US20200224316A1 - Hydrophobic coatings for metals incorporating anodic and rare-earth oxides and methods of applying same - Google Patents
Hydrophobic coatings for metals incorporating anodic and rare-earth oxides and methods of applying same Download PDFInfo
- Publication number
- US20200224316A1 US20200224316A1 US16/741,644 US202016741644A US2020224316A1 US 20200224316 A1 US20200224316 A1 US 20200224316A1 US 202016741644 A US202016741644 A US 202016741644A US 2020224316 A1 US2020224316 A1 US 2020224316A1
- Authority
- US
- United States
- Prior art keywords
- substrate
- hydrophobic
- yttrium
- oxide nanoparticles
- yttrium oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000002209 hydrophobic effect Effects 0.000 title claims abstract description 76
- 229910052751 metal Inorganic materials 0.000 title claims description 14
- 239000002184 metal Substances 0.000 title claims description 14
- 238000000034 method Methods 0.000 title abstract description 45
- 238000000576 coating method Methods 0.000 title abstract description 34
- 229910001404 rare earth metal oxide Inorganic materials 0.000 title description 3
- 150000002739 metals Chemical class 0.000 title description 2
- 239000000758 substrate Substances 0.000 claims abstract description 82
- 239000002105 nanoparticle Substances 0.000 claims abstract description 60
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims abstract description 55
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 48
- 238000005524 ceramic coating Methods 0.000 claims abstract description 45
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 30
- 229910052782 aluminium Inorganic materials 0.000 claims description 31
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 31
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 16
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 16
- -1 yttrium compound Chemical class 0.000 claims description 16
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 15
- 239000006185 dispersion Substances 0.000 claims description 14
- 229920003169 water-soluble polymer Polymers 0.000 claims description 13
- 229910052727 yttrium Inorganic materials 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 10
- 239000008367 deionised water Substances 0.000 claims description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 8
- 239000002904 solvent Substances 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 8
- NFSAPTWLWWYADB-UHFFFAOYSA-N n,n-dimethyl-1-phenylethane-1,2-diamine Chemical compound CN(C)C(CN)C1=CC=CC=C1 NFSAPTWLWWYADB-UHFFFAOYSA-N 0.000 claims description 7
- 229910001200 Ferrotitanium Inorganic materials 0.000 claims description 6
- 229910001220 stainless steel Inorganic materials 0.000 claims description 6
- 239000010935 stainless steel Substances 0.000 claims description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 4
- 239000008199 coating composition Substances 0.000 abstract description 27
- 238000007743 anodising Methods 0.000 abstract description 22
- 239000011248 coating agent Substances 0.000 abstract description 19
- 238000010438 heat treatment Methods 0.000 abstract description 10
- 238000005507 spraying Methods 0.000 abstract description 7
- 238000007598 dipping method Methods 0.000 abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 24
- 229910001868 water Inorganic materials 0.000 description 23
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 12
- 238000005299 abrasion Methods 0.000 description 12
- 238000002048 anodisation reaction Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 239000003929 acidic solution Substances 0.000 description 9
- 239000002253 acid Substances 0.000 description 8
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 7
- 238000001246 colloidal dispersion Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 150000001785 cerium compounds Chemical class 0.000 description 5
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 5
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 230000005661 hydrophobic surface Effects 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 210000002268 wool Anatomy 0.000 description 3
- OBOSXEWFRARQPU-UHFFFAOYSA-N 2-n,2-n-dimethylpyridine-2,5-diamine Chemical compound CN(C)C1=CC=C(N)C=N1 OBOSXEWFRARQPU-UHFFFAOYSA-N 0.000 description 2
- NGDQQLAVJWUYSF-UHFFFAOYSA-N 4-methyl-2-phenyl-1,3-thiazole-5-sulfonyl chloride Chemical compound S1C(S(Cl)(=O)=O)=C(C)N=C1C1=CC=CC=C1 NGDQQLAVJWUYSF-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 2
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- IBSDADOZMZEYKD-UHFFFAOYSA-H oxalate;yttrium(3+) Chemical compound [Y+3].[Y+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O IBSDADOZMZEYKD-UHFFFAOYSA-H 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229940105963 yttrium fluoride Drugs 0.000 description 2
- 229910000347 yttrium sulfate Inorganic materials 0.000 description 2
- QVOIJBIQBYRBCF-UHFFFAOYSA-H yttrium(3+);tricarbonate Chemical compound [Y+3].[Y+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O QVOIJBIQBYRBCF-UHFFFAOYSA-H 0.000 description 2
- DEXZEPDUSNRVTN-UHFFFAOYSA-K yttrium(3+);trihydroxide Chemical compound [OH-].[OH-].[OH-].[Y+3] DEXZEPDUSNRVTN-UHFFFAOYSA-K 0.000 description 2
- RTAYJOCWVUTQHB-UHFFFAOYSA-H yttrium(3+);trisulfate Chemical compound [Y+3].[Y+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RTAYJOCWVUTQHB-UHFFFAOYSA-H 0.000 description 2
- RBORBHYCVONNJH-UHFFFAOYSA-K yttrium(iii) fluoride Chemical compound F[Y](F)F RBORBHYCVONNJH-UHFFFAOYSA-K 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229910009253 Y(NO3)3 Inorganic materials 0.000 description 1
- 229910009454 Y(OH)3 Inorganic materials 0.000 description 1
- 229910009440 Y2(CO3)3 Inorganic materials 0.000 description 1
- 229910009523 YCl3 Inorganic materials 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000010407 anodic oxide Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- VYLVYHXQOHJDJL-UHFFFAOYSA-K cerium trichloride Chemical compound Cl[Ce](Cl)Cl VYLVYHXQOHJDJL-UHFFFAOYSA-K 0.000 description 1
- VGBWDOLBWVJTRZ-UHFFFAOYSA-K cerium(3+);triacetate Chemical compound [Ce+3].CC([O-])=O.CC([O-])=O.CC([O-])=O VGBWDOLBWVJTRZ-UHFFFAOYSA-K 0.000 description 1
- OZECDDHOAMNMQI-UHFFFAOYSA-H cerium(3+);trisulfate Chemical compound [Ce+3].[Ce+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O OZECDDHOAMNMQI-UHFFFAOYSA-H 0.000 description 1
- MOOUSOJAOQPDEH-UHFFFAOYSA-K cerium(iii) bromide Chemical compound [Br-].[Br-].[Br-].[Ce+3] MOOUSOJAOQPDEH-UHFFFAOYSA-K 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 238000013101 initial test Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229920000885 poly(2-vinylpyridine) Polymers 0.000 description 1
- 229920000191 poly(N-vinyl pyrrolidone) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- XTUSEBKMEQERQV-UHFFFAOYSA-N propan-2-ol;hydrate Chemical compound O.CC(C)O XTUSEBKMEQERQV-UHFFFAOYSA-N 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- PCMOZDDGXKIOLL-UHFFFAOYSA-K yttrium chloride Chemical compound [Cl-].[Cl-].[Cl-].[Y+3] PCMOZDDGXKIOLL-UHFFFAOYSA-K 0.000 description 1
- BXJPTTGFESFXJU-UHFFFAOYSA-N yttrium(3+);trinitrate Chemical compound [Y+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O BXJPTTGFESFXJU-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/18—After-treatment, e.g. pore-sealing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/021—After-treatment of oxides or hydroxides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D13/00—Pencil-leads; Crayon compositions; Chalk compositions
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/43—Thickening agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/65—Additives macromolecular
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/66—Additives characterised by particle size
- C09D7/67—Particle size smaller than 100 nm
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/08—Coating starting from inorganic powder by application of heat or pressure and heat
- C23C24/082—Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/18—After-treatment, e.g. pore-sealing
- C25D11/24—Chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/26—Anodisation of refractory metals or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/34—Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D13/00—Electrophoretic coating characterised by the process
- C25D13/02—Electrophoretic coating characterised by the process with inorganic material
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D9/00—Electrolytic coating other than with metals
- C25D9/04—Electrolytic coating other than with metals with inorganic materials
- C25D9/06—Electrolytic coating other than with metals with inorganic materials by anodic processes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D9/00—Electrolytic coating other than with metals
- C25D9/04—Electrolytic coating other than with metals with inorganic materials
- C25D9/08—Electrolytic coating other than with metals with inorganic materials by cathodic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Definitions
- This invention relates generally to hydrophobic coatings and, more particularly, to a hydrophobic coating comprising anodic and rare-earth oxides and methods of applying such a coating to a surface of a metallic substrate.
- Aircraft, automotive, and other transparency applications provide additional challenges.
- a hydrophobic coating should maintain high hardness and resistance to attack by acids and bases.
- these applications can involve metallic substrates, with thermal expansion coefficients and elastic moduli that are incompatible with many existing hydrophobic coatings.
- the coating should be robust to environmental degradation, mechanical abrasion, and repeated stress, while exhibiting inherently low surface energy without additional surface patterning.
- the coating should maintain hardness and resistance to attack by acids and bases, while also maintaining a permanent bond to the metallic surface as the surface thermally expands and contracts.
- the present invention is embodied in a method of applying a hydrophobic coating to a surface of a metallic substrate, as well as in the hydrophobic coating formed by the method.
- the method includes anodizing a nanoporous layer of anodic metal oxide on the surface; applying a hydrophobic ceramic coating composition to the surface, after anodizing the surface, by an application method selected from the group consisting of: flowing, dipping, and spraying; and heating the coated surface at a cure temperature from about 150° C. to about 300° C. for at least 2 hours.
- the method further includes the step of cathodizing yttrium oxide nanoparticles onto the before applying the hydrophobic ceramic coating composition to the surface.
- Each feature or concept is independent, but can be combined with any other feature of concept disclosed in this application.
- the method includes anodizing a nanoporous layer of anodic metal oxide on the surface, and cathodizing yttrium oxide nanoparticles onto the surface after anodizing the surface.
- the method further includes the steps of applying a hydrophobic ceramic coating composition to the surface, after cathodizing the surface, by an application method selected from the group consisting of: flowing, dipping, and spraying; and heating the coated surface at a cure temperature from about 150° C. to about 300° C. for at least 2 hours.
- an application method selected from the group consisting of: flowing, dipping, and spraying; and heating the coated surface at a cure temperature from about 150° C. to about 300° C. for at least 2 hours.
- the method can further include the step of cleaning surface of the metallic substrate with acetone before the anodizing step.
- the anodic metal oxide can comprises anodic aluminum oxide.
- the anodizing step can comprise anodizing the surface in an acidic solution having a concentration from about 0.1 M to about 0.3 M, at an anodizing voltage from about 8 V to about 12 V for an anodizing time from about 20 minutes to about 90 minutes.
- the acidic solution can have a pH less than about 5.
- the acidic solution can comprise an acid selected from the group consisting of: acetic acid, citric acid, hydrogen chloride, nitric acid, and sulfuric acid.
- the acid can comprise sulfuric acid.
- the concentration can be about 0.2 M.
- the anodizing voltage can be about 10 V.
- the anodizing time can be from about 30 minutes to about 60 minutes.
- the cathodizing step can comprise cathodizing the surface in a colloidal dispersion of yttrium oxide nanoparticles, at a cathodizing voltage from about 8 V to about 12 V, and a current from about 0.05 mA to about 0.15 mA, for a cathodizing time from about 30 minutes to about 90 minutes.
- the yttrium oxide nanoparticles can have a mean particle size of about 10 nm and can be in an amount ranging from about 2% to about 10% by weight of the colloidal dispersion.
- the amount of yttrium oxide nanoparticles can be about 5% by weight of the colloidal dispersion.
- the cathodizing voltage can be about 10 V and the current can be about 0.1 mA.
- the cathodizing time can be about 60 minutes.
- the method can further include the step of removing excess nanoparticles from the surface after cathodizing the surface.
- the removing step can include wiping the surface with isopropanol.
- the method can further include the step of drying the coating composition on the surface of the substrate for about 1 hour.
- the method can include heating the coated surface at a cure temperature of about 200° C.
- the hydrophobic ceramic coating composition can comprise a yttrium compound, a dispersion of yttrium oxide nanoparticles, a water-soluble polymer, and a solvent solution of de-ionized water and a water-soluble alcohol.
- the yttrium compound can comprise yttrium acetate
- the dispersion of yttrium oxide nanoparticles can be in an amount ranging from about 0.5% to about 1% by weight of the coating composition
- the water-soluble polymer can comprise polyvinyl alcohol in an amount from about 1% to about 5% by weight of the coating composition
- the water-soluble alcohol can comprise isopropyl alcohol
- the de-ionized water and water-soluble alcohol can be present in the solvent solution in a ratio of about 2:1.
- the metallic substrate can comprises a metal selected from the group consisting of: aluminum, titanium, and stainless steel.
- the metal can comprise aluminum.
- the present invention is also embodied in a hydrophobic, coated substrate.
- the substrate can include a metallic substrate having a surface, a nanoporous layer of anodic metal oxide formed on the surface, and a hydrophobic ceramic coating bonded to the nanoporous layer.
- the substrate can further include yttrium oxide nanoparticles embedded in the nanoporous layer.
- the hydrophobic, coated substrate can include a metallic substrate having a surface, a nanoporous layer of anodic metal oxide formed on the surface, and yttrium oxide nanoparticles embedded in the nanoporous layer.
- the substrate can further include a hydrophobic ceramic coating bonded to the nanoporous layer.
- the nanoporous layer of anodic metal oxide can include nanopipettes.
- the nanopipettes can have an average diameter from about 10 nm to about 100 nm.
- the nanopipettes can have an average diameter from about 20 nm to about 50 nm.
- the nanopipettes can have a minimum diameter of about 10 nm and a maximum diameter of about 100 nm.
- the nanopipettes can have an average length from about 100 nm to about 10 ⁇ m.
- the nanopipettes can have an average length from about 1.5 ⁇ m to about 8 ⁇ m.
- the nanopipettes can have a minimum length of about 100 nm and a maximum length of about 10 ⁇ m.
- the yttrium oxide nanoparticles can have a mean particle size of about 10 nm. In another embodiment, the yttrium oxide nanoparticles can be embedded in the nanopipettes. In a further embodiment, the hydrophobic ceramic coating can comprise yttrium acetate.
- the metallic substrate can comprise a metal selected from the group consisting of: aluminum, titanium, and stainless steel.
- the metal can comprise aluminum.
- the anodic metal oxide can comprise anodic aluminum oxide.
- Each feature or concept is independent, but can be combined with any other feature of concept disclosed in this application.
- FIGS. 1A-1C are flow diagrams showing methods of applying a hydrophobic coating in accordance with some embodiments of the invention.
- FIG. 2A is a cross-sectional illustration of a nanoporous layer of anodic metal oxide formed on the surface of a metallic substrate, in accordance with one embodiment of the invention.
- FIG. 2B is a top-view illustration of a nanoporous layer of anodic metal oxide formed on the surface of a metallic substrate, in accordance with one embodiment of the invention.
- FIG. 3A is a cross-sectional illustration of a hydrophobic, coated substrate, in accordance with one embodiment of the invention.
- FIG. 3B is a cross-sectional illustration of a hydrophobic, coated substrate, in accordance with one embodiment of the invention.
- FIG. 3C is a cross-sectional illustration of a hydrophobic, coated substrate, in accordance with one embodiment of the invention.
- FIG. 4 is a cross-sectional illustration of a hydrophobic ceramic coating applied to an aluminum substrate having a native aluminum oxide layer.
- FIG. 5 is a scanning electron micrograph of an anodized aluminum oxide nanopipette layer, in accordance with one embodiment of the invention.
- FIG. 6 is a photograph of a water droplet on an aluminum surface having a yttrium-oxide-nanoparticle-enhanced hydrophobic, ceramic coating, in accordance with one embodiment of the invention.
- the method can include a step 110 of anodizing a nanoporous layer of anodic metal oxide on the surface; a step 120 of cathodizing yttrium oxide nanoparticles onto the surface; a step 130 of applying a hydrophobic ceramic coating composition to the surface; and a step 140 of heating the coated surface.
- the method can omit one or more of these steps.
- the method can include the step 110 of anodizing a nanoporous layer of anodic metal oxide on the surface, the step 130 of applying a hydrophobic ceramic coating to the surface, and the step 140 of heating the coated surface.
- the method can include the step 110 of anodizing a nanoporous layer of anodic metal oxide on the surface, and the step 120 of cathodizing yttrium oxide nanoparticles onto the surface.
- the metallic substrate can comprise a metal selected from the group consisting of: aluminum, titanium, and stainless steel.
- the metal can comprise aluminum.
- Anodization is an electro-chemical process that changes the surface chemistry of a metal, via oxidation, to produce an anodic oxide layer.
- the nanoporous layer of anodic metal oxide formed on the surface by step 110 can serve to create a permanent bond between sol gel coatings, such as a hydrophobic ceramic coating, and the surface of the metallic substrate.
- the anodizing step 110 can comprise anodizing the surface in an acidic solution.
- the acidic solution can have a pH less than about 5.
- the acidic solution can comprise an acid selected from the group consisting of: acetic acid, citric acid, hydrogen chloride, nitric acid, and sulfuric acid.
- the acid can comprise sulfuric acid.
- the acidic solution can have a concentration from about 0.1 M to about 0.3 M. In another embodiment, the concentration can be about 0.2 M.
- the step 110 can be performed with an anodizing voltage from about 8 V to about 12 V for an anodizing time from about 20 minutes to about 90 minutes. In an additional embodiment, the anodizing voltage can be about 10 V. In yet another embodiment, the anodizing time can be from about 30 minutes to about 60 minutes.
- self-assembled nanostructures of anodic metal oxide 210 can be developed on the surface 205 , as illustrated in FIGS. 2A and 2B .
- the anodization parameters described above can produce a nanoporous layer of anodic metal oxide 210 having an ordered array of cylindrical pores, or nanopipettes 215 .
- the pore diameters D, periodicity, and density distribution of the nanopipettes 215 can be controlled by adjusting the anodization parameters described above. Adjustments to the anodization parameters can be made to control both the diameter D and length L of the nanopipettes 215 , independently.
- the nanopipettes 215 can have an average diameter D from about 10 nm to about 100 nm. In another embodiment, the nanopipettes 215 can have an average diameter D from about 20 nm to about 50 nm. In a further embodiment, the nanopipettes 215 can have a minimum diameter D of about 10 nm and a maximum diameter of about 100 nm.
- the nanopipettes 215 can have a minimum diameter D of about 10 nm, about 15 nm, about 20 nm, about 25 nm, about 30 nm, about 35 nm, about 40 nm, about 45 nm, about 50 nm, about 55 nm, about 60 nm, about 65 nm, about 70 nm, about 75 nm, about 80 nm, about 85 nm, about 90 nm, about 95 nm, or about 100 nm.
- the nanopipettes 215 can have a maximum diameter D of about 10 nm, about 15 nm, about 20 nm, about 25 nm, about 30 nm, about 35 nm, about 40 nm, about 45 nm, about 50 nm, about 55 nm, about 60 nm, about 65 nm, about 70 nm, about 75 nm, about 80 nm, about 85 nm, about 90 nm, about 95 nm, or about 100 nm.
- the nanopipettes 215 can have an average length L from about 100 nm to about 10 ⁇ m. In another embodiment, the nanopipettes 215 can have an average length L from about 1.5 ⁇ m to about 8 ⁇ m. In a further embodiment, the nanopipettes 215 can have a minimum length L of about 100 nm and a maximum length L of about 10 ⁇ m.
- the nanopipettes 215 can have a minimum length L of about 100 nm, about 500 nm, about 1 ⁇ m, about 1.5 ⁇ m, about 2 ⁇ m, about 2.5 ⁇ m, about 3 ⁇ m, about 3.5 ⁇ m, about 4 ⁇ m, about 4.5 ⁇ m, about 5 ⁇ m, about 5.5 ⁇ m, about 6 ⁇ m, about 6.5 ⁇ m, about 7 ⁇ m, about 7.5 ⁇ m, about 8 ⁇ m, about 8.5 ⁇ m, about 9 ⁇ m, about 9.5 ⁇ m, or about 10 ⁇ m.
- the nanopipettes 215 can have a maximum length L of about 100 nm, about 500 nm, about 1 ⁇ m, about 1.5 ⁇ m, about 2 ⁇ m, about 2.5 ⁇ m, about 3 ⁇ m, about 3.5 ⁇ m, about 4 ⁇ m, about 4.5 ⁇ m, about 5 ⁇ m, about 5.5 ⁇ m, about 6 ⁇ m, about 6.5 ⁇ m, about 7 ⁇ m, about 7.5 ⁇ m, about 8 ⁇ m, about 8.5 ⁇ m, about 9 ⁇ m, about 9.5 ⁇ m, or about 10 ⁇ m.
- This nanoporous layer of anodic metal oxide 210 can enhance material interpenetration and increase the strength of the mechanical and chemical bond between the surface 205 and, for example, embedded yttrium oxide nanoparticles 220 ( FIG. 3C ) a hydrophobic ceramic coating 230 ( FIG. 3B ), or both ( FIG. 3A ).
- the cathodizing step 120 can comprise cathodizing the surface in a colloidal dispersion of yttrium oxide nanoparticles.
- the yttrium oxide nanoparticles can have a mean particle size of about 10 nm and can be in an amount ranging from about 2% to about 10% by weight of the colloidal dispersion. In a further embodiment, the amount of yttrium oxide nanoparticles can be about 5% by weight of the colloidal dispersion.
- the cathodizing step 120 comprises electrically connecting the metallic substrate to the negative (cathodic) terminal in an electrodeposition assembly (not shown).
- the surface of the metallic substrate is cathodized with a cathodizing voltage from about 8 V to about 12 V, and a current from about 0.05 mA to about 0.15 mA, for a time from about 30 minutes to about 90 minutes.
- the cathodizing voltage can be about 10 V and the current can be about 0.1 mA.
- the cathodizing time can be about 60 minutes.
- the cathodizing step 120 can further include the step of removing excess nanoparticles from the surface after it has been cathodized.
- the removing step can include wiping the cathodized surface with isopropanol.
- the hydrophobic, coated substrate 200 can include the metallic substrate having the surface 205 , the nanoporous layer of anodic metal oxide 210 formed on the surface 205 , and yttrium oxide nanoparticles 220 embedded in the nanoporous layer 210 .
- the yttrium oxide nanoparticles 220 can have a mean particle size of about 10 nm.
- the yttrium oxide nanoparticles 220 can be embedded in the nanopipettes 215 .
- These embedded yttrium oxide nanoparticles 220 can improve the hydrophobicity of the surface 205 while also providing robust performance against surface abrasion and deformation.
- the nanoparticles 220 can allow the ceramic coating to cure at a lower temperature, which mitigates atomic migration and other changes to the mechanical properties of the metallic substrate.
- the coating composition can be applied to the surface, in step 130 , by an application method selected from the group consisting of flowing, dipping, and spraying.
- an application method selected from the group consisting of flowing, dipping, and spraying.
- the selection of the appropriate method, or combination of methods, is commonly understood by one of ordinary skill in the art.
- a flow or spray coating may be appropriate for large parts or complex shapes, or when two different coatings are required.
- Dip coating may be appropriate, for example, where an entire part is to be coated.
- the coating composition can include a yttrium compound; an additive selected from the group consisting of a cerium compound and a dispersion of yttrium oxide nanoparticles; a water-soluble polymer; and a solvent solution of de-ionized water and a water-soluble alcohol.
- the yttrium is selected from the group consisting of yttrium acetate, yttrium carbonate, yttrium chloride, yttrium fluoride, yttrium hydroxide, yttrium metal, yttrium nitrate, yttrium oxalate, and yttrium sulfate.
- the yttrium is yttrium acetate.
- the cerium compound is water-soluble.
- water-soluble cerium compounds include cerium bromide, cerium chloride, and cerium nitrate.
- the cerium compound is sparingly water-soluble. Examples of sparingly water-soluble cerium compounds include cerium acetate and cerium sulfate.
- the coating composition comprises an additive of a dispersion of yttrium oxide nanoparticles.
- the dispersion of yttrium oxide nanoparticles is preferably compatible with the coating composition and can therefore be added at high levels without precipitation.
- the dispersion of yttrium oxide nanoparticles is in an amount ranging from about 0.1% to about 5% by weight of the coating composition. In a preferred embodiment, the amount of the dispersion of yttrium oxide nanoparticles is from about 0.5% to about 1% by weight of the coating composition.
- a preferred embodiment of the coating composition further comprises a water-soluble polymer.
- This water-soluble polymer component acts to increase the thickness of the final hydrophobic coating.
- the hydrophobic nature of the coating composition without the water-soluble polymer makes it resistant to generating high thickness.
- the addition of a water-soluble polymer to the coating composition increases the final coating thickness to over about 50 nm, over about 75 nm, over about 100 nm, over about 125 nm, over about 150 nm, over about 200 nm, over about 225 nm, or over about 250 nm.
- the water-soluble polymer is selected from the group consisting of poly(n-vinylpyrrolidone), poly(vinylamine) hydrochloride, polymethacrylamide, polyvinyl alcohol, polyacrylamide, poly(ethylene oxide-b-propylene oxide), poly(methacrylic acid), poly(ethylene oxide), poly(n-iso-propylacrylamide), and poly(2-vinylpyridine).
- the water-soluble polymer is polyvinyl alcohol.
- the water-soluble polymer is in an amount ranging from about 1% to about 10% by weight of the coating composition. In yet another embodiment, the amount of the water-soluble polymer is from about 1% to about 5% by weight of the coating composition.
- a preferred embodiment of the coating composition further comprises a solvent solution of de-ionized water and a water-soluble alcohol.
- the water-soluble alcohol is selected from the group consisting of isopropyl alcohol, methanol, ethanol, propanol, and butanol.
- the table below provides the chemical formulas and the water solubility levels of some water-soluble alcohols, but any other water-soluble alcohol may be used.
- the de-ionized water and water-soluble alcohol are present in the solvent solution in a ratio of about 2:1.
- the method includes the step of allowing the coating composition on the surface of the substrate to dry before the heating step 140 .
- the method can comprise the step of drying the coating composition on the surface of the substrate before heating 140 .
- the coating composition can be allowed to dry for about 1 hour, about 2 hours, about 3 hours, or until the coating composition is in the “green state.”
- the method can comprise the step 140 of heating the coated surface at a cure temperature from about 150° C. to about 300° C. for a cure time of at least 2 hours.
- the cure time can be from about 2 hours to about 24 hours.
- the cure temperature can be about 200° C. and the cure time can be at least 2 hours.
- the substrate can include a metallic substrate having a surface 205 , a nanoporous layer of anodic metal oxide 210 formed on the surface 205 , yttrium oxide nanoparticles 220 embedded in the nanoporous layer 210 , and a hydrophobic ceramic coating 230 bonded to the nanoporous layer 210 .
- the hydrophobic, coated substrate 200 depicted in FIG. 3A can be made by the method outlined in FIG. 1A .
- the hydrophobic, coated substrate 200 can omit one or more of these elements.
- the hydrophobic, coated substrate 200 can include the metallic substrate having the surface 205 , the nanoporous layer of anodic metal oxide 210 formed on the surface 205 , and the hydrophobic ceramic coating 230 bonded to the nanoporous layer 210 .
- This hydrophobic, coated substrate 200 can be made by the method outlined in FIG. 1B .
- FIG. 1B Alternatively, with reference to FIG.
- the hydrophobic, coated substrate 200 can include the metallic substrate having the surface 205 , the nanoporous layer of anodic metal oxide 210 formed on the surface 205 , and the yttrium oxide nanoparticles 220 embedded in the nanoporous layer 210 .
- This hydrophobic, coated substrate 200 can be made by the method outlined in FIG. 1C .
- the nanoporous layer of anodic metal oxide 210 can include nanopipettes 215 .
- the nanopipettes 215 can have an average diameter D from about 10 nm to about 100 nm.
- the nanopipettes 215 can have an average diameter D from about 20 nm to about 50 nm.
- the nanopipettes 215 can have a minimum diameter D of about 10 nm and a maximum diameter D of about 100 nm.
- the nanopipettes 215 can have a minimum diameter D of about 10 nm, about 15 nm, about 20 nm, about 25 nm, about 30 nm, about 35 nm, about 40 nm, about 45 nm, about 50 nm, about 55 nm, about 60 nm, about 65 nm, about 70 nm, about 75 nm, about 80 nm, about 85 nm, about 90 nm, about 95 nm, or about 100 nm.
- the nanopipettes 215 can have a maximum diameter D of about 10 nm, about 15 nm, about 20 nm, about 25 nm, about 30 nm, about 35 nm, about 40 nm, about 45 nm, about 50 nm, about 55 nm, about 60 nm, about 65 nm, about 70 nm, about 75 nm, about 80 nm, about 85 nm, about 90 nm, about 95 nm, or about 100 nm.
- the nanopipettes 215 can have an average length L from about 100 nm to about 10 ⁇ m. In another embodiment, the nanopipettes 215 can have an average length L of about 1.5 ⁇ m to about 8 ⁇ m. In a further embodiment, the nanopipettes 215 can have a minimum length L of about 100 nm and a maximum length L of about 10 ⁇ m.
- the nanopipettes 215 can have a minimum length L of about 100 nm, about 500 nm, about 1 ⁇ m, about 1.5 ⁇ m, about 2 ⁇ m, about 2.5 ⁇ m, about 3 ⁇ m, about 3.5 ⁇ m, about 4 ⁇ m, about 4.5 ⁇ m, about 5 ⁇ m, about 5.5 ⁇ m, about 6 ⁇ m, about 6.5 ⁇ m, about 7 ⁇ m, about 7.5 ⁇ m, about 8 ⁇ m, about 8.5 ⁇ m, about 9 ⁇ m, about 9.5 ⁇ m, or about 10 ⁇ m.
- the nanopipettes 215 can have a maximum length L of about 100 nm, about 500 nm, about 1 ⁇ m, about 1.5 ⁇ m, about 2 ⁇ m, about 2.5 ⁇ m, about 3 ⁇ m, about 3.5 ⁇ m, about 4 ⁇ m, about 4.5 ⁇ m, about 5 ⁇ m, about 5.5 ⁇ m, about 6 ⁇ m, about 6.5 ⁇ m, about 7 ⁇ m, about 7.5 ⁇ m, about 8 ⁇ m, about 8.5 ⁇ m, about 9 ⁇ m, about 9.5 ⁇ m, or about 10 ⁇ m.
- the yttrium oxide nanoparticles 220 can have a mean particle size of about 10 nm. In an additional embodiment, the yttrium oxide nanoparticles 220 can be embedded in the nanopipettes 215 . In yet another embodiment, the hydrophobic ceramic coating 230 can comprise yttrium acetate.
- These embedded yttrium oxide nanoparticles 220 can improve the hydrophobicity of the surface 205 while also providing robust performance against surface abrasion and deformation.
- the nanoparticles 220 can allow the ceramic coating 230 to cure at a lower temperature, which mitigates atomic migration and other changes to the mechanical properties of the metallic substrate.
- the resulting hydrophobic, coated substrate 200 will exhibit water-contact angles greater than about 90°, greater than about 95°, greater than about 100°, or greater than about 105°.
- the hydrophobic coating will have a thickness of over about 50 nm, over about 75 nm, over about 100 nm, over about 125 nm, over about 150 nm, over about 200 nm, over about 225 nm, or over about 250 nm.
- the hydrophobic coating will be robust to environmental degradation, mechanical abrasion, and repeated stress. For example, in some embodiments, the hydrophobic coating will exhibit high hardness and resistance to attack by acids and bases.
- the present invention provides a scalable method of applying a hydrophobic coating that exhibits environmentally robust hydrophobicity.
- Coatings produced by these methods are hydrophobic and resistant to environmental degradation, mechanical abrasion, repeated stress, and attack by acids and bases.
- the coatings are thick enough for robust performance and the cure temperature is low enough to mitigate atomic migration and other changes to the mechanical properties of the metallic substrate.
- hydrophobic means lacking an affinity for water, and a surface considered hydrophobic when the water contact angle is at least about 80 degrees.
- water-soluble means the compound is infinitely soluble in water, very soluble in water, freely soluble in water, or soluble in water, as these terms are commonly understood.
- a material is generally considered “very soluble” if about 1 gram of material requires about 1 milliliter or less of solute to dissolve.
- a material is generally considered “freely soluble” if about 1 gram of material requires about 1 milliliter to about 10 milliliters of solute to dissolve.
- a material is generally considered “soluble” if about 1 gram of material requires about 10 milliliters to 30 milliliters of solute to dissolve.
- a material is generally considered “sparingly soluble” if about 1 gram of material requires about 30 milliliters to about 100 milliliters of solute to dissolve.
- a first sample series was prepared using aluminum coupons, which had been cleaned with acetone.
- a ceramic coating was applied to the aluminum substrates by flow or spray coating.
- the ceramic coating composition (for this and all subsequent samples) included a yttrium compound, a dispersion of yttrium oxide nanoparticles, a water-soluble polymer, and a solvent solution of de-ionized water and a water-soluble alcohol.
- the coated substrate was thermally treated at about 300° C. for about 2 hours in ambient atmosphere.
- FIG. 4 An illustration of the first sample series is shown in FIG. 4 , which depicts the ceramic coating 230 on a native aluminum oxide layer 206 formed on the surface 205 of the aluminum substrate.
- a second sample series was prepared using aluminum coupons, which had been cleaned with acetone.
- the second sample series was subjected to an anodization process in an acidic solution of 0.2 M sulfuric acid.
- the aluminum coupons were attached to the anode and a constant voltage of 10 V was applied for about 30 minutes.
- a nanoporous layer of anodized aluminum oxide was developed on the aluminum surface.
- the nanoporous structure included nanopipettes having an average diameter from about 20 nm and an average length of about 1.5 ⁇ m.
- a third sample series was prepared under the same conditions as the second sample series, except the voltage was applied for about 5 hours. Under these anodization conditions, a nanoporous layer of anodized aluminum oxide was developed on the aluminum surface, and the structure included nanopipettes having an average diameter from about 20 nm and an average length of about 8 ⁇ m.
- a fourth sample series was prepared under the same conditions as the second sample series, except the acidic solution comprised 0.2 M hydrochloric acid. Under these anodization conditions, a nanoporous layer of anodized aluminum oxide was developed on the aluminum surface, and the structure included nanopipettes having an average diameter from about 50 nm and an average length of about 500 nm.
- the resulting anodized layers (for the second, third, and fourth samples) exhibited a low water contact angle, which is consistent with aluminum oxide.
- the layers were abrasion resistant, as measured by steel wool hand abrasion tests.
- FIG. 5 cross-sectional scanning electron microscopy, reveals an extremely fine structure.
- the anodized layer (zone 1 ) comprises high aspect-ratio aluminum oxide crystalline grains, which are oriented perpendicular to the substrate, and which have an average diameter of about 20 nm and an average length of about 8 ⁇ m.
- FIG. 3B depicts the nanoporous layer of anodic metal oxide 210 formed on the surface 205 , and the hydrophobic ceramic coating 230 bonded to the nanoporous layer 210 .
- the first sample series which was coated on the native aluminum surface, was compared to the anodized aluminum oxide buffered coatings from the second sample series.
- the table below illustrates the results.
- the hydrophobic ceramic coatings applied directly to the native aluminum surface displayed variable quality in surface finish and hydrophobicity.
- the ceramic coatings that were applied without the anodized layer were easily removed with hand pressure.
- the second sample series had a smooth, hydrophobic surface and exhibited significant abrasion resistance.
- aqueous yttrium oxide colloidal solution with a mean particle size of 10 nm and a solids loading of 5% was prepared.
- the anodized aluminum coupons were then electrically connected to the negative (cathodic) terminal in the electrodeposition assembly. This configuration was selected due to the natural positive surface charge of yttrium oxide in acidic aqueous solution.
- a voltage of about 10 V and a current of about 0.1 mA was maintained for about 1 hour.
- a buildup of excess nanoparticles became visible on the anodized surface. This buildup was removed by wiping the surface with isopropanol, leaving a smooth anodized surface.
- Yttrium oxide nanoparticles were embedded in the anodized surface as illustrated in FIG. 3C .
- the fifth and sixth series were compared and the table below illustrates the results.
- initial testing of the nanoparticle-enhanced coatings indicated significant abrasion resistance.
- the surfaces were hydrophobic, with water contact angles measuring between about 80° and about 90°, which is a reduction from that of the hydrophobic ceramic coating from the second sample series. This is presumably due to incomplete coverage of the surface with yttrium oxide.
- the coated coupons showed extremely robust performance against surface abrasion and deformation, sustaining greater than 5% deformation with no reduction in water contact angle.
- FIG. 3A depicts the nanoporous layer of anodic metal oxide 210 formed on the surface 205 , the yttrium oxide nanoparticles 220 embedded in the nanoporous layer 210 , and the hydrophobic ceramic coating 230 bonded to the nanoporous layer 210 .
- the ninth sample series exhibited a water contact angle greater than or equal to about 90°.
- the seventh, eighth, and ninth series were compared and the table below illustrates the results.
- the nanoparticle-enhanced ninth sample series displayed improved cosmetic quality and higher water contact angles compared to the version without the yttrium oxide nanoparticles (eight series) cured at the same temperature.
- the data show high concentrations of yttrium oxide nanoparticles in the anodic aluminum oxide pores causes enhanced nucleation under the surface and crystallization temperature suppression.
- the seventh and ninth sample series had smooth, high quality coatings, which exhibited robust hydrophobicity. Therefore, the nanoparticle-embedded anodic aluminum oxide buffer layer allows for a lower temperature cure to achieve similar desirable properties, The lower cure temperature mitigates atomic migration and other changes to the mechanical properties of the metallic substrate.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Geology (AREA)
- Nanotechnology (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
Abstract
A hydrophobic coating and a method for applying such a coating to a surface of a metallic substrate. The method can include anodizing a nanoporous layer of anodic metal oxide on the surface; cathodizing yttrium oxide nanoparticles onto the surface; applying a hydrophobic ceramic coating composition to the surface by an application method selected from the group consisting of: flowing, dipping, and spraying; and heating the coated surface at a cure temperature from about 150° C. to about 300° C. for at least 2 hours.
Description
- This application is a divisional of U.S. patent application Ser. No. 15/728,365, filed Oct. 9, 2017 and entitled “HYDROPHOBIC COATINGS FOR METALS INCORPORATING ANODIC AND RARE-EARTH OXIDES AND METHODS OF APPLYING SAME,” which is incorporated herein by reference in its entirety.
- This invention relates generally to hydrophobic coatings and, more particularly, to a hydrophobic coating comprising anodic and rare-earth oxides and methods of applying such a coating to a surface of a metallic substrate.
- Controlling the wetting properties of surfaces has been the subject of scientific investigation. Most existing hydrophobic surfaces rely on low surface energy polymers, such as fluoroalkylsilane, or patterned roughness at low length scales. Both strategies have significant drawbacks. For example, fluorinated polymers lack resistance to abrasion and are easily degraded by ultraviolet light. Similarly, high roughness coatings are often fragile and poorly suited for harsh environments. In addition, these coatings often rely on complex manufacturing techniques that are not easily scalable.
- Aircraft, automotive, and other transparency applications provide additional challenges. For these applications, a hydrophobic coating should maintain high hardness and resistance to attack by acids and bases. Moreover, these applications can involve metallic substrates, with thermal expansion coefficients and elastic moduli that are incompatible with many existing hydrophobic coatings.
- It should be appreciated that there is a need for a scalable method of applying an improved hydrophobic coating having environmentally robust hydrophobicity. The coating should be robust to environmental degradation, mechanical abrasion, and repeated stress, while exhibiting inherently low surface energy without additional surface patterning. For applications involving metallic substrates, the coating should maintain hardness and resistance to attack by acids and bases, while also maintaining a permanent bond to the metallic surface as the surface thermally expands and contracts. The present invention fulfills these needs and provides further related advantages.
- The present invention is embodied in a method of applying a hydrophobic coating to a surface of a metallic substrate, as well as in the hydrophobic coating formed by the method. In one embodiment, the method includes anodizing a nanoporous layer of anodic metal oxide on the surface; applying a hydrophobic ceramic coating composition to the surface, after anodizing the surface, by an application method selected from the group consisting of: flowing, dipping, and spraying; and heating the coated surface at a cure temperature from about 150° C. to about 300° C. for at least 2 hours. In another embodiment, the method further includes the step of cathodizing yttrium oxide nanoparticles onto the before applying the hydrophobic ceramic coating composition to the surface. Each feature or concept is independent, but can be combined with any other feature of concept disclosed in this application.
- In one embodiment, the method includes anodizing a nanoporous layer of anodic metal oxide on the surface, and cathodizing yttrium oxide nanoparticles onto the surface after anodizing the surface. In another embodiment, the method further includes the steps of applying a hydrophobic ceramic coating composition to the surface, after cathodizing the surface, by an application method selected from the group consisting of: flowing, dipping, and spraying; and heating the coated surface at a cure temperature from about 150° C. to about 300° C. for at least 2 hours. Each feature or concept is independent, but can be combined with any other feature of concept disclosed in this application.
- In any one of the preceding embodiments, the method can further include the step of cleaning surface of the metallic substrate with acetone before the anodizing step. In another embodiment, the anodic metal oxide can comprises anodic aluminum oxide. Each feature or concept is independent, but can be combined with any other feature of concept disclosed in this application.
- In any one of the preceding embodiments, the anodizing step can comprise anodizing the surface in an acidic solution having a concentration from about 0.1 M to about 0.3 M, at an anodizing voltage from about 8 V to about 12 V for an anodizing time from about 20 minutes to about 90 minutes. In one embodiment, the acidic solution can have a pH less than about 5. In another embodiment, the acidic solution can comprise an acid selected from the group consisting of: acetic acid, citric acid, hydrogen chloride, nitric acid, and sulfuric acid. In a further embodiment, the acid can comprise sulfuric acid. In an additional embodiment, the concentration can be about 0.2 M. In yet another embodiment, the anodizing voltage can be about 10 V. In one embodiment, the anodizing time can be from about 30 minutes to about 60 minutes. Each feature or concept is independent, but can be combined with any other feature of concept disclosed in this application.
- In any one of the preceding embodiments involving cathodizing, the cathodizing step can comprise cathodizing the surface in a colloidal dispersion of yttrium oxide nanoparticles, at a cathodizing voltage from about 8 V to about 12 V, and a current from about 0.05 mA to about 0.15 mA, for a cathodizing time from about 30 minutes to about 90 minutes. In one embodiment, the yttrium oxide nanoparticles can have a mean particle size of about 10 nm and can be in an amount ranging from about 2% to about 10% by weight of the colloidal dispersion. In another embodiment, the amount of yttrium oxide nanoparticles can be about 5% by weight of the colloidal dispersion. In a further embodiment, the cathodizing voltage can be about 10 V and the current can be about 0.1 mA. In an additional embodiment, the cathodizing time can be about 60 minutes. In one embodiment, the method can further include the step of removing excess nanoparticles from the surface after cathodizing the surface. In another embodiment, the removing step can include wiping the surface with isopropanol. Each feature or concept is independent, but can be combined with any other feature of concept disclosed in this application.
- In any one of the preceding embodiments involving applying a hydrophobic ceramic coating composition to the surface, the method can further include the step of drying the coating composition on the surface of the substrate for about 1 hour. In one embodiment, the method can include heating the coated surface at a cure temperature of about 200° C. In another embodiment, the hydrophobic ceramic coating composition can comprise a yttrium compound, a dispersion of yttrium oxide nanoparticles, a water-soluble polymer, and a solvent solution of de-ionized water and a water-soluble alcohol. In a further embodiment, the yttrium compound can comprise yttrium acetate, the dispersion of yttrium oxide nanoparticles can be in an amount ranging from about 0.5% to about 1% by weight of the coating composition, the water-soluble polymer can comprise polyvinyl alcohol in an amount from about 1% to about 5% by weight of the coating composition, the water-soluble alcohol can comprise isopropyl alcohol, and the de-ionized water and water-soluble alcohol can be present in the solvent solution in a ratio of about 2:1. Each feature or concept is independent, but can be combined with any other feature of concept disclosed in this application.
- In any one of the preceding embodiments, the metallic substrate can comprises a metal selected from the group consisting of: aluminum, titanium, and stainless steel. In one embodiment, the metal can comprise aluminum. Each feature or concept is independent, but can be combined with any other feature of concept disclosed in this application.
- The present invention is also embodied in a hydrophobic, coated substrate. In one embodiment, the substrate can include a metallic substrate having a surface, a nanoporous layer of anodic metal oxide formed on the surface, and a hydrophobic ceramic coating bonded to the nanoporous layer. In another embodiment, the substrate can further include yttrium oxide nanoparticles embedded in the nanoporous layer. Each feature or concept is independent, but can be combined with any other feature of concept disclosed in this application.
- In one embodiment, the hydrophobic, coated substrate can include a metallic substrate having a surface, a nanoporous layer of anodic metal oxide formed on the surface, and yttrium oxide nanoparticles embedded in the nanoporous layer. In another embodiment, the substrate can further include a hydrophobic ceramic coating bonded to the nanoporous layer. Each feature or concept is independent, but can be combined with any other feature of concept disclosed in this application.
- In any one of the preceding embodiments, the nanoporous layer of anodic metal oxide can include nanopipettes. In one embodiment, the nanopipettes can have an average diameter from about 10 nm to about 100 nm. In another embodiment, the nanopipettes can have an average diameter from about 20 nm to about 50 nm. In a further embodiment, the nanopipettes can have a minimum diameter of about 10 nm and a maximum diameter of about 100 nm. In one embodiment, the nanopipettes can have an average length from about 100 nm to about 10 μm. In another embodiment, the nanopipettes can have an average length from about 1.5 μm to about 8 μm. In a further embodiment, the nanopipettes can have a minimum length of about 100 nm and a maximum length of about 10 μm. Each feature or concept is independent, but can be combined with any other feature of concept disclosed in this application.
- In one embodiment, the yttrium oxide nanoparticles can have a mean particle size of about 10 nm. In another embodiment, the yttrium oxide nanoparticles can be embedded in the nanopipettes. In a further embodiment, the hydrophobic ceramic coating can comprise yttrium acetate. Each feature or concept is independent, but can be combined with any other feature of concept disclosed in this application.
- In any one of the preceding embodiments, the metallic substrate can comprise a metal selected from the group consisting of: aluminum, titanium, and stainless steel. In one embodiment, the metal can comprise aluminum. Each feature or concept is independent, but can be combined with any other feature of concept disclosed in this application.
- In any one of the preceding embodiments, the anodic metal oxide can comprise anodic aluminum oxide. Each feature or concept is independent, but can be combined with any other feature of concept disclosed in this application.
- Other features and advantages of the invention should become apparent from the following description of the preferred embodiments, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the invention.
-
FIGS. 1A-1C are flow diagrams showing methods of applying a hydrophobic coating in accordance with some embodiments of the invention. -
FIG. 2A is a cross-sectional illustration of a nanoporous layer of anodic metal oxide formed on the surface of a metallic substrate, in accordance with one embodiment of the invention. -
FIG. 2B is a top-view illustration of a nanoporous layer of anodic metal oxide formed on the surface of a metallic substrate, in accordance with one embodiment of the invention. -
FIG. 3A is a cross-sectional illustration of a hydrophobic, coated substrate, in accordance with one embodiment of the invention. -
FIG. 3B is a cross-sectional illustration of a hydrophobic, coated substrate, in accordance with one embodiment of the invention. -
FIG. 3C is a cross-sectional illustration of a hydrophobic, coated substrate, in accordance with one embodiment of the invention. -
FIG. 4 is a cross-sectional illustration of a hydrophobic ceramic coating applied to an aluminum substrate having a native aluminum oxide layer. -
FIG. 5 is a scanning electron micrograph of an anodized aluminum oxide nanopipette layer, in accordance with one embodiment of the invention. -
FIG. 6 is a photograph of a water droplet on an aluminum surface having a yttrium-oxide-nanoparticle-enhanced hydrophobic, ceramic coating, in accordance with one embodiment of the invention. - With reference now to
FIGS. 1A-1C of the illustrative drawings, there is shown methods of applying a hydrophobic coating to a surface of a metallic substrate in accordance with embodiments of the invention. With particular reference toFIG. 1A , in one embodiment, the method can include astep 110 of anodizing a nanoporous layer of anodic metal oxide on the surface; astep 120 of cathodizing yttrium oxide nanoparticles onto the surface; astep 130 of applying a hydrophobic ceramic coating composition to the surface; and astep 140 of heating the coated surface. - In some embodiments, the method can omit one or more of these steps. For example, with reference now to
FIG. 1B , in one embodiment, the method can include thestep 110 of anodizing a nanoporous layer of anodic metal oxide on the surface, thestep 130 of applying a hydrophobic ceramic coating to the surface, and thestep 140 of heating the coated surface. Alternatively, with reference now toFIG. 1C , in another embodiment, the method can include thestep 110 of anodizing a nanoporous layer of anodic metal oxide on the surface, and thestep 120 of cathodizing yttrium oxide nanoparticles onto the surface. - In one embodiment, the metallic substrate can comprise a metal selected from the group consisting of: aluminum, titanium, and stainless steel. In another embodiment, the metal can comprise aluminum. These metallic substrates can present unique challenges for the design of durable hydrophobic coatings. For example, aluminum, titanium, and stainless steel have thermal expansion coefficients and elastic moduli that are incompatible with many hydrophobic, sol-gel coatings.
- In addition, the self-passivating property of aluminum and titanium surfaces presents an added challenge. Metallic substrates such as aluminum and titanium are known to develop conformal oxide build-up on their surfaces. This oxide layer forms within minutes of atmospheric exposure and reaches thicknesses generally not exceeding 10 nm. The naturally-forming layer can be removed with light abrasion and mechanical deformation, making it difficult to maintain a surface coating with strong adhesion and durability.
- Anodization is an electro-chemical process that changes the surface chemistry of a metal, via oxidation, to produce an anodic oxide layer. Surprisingly, the nanoporous layer of anodic metal oxide formed on the surface by
step 110 can serve to create a permanent bond between sol gel coatings, such as a hydrophobic ceramic coating, and the surface of the metallic substrate. In one embodiment, the anodizingstep 110 can comprise anodizing the surface in an acidic solution. In another embodiment, the acidic solution can have a pH less than about 5. In a further embodiment, the acidic solution can comprise an acid selected from the group consisting of: acetic acid, citric acid, hydrogen chloride, nitric acid, and sulfuric acid. In an additional embodiment, the acid can comprise sulfuric acid. - In one embodiment, the acidic solution can have a concentration from about 0.1 M to about 0.3 M. In another embodiment, the concentration can be about 0.2 M. In a further embodiment, the
step 110 can be performed with an anodizing voltage from about 8 V to about 12 V for an anodizing time from about 20 minutes to about 90 minutes. In an additional embodiment, the anodizing voltage can be about 10 V. In yet another embodiment, the anodizing time can be from about 30 minutes to about 60 minutes. - During the
anodization step 110, self-assembled nanostructures ofanodic metal oxide 210, such as anodic aluminum oxide, can be developed on thesurface 205, as illustrated inFIGS. 2A and 2B . In one embodiment, the anodization parameters described above can produce a nanoporous layer ofanodic metal oxide 210 having an ordered array of cylindrical pores, ornanopipettes 215. The pore diameters D, periodicity, and density distribution of thenanopipettes 215 can be controlled by adjusting the anodization parameters described above. Adjustments to the anodization parameters can be made to control both the diameter D and length L of thenanopipettes 215, independently. - In one embodiment, the
nanopipettes 215 can have an average diameter D from about 10 nm to about 100 nm. In another embodiment, thenanopipettes 215 can have an average diameter D from about 20 nm to about 50 nm. In a further embodiment, thenanopipettes 215 can have a minimum diameter D of about 10 nm and a maximum diameter of about 100 nm. - In one embodiment, the
nanopipettes 215 can have a minimum diameter D of about 10 nm, about 15 nm, about 20 nm, about 25 nm, about 30 nm, about 35 nm, about 40 nm, about 45 nm, about 50 nm, about 55 nm, about 60 nm, about 65 nm, about 70 nm, about 75 nm, about 80 nm, about 85 nm, about 90 nm, about 95 nm, or about 100 nm. In another embodiment, thenanopipettes 215 can have a maximum diameter D of about 10 nm, about 15 nm, about 20 nm, about 25 nm, about 30 nm, about 35 nm, about 40 nm, about 45 nm, about 50 nm, about 55 nm, about 60 nm, about 65 nm, about 70 nm, about 75 nm, about 80 nm, about 85 nm, about 90 nm, about 95 nm, or about 100 nm. - In one embodiment, the
nanopipettes 215 can have an average length L from about 100 nm to about 10 μm. In another embodiment, thenanopipettes 215 can have an average length L from about 1.5 μm to about 8 μm. In a further embodiment, thenanopipettes 215 can have a minimum length L of about 100 nm and a maximum length L of about 10 μm. - In one embodiment, the
nanopipettes 215 can have a minimum length L of about 100 nm, about 500 nm, about 1 μm, about 1.5 μm, about 2 μm, about 2.5 μm, about 3 μm, about 3.5 μm, about 4 μm, about 4.5 μm, about 5 μm, about 5.5 μm, about 6 μm, about 6.5 μm, about 7 μm, about 7.5 μm, about 8 μm, about 8.5 μm, about 9 μm, about 9.5 μm, or about 10 μm. In another embodiment, thenanopipettes 215 can have a maximum length L of about 100 nm, about 500 nm, about 1 μm, about 1.5 μm, about 2 μm, about 2.5 μm, about 3 μm, about 3.5 μm, about 4 μm, about 4.5 μm, about 5 μm, about 5.5 μm, about 6 μm, about 6.5 μm, about 7 μm, about 7.5 μm, about 8 μm, about 8.5 μm, about 9 μm, about 9.5 μm, or about 10 μm. - This nanoporous layer of
anodic metal oxide 210 can enhance material interpenetration and increase the strength of the mechanical and chemical bond between thesurface 205 and, for example, embedded yttrium oxide nanoparticles 220 (FIG. 3C ) a hydrophobic ceramic coating 230 (FIG. 3B ), or both (FIG. 3A ). - With reference again to
FIGS. 1A and 1C , in one embodiment, thecathodizing step 120 can comprise cathodizing the surface in a colloidal dispersion of yttrium oxide nanoparticles. In another embodiment, the yttrium oxide nanoparticles can have a mean particle size of about 10 nm and can be in an amount ranging from about 2% to about 10% by weight of the colloidal dispersion. In a further embodiment, the amount of yttrium oxide nanoparticles can be about 5% by weight of the colloidal dispersion. - In one embodiment, the
cathodizing step 120 comprises electrically connecting the metallic substrate to the negative (cathodic) terminal in an electrodeposition assembly (not shown). In another embodiment, the surface of the metallic substrate is cathodized with a cathodizing voltage from about 8 V to about 12 V, and a current from about 0.05 mA to about 0.15 mA, for a time from about 30 minutes to about 90 minutes. In a further embodiment, the cathodizing voltage can be about 10 V and the current can be about 0.1 mA. In an additional embodiment, the cathodizing time can be about 60 minutes. In yet another embodiment, thecathodizing step 120 can further include the step of removing excess nanoparticles from the surface after it has been cathodized. In one embodiment, the removing step can include wiping the cathodized surface with isopropanol. - Under these cathodizing conditions, embodiments of this method can result in a hydrophobic,
coated substrate 200 as illustrated inFIG. 3C . In one embodiment, the hydrophobic,coated substrate 200 can include the metallic substrate having thesurface 205, the nanoporous layer ofanodic metal oxide 210 formed on thesurface 205, andyttrium oxide nanoparticles 220 embedded in thenanoporous layer 210. In an additional embodiment, theyttrium oxide nanoparticles 220 can have a mean particle size of about 10 nm. In yet another embodiment, theyttrium oxide nanoparticles 220 can be embedded in thenanopipettes 215. - These embedded
yttrium oxide nanoparticles 220 can improve the hydrophobicity of thesurface 205 while also providing robust performance against surface abrasion and deformation. In addition, when they are used in combination with a ceramic coating (FIG. 3A ), such as the ceramic coating discussed below, thenanoparticles 220 can allow the ceramic coating to cure at a lower temperature, which mitigates atomic migration and other changes to the mechanical properties of the metallic substrate. - With reference again to
FIGS. 1A and 1B , the coating composition can be applied to the surface, instep 130, by an application method selected from the group consisting of flowing, dipping, and spraying. The selection of the appropriate method, or combination of methods, is commonly understood by one of ordinary skill in the art. For example, a flow or spray coating may be appropriate for large parts or complex shapes, or when two different coatings are required. Dip coating may be appropriate, for example, where an entire part is to be coated. - In one embodiment, the coating composition can include a yttrium compound; an additive selected from the group consisting of a cerium compound and a dispersion of yttrium oxide nanoparticles; a water-soluble polymer; and a solvent solution of de-ionized water and a water-soluble alcohol.
- The table below provides chemical formulas for the yttrium-based chemical reagents available for sol-gel synthesis. In one embodiment, the yttrium is selected from the group consisting of yttrium acetate, yttrium carbonate, yttrium chloride, yttrium fluoride, yttrium hydroxide, yttrium metal, yttrium nitrate, yttrium oxalate, and yttrium sulfate. In a preferred embodiment, the yttrium is yttrium acetate.
-
Yttrium Compound Formula Yttrium Acetate Y(C2H3O2)3•H2O Yttrium Carbonate Y2(CO3)3•H2O Yttrium Chloride YCl3•(H2O)6 Yttrium Fluoride YF3 Yttrium Hydroxide Y(OH)3•H2O Yttrium Metal Y Yttrium Nitrate Y(NO3)3•H2O Yttrium Oxalate Y2(C2O4)3•H2O Yttrium Sulfate Y2(SO4)3•(H2O)8 - In one embodiment, the cerium compound is water-soluble. Examples of water-soluble cerium compounds include cerium bromide, cerium chloride, and cerium nitrate. In another embodiment, the cerium compound is sparingly water-soluble. Examples of sparingly water-soluble cerium compounds include cerium acetate and cerium sulfate.
- In other embodiments, the coating composition comprises an additive of a dispersion of yttrium oxide nanoparticles. The dispersion of yttrium oxide nanoparticles is preferably compatible with the coating composition and can therefore be added at high levels without precipitation. In one embodiment, the dispersion of yttrium oxide nanoparticles is in an amount ranging from about 0.1% to about 5% by weight of the coating composition. In a preferred embodiment, the amount of the dispersion of yttrium oxide nanoparticles is from about 0.5% to about 1% by weight of the coating composition.
- A preferred embodiment of the coating composition further comprises a water-soluble polymer. This water-soluble polymer component acts to increase the thickness of the final hydrophobic coating. The hydrophobic nature of the coating composition without the water-soluble polymer makes it resistant to generating high thickness. The addition of a water-soluble polymer to the coating composition increases the final coating thickness to over about 50 nm, over about 75 nm, over about 100 nm, over about 125 nm, over about 150 nm, over about 200 nm, over about 225 nm, or over about 250 nm.
- In one embodiment, the water-soluble polymer is selected from the group consisting of poly(n-vinylpyrrolidone), poly(vinylamine) hydrochloride, polymethacrylamide, polyvinyl alcohol, polyacrylamide, poly(ethylene oxide-b-propylene oxide), poly(methacrylic acid), poly(ethylene oxide), poly(n-iso-propylacrylamide), and poly(2-vinylpyridine). In a further embodiment, the water-soluble polymer is polyvinyl alcohol. In one embodiment, the water-soluble polymer is in an amount ranging from about 1% to about 10% by weight of the coating composition. In yet another embodiment, the amount of the water-soluble polymer is from about 1% to about 5% by weight of the coating composition.
- A preferred embodiment of the coating composition further comprises a solvent solution of de-ionized water and a water-soluble alcohol. In one embodiment, the water-soluble alcohol is selected from the group consisting of isopropyl alcohol, methanol, ethanol, propanol, and butanol. The table below provides the chemical formulas and the water solubility levels of some water-soluble alcohols, but any other water-soluble alcohol may be used. In another preferred embodiment, the de-ionized water and water-soluble alcohol are present in the solvent solution in a ratio of about 2:1.
-
Compound Formula Solubility In Water Isopropyl Alcohol C3H8O Miscible Methanol CH3OH Miscible Ethanol CH3CH2OH Miscible Propanol CH3(CH2)2OH Miscible Butanol CH3(CH2)3OH 9 g/100 mL - In one embodiment, not shown, the method includes the step of allowing the coating composition on the surface of the substrate to dry before the
heating step 140. In an alternative embodiment, the method can comprise the step of drying the coating composition on the surface of the substrate beforeheating 140. In either case, the coating composition can be allowed to dry for about 1 hour, about 2 hours, about 3 hours, or until the coating composition is in the “green state.” - With reference again to
FIGS. 1A and 1B , in one embodiment, the method can comprise thestep 140 of heating the coated surface at a cure temperature from about 150° C. to about 300° C. for a cure time of at least 2 hours. In another embodiment, the cure time can be from about 2 hours to about 24 hours. In a further embodiment, the cure temperature can be about 200° C. and the cure time can be at least 2 hours. - With reference again to
FIGS. 3A-3C of the illustrative drawings, there is shown hydrophobic,coated substrates 200 in accordance with embodiments of the invention. With particular reference toFIG. 3A , in one embodiment, the substrate can include a metallic substrate having asurface 205, a nanoporous layer ofanodic metal oxide 210 formed on thesurface 205,yttrium oxide nanoparticles 220 embedded in thenanoporous layer 210, and a hydrophobicceramic coating 230 bonded to thenanoporous layer 210. The hydrophobic,coated substrate 200 depicted inFIG. 3A can be made by the method outlined inFIG. 1A . - In some embodiments, the hydrophobic,
coated substrate 200 can omit one or more of these elements. For example, with reference now toFIG. 3B , in one embodiment, the hydrophobic,coated substrate 200 can include the metallic substrate having thesurface 205, the nanoporous layer ofanodic metal oxide 210 formed on thesurface 205, and the hydrophobicceramic coating 230 bonded to thenanoporous layer 210. This hydrophobic,coated substrate 200 can be made by the method outlined inFIG. 1B . Alternatively, with reference toFIG. 3C , in another embodiment, the hydrophobic,coated substrate 200 can include the metallic substrate having thesurface 205, the nanoporous layer ofanodic metal oxide 210 formed on thesurface 205, and theyttrium oxide nanoparticles 220 embedded in thenanoporous layer 210. This hydrophobic,coated substrate 200 can be made by the method outlined inFIG. 1C . - In one embodiment, the nanoporous layer of
anodic metal oxide 210 can includenanopipettes 215. In another embodiment, thenanopipettes 215 can have an average diameter D from about 10 nm to about 100 nm. In a further embodiment, thenanopipettes 215 can have an average diameter D from about 20 nm to about 50 nm. In an additional embodiment, thenanopipettes 215 can have a minimum diameter D of about 10 nm and a maximum diameter D of about 100 nm. - In one embodiment, the
nanopipettes 215 can have a minimum diameter D of about 10 nm, about 15 nm, about 20 nm, about 25 nm, about 30 nm, about 35 nm, about 40 nm, about 45 nm, about 50 nm, about 55 nm, about 60 nm, about 65 nm, about 70 nm, about 75 nm, about 80 nm, about 85 nm, about 90 nm, about 95 nm, or about 100 nm. In another embodiment, thenanopipettes 215 can have a maximum diameter D of about 10 nm, about 15 nm, about 20 nm, about 25 nm, about 30 nm, about 35 nm, about 40 nm, about 45 nm, about 50 nm, about 55 nm, about 60 nm, about 65 nm, about 70 nm, about 75 nm, about 80 nm, about 85 nm, about 90 nm, about 95 nm, or about 100 nm. - In one embodiment, the
nanopipettes 215 can have an average length L from about 100 nm to about 10 μm. In another embodiment, thenanopipettes 215 can have an average length L of about 1.5 μm to about 8 μm. In a further embodiment, thenanopipettes 215 can have a minimum length L of about 100 nm and a maximum length L of about 10 μm. - In one embodiment, the
nanopipettes 215 can have a minimum length L of about 100 nm, about 500 nm, about 1 μm, about 1.5 μm, about 2 μm, about 2.5 μm, about 3 μm, about 3.5 μm, about 4 μm, about 4.5 μm, about 5 μm, about 5.5 μm, about 6 μm, about 6.5 μm, about 7 μm, about 7.5 μm, about 8 μm, about 8.5 μm, about 9 μm, about 9.5 μm, or about 10 μm. In another embodiment, thenanopipettes 215 can have a maximum length L of about 100 nm, about 500 nm, about 1 μm, about 1.5 μm, about 2 μm, about 2.5 μm, about 3 μm, about 3.5 μm, about 4 μm, about 4.5 μm, about 5 μm, about 5.5 μm, about 6 μm, about 6.5 μm, about 7 μm, about 7.5 μm, about 8 μm, about 8.5 μm, about 9 μm, about 9.5 μm, or about 10 μm. - In one embodiment, the
yttrium oxide nanoparticles 220 can have a mean particle size of about 10 nm. In an additional embodiment, theyttrium oxide nanoparticles 220 can be embedded in thenanopipettes 215. In yet another embodiment, the hydrophobicceramic coating 230 can comprise yttrium acetate. - These embedded
yttrium oxide nanoparticles 220 can improve the hydrophobicity of thesurface 205 while also providing robust performance against surface abrasion and deformation. In addition, when they are used with theceramic coating 230, thenanoparticles 220 can allow theceramic coating 230 to cure at a lower temperature, which mitigates atomic migration and other changes to the mechanical properties of the metallic substrate. - In some embodiments, the resulting hydrophobic,
coated substrate 200 will exhibit water-contact angles greater than about 90°, greater than about 95°, greater than about 100°, or greater than about 105°. The hydrophobic coating will have a thickness of over about 50 nm, over about 75 nm, over about 100 nm, over about 125 nm, over about 150 nm, over about 200 nm, over about 225 nm, or over about 250 nm. In addition, the hydrophobic coating will be robust to environmental degradation, mechanical abrasion, and repeated stress. For example, in some embodiments, the hydrophobic coating will exhibit high hardness and resistance to attack by acids and bases. - It should be appreciated from the foregoing description that the present invention provides a scalable method of applying a hydrophobic coating that exhibits environmentally robust hydrophobicity. Coatings produced by these methods are hydrophobic and resistant to environmental degradation, mechanical abrasion, repeated stress, and attack by acids and bases. In addition, the coatings are thick enough for robust performance and the cure temperature is low enough to mitigate atomic migration and other changes to the mechanical properties of the metallic substrate. For all of these reasons, the methods described in this application, and the resulting coatings, are ideal for aircraft and automotive transparency applications.
- Specific methods, devices, and materials are described, although any methods and materials similar or equivalent to those described can be used in the practice or testing of the present invention. Unless defined otherwise, all technical and scientific terms used in this application have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs.
- As used in this application, singular words such as “a” and “an” mean “one or more” unless clear intent is shown to limit the element to “one.” The term “about” means±2% of the value it modifies.
- As used in this application, the term “hydrophobic” means lacking an affinity for water, and a surface considered hydrophobic when the water contact angle is at least about 80 degrees.
- As used in this application, the term “water-soluble” means the compound is infinitely soluble in water, very soluble in water, freely soluble in water, or soluble in water, as these terms are commonly understood. A material is generally considered “very soluble” if about 1 gram of material requires about 1 milliliter or less of solute to dissolve. A material is generally considered “freely soluble” if about 1 gram of material requires about 1 milliliter to about 10 milliliters of solute to dissolve. A material is generally considered “soluble” if about 1 gram of material requires about 10 milliliters to 30 milliliters of solute to dissolve. A material is generally considered “sparingly soluble” if about 1 gram of material requires about 30 milliliters to about 100 milliliters of solute to dissolve.
- Without further elaboration, it is believed that one skilled in the art, using the proceeding description, can make and use the present invention to the fullest extent. Other objectives, features, and advantages of the present embodiments will become apparent from the following specific examples. The specific examples, while indicating specific embodiments, are provided by way of illustration only. Accordingly, the present invention also includes those various changes and modifications within the spirit and scope of the invention that may become apparent to those skilled in the art from this detailed description. The following examples are illustrative only, and are not limiting of the disclosure in any way whatsoever.
- A first sample series was prepared using aluminum coupons, which had been cleaned with acetone. A ceramic coating was applied to the aluminum substrates by flow or spray coating. The ceramic coating composition (for this and all subsequent samples) included a yttrium compound, a dispersion of yttrium oxide nanoparticles, a water-soluble polymer, and a solvent solution of de-ionized water and a water-soluble alcohol. The coated substrate was thermally treated at about 300° C. for about 2 hours in ambient atmosphere. An illustration of the first sample series is shown in
FIG. 4 , which depicts theceramic coating 230 on a nativealuminum oxide layer 206 formed on thesurface 205 of the aluminum substrate. - A second sample series was prepared using aluminum coupons, which had been cleaned with acetone. The second sample series was subjected to an anodization process in an acidic solution of 0.2 M sulfuric acid. For this process, the aluminum coupons were attached to the anode and a constant voltage of 10 V was applied for about 30 minutes. Under these anodization conditions, a nanoporous layer of anodized aluminum oxide was developed on the aluminum surface. The nanoporous structure included nanopipettes having an average diameter from about 20 nm and an average length of about 1.5 μm.
- A third sample series was prepared under the same conditions as the second sample series, except the voltage was applied for about 5 hours. Under these anodization conditions, a nanoporous layer of anodized aluminum oxide was developed on the aluminum surface, and the structure included nanopipettes having an average diameter from about 20 nm and an average length of about 8 μm.
- A fourth sample series was prepared under the same conditions as the second sample series, except the acidic solution comprised 0.2 M hydrochloric acid. Under these anodization conditions, a nanoporous layer of anodized aluminum oxide was developed on the aluminum surface, and the structure included nanopipettes having an average diameter from about 50 nm and an average length of about 500 nm.
- The resulting anodized layers (for the second, third, and fourth samples) exhibited a low water contact angle, which is consistent with aluminum oxide. The layers were abrasion resistant, as measured by steel wool hand abrasion tests. As shown in
FIG. 5 , cross-sectional scanning electron microscopy, reveals an extremely fine structure. The anodized layer (zone 1) comprises high aspect-ratio aluminum oxide crystalline grains, which are oriented perpendicular to the substrate, and which have an average diameter of about 20 nm and an average length of about 8 μm. - Next, the ceramic coating was applied to the aluminum substrates, in the second sample series, by flow or spray coating, and the coated substrates were thermally treated at about 300° C. for about 2 hours in ambient atmosphere. An illustration of the second sample series is shown in
FIG. 3B , which depicts the nanoporous layer ofanodic metal oxide 210 formed on thesurface 205, and the hydrophobicceramic coating 230 bonded to thenanoporous layer 210. - The first sample series, which was coated on the native aluminum surface, was compared to the anodized aluminum oxide buffered coatings from the second sample series. The table below illustrates the results. As is shown, the hydrophobic ceramic coatings applied directly to the native aluminum surface displayed variable quality in surface finish and hydrophobicity. In addition, the ceramic coatings that were applied without the anodized layer were easily removed with hand pressure. In contrast, the second sample series had a smooth, hydrophobic surface and exhibited significant abrasion resistance.
-
Durability (Steel wool Water Contact with hand Sample Series Appearance Angle pressure) First Splotchy, incomplete <40° Poor (Hydrophobic surface coverage Ceramic Coating without AAO) Second Good 90° Good (Hydrophobic Ceramic Coating with AAO) - For a fifth sample series, aluminum coupons were cleaned according to previous examples, followed by anodization in 0.2 M sulfuric acid, at about 10 V for about 1 hour. After the anodization process, the coupons were cleaned in deionized water. Illustrations of the anodized surface are shown in
FIGS. 2A and 2B . - For a sixth sample series, the following steps were added after anodization. First, an aqueous yttrium oxide colloidal solution with a mean particle size of 10 nm and a solids loading of 5% was prepared. The anodized aluminum coupons were then electrically connected to the negative (cathodic) terminal in the electrodeposition assembly. This configuration was selected due to the natural positive surface charge of yttrium oxide in acidic aqueous solution. A voltage of about 10 V and a current of about 0.1 mA was maintained for about 1 hour. A buildup of excess nanoparticles became visible on the anodized surface. This buildup was removed by wiping the surface with isopropanol, leaving a smooth anodized surface. Yttrium oxide nanoparticles were embedded in the anodized surface as illustrated in
FIG. 3C . - The fifth and sixth series were compared and the table below illustrates the results. As is shown, initial testing of the nanoparticle-enhanced coatings indicated significant abrasion resistance. The surfaces were hydrophobic, with water contact angles measuring between about 80° and about 90°, which is a reduction from that of the hydrophobic ceramic coating from the second sample series. This is presumably due to incomplete coverage of the surface with yttrium oxide. The coated coupons showed extremely robust performance against surface abrasion and deformation, sustaining greater than 5% deformation with no reduction in water contact angle.
-
Durability (Steel wool Water Contact with hand Sample Series Appearance Angle pressure) Fifth Good <20° Very Good (AAO without Yttrium Oxide Nanoparticles) Sixth Good 80°-90° Very Good (AAO with Yttrium Oxide Nanoparticles) - For a seventh sample series, aluminum coupons were cleaned, anodized, and coated with the ceramic coating according to the process outlined for the second sample series. The ceramic coating was cured at about 300° C.
- For an eighth sample series, aluminum coupons were prepared in an identical configuration to the seventh sample series, but with a reduced 200° C. cure.
- For a ninth sample series, aluminum coupons were prepared in an identical configuration to the eight sample series. However, before the hydrophobic ceramic coating was applied, the anodized coupons were cathodized in a colloidal dispersion of yttrium oxide nanoparticles, as described above in connection with the sixth sample series. An illustration of the ninth sample series is shown in
FIG. 3A , which depicts the nanoporous layer ofanodic metal oxide 210 formed on thesurface 205, theyttrium oxide nanoparticles 220 embedded in thenanoporous layer 210, and the hydrophobicceramic coating 230 bonded to thenanoporous layer 210. With reference toFIG. 6 , the ninth sample series exhibited a water contact angle greater than or equal to about 90°. - The seventh, eighth, and ninth series were compared and the table below illustrates the results. As is shown, the nanoparticle-enhanced ninth sample series displayed improved cosmetic quality and higher water contact angles compared to the version without the yttrium oxide nanoparticles (eight series) cured at the same temperature. The data show high concentrations of yttrium oxide nanoparticles in the anodic aluminum oxide pores causes enhanced nucleation under the surface and crystallization temperature suppression. The seventh and ninth sample series had smooth, high quality coatings, which exhibited robust hydrophobicity. Therefore, the nanoparticle-embedded anodic aluminum oxide buffer layer allows for a lower temperature cure to achieve similar desirable properties, The lower cure temperature mitigates atomic migration and other changes to the mechanical properties of the metallic substrate.
-
Water Contact Sample Series Appearance Angle Cure Temperature Seventh Good ≥90° 300° C. (AAO/Hydrophobic Ceramic w/o Yttrium Oxide Nanoparticles Eighth Okay 70°-90° 200° C. (AAO/Hydrophobic Ceramic w/Yttrium Oxide Nanoparticles) Ninth Good ≥90° 200° C. (AAO/Hydrophobic Ceramic w/Yttrium Oxide Nanoparticles) - The invention has been described in detail with reference only to the presently preferred embodiments. Persons skilled in the art will appreciate that various modifications can be made without departing from the invention. Accordingly, the invention is defined only by the following claims.
Claims (20)
1. A hydrophobic, coated substrate comprising:
a metallic substrate having a surface;
a nanoporous layer of anodic metal oxide formed on the surface; and
a hydrophobic ceramic coating bonded to the nanoporous layer.
2. The substrate of claim 1 , wherein the metallic substrate comprises a metal selected from the group consisting of: aluminum, titanium, and stainless steel.
3. The substrate of claim 2 , wherein the metal is aluminum.
4. The substrate of claim 3 , wherein the anodic metal oxide comprises anodic aluminum oxide.
5. The substrate of claim 1 , wherein the nanoporous layer of anodic metal oxide comprises nanopipettes having an average diameter from about 10 nm to about 100 nm and an average length from about 100 nm to about 10 μm
6. The substrate of claim 55, wherein the average diameter is from about 20 nm to about 50 nm and the average length is from about 1.5 μm to about 8 μm.
7. The substrate of claim 6 , further comprising yttrium oxide nanoparticles having a mean particle size of about 10 nm, embedded in the nanopipettes.
8. The substrate of claim 1 , wherein the hydrophobic ceramic coating comprises:
a yttrium compound;
a dispersion of yttrium oxide nanoparticles;
a water-soluble polymer; and
a solvent solution of de-ionized water and a water-soluble alcohol.
9. The substrate of claim 8 , wherein the yttrium oxide nanoparticles have a mean particle size of about 10 nm and are in an amount ranging from about 2 percent to about 10 percent by weight of the dispersion.
10. The substrate of claim 9 , wherein the yttrium oxide nanoparticles are in an amount of about 5 percent by weight of the dispersion.
11. A hydrophobic, coated substrate comprising:
a metallic substrate having a surface;
a nanoporous layer of anodic metal oxide formed on the surface;
yttrium oxide nanoparticles embedded in the nanoporous layer; and
a hydrophobic ceramic coating bonded to the nanoporous layer.
12. The substrate of claim 11 , wherein the metallic substrate comprises a metal selected from the group consisting of: aluminum, titanium, and stainless steel.
13. The substrate of claim 12 , wherein the metal is aluminum.
14. The substrate of claim 13 , wherein the anodic metal oxide comprises anodic aluminum oxide.
15. The substrate of claim 11 , wherein the nanoporous layer of anodic metal oxide comprises nanopipettes having an average diameter from about 10 nm to about 100 nm and an average length from about 100 nm to about 10 μm
16. The substrate of claim 15 , wherein the average diameter is from about 20 nm to about 50 nm and the average length is from about 1.5 μm to about 8 μm.
17. The substrate of claim 16 , wherein the yttrium oxide nanoparticles have a mean particle size of about 10 nm and are embedded in the nanopipettes.
18. The substrate of claim 11 , wherein the hydrophobic ceramic coating comprises:
yttrium acetate;
a dispersion of yttrium oxide nanoparticles in an amount ranging from about 0.1 percent to about 5 percent by weight of the hydrophobic ceramic coating;
polyvinyl alcohol in an amount from about 1 percent to about 5 percent by weight of the hydrophobic ceramic coating; and
a solvent solution of de-ionized water and isopropyl alcohol in a ratio of about 2:1.
19. The substrate of claim 18 , wherein the yttrium oxide nanoparticles in the dispersion have a mean particle size of about 10 nm.
20. The substrate of claim 19 , wherein the yttrium oxide nanoparticles in the dispersion are in an amount ranging from about 0.5 percent to about 1 percent by weight of the hydrophobic ceramic coating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/741,644 US20200224316A1 (en) | 2017-10-09 | 2020-01-13 | Hydrophobic coatings for metals incorporating anodic and rare-earth oxides and methods of applying same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/728,365 US10533256B2 (en) | 2017-10-09 | 2017-10-09 | Hydrophobic coatings for metals incorporating anodic and rare-earth oxides and methods of applying same |
US16/741,644 US20200224316A1 (en) | 2017-10-09 | 2020-01-13 | Hydrophobic coatings for metals incorporating anodic and rare-earth oxides and methods of applying same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/728,365 Division US10533256B2 (en) | 2017-10-09 | 2017-10-09 | Hydrophobic coatings for metals incorporating anodic and rare-earth oxides and methods of applying same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20200224316A1 true US20200224316A1 (en) | 2020-07-16 |
Family
ID=65992440
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/728,365 Active US10533256B2 (en) | 2017-10-09 | 2017-10-09 | Hydrophobic coatings for metals incorporating anodic and rare-earth oxides and methods of applying same |
US16/741,644 Abandoned US20200224316A1 (en) | 2017-10-09 | 2020-01-13 | Hydrophobic coatings for metals incorporating anodic and rare-earth oxides and methods of applying same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/728,365 Active US10533256B2 (en) | 2017-10-09 | 2017-10-09 | Hydrophobic coatings for metals incorporating anodic and rare-earth oxides and methods of applying same |
Country Status (1)
Country | Link |
---|---|
US (2) | US10533256B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111875997A (en) * | 2020-07-29 | 2020-11-03 | 济南东方结晶器有限公司 | Microgel limestone polymer hole sealing coating agent for improving wear resistance and corrosion resistance of chromium coating layer |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018035494A1 (en) * | 2016-08-19 | 2018-02-22 | GKN Aerospace Transparency Systems, Inc. | Transparent hydrophobic mixed oxide coatings and methods |
CN110230083A (en) * | 2019-07-09 | 2019-09-13 | 江苏飞拓界面工程科技有限公司 | A kind of aluminium and aluminium alloy anode oxide hole sealing agent and its application |
CN113005495B (en) * | 2021-02-25 | 2023-01-24 | 佛山科学技术学院 | Aluminum-based hydrophobic coating and preparation method thereof |
CN117904685A (en) * | 2024-03-15 | 2024-04-19 | 西安交通大学 | Preparation method of wear-resistant and corrosion-resistant ceramic layer on magnesium alloy surface |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140318974A1 (en) * | 2013-04-29 | 2014-10-30 | Keronite International Limited | Corrosion and erosion-resistant mixed oxide coatings for the protection of chemical and plasma process chamber components |
US20150259818A1 (en) * | 2012-10-08 | 2015-09-17 | Hans Und Ottmar Binder Grb | Process for producing a sol-gel coating on a surface to be coated of a component and also corresponding component |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7569132B2 (en) | 2001-10-02 | 2009-08-04 | Henkel Kgaa | Process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating |
US7695767B2 (en) | 2005-01-06 | 2010-04-13 | The Boeing Company | Self-cleaning superhydrophobic surface |
US20130251942A1 (en) | 2012-03-23 | 2013-09-26 | Gisele Azimi | Hydrophobic Materials Incorporating Rare Earth Elements and Methods of Manufacture |
US9663400B2 (en) | 2013-11-08 | 2017-05-30 | Corning Incorporated | Scratch-resistant liquid based coatings for glass |
GB2541756C (en) * | 2015-08-28 | 2021-03-17 | Tata Motors European Technical Ct Plc | Coated substrate and method of fabrication thereof |
-
2017
- 2017-10-09 US US15/728,365 patent/US10533256B2/en active Active
-
2020
- 2020-01-13 US US16/741,644 patent/US20200224316A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150259818A1 (en) * | 2012-10-08 | 2015-09-17 | Hans Und Ottmar Binder Grb | Process for producing a sol-gel coating on a surface to be coated of a component and also corresponding component |
US20140318974A1 (en) * | 2013-04-29 | 2014-10-30 | Keronite International Limited | Corrosion and erosion-resistant mixed oxide coatings for the protection of chemical and plasma process chamber components |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111875997A (en) * | 2020-07-29 | 2020-11-03 | 济南东方结晶器有限公司 | Microgel limestone polymer hole sealing coating agent for improving wear resistance and corrosion resistance of chromium coating layer |
Also Published As
Publication number | Publication date |
---|---|
US10533256B2 (en) | 2020-01-14 |
US20190106794A1 (en) | 2019-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200224316A1 (en) | Hydrophobic coatings for metals incorporating anodic and rare-earth oxides and methods of applying same | |
Balaur et al. | Wetting behaviour of layers of TiO 2 nanotubes with different diameters | |
KR101141619B1 (en) | Method of manufacturing superhydrophobic material and superhydrophobic material manufactured by the method | |
US9108880B2 (en) | Nanostructured superhydrophobic, superoleophobic and/or superomniphobic coatings, methods for fabrication, and applications thereof | |
Ali et al. | Techniques for the fabrication of super-hydrophobic surfaces and their heat transfer applications | |
US10953432B2 (en) | Superhydrophobic coatings | |
CN1608174A (en) | Method for coating objects | |
KR101150173B1 (en) | Laminate having superhydrophobic surface and process for preparing the same | |
KR19990081881A (en) | Substrates with improved hydrophilic or hydrophobic properties including irregularities | |
CN110627376A (en) | A kind of nano-SiO2 super-hydrophobic coating and preparation process and use | |
CN101190435A (en) | Method for preparing superhydrophobic thin films on silicon surfaces | |
CN106011799A (en) | Preparation method for corrosion-resistant and super-hydrophobic aluminum oxide membrane for zinc layer | |
EP3694809A1 (en) | Hydrophobic coatings for metals incorporating anodic and rare-earth oxides and methods of applying same | |
CN102345149A (en) | Preparation method of aluminium foil bionic nanostructured super-hydrophobic anti-condensation functional surface | |
JP2002371381A (en) | Surface treated aluminum material, manufacturing method therefor, and aluminum compact | |
CN1858089A (en) | Process for preparing hydrophobic polyimide thin film | |
DE112008002441B4 (en) | Metal materials with hybrid-stabilized oxide layer, process for the production and their use | |
US11118270B1 (en) | Method for preparing icephobic/superhydrophobic surfaces on metals, ceramics, and polymers | |
Pastore et al. | Fabrication of ultra thin anodic aluminium oxide membranes by low anodization voltages | |
DE10248118B4 (en) | Method for applying a thin-ceramic coating material to a surface to be coated of a motor vehicle attachment and motor vehicle attachment | |
KR101238670B1 (en) | Manufacturing method of hydrophilic thin film | |
JP2013256000A (en) | Water-repellent and oil-repellent material, and method for producing the same | |
TWI327156B (en) | ||
Sari et al. | Morphology of one-time coated palladium-alumina composite membrane prepared by sol-gel process and electroless plating technique | |
KR101511734B1 (en) | Surface modification method of ceramic materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GKN AEROSPACE TRANSPARENCY SYSTEMS INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RANKIN, CHRISTOPHER;MONCUR, MARLOWE;REEL/FRAME:051501/0042 Effective date: 20180430 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |