US20200261773A1 - Sports ball system for monitoring ball characteristics and method therefor - Google Patents

Sports ball system for monitoring ball characteristics and method therefor Download PDF

Info

Publication number
US20200261773A1
US20200261773A1 US16/279,831 US201916279831A US2020261773A1 US 20200261773 A1 US20200261773 A1 US 20200261773A1 US 201916279831 A US201916279831 A US 201916279831A US 2020261773 A1 US2020261773 A1 US 2020261773A1
Authority
US
United States
Prior art keywords
sports ball
accordance
spherical
monitoring
processor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/279,831
Inventor
Michael Ganson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US16/279,831 priority Critical patent/US20200261773A1/en
Publication of US20200261773A1 publication Critical patent/US20200261773A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B43/00Balls with special arrangements
    • A63B43/004Balls with special arrangements electrically conductive, e.g. for automatic arbitration
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0003Analysing the course of a movement or motion sequences during an exercise or trainings sequence, e.g. swing for golf or tennis
    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/0406Accessories for helmets
    • A42B3/0433Detecting, signalling or lighting devices
    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/18Face protection devices
    • A42B3/20Face guards, e.g. for ice hockey
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0021Tracking a path or terminating locations
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/02Special cores
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B43/00Balls with special arrangements
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0021Tracking a path or terminating locations
    • A63B2024/0028Tracking the path of an object, e.g. a ball inside a soccer pitch
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0021Tracking a path or terminating locations
    • A63B2024/0028Tracking the path of an object, e.g. a ball inside a soccer pitch
    • A63B2024/0031Tracking the path of an object, e.g. a ball inside a soccer pitch at the starting point
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0021Tracking a path or terminating locations
    • A63B2024/0028Tracking the path of an object, e.g. a ball inside a soccer pitch
    • A63B2024/0034Tracking the path of an object, e.g. a ball inside a soccer pitch during flight
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/0002Training appliances or apparatus for special sports for baseball
    • A63B2069/0004Training appliances or apparatus for special sports for baseball specially adapted for particular training aspects
    • A63B2069/0006Training appliances or apparatus for special sports for baseball specially adapted for particular training aspects for pitching
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/0002Training appliances or apparatus for special sports for baseball
    • A63B2069/0004Training appliances or apparatus for special sports for baseball specially adapted for particular training aspects
    • A63B2069/0011Catching
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B2071/0658Position or arrangement of display
    • A63B2071/0661Position or arrangement of display arranged on the user
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B2071/0658Position or arrangement of display
    • A63B2071/0661Position or arrangement of display arranged on the user
    • A63B2071/0666Position or arrangement of display arranged on the user worn on the head or face, e.g. combined with goggles or glasses
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B2071/0694Visual indication, e.g. Indicia
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2102/00Application of clubs, bats, rackets or the like to the sporting activity ; particular sports involving the use of balls and clubs, bats, rackets, or the like
    • A63B2102/18Baseball, rounders or similar games
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/10Positions
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/20Distances or displacements
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/20Distances or displacements
    • A63B2220/22Stride length
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/30Speed
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/30Speed
    • A63B2220/34Angular speed
    • A63B2220/35Spin
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/40Acceleration
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/50Force related parameters
    • A63B2220/56Pressure
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/62Time or time measurement used for time reference, time stamp, master time or clock signal
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/70Measuring or simulating ambient conditions, e.g. weather, terrain or surface conditions
    • A63B2220/73Altitude
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/70Measuring or simulating ambient conditions, e.g. weather, terrain or surface conditions
    • A63B2220/74Atmospheric pressure
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/803Motion sensors
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/806Video cameras
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/807Photo cameras
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/83Special sensors, transducers or devices therefor characterised by the position of the sensor
    • A63B2220/833Sensors arranged on the exercise apparatus or sports implement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/83Special sensors, transducers or devices therefor characterised by the position of the sensor
    • A63B2220/836Sensors arranged on the body of the user
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/20Miscellaneous features of sport apparatus, devices or equipment with means for remote communication, e.g. internet or the like
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/50Wireless data transmission, e.g. by radio transmitters or telemetry
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/74Miscellaneous features of sport apparatus, devices or equipment with powered illuminating means, e.g. lights
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/04Measuring physiological parameters of the user heartbeat characteristics, e.g. ECG, blood pressure modulations
    • A63B2230/06Measuring physiological parameters of the user heartbeat characteristics, e.g. ECG, blood pressure modulations heartbeat rate only
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/40Measuring physiological parameters of the user respiratory characteristics
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/0002Training appliances or apparatus for special sports for baseball
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B71/0622Visual, audio or audio-visual systems for entertaining, instructing or motivating the user

Definitions

  • the present application generally relates to a sports ball, and more specifically to a balanced baseball that has the characteristic of a regulation baseball and measures other movement characteristics as deemed relevant to include the speed, spin rate, curve of the baseball.
  • Doppler radar systems determine a moving ball's speed by analyzing radar beams reflected off the ball. Although accurate, these systems are expensive and normally cannot be operated by the athlete whose toss or hit is being measured. For these reasons, systems of this type are generally restricted to organized sport teams.
  • the motion characteristics of the ball such as the distance, time of flight, speed, height, spin rate, curve, release point or other motion characteristics of the thrown or batted ball. All of the above characteristics may be used to help a pitcher optimize different types of pitches. For example, spin rate information is useful for example in optimizing a baseball pitcher's curve ball pitching ability.
  • spin rate information is useful for example in optimizing a baseball pitcher's curve ball pitching ability.
  • the above motion characteristics are difficult to measure.
  • the above motion characteristics are generally calculated by videotaping a pitch and having a complex computer program analyze the different motion characteristics. Thus, as with speed, systems of this type are generally restricted to organized sport teams.
  • the ability to measure and review different motion characteristics of a pitched ball is generally reserved for professional sporting teams.
  • the typical amateur ball player is unable to measure, review and analyze the different motion characteristics of a pitched ball.
  • a sports ball system for calculating movement characteristics uses a sports ball for monitoring and calculating the movement characteristics of the sports ball.
  • a wearable device receives data transmitted by the sports ball. The wearable device analyzes and displays the data transmitted.
  • a sports ball system for calculating movement characteristics.
  • the sports ball system has a sports ball.
  • the sports ball has components monitoring movement characteristics of the sports ball.
  • a wearable device receives data transmitted by the sports ball.
  • the wearable device analyzes and displays the data transmitted.
  • the wearable device comprises: a catcher's half helmet having an opening formed in a front area thereof; a cage attached to the catcher's half helmet and covering the opening; and a monitoring device attached to a top front area of the catcher's half helmet, wherein the monitoring device receives the data transmitted by the sports ball and analyzes and displays the data transmitted.
  • a sports ball system for calculating movement characteristics.
  • the sports ball system has a sports ball.
  • the sports ball has a spherical core.
  • a spherical circuit board is mounted within the spherical core and has components for monitoring and calculating movement characteristics of the sports ball.
  • a mounting unit is formed within the spherical core for securing the spherical circuit board within the spherical core.
  • the mounting unit has a platform housed within the spherical core.
  • a plurality of mounting brackets is positioned around a perimeter of the platform. The mounting brackets are used to hold the spherical circuit board in place and deflect kinematic energy. Winding is wrapped around the spherical core.
  • a cover is positioned around the winding.
  • a wearable device receives data transmitted by the sports ball.
  • the wearable device analyzes and displays the data transmitted.
  • the wearable device comprises: a catcher's half helmet having an opening formed in a front area thereof, a cage attached to the catcher's half helmet and covering the opening; and a monitoring device attached to a top front area of the catcher's half helmet, wherein the monitoring device receives the data transmitted by the sports ball and analyzes and displays the data transmitted.
  • FIG. 1 is a prospective view of a sports ball for measuring a plurality of motion characteristics in accordance with one aspect of the present application
  • FIG. 2A-2D are prospective view of the different components of the sports ball of FIG. 1 in accordance with one aspect of the present application;
  • FIG. 3 is a cutaway view of the sports ball of FIG. 1 in accordance with one aspect of the present application;
  • FIG. 4 is a magnified view of the measuring electronics and mounting system of the sports ball of FIG. 1 in accordance with one aspect of the present application;
  • FIG. 5 is another magnified view of the measuring electronics and mounting system of the sports ball of FIG. 1 in accordance with one aspect of the present application;
  • FIG. 6 is a front view of a wearable device used with sports ball of FIG. 1 in accordance with one aspect of the present application;
  • FIG. 7 is a front view of an individual having a plurality of wearable devices used with the sports ball of FIG. 1 in accordance with one aspect of the present application;
  • FIG. 8A-8G is a side view of the individual in FIG. 7 having the plurality of wearable devices used with the sports ball of FIG. 1 in accordance with one aspect of the present application;
  • FIG. 9 is a block diagram of the wearable device used with the sports ball of FIG. 1 in accordance with one aspect of the present application.
  • FIG. 10 is a front view of a monitoring device with a shield used with the sports ball of FIG. 1 in accordance with one aspect of the present application;
  • FIG. 11 is a front view of a monitoring device with the shield removed used with the sports ball of FIG. 1 in accordance with one aspect of the present application;
  • FIG. 12 is a side view of a monitoring device with the shield removed used with the sports ball of FIG. 1 in accordance with one aspect of the present application.
  • FIG. 13 is a block diagram of a monitoring unit used with the monitoring device of FIG. 10 in accordance with one aspect of the present application.
  • Embodiments of the exemplary system and method disclose a regulation sports ball that is able to measure and record motion characteristics of the sports ball when the sports ball is thrown.
  • the sports ball may be able to measure and record the speed, distance, time of flight, height, path, spin rate, curve, release point or other motion characteristics of the thrown ball. All of the above characteristics may be used to help a pitcher optimize different types of pitches.
  • the sports ball 10 may be constructed to measure and record the speed, distance, time of flight, height, path, spin rate, curve, release point or other motion characteristics of the thrown sports ball 10 .
  • the sports ball 10 may be configured to conform to a regulation ball such as a baseball, bowling ball or other regulation sports balls. While embodiments shown in the Figures disclose a baseball, this should not be seen in a limiting manner.
  • the sports ball 10 is a regulation baseball.
  • the sports ball 10 may be configured to be between 9 and 91 ⁇ 4 inches in circumference, and 5 to 51 ⁇ 4 ounces in weight, and have a coefficient of restitution of no more than 0.578, no less than 0.514.
  • the sports ball 10 may be constructed in a similar manner to a regulation baseball.
  • the sports ball 10 may have a spherical core 12 .
  • the spherical core 12 may be formed of cork, rubber or similar material.
  • a winding 14 may be formed around the spherical core 12 .
  • the winding 14 may be formed of wool, poly/cotton or other winding material.
  • a covering 16 may be formed around the winding 14 encompassing the core 12 forming an exterior surface of the sports ball 10 .
  • the covering 16 may be formed out of cowhide or similar material.
  • the covering 16 may be formed out of natural or synthetic materials.
  • the covering 16 may be formed in two hourglass shaped halves which may be couple together around the winding 14 encompassing the core 12 by stitching 18 .
  • the sports ball 10 has a spherical circuit board 20 .
  • the spherical circuit board 20 may have a hollow interior section.
  • the spherical circuit board 20 may be solid wherein the interior of the spherical circuit board 20 is a non-conductive substrate.
  • a plurality of sensors 22 may be coupled to the spherical circuit board 20 .
  • the sensors 22 may be used to monitor different motion characteristics of the thrown sports ball 10 .
  • the sensors 22 may include: an accelerometer 22 A to measure the speed of the thrown sport ball 10 ; gyroscope 22 B to measure the rotation of the thrown sports ball 10 ; a position sensor 22 C to monitor a location of the thrown sport ball 10 ; and a pressure sensor 22 D to measure barometric pressure as to quantify a change in altitude as the sports ball 10 changes in elevation during delivery and to quantify atmospheric air density in the sports ball 10 .
  • the above list is given as an example. Other sensors may be used to measure different motion characteristics without departing from the spirit and scope of the present invention.
  • the sports ball 10 may be customized. Thus, a potential buyer of the sports ball 10 may designate which sensors 22 the buyer wishes to incorporate into the sports ball 10 .
  • a processor 24 and memory 26 are coupled to the spherical circuit board 20 .
  • the sensors 22 may be coupled to the processor 24 and memory 26 via a plurality of conductive pathways 28 .
  • the processor 24 may be used to control the various functions of the sports ball 10 .
  • the processor 24 may store a computer program or other programming instructions associated with the memory 26 to control the operation of sports ball 10 .
  • the processor 24 may comprise various computing elements, such as integrated circuits, microcontrollers, microprocessors, programmable logic devices, etc, alone or in combination to perform the operations described herein.
  • the memory 26 may be coupled to the processor 24 as well as other components of the sports ball 10 .
  • the memory 26 may be used to store various data monitored by the sensors 22 and utilized by the processor 24 and or other components of the sports ball 10 .
  • the memory 26 may include removable and non-removable memory elements such as RAM, ROM, flash, magnetic, optical, and/or other conventional memory elements. The above listing is given as an example and should not be seen in a limiting manner.
  • the memory 26 may be used to store programming data for instructing the processor 24 or other components of the sports ball 10 to perform certain steps.
  • the processor 24 may obtain the various readings from the plurality of sensors 22 .
  • the processor 24 may calculate a variety of movement characteristics of the sports ball 10 .
  • the processor 24 may calculate travel route, distance, time of flight, speed, trajectory height, spin rate, curve of the sports ball 10 , release point as well as the barometric change in elevation with the respect in the relative change in movement of the sports ball 10 prior to the release point and to quantify the atmospheric air density due to pitcher's elevation above sea level and other characteristics.
  • the processor 24 may be coupled to a transmitting device 30 .
  • the transmitting device 30 may send all of the data calculated by the processor 24 .
  • the transmitting device 30 may have an antenna.
  • the antenna of the transmitting device 30 may be incorporated into and form part of the stitching 18 .
  • the data may be transmitted over any type of wireless network.
  • the wireless network may be though a 3G cellular communications, such as CDMA, EVDO, GSM/GPRS, or 4G cellular communications, such as WiMAX or LTE or the like.
  • the wireless communication may by using a wireless local area network (WLAN), for example, using Wi-Fi or the like.
  • WLAN wireless local area network
  • the wireless network may include any wireless communication network associated with a Personal Area Network (PAN), a Local Area Network (LAN), Metropolitan Area Network (MAN), or a Wide Area Network (WAN).
  • PAN Personal Area Network
  • LAN Local Area Network
  • MAN Metropolitan Area Network
  • WAN Wide Area Network
  • the transmitted data may be sent to a computing device for review.
  • the transmitted data may be sent to a desktop computer, a laptop, a tablet, smartphone, or other computing devices.
  • a dongle or similar device may be attached to the computing device. The dongle may be used to aid the computing device in the reception of the transmitted data.
  • the transmitted data may be sent to a server for storage. This may allow a user to review the data at a later time via a computing device.
  • a user may have to login to a website or via a software application of a mobile computing device to review the transmitted data.
  • the sports ball 10 may have a data cable 44 .
  • the data monitored by the sensors 22 may be stored in the memory 26 .
  • a user may then connect the sports ball 10 to a computing device via the data cable 44 to download the information.
  • the use of the data cable 44 .
  • the components on the spherical circuit board 20 may be powered by a battery 32 .
  • the battery 32 may be positioned on the exterior surface of the spherical circuit board 20 .
  • the battery 32 may be placed within the interior of the spherical circuit board 20 . Placing the battery 32 within the interior of the spherical circuit board 20 , may allow the spherical circuit board 20 to be easier to spin balance.
  • the battery 32 is a spherical battery positioned within the spherical circuit board 20 .
  • a cap 20 A may be removed from the spherical circuit board 20 .
  • the battery 32 may then be placed within the interior of the spherical circuit board 20 .
  • the battery 32 may be a rechargeable battery.
  • the battery 32 may be may charged using wired or wireless technology. By using wireless technology such as by using an electromagnetic field to transfers energy for recharging of the battery 32 , the sports ball 10 may become easier to balance.
  • the spherical circuit board 20 , sensors 22 and other associated components are mounted together to be properly balance.
  • Computer programs may be used to mathematically calculate the location of each component on the spherical circuit board 20 .
  • the spherical circuit board 20 may have one or more counter weights 34 .
  • the counter weights 34 may be used to balance the spherical circuit board 20 .
  • the spherical circuit board 20 may undergo a balance spin test. This may allow one to see if the spherical circuit board 20 is properly balanced. If not, counter weights 34 may be added in predetermined positions to balance the counter weights 34 .
  • a balance spin test may show the location and amount of counterweight needed to properly balance the spherical circuit board 20 .
  • a mounting unit 36 may be used to position the spherical circuit board 20 within the core 12 .
  • the mounting unit 36 may be used to dynamically balance the spherical circuit board 20 while anchoring the spherical circuit board 20 within the core 12 .
  • the mounting unit 36 may have a platform 38 .
  • the platform 38 may be a cylindrical ring 38 A.
  • the spherical circuit board 20 may be positioned within the cylindrical ring 38 A.
  • a plurality of mounting brackets 40 may be positioned around a perimeter of the cylindrical ring 38 A.
  • the mounting brackets 40 may be structural shaped brackets that are used to hold the spherical circuit board 20 in place and deflect kinematic energy.
  • the person throwing the sports ball 10 may have one or more wearable devices 46 .
  • the wearable devices may be placed on the wrist, shoe or other areas of the person.
  • the wearable devices may monitor different movement characteristics of the person throwing the ball.
  • the wearable device may monitor arm slot and movement, stride of the person throwing the sports ball 10 and other movement characteristics of the person throwing the ball. This information may be used in conjunction with the transmitted data from the sports ball 10 to enhance the ability to measure, review and analyze the different motion characteristics of a pitched ball.
  • the wearable device 46 is a foot pod that may be attached to the user's shoe.
  • the foot pod may be used to measure the stride of the person throwing the sports ball 10 and other leg movement characteristics of the person throwing the sports ball 10 .
  • FIG. 5 shows just one example.
  • wearable devices may be placed on the wrist or other areas of the person throwing the sports ball 10 .
  • an individual 50 is shown having a plurality of wearable devices 46 and the sports ball 10 .
  • the individual 50 may have a wrist wearable device 46 A located on a right wrist and another wrist wearable device 46 B located on the left wrist.
  • the wrist wearable devices 46 A and 46 B may be used to measure the movement of the arms of the individual 50 when throwing the sports ball 10 .
  • the wrist wearable devices 46 A and 46 B may be used to measure the grip strength. By monitoring the contraction and release of muscles located around the wrist, the approximate grip strength may be calculated.
  • the above is given as an example and should not be seen in a limiting manner.
  • the wrist wearable devices 46 A and 46 B may have other sensors that allow the wrist wearable devices 46 A and 46 B to monitor other characteristics than those mentioned above without departing from the spirit and scope of the present invention.
  • the wrist wearable devices 46 A and 46 B may monitor and record the arm movements, grip strength and other characteristics during the pitching process. One can review the recorded information to optimize the pitching performance of the individual 50 .
  • the wrist wearable device 46 B located on the left wrist may indicate that the position of the left wrist of the individual 50 may be either too close or too far away from the body and may be throwing the individual 50 slightly off balance.
  • the wrist wearable device 46 A located on the right wrist may indicate that the individual 50 is not following through after the pitch. If the individual 50 is a right-handed pitcher and the wrist wearable device 46 A monitors the grip strength, the wrist wearable device 46 A may indicate a location of a release point of the pitch. By monitoring the location of the release point, the wrist wearable device 46 A may indicate whether the release point of the individual 50 was too early or too late during the delivery.
  • the data monitored and recorded may be reviewed on a screen 48 ( FIG. 5 ) of the wrist wearable devices 46 A and 46 B and/or transmitted to a computing device for analysis and review.
  • the transmitted data may be sent to a desktop computer, a laptop, a tablet, smartphone, or other computing devices.
  • a dongle or similar device may be attached to the computing device. The dongle may be used to aid the computing device in the reception of the transmitted data.
  • the transmitted data may be sent to a server for storage. This may allow a user to review the data at a later time via a computing device.
  • a user may have to login to a website or via a software application of a mobile computing device to review the transmitted data.
  • the wrist wearable devices 46 A and 46 B may have a port for downloading the data.
  • the port may be a USB port or the like which may allow the wrist wearable devices 46 A and 46 B to be connected to a computer device to download the information recorded and stored.
  • the plurality of wearable devices 46 may include a chest strap device 46 C.
  • the chest strap device 46 C may be used to monitor the movement of the chest, breathing patterns, heart rate as well as other characteristic s of the individual 50 during the pitching process. One can review the recorded information to optimize the pitching performance of the individual 50 .
  • the chest strap device 46 C may indicate that the chest is rocking backwards during the wind-up or not in a proper location during the follow through throwing the individual 50 slightly off balance.
  • the chest strap device 46 C may indicate that the individual 50 is not breathing properly or that a heat rate of the individual 50 is too elevated and needs to calm down.
  • the data monitored and recorded may be reviewed on a screen 48 ( FIG. 5 ) of the chest strap device 46 C and/or transmitted to a computing device for analysis and review.
  • the transmitted data may be sent to a desktop computer, a laptop, a tablet, smartphone, or other computing devices.
  • a dongle or similar device may be attached to the computing device. The dongle may be used to aid the computing device in the reception of the transmitted data.
  • the transmitted data may be sent to a server for storage. This may allow a user to review the data at a later time via a computing device.
  • a user may have to login to a website or via a software application of a mobile computing device to review the transmitted data.
  • the chest strap device 46 C may have a port for downloading the data.
  • the port may be a USB port or the like which may allow the chest strap device 46 C to be connected to a computer device to download the information recorded and stored.
  • the individual 50 may have a foot pod wearable device 46 D located on a right shoe and another foot pod wearable device 46 E located on the left shoe.
  • the foot pod wearable devices 46 D and 46 E may be used to measure the movement of the feet of the individual 50 when throwing the sports ball 10 as well as other characteristics.
  • the foot pod wearable devices 46 D and 46 E may monitor and record the movement of the foot of the individual 50 as well as other characteristics during the pitching process. One can review the recorded information to optimize the pitching performance of the individual 50 .
  • the foot pod wearable devices 46 D and 46 D may be used to indicate if the individual 50 is dragging the plant foot, not properly planning the plant foot, over striding with the lead foot, not striding wide enough with the lead foot, and the like.
  • the data monitored and recorded may be reviewed on a screen 48 ( FIG. 5 ) of the foot pod wearable devices 46 D and 46 D and/or transmitted to a computing device for analysis and review.
  • the transmitted data may be sent to a desktop computer, a laptop, a tablet, smartphone, or other computing devices.
  • a dongle or similar device may be attached to the computing device. The dongle may be used to aid the computing device in the reception of the transmitted data.
  • the transmitted data may be sent to a server for storage. This may allow a user to review the data at a later time via a computing device.
  • a user may have to login to a website or via a software application of a mobile computing device to review the transmitted data.
  • the foot pod wearable devices 46 D and 46 D may have a port for downloading the data.
  • the port may be a USB port or the like which may allow the chest strap device 46 C to be connected to a computer device to download the information recorded and stored.
  • the process of throwing the sports ball 10 may be shown with the individual 50 having the wrist wearable devices 46 A and 46 B, the chest strap device 46 C and the foot pod wearable devices 46 D and 46 D.
  • the wearable devices 46 may monitor the movement as well as other characteristics of the arm, feet, chest and other body parts of the individual 50 .
  • the pitching motion is a complex process requiring the proper movement of numerous elements of the body. By monitoring the different body parts, one may optimize the pitching performance of the individual 50 .
  • each of the wearable devices 46 may have one or more sensors 52 .
  • Each of the sensors 52 may be used to monitor different characteristics of the individual 10 to which the sensor is attached as described above.
  • the sensors 52 may be coupled to a processor 54 and memory 56 via a plurality of conductive pathways.
  • the processor 54 may comprise various computing elements, such as integrated circuits, microcontrollers, microprocessors, programmable logic devices, etc, alone or in combination to perform the operations described herein.
  • the memory 56 may be coupled to the processor 54 as well as other components of the wearable devices 46 .
  • the memory 56 may be used to store various data monitored by the sensors 52 and utilized by the processor 54 and or other components of the wearable devices 46 .
  • the memory 56 may include removable and non-removable memory elements such as RAM, ROM, flash, magnetic, optical, and/or other conventional memory elements. The above listing is given as an example and should not be seen in a limiting manner.
  • the memory 56 may be used to store programming data for instructing the processor 54 or other components of the wearable device 46 to perform certain steps.
  • the processor 54 may obtain the various readings from the plurality of sensors 52 .
  • the processor 54 may calculate and analyze variety of movement characteristics of the individual 50 as well as other measured data.
  • the processor 54 may be coupled to a transmitting device 60 .
  • the transmitting device 60 may send all of the data calculated by the processor 54 .
  • the transmitting device 60 may have an antenna.
  • the data may be transmitted over any type of wireless network.
  • the wireless network may be though a 3G cellular communications, such as CDMA, EVDO, GSM/GPRS, or 4G cellular communications, such as WiMAX or LTE or the like.
  • the wireless communication may by using a wireless local area network (WLAN), for example, using Wi-Fi or the like.
  • WLAN wireless local area network
  • the above are given as an example and should not be seen in a limiting manner.
  • Other types of wireless networks may be used without departing from the spirit and scope of the present invention.
  • the wireless network may include any wireless communication network associated with a Personal Area Network (PAN), a Local Area Network (LAN), Metropolitan Area Network (MAN), or a Wide Area Network (WAN).
  • PAN Personal Area Network
  • LAN Local Area Network
  • MAN
  • the transmitted data may be sent to a computing device for review.
  • the transmitted data may be sent to a desktop computer, a laptop, a tablet, smartphone, or other computing devices.
  • a dongle or similar device may be attached to the computing device. The dongle may be used to aid the computing device in the reception of the transmitted data.
  • the transmitted data may be sent to a server for storage. This may allow a user to review the data at a later time via a computing device.
  • a user may have to login to a website or via a software application of a mobile computing device to review the transmitted data.
  • the wearable devices 46 may have a data port 62 .
  • the data monitored by the sensors 52 may be stored in the memory 56 .
  • a user may then connect the wearable devices 46 to a computing device via the data port 62 to download the information.
  • the wearable devices 46 may have a screen 48 coupled to the processor 54 .
  • the screen 48 may be used to display data analyzed by the processor 54 .
  • the components in the wearable devices 46 may be powered by a battery.
  • the battery may be a rechargeable battery.
  • the battery may be may charged using wired or wireless technology.
  • a wearable monitoring device 70 may be seen.
  • the wearable monitoring device 70 is a catcher's protective helmet 70 A.
  • the wearable monitoring device 70 may be other types of protective wear such as a batting helmet or the like. The above is given as an example and should not be seen in a limiting manner.
  • the wearable monitoring device 70 may have a catcher's half-hat helmet 72 .
  • the catcher's half-hat helmet 72 may have an opening 74 formed in a front area thereof.
  • the opening 74 may allow a face of a user of the wearable monitoring device 70 to be partially exposed.
  • a cage 76 may be attached to the catcher's half-hat helmet 72 covering the opening 74 .
  • the cage 76 may be designed to protect the face of the user exposed through the opening 74 while allowing the user to see and comfortably breath when wearing the catcher's half-hat helmet 72 .
  • a monitoring device 80 may be attached to a top front surface of the catcher's half-hat helmet 72 .
  • the monitoring device 80 may be used to receive the data transmitted by the sports ball 10 .
  • the monitoring device 80 may further receive the data transmitted by the wearable devices 46 .
  • the monitoring device 80 may also be used to record the movement of the individual 50 ( FIG. 7-8G ) throwing the sports ball 10 .
  • the monitoring device 80 may include a movement recording device such as a camera, 3D camera, video camera or similar devices that may record the movement of the individual 50 .
  • the movement recording device may be a LIDAR (Light Detection and Ranging) device.
  • a LIDAR device sends out pulse laser light signals which are used to illuminate the individual 50 .
  • the LIDAR device records the reflected pulses with a sensor. Differences in laser return times and wavelengths may then be used to make digital 3-D representations of the movement of the individual 50 .
  • a communication device 81 may be coupled to an interior area of the catcher's half-hat helmet 72 .
  • the communication device 81 may allow a user of the wearable monitoring device 70 to wirelessly communicate with others such as the individual 50 , coaches or other interested people.
  • the communication device 81 may use bone conduction technology.
  • the monitoring device 80 may have a receiver 82 .
  • the receiver 82 may be used to receive the data transmitted by the sports ball 10 .
  • the receiver 82 may also be used to receive the data transmitted by the wearable devices 46 .
  • the receiver 82 may be coupled to a processor 84 and memory 86 via a plurality of conductive pathways.
  • the processor 84 may comprise various computing elements, such as integrated circuits, microcontrollers, microprocessors, programmable logic devices, etc, alone or in combination to perform the operations described herein.
  • the memory 86 may be coupled to the processor 84 as well as other components of the monitoring device 80 .
  • the memory 86 may be used to store various data received by the receiver 82 .
  • the memory 86 may store programming instructions which when executed by the processor 84 may analyze the data received by the receiver 82 .
  • the processor 84 may calculate and analyze variety of movement characteristics of the sports ball 10 , the individual 50 using the wearable devices 46 , as well as other measured data.
  • the memory 86 may include removable and non-removable memory elements such as RAM, ROM, flash, magnetic, optical, and/or other conventional memory elements. The above listing is given as an example and should not be seen in a limiting manner.
  • the processor 84 may be coupled to a transmitting device 88 .
  • the transmitting device 88 may send all of the data calculated by the processor 84 .
  • the transmitting device 88 may have an antenna.
  • the data may be transmitted over any type of wireless network.
  • the wireless network may be though a 3G cellular communications, such as CDMA, EVDO, GSM/GPRS, or 4G cellular communications, such as WiMAX or LTE or the like.
  • the wireless communication may by using a wireless local area network (WLAN), for example, using Wi-Fi or the like.
  • WLAN wireless local area network
  • the wireless network may include any wireless communication network associated with a Personal Area Network (PAN), a Local Area Network (LAN), Metropolitan Area Network (MAN), or a Wide Area Network (WAN).
  • PAN Personal Area Network
  • LAN Local Area Network
  • MAN Metropolitan Area Network
  • WAN Wide Area Network
  • a camera 90 may be coupled to the processor 84 .
  • the camera 90 may be like the embodiments disclosed above such as a camera, 3D camera, video camera, LIDAR or the like.
  • the camera 90 may be used to take a video or monitor and record movement of the individual 50 throwing the sports ball 10 .
  • the data taken may be stored in the memory 86 .
  • the processor 84 may calculate and analyze variety of movement characteristics of the individual 50 using the wearable devices 46 based on the data transmitted by the wearable devices 46 and the data recorded by the camera 90 .
  • a display screen 92 may be coupled to the processor 84 .
  • the display screen 92 may be used to display the analyzed data calculated by the processor 84 , the video captured by the camera 90 as well as other data.
  • the display screen 92 may be a head-up display 92 A.
  • the processor 84 may be coupled to picture generating unit 94 .
  • the processor 84 may transmit a signal to the picture generating unit 94 causing an image to be displayed on the head-up display 92 A.
  • the image may be the analyzed data calculated by the processor 84 , the video captured by the camera 90 as well as other data.
  • the head-up display 92 A may be a visor 78 coupled to a top section of the cage 76 .
  • the wearable monitoring device 70 may be used by coaches trying to help train a pitcher. By viewing data displayed on the head-up display 92 A or other display screen 92 , the coach may provide immediate feedback to the individual 50 .
  • the wearable monitoring device 70 may also be used to help train umpires in calling balls and strikes. The above are given as examples and should not be seen in a limiting manner.
  • the wearable monitoring device 70 may be used for other purposes then those disclosed above.

Abstract

A sports ball system for calculating movement characteristics has a sports ball. The sports ball monitors movement characteristics of the sports ball. A wearable device receives data transmitted by the sports ball. The wearable device analyzes and displays the data transmitted.

Description

    RELATED APPLICATIONS
  • The present application is a related to U.S. Pat. No. 9,522,306 entitled, “SPORTS BALL THAT MEASURES SPEED, SPIN, CURVE, MOVEMENT AND OTHER CHARACTERISTICS AND METHOD THEREFOR”, issued on Dec. 20, 2016 and U.S. Pat. No. 9,526,951 entitled “SPORTS BALL SYSTEM FOR MONITORING BALL CHARACTERISTICS AND METHOD THEREFOR”, issued Dec. 27, 2016 both in the name of the same inventor as the present application and both being incorporated herewith.
  • TECHNICAL FIELD
  • The present application generally relates to a sports ball, and more specifically to a balanced baseball that has the characteristic of a regulation baseball and measures other movement characteristics as deemed relevant to include the speed, spin rate, curve of the baseball.
  • BACKGROUND
  • In many sports it is desired to determine how fast a ball is being either thrown or hit. Typically, the speed of a moving ball is measured using a Doppler radar system. Doppler radar systems determine a moving ball's speed by analyzing radar beams reflected off the ball. Although accurate, these systems are expensive and normally cannot be operated by the athlete whose toss or hit is being measured. For these reasons, systems of this type are generally restricted to organized sport teams.
  • Just as important to speed is to know the motion characteristics of the ball, such as the distance, time of flight, speed, height, spin rate, curve, release point or other motion characteristics of the thrown or batted ball. All of the above characteristics may be used to help a pitcher optimize different types of pitches. For example, spin rate information is useful for example in optimizing a baseball pitcher's curve ball pitching ability. Unfortunately, the above motion characteristics are difficult to measure. In general, the above motion characteristics are generally calculated by videotaping a pitch and having a complex computer program analyze the different motion characteristics. Thus, as with speed, systems of this type are generally restricted to organized sport teams.
  • Thus, the ability to measure and review different motion characteristics of a pitched ball is generally reserved for professional sporting teams. The typical amateur ball player is unable to measure, review and analyze the different motion characteristics of a pitched ball.
  • Presently, there are sports balls which allow one to track the speed and other characteristics of the thrown and/or hit ball. However, these balls are not regulation caliber. Thus, the correlation between readings from these sports balls and throwing a regulation sports ball may not be accurate. Further, many of these sports ball are not balanced. Throwing an unbalanced sports ball creates false motion characteristics and could result in throwing injuries.
  • Therefore, it would be desirable to provide a system and method that overcomes the above.
  • SUMMARY
  • In accordance with one embodiment, a sports ball system for calculating movement characteristics is disclosed. The sports ball system uses a sports ball for monitoring and calculating the movement characteristics of the sports ball. A wearable device receives data transmitted by the sports ball. The wearable device analyzes and displays the data transmitted.
  • In accordance with one embodiment, a sports ball system for calculating movement characteristics is disclosed. The sports ball system has a sports ball. The sports ball has components monitoring movement characteristics of the sports ball. A wearable device receives data transmitted by the sports ball. The wearable device analyzes and displays the data transmitted. The wearable device comprises: a catcher's half helmet having an opening formed in a front area thereof; a cage attached to the catcher's half helmet and covering the opening; and a monitoring device attached to a top front area of the catcher's half helmet, wherein the monitoring device receives the data transmitted by the sports ball and analyzes and displays the data transmitted.
  • In accordance with one embodiment, a sports ball system for calculating movement characteristics is disclosed. The sports ball system has a sports ball. The sports ball has a spherical core. A spherical circuit board is mounted within the spherical core and has components for monitoring and calculating movement characteristics of the sports ball. A mounting unit is formed within the spherical core for securing the spherical circuit board within the spherical core. The mounting unit has a platform housed within the spherical core. A plurality of mounting brackets is positioned around a perimeter of the platform. The mounting brackets are used to hold the spherical circuit board in place and deflect kinematic energy. Winding is wrapped around the spherical core. A cover is positioned around the winding. A wearable device receives data transmitted by the sports ball. The wearable device analyzes and displays the data transmitted. The wearable device comprises: a catcher's half helmet having an opening formed in a front area thereof, a cage attached to the catcher's half helmet and covering the opening; and a monitoring device attached to a top front area of the catcher's half helmet, wherein the monitoring device receives the data transmitted by the sports ball and analyzes and displays the data transmitted.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present application is further detailed with respect to the following drawings. These figures are not intended to limit the scope of the present application but rather illustrate certain attributes thereof. The same reference numbers will be used throughout the drawings to refer to the same or like parts.
  • FIG. 1 is a prospective view of a sports ball for measuring a plurality of motion characteristics in accordance with one aspect of the present application;
  • FIG. 2A-2D are prospective view of the different components of the sports ball of FIG. 1 in accordance with one aspect of the present application;
  • FIG. 3 is a cutaway view of the sports ball of FIG. 1 in accordance with one aspect of the present application;
  • FIG. 4 is a magnified view of the measuring electronics and mounting system of the sports ball of FIG. 1 in accordance with one aspect of the present application;
  • FIG. 5 is another magnified view of the measuring electronics and mounting system of the sports ball of FIG. 1 in accordance with one aspect of the present application;
  • FIG. 6 is a front view of a wearable device used with sports ball of FIG. 1 in accordance with one aspect of the present application;
  • FIG. 7 is a front view of an individual having a plurality of wearable devices used with the sports ball of FIG. 1 in accordance with one aspect of the present application;
  • FIG. 8A-8G is a side view of the individual in FIG. 7 having the plurality of wearable devices used with the sports ball of FIG. 1 in accordance with one aspect of the present application;
  • FIG. 9 is a block diagram of the wearable device used with the sports ball of FIG. 1 in accordance with one aspect of the present application;
  • FIG. 10 is a front view of a monitoring device with a shield used with the sports ball of FIG. 1 in accordance with one aspect of the present application;
  • FIG. 11 is a front view of a monitoring device with the shield removed used with the sports ball of FIG. 1 in accordance with one aspect of the present application;
  • FIG. 12 is a side view of a monitoring device with the shield removed used with the sports ball of FIG. 1 in accordance with one aspect of the present application; and
  • FIG. 13 is a block diagram of a monitoring unit used with the monitoring device of FIG. 10 in accordance with one aspect of the present application.
  • DESCRIPTION OF THE APPLICATION
  • The description set forth below in connection with the appended drawings is intended as a description of presently preferred embodiments of the disclosure and is not intended to represent the only forms in which the present disclosure can be constructed and/or utilized. The description sets forth the functions and the sequence of steps for constructing and operating the disclosure in connection with the illustrated embodiments. It is to be understood, however, that the same or equivalent functions and sequences can be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of this disclosure
  • Embodiments of the exemplary system and method disclose a regulation sports ball that is able to measure and record motion characteristics of the sports ball when the sports ball is thrown. The sports ball may be able to measure and record the speed, distance, time of flight, height, path, spin rate, curve, release point or other motion characteristics of the thrown ball. All of the above characteristics may be used to help a pitcher optimize different types of pitches.
  • Referring to the FIGS. 1-5, a sports ball 10 is shown. The sports ball 10 may be constructed to measure and record the speed, distance, time of flight, height, path, spin rate, curve, release point or other motion characteristics of the thrown sports ball 10. The sports ball 10 may be configured to conform to a regulation ball such as a baseball, bowling ball or other regulation sports balls. While embodiments shown in the Figures disclose a baseball, this should not be seen in a limiting manner.
  • In the embodiment shown, the sports ball 10 is a regulation baseball. Thus, the sports ball 10 may be configured to be between 9 and 9¼ inches in circumference, and 5 to 5¼ ounces in weight, and have a coefficient of restitution of no more than 0.578, no less than 0.514.
  • The sports ball 10 may be constructed in a similar manner to a regulation baseball. The sports ball 10 may have a spherical core 12. The spherical core 12 may be formed of cork, rubber or similar material. A winding 14 may be formed around the spherical core 12. The winding 14 may be formed of wool, poly/cotton or other winding material. A covering 16 may be formed around the winding 14 encompassing the core 12 forming an exterior surface of the sports ball 10. The covering 16 may be formed out of cowhide or similar material. The covering 16 may be formed out of natural or synthetic materials. The covering 16 may be formed in two hourglass shaped halves which may be couple together around the winding 14 encompassing the core 12 by stitching 18.
  • The sports ball 10 has a spherical circuit board 20. The spherical circuit board 20 may have a hollow interior section. Alternatively, the spherical circuit board 20 may be solid wherein the interior of the spherical circuit board 20 is a non-conductive substrate. A plurality of sensors 22 may be coupled to the spherical circuit board 20. The sensors 22 may be used to monitor different motion characteristics of the thrown sports ball 10. The sensors 22 may include: an accelerometer 22A to measure the speed of the thrown sport ball 10; gyroscope 22B to measure the rotation of the thrown sports ball 10; a position sensor 22C to monitor a location of the thrown sport ball 10; and a pressure sensor 22D to measure barometric pressure as to quantify a change in altitude as the sports ball 10 changes in elevation during delivery and to quantify atmospheric air density in the sports ball 10. The above list is given as an example. Other sensors may be used to measure different motion characteristics without departing from the spirit and scope of the present invention. In accordance with one embodiment, the sports ball 10 may be customized. Thus, a potential buyer of the sports ball 10 may designate which sensors 22 the buyer wishes to incorporate into the sports ball 10.
  • A processor 24 and memory 26 are coupled to the spherical circuit board 20. The sensors 22 may be coupled to the processor 24 and memory 26 via a plurality of conductive pathways 28. The processor 24 may be used to control the various functions of the sports ball 10. The processor 24 may store a computer program or other programming instructions associated with the memory 26 to control the operation of sports ball 10. The processor 24 may comprise various computing elements, such as integrated circuits, microcontrollers, microprocessors, programmable logic devices, etc, alone or in combination to perform the operations described herein.
  • The memory 26 may be coupled to the processor 24 as well as other components of the sports ball 10. The memory 26 may be used to store various data monitored by the sensors 22 and utilized by the processor 24 and or other components of the sports ball 10. The memory 26 may include removable and non-removable memory elements such as RAM, ROM, flash, magnetic, optical, and/or other conventional memory elements. The above listing is given as an example and should not be seen in a limiting manner.
  • The memory 26 may be used to store programming data for instructing the processor 24 or other components of the sports ball 10 to perform certain steps. For example, the processor 24 may obtain the various readings from the plurality of sensors 22. Using the programming data, the processor 24 may calculate a variety of movement characteristics of the sports ball 10. For example, the processor 24 may calculate travel route, distance, time of flight, speed, trajectory height, spin rate, curve of the sports ball 10, release point as well as the barometric change in elevation with the respect in the relative change in movement of the sports ball 10 prior to the release point and to quantify the atmospheric air density due to pitcher's elevation above sea level and other characteristics.
  • The processor 24 may be coupled to a transmitting device 30. The transmitting device 30 may send all of the data calculated by the processor 24. In accordance with one embodiment, the transmitting device 30 may have an antenna. The antenna of the transmitting device 30 may be incorporated into and form part of the stitching 18. The data may be transmitted over any type of wireless network. For example, the wireless network may be though a 3G cellular communications, such as CDMA, EVDO, GSM/GPRS, or 4G cellular communications, such as WiMAX or LTE or the like. Alternatively, the wireless communication may by using a wireless local area network (WLAN), for example, using Wi-Fi or the like. The above are given as an example and should not be seen in a limiting manner. Other types of wireless networks may be used without departing from the spirit and scope of the present invention. For example, the wireless network may include any wireless communication network associated with a Personal Area Network (PAN), a Local Area Network (LAN), Metropolitan Area Network (MAN), or a Wide Area Network (WAN).
  • The transmitted data may be sent to a computing device for review. For example, the transmitted data may be sent to a desktop computer, a laptop, a tablet, smartphone, or other computing devices. In accordance with one embodiment, a dongle or similar device may be attached to the computing device. The dongle may be used to aid the computing device in the reception of the transmitted data. The transmitted data may be sent to a server for storage. This may allow a user to review the data at a later time via a computing device. In this embodiment, a user may have to login to a website or via a software application of a mobile computing device to review the transmitted data.
  • Alternatively, the sports ball 10 may have a data cable 44. In this embodiment, the data monitored by the sensors 22 may be stored in the memory 26. A user may then connect the sports ball 10 to a computing device via the data cable 44 to download the information. The use of the data cable 44.
  • The components on the spherical circuit board 20 may be powered by a battery 32. The battery 32 may be positioned on the exterior surface of the spherical circuit board 20. Alternatively, the battery 32 may be placed within the interior of the spherical circuit board 20. Placing the battery 32 within the interior of the spherical circuit board 20, may allow the spherical circuit board 20 to be easier to spin balance. In accordance with one embodiment of the present invention, the battery 32 is a spherical battery positioned within the spherical circuit board 20. In this embodiment, a cap 20A may be removed from the spherical circuit board 20. The battery 32 may then be placed within the interior of the spherical circuit board 20. The battery 32 may be a rechargeable battery. The battery 32 may be may charged using wired or wireless technology. By using wireless technology such as by using an electromagnetic field to transfers energy for recharging of the battery 32, the sports ball 10 may become easier to balance.
  • The spherical circuit board 20, sensors 22 and other associated components are mounted together to be properly balance. Computer programs may be used to mathematically calculate the location of each component on the spherical circuit board 20. If not properly balanced, the spherical circuit board 20 may have one or more counter weights 34. The counter weights 34 may be used to balance the spherical circuit board 20. When the spherical circuit board 20 is constructed, the spherical circuit board 20 may undergo a balance spin test. This may allow one to see if the spherical circuit board 20 is properly balanced. If not, counter weights 34 may be added in predetermined positions to balance the counter weights 34. A balance spin test may show the location and amount of counterweight needed to properly balance the spherical circuit board 20.
  • A mounting unit 36 may be used to position the spherical circuit board 20 within the core 12. The mounting unit 36 may be used to dynamically balance the spherical circuit board 20 while anchoring the spherical circuit board 20 within the core 12. In accordance with one embodiment, the mounting unit 36 may have a platform 38. The platform 38 may be a cylindrical ring 38A. The spherical circuit board 20 may be positioned within the cylindrical ring 38A. A plurality of mounting brackets 40 may be positioned around a perimeter of the cylindrical ring 38A. The mounting brackets 40 may be structural shaped brackets that are used to hold the spherical circuit board 20 in place and deflect kinematic energy.
  • To enhance the ability to measure, review and analyze the different motion characteristics of a pitched ball, the person throwing the sports ball 10 may have one or more wearable devices 46. The wearable devices may be placed on the wrist, shoe or other areas of the person. The wearable devices may monitor different movement characteristics of the person throwing the ball. The wearable device may monitor arm slot and movement, stride of the person throwing the sports ball 10 and other movement characteristics of the person throwing the ball. This information may be used in conjunction with the transmitted data from the sports ball 10 to enhance the ability to measure, review and analyze the different motion characteristics of a pitched ball.
  • Referring to FIG. 6, one example of a wearable device 46 is shown. In this embodiment, the wearable device 46 is a foot pod that may be attached to the user's shoe. The foot pod may be used to measure the stride of the person throwing the sports ball 10 and other leg movement characteristics of the person throwing the sports ball 10. FIG. 5 shows just one example. As started above, wearable devices may be placed on the wrist or other areas of the person throwing the sports ball 10.
  • Referring to FIG. 7, an individual 50 is shown having a plurality of wearable devices 46 and the sports ball 10. In this embodiment, the individual 50 may have a wrist wearable device 46A located on a right wrist and another wrist wearable device 46B located on the left wrist. The wrist wearable devices 46A and 46B may be used to measure the movement of the arms of the individual 50 when throwing the sports ball 10. The wrist wearable devices 46A and 46B may be used to measure the grip strength. By monitoring the contraction and release of muscles located around the wrist, the approximate grip strength may be calculated. The above is given as an example and should not be seen in a limiting manner. The wrist wearable devices 46A and 46B may have other sensors that allow the wrist wearable devices 46A and 46B to monitor other characteristics than those mentioned above without departing from the spirit and scope of the present invention.
  • The wrist wearable devices 46A and 46B may monitor and record the arm movements, grip strength and other characteristics during the pitching process. One can review the recorded information to optimize the pitching performance of the individual 50. For example, the wrist wearable device 46B located on the left wrist may indicate that the position of the left wrist of the individual 50 may be either too close or too far away from the body and may be throwing the individual 50 slightly off balance. Similarly, the wrist wearable device 46A located on the right wrist may indicate that the individual 50 is not following through after the pitch. If the individual 50 is a right-handed pitcher and the wrist wearable device 46A monitors the grip strength, the wrist wearable device 46A may indicate a location of a release point of the pitch. By monitoring the location of the release point, the wrist wearable device 46A may indicate whether the release point of the individual 50 was too early or too late during the delivery.
  • The data monitored and recorded may be reviewed on a screen 48 (FIG. 5) of the wrist wearable devices 46A and 46B and/or transmitted to a computing device for analysis and review. For example, the transmitted data may be sent to a desktop computer, a laptop, a tablet, smartphone, or other computing devices. In accordance with one embodiment, a dongle or similar device may be attached to the computing device. The dongle may be used to aid the computing device in the reception of the transmitted data. The transmitted data may be sent to a server for storage. This may allow a user to review the data at a later time via a computing device. In this embodiment, a user may have to login to a website or via a software application of a mobile computing device to review the transmitted data.
  • In accordance with another embodiment, the wrist wearable devices 46A and 46B may have a port for downloading the data. The port may be a USB port or the like which may allow the wrist wearable devices 46A and 46B to be connected to a computer device to download the information recorded and stored.
  • The plurality of wearable devices 46 may include a chest strap device 46C. The chest strap device 46C may be used to monitor the movement of the chest, breathing patterns, heart rate as well as other characteristic s of the individual 50 during the pitching process. One can review the recorded information to optimize the pitching performance of the individual 50. For example, the chest strap device 46C may indicate that the chest is rocking backwards during the wind-up or not in a proper location during the follow through throwing the individual 50 slightly off balance. The chest strap device 46C may indicate that the individual 50 is not breathing properly or that a heat rate of the individual 50 is too elevated and needs to calm down.
  • The data monitored and recorded may be reviewed on a screen 48 (FIG. 5) of the chest strap device 46C and/or transmitted to a computing device for analysis and review. For example, the transmitted data may be sent to a desktop computer, a laptop, a tablet, smartphone, or other computing devices. In accordance with one embodiment, a dongle or similar device may be attached to the computing device. The dongle may be used to aid the computing device in the reception of the transmitted data. The transmitted data may be sent to a server for storage. This may allow a user to review the data at a later time via a computing device. In this embodiment, a user may have to login to a website or via a software application of a mobile computing device to review the transmitted data.
  • In accordance with another embodiment, the chest strap device 46C may have a port for downloading the data. The port may be a USB port or the like which may allow the chest strap device 46C to be connected to a computer device to download the information recorded and stored.
  • The individual 50 may have a foot pod wearable device 46D located on a right shoe and another foot pod wearable device 46E located on the left shoe. The foot pod wearable devices 46D and 46E may be used to measure the movement of the feet of the individual 50 when throwing the sports ball 10 as well as other characteristics.
  • The foot pod wearable devices 46D and 46E may monitor and record the movement of the foot of the individual 50 as well as other characteristics during the pitching process. One can review the recorded information to optimize the pitching performance of the individual 50. For example, the foot pod wearable devices 46D and 46D may be used to indicate if the individual 50 is dragging the plant foot, not properly planning the plant foot, over striding with the lead foot, not striding wide enough with the lead foot, and the like.
  • The data monitored and recorded may be reviewed on a screen 48 (FIG. 5) of the foot pod wearable devices 46D and 46D and/or transmitted to a computing device for analysis and review. For example, the transmitted data may be sent to a desktop computer, a laptop, a tablet, smartphone, or other computing devices. In accordance with one embodiment, a dongle or similar device may be attached to the computing device. The dongle may be used to aid the computing device in the reception of the transmitted data. The transmitted data may be sent to a server for storage. This may allow a user to review the data at a later time via a computing device. In this embodiment, a user may have to login to a website or via a software application of a mobile computing device to review the transmitted data.
  • In accordance with another embodiment, the foot pod wearable devices 46D and 46D may have a port for downloading the data. The port may be a USB port or the like which may allow the chest strap device 46C to be connected to a computer device to download the information recorded and stored.
  • Referring to FIGS. 8A-8G, the process of throwing the sports ball 10 may be shown with the individual 50 having the wrist wearable devices 46A and 46B, the chest strap device 46C and the foot pod wearable devices 46D and 46D. When throwing the sports ball 10, the wearable devices 46 may monitor the movement as well as other characteristics of the arm, feet, chest and other body parts of the individual 50. As may be seen, the pitching motion is a complex process requiring the proper movement of numerous elements of the body. By monitoring the different body parts, one may optimize the pitching performance of the individual 50.
  • Referring to FIG. 9, each of the wearable devices 46 may have one or more sensors 52. Each of the sensors 52 may be used to monitor different characteristics of the individual 10 to which the sensor is attached as described above. The sensors 52 may be coupled to a processor 54 and memory 56 via a plurality of conductive pathways. The processor 54 may comprise various computing elements, such as integrated circuits, microcontrollers, microprocessors, programmable logic devices, etc, alone or in combination to perform the operations described herein.
  • The memory 56 may be coupled to the processor 54 as well as other components of the wearable devices 46. The memory 56 may be used to store various data monitored by the sensors 52 and utilized by the processor 54 and or other components of the wearable devices 46. The memory 56 may include removable and non-removable memory elements such as RAM, ROM, flash, magnetic, optical, and/or other conventional memory elements. The above listing is given as an example and should not be seen in a limiting manner.
  • The memory 56 may be used to store programming data for instructing the processor 54 or other components of the wearable device 46 to perform certain steps. For example, the processor 54 may obtain the various readings from the plurality of sensors 52. Using the programming data, the processor 54 may calculate and analyze variety of movement characteristics of the individual 50 as well as other measured data.
  • The processor 54 may be coupled to a transmitting device 60. The transmitting device 60 may send all of the data calculated by the processor 54. In accordance with one embodiment, the transmitting device 60 may have an antenna. The data may be transmitted over any type of wireless network. For example, the wireless network may be though a 3G cellular communications, such as CDMA, EVDO, GSM/GPRS, or 4G cellular communications, such as WiMAX or LTE or the like. Alternatively, the wireless communication may by using a wireless local area network (WLAN), for example, using Wi-Fi or the like. The above are given as an example and should not be seen in a limiting manner. Other types of wireless networks may be used without departing from the spirit and scope of the present invention. For example, the wireless network may include any wireless communication network associated with a Personal Area Network (PAN), a Local Area Network (LAN), Metropolitan Area Network (MAN), or a Wide Area Network (WAN).
  • The transmitted data may be sent to a computing device for review. For example, the transmitted data may be sent to a desktop computer, a laptop, a tablet, smartphone, or other computing devices. In accordance with one embodiment, a dongle or similar device may be attached to the computing device. The dongle may be used to aid the computing device in the reception of the transmitted data. The transmitted data may be sent to a server for storage. This may allow a user to review the data at a later time via a computing device. In this embodiment, a user may have to login to a website or via a software application of a mobile computing device to review the transmitted data.
  • Alternatively, the wearable devices 46 may have a data port 62. In this embodiment, the data monitored by the sensors 52 may be stored in the memory 56. A user may then connect the wearable devices 46 to a computing device via the data port 62 to download the information.
  • The wearable devices 46 may have a screen 48 coupled to the processor 54. The screen 48 may be used to display data analyzed by the processor 54.
  • The components in the wearable devices 46 may be powered by a battery. The battery may be a rechargeable battery. The battery may be may charged using wired or wireless technology.
  • Referring to FIGS. 10-12, a wearable monitoring device 70 may be seen. In the embodiment shown, the wearable monitoring device 70 is a catcher's protective helmet 70A. However, the wearable monitoring device 70 may be other types of protective wear such as a batting helmet or the like. The above is given as an example and should not be seen in a limiting manner.
  • The wearable monitoring device 70 may have a catcher's half-hat helmet 72. The catcher's half-hat helmet 72 may have an opening 74 formed in a front area thereof. The opening 74 may allow a face of a user of the wearable monitoring device 70 to be partially exposed. A cage 76 may be attached to the catcher's half-hat helmet 72 covering the opening 74. The cage 76 may be designed to protect the face of the user exposed through the opening 74 while allowing the user to see and comfortably breath when wearing the catcher's half-hat helmet 72.
  • A monitoring device 80 may be attached to a top front surface of the catcher's half-hat helmet 72. The monitoring device 80 may be used to receive the data transmitted by the sports ball 10. The monitoring device 80 may further receive the data transmitted by the wearable devices 46. In accordance with one embodiment, the monitoring device 80 may also be used to record the movement of the individual 50 (FIG. 7-8G) throwing the sports ball 10. The monitoring device 80 may include a movement recording device such as a camera, 3D camera, video camera or similar devices that may record the movement of the individual 50. In accordance with one embodiment, the movement recording device may be a LIDAR (Light Detection and Ranging) device. A LIDAR device sends out pulse laser light signals which are used to illuminate the individual 50. The LIDAR device records the reflected pulses with a sensor. Differences in laser return times and wavelengths may then be used to make digital 3-D representations of the movement of the individual 50.
  • A communication device 81 may be coupled to an interior area of the catcher's half-hat helmet 72. The communication device 81 may allow a user of the wearable monitoring device 70 to wirelessly communicate with others such as the individual 50, coaches or other interested people. In accordance with one embodiment, the communication device 81 may use bone conduction technology.
  • As may be seen in FIG. 13, the monitoring device 80 may have a receiver 82. The receiver 82 may be used to receive the data transmitted by the sports ball 10. The receiver 82 may also be used to receive the data transmitted by the wearable devices 46. The receiver 82 may be coupled to a processor 84 and memory 86 via a plurality of conductive pathways. The processor 84 may comprise various computing elements, such as integrated circuits, microcontrollers, microprocessors, programmable logic devices, etc, alone or in combination to perform the operations described herein.
  • The memory 86 may be coupled to the processor 84 as well as other components of the monitoring device 80. The memory 86 may be used to store various data received by the receiver 82. The memory 86 may store programming instructions which when executed by the processor 84 may analyze the data received by the receiver 82. For example, using the programming instructions, the processor 84 may calculate and analyze variety of movement characteristics of the sports ball 10, the individual 50 using the wearable devices 46, as well as other measured data. The memory 86 may include removable and non-removable memory elements such as RAM, ROM, flash, magnetic, optical, and/or other conventional memory elements. The above listing is given as an example and should not be seen in a limiting manner.
  • The processor 84 may be coupled to a transmitting device 88. The transmitting device 88 may send all of the data calculated by the processor 84. In accordance with one embodiment, the transmitting device 88 may have an antenna. The data may be transmitted over any type of wireless network. For example, the wireless network may be though a 3G cellular communications, such as CDMA, EVDO, GSM/GPRS, or 4G cellular communications, such as WiMAX or LTE or the like. Alternatively, the wireless communication may by using a wireless local area network (WLAN), for example, using Wi-Fi or the like. The above are given as an example and should not be seen in a limiting manner. Other types of wireless networks may be used without departing from the spirit and scope of the present invention. For example, the wireless network may include any wireless communication network associated with a Personal Area Network (PAN), a Local Area Network (LAN), Metropolitan Area Network (MAN), or a Wide Area Network (WAN).
  • A camera 90 may be coupled to the processor 84. The camera 90 may be like the embodiments disclosed above such as a camera, 3D camera, video camera, LIDAR or the like. The camera 90 may be used to take a video or monitor and record movement of the individual 50 throwing the sports ball 10. The data taken may be stored in the memory 86. Using the programming instructions, the processor 84 may calculate and analyze variety of movement characteristics of the individual 50 using the wearable devices 46 based on the data transmitted by the wearable devices 46 and the data recorded by the camera 90.
  • A display screen 92 may be coupled to the processor 84. The display screen 92 may be used to display the analyzed data calculated by the processor 84, the video captured by the camera 90 as well as other data. In accordance with one embodiment, the display screen 92 may be a head-up display 92A. In the embodiment having a head-up display 92A, the processor 84 may be coupled to picture generating unit 94. The processor 84 may transmit a signal to the picture generating unit 94 causing an image to be displayed on the head-up display 92A. The image may be the analyzed data calculated by the processor 84, the video captured by the camera 90 as well as other data. In accordance with one embodiment, the head-up display 92A may be a visor 78 coupled to a top section of the cage 76.
  • The wearable monitoring device 70 may be used by coaches trying to help train a pitcher. By viewing data displayed on the head-up display 92A or other display screen 92, the coach may provide immediate feedback to the individual 50. The wearable monitoring device 70 may also be used to help train umpires in calling balls and strikes. The above are given as examples and should not be seen in a limiting manner. The wearable monitoring device 70 may be used for other purposes then those disclosed above.
  • The foregoing description is illustrative of particular embodiments of the application, but is not meant to be a limitation upon the practice thereof. The following claims, including all equivalents thereof, are intended to define the scope of the application.

Claims (20)

1. A sports ball system for calculating movement characteristics comprising:
a sports ball thrown by a user of the sports ball system, the sports ball monitoring the position and spin rate of the sports ball and atmospheric pressure;
a plurality of wearable sensors monitoring body characteristics of the user throwing the sports ball, wherein each of the plurality of wearable sensors monitor a characteristic of a part of the user the wearable sensor is positioned upon;
a wearable device monitoring the user and receiving data transmitted by the sports ball, the wearable device analyzing and displaying the data transmitted, wherein the wearable device comprises:
a catcher's half helmet having an opening formed in a front area thereof;
a cage attached to the catcher's half helmet and covering the opening;
a visor attached to the cage, the visor being a heads-up display;
a communication device attached to the catcher's half helmet to wireless communicate with the user; and
a monitoring device attached to a top front area of the catcher's half helmet, wherein the monitoring device receives the data transmitted by the sports ball and the plurality of wearable sensors monitoring body characteristics of the user and analyzes and displays the data transmitted on the visor.
2. (canceled)
3. (canceled)
4. The sports ball system in accordance with claim 1, wherein the monitoring device comprises:
a receiver receiving the data transmitted;
a processor coupled to the receiver; and
a memory coupled to the processor.
5. The sports ball system in accordance with claim 4, wherein the monitoring device comprises a transmitter coupled to the processor.
6. The sports ball system in accordance with claim 4, wherein the monitoring device comprises a camera coupled to the processor the camera recording movement of the user.
7. The sports ball system in accordance with claim 4, wherein the monitoring device comprises:
a picture generating unit coupled to the processor; and
a visor attached to the cage and coupled to the picture generating unit, the picture generating unit transmitting visual data to be displayed on the visor.
8. The sports ball system in accordance with claim 1, wherein the sports ball comprises:
a spherical core;
a spherical circuit board mounted within the spherical core and having components for monitoring and calculating the movement characteristics of the sports ball;
a mounting unit formed within the spherical core for securing the spherical circuit board within the spherical core, the mounting unit comprising:
a platform housed within the spherical core; and
a plurality of mounting brackets positioned around a perimeter of the platform, the mounting brackets used to hold the spherical circuit board in place and deflect kinematic energy;
winding wrapped around the spherical core; and
a cover positioned around the winding.
9. The sports ball in accordance with claim 8, wherein the sports ball comprises counterweights positioned on the spherical circuit board.
10. A sports ball system for calculating movement characteristics comprising:
a sports ball thrown by a user of the sports ball system, the sports ball having components monitoring the position and spin rate of the sports ball and atmospheric pressure and transmitting the position, spin rate and atmospheric pressure data;
a plurality of wearable sensors monitoring body characteristics of the user throwing the sports ball, wherein each of the plurality of wearable sensors monitor a characteristic of a part of the user the wearable sensor is positioned upon;
a wearable device monitoring the user and receiving data transmitted by the sports ball, the wearable device analyzing and displaying the data transmitted, wherein the wearable device comprises:
a catcher's half helmet having an opening formed in a front area thereof;
a cage attached to the catcher's half helmet and covering the opening;
a communication device attached to the catcher's half helmet to wireless communicate with the user; and
a monitoring device attached to a top front area of the catcher's half helmet, wherein the monitoring device receives the data transmitted by the sports ball, records movement of the user and analyzes and displays the data transmitted.
11. The sports ball system in accordance with claim 10, comprises a visor attached to the cage, the visor being a heads-up display.
12. The sports ball system in accordance with claim 10, wherein the monitoring device comprises:
a receiver receiving the data transmitted;
a processor coupled to the receiver; and
a memory coupled to the processor.
13. The sports ball system in accordance with claim 12, wherein the monitoring device comprises a transmitter coupled to the processor.
14. The sports ball system in accordance with claim 12, wherein the monitoring device comprises a camera coupled to the processor.
15. The sports ball system in accordance with claim 12, wherein the monitoring device comprises:
a picture generating unit coupled to the processor; and
a visor attached to the cage and coupled to the picture generating unit, the picture generating unit transmitting visual data to be displayed on the visor.
16. The sports ball system in accordance with claim 10, wherein the sports ball comprises:
a spherical core;
a spherical circuit board mounted within the spherical core and having components for monitoring and calculating the movement characteristics of the sports ball;
a mounting unit formed within the spherical core for securing the spherical circuit board within the spherical core, the mounting unit comprising:
a platform housed within the spherical core; and
a plurality of mounting brackets positioned around a perimeter of the platform, the mounting brackets used to hold the spherical circuit board in place and deflect kinematic energy;
winding wrapped around the spherical core; and
a cover positioned around the winding.
17. The sports ball in accordance with claim 16, wherein the sports ball comprises counterweights positioned on the spherical circuit board.
18. A sports ball system for calculating movement characteristics comprising:
a sports ball having components monitoring movement characteristics of the sports ball, wherein the sports ball comprises:
a spherical core;
a spherical circuit board mounted within the spherical core and having components for monitoring and calculating the movement characteristics of the sports ball;
a mounting unit formed within the spherical core for securing the spherical circuit board within the spherical core, the mounting unit comprising:
a platform housed within the spherical core; and
a plurality of mounting brackets positioned around a perimeter of the platform, the mounting brackets used to hold the spherical circuit board in place and deflect kinematic energy;
winding wrapped around the spherical core; and
a cover positioned around the winding; and
a wearable device receiving data transmitted by the sports ball, the wearable device analyzing and displaying the data transmitted, wherein the wearable device comprises:
a catcher's half helmet having an opening formed in a front area thereof;
a cage attached to the catcher's half helmet and covering the opening;
a communication device attached to the catcher's half helmet to wireless communicate with the user; and
a monitoring device attached to a top front area of the catcher's half helmet, wherein the monitoring device receives the data transmitted by the sports ball, records movement of the user and analyzes and displays the data transmitted.
19. The sports ball system in accordance with claim 18, comprises a visor attached to the cage, the visor being a heads-up display.
20. The sports ball system in accordance with claim 18, wherein the monitoring device comprises:
a receiver receiving the data transmitted;
a processor coupled to the receiver;
a memory coupled to the processor;
a camera coupled to the processor.
US16/279,831 2019-02-19 2019-02-19 Sports ball system for monitoring ball characteristics and method therefor Abandoned US20200261773A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/279,831 US20200261773A1 (en) 2019-02-19 2019-02-19 Sports ball system for monitoring ball characteristics and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16/279,831 US20200261773A1 (en) 2019-02-19 2019-02-19 Sports ball system for monitoring ball characteristics and method therefor

Publications (1)

Publication Number Publication Date
US20200261773A1 true US20200261773A1 (en) 2020-08-20

Family

ID=72043224

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/279,831 Abandoned US20200261773A1 (en) 2019-02-19 2019-02-19 Sports ball system for monitoring ball characteristics and method therefor

Country Status (1)

Country Link
US (1) US20200261773A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11465017B2 (en) * 2019-12-25 2022-10-11 Blackstar Corp. Luminous safety ball
USD998735S1 (en) * 2019-02-01 2023-09-12 Michael Teperson Training softball

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070135243A1 (en) * 2005-12-12 2007-06-14 Larue Michael B Active sports tracker and method
US20100122402A1 (en) * 2008-11-17 2010-05-20 Under Armour, Inc. Helmet Attachment Clip
US20130274040A1 (en) * 2012-04-13 2013-10-17 Adidas Ag Sport Ball Athletic Activity Monitoring Methods And Systems
US20150343294A1 (en) * 2014-05-30 2015-12-03 Nike, Inc. Golf aid including heads up display for green reading
US20160015109A1 (en) * 2014-07-18 2016-01-21 FieldCast, LLC Wearable helmet with integrated peripherals
US9526951B1 (en) * 2015-09-29 2016-12-27 Michael Ganson Sports ball system for monitoring ball and body characteristics and method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070135243A1 (en) * 2005-12-12 2007-06-14 Larue Michael B Active sports tracker and method
US20100122402A1 (en) * 2008-11-17 2010-05-20 Under Armour, Inc. Helmet Attachment Clip
US20130274040A1 (en) * 2012-04-13 2013-10-17 Adidas Ag Sport Ball Athletic Activity Monitoring Methods And Systems
US20150343294A1 (en) * 2014-05-30 2015-12-03 Nike, Inc. Golf aid including heads up display for green reading
US20160015109A1 (en) * 2014-07-18 2016-01-21 FieldCast, LLC Wearable helmet with integrated peripherals
US9526951B1 (en) * 2015-09-29 2016-12-27 Michael Ganson Sports ball system for monitoring ball and body characteristics and method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD998735S1 (en) * 2019-02-01 2023-09-12 Michael Teperson Training softball
US11465017B2 (en) * 2019-12-25 2022-10-11 Blackstar Corp. Luminous safety ball

Similar Documents

Publication Publication Date Title
US9526951B1 (en) Sports ball system for monitoring ball and body characteristics and method therefor
US11150071B2 (en) Methods of determining performance information for individuals and sports objects
US20210166800A1 (en) Athletic activity monitoring methods and systems
US10715759B2 (en) Athletic activity heads up display systems and methods
JP6244487B2 (en) Method and system for monitoring sports ball movement
US20190054347A1 (en) Wearable sports guidance communication system and developers tool kit
KR101954959B1 (en) Feedback signals from image data of athletic performance
JP6306833B2 (en) Group performance monitoring system and method
US20170216667A1 (en) Esports fitness and training system
KR20180104119A (en) Systems containing balls with built-in sensors
US9522306B1 (en) Sports ball that measures speed, spin, curve, movement and other characteristics and method therefor
CN113599788B (en) System and method for monitoring athlete performance during a sporting event
US20180214758A1 (en) Digital information golf ball system
US20200261773A1 (en) Sports ball system for monitoring ball characteristics and method therefor
US20220184463A1 (en) Sports ball system for monitoring ball characteristics and method therefor
WO2019043526A1 (en) System and method for analysing sports-related performance
US20240042276A1 (en) Systems and methods for measuring and analyzing the motion of a swing and matching the motion of a swing to optimized swing equipment
JP2021045292A (en) Information ball
KR20170001466U (en) Pitching training ball for baseball

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION