 Accessory devices for portable electronic devices
US16/894,681 US20200301481A1 (en) 2018-09-24 2020-06-05 Accessory devices for portable electronic devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/290,655 Continuation US10705574B2 (en) 2018-09-24 2019-03-01 Accessory devices for portable electronic devices

Publications (1)

Publication Number Publication Date
US20200301481A1 true US20200301481A1 (en) 2020-09-24

Family

ID=69884282

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/290,655 Active US10705574B2 (en) 2018-09-24 2019-03-01 Accessory devices for portable electronic devices
US16/894,681 Abandoned US20200301481A1 (en) 2018-09-24 2020-06-05 Accessory devices for portable electronic devices

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/290,655 Active US10705574B2 (en) 2018-09-24 2019-03-01 Accessory devices for portable electronic devices

Country Status (1)

Country Link
US (2) US10705574B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11899497B1 (en) * 2023-06-03 2024-02-13 Xebec, Inc. Article mounting apparatus and system comprising same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3851936A4 (en) * 2018-09-13 2022-06-08 June Soo Oh Foldable multimedia terminal
US10890944B1 (en) * 2020-03-02 2021-01-12 Ming-Tsong George Tien Tablet support stand
US20220091640A1 (en) * 2020-09-18 2022-03-24 Apple Inc. Accessory device with dual angle setting using a single fulcrum point

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1830308A (en) * 1928-02-29 1931-11-03 Gustav P Zepke Extensible support for fixtures
JPH0635565A (en) * 1992-07-13 1994-02-10 Fujitsu Ltd Portable information equipment
US5668570A (en) * 1993-06-29 1997-09-16 Ditzik; Richard J. Desktop computer with adjustable flat panel screen
US6104604A (en) * 1998-01-06 2000-08-15 Gateway 2000, Inc. Modular keyboard
US6430038B1 (en) * 2000-04-18 2002-08-06 Hewlett-Packard Company Computer with articulated mechanism
US6480373B1 (en) * 2001-07-24 2002-11-12 Compaq Information Technologies Group, L.P. Multifunctional foldable computer
US6798649B1 (en) 2002-02-25 2004-09-28 Think Outside, Inc. Mobile computer with foldable keyboard
US6905101B1 (en) * 2002-06-11 2005-06-14 Chief Manufacturing Inc. Adjustable, self-balancing flat panel display mounting system
US6788530B2 (en) * 2002-09-24 2004-09-07 International Business Machines Corporation User friendly computer equipment, monitor unit, and monitor unit setting base
US20040195305A1 (en) 2002-11-19 2004-10-07 Leslie Dotson Foldable key assembly
US6816365B2 (en) * 2003-01-28 2004-11-09 International Business Machines Corporation Laptop display screen and keyboard mounting structure
DE202004012298U1 (en) * 2004-04-26 2004-09-30 BSH Bosch und Siemens Hausgeräte GmbH Household appliance with swiveling display screen
US8608119B2 (en) * 2004-11-23 2013-12-17 Hewlett-Packard Development Company, L.P. Display stand
KR100705069B1 (en) * 2004-12-02 2007-04-06 엘지전자 주식회사 display of tiliting Assembly
KR100638901B1 (en) * 2004-12-14 2006-10-26 엘지전자 주식회사 Display of tiliting Assembly
US7967404B2 (en) * 2004-12-24 2011-06-28 Lg Electronics Inc. Display unit installing structure for refrigerator
US7656652B2 (en) * 2005-11-09 2010-02-02 George Moser Portable computer with reconfigurable display
TWM308357U (en) * 2006-09-12 2007-03-21 Modernsolid Ind Co Ltd Panel fixing stand for multiple angle adjustment
US8508918B2 (en) * 2007-01-05 2013-08-13 Milestone Av Technologies Llc Wall-avoiding self-balancing mount for tilt positioning of a flat panel electronic display
DE102007028995A1 (en) * 2007-04-25 2008-10-30 Henning Walter Portable digital computer
US7648112B2 (en) * 2007-09-10 2010-01-19 Andrew H. Lew Flat panel display mounting device
KR101641229B1 (en) * 2009-10-23 2016-07-20 엘지전자 주식회사 Module for expanding function of electronic device and mobile device having the same
US8467179B2 (en) * 2010-01-28 2013-06-18 Cruxcase, Llc Tablet computer case and associated methods
US8749963B2 (en) * 2010-03-15 2014-06-10 Over The Sun, Llc Housing for slate tablet computer
US20120170194A1 (en) * 2011-01-05 2012-07-05 Charles Lord Mobile computer stand
US9729685B2 (en) * 2011-09-28 2017-08-08 Apple Inc. Cover for a tablet device
US8743538B2 (en) * 2011-10-14 2014-06-03 Hewlett-Packard Development Company, L.P. Protective hinge cover for a mobile computing device
USD672356S1 (en) * 2012-02-08 2012-12-11 Hewlett-Packard Development Company, L.P. Stand for a computing device
TWM435656U (en) * 2012-04-19 2012-08-11 Darfon Electronics Corp Support for keyboard
US20130299326A1 (en) * 2012-05-14 2013-11-14 Sin Mei Electronics Co., Ltd. Wireless keyboard with a specially designed power switch structure
CN103515780A (en) * 2012-06-15 2014-01-15 鸿富锦精密工业(深圳)有限公司 Connector and docking station with connector
TWM444022U (en) * 2012-08-23 2012-12-21 Dexin Corp Cover-raisable electronic apparatus
TWM459753U (en) * 2012-10-11 2013-08-21 Fu-Yi Hsu Protective sheath
US20140133080A1 (en) * 2012-11-15 2014-05-15 Samsung Electronics Co., Ltd. Detachable electronic device and connection apparatus usable with the same
US20140211393A1 (en) * 2013-01-30 2014-07-31 Bing-Zhang LEE Detachable rotary extended keyboard plate
EP3129864B1 (en) * 2014-04-09 2018-06-20 Microsoft Technology Licensing, LLC Input device with bendable support mechanism for a computing device
USD732543S1 (en) * 2014-04-11 2015-06-23 Cyber Acoustics Llc Support for an electronic device protector
USD718772S1 (en) * 2014-04-11 2014-12-02 Cyber Acoustics Llc Pop-up support for an electronic device protector
US8917499B1 (en) 2014-07-14 2014-12-23 ZAGG Intellecutal Property Holding Co. Foldable keyboard
US9287917B1 (en) * 2015-02-19 2016-03-15 A.G. Findings & Mfg. Co. Electronic device protective case with convenience features
KR102301715B1 (en) * 2015-04-30 2021-09-14 삼성전자주식회사 Accessory device and electronic device including the same
GB201604892D0 (en) 2016-03-22 2016-05-04 Coley Marie A A storage and transport device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11899497B1 (en) * 2023-06-03 2024-02-13 Xebec, Inc. Article mounting apparatus and system comprising same

Also Published As

Publication number Publication date
US20200097050A1 (en) 2020-03-26
US10705574B2 (en) 2020-07-07

Similar Documents

Publication Publication Date Title
US20200301481A1 (en) Accessory devices for portable electronic devices
EP3731059B1 (en) Terminal with flexible screen
US9575516B2 (en) Tablet computer case and associated methods
US8472177B2 (en) Tablet computer case and associated methods
US9847805B2 (en) Cradle-case combination with magnetic fastener feature
TWI483095B (en) Magnetic attachment unit
US10739825B2 (en) Keyboard accessory for a portable electronic device
JP2005092864A (en) Electronic equipment
JP2005085260A (en) Electronic equipment
JP2016534449A (en) Magnetic features of covers for electronic devices
JP3153902U (en) Multistage hinge assembly and portable electronic device including the same
US20210191470A1 (en) Display positioning assembly
US9179567B2 (en) Electronic device
US20120300381A1 (en) Hinge device and keyboard dock and portable electronic device having the same
US20220091640A1 (en) Accessory device with dual angle setting using a single fulcrum point
US9529384B1 (en) Electronic device
US8744538B2 (en) Fully flat slider
CN114730202A (en) Book type foldable flat plate with support
TWI259986B (en) Electronic device and image configuration thereof
US6741456B2 (en) System and method for pivotably securing display housing to computer system
CN215993474U (en) Display structure of mobile device
WO2011139865A2 (en) Tablet computer case and associated methods
TWI616742B (en) Docking station and electronic assembly using the same
TWM632612U (en) Electronic device with stand
TWM449498U (en) Screen protection cover

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION