US20200290558A1 - Seat belt device - Google Patents

Seat belt device Download PDF

Info

Publication number
US20200290558A1
US20200290558A1 US16/818,087 US202016818087A US2020290558A1 US 20200290558 A1 US20200290558 A1 US 20200290558A1 US 202016818087 A US202016818087 A US 202016818087A US 2020290558 A1 US2020290558 A1 US 2020290558A1
Authority
US
United States
Prior art keywords
buckle
case
seat
connecting member
corner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/818,087
Other versions
US11242029B2 (en
Inventor
Daiki Furukawa
Yusuke Hirao
Yasuaki KOSUGI
Shigekazu Imanaka
Hideki Kato
Katsuya Shimazu
Yoshio Mizuno
Shigeru Kotama
Hikaru Ikefuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Rika Co Ltd
Toyota Motor Corp
Original Assignee
Tokai Rika Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Rika Co Ltd, Toyota Motor Corp filed Critical Tokai Rika Co Ltd
Assigned to KABUSHIKI KAISHA TOKAI RIKA DENKI SEISAKUSHO, TOYOTA JIDOSHA KABUSHIKI KAISHA reassignment KABUSHIKI KAISHA TOKAI RIKA DENKI SEISAKUSHO ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HIRAO, YUSUKE, IMANAKA, SHIGEKAZU, KATO, HIDEKI, SHIMAZU, KATSUYA, Ikefuji, Hikaru, KOTAMA, SHIGERU, MIZUNO, YOSHIO, KOSUGI, YASUAKI, FURUKAWA, DAIKI
Publication of US20200290558A1 publication Critical patent/US20200290558A1/en
Application granted granted Critical
Publication of US11242029B2 publication Critical patent/US11242029B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R22/00Safety belts or body harnesses in vehicles
    • B60R22/18Anchoring devices
    • B60R22/26Anchoring devices secured to the seat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R22/00Safety belts or body harnesses in vehicles
    • B60R22/28Safety belts or body harnesses in vehicles incorporating energy-absorbing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R22/00Safety belts or body harnesses in vehicles
    • B60R22/18Anchoring devices
    • B60R2022/1806Anchoring devices for buckles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R22/00Safety belts or body harnesses in vehicles
    • B60R22/18Anchoring devices
    • B60R2022/1812Connections between seat belt and buckle tongue

Definitions

  • the disclosure relates to a seat belt device.
  • JP 10-100860 A discloses a structure in which a buckle and a load generating portion are connected by a seat belt.
  • a wire material is drawn out from the load generating portion by a predetermined length, and the buckle is moved so that the seat belt is loosened.
  • JP 10-100860 A There is a structure including a buckle force limiter mechanism as described in JP 10-100860 A, in which a connecting member that connects the buckle and a force limiter mechanism is covered with a case from an inner side in a seat width direction such that entry of foreign substances is restrained.
  • the connecting member when the connecting member is pulled toward an occupant in the case of an oblique collision of the vehicle, the buckle may not be sufficiently moved due to a frictional force generated by interference between the connecting member and the case. Accordingly, there is room for improvement to stably operate the buckle force limiter mechanism.
  • the disclosure provides a seat belt device in which a buckle force limiter mechanism is stably operated.
  • An aspect of the disclosure relates to a seat belt device including a buckle provided on a side portion of a seat for a vehicle, and configured such that a tongue plate is inserted into the buckle; a buckle force limiter mechanism connected to the buckle via a connecting member having an elongate shape, the buckle force limiter mechanism being configured to allow the buckle to move in a pulling direction when a tensile load equal to or larger than a predetermined tensile load is applied to the buckle; and a case covering the connecting member from an inner side in a seat width direction, the case having a corner at an upper end portion of the case, the corner facing the connecting member, and the corner having an arc shape.
  • the buckle is provided on the side portion of the seat for the vehicle, and the tongue plate is inserted into the buckle.
  • the buckle is connected to the buckle force limiter mechanism via the connecting member having an elongate shape.
  • the buckle force limiter mechanism is configured to allow the buckle to move in the pulling direction when the tensile load equal to or larger than the predetermined tensile load is applied to the buckle.
  • the tensile load is input to the buckle force limiter mechanism via the buckle and the connecting member, and the buckle is allowed to move in the pulling direction.
  • the connecting member is covered with the case from the inner side in the seat width direction.
  • the corner at the upper end portion of the case is rounded into an arc shape, the corner facing the connecting member.
  • the “arc shape” is not limited to an arc shape formed by a curved line, and represents a concept including an arc shape formed by connecting a plurality of straight lines.
  • the buckle force limiter mechanism can be stably operated.
  • an upper end of an arc-shaped portion of the corner may be provided inward of a movable range in the seat width direction, the movable range being a range in which the connecting member is movable in the seat width direction.
  • the connecting member can be restrained from being caught by the upper end of the arc-shaped portion.
  • the case may include a case body made of metal and a resin plate provided on a side of the case body, the side of the case body facing the connecting member; the resin plate may be made of a resin having a smaller friction coefficient than a friction coefficient of the case body; and a corner at an upper end portion of the resin plate may have an arc shape, the corner at the upper end portion of the resin plate facing the connecting member.
  • the case body is made of metal, a sufficient strength of the case can be ensured.
  • the case body is provided with the resin plate made of the resin having a smaller friction coefficient than the case body, and the corner at the upper end portion of the resin plate is rounded into an arc shape.
  • the frictional force generated by the interference between the connecting member and the case can be reduced.
  • the buckle force limiter mechanism can be operated more reliably.
  • the connecting member may be made of a belt-shaped cloth material.
  • the connecting member is made of a belt-shaped cloth material that is softer than a wire, the connecting member can be restrained from biting into the resin plate even when the connecting member interferes with the resin plate.
  • the connecting member can be restrained from being caught by the case as compared with the configuration in which the connecting member is made of a wire.
  • the connecting member may be made of a wire, and the case may be made of a high tensile steel.
  • the case is made of a high tensile steel, the strength of the case can be improved.
  • the connecting member is made of the wire, the wire can be restrained from biting into the case.
  • the connecting member can be restrained from being caught by the case, and the sufficient strength of the case can be ensured.
  • FIG. 1 is a side view of a seat belt device according to a first embodiment as viewed in a seat width direction;
  • FIG. 2 is a front view of the seat belt device according to the first embodiment as viewed from a front side of a seat;
  • FIG. 3 is an enlarged view showing a main part of FIG. 2 ;
  • FIG. 4 is a sectional view of a seat belt device according to a second embodiment as viewed from the front side of the seat.
  • an arrow FR indicates a front side of a seat for a vehicle
  • an arrow UP indicates an upper side of the seat
  • an arrow RH indicates a right side of the seat.
  • front-rear, right-left, and up-down directions in the description indicate a seat front-rear direction, a seat width direction, and a seat height direction (i.e., a seat up-down direction), respectively.
  • the seat height direction, the seat front-rear direction, and the seat width direction match a vehicle height direction (i.e., a vehicle up-down direction), a vehicle front-rear direction, and a vehicle width direction, respectively.
  • the seat belt device 10 includes a buckle 12 , a wire 14 serving as a connecting member, a buckle force limiter mechanism 16 (hereinafter referred to as “buckle FL mechanism 16 ” as appropriate), and a case 18 .
  • buckle FL mechanism 16 buckle force limiter mechanism 16
  • the buckle 12 is provided on a side portion of the seat for a vehicle (not shown), and an insertion port (not shown) into which a tongue plate 100 is inserted is formed on an upper surface of the buckle 12 .
  • the tongue plate 100 is locked to the buckle 12 so as not to be pulled out from the buckle 12 .
  • one end of the wire 14 is connected to a lower end of the buckle 12 .
  • the wire 14 is formed to have a long shape (an elongate shape) and extends from the buckle 12 toward a lower side of the seat.
  • the other end of the wire 14 extends toward a front side of the seat along the case 18 described later, and the buckle FL mechanism 16 is connected to the other end of the wire 14 .
  • the buckle FL mechanism 16 includes a pipe 17 that extends in the seat front-rear direction.
  • a pressing member (not shown) is fitted inside the pipe 17 , and the wire 14 is connected to the pressing member.
  • the buckle FL mechanism 16 is configured to allow the buckle 12 to move in a pulling direction when the tensile load equal to or larger than the predetermined tensile load is applied to the buckle 12 .
  • the seat belt is loosened by operation of the buckle FL mechanism 16 .
  • the wire 14 is covered with the case 18 from the inner side in the seat width direction.
  • the case 18 is formed by processing a sheet steel (i.e., a steel plate).
  • the case 18 is made of high tensile steel (i.e., high tensile strength steel), for example.
  • the case 18 includes a wire guide portion 18 A having a thickness in the seat width direction and a stopper portion 18 B having a thickness in the seat front-rear direction.
  • a guide groove 20 for guiding the wire 14 is formed in a center portion of the wire guide portion 18 A in the seat height direction.
  • the guide groove 20 extends in the seat front-rear direction, and a front end of the guide groove 20 extends to an opening 24 of the stopper portion 18 B described later and is opened to a front side of the case 18 in the vehicle front-rear direction.
  • the guide groove 20 is curved from a center portion of the wire guide portion 18 A in the seat front-rear direction toward the upper side of the seat and is connected to a thin portion 22 .
  • the thin portion 22 forms an upper portion of the wire guide portion 18 A and is formed thinner than a general portion. Details of the thin portion 22 will be described later.
  • the stopper portion 18 B extends from a front end of the wire guide portion 18 A toward the right side of the seat (a right side of a driver's seat in a left-hand drive vehicle).
  • the opening 24 is formed in a center portion of the stopper portion 18 B in the seat height direction.
  • the opening 24 is opened at an end in a right side (i.e., a right end) of the stopper portion 18 B in the seat width direction.
  • the wire 14 is disposed along the guide groove 20 .
  • the pipe 17 of the buckle FL mechanism 16 which is connected to the other end of the wire 14 , is disposed on a front side of the stopper portion 18 B in the vehicle front-rear direction so as to be able to be locked to the stopper portion 18 B.
  • the pipe 17 is locked to the stopper portion 18 B, and thus, tension is applied to the pressing member inside the pipe 17 and the pressing member moves while expanding the pipe 17 .
  • a surface of the thin portion 22 on the side where the wire 14 is disposed is flush with a groove bottom of the guide groove 20 .
  • the wire 14 is configured to be bent in the seat front-rear direction in a region where the thin portion 22 is formed.
  • a rear wall surface 26 of the thin portion 22 on a rear side in the seat front-rear direction is inclined toward the rear side of the seat in a direction from the lower side of the seat to the upper side of the seat so as to be continuous with a rear end of the guide groove 20 when viewed in the seat width direction.
  • the rear wall surface 26 is inclined by approximately 15 degrees toward a rear side of the vehicle with respect to the vehicle height direction.
  • an upper end portion of the rear wall surface 26 is curved in a substantially arc shape and connected to an outer surface of the case 18 .
  • a front wall surface 28 of the thin portion 22 on a front side in the seat front-rear direction is inclined toward the front side of the seat in a direction from the lower side of the seat to the upper side of the seat as viewed in the seat width direction.
  • the front wall surface 28 is inclined by approximately 70 degrees toward a front side of the vehicle with respect to the vehicle height direction. Therefore, the wire 14 can be bent in the thin portion 22 in the seat front-rear direction in a range between the rear wall surface 26 and the front wall surface 28 .
  • a corner 30 at an upper end portion of the thin portion 22 (case 18 ) is rounded into an arc shape, the corner 30 facing the wire 14 .
  • the corner 30 has a substantially are shape that bulges toward the right side of the seat and toward the upper side of the seat, and an upper end P of the corner 30 (that is, a boundary between the corner 30 and an upper surface 32 of the case 18 ) is provided on a left side in the seat width direction (on an inner side in the seat width direction) with respect to a movable range of the wire 14 in the seat width direction (in other words, the upper end P of the corner 30 is provided inward of the movable range in the seat width direction, the movable range being a movable range in which the wire is movable in the seat width direction). That is, the upper end P is set in consideration of ease of bending the wire 14 , etc.
  • the corner 30 is rounded in an entire region of the thin portion 22 from the rear wall surface 26 to the front wall surface 28 .
  • the buckle 12 is connected to the buckle FL mechanism 16 via the elongate wire 14 .
  • the buckle FL mechanism 16 is configured to allow the buckle 12 to move in the pulling direction when the tensile load equal to or larger than the predetermined tensile load is applied to the buckle 12 .
  • the tensile load is input to the buckle FL mechanism 16 via the buckle 12 and the wire 14 , and thus, the buckle 12 is allowed to move in the pulling direction.
  • the wire 14 is covered with the case 18 from the inner side in the seat width direction in the present embodiment.
  • the corner 30 at the upper end portion of the case 18 which faces the wire 14 , is rounded in an arc shape, even when the wire 14 is pulled toward the occupant at the time of the vehicle collision, it is possible to reduce a frictional force generated due to interference between the wire 14 and the case 18 . As a result, the buckle FL mechanism 16 can be stably operated.
  • the corner 30 is rounded in the entire region of the thin portion 22 between the rear wall surface 26 and the front wall surface 28 .
  • the upper end P of an arc-shaped portion of the corner 30 is provided on the inner side in the seat width direction relative to the movable range of the wire 14 in the seat width direction (in other words, the upper end P of the arc-shaped portion of the corner 30 is provided inward of the movable range in the seat width direction, the movable range being a movable range in which the wire 14 is movable in the seat width direction).
  • the movable range being a movable range in which the wire 14 is movable in the seat width direction.
  • the case 18 is made of the high tensile steel.
  • the strength of the case 18 can be improved and the wire 14 can be restrained from biting into the case 18 even when the buckle FL mechanism 16 is connected to the buckle 12 by the wire 14 .
  • the wire 14 may bite into the case 18 and be caught by the case 18 .
  • the case 18 is made of the high tensile steel having a strength higher than that of the wire 14 , the wire 14 can be restrained from being caught by the case 18 .
  • a webbing 51 serving as a connecting member is connected to the lower end of the buckle 12 .
  • the webbing 51 is made of a belt-shaped cloth material, and has an elongate shape.
  • the webbing 51 extends from the buckle 12 toward the lower side in the seat height direction.
  • the other end of the webbing 51 extends toward the front side of the seat along a case 52 , and is connected to the buckle FL mechanism 16 that is the same as or similar to the buckle FL mechanism 16 (see FIG. 1 ) described in the first embodiment.
  • the case 52 of the present embodiment includes a metal case body 54 and a resin plate 56 made of a resin.
  • the case body 54 is made of high tensile steel and forms the left side of the case 52 in the vehicle width direction.
  • the resin plate 56 is provided on a side of the case body 54 , which faces the webbing 51 .
  • the resin plate 56 is made of a resin having a smaller friction coefficient than a friction coefficient of the case body 54 .
  • a corner 58 at an upper end portion of the resin plate 56 is rounded into an arc shape, the corner 58 facing the webbing 51 .
  • the case body 54 is made of metal, and thus, the sufficient strength of the case 52 can be ensured.
  • the case body 54 is provided with the resin plate 56 made of a resin having a smaller friction coefficient than the friction coefficient of the case body 54 , and the corner 58 at the upper end portion of the resin plate 56 is rounded into an arc shape.
  • the buckle 12 and the buckle FL mechanism 16 are connected by the webbing 51 that is softer than the wire 14 .
  • the webbing 51 can be restrained from biting into the resin plate 56 .
  • Other effects are similar to those in the first embodiment.
  • the corner 30 and the corner 58 have curved surfaces, but the disclosure is not limited to this structure.
  • the corner may be formed in an arc shape as a whole by connecting a plurality of straight lines as viewed in the vehicle front-rear direction. Even in this case, the frictional force generated by the interference between the wire 14 and the case 18 can be reduced.
  • the case 18 is made of the high tensile steel, but the disclosure is not limited to this structure.
  • the case 18 may be made of other metals.
  • the buckle FL mechanism 16 in the above embodiments is configured to loosen the seat belt through movement of the pressing member inside the pipe 17 while the pushing member pushes and expands the pipe 17 , but the disclosure is not limited to this configuration.
  • a seat belt force limiter described in JP 10-100860 A may be employed.
  • a cylindrical housing of the seat belt force limiter may be disposed so as to be locked to the stopper portion 18 B of the case 18 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automotive Seat Belt Assembly (AREA)

Abstract

A seat belt device includes a buckle provided on a side portion of a seat for a vehicle, and configured such that a tongue plate is inserted into the buckle; a buckle force limiter mechanism connected to the buckle via a connecting member having an elongate shape, the buckle force limiter mechanism being configured to allow the buckle to move in a pulling direction when a tensile load equal to or larger than a predetermined tensile load is applied to the buckle; and a case covering the connecting member from an inner side in a seat width direction, the case having a corner at an upper end portion of the case, the corner facing the connecting member, and the corner having an arc shape.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to Japanese Patent Application No. 2019-048836 filed on Mar. 15, 2019, which is incorporated herein by reference in its entirety including the specification, drawings and abstract.
  • BACKGROUND 1. Technical Field
  • The disclosure relates to a seat belt device.
  • 2. Description of Related Art
  • Japanese Unexamined Patent Application Publication No. 10-100860 (JP 10-100860 A) discloses a structure in which a buckle and a load generating portion are connected by a seat belt. When the seat belt is pulled at the time of a collision of a vehicle, a wire material is drawn out from the load generating portion by a predetermined length, and the buckle is moved so that the seat belt is loosened.
  • SUMMARY
  • There is a structure including a buckle force limiter mechanism as described in JP 10-100860 A, in which a connecting member that connects the buckle and a force limiter mechanism is covered with a case from an inner side in a seat width direction such that entry of foreign substances is restrained. However, when the connecting member is pulled toward an occupant in the case of an oblique collision of the vehicle, the buckle may not be sufficiently moved due to a frictional force generated by interference between the connecting member and the case. Accordingly, there is room for improvement to stably operate the buckle force limiter mechanism.
  • The disclosure provides a seat belt device in which a buckle force limiter mechanism is stably operated.
  • An aspect of the disclosure relates to a seat belt device including a buckle provided on a side portion of a seat for a vehicle, and configured such that a tongue plate is inserted into the buckle; a buckle force limiter mechanism connected to the buckle via a connecting member having an elongate shape, the buckle force limiter mechanism being configured to allow the buckle to move in a pulling direction when a tensile load equal to or larger than a predetermined tensile load is applied to the buckle; and a case covering the connecting member from an inner side in a seat width direction, the case having a corner at an upper end portion of the case, the corner facing the connecting member, and the corner having an arc shape.
  • In the above configuration, the buckle is provided on the side portion of the seat for the vehicle, and the tongue plate is inserted into the buckle. The buckle is connected to the buckle force limiter mechanism via the connecting member having an elongate shape. The buckle force limiter mechanism is configured to allow the buckle to move in the pulling direction when the tensile load equal to or larger than the predetermined tensile load is applied to the buckle. Thus, for example, when the seat belt is pulled by an occupant at the time of a collision of the vehicle, the tensile load is input to the buckle force limiter mechanism via the buckle and the connecting member, and the buckle is allowed to move in the pulling direction.
  • Further, the connecting member is covered with the case from the inner side in the seat width direction. Here, the corner at the upper end portion of the case is rounded into an arc shape, the corner facing the connecting member. Thus, even when the connecting member is pulled toward the occupant, it is possible to reduce a frictional force generated due to interference between the connecting member and the case. Here, the “arc shape” is not limited to an arc shape formed by a curved line, and represents a concept including an arc shape formed by connecting a plurality of straight lines.
  • In the above configuration, the buckle force limiter mechanism can be stably operated.
  • In the seat belt device according to the above aspect, an upper end of an arc-shaped portion of the corner may be provided inward of a movable range in the seat width direction, the movable range being a range in which the connecting member is movable in the seat width direction.
  • In the above configuration, even when the connecting member is pulled toward the occupant, the connecting member does not contact the upper end of the arc-shaped portion.
  • In the above configuration, the connecting member can be restrained from being caught by the upper end of the arc-shaped portion.
  • In the seat belt device according to the above aspect, the case may include a case body made of metal and a resin plate provided on a side of the case body, the side of the case body facing the connecting member; the resin plate may be made of a resin having a smaller friction coefficient than a friction coefficient of the case body; and a corner at an upper end portion of the resin plate may have an arc shape, the corner at the upper end portion of the resin plate facing the connecting member.
  • In the above configuration, since the case body is made of metal, a sufficient strength of the case can be ensured. The case body is provided with the resin plate made of the resin having a smaller friction coefficient than the case body, and the corner at the upper end portion of the resin plate is rounded into an arc shape. Thus, as compared with a configuration in which the side of the case, which faces the connecting member, is made of the same metal as the metal forming the case body, the frictional force generated by the interference between the connecting member and the case can be reduced.
  • In the above configuration, the buckle force limiter mechanism can be operated more reliably.
  • In the seat belt device according to the above aspect, the connecting member may be made of a belt-shaped cloth material.
  • In the above configuration, since the connecting member is made of a belt-shaped cloth material that is softer than a wire, the connecting member can be restrained from biting into the resin plate even when the connecting member interferes with the resin plate.
  • In the above configuration, the connecting member can be restrained from being caught by the case as compared with the configuration in which the connecting member is made of a wire.
  • In the seat belt device according to the above aspect, the connecting member may be made of a wire, and the case may be made of a high tensile steel.
  • In the above configuration, since the case is made of a high tensile steel, the strength of the case can be improved. When the connecting member is made of the wire, the wire can be restrained from biting into the case.
  • In the above configuration, the connecting member can be restrained from being caught by the case, and the sufficient strength of the case can be ensured.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Features, advantages, and technical and industrial significance of exemplary embodiments of the disclosure will be described below with reference to the accompanying drawings, in which like numerals denote like elements, and wherein:
  • FIG. 1 is a side view of a seat belt device according to a first embodiment as viewed in a seat width direction;
  • FIG. 2 is a front view of the seat belt device according to the first embodiment as viewed from a front side of a seat;
  • FIG. 3 is an enlarged view showing a main part of FIG. 2; and
  • FIG. 4 is a sectional view of a seat belt device according to a second embodiment as viewed from the front side of the seat.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • Hereinafter, a seat belt device 10 according to a first embodiment will be described with reference to the drawings. In the drawings, an arrow FR indicates a front side of a seat for a vehicle, an arrow UP indicates an upper side of the seat, and an arrow RH indicates a right side of the seat. Unless otherwise specified, front-rear, right-left, and up-down directions in the description indicate a seat front-rear direction, a seat width direction, and a seat height direction (i.e., a seat up-down direction), respectively. In the present embodiment, the seat height direction, the seat front-rear direction, and the seat width direction match a vehicle height direction (i.e., a vehicle up-down direction), a vehicle front-rear direction, and a vehicle width direction, respectively.
  • As shown in FIG. 1, the seat belt device 10 according to the present embodiment includes a buckle 12, a wire 14 serving as a connecting member, a buckle force limiter mechanism 16 (hereinafter referred to as “buckle FL mechanism 16” as appropriate), and a case 18.
  • As shown in FIG. 2, the buckle 12 is provided on a side portion of the seat for a vehicle (not shown), and an insertion port (not shown) into which a tongue plate 100 is inserted is formed on an upper surface of the buckle 12. When the tongue plate 100 is inserted into the insertion port, the tongue plate 100 is locked to the buckle 12 so as not to be pulled out from the buckle 12.
  • As shown in FIG. 1, one end of the wire 14 is connected to a lower end of the buckle 12. The wire 14 is formed to have a long shape (an elongate shape) and extends from the buckle 12 toward a lower side of the seat. The other end of the wire 14 extends toward a front side of the seat along the case 18 described later, and the buckle FL mechanism 16 is connected to the other end of the wire 14.
  • The buckle FL mechanism 16 includes a pipe 17 that extends in the seat front-rear direction. A pressing member (not shown) is fitted inside the pipe 17, and the wire 14 is connected to the pressing member. Here, when a tensile load equal to or larger than a predetermined tensile load is applied to the buckle 12 and the wire 14 is pulled in a drawing direction D1, the pressing member inside the pipe 17 moves while expanding the pipe 17. In this way, the buckle FL mechanism 16 is configured to allow the buckle 12 to move in a pulling direction when the tensile load equal to or larger than the predetermined tensile load is applied to the buckle 12. Thus, the seat belt is loosened by operation of the buckle FL mechanism 16.
  • Here, the wire 14 is covered with the case 18 from the inner side in the seat width direction. The case 18 is formed by processing a sheet steel (i.e., a steel plate). In the present embodiment, the case 18 is made of high tensile steel (i.e., high tensile strength steel), for example.
  • The case 18 includes a wire guide portion 18A having a thickness in the seat width direction and a stopper portion 18B having a thickness in the seat front-rear direction.
  • A guide groove 20 for guiding the wire 14 is formed in a center portion of the wire guide portion 18A in the seat height direction. The guide groove 20 extends in the seat front-rear direction, and a front end of the guide groove 20 extends to an opening 24 of the stopper portion 18B described later and is opened to a front side of the case 18 in the vehicle front-rear direction.
  • The guide groove 20 is curved from a center portion of the wire guide portion 18A in the seat front-rear direction toward the upper side of the seat and is connected to a thin portion 22. The thin portion 22 forms an upper portion of the wire guide portion 18A and is formed thinner than a general portion. Details of the thin portion 22 will be described later.
  • As shown in FIG. 2, the stopper portion 18B extends from a front end of the wire guide portion 18A toward the right side of the seat (a right side of a driver's seat in a left-hand drive vehicle). The opening 24 is formed in a center portion of the stopper portion 18B in the seat height direction. The opening 24 is opened at an end in a right side (i.e., a right end) of the stopper portion 18B in the seat width direction.
  • As shown in FIG. 1, the wire 14 is disposed along the guide groove 20. The pipe 17 of the buckle FL mechanism 16, which is connected to the other end of the wire 14, is disposed on a front side of the stopper portion 18B in the vehicle front-rear direction so as to be able to be locked to the stopper portion 18B. Thus, when the wire 14 is pulled in the drawing direction D1, the pipe 17 is locked to the stopper portion 18B, and thus, tension is applied to the pressing member inside the pipe 17 and the pressing member moves while expanding the pipe 17.
  • Next, details of the thin portion 22 will be described. A surface of the thin portion 22 on the side where the wire 14 is disposed is flush with a groove bottom of the guide groove 20. Thus, the wire 14 is configured to be bent in the seat front-rear direction in a region where the thin portion 22 is formed.
  • A rear wall surface 26 of the thin portion 22 on a rear side in the seat front-rear direction is inclined toward the rear side of the seat in a direction from the lower side of the seat to the upper side of the seat so as to be continuous with a rear end of the guide groove 20 when viewed in the seat width direction. As an example, in the present embodiment, the rear wall surface 26 is inclined by approximately 15 degrees toward a rear side of the vehicle with respect to the vehicle height direction. Further, an upper end portion of the rear wall surface 26 is curved in a substantially arc shape and connected to an outer surface of the case 18.
  • In contrast, a front wall surface 28 of the thin portion 22 on a front side in the seat front-rear direction is inclined toward the front side of the seat in a direction from the lower side of the seat to the upper side of the seat as viewed in the seat width direction. As an example, in the present embodiment, the front wall surface 28 is inclined by approximately 70 degrees toward a front side of the vehicle with respect to the vehicle height direction. Therefore, the wire 14 can be bent in the thin portion 22 in the seat front-rear direction in a range between the rear wall surface 26 and the front wall surface 28.
  • Here, as shown in FIG. 2, a corner 30 at an upper end portion of the thin portion 22 (case 18) is rounded into an arc shape, the corner 30 facing the wire 14.
  • As shown in FIG. 3, the corner 30 has a substantially are shape that bulges toward the right side of the seat and toward the upper side of the seat, and an upper end P of the corner 30 (that is, a boundary between the corner 30 and an upper surface 32 of the case 18) is provided on a left side in the seat width direction (on an inner side in the seat width direction) with respect to a movable range of the wire 14 in the seat width direction (in other words, the upper end P of the corner 30 is provided inward of the movable range in the seat width direction, the movable range being a movable range in which the wire is movable in the seat width direction). That is, the upper end P is set in consideration of ease of bending the wire 14, etc.
  • Further, as shown in FIG. 1, the corner 30 is rounded in an entire region of the thin portion 22 from the rear wall surface 26 to the front wall surface 28.
  • Next, the effects of the present embodiment will be described.
  • In the seat belt device 10 according to the present embodiment, the buckle 12 is connected to the buckle FL mechanism 16 via the elongate wire 14. The buckle FL mechanism 16 is configured to allow the buckle 12 to move in the pulling direction when the tensile load equal to or larger than the predetermined tensile load is applied to the buckle 12. Thus, for example, when the seat belt is pulled by an occupant at the time of a vehicle collision, the tensile load is input to the buckle FL mechanism 16 via the buckle 12 and the wire 14, and thus, the buckle 12 is allowed to move in the pulling direction.
  • Further, the wire 14 is covered with the case 18 from the inner side in the seat width direction in the present embodiment. Here, since the corner 30 at the upper end portion of the case 18, which faces the wire 14, is rounded in an arc shape, even when the wire 14 is pulled toward the occupant at the time of the vehicle collision, it is possible to reduce a frictional force generated due to interference between the wire 14 and the case 18. As a result, the buckle FL mechanism 16 can be stably operated.
  • In particular, in the present embodiment, the corner 30 is rounded in the entire region of the thin portion 22 between the rear wall surface 26 and the front wall surface 28. As a result, as in the case where the occupant moves obliquely forward due to inertia at the time of an oblique collision, even when the wire 14 connected to the buckle 12 is pulled while falling toward a left side of the vehicle (i.e., the case 18-side), which is a collision side, and toward the front side of the vehicle via the seat belt, the frictional force generated by the interference between the wire 14 and the case 18 can be reduced.
  • Furthermore, in the present embodiment, the upper end P of an arc-shaped portion of the corner 30 is provided on the inner side in the seat width direction relative to the movable range of the wire 14 in the seat width direction (in other words, the upper end P of the arc-shaped portion of the corner 30 is provided inward of the movable range in the seat width direction, the movable range being a movable range in which the wire 14 is movable in the seat width direction). Thus, even when the wire 14 is pulled toward the occupant, the wire 14 does not contact the upper end P. This can restrain the wire 14 from being caught by the upper end P.
  • Still further, in the present embodiment, the case 18 is made of the high tensile steel. Thus, the strength of the case 18 can be improved and the wire 14 can be restrained from biting into the case 18 even when the buckle FL mechanism 16 is connected to the buckle 12 by the wire 14. In other words, when the case 18 is made of a low-strength material, the wire 14 may bite into the case 18 and be caught by the case 18. As in the present embodiment, since the case 18 is made of the high tensile steel having a strength higher than that of the wire 14, the wire 14 can be restrained from being caught by the case 18.
  • Next, a seat belt device 50 according to a second embodiment will be described. Components that are the same as or similar to those in the first embodiment are denoted by the same reference characters, and description thereof will be omitted.
  • As shown in FIG. 4, in the seat belt device 50 according to the present embodiment, one end of a webbing 51 serving as a connecting member is connected to the lower end of the buckle 12. Similarly to the seat belt, the webbing 51 is made of a belt-shaped cloth material, and has an elongate shape. The webbing 51 extends from the buckle 12 toward the lower side in the seat height direction. The other end of the webbing 51 extends toward the front side of the seat along a case 52, and is connected to the buckle FL mechanism 16 that is the same as or similar to the buckle FL mechanism 16 (see FIG. 1) described in the first embodiment.
  • Here, the case 52 of the present embodiment includes a metal case body 54 and a resin plate 56 made of a resin. The case body 54 is made of high tensile steel and forms the left side of the case 52 in the vehicle width direction.
  • The resin plate 56 is provided on a side of the case body 54, which faces the webbing 51. Here, the resin plate 56 is made of a resin having a smaller friction coefficient than a friction coefficient of the case body 54. A corner 58 at an upper end portion of the resin plate 56 is rounded into an arc shape, the corner 58 facing the webbing 51.
  • Next, the effects of the present embodiment will be described.
  • In the seat belt device 50 according to the present embodiment, the case body 54 is made of metal, and thus, the sufficient strength of the case 52 can be ensured. The case body 54 is provided with the resin plate 56 made of a resin having a smaller friction coefficient than the friction coefficient of the case body 54, and the corner 58 at the upper end portion of the resin plate 56 is rounded into an arc shape. Thus, as compared with a configuration in which the side of the case 52, which faces the webbing 51, is made of the same metal as the metal forming the case body 54, a frictional force generated by the interference between the webbing 51 and the case 52 can be reduced. As a result, the buckle FL mechanism 16 can be operated more reliably.
  • In the present embodiment, the buckle 12 and the buckle FL mechanism 16 are connected by the webbing 51 that is softer than the wire 14. Thus, even when the webbing 51 interferes with the resin plate 56, the webbing 51 can be restrained from biting into the resin plate 56. As a result, as compared with a configuration in which the webbing 51 is made of the wire 14, it is possible to restrain the webbing 51 from being caught by the case. Other effects are similar to those in the first embodiment.
  • The seat belt devices according to the first and second embodiments have been described above, but the disclosure can be implemented in various ways without departing from the scope of the disclosure. For example, in the above embodiments, the corner 30 and the corner 58 have curved surfaces, but the disclosure is not limited to this structure. For example, the corner may be formed in an arc shape as a whole by connecting a plurality of straight lines as viewed in the vehicle front-rear direction. Even in this case, the frictional force generated by the interference between the wire 14 and the case 18 can be reduced.
  • In the above embodiments, the case 18 is made of the high tensile steel, but the disclosure is not limited to this structure. The case 18 may be made of other metals.
  • Further, the buckle FL mechanism 16 in the above embodiments is configured to loosen the seat belt through movement of the pressing member inside the pipe 17 while the pushing member pushes and expands the pipe 17, but the disclosure is not limited to this configuration. For example, a seat belt force limiter described in JP 10-100860 A may be employed. In this case, a cylindrical housing of the seat belt force limiter may be disposed so as to be locked to the stopper portion 18B of the case 18.

Claims (5)

What is claimed is:
1. A seat belt device comprising:
a buckle provided on a side portion of a seat for a vehicle, and configured such that a tongue plate is inserted into the buckle;
a buckle force limiter mechanism connected to the buckle via a connecting member having an elongate shape, the buckle force limiter mechanism being configured to allow the buckle to move in a pulling direction when a tensile load equal to or larger than a predetermined tensile load is applied to the buckle; and
a case covering the connecting member from an inner side in a seat width direction, the case having a corner at an upper end portion of the case, the corner facing the connecting member, and the corner having an arc shape.
2. The seat belt device according to claim 1, wherein an upper end of an arc-shaped portion of the corner is provided inward of a movable range in the seat width direction, the movable range being a range in which the connecting member is movable in the seat width direction.
3. The seat belt device according to claim 1, wherein:
the case includes a case body made of metal and a resin plate provided on a side of the case body, the side of the case body facing the connecting member;
the resin plate is made of a resin having a smaller friction coefficient than a friction coefficient of the case body; and
a corner at an upper end portion of the resin plate has an are shape, the corner at the upper end portion of the resin plate facing the connecting member.
4. The seat belt device according to claim 3, wherein the connecting member is made of a belt-shaped cloth material.
5. The seat belt device according to claim 1, wherein the connecting member is made of a wire, and the case is made of a high tensile steel.
US16/818,087 2019-03-15 2020-03-13 Seat belt device Active 2040-03-28 US11242029B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019048836A JP7136728B2 (en) 2019-03-15 2019-03-15 seat belt device
JP2019-048836 2019-03-15
JPJP2019-048836 2019-03-15

Publications (2)

Publication Number Publication Date
US20200290558A1 true US20200290558A1 (en) 2020-09-17
US11242029B2 US11242029B2 (en) 2022-02-08

Family

ID=72423981

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/818,087 Active 2040-03-28 US11242029B2 (en) 2019-03-15 2020-03-13 Seat belt device

Country Status (2)

Country Link
US (1) US11242029B2 (en)
JP (1) JP7136728B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220396237A1 (en) * 2021-06-10 2022-12-15 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Buckle device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5492306A (en) * 1994-03-21 1996-02-20 Knight Industries, Inc. Air balance hoist with load position indicator
DE19511457A1 (en) * 1995-03-29 1996-10-02 Trw Repa Gmbh Force limitation in an occupant restraint system
DE19546280C2 (en) * 1995-12-12 2000-07-27 Autolive Dev Ab Vargarda Tensioning device for seat belts with an eccentric lock
DE29610078U1 (en) 1996-06-07 1996-10-02 Trw Repa Gmbh Restraint system for vehicle occupants
JPH10100860A (en) 1996-09-26 1998-04-21 Suncall Corp Damper for automobile seat belt
DE69931962T8 (en) * 1999-02-16 2007-09-20 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho seatbelt
US6581960B1 (en) * 1999-12-14 2003-06-24 Ford Global Technologies, Llc Seat belt occupant sensor
US20030047931A1 (en) * 2000-02-23 2003-03-13 Breed Automotive Technology, Inc. Buckle pretensioner
JP3919653B2 (en) 2002-11-08 2007-05-30 エヌエスケー・オートリブ株式会社 Seat belt device
JP2009208616A (en) 2008-03-04 2009-09-17 Tokai Rika Co Ltd Pre-loader
US8196961B2 (en) * 2010-03-12 2012-06-12 Autoliv Asp, Inc. Stamped housing linear pretensioner
US8585090B2 (en) * 2010-06-29 2013-11-19 Autoliv Asp, Inc. High efficiency pretensioner
CN203078472U (en) * 2012-01-20 2013-07-24 德昌电机(深圳)有限公司 Safety belt fastener component
US20160264095A1 (en) * 2015-03-10 2016-09-15 GM Global Technology Operations LLC Seatbelt buckle presenter
CN106994954B (en) * 2016-01-22 2020-04-07 株式会社东海理化电机制作所 Buckle device
DE102016218082B4 (en) * 2016-09-21 2021-05-27 Autoliv Development Ab Method for controlling a seat belt device
JP6891742B2 (en) 2017-09-05 2021-06-18 トヨタ自動車株式会社 3-point seat belt device
JP6922756B2 (en) * 2018-01-23 2021-08-18 トヨタ自動車株式会社 Vehicle seat belt device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220396237A1 (en) * 2021-06-10 2022-12-15 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Buckle device
US11987205B2 (en) * 2021-06-10 2024-05-21 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Buckle device

Also Published As

Publication number Publication date
JP2020147245A (en) 2020-09-17
JP7136728B2 (en) 2022-09-13
US11242029B2 (en) 2022-02-08

Similar Documents

Publication Publication Date Title
JP4925445B2 (en) Belt guide anchor and seat belt device provided with the same
US20090293243A1 (en) Buckle
US10703332B2 (en) Three-point seatbelt device
US11242029B2 (en) Seat belt device
JP2002240679A (en) Assembly of seat belt buckle and belt tightening device
US10179528B2 (en) Vehicle seat
JP2007050824A (en) Guide anchor for seat belt and seat belt device provided therewith
JP2016203711A (en) Seat Belt Device
JP4941315B2 (en) Webbing guide structure
JP2010089673A (en) Vehicular seat
JP6885805B2 (en) Retaining body for wiring member
CN107914758B (en) Operating device
US10220811B2 (en) Buckle device
US10351095B2 (en) Buckle device
US10524545B2 (en) Tongue for seatbelt device
US7325879B2 (en) Seat belt guide
WO2013125442A1 (en) Tongue and seatbelt device using same
JP6081521B2 (en) Webbing guide and seat belt
JP2018203075A (en) Seat slide device
US20200359750A1 (en) Tongue
JP2010184629A (en) Seat belt guide anchor and seat belt apparatus equipped with the same
US11177604B2 (en) Connector housing and connector
JP6566761B2 (en) Tongue and seat belt device
CN110225848B (en) Seat belt device for vehicle
JP2003019944A (en) Seat belt device

Legal Events

Date Code Title Description
AS Assignment

Owner name: KABUSHIKI KAISHA TOKAI RIKA DENKI SEISAKUSHO, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FURUKAWA, DAIKI;HIRAO, YUSUKE;KOSUGI, YASUAKI;AND OTHERS;SIGNING DATES FROM 20200121 TO 20200128;REEL/FRAME:052109/0519

Owner name: TOYOTA JIDOSHA KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FURUKAWA, DAIKI;HIRAO, YUSUKE;KOSUGI, YASUAKI;AND OTHERS;SIGNING DATES FROM 20200121 TO 20200128;REEL/FRAME:052109/0519

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE