US20200254218A1 - Robotizable module for driving an elongated flexible medical member, medical robot and system including such a module - Google Patents

Robotizable module for driving an elongated flexible medical member, medical robot and system including such a module Download PDF

Info

Publication number
US20200254218A1
US20200254218A1 US16/863,133 US202016863133A US2020254218A1 US 20200254218 A1 US20200254218 A1 US 20200254218A1 US 202016863133 A US202016863133 A US 202016863133A US 2020254218 A1 US2020254218 A1 US 2020254218A1
Authority
US
United States
Prior art keywords
drive member
axis
configuration
intermediate gear
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/863,133
Inventor
Fabien Destrebecq
Julien Maurel
Sébastien Deboeuf
Philippe Bencteux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robocath
Original Assignee
Robocath
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robocath filed Critical Robocath
Priority to US16/863,133 priority Critical patent/US20200254218A1/en
Publication of US20200254218A1 publication Critical patent/US20200254218A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0113Mechanical advancing means, e.g. catheter dispensers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00398Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like using powered actuators, e.g. stepper motors, solenoids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy

Definitions

  • the present invention relates to robotizable modules for driving an elongated flexible medical member.
  • Manual insertion of a catheter or guide in a patient is a relatively conventional surgical procedure.
  • this procedure is monitored by X-ray, the surgeon responsible for the procedure is exposed to substantial radiation if performing such an operation on many patients.
  • the invention relates to a robotizable module for driving an elongated flexible medical member.
  • the module comprises a base.
  • the module comprises a first drive member defining a first axis and comprising a first peripheral driving surface around the first axis, the first drive member being mounted so as to rotate relative to the base about the first axis, and comprising a member connecting to a drive motor adapted to rotate the first drive member about the first axis.
  • the module comprises a second drive member defining a second axis parallel to the first axis, and comprising a second peripheral driving surface around the second axis, the second drive member being mounted so as to rotate relative to the base about the second axis.
  • the second drive member is also mounted so as to be movable relative to the first drive member, in a degree of freedom other than rotational about the second axis, between:
  • the module comprises an actuation system operable by a user, adapted to move the second drive member from at least one among the first and second configurations to the other among the first and second configurations.
  • the module comprises a motion transmission system for transmitting the driving movement generated by the drive motor to the second drive member in order to rotate the second drive member about the second axis at least in any configuration between the first and second configurations.
  • the actuation system is operable to move the second drive member from the first configuration and to the second configuration while compressing said elastic system
  • the first drive member comprises a deformable skirt, rubbing on the base during rotation of the first drive member relative to the base, and defining a closed perimeter on the base along the entire translational path;
  • the invention relates to a medical robot kit comprising a permanent portion and a removable portion, the permanent portion comprising a motor and a first coupling, the removable portion comprising such a robotizable module provided with a second coupling complementary to the first coupling,
  • the first and second couplings comprising at least one cam surface adapted to rotate the first and second couplings relative to each other with respect to a direction of assembly, during assembly of the removable portion to the permanent portion along the direction of assembly.
  • the first coupling comprises a plurality of protrusions of concave shape
  • the second coupling comprises a plurality of complementary recesses of complementary shape
  • the first coupling comprises a centering cone, a protrusion that is movable relative to the centering cone in a sliding direction, and a biasing member biasing the protrusion relative to the centering cone during assembly of the removable portion to the permanent portion.
  • the invention relates to a medical system comprising a hollow elongated flexible medical member extending along an axis of elongation, and such a medical robot or such a robotizable module, the hollow elongated flexible medical member being held between the first and second peripheral driving surfaces in the first configuration, the first drive member being rotatable relative to the base about the first axis in order to generate translational motion of the elongated flexible medical member along its axis of elongation.
  • the first drive member is driven in translation relative to the base along the first axis in order to generate rotation of the elongated flexible medical member about its axis of elongation.
  • FIG. 1 a is a schematic side view of a robotic arteriography facility.
  • FIG. 1 b is a top view of part of FIG. 1 a
  • FIGS. 2 a -2 c are diagrams illustrating the modes of movement of the members to be driven
  • FIG. 3 is a perspective view of an exemplary embodiment of a robotizable module
  • FIG. 3 a is a perspective detailed view of the embodiment of FIG. 3 .
  • FIG. 4 a is a top detailed view of FIG. 3 in a first configuration, the cover having been removed,
  • FIG. 4 b is a view similar to FIG. 4 a , in another configuration
  • FIG. 5 is a side view of the mechanism of FIG. 4 a , illustrated without the housing,
  • FIGS. 6 a and 6 b are two exploded views of the same coupling from different perspectives
  • FIG. 7 is a perspective exploded view of a second embodiment
  • FIG. 8 is a vertical sectional view of the coupling of the module to the motor
  • FIG. 9 a is a sectional detailed view of FIG. 8 , in a first configuration
  • FIG. 9 b is a view corresponding to FIG. 9 a , in a second configuration
  • FIGS. 10 a and 10 b are exploded perspective views corresponding to FIGS. 6 a , 6 b , for a second example of a coupling
  • FIGS. 11 a and 11 b are schematic views of the drive module according to one embodiment in two different configurations
  • FIGS. 12 a , 12 b and 13 a , 13 b are views corresponding to FIGS. 11 a , 11 b , for other embodiments,
  • FIG. 14 is a perspective view of the portion mounted on the robot of a coupling according to a third example.
  • FIG. 15 is an exploded view of the device of FIG. 14 .
  • FIG. 1 a schematically represents an arteriography facility 1 .
  • the arteriography facility 1 is divided into two separate areas, an operating room 2 and a control room 3 .
  • the control room 3 may be close to the operating room 2 and separated from it by a simple radiopaque wall 4 , for example a movable and/or removable screen, or remote.
  • the equipment of the operating room 2 and control room 3 are functionally interconnected via a wired or wireless connection or network, etc.
  • the operating room 2 comprises an operating table 5 receiving a patient 6 .
  • the operating room 2 may also comprise a medical imager 7 , in particular an X-ray imager, comprising a source 8 and a detector 9 arranged one on each side of the patient, possibly movable relative to the patient.
  • a medical imager 7 in particular an X-ray imager, comprising a source 8 and a detector 9 arranged one on each side of the patient, possibly movable relative to the patient.
  • the arteriography facility 1 comprises a robot 10 located in the operating room 2 .
  • the arteriography facility 1 comprises a control station 11 located in the control room 3 .
  • the control station 11 controls the robot 10 remotely.
  • the arteriography facility 1 may also comprise, in the control room 3 , one or more remote controls 12 for the imager 7 , communicating with the imager 7 in order to control it remotely.
  • the arteriography facility 1 may also comprise a display 13 located in the control room 3 , communicating with the imager 7 , for displaying in the control room 3 in real time the images captured by the imager 7 .
  • the robot 10 can move an elongated flexible medical member 15 to be introduced into the body of a patient.
  • the elongated flexible medical member 15 may be, for example, a member to be inserted into a canal of a patient and to be moved in said canal, particularly an artery or vein of a patient, through a desilet which provides an opening for access to the patient.
  • the elongated flexible medical member may be a catheter.
  • the elongated flexible medical member may be a catheter guide.
  • a guide is generally of smaller transverse diameter than a catheter, which has a generally hollow portion near the patient or along its entire length so that the guide can move inside it, in particular inside the patient's body.
  • the guide may also comprise a curved end, as will be described in more detail below.
  • the robot 10 can be controlled from the control station 11 to drive the elongated flexible medical member relative to the patient in at least one degree of freedom, as will be described in detail below.
  • the robot may comprise a communication unit 17 for interfacing with the control station 11 . If necessary, the robot 10 may comprise a local control unit 18 , for controlling the robot from the operating room 2 when needed.
  • commands and feedback available in the control room 3 may also be available in the operating room 2 in order to carry out an operation locally, for example such as controls 19 for the imager and a screen 20 for displaying images captured by the imager 7 .
  • the hollow elongated flexible medical member 15 may be connected to a connector 56 for injecting a contrast medium to facilitate imaging inside the patient.
  • the arteriography facility may comprise a contrast medium injector 57 connected to the connector 56 , controllable by controls 58 arranged in the control room 3 . Controls 59 for the contrast medium injector may also be locally present in the operating room 2 .
  • the reference 15 will alternatively be used to designate the guide 15 ′′, the catheter 15 ′, or generally an elongated flexible medical member to be inserted into the body of a patient.
  • it may be a surgical catheter.
  • Such a surgical catheter may be of smaller diameter than an outer catheter, so as to be guided inside the latter, coaxially within the patient, and may be hollow so as to be guided on the guide within the patient.
  • the connector 56 comprises a main branch 75 which the juxtaposed catheter 15 ′ and guide 15 ′′ pass through.
  • the distal end of the main branch 75 is assembled to an outer catheter (not shown) extending within the patient and within which the catheter 15 ′ and guide 15 ′′ extend.
  • the contrast medium is injected into the outer catheter by means of a secondary branch 76 of the connector 56 .
  • FIG. 2 a shows the various degrees of freedom possible with the present system.
  • the guide 15 ′′ is shown with its front end 15 ′′ a slightly curved with respect to the main longitudinal axis of the guide, with an opening at the front end 15 ′ a of the catheter 15 ′.
  • the catheter 15 ′ can be subjected to two distinct movements:
  • These movements may be generated in one direction or the another.
  • the catheter 15 ′ may be subjected to a movement combining the two basic movements described above.
  • the catheter 15 ′ may be subjected to two movements combining the two basic movements described above, in different combinations.
  • the guide 15 ′′ can be subjected to two distinct movements:
  • These movements may be generated in one direction or in the other.
  • the guide 15 ′′ may be subjected to a movement combining the two basic movements described above.
  • the guide 15 ′′ may be subjected to two movements combining the two basic movements described above, in different combinations.
  • the catheter itself is provided with a curved end, either to enable navigation according to the same principle as a guide, or to facilitate its positioning in an anatomical area having a particular curvature.
  • FIG. 2 b depicts an artery 21 of a patient, comprising a main trunk 22 and two branches 23 a , 23 b leading to the main trunk.
  • FIG. 2 b illustrates the translational motion of an elongated flexible medical member 15 (here a guide 15 ′′) in translation between a retracted position represented by dotted lines and an advanced position represented by solid lines.
  • an elongated flexible medical member 15 here a guide 15 ′′
  • a rotation of the elongated flexible medical member 15 is represented, between a first position represented by dotted lines, where the elongated flexible medical member is ready for translational motion in the direction of branch 23 a , and a second position represented by solid lines, where the elongated flexible medical member is ready for translational motion in the direction of branch 23 b.
  • the assembly comprising the robot and the catheter and/or guide is called a “medical system”.
  • FIG. 3 shows a perspective view of a drive module 14 .
  • the drive module 14 is disposable, and is provided for assembly in a sterile manner onto a motorized system.
  • the drive module 14 comprises a housing 16 and a cover 24 .
  • the cover 24 is movable relative to the housing 16 between two respective configurations: open and closed.
  • the configuration shown is the open configuration. In this configuration, the catheter 15 ′ and the guide 15 ′′ are accessible. In the closed configuration, the catheter 15 ′ and the guide 15 ′′ are not accessible at the module 14 .
  • the drive module 14 drives the catheter 15 ′ and the guide 15 ′′.
  • this is illustrative, and the invention could be implemented in a system driving only the catheter 15 ′ or only the guide 15 ′′.
  • the drive module 14 comprises a first portion 25 a driving the guide 15 ′ and a second portion 25 b driving the catheter 15 ′′.
  • the first portion is substantially as described in QT FR2015/051566, incorporated by reference as if fully set forth herein for all purposes. It will be recalled that this system allows controlling the translation and/or rotation of the guide by a succession of repeated infinitesimal movements generated by a pair of actuating fingers. For various reasons (speed, security, reliability), two pairs of fingers can be used, for example as in the present embodiment, for example phase shifted.
  • the guide 15 ′′ lies in a channel 26 ′′.
  • the catheter 15 ′ lies in a channel 26 ′.
  • the channels 26 ′ and 26 ′′ meet at a common channel 27 which both the catheter 15 ′ and the guide 15 ′′ lie within.
  • Use is made for example of a “rapid exchange” catheter, meaning it has an opening providing access to the guide in its side wall. This access opening is located downstream of the common channel 27 . This allows the guide 15 ′′ to run parallel to and outside the catheter 15 ′ at least to the access opening, where the guide 15 ′′ passes inside the catheter to protrude from the distal end of the catheter into the patient's body as shown in FIG. 2 a.
  • the connector 56 is carried by a movable support 77 , which is shown in a retracted configuration facilitating placement of the catheter 15 ′ and guide 15 ′ in their respective channels 26 ′, 26 ′′. Following this placement, the support 77 is moved and folded so that the end 75 a of the main branch is facing the common channel 27 . This enables proper insertion of the catheter 15 ′ and guide 15 ′′ through the connector 56 .
  • the second portion 25 b will be described in more detail below, particularly in relation to FIG. 3 a.
  • first drive member 28 a defining a first axis 29 a and comprising a first peripheral driving surface 30 a around the first axis 29 a.
  • the first drive member 28 a is mounted so as to rotate relative to the housing 16 about the first axis 29 a (in this case vertical).
  • a second drive member 28 b defines a second axis 29 b , and comprises a second peripheral driving surface 30 b around the second axis 29 b.
  • the second drive member 28 b is mounted so as to rotate relative to the housing 16 about the second axis 29 b.
  • the second axis 29 b is parallel to the first axis 29 a . It is also spaced apart from the latter in the drive configuration, which is the configuration shown in FIG. 3 a , such that a portion of the first peripheral driving surface 30 a and a portion of the second peripheral driving surface 30 b are facing one another, spaced apart by a gap of approximately the thickness of the catheter 15 ′. Thus, the portion of the first peripheral driving surface 30 a and the portion of the second peripheral driving surface 30 b in question project into the channel 26 ′.
  • the housing 16 comprises a base 31 and a cover 32 which are assembled together, as can be seen in FIG. 3 a .
  • the base 31 and the cover 32 assembled together define an interior volume 41 within which the mechanism is arranged. Only a portion of the drive members 28 a , 28 b projects from the interior volume to drive the catheter. Most of the mechanism is arranged within the interior volume, reducing the risk of accidental access to the mechanism.
  • the second drive member 28 b is mounted so as to be movable relative to the first drive member 28 a in a degree of freedom other than rotational about the second axis 29 b , between:
  • the second drive member 28 b can be in an infinite number of intermediate configurations between the first and second configuration.
  • the free configuration is not the ultimate configuration of the system in the direction of movement from the drive configuration to the free configuration, and further movement of the second drive member 28 b along this direction and beyond this configuration is possible.
  • the drive configuration is not the ultimate configuration of the system in the direction of movement from the free configuration to the drive configuration, and further movement of the second drive member 28 b along this direction and beyond this configuration is possible.
  • the drive configuration is defined by a given clamping of a catheter 15 ′ of given diameter.
  • the first drive member 28 a is fixed to a shaft 33 a , having the drive axis 29 a as its axis and driven by a motor 34 . In this manner, actuation of the motor 34 generates rotation of the first drive member 28 a about axis 29 a .
  • the shaft 33 a thus establishes a connection between the motor 34 and the first drive member 28 a.
  • the mechanism also comprises a motion transmission system 35 transmitting the drive movement generated by the drive motor 34 to the second drive member 28 b . This involves rotating the second drive member 28 b about the second axis 29 b in the proper direction, which is in the direction opposite to the direction of rotation of the first drive member 28 a , so that the two drive members 28 a and 28 b drive the catheter 15 ′ in translation.
  • the motion transmission system 35 comprises a first gear 36 a that is coaxial with the first drive member 28 a .
  • the first gear 36 a forms an input member of the motion transmission system 35 .
  • the motion transmission system 35 comprises an intermediate gear 37 having an intermediate gear axis 38 parallel to and offset from the first axis 29 a .
  • the intermediate gear 37 meshes with the first gear 36 a in both the drive ( FIG. 4 a ) and free ( FIG. 4 b ) configurations.
  • the motion transmission system 35 comprises a transmission 39 between the intermediate gear 37 and the second drive member 28 b , transmitting the rotational motion of the intermediate gear 37 about the axis 38 of the intermediate gear to the rotational motion of the second drive member 28 b about the second axis 29 b.
  • the transmission 39 comprises a belt which is integral in rotation about axis 38 with the intermediate gear 37 and with the second drive member 28 b about axis 29 b.
  • the intermediate gear 37 is fixed to an intermediate shaft 40 whose axis is axis 38 .
  • the intermediate shaft 40 is integral with the belt.
  • the second drive member 28 b is integral with a shaft 33 b whose axis is the second axis 29 b .
  • Shaft 33 b is integral with the belt.
  • Shaft 33 b is supported by a bracket 42 , which is mounted so as to rotate freely on both shaft 40 and the second shaft 33 b.
  • the second drive member 28 b can move from its drive configuration, shown in FIG. 4 a , to its free configuration, shown in FIG. 4 b , by rotation about axis 38 .
  • the motion transmission system 35 remains operational. In other words, the motor 34 rotates the second drive member 28 b also in this configuration. This is not just true in the free configuration but in any intermediate configuration between the drive configuration and the free configuration, and even beyond. As the motion transmission system 35 is always operational, this ensures that when the second drive member 28 b moves from its free configuration to its drive configuration, the catheter is driven by the two drive members without problems.
  • the degree of freedom when transitioning from the free drive configuration to the drive configuration is rotational about an axis parallel to the axes of the drive members.
  • this is an exemplary embodiment: other implementations appear possible.
  • the mechanism comprises an actuation system 43 operable by a user.
  • the actuation system 43 when actuated, moves the second drive member 28 b from its drive configuration to its free configuration.
  • the actuation system 43 comprises a lever 44 connected to the bracket 42 , for example in an attachment region 50 .
  • the lever 44 comprises an actuating end 44 a projecting beyond the housing 16 through an elongated slot 45 ( FIG. 3 a ).
  • the movement of the actuating end 44 a of the lever 44 within the elongated slot 45 between a first and second position moves the second drive member 28 b from its drive configuration to its free configuration.
  • an elastic system 46 biases the lever 44 towards its first position. In particular, this urges the second drive member 28 b towards its drive configuration.
  • the elastic system 46 comprises for example a spring, of which the first end 46 a is fixed to the actuator 43 and the second end 46 b to the base 31 .
  • the position of the second end 46 b relative to the base may be adjustable by an adjustment mechanism 47 .
  • This mechanism makes it possible to modify the clamping force of the drive members 28 a , 28 b on a given catheter 15 ′, and/or to adapt to different catheter diameters.
  • the adjustment mechanism 47 comprises for example a nut 48 integral to the base 31 , into which a screw 49 is screwed.
  • the second end 46 b of the spring bears against a stop surface of the screw 49 . Screwing the screw 49 into the nut 48 changes the length of the space into which the spring can extend.
  • the housing is sealed by a seal 81 integral to the first drive member 28 a , and rubbing on the base 31 .
  • This is a dynamic seal.
  • the contact between seal 81 and base 31 surrounds an opening of the base 31 through which the housing 16 is coupled to the motorized stage 51 .
  • FIGS. 6 a and 6 b show an embodiment of a coupling between the motorized stage 51 and the housing 16 (the seal 81 is not shown in this figure).
  • the shaft 33 a driven by the motor comprises a coupling member 68 ′ which has a plurality of identical pins 65 (in this case four).
  • the pins 65 are distributed, for example uniformly distributed, in a circle passing through the axis 29 a .
  • the drive member 28 a is integral with a coupling member 69 ′ having a plurality of recesses 66 distributed along the circle passing through axis 29 a .
  • the recesses 66 are identical and are of complementary shape to the pins 65 .
  • the recesses 66 are tangent to each other to form a ring, so that regardless of the relative position of the pins 65 and recesses 66 around the axis 29 a , the pins 65 are still all at least partially in front of a respective recess 66 .
  • the pins 65 may have a domed end 67 to guide the act of coupling the recess on the shaft, if necessary with slight rotation of the drive member 28 a about axis 29 a by a distance at most equal to half a tooth.
  • FIG. 11 a shows a variant embodiment of the actuation system described above in relation to FIGS. 4 a and 4 b . More specifically, FIG. 11 a represents the module in the drive configuration, while FIG. 11 b represents the free configuration. As one can see in these figures:
  • FIGS. 12 a and 12 b The above description also applies to the alternative embodiment of FIGS. 12 a and 12 b and to the one of FIGS. 13 a and 13 b.
  • a rocker 71 is used to transmit the movement of the actuator 43 to the drive member 29 a .
  • the rocker 71 is mounted so as to pivot about an axis 72 , for example parallel to axis 38 .
  • the rocker 71 has a first arm 73 in contact with the actuator 43 , and a second arm 14 in contact with the support 70 .
  • the actuator 43 causes rotation of the rocker 71 , the rocker's second arm 74 then pressing on the support 70 which causes rotation of the support 70 about its axis 38 ( FIG. 11 b ).
  • This movement compresses a spring 46 .
  • stopping the user actuation of the actuator 43 automatically returns the system to the drive configuration due to the release of the spring 46 .
  • a system for locking the free configuration may be provided.
  • a “push-pull” system may be implemented, similar to the insertion of cards into card readers.
  • user actuation of the actuator 43 unlocks the locking system, so that the system is returned to the drive configuration by the release of the spring 46 .
  • FIG. 12 b shows the system at rest (without electrical current applied).
  • the actuator 43 rotates the support 70 about axis 38 relative to the rest position, thereby tensioning the spring 46 .
  • the spring 46 pulls on the support 70 as shown in FIG. 12 b .
  • the catheter can be disengaged from the mechanism.
  • Fluidtightness at the controls is provided via an electrical connector.
  • either continuously operating release controls are provided, which in case of shutdown of the controls, automatically return the system to the drive configuration, or alternatively it may be arranged to lock the system in the free configuration.
  • actuator 43 may act directly on the support 70 , rather than via a rocker.
  • a spring 46 is not necessarily used.
  • the support 70 is connected directly to the actuator so that it follows the movements of the actuator.
  • FIG. 7 illustrates a second embodiment, below.
  • the second embodiment differs from the first embodiment in certain features.
  • a first difference is that the consumable part 79 which is disposable comprises the housing 16 (the cover 32 and the base 31 ) accommodating the drive members 28 a and 28 b , and the actuator 44 .
  • the base 31 comprises a first opening 80 a from which extends the first shaft 33 a and a second opening 80 b from which extends the second shaft 33 b .
  • the second opening 80 b is large, to allow the second shaft 33 b to travel relative to the base 31 (corresponding to the second drive member 29 b transitioning between two configurations).
  • This embodiment requires a sterile connection between the first drive member 28 a and the base 31 , to reduce the risk of catheter contamination by the mechanism and/or jamming of the mechanism by substances conveyed by the catheter.
  • the drive member 28 a is integral with a deformable skirt 81 , rubbing on the base 31 and defining a closed perimeter on the base 31 .
  • FIG. 8 illustrates a vertical section view of the driving of the drive member 28 a by the motor 34 .
  • the drive module 14 comprises the housing 16 and a motorized stage 51 .
  • FIG. 8 thus shows a medical robot comprising a permanent portion 82 and a removable portion, the permanent portion 82 comprising a motor 34 and a first coupling 68 , the consumable part 79 , which is removable, being provided with a second coupling 69 complementary to the first coupling 68 .
  • the medical robot shown assembled in FIG. 8 may be provided in a kit, with the permanent portion and the removable portion to be assembled thereto.
  • the removable portion implemented as disposable, may be available in large quantities.
  • the shaft 33 a is engaged with the first drive member 28 a by a coupling that will be presented in detail below.
  • FIG. 8 also illustrated in FIG. 8 is an embodiment where the module rotates the catheter 15 ′ about its axis of elongation. This rotation is achieved by a translational motion of the drive member 28 a along its axis 29 a .
  • the catheter 15 ′ is clamped between the drive members 28 a , 28 b , displacement of one of the drive members relative to the other along this axis causes the catheter 15 ′ to roll, thus rotating it about its axis of elongation.
  • the rotation is limited to less than one turn relative to a starting position. It may be arranged that the neutral starting position is an intermediate position, thus allowing rotation of the catheter in one direction and in another, depending on the direction of translation of the drive member 28 a.
  • the shaft 33 a is implemented as two parts having complementary shapes which allow integral rotation of the two parts about axis 29 a .
  • the first portion is an inner core 78 integral to drive member 28 a
  • the second part is an outer casing 53 engaging with the motor 34 .
  • the inner core 78 is free to slide relative to the outer casing 53 along axis 29 a .
  • An actuator 54 controls the movement of the inner core 78 along axis 29 a .
  • An elastic means 83 such as a return spring returns the first drive member 28 a to a rest position along axis 29 a.
  • Controlling the actuator 54 moves drive member 28 a along axis 29 a via the inner core 78 , the shaft 33 a remaining in any position engaging with the motor 34 .
  • Actuation of the motor 34 allows rotating drive member 28 a as described above.
  • the skirt 81 is sufficiently long and deformable to ensure sterility at the interface between the drive member 28 a and the base 31 along the entire path of drive member 28 a along axis 29 a.
  • the motion transmission system 35 is formed inside the housing 84 of the motorized stage 51 .
  • gear 36 a is integral in translation with the shaft 33 a .
  • the intermediate gear 37 is of sufficient thickness to always mesh with gear 36 a , regardless of its position along axis 29 a .
  • the shaft 33 a is integral in rotation but free in translation relative to the gear 36 a .
  • the first variant can be implemented in the embodiment of FIGS. 4 a and 4 b
  • the second variant can be implemented in the embodiment of FIG. 8 .
  • FIGS. 9 a and 9 b show details of an embodiment concerning the sealing of the robot. Recall that this is a dynamic seal, with shaft 33 a rotating to drive the catheter in translation.
  • Shaft 33 a and in particular the core 78 , is integral with a seal 60 .
  • a sufficiently deformable seal 60 is chosen so that in the uppermost position, shown in FIG. 9 a , it is rubbing against the housing 84 , and in the lowermost position, shown in FIG. 9 b , it is deformed so as to press against the housing 84 .
  • This embodiment is made possible by the small rotational travel of the catheter 15 (range of rotation less than +/ ⁇ 180°). Indeed, in the case of a rapid exchange catheter, it is desirable to avoid large rotational travel which can cause the guide to coil outside the catheter.
  • FIGS. 10 a and 10 b are perspective views of coupling the housing 16 on the motorized stage 51 .
  • the housing 16 is not represented in this figure.
  • shaft 33 a has a coupling member 68 provided with a centering cone 61 and one (or more) meshing teeth 62 .
  • the drive member 28 a comprises a coupling member 69 that is complementary to coupling member 68 .
  • coupling member 69 comprises a cavity 63 complementary to the centering cone 61 , and a plurality of drive teeth 64 , for example distributed along the entire peripheral rim.
  • the centering cone 61 engages with the cavity 63 to guide the coupling, until tooth 62 engages with one of the teeth 64 of drive member 28 a , if necessary with a slight rotation of drive member 28 a by the cam about axis 29 a by a distance at most equal to half a tooth.
  • the actuation end 44 a is not necessarily arranged at the housing 16 , but may for example be in the upper surface.
  • the cover 32 comprises a window 85 in its upper surface, through which protrudes the actuating end 44 a of the actuator 44 which is connected to the second drive member 28 b .
  • the actuator 44 comprises for example a contoured cover partially surrounding the second drive member 28 b and connected thereto, so that they can both move towards the free configuration (shaft 33 b is then moved within the opening 80 b ), while allowing rotation of the second drive member 28 b about its axis.
  • a coupling may comprise a coupling member 68 on the robot side, as shown in FIG. 14 , complementary to a coupling member on the consumable side (here again, not shown).
  • the consumable-side coupling member is for example a coupling member 69 as illustrated above with reference to FIG. 10 b .
  • the centering cone 61 and the tooth 62 are movable relative to each other. In particular, they are mounted in translation relative to one another, in particular along the direction of assembly of the consumable portion onto the robot.
  • the centering cone 61 include an outer casing 86 comprising a tapered end providing the centering function of the centering cone 61 .
  • the outer casing 86 also has an inner housing 87 accessible through a side opening 88 and a lower opening 89 .
  • the lower end 90 of the outer casing 86 also defines a bearing 91 for a transverse axis which will be described further below.
  • the centering cone 61 also comprises an inner core 92 which can be placed in the inner housing 87 from below through the lower opening 89 .
  • the inner core 92 has an elongated slot 93 along the direction of translation. This slot is open at the upper end of the inner core 92 .
  • the inner core 92 also comprises a bearing 96 .
  • the tooth 62 has a form 94 complementary to the slot 93 . It has for example a recess on the two opposite main faces of the tooth.
  • a biasing member 95 is mounted between the tooth 62 and the outer casing 86 . This biases the tooth 62 upwardly along the direction of translation relative to the casing 86 .
  • two springs are used as the biasing member. These two springs are then arranged one on each side of the form 94 .
  • the biasing member 95 is for example fixed to the tooth 62 .
  • the tooth 62 has a bore in its lower face, for receiving an end portion of the spring.
  • the system just described is assembled as follows.
  • the biasing member 95 is compressed, and the tooth 62 carrying them is inserted through the inner housing 87 via the side opening 88 until the form 94 is within the inner housing 87 .
  • the wings of the tooth then project from each side of the outer casing 86 .
  • the biasing member 95 is released and presses against the outer casing 86 (on an inner face of the inner housing 87 ) and biases the tooth 62 upwards (position of FIG. 14 ).
  • the inner core 92 is mounted through the lower opening 89 , the slot 93 engaging with the form 94 .
  • the bearings 91 and 96 are thus aligned.
  • the assembly is mounted on the base of the shaft 33 a , the bearings 91 and 96 coming into alignment with a housing 97 thereof.
  • a shaft 98 is inserted through the housing 97 and the bearings 91 and 96 to secure the coupling member 68 on the base of the shaft 33 a.
  • the coupling member 68 is integral in rotational with the base of the shaft 33 a , by means of shaft 98 .
  • the tooth 62 does not face a complementary recess of the complementary coupling member, but a protruding surface thereof, said protruding surface moves the tooth 62 downwards relative to the outer casing 86 by compressing the biasing member 95 .
  • the biasing member 95 pushes the tooth 62 (position of FIG. 14 ) engaged therewith.
  • This embodiment allows using a highly crenellated geometry in the coupling members, which allows transmitting significant torque during use.
  • the invention relates to a robotizable module for driving an elongated flexible medical member, comprising:
  • first drive member 28 a is also mounted so as to be movable relative to the base 31 in a translational motion along its axis 29 a in a translational path
  • first drive member 28 a comprises a deformable skirt 81 , rubbing on the base 31 during rotation of the first drive member relative to the base, and defining a closed perimeter on the base 31 along the entire translational path.

Abstract

Disclosed is a module including: a base; a first drive member; and a second drive member. The second drive member is also mounted so as to be movable relative to the first drive member, in a degree of freedom other than rotational about the second axis, between a first and a second configuration. A motion transmission system transmits the driving movement generated by the drive motor to the second drive member in order to rotate the second drive member about the second axis between the first and second configurations.

Description

  • The present invention relates to robotizable modules for driving an elongated flexible medical member.
  • Manual insertion of a catheter or guide in a patient is a relatively conventional surgical procedure. However, as this procedure is monitored by X-ray, the surgeon responsible for the procedure is exposed to substantial radiation if performing such an operation on many patients.
  • To reduce the risks for the surgeon, it is desirable to robotize such insertion. Such robotization is complex, because it is difficult to grip the catheter. The catheter is slippery, and must remain sterile. The reliability of these robotic systems despite these difficulties is a determining factor in their acceptance by the medical community.
  • Recently, a drive system was proposed in U.S. Pat. No. 7,927,310 which manages both the translation and rotation of the catheter. The catheter is held on a plate which rotates relative to a base in order to drive the rotation. The plate itself comprises a translational drive mechanism. In addition, use is made of remote motors remaining on the frame, and systems for transferring movement to the catheter. Indeed, not having embedded motors is preferred for reasons of power routing, footprint, and sterility.
  • Although this configuration is fully satisfactory, there is still a desire to further facilitate its use by medical staff. Deciding factors are fast startup and shutdown. Rapid, simple, and instinctive startup allows staff to avoid improper placement of the catheter in the robot and the subsequent issues. Fast shutdown may be necessary for manual intervention by medical staff during the procedure if such is needed.
  • More particularly, the invention relates to a robotizable module for driving an elongated flexible medical member. The module comprises a base.
  • The module comprises a first drive member defining a first axis and comprising a first peripheral driving surface around the first axis, the first drive member being mounted so as to rotate relative to the base about the first axis, and comprising a member connecting to a drive motor adapted to rotate the first drive member about the first axis.
  • The module comprises a second drive member defining a second axis parallel to the first axis, and comprising a second peripheral driving surface around the second axis, the second drive member being mounted so as to rotate relative to the base about the second axis.
  • The second drive member is also mounted so as to be movable relative to the first drive member, in a degree of freedom other than rotational about the second axis, between:
      • a first configuration wherein the first and second peripheral driving surfaces face each other with a first spacing between them, and
      • a second configuration wherein the first and second peripheral driving surfaces face each other with a second spacing between them that is greater than the first spacing.
  • The module comprises an actuation system operable by a user, adapted to move the second drive member from at least one among the first and second configurations to the other among the first and second configurations.
  • US 2012/179,167 describes a robotizable module having the above features.
  • According to the invention, the module comprises a motion transmission system for transmitting the driving movement generated by the drive motor to the second drive member in order to rotate the second drive member about the second axis at least in any configuration between the first and second configurations.
  • With these features, one can very simply either engage the catheter with the robotizable module or disengage it, while decreasing the risk of rendering the robot inoperative due to these engagement/disengagement maneuvers.
  • In preferred embodiments of the invention, one or more of the following arrangements may possibly be used:
      • the motion transmission system is operating in the free configuration;
      • the motion transmission system comprises:
        • a first gear that is coaxial with the first drive member and forms an input member of the motion transmission system,
        • an intermediate gear having an intermediate gear axis parallel to and offset from the first axis, the intermediate gear meshing with the first gear at least in any configuration between the first and second configurations,
        • a transmission between the intermediate gear and the second drive member, transmitting the rotational motion of the intermediate gear about the intermediate gear axis into said rotational motion of the second drive member about the second axis.
      • the module comprises an elastic system biasing the second drive member from its second configuration towards its first configuration,
  • and the actuation system is operable to move the second drive member from the first configuration and to the second configuration while compressing said elastic system;
      • the elastic system biases the actuation system which is integral to the second drive member;
      • the module comprises a locking system adapted to alternatively lock the second drive member in its free configuration or to release it, the actuation system being adapted to control the locking system;
      • the actuation system is electrically operable by the user;
      • at least one drive member is also mounted so as to be movable relative to the base in a translational motion along its axis;
      • said at least one drive member is mounted so as to be movable relative to the base in a translational motion along its axis in a translational path,
  • and the first drive member comprises a deformable skirt, rubbing on the base during rotation of the first drive member relative to the base, and defining a closed perimeter on the base along the entire translational path;
      • the robotizable module further comprises a cover secured to the base and together with the base defining a housing defining an interior space in which are arranged at least a portion of the first drive member, at least a portion of the second drive member, and at least a portion of the actuation system, and wherein an actuation portion of the actuation system, a portion of the first drive member, and a portion of the second drive member extend out of the housing.
  • According to another aspect, the invention relates to a medical robot kit comprising a permanent portion and a removable portion, the permanent portion comprising a motor and a first coupling, the removable portion comprising such a robotizable module provided with a second coupling complementary to the first coupling,
  • the first and second couplings comprising at least one cam surface adapted to rotate the first and second couplings relative to each other with respect to a direction of assembly, during assembly of the removable portion to the permanent portion along the direction of assembly.
  • In a preferred embodiment of the invention, the following arrangement may possibly be used: the first coupling comprises a plurality of protrusions of concave shape, and the second coupling comprises a plurality of complementary recesses of complementary shape.
  • In a preferred embodiment of the invention, the first coupling comprises a centering cone, a protrusion that is movable relative to the centering cone in a sliding direction, and a biasing member biasing the protrusion relative to the centering cone during assembly of the removable portion to the permanent portion.
  • According to another aspect, the invention relates to a medical system comprising a hollow elongated flexible medical member extending along an axis of elongation, and such a medical robot or such a robotizable module, the hollow elongated flexible medical member being held between the first and second peripheral driving surfaces in the first configuration, the first drive member being rotatable relative to the base about the first axis in order to generate translational motion of the elongated flexible medical member along its axis of elongation.
  • In a preferred embodiment of the invention, it is possible to make use of the following arrangement: the first drive member is driven in translation relative to the base along the first axis in order to generate rotation of the elongated flexible medical member about its axis of elongation.
  • Other features and advantages of the invention will be apparent from the following description of one of its embodiments, given by way of non-limiting example and with reference to the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the drawings:
  • FIG. 1a is a schematic side view of a robotic arteriography facility.
  • FIG. 1b is a top view of part of FIG. 1 a,
  • FIGS. 2a-2c are diagrams illustrating the modes of movement of the members to be driven,
  • FIG. 3 is a perspective view of an exemplary embodiment of a robotizable module,
  • FIG. 3a is a perspective detailed view of the embodiment of FIG. 3,
  • FIG. 4a is a top detailed view of FIG. 3 in a first configuration, the cover having been removed,
  • FIG. 4b is a view similar to FIG. 4a , in another configuration,
  • FIG. 5 is a side view of the mechanism of FIG. 4a , illustrated without the housing,
  • FIGS. 6a and 6b are two exploded views of the same coupling from different perspectives,
  • FIG. 7 is a perspective exploded view of a second embodiment,
  • FIG. 8 is a vertical sectional view of the coupling of the module to the motor,
  • FIG. 9a is a sectional detailed view of FIG. 8, in a first configuration,
  • FIG. 9b is a view corresponding to FIG. 9a , in a second configuration,
  • FIGS. 10a and 10b are exploded perspective views corresponding to FIGS. 6a, 6b , for a second example of a coupling,
  • FIGS. 11a and 11b are schematic views of the drive module according to one embodiment in two different configurations,
  • FIGS. 12a, 12b and 13a, 13b are views corresponding to FIGS. 11a, 11b , for other embodiments,
  • FIG. 14 is a perspective view of the portion mounted on the robot of a coupling according to a third example, and
  • FIG. 15 is an exploded view of the device of FIG. 14.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In the different figures, the same references designate identical or similar elements.
  • FIG. 1a schematically represents an arteriography facility 1. The arteriography facility 1 is divided into two separate areas, an operating room 2 and a control room 3. The control room 3 may be close to the operating room 2 and separated from it by a simple radiopaque wall 4, for example a movable and/or removable screen, or remote. The equipment of the operating room 2 and control room 3 are functionally interconnected via a wired or wireless connection or network, etc.
  • The operating room 2 comprises an operating table 5 receiving a patient 6. The operating room 2 may also comprise a medical imager 7, in particular an X-ray imager, comprising a source 8 and a detector 9 arranged one on each side of the patient, possibly movable relative to the patient.
  • The arteriography facility 1 comprises a robot 10 located in the operating room 2.
  • The arteriography facility 1 comprises a control station 11 located in the control room 3. The control station 11 controls the robot 10 remotely. The arteriography facility 1 may also comprise, in the control room 3, one or more remote controls 12 for the imager 7, communicating with the imager 7 in order to control it remotely. The arteriography facility 1 may also comprise a display 13 located in the control room 3, communicating with the imager 7, for displaying in the control room 3 in real time the images captured by the imager 7.
  • The robot 10 can move an elongated flexible medical member 15 to be introduced into the body of a patient. The elongated flexible medical member 15 may be, for example, a member to be inserted into a canal of a patient and to be moved in said canal, particularly an artery or vein of a patient, through a desilet which provides an opening for access to the patient. The elongated flexible medical member may be a catheter. Alternatively, the elongated flexible medical member may be a catheter guide. A guide is generally of smaller transverse diameter than a catheter, which has a generally hollow portion near the patient or along its entire length so that the guide can move inside it, in particular inside the patient's body. The guide may also comprise a curved end, as will be described in more detail below.
  • The robot 10 can be controlled from the control station 11 to drive the elongated flexible medical member relative to the patient in at least one degree of freedom, as will be described in detail below. The robot may comprise a communication unit 17 for interfacing with the control station 11. If necessary, the robot 10 may comprise a local control unit 18, for controlling the robot from the operating room 2 when needed.
  • One will also note that all commands and feedback available in the control room 3 may also be available in the operating room 2 in order to carry out an operation locally, for example such as controls 19 for the imager and a screen 20 for displaying images captured by the imager 7.
  • The hollow elongated flexible medical member 15 may be connected to a connector 56 for injecting a contrast medium to facilitate imaging inside the patient. The arteriography facility may comprise a contrast medium injector 57 connected to the connector 56, controllable by controls 58 arranged in the control room 3. Controls 59 for the contrast medium injector may also be locally present in the operating room 2.
  • In the following, the reference 15 will alternatively be used to designate the guide 15″, the catheter 15′, or generally an elongated flexible medical member to be inserted into the body of a patient. For example, it may be a surgical catheter. Such a surgical catheter may be of smaller diameter than an outer catheter, so as to be guided inside the latter, coaxially within the patient, and may be hollow so as to be guided on the guide within the patient.
  • The connector 56 comprises a main branch 75 which the juxtaposed catheter 15′ and guide 15″ pass through. The distal end of the main branch 75 is assembled to an outer catheter (not shown) extending within the patient and within which the catheter 15′ and guide 15″ extend. The contrast medium is injected into the outer catheter by means of a secondary branch 76 of the connector 56.
  • FIG. 2a shows the various degrees of freedom possible with the present system. The guide 15″ is shown with its front end 15a slightly curved with respect to the main longitudinal axis of the guide, with an opening at the front end 15a of the catheter 15′. The catheter 15′ can be subjected to two distinct movements:
      • translation along its longitudinal axis,
      • rotation about its longitudinal axis.
  • These movements may be generated in one direction or the another.
  • Where appropriate, the catheter 15′ may be subjected to a movement combining the two basic movements described above.
  • Where appropriate, the catheter 15′ may be subjected to two movements combining the two basic movements described above, in different combinations.
  • The guide 15″ can be subjected to two distinct movements:
      • translation along its longitudinal axis,
      • rotation about its longitudinal axis.
  • These movements may be generated in one direction or in the other.
  • Where appropriate, the guide 15″ may be subjected to a movement combining the two basic movements described above.
  • Where appropriate, the guide 15″ may be subjected to two movements combining the two basic movements described above, in different combinations.
  • In some cases, the catheter itself is provided with a curved end, either to enable navigation according to the same principle as a guide, or to facilitate its positioning in an anatomical area having a particular curvature.
  • FIG. 2b depicts an artery 21 of a patient, comprising a main trunk 22 and two branches 23 a, 23 b leading to the main trunk. FIG. 2b illustrates the translational motion of an elongated flexible medical member 15 (here a guide 15″) in translation between a retracted position represented by dotted lines and an advanced position represented by solid lines. In FIG. 2c , in the same artery, a rotation of the elongated flexible medical member 15 is represented, between a first position represented by dotted lines, where the elongated flexible medical member is ready for translational motion in the direction of branch 23 a, and a second position represented by solid lines, where the elongated flexible medical member is ready for translational motion in the direction of branch 23 b.
  • The assembly comprising the robot and the catheter and/or guide is called a “medical system”.
  • FIG. 3 shows a perspective view of a drive module 14. In this exemplary embodiment, the drive module 14 is disposable, and is provided for assembly in a sterile manner onto a motorized system. The drive module 14 comprises a housing 16 and a cover 24. The cover 24 is movable relative to the housing 16 between two respective configurations: open and closed. The configuration shown is the open configuration. In this configuration, the catheter 15′ and the guide 15″ are accessible. In the closed configuration, the catheter 15′ and the guide 15″ are not accessible at the module 14.
  • In the example shown, the drive module 14 drives the catheter 15′ and the guide 15″. However, this is illustrative, and the invention could be implemented in a system driving only the catheter 15′ or only the guide 15″.
  • In the present example, the drive module 14 comprises a first portion 25 a driving the guide 15′ and a second portion 25 b driving the catheter 15″. The first portion is substantially as described in QT FR2015/051566, incorporated by reference as if fully set forth herein for all purposes. It will be recalled that this system allows controlling the translation and/or rotation of the guide by a succession of repeated infinitesimal movements generated by a pair of actuating fingers. For various reasons (speed, security, reliability), two pairs of fingers can be used, for example as in the present embodiment, for example phase shifted.
  • The guide 15″ lies in a channel 26″. The catheter 15′ lies in a channel 26′. The channels 26′ and 26″ meet at a common channel 27 which both the catheter 15′ and the guide 15″ lie within. Use is made for example of a “rapid exchange” catheter, meaning it has an opening providing access to the guide in its side wall. This access opening is located downstream of the common channel 27. This allows the guide 15″ to run parallel to and outside the catheter 15′ at least to the access opening, where the guide 15″ passes inside the catheter to protrude from the distal end of the catheter into the patient's body as shown in FIG. 2 a.
  • One will note that, in the illustration, the connector 56 is carried by a movable support 77, which is shown in a retracted configuration facilitating placement of the catheter 15′ and guide 15′ in their respective channels 26′, 26″. Following this placement, the support 77 is moved and folded so that the end 75 a of the main branch is facing the common channel 27. This enables proper insertion of the catheter 15′ and guide 15″ through the connector 56.
  • The second portion 25 b will be described in more detail below, particularly in relation to FIG. 3 a.
  • As can be seen in particular in FIG. 3a , there is a first drive member 28 a defining a first axis 29 a and comprising a first peripheral driving surface 30 a around the first axis 29 a.
  • The first drive member 28 a is mounted so as to rotate relative to the housing 16 about the first axis 29 a (in this case vertical).
  • A second drive member 28 b defines a second axis 29 b, and comprises a second peripheral driving surface 30 b around the second axis 29 b.
  • The second drive member 28 b is mounted so as to rotate relative to the housing 16 about the second axis 29 b.
  • The second axis 29 b is parallel to the first axis 29 a. It is also spaced apart from the latter in the drive configuration, which is the configuration shown in FIG. 3a , such that a portion of the first peripheral driving surface 30 a and a portion of the second peripheral driving surface 30 b are facing one another, spaced apart by a gap of approximately the thickness of the catheter 15′. Thus, the portion of the first peripheral driving surface 30 a and the portion of the second peripheral driving surface 30 b in question project into the channel 26′.
  • The housing 16 comprises a base 31 and a cover 32 which are assembled together, as can be seen in FIG. 3a . The base 31 and the cover 32 assembled together define an interior volume 41 within which the mechanism is arranged. Only a portion of the drive members 28 a, 28 b projects from the interior volume to drive the catheter. Most of the mechanism is arranged within the interior volume, reducing the risk of accidental access to the mechanism.
  • The second drive member 28 b is mounted so as to be movable relative to the first drive member 28 a in a degree of freedom other than rotational about the second axis 29 b, between:
      • a first configuration called the drive configuration (FIG. 4a ), where the first and second peripheral driving surfaces 30 a, 30 b face each other with a first spacing between them, and
      • a second configuration called the free configuration (FIG. 4b ), where the first and second peripheral driving surfaces 30 a, 30 b face each other with a second spacing between them that is greater than the first spacing.
  • During this motion, the second drive member 28 b can be in an infinite number of intermediate configurations between the first and second configuration. In addition, it is possible that the free configuration is not the ultimate configuration of the system in the direction of movement from the drive configuration to the free configuration, and further movement of the second drive member 28 b along this direction and beyond this configuration is possible. Similarly, it is possible that the drive configuration is not the ultimate configuration of the system in the direction of movement from the free configuration to the drive configuration, and further movement of the second drive member 28 b along this direction and beyond this configuration is possible. The drive configuration is defined by a given clamping of a catheter 15′ of given diameter.
  • The description below shows an example mechanism enabling the transition from one to the other of these configurations.
  • The first drive member 28 a is fixed to a shaft 33 a, having the drive axis 29 a as its axis and driven by a motor 34. In this manner, actuation of the motor 34 generates rotation of the first drive member 28 a about axis 29 a. The shaft 33 a thus establishes a connection between the motor 34 and the first drive member 28 a.
  • The mechanism also comprises a motion transmission system 35 transmitting the drive movement generated by the drive motor 34 to the second drive member 28 b. This involves rotating the second drive member 28 b about the second axis 29 b in the proper direction, which is in the direction opposite to the direction of rotation of the first drive member 28 a, so that the two drive members 28 a and 28 b drive the catheter 15′ in translation.
  • In the example presented, the motion transmission system 35 comprises a first gear 36 a that is coaxial with the first drive member 28 a. The first gear 36 a forms an input member of the motion transmission system 35.
  • The motion transmission system 35 comprises an intermediate gear 37 having an intermediate gear axis 38 parallel to and offset from the first axis 29 a. The intermediate gear 37 meshes with the first gear 36 a in both the drive (FIG. 4a ) and free (FIG. 4b ) configurations.
  • The motion transmission system 35 comprises a transmission 39 between the intermediate gear 37 and the second drive member 28 b, transmitting the rotational motion of the intermediate gear 37 about the axis 38 of the intermediate gear to the rotational motion of the second drive member 28 b about the second axis 29 b.
  • In the present example, the transmission 39 comprises a belt which is integral in rotation about axis 38 with the intermediate gear 37 and with the second drive member 28 b about axis 29 b.
  • Thus, the intermediate gear 37 is fixed to an intermediate shaft 40 whose axis is axis 38. The intermediate shaft 40 is integral with the belt.
  • The second drive member 28 b is integral with a shaft 33 b whose axis is the second axis 29 b. Shaft 33 b is integral with the belt.
  • Shaft 33 b is supported by a bracket 42, which is mounted so as to rotate freely on both shaft 40 and the second shaft 33 b.
  • Thus, the second drive member 28 b can move from its drive configuration, shown in FIG. 4a , to its free configuration, shown in FIG. 4b , by rotation about axis 38.
  • Note that in the free configuration of FIG. 4b , the motion transmission system 35 remains operational. In other words, the motor 34 rotates the second drive member 28 b also in this configuration. This is not just true in the free configuration but in any intermediate configuration between the drive configuration and the free configuration, and even beyond. As the motion transmission system 35 is always operational, this ensures that when the second drive member 28 b moves from its free configuration to its drive configuration, the catheter is driven by the two drive members without problems.
  • With these features, one can also ensure that catheters of different diameters are driven with the same mechanism, and/or that different clamping forces are applied to a given catheter (by bringing the two drive members 28 a, 28 b closer to one another).
  • Although the example above involves a particular motion transmission system 35, this is an illustrative example which is particularly compact; other variants are possible which achieve the same kinematics.
  • The degree of freedom when transitioning from the free drive configuration to the drive configuration is rotational about an axis parallel to the axes of the drive members. However, this is an exemplary embodiment: other implementations appear possible.
  • The mechanism comprises an actuation system 43 operable by a user. The actuation system 43, when actuated, moves the second drive member 28 b from its drive configuration to its free configuration.
  • The actuation system 43 comprises a lever 44 connected to the bracket 42, for example in an attachment region 50. The lever 44 comprises an actuating end 44 a projecting beyond the housing 16 through an elongated slot 45 (FIG. 3a ). The movement of the actuating end 44 a of the lever 44 within the elongated slot 45 between a first and second position moves the second drive member 28 b from its drive configuration to its free configuration.
  • If appropriate, an elastic system 46, such as a spring, biases the lever 44 towards its first position. In particular, this urges the second drive member 28 b towards its drive configuration.
  • Thus, when the second drive member 28 b moves from its drive position to its free position due to user activation of the actuator 43, this compresses the elastic system 46.
  • The elastic system 46 comprises for example a spring, of which the first end 46 a is fixed to the actuator 43 and the second end 46 b to the base 31.
  • Furthermore, the position of the second end 46 b relative to the base may be adjustable by an adjustment mechanism 47. This mechanism makes it possible to modify the clamping force of the drive members 28 a, 28 b on a given catheter 15′, and/or to adapt to different catheter diameters.
  • The adjustment mechanism 47 comprises for example a nut 48 integral to the base 31, into which a screw 49 is screwed. The second end 46 b of the spring bears against a stop surface of the screw 49. Screwing the screw 49 into the nut 48 changes the length of the space into which the spring can extend.
  • The housing is sealed by a seal 81 integral to the first drive member 28 a, and rubbing on the base 31. This is a dynamic seal. The contact between seal 81 and base 31 surrounds an opening of the base 31 through which the housing 16 is coupled to the motorized stage 51.
  • FIGS. 6a and 6b show an embodiment of a coupling between the motorized stage 51 and the housing 16 (the seal 81 is not shown in this figure). In this example, the shaft 33 a driven by the motor comprises a coupling member 68′ which has a plurality of identical pins 65 (in this case four). The pins 65 are distributed, for example uniformly distributed, in a circle passing through the axis 29 a. The drive member 28 a is integral with a coupling member 69′ having a plurality of recesses 66 distributed along the circle passing through axis 29 a. The recesses 66 are identical and are of complementary shape to the pins 65. The recesses 66 are tangent to each other to form a ring, so that regardless of the relative position of the pins 65 and recesses 66 around the axis 29 a, the pins 65 are still all at least partially in front of a respective recess 66.
  • The pins 65 may have a domed end 67 to guide the act of coupling the recess on the shaft, if necessary with slight rotation of the drive member 28 a about axis 29 a by a distance at most equal to half a tooth.
  • FIG. 11a shows a variant embodiment of the actuation system described above in relation to FIGS. 4a and 4b . More specifically, FIG. 11a represents the module in the drive configuration, while FIG. 11b represents the free configuration. As one can see in these figures:
      • drive member 28 a is fixed in the housing during its transition between the drive and free configurations,
      • drive member 29 a is mounted on a support 70 (like the bracket 50 for example), which is itself mounted so as to rotate within the housing about an intermediate axis 38 during its transition between the drive and free configurations.
  • The above description also applies to the alternative embodiment of FIGS. 12a and 12b and to the one of FIGS. 13a and 13 b.
  • In FIG. 11a , a rocker 71 is used to transmit the movement of the actuator 43 to the drive member 29 a. The rocker 71 is mounted so as to pivot about an axis 72, for example parallel to axis 38. The rocker 71 has a first arm 73 in contact with the actuator 43, and a second arm 14 in contact with the support 70.
  • The actuator 43 causes rotation of the rocker 71, the rocker's second arm 74 then pressing on the support 70 which causes rotation of the support 70 about its axis 38 (FIG. 11b ).
  • This movement compresses a spring 46.
  • In a first variant, stopping the user actuation of the actuator 43 automatically returns the system to the drive configuration due to the release of the spring 46.
  • Alternatively, a system for locking the free configuration (FIG. 11b ) may be provided. For example, a “push-pull” system may be implemented, similar to the insertion of cards into card readers. In the free configuration, user actuation of the actuator 43 unlocks the locking system, so that the system is returned to the drive configuration by the release of the spring 46.
  • In the above examples, mechanical actuation of the actuator via contact by a user may be provided. Such an embodiment ensures user actuation even during power failure.
  • Alternatively, as schematically represented in FIG. 12a , use may be made of an electrically controlled actuator. In this case, for safety reasons, FIG. 12b shows the system at rest (without electrical current applied). When current is applied, the actuator 43 rotates the support 70 about axis 38 relative to the rest position, thereby tensioning the spring 46. When power is cut off, for example to obtain a transition to the free configuration, the spring 46 pulls on the support 70 as shown in FIG. 12b . Also, in case of accidental power failure, the catheter can be disengaged from the mechanism.
  • Any type of linear actuator may be used. Fluidtightness at the controls is provided via an electrical connector.
  • As discussed above, either continuously operating release controls are provided, which in case of shutdown of the controls, automatically return the system to the drive configuration, or alternatively it may be arranged to lock the system in the free configuration.
  • One will also note that the actuator 43 may act directly on the support 70, rather than via a rocker.
  • Alternatively, as shown in FIGS. 13a, 13b , a spring 46 is not necessarily used. For example, the support 70 is connected directly to the actuator so that it follows the movements of the actuator.
  • FIG. 7 illustrates a second embodiment, below. The second embodiment differs from the first embodiment in certain features. A first difference is that the consumable part 79 which is disposable comprises the housing 16 (the cover 32 and the base 31) accommodating the drive members 28 a and 28 b, and the actuator 44.
  • The base 31 comprises a first opening 80 a from which extends the first shaft 33 a and a second opening 80 b from which extends the second shaft 33 b. The second opening 80 b is large, to allow the second shaft 33 b to travel relative to the base 31 (corresponding to the second drive member 29 b transitioning between two configurations).
  • This embodiment requires a sterile connection between the first drive member 28 a and the base 31, to reduce the risk of catheter contamination by the mechanism and/or jamming of the mechanism by substances conveyed by the catheter.
  • According to one embodiment, and as can be seen in FIG. 8, the drive member 28 a is integral with a deformable skirt 81, rubbing on the base 31 and defining a closed perimeter on the base 31.
  • FIG. 8 illustrates a vertical section view of the driving of the drive member 28 a by the motor 34. The drive module 14 comprises the housing 16 and a motorized stage 51.
  • FIG. 8 thus shows a medical robot comprising a permanent portion 82 and a removable portion, the permanent portion 82 comprising a motor 34 and a first coupling 68, the consumable part 79, which is removable, being provided with a second coupling 69 complementary to the first coupling 68.
  • It will be understood that where appropriate, the medical robot shown assembled in FIG. 8 may be provided in a kit, with the permanent portion and the removable portion to be assembled thereto. The removable portion, implemented as disposable, may be available in large quantities.
  • The shaft 33 a is engaged with the first drive member 28 a by a coupling that will be presented in detail below.
  • In the current case, also illustrated in FIG. 8 is an embodiment where the module rotates the catheter 15′ about its axis of elongation. This rotation is achieved by a translational motion of the drive member 28 a along its axis 29 a. In this case, as the catheter 15′ is clamped between the drive members 28 a, 28 b, displacement of one of the drive members relative to the other along this axis causes the catheter 15′ to roll, thus rotating it about its axis of elongation.
  • In the current case, the rotation is limited to less than one turn relative to a starting position. It may be arranged that the neutral starting position is an intermediate position, thus allowing rotation of the catheter in one direction and in another, depending on the direction of translation of the drive member 28 a.
  • In the example shown, the shaft 33 a is implemented as two parts having complementary shapes which allow integral rotation of the two parts about axis 29 a. The first portion is an inner core 78 integral to drive member 28 a, and the second part is an outer casing 53 engaging with the motor 34. Furthermore, the inner core 78 is free to slide relative to the outer casing 53 along axis 29 a. An actuator 54 controls the movement of the inner core 78 along axis 29 a. An elastic means 83 such as a return spring returns the first drive member 28 a to a rest position along axis 29 a.
  • Controlling the actuator 54 moves drive member 28 a along axis 29 a via the inner core 78, the shaft 33 a remaining in any position engaging with the motor 34.
  • Actuation of the motor 34 allows rotating drive member 28 a as described above.
  • The skirt 81 is sufficiently long and deformable to ensure sterility at the interface between the drive member 28 a and the base 31 along the entire path of drive member 28 a along axis 29 a.
  • As is understood from the above description, in this embodiment where the consumable part comprises a reduced number of components, the motion transmission system 35 is formed inside the housing 84 of the motorized stage 51.
  • Two exemplary embodiments for integrating gear 36 a can be provided. According to a first variant, gear 36 a is integral in translation with the shaft 33 a. In this case, the intermediate gear 37 is of sufficient thickness to always mesh with gear 36 a, regardless of its position along axis 29 a. Alternatively, the shaft 33 a is integral in rotation but free in translation relative to the gear 36 a. To save space, the first variant can be implemented in the embodiment of FIGS. 4a and 4b , and the second variant can be implemented in the embodiment of FIG. 8.
  • FIGS. 9a and 9b show details of an embodiment concerning the sealing of the robot. Recall that this is a dynamic seal, with shaft 33 a rotating to drive the catheter in translation.
  • Shaft 33 a, and in particular the core 78, is integral with a seal 60. A sufficiently deformable seal 60 is chosen so that in the uppermost position, shown in FIG. 9a , it is rubbing against the housing 84, and in the lowermost position, shown in FIG. 9b , it is deformed so as to press against the housing 84. This embodiment is made possible by the small rotational travel of the catheter 15 (range of rotation less than +/−180°). Indeed, in the case of a rapid exchange catheter, it is desirable to avoid large rotational travel which can cause the guide to coil outside the catheter.
  • FIGS. 10a and 10b are perspective views of coupling the housing 16 on the motorized stage 51. For simplicity, the housing 16 is not represented in this figure.
  • As can be seen in FIG. 7, shaft 33 a has a coupling member 68 provided with a centering cone 61 and one (or more) meshing teeth 62. The drive member 28 a comprises a coupling member 69 that is complementary to coupling member 68. In particular, coupling member 69 comprises a cavity 63 complementary to the centering cone 61, and a plurality of drive teeth 64, for example distributed along the entire peripheral rim. During assembly of the housing 16 to the motorized stage 51 along a direction of assembly (substantially the direction of axis 29 a), the centering cone 61 engages with the cavity 63 to guide the coupling, until tooth 62 engages with one of the teeth 64 of drive member 28 a, if necessary with a slight rotation of drive member 28 a by the cam about axis 29 a by a distance at most equal to half a tooth.
  • As represented in FIG. 7, the actuation end 44 a is not necessarily arranged at the housing 16, but may for example be in the upper surface. In this embodiment, the cover 32 comprises a window 85 in its upper surface, through which protrudes the actuating end 44 a of the actuator 44 which is connected to the second drive member 28 b. The actuator 44 comprises for example a contoured cover partially surrounding the second drive member 28 b and connected thereto, so that they can both move towards the free configuration (shaft 33 b is then moved within the opening 80 b), while allowing rotation of the second drive member 28 b about its axis.
  • According to another exemplary embodiment, a coupling may comprise a coupling member 68 on the robot side, as shown in FIG. 14, complementary to a coupling member on the consumable side (here again, not shown). The consumable-side coupling member is for example a coupling member 69 as illustrated above with reference to FIG. 10b . According to one feature of coupling member 68, the centering cone 61 and the tooth 62 are movable relative to each other. In particular, they are mounted in translation relative to one another, in particular along the direction of assembly of the consumable portion onto the robot.
  • For this, one can for example have the centering cone 61 include an outer casing 86 comprising a tapered end providing the centering function of the centering cone 61. The outer casing 86 also has an inner housing 87 accessible through a side opening 88 and a lower opening 89. The lower end 90 of the outer casing 86 also defines a bearing 91 for a transverse axis which will be described further below.
  • The centering cone 61 also comprises an inner core 92 which can be placed in the inner housing 87 from below through the lower opening 89. The inner core 92 has an elongated slot 93 along the direction of translation. This slot is open at the upper end of the inner core 92. The inner core 92 also comprises a bearing 96.
  • The tooth 62 has a form 94 complementary to the slot 93. It has for example a recess on the two opposite main faces of the tooth.
  • A biasing member 95 is mounted between the tooth 62 and the outer casing 86. This biases the tooth 62 upwardly along the direction of translation relative to the casing 86. For example, two springs are used as the biasing member. These two springs are then arranged one on each side of the form 94. The biasing member 95 is for example fixed to the tooth 62. For example, the tooth 62 has a bore in its lower face, for receiving an end portion of the spring.
  • The system just described is assembled as follows. The biasing member 95 is compressed, and the tooth 62 carrying them is inserted through the inner housing 87 via the side opening 88 until the form 94 is within the inner housing 87. The wings of the tooth then project from each side of the outer casing 86.
  • The biasing member 95 is released and presses against the outer casing 86 (on an inner face of the inner housing 87) and biases the tooth 62 upwards (position of FIG. 14).
  • The inner core 92 is mounted through the lower opening 89, the slot 93 engaging with the form 94. The bearings 91 and 96 are thus aligned.
  • The assembly is mounted on the base of the shaft 33 a, the bearings 91 and 96 coming into alignment with a housing 97 thereof. A shaft 98 is inserted through the housing 97 and the bearings 91 and 96 to secure the coupling member 68 on the base of the shaft 33 a.
  • In operation, the coupling member 68 is integral in rotational with the base of the shaft 33 a, by means of shaft 98. During coupling, if the tooth 62 does not face a complementary recess of the complementary coupling member, but a protruding surface thereof, said protruding surface moves the tooth 62 downwards relative to the outer casing 86 by compressing the biasing member 95. During a subsequent rotation of the coupling member 68, when the tooth 62 then faces a complementary recess of the complementary coupling member, the biasing member 95 pushes the tooth 62 (position of FIG. 14) engaged therewith.
  • This embodiment allows using a highly crenellated geometry in the coupling members, which allows transmitting significant torque during use.
  • Thus, according to another aspect which is independent of the first, it seems that the invention relates to a robotizable module for driving an elongated flexible medical member, comprising:
      • a base 31,
      • a first drive member 28 a defining a first axis 29 a and comprising a first peripheral driving surface 30 a around said first axis 29 a, the first drive member 28 a being mounted so as to rotate relative to the base 31 about the first axis 29 a, and comprising a member 33 a connecting to a drive motor 34 adapted to rotate the first drive member 28 a about the first axis 29 a,
  • wherein the first drive member 28 a is also mounted so as to be movable relative to the base 31 in a translational motion along its axis 29 a in a translational path,
  • wherein the first drive member 28 a comprises a deformable skirt 81, rubbing on the base 31 during rotation of the first drive member relative to the base, and defining a closed perimeter on the base 31 along the entire translational path.

Claims (20)

1. A robotizable module for driving an elongated flexible medical member, comprising:
a base;
a first drive member, defining a first axis and comprising a first peripheral driving surface around said first axis,
the first drive member being mounted so as to rotate relative to the base about the first axis, and comprising a member connecting to a drive motor adapted to rotate the first drive member about the first axis;
a second drive member, defining a second axis parallel to the first axis, and comprising a second peripheral driving surface around said second axis,
the second drive member being mounted so as to rotate relative to the base about the second axis, and
the second drive member also being mounted so as to be movable relative to the first drive member, in a degree of freedom other than rotational about the second axis, between:
a first configuration wherein the first and second peripheral driving surfaces face each other with a first spacing therebetween, and
a second configuration wherein the first and second peripheral driving surfaces face each other with a second spacing therebetween that is greater than the first spacing;
an actuation system operable by a user, adapted to move the second drive member from one of the first and second configurations to an other of the first and second configurations; and
a motion transmission system for transmitting the driving movement generated by the drive motor to the second drive member in order to rotate the second drive member about the second axis at least in any configuration between the first and second configurations,
wherein the motion transmission system comprises:
a first gear that is coaxial with the first drive member and forms an input member of the motion transmission system,
an intermediate gear having an intermediate gear axis parallel to and offset from the first axis, the intermediate gear meshing with the first gear at least in any configuration between the first and second configurations, and
a transmission between the intermediate gear and the second drive member, transmitting the rotational motion of the intermediate gear about the intermediate gear axis into said rotational motion of the second drive member about the second axis,
and wherein said first drive member is fixed to a shaft that extends along said first axis and is driven by said drive motor so that said shaft establishes a connection between said drive motor and said first drive member.
2. The robotizable module according to claim 1 wherein the motion transmission system operates in the second configuration.
3. The robotizable module according to claim 1, wherein said transmission comprises a belt which is integral in rotation both with said intermediate gear about the rotation axis of said intermediate gear and with said second drive member about the rotation axis of said second drive member.
4. The robotizable module according to claim 1, further comprising:
an elastic system biasing the second drive member from the second configuration towards the first configuration,
wherein the actuation system is operable to move the second drive member from the first configuration and to the second configuration while compressing said elastic system.
5. The robotizable module according to claim 4, wherein the elastic system biases the actuation system which is integral with the second drive member.
6. The robotizable module according to claim 1, further comprising:
a locking system adapted to alternatively lock the second drive member in the second free configuration or to release the second drive member, the actuation system being adapted to control the locking system.
7. The robotizable module according to claim 1, wherein the actuation system is electrically operable by the user.
8. The robotizable module according to claim 1, wherein at least one drive member is also mounted so as to be movable relative to the base in a translational motion along the first axis.
9. The robotizable module according to claim 8,
wherein said at least one drive member is mounted so as to be movable relative to the base in a translational motion along the first axis in a translational path, and
wherein the first drive member comprises a deformable skirt, rubbing on the base during rotation of the first drive member relative to the base, and defining a closed perimeter on the base along the entire translational path.
10. The robotizable module according to claim 1, further comprising:
a cover secured to the base and together with the base defining a housing defining an interior space in which are arranged at least a portion of the first drive member, at least a portion of the second drive member, and at least a portion of the actuation system,
wherein an actuation portion of the actuation system, a portion of the first drive member, and a portion of the second drive member extend out of the housing.
11. A medical robot kit, comprising:
a permanent portion and a removable portion,
the permanent portion comprising a motor and a first coupling, and
the removable portion comprising a robotizable module according to claim 1, provided with a second coupling complementary to the first coupling,
wherein the first and second couplings comprise at least one cam surface adapted to rotate the first and second couplings relative to each other with respect to a direction of assembly, during assembly of the removable portion to the permanent portion along the direction of assembly.
12. The medical robot kit according to claim 11, wherein the first coupling comprises a plurality of protrusions of concave shape, and the second coupling comprises a plurality of complementary recesses of complementary shape.
13. The medical robot kit according to claim 11, wherein the first coupling comprises a centering cone, a protrusion that is movable relative to the centering cone in a sliding direction, and a biasing member biasing the protrusion relative to the centering cone during assembly of the removable portion to the permanent portion.
14. A medical system, comprising:
a hollow elongated flexible medical member extending along an axis of elongation; and
a medical robot according to claim 11,
the hollow elongated flexible medical member being held between the first and second peripheral driving surfaces of the medical robot in the first configuration, the first drive member being rotatable relative to the base about the first axis in order to generate translational motion of the elongated flexible medical member along the axis of elongation.
15. The medical system according to claim 14, the first drive member being driven in translation relative to the base along the first axis in order to generate rotation of the elongated flexible medical member about the axis of elongation.
16. A medical system, comprising:
a hollow elongated flexible medical member extending along an axis of elongation; and
a robotizable module according to claim 1,
the hollow elongated flexible medical member being held between the first and second peripheral driving surfaces in the first configuration of the medical robot, the first drive member being rotatable relative to the base about the first axis in order to generate translational motion of the elongated flexible medical member along the axis of elongation.
17. The medical system according to claim 16, the first drive member being driven in translation relative to the base along the first axis in order to generate rotation of the elongated flexible medical member about the axis of elongation.
18. The robotizable module according to claim 2, wherein the motion transmission system comprises:
a first gear that is coaxial with the first drive member and forms an input member of the motion transmission system,
an intermediate gear having an intermediate gear axis parallel to and offset from the first axis, the intermediate gear meshing with the first gear at least in any configuration between the first and second configurations, and
a transmission between the intermediate gear and the second drive member, transmitting the rotational motion of the intermediate gear about the intermediate gear axis into said rotational motion of the second drive member about the second axis.
19. The robotizable module according to claim 2, further comprising:
an elastic system biasing the second drive member from the second configuration towards the first configuration,
wherein the actuation system is operable to move the second drive member from the first configuration and to the second configuration while compressing said elastic system.
20. A robotizable module for driving an elongated flexible medical member, comprising:
a base;
a first drive member, defining a first axis and comprising a first peripheral driving surface around said first axis,
the first drive member being mounted so as to rotate relative to the base about the first axis and comprising a member connecting to a drive motor adapted to rotate the first drive member about the first axis;
a second drive member, defining a second axis parallel to the first axis and comprising a second peripheral driving surface around said second axis,
the second drive member being mounted so as to rotate relative to the base about the second axis, and
the second drive member also being mounted so as to be movable relative to the first drive member, in a degree of freedom other than rotational about the second axis, between:
a first configuration wherein the first and second peripheral driving surfaces face each other with a first spacing therebetween, and
a second configuration wherein the first and second peripheral driving surfaces face each other with a second spacing therebetween that is greater than the first spacing;
an actuation system operable by a user, adapted to move the second drive member from one of the first and second configurations to an other of the first and second configurations; and
a motion transmission system for transmitting the driving movement generated by the drive motor to the second drive member in order to rotate the second drive member about the second axis at least in any configuration between the first and second configurations,
wherein the motion transmission system comprises:
a first gear that is coaxial with the first drive member and forms an input member of the motion transmission system,
an intermediate gear having an intermediate gear axis parallel to and offset from the first axis, the intermediate gear meshing with the first gear at least in any configuration between the first and second configurations, and
a transmission between the intermediate gear and the second drive member, transmitting the rotational motion of the intermediate gear about the intermediate gear axis into said rotational motion of the second drive member about the second axis,
and wherein said transmission comprises a belt which is integral in rotation both with said intermediate gear about the rotation axis of said intermediate gear and with said second drive member about the rotation axis of said second drive member.
US16/863,133 2016-01-07 2020-04-30 Robotizable module for driving an elongated flexible medical member, medical robot and system including such a module Abandoned US20200254218A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/863,133 US20200254218A1 (en) 2016-01-07 2020-04-30 Robotizable module for driving an elongated flexible medical member, medical robot and system including such a module

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR1650105A FR3046543B1 (en) 2016-01-07 2016-01-07 ROBOTISABLE MODULE FOR DRIVING AN ELONGATED SOFT MEDICAL DEVICE, MEDICAL ROBOT AND SYSTEM COMPRISING SUCH A MODULE
FR1650105 2016-01-07
PCT/FR2017/050028 WO2017118818A1 (en) 2016-01-07 2017-01-05 Robotizable module for driving an elongated flexible medical member, medical robot and system including such a module
US201816068564A 2018-07-06 2018-07-06
US16/863,133 US20200254218A1 (en) 2016-01-07 2020-04-30 Robotizable module for driving an elongated flexible medical member, medical robot and system including such a module

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US16/068,564 Division US11147950B2 (en) 2016-01-07 2017-01-05 Robotizable module for driving an elongated flexible medical member, medical robot and system including such a module
PCT/FR2017/050028 Division WO2017118818A1 (en) 2016-01-07 2017-01-05 Robotizable module for driving an elongated flexible medical member, medical robot and system including such a module

Publications (1)

Publication Number Publication Date
US20200254218A1 true US20200254218A1 (en) 2020-08-13

Family

ID=55752484

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/068,564 Active US11147950B2 (en) 2016-01-07 2017-01-05 Robotizable module for driving an elongated flexible medical member, medical robot and system including such a module
US16/863,133 Abandoned US20200254218A1 (en) 2016-01-07 2020-04-30 Robotizable module for driving an elongated flexible medical member, medical robot and system including such a module

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/068,564 Active US11147950B2 (en) 2016-01-07 2017-01-05 Robotizable module for driving an elongated flexible medical member, medical robot and system including such a module

Country Status (7)

Country Link
US (2) US11147950B2 (en)
EP (1) EP3399937B1 (en)
JP (1) JP6895976B2 (en)
KR (1) KR20180103953A (en)
CN (1) CN109069212B (en)
FR (1) FR3046543B1 (en)
WO (1) WO2017118818A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757957C1 (en) * 2020-12-30 2021-10-25 Александр Григорьевич ВИЛЛЕР Robotic system and method for endovascular surgery

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210236771A1 (en) * 2018-04-19 2021-08-05 Wake Forest University Health Sciences A medical device for deploying a catheter that can be operated with a single hand, and a method
KR102184889B1 (en) * 2018-04-19 2020-12-01 (주)엘엔로보틱스 Roller module for medical robot, driving apparatus for medical robot and medical robot
US11364407B2 (en) 2018-10-19 2022-06-21 Coulter Ventures, Llc. Connector assembly
USD885864S1 (en) 2018-10-19 2020-06-02 Coulter Ventures, Llc. Locking pin
US20220233263A1 (en) * 2019-07-15 2022-07-28 Corindus, Inc. Systems, apparatus and methods for robotic interventional procedures using a plurality of elongated medical devices
JP2022169814A (en) * 2019-09-30 2022-11-10 テルモ株式会社 Actuator and robot catheter system
KR102511036B1 (en) * 2020-11-18 2023-03-17 재단법인 아산사회복지재단 Treatment tool control device
US20240013907A1 (en) * 2020-11-18 2024-01-11 The Asan Foundation Surgical tool control apparatus
FR3119535A1 (en) * 2021-02-08 2022-08-12 Robocath device for locking at least one flexible medical element elongated in at least one track in a catheter robot
KR102416826B1 (en) * 2021-10-28 2022-07-05 주식회사 메디픽셀 Apparatus for rotating a longitudinal member
WO2023083652A1 (en) * 2021-11-10 2023-05-19 Koninklijke Philips N.V. Control of robotic endovascular devices to align to target vessels with fluoroscopic feedback
EP4179998A1 (en) * 2021-11-10 2023-05-17 Koninklijke Philips N.V. Control of robotic endovascular devices to align to target vessels with fluoroscopic feedback
KR20230130946A (en) * 2022-03-04 2023-09-12 재단법인 아산사회복지재단 Treatment tool control device
US20230380915A1 (en) * 2022-05-27 2023-11-30 Route 92 Medical, Inc. Robotic drive system for facilitating treatments of the neurovasculature and methods of use
CN115137489B (en) * 2022-09-05 2022-11-25 深圳市爱博医疗机器人有限公司 Slender type medical instrument driving device
CN115153859B (en) * 2022-09-05 2022-11-25 深圳市爱博医疗机器人有限公司 Slender type medical instrument driving device

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29808180U1 (en) * 1998-05-06 1998-07-23 Stm Medtech Starnberg Drive device for slip hose system
EP1389958B1 (en) 2001-05-06 2008-10-29 Stereotaxis, Inc. System for advancing a catheter
EP1442720A1 (en) * 2003-01-31 2004-08-04 Tre Esse Progettazione Biomedica S.r.l Apparatus for the maneuvering of flexible catheters in the human cardiovascular system
US8755864B2 (en) * 2004-05-28 2014-06-17 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for diagnostic data mapping
JP2008541797A (en) * 2005-05-03 2008-11-27 ハンセン メディカル,インク. Robotic guide catheter system
US7959050B2 (en) * 2005-07-26 2011-06-14 Ethicon Endo-Surgery, Inc Electrically self-powered surgical instrument with manual release
FR2893851B1 (en) * 2005-11-30 2008-02-08 Philippe Bencteux CATHETER ROLLER / DEROULER AND ARTERIOGRAPHY SYSTEM EQUIPPED WITH SUCH ROLLER / DEROULEUR
CN101495023A (en) * 2006-07-26 2009-07-29 航生医疗公司 Systems for performing minimally invasive surgical operations
CN102440757A (en) * 2007-03-16 2012-05-09 新加坡南洋理工大学 Method and apparatus for anorectal examination
US8534528B2 (en) * 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US20090082722A1 (en) * 2007-08-21 2009-03-26 Munger Gareth T Remote navigation advancer devices and methods of use
EP3858416B1 (en) 2008-05-06 2023-11-01 Corindus, Inc. Catheter system
US8720448B2 (en) * 2008-11-07 2014-05-13 Hansen Medical, Inc. Sterile interface apparatus
US9005217B2 (en) * 2009-08-12 2015-04-14 Biosense Webster, Inc. Robotic drive for catheter
US8460236B2 (en) * 2010-06-24 2013-06-11 Hansen Medical, Inc. Fiber optic instrument sensing system
CN101933837B (en) * 2010-07-08 2011-10-12 中国科学院自动化研究所 Minimally invasive vascular interventional surgical robot tube feeding device
US20120035596A1 (en) * 2010-08-04 2012-02-09 Tegg Troy T Disposable Drive Interface for Longitudinal Movement of an Elongate Medical Device
US9833293B2 (en) * 2010-09-17 2017-12-05 Corindus, Inc. Robotic catheter system
CN102028548B (en) * 2011-01-14 2012-03-07 哈尔滨工业大学 Clamp-type surgical instrument for abdominal cavity minimally invasive surgery robot
US20130035537A1 (en) * 2011-08-05 2013-02-07 Wallace Daniel T Robotic systems and methods for treating tissue
FR2979532B1 (en) * 2011-09-07 2015-02-20 Robocath MODULE AND METHOD FOR DRIVING LONG SOFT MEDICAL ORGANS AND ASSOCIATED ROBOTIC SYSTEM
PL2768418T3 (en) * 2011-10-19 2017-12-29 Ethicon Endo-Surgery, Inc. Clip applier adapted for use with a surgical robot
US20140005678A1 (en) * 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Rotary drive arrangements for surgical instruments
US9283045B2 (en) * 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
EP2881072B1 (en) * 2012-07-03 2019-04-24 KUKA Deutschland GmbH Surgical instrumentation and drivetrain assembly for a surgical instrument, in particular a robot-controlled instrument and surgical instrument
CN103083784B (en) * 2013-02-25 2014-09-17 中国科学院自动化研究所 Catheter or guide wire operating device for vessel interventional operation
FR3002851B1 (en) * 2013-03-07 2015-06-19 Robocath ROBOTISE CATHETERISM SYSTEM TRAINING MODULE.
US9326822B2 (en) * 2013-03-14 2016-05-03 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US20140276936A1 (en) * 2013-03-15 2014-09-18 Hansen Medical, Inc. Active drive mechanism for simultaneous rotation and translation
CN103239793A (en) * 2013-05-17 2013-08-14 徐州医学院 Vessel intervention robot guide wire driving box
US9993313B2 (en) 2013-10-24 2018-06-12 Auris Health, Inc. Instrument device manipulator with roll mechanism
JP6153484B2 (en) * 2014-02-24 2017-06-28 オリンパス株式会社 Wire drive device and manipulator
EP3906880A1 (en) * 2014-03-31 2021-11-10 Intuitive Surgical Operations, Inc. Surgical instrument with shiftable transmission
US9433340B2 (en) * 2014-05-30 2016-09-06 Endoscopic Innovations LLC System and method for rapid shuttling of tools through endoscopes
CN104644270B (en) * 2015-02-05 2016-09-07 北京航空航天大学 A kind of catheter steering device based on reverse leading screw

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757957C1 (en) * 2020-12-30 2021-10-25 Александр Григорьевич ВИЛЛЕР Robotic system and method for endovascular surgery
WO2022146194A1 (en) * 2020-12-30 2022-07-07 Александр Григорьевич ВИЛЛЕР Robotic system and method for performing an endovascular surgical operation

Also Published As

Publication number Publication date
FR3046543A1 (en) 2017-07-14
KR20180103953A (en) 2018-09-19
WO2017118818A1 (en) 2017-07-13
CN109069212A (en) 2018-12-21
US20190038872A1 (en) 2019-02-07
CN109069212B (en) 2022-02-25
EP3399937A1 (en) 2018-11-14
FR3046543B1 (en) 2018-02-02
JP6895976B2 (en) 2021-06-30
JP2019503778A (en) 2019-02-14
EP3399937B1 (en) 2024-01-31
US11147950B2 (en) 2021-10-19

Similar Documents

Publication Publication Date Title
US20200254218A1 (en) Robotizable module for driving an elongated flexible medical member, medical robot and system including such a module
EP3569157B1 (en) Guidewire adjuster and delivery-system control handle
US11779414B2 (en) Active drive for robotic catheter manipulators
US11337764B2 (en) Robotized module for guiding an elongate flexible medical device
US9993614B2 (en) Components for multiple axis control of a catheter in a catheter positioning system
US20100175701A1 (en) Modular interfaces and drive actuation through barrier
US9414916B2 (en) Adapter to actuate a delivery system
CN101380249B (en) An arrangement for manipulating a medical device
US9687304B2 (en) Elongate medical part guide module
US9770301B2 (en) Module for driving a catheterization system
EP2822446A1 (en) Motorised and modular instrumentation device and endoscopy system comprising such a device
WO2006087288A1 (en) Wireless capsule that can be directed by a magnetic system for carrying out a medical intervention in a hollow organ of a patient
CN220293656U (en) Flexible instrument conveying device and execution component thereof
CN117357263A (en) Flexible instrument conveying device, execution component and driving component thereof
CN113349986B (en) Interventional valve delivery system
CN116407285A (en) Guide wire or catheter controller and surgical robot
US10231714B2 (en) Actuator of medical device
US20240148528A1 (en) Crimper for crimping interventional instrument and method for loading interventional instrument
CN111743563B (en) Detector drive for a nuclear medicine device and nuclear medicine device
EP4257071A1 (en) Quick insertion-and-removal device, actuating mechanism and surgical robot
CN115887865A (en) Interventional instrument motion control device
CN118000911A (en) Flexible instrument conveying device and execution component thereof
CN116849582A (en) Connection device and endoscope system
CN111281627A (en) Stent implanter driving mechanism and medical stent implanter
CN116407286A (en) Guide wire or catheter clamping mechanism, controller and surgical robot

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION