US20200205105A1 - Systems and Methods for Operation of Wireless User Devices with Cellular and Wi-Fi Interfaces - Google Patents

Systems and Methods for Operation of Wireless User Devices with Cellular and Wi-Fi Interfaces Download PDF

Info

Publication number
US20200205105A1
US20200205105A1 US16/808,008 US202016808008A US2020205105A1 US 20200205105 A1 US20200205105 A1 US 20200205105A1 US 202016808008 A US202016808008 A US 202016808008A US 2020205105 A1 US2020205105 A1 US 2020205105A1
Authority
US
United States
Prior art keywords
cluster
ues
txop
sta
leader
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/808,008
Inventor
Peiying Zhu
Osama Aboul-Magd
Jung Hoon SUH
Kwok Shum Au
Sheng Sun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to US16/808,008 priority Critical patent/US20200205105A1/en
Publication of US20200205105A1 publication Critical patent/US20200205105A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0289Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/32Connectivity information management, e.g. connectivity discovery or connectivity update for defining a routing cluster membership
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to systems and methods for wireless communications, and, in particular embodiments, to systems and methods for operation of wireless user devices with cellular and Wi-Fi interfaces.
  • Many wireless smart devices such as smart phones and tablets are equipped with multiple interfaces to allow access to wireless networks based on cellular technologies such as LTE and to other wireless networks based on Wi-Fi technology, as shown in FIG. 1 .
  • FIG. 1 is a logical diagram showing a cellular base station (BS) 102 and a Wi-Fi access point (AP) 104 as two separate physical entities. In practice these two network entities can be co-located.
  • Cellular networks operate in licensed bands where operation is limited to a single operator network and no sharing with other devices is allowed. Operation in licensed bands enables cellular networks to support elaborate resource sharing mechanisms and precise synchronization. Resource allocation and synchronization information usually are transmitted from the BS 102 to user equipments (UEs) 106 using dedicated control channels.
  • UEs user equipments
  • Wi-Fi networks operate in unlicensed bands where interference from other (non-Wi-Fi) devices is common. Consequently, transmission opportunities (TXOPs) for stations (STAs) 108 are allocated on a random basis using carrier sense multiple access with collision avoidance (CSMA/CA). Uplink (UL) and downlink (DL) transmission periods are not scheduled. This is in contrast to cellular networks, where UL and DL are scheduled and the schedule is kept at all participating network devices.
  • TXOPs transmission opportunities
  • STAs stations
  • CSMA/CA carrier sense multiple access with collision avoidance
  • An embodiment method for wireless communication includes grouping a plurality of user equipments (UEs) wirelessly coupled to a cellular base station (BS) into a UE cluster to function as a Wi-Fi virtual station (V-STA), and communicating with an access point (AP) to contend for a Wi-Fi transmission opportunity (TXOP) for the V-STA.
  • the cellular BS contends for the TXOP on behalf of the UE cluster using a carrier sense multiple access with collision avoidance (CSMA-CA) procedure.
  • CSMA-CA carrier sense multiple access with collision avoidance
  • one UE in the UE cluster is selected as a leader UE to contend for the TXOP on behalf of the UE cluster using a CSMA-CA procedure.
  • FIG. 1 illustrates cellular and Wi-Fi networks
  • FIG. 2 illustrates a UE cluster
  • FIG. 3 illustrates Wi-Fi transmission opportunities
  • FIG. 4 illustrates a transmission format using UL MU-MIMO
  • FIG. 5 illustrates a transmission format
  • FIG. 6 illustrates a computing platform that may be used for implementing, for example, the devices and methods described herein, in accordance with an embodiment.
  • CSMA/CA While the operation of CSMA/CA in a Wi-Fi network affects the achieved network throughput negatively (the media access control (MAC) efficiency using CSMA/CA usually doesn't exceed 50%), CSMA/CA has an advantage in allowing unsynchronized access to the wireless medium in both the UL and DL directions.
  • MAC media access control
  • An embodiment takes into account the case where the cellular base station and the Wi-Fi AP are collocated in a single physical entity that enables better management of resources by the service provider.
  • Cellular as well as Wi-Fi resources, including radio resources, are allocated so as to improve overall user performance and experience.
  • an embodiment provides a mechanism to enable synchronous transmission and, at the same time, to maintain the unlicensed spectrum sharing mechanism.
  • An embodiment provides a mechanism for a cluster of cellular UEs, equipped with cellular and Wi-Fi interfaces as shown in FIG. 1 , to acquire a Wi-Fi transmission opportunity.
  • the UE cluster arranges its DL and UL transmissions based on some transmission format, including orthogonal frequency division multiple access (OFDMA).
  • OFDMA orthogonal frequency division multiple access
  • An embodiment uses Wi-Fi infrastructure to enhance cellular performance.
  • An embodiment introduces a UE cluster as a virtual single entity competing for Wi-Fi resources.
  • An embodiment introduces a UE TXOP, during which resources are assigned to members of the cluster.
  • Embodiments provide various transmission formats for use during the UE TXOP.
  • An embodiment uses licensed bands for control and Wi-Fi bands for data.
  • the Wi-Fi resources are used to enhance cellular network performance irrespective of the congestion conditions of the cellular network.
  • Embodiments may be implemented in cellular and Wi-Fi networks and devices, such as base stations, access points, user equipments, stations, and the like.
  • FIG. 2 shows a UE cluster 202 in a wireless system 200 .
  • a number of cellular UEs 204 are attempting to utilize service offered by the Wi-Fi network 206 to achieve a specific goal. This goal may include cellular off-loading to avoid cellular network congestion or improve cellular network efficiency by allowing the UEs 204 to use Wi-Fi facilities for device-to-device (D2D) communication.
  • D2D device-to-device
  • the formation of the UE cluster is the responsibility of the BS and may be preconfigured.
  • the criteria for forming a cluster may include geographical vicinity, availability of specific features, etc.
  • the UE cluster is presented to the Wi-Fi network 206 as a virtual station (V-STA).
  • V-STA competes for the Wi-Fi resources behaving like any other Wi-Fi STA, e.g., performing CSMA/CA and the related back-off procedure.
  • Several methods may be used for allowing a V-STA to contend for the medium.
  • members of the V-STA may select a UE to contend for the medium on behalf of the cluster.
  • the selected UE is then the leader UE and its identity may change from one transmission opportunity to the other based on the UE mobility profile.
  • the cellular BS may contend for the medium on behalf of the cluster.
  • the BS architecture includes a module that allows association with the Wi-Fi AP and performance of the CSMA/CA procedure. Access to the medium and synchronization information can then be communicated to the cluster UE using the cellular control channel.
  • FIG. 3 shows typical channel occupancy as a function of the time.
  • FIG. 3 shows the alternation of transmission opportunities (TXOPs) between UE cluster and Wi-Fi STA.
  • TXOPs transmission opportunities
  • other devices are silenced (i.e., are not allowed to transmit to the medium) by deferring their transmissions for the duration of the TXOP in order not to interfere with the UE cluster transmissions.
  • Forcing a group of stations to defer their transmissions until a STA TXOP 304 may be accomplished using physical (PHY) or the MAC headers.
  • PHY physical
  • Spoofing of legacy STAs using the PHY header is commonly used to force legacy STAs to remain silent for a period of time.
  • the use of MAC frames such as Request to Send (RTS) and Clear to Send (CTS) are typically used to set the network allocation vector (NAV) and force STAs to remain silent for a given duration of time. Both methods are described in “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” IEEE 802.11, March 2012, which is hereby incorporated herein by reference.
  • members of the UE cluster ignore the silencing request at the PHY or MAC layers and stay in the active state to participate in the pending transmissions.
  • This objective can be achieved by the introduction of a new MAC frame that includes the identity of the UE groups for which the TXOP is acquired. The same frame can be used to set the NAV for other STAs including those UEs that are not members of the group. This new frame may be transmitted by the V-STA at the start of the UE TXOP.
  • the relevant identifier may be included in the PHY header in the same way the multi-user multiple-input multiple-output (MU-MIMO) Group Identifier is included in the PHY preamble. The identifier matches the UE cluster identifier that may be set by the BS.
  • MU-MIMO multi-user multiple-input multiple-output
  • the transmission format uses the OFDM-based Wi-Fi frame format.
  • FIG. 4 shows the transmission format using UL MU-MIMO.
  • UL MU-MIMO allows member UEs or a subset of them to simultaneously transmit Physical Layer Convergence Procedure (PLCP) Protocol Data Units (PPDUs) 404 in the UL direction.
  • PLCP Physical Layer Convergence Procedure
  • PPDUs Protocol Data Units
  • the AP transmits a sync frame 402 to indicate those UEs participating in the current UL transmission and synchronizes them.
  • ACKs 406 are sent by the AP to indicate successful transmissions and are sent in sequence or possibly using DL MU-MIMO.
  • OFDMA for UL and DL transmissions.
  • the use of OFDMA may follow the same format defined for DL transmissions in LTE, where resource blocks are allocated to different UEs by either the AP or the BS.
  • the format for DL transmissions is defined in TS 36.211 Evolved Universal Terrestrial Radio Access (E-UTRA), Physical Channel and Modulation, TS 36.212 Evolved Universal Terrestrial Radio Access (E-UTRA): Multiplexing and Channel Coding, and TS 36.213 Evolved Universal Terrestrial Radio Access (E-UTRA), Physical Layer Procedures, all of which references are hereby incorporated herein by reference.
  • the LTE transmission format is not backward compatible and cannot be interpreted by some of the Wi-Fi devices, e.g., devices based on 802.11n or 802.11ac.
  • a new frame that is backward compatible with legacy stations can be used at the start of the UE TXOP to set the NAV function at these stations to the desired value.
  • a transmission format 500 of the form shown in FIG. 5 can be used for both UL and DL transmissions.
  • the format of FIG. 5 can be thought of as midway between a pure LTE-OFDMA format and a pure IEEE 802.11n-OFDM format. It divides the available spectrum into a number of 20 MHz (other segmentation is also possible) channels or segments, and allocates a number of segments to each user.
  • FIG. 5 shows an example where 20 MHz channels and 64 sub-carriers are allocated for each UE.
  • the length of the frame in FIG. 5 is not limited by time. Instead a maximum frame length is propagated to members of the UE cluster at the beginning of the UE TXOP.
  • the maximum frame length may be configured to be dynamically adjusted by the AP for each UE TXOP.
  • UEs use padding whenever necessary to have their frames aligned at the maximum frame length. As many OFDM symbols as needed are used to encode the MAC frame up to the maximum frame length.
  • the format shown in FIG. 5 is backward compatible, where the first few OFDM symbol of every frame may be used to spoof legacy stations by adding the legacy preamble at the start of the PPDU.
  • the same transmission format may be used for both the UL and DL directions. In both cases the AP or the BS synchronizes members of the UE cluster before the start of the transmission.
  • a MU-MIMO may be applied per each component carrier on top of the transmission format shown in FIG. 5 .
  • FIG. 6 is a block diagram of a processing system 600 that may be used for implementing the devices and methods disclosed herein. Specific devices may utilize all of the components shown, or only a subset of the components, and levels of integration may vary from device to device. Furthermore, a device may contain multiple instances of a component, such as multiple processing units, processors, memories, transmitters, receivers, etc.
  • the processing system 600 may comprise a processing unit 602 equipped with one or more input/output devices, such as a speaker, microphone, mouse, touchscreen, keypad, keyboard, printer, display, and the like.
  • the processing unit 602 may include a central processing unit (CPU) 604 , memory 606 , a mass storage device 608 , a video adapter 610 , and an I/O interface 612 connected to a bus 614 .
  • CPU central processing unit
  • the bus 614 may be one or more of any type of several bus architectures including a memory bus or memory controller, a peripheral bus, video bus, or the like.
  • the CPU 604 may comprise any type of electronic data processor.
  • the memory 606 may comprise any type of non-transitory system memory such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous DRAM (SDRAM), read-only memory (ROM), a combination thereof, or the like.
  • the memory may include ROM for use at boot-up, and DRAM for program and data storage for use while executing programs.
  • the mass storage device 608 may comprise any type of non-transitory storage device configured to store data, programs, and other information and to make the data, programs, and other information accessible via the bus.
  • the mass storage device may comprise, for example, one or more of a solid state drive, hard disk drive, a magnetic disk drive, an optical disk drive, or the like.
  • the video adapter 610 and the I/O interface 612 provide interfaces to couple external input and output devices to the processing unit.
  • input and output devices include the display 616 coupled to the video adapter and the mouse/keyboard/printer 618 coupled to the I/O interface.
  • Other devices may be coupled to the processing unit, and additional or fewer interface cards may be utilized.
  • a serial interface such as Universal Serial Bus (USB) (not shown) may be used to provide an interface for a printer.
  • USB Universal Serial Bus
  • the processing unit 602 also includes one or more network interfaces 620 , which may comprise wired links, such as an Ethernet cable or the like, and/or wireless links to access nodes or different networks 622 .
  • the network interface 620 allows the processing unit to communicate with remote units via the networks.
  • the network interface 620 may provide wireless communication via one or more transmitters/transmit antennas and one or more receivers/receive antennas.
  • the processing unit is coupled to a local-area network or a wide-area network for data processing and communications with remote devices, such as other processing units, the Internet, remote storage facilities, or the like.

Abstract

An embodiment method for wireless communication includes grouping a plurality of user equipments (UEs) wirelessly coupled to a cellular base station (BS) into a UE cluster to function as a Wi-Fi virtual station (V-STA), and communicating with an access point (AP) to contend for a Wi-Fi transmission opportunity (TXOP) for the V-STA. In a further embodiment, the cellular BS contends for the TXOP on behalf of the UE cluster using a carrier sense multiple access with collision avoidance (CSMA-CA) procedure. In an alternative embodiment, one UE in the UE cluster is selected as a leader UE to contend for the TXOP on behalf of the UE cluster using a CSMA-CA procedure.

Description

  • This application is a divisional of U.S. patent application Ser. No. 14/279,038, filed on May 15, 2014, which claims the benefit of U.S. Provisional Application No. 61/823,732, filed on May 15, 2013, all of which applications are hereby incorporated herein by reference.
  • TECHNICAL FIELD
  • The present invention relates to systems and methods for wireless communications, and, in particular embodiments, to systems and methods for operation of wireless user devices with cellular and Wi-Fi interfaces.
  • BACKGROUND
  • Many wireless smart devices such as smart phones and tablets are equipped with multiple interfaces to allow access to wireless networks based on cellular technologies such as LTE and to other wireless networks based on Wi-Fi technology, as shown in FIG. 1.
  • FIG. 1 is a logical diagram showing a cellular base station (BS) 102 and a Wi-Fi access point (AP) 104 as two separate physical entities. In practice these two network entities can be co-located. Cellular networks operate in licensed bands where operation is limited to a single operator network and no sharing with other devices is allowed. Operation in licensed bands enables cellular networks to support elaborate resource sharing mechanisms and precise synchronization. Resource allocation and synchronization information usually are transmitted from the BS 102 to user equipments (UEs) 106 using dedicated control channels.
  • On the other hand Wi-Fi networks operate in unlicensed bands where interference from other (non-Wi-Fi) devices is common. Consequently, transmission opportunities (TXOPs) for stations (STAs) 108 are allocated on a random basis using carrier sense multiple access with collision avoidance (CSMA/CA). Uplink (UL) and downlink (DL) transmission periods are not scheduled. This is in contrast to cellular networks, where UL and DL are scheduled and the schedule is kept at all participating network devices.
  • SUMMARY OF THE INVENTION
  • An embodiment method for wireless communication includes grouping a plurality of user equipments (UEs) wirelessly coupled to a cellular base station (BS) into a UE cluster to function as a Wi-Fi virtual station (V-STA), and communicating with an access point (AP) to contend for a Wi-Fi transmission opportunity (TXOP) for the V-STA. In a further embodiment, the cellular BS contends for the TXOP on behalf of the UE cluster using a carrier sense multiple access with collision avoidance (CSMA-CA) procedure. In an alternative embodiment, one UE in the UE cluster is selected as a leader UE to contend for the TXOP on behalf of the UE cluster using a CSMA-CA procedure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 illustrates cellular and Wi-Fi networks;
  • FIG. 2 illustrates a UE cluster;
  • FIG. 3 illustrates Wi-Fi transmission opportunities;
  • FIG. 4 illustrates a transmission format using UL MU-MIMO;
  • FIG. 5 illustrates a transmission format; and
  • FIG. 6 illustrates a computing platform that may be used for implementing, for example, the devices and methods described herein, in accordance with an embodiment.
  • DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
  • The making and using of the presently preferred embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.
  • While the operation of CSMA/CA in a Wi-Fi network affects the achieved network throughput negatively (the media access control (MAC) efficiency using CSMA/CA usually doesn't exceed 50%), CSMA/CA has an advantage in allowing unsynchronized access to the wireless medium in both the UL and DL directions.
  • An embodiment takes into account the case where the cellular base station and the Wi-Fi AP are collocated in a single physical entity that enables better management of resources by the service provider. Cellular as well as Wi-Fi resources, including radio resources, are allocated so as to improve overall user performance and experience.
  • In a dual radio system, an embodiment provides a mechanism to enable synchronous transmission and, at the same time, to maintain the unlicensed spectrum sharing mechanism.
  • An embodiment provides a mechanism for a cluster of cellular UEs, equipped with cellular and Wi-Fi interfaces as shown in FIG. 1, to acquire a Wi-Fi transmission opportunity. During the acquired opportunity, the UE cluster arranges its DL and UL transmissions based on some transmission format, including orthogonal frequency division multiple access (OFDMA).
  • An embodiment uses Wi-Fi infrastructure to enhance cellular performance. An embodiment introduces a UE cluster as a virtual single entity competing for Wi-Fi resources. An embodiment introduces a UE TXOP, during which resources are assigned to members of the cluster. Embodiments provide various transmission formats for use during the UE TXOP. An embodiment uses licensed bands for control and Wi-Fi bands for data. The Wi-Fi resources are used to enhance cellular network performance irrespective of the congestion conditions of the cellular network. Embodiments may be implemented in cellular and Wi-Fi networks and devices, such as base stations, access points, user equipments, stations, and the like.
  • FIG. 2 shows a UE cluster 202 in a wireless system 200. A number of cellular UEs 204 are attempting to utilize service offered by the Wi-Fi network 206 to achieve a specific goal. This goal may include cellular off-loading to avoid cellular network congestion or improve cellular network efficiency by allowing the UEs 204 to use Wi-Fi facilities for device-to-device (D2D) communication.
  • Because cellular UEs are controlled by the cellular BS, the formation of the UE cluster is the responsibility of the BS and may be preconfigured. The criteria for forming a cluster may include geographical vicinity, availability of specific features, etc.
  • The UE cluster is presented to the Wi-Fi network 206 as a virtual station (V-STA). The V-STA competes for the Wi-Fi resources behaving like any other Wi-Fi STA, e.g., performing CSMA/CA and the related back-off procedure. Several methods may be used for allowing a V-STA to contend for the medium.
  • As one example, members of the V-STA may select a UE to contend for the medium on behalf of the cluster. The selected UE is then the leader UE and its identity may change from one transmission opportunity to the other based on the UE mobility profile.
  • As another example, the cellular BS may contend for the medium on behalf of the cluster. In this solution the BS architecture includes a module that allows association with the Wi-Fi AP and performance of the CSMA/CA procedure. Access to the medium and synchronization information can then be communicated to the cluster UE using the cellular control channel.
  • The V-STA contending with other Wi-Fi STAs eventually gains access to the medium and acquires a transmission opportunity of a specific duration. FIG. 3 shows typical channel occupancy as a function of the time.
  • FIG. 3 shows the alternation of transmission opportunities (TXOPs) between UE cluster and Wi-Fi STA. During the UE TXOP 302, other devices are silenced (i.e., are not allowed to transmit to the medium) by deferring their transmissions for the duration of the TXOP in order not to interfere with the UE cluster transmissions.
  • Forcing a group of stations to defer their transmissions until a STA TXOP 304 may be accomplished using physical (PHY) or the MAC headers. Spoofing of legacy STAs using the PHY header is commonly used to force legacy STAs to remain silent for a period of time. For other STAs the use of MAC frames such as Request to Send (RTS) and Clear to Send (CTS) are typically used to set the network allocation vector (NAV) and force STAs to remain silent for a given duration of time. Both methods are described in “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” IEEE 802.11, March 2012, which is hereby incorporated herein by reference.
  • In an embodiment, members of the UE cluster ignore the silencing request at the PHY or MAC layers and stay in the active state to participate in the pending transmissions. This objective can be achieved by the introduction of a new MAC frame that includes the identity of the UE groups for which the TXOP is acquired. The same frame can be used to set the NAV for other STAs including those UEs that are not members of the group. This new frame may be transmitted by the V-STA at the start of the UE TXOP. The relevant identifier may be included in the PHY header in the same way the multi-user multiple-input multiple-output (MU-MIMO) Group Identifier is included in the PHY preamble. The identifier matches the UE cluster identifier that may be set by the BS.
  • During the TXOP transmissions from multiple UEs, using the Wi-Fi spectrum is encouraged to make efficient use of the available resources. Several transmission formats may be possible.
  • First, allow member UEs to contend for the medium in the same way as in a regular Wi-Fi network using CSMA/CA. The transmission format then uses the OFDM-based Wi-Fi frame format. This method, however, would not achieve the best desired throughput improvement because it suffers from Wi-Fi contention and frame overhead.
  • Second, use a scheduled mechanism where member UEs transmit/receive at pre-specified times during the UE TXOP. The transmission format then uses the OFDM-based Wi-Fi frame format.
  • Third, all member UEs use MU-MIMO, both in the UL and in the DL. DL MU-MIMO is supported in IEEE 802.11ac and its use should be supported. FIG. 4 shows the transmission format using UL MU-MIMO. UL MU-MIMO allows member UEs or a subset of them to simultaneously transmit Physical Layer Convergence Procedure (PLCP) Protocol Data Units (PPDUs) 404 in the UL direction. At the start of a UL transmission, the AP transmits a sync frame 402 to indicate those UEs participating in the current UL transmission and synchronizes them. ACKs 406 are sent by the AP to indicate successful transmissions and are sent in sequence or possibly using DL MU-MIMO.
  • Fourth, use OFDMA for UL and DL transmissions. For example the use of OFDMA may follow the same format defined for DL transmissions in LTE, where resource blocks are allocated to different UEs by either the AP or the BS. The format for DL transmissions is defined in TS 36.211 Evolved Universal Terrestrial Radio Access (E-UTRA), Physical Channel and Modulation, TS 36.212 Evolved Universal Terrestrial Radio Access (E-UTRA): Multiplexing and Channel Coding, and TS 36.213 Evolved Universal Terrestrial Radio Access (E-UTRA), Physical Layer Procedures, all of which references are hereby incorporated herein by reference. The LTE transmission format is not backward compatible and cannot be interpreted by some of the Wi-Fi devices, e.g., devices based on 802.11n or 802.11ac. As was previously suggested, a new frame that is backward compatible with legacy stations can be used at the start of the UE TXOP to set the NAV function at these stations to the desired value.
  • Fifth, a transmission format 500 of the form shown in FIG. 5 can be used for both UL and DL transmissions. The format of FIG. 5 can be thought of as midway between a pure LTE-OFDMA format and a pure IEEE 802.11n-OFDM format. It divides the available spectrum into a number of 20 MHz (other segmentation is also possible) channels or segments, and allocates a number of segments to each user. FIG. 5 shows an example where 20 MHz channels and 64 sub-carriers are allocated for each UE.
  • Unlike LTE-OFDMA, the length of the frame in FIG. 5 is not limited by time. Instead a maximum frame length is propagated to members of the UE cluster at the beginning of the UE TXOP. The maximum frame length may be configured to be dynamically adjusted by the AP for each UE TXOP. UEs use padding whenever necessary to have their frames aligned at the maximum frame length. As many OFDM symbols as needed are used to encode the MAC frame up to the maximum frame length.
  • While transmission bandwidth maybe wasted due to the max frame length, the format shown in FIG. 5 is backward compatible, where the first few OFDM symbol of every frame may be used to spoof legacy stations by adding the legacy preamble at the start of the PPDU.
  • The same transmission format may be used for both the UL and DL directions. In both cases the AP or the BS synchronizes members of the UE cluster before the start of the transmission. A MU-MIMO may be applied per each component carrier on top of the transmission format shown in FIG. 5.
  • FIG. 6 is a block diagram of a processing system 600 that may be used for implementing the devices and methods disclosed herein. Specific devices may utilize all of the components shown, or only a subset of the components, and levels of integration may vary from device to device. Furthermore, a device may contain multiple instances of a component, such as multiple processing units, processors, memories, transmitters, receivers, etc. The processing system 600 may comprise a processing unit 602 equipped with one or more input/output devices, such as a speaker, microphone, mouse, touchscreen, keypad, keyboard, printer, display, and the like. The processing unit 602 may include a central processing unit (CPU) 604, memory 606, a mass storage device 608, a video adapter 610, and an I/O interface 612 connected to a bus 614.
  • The bus 614 may be one or more of any type of several bus architectures including a memory bus or memory controller, a peripheral bus, video bus, or the like. The CPU 604 may comprise any type of electronic data processor. The memory 606 may comprise any type of non-transitory system memory such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous DRAM (SDRAM), read-only memory (ROM), a combination thereof, or the like. In an embodiment, the memory may include ROM for use at boot-up, and DRAM for program and data storage for use while executing programs.
  • The mass storage device 608 may comprise any type of non-transitory storage device configured to store data, programs, and other information and to make the data, programs, and other information accessible via the bus. The mass storage device may comprise, for example, one or more of a solid state drive, hard disk drive, a magnetic disk drive, an optical disk drive, or the like.
  • The video adapter 610 and the I/O interface 612 provide interfaces to couple external input and output devices to the processing unit. As illustrated, examples of input and output devices include the display 616 coupled to the video adapter and the mouse/keyboard/printer 618 coupled to the I/O interface. Other devices may be coupled to the processing unit, and additional or fewer interface cards may be utilized. For example, a serial interface such as Universal Serial Bus (USB) (not shown) may be used to provide an interface for a printer.
  • The processing unit 602 also includes one or more network interfaces 620, which may comprise wired links, such as an Ethernet cable or the like, and/or wireless links to access nodes or different networks 622. The network interface 620 allows the processing unit to communicate with remote units via the networks. For example, the network interface 620 may provide wireless communication via one or more transmitters/transmit antennas and one or more receivers/receive antennas. In an embodiment, the processing unit is coupled to a local-area network or a wide-area network for data processing and communications with remote devices, such as other processing units, the Internet, remote storage facilities, or the like.
  • While this invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. It is therefore intended that the appended claims encompass any such modifications or embodiments.

Claims (20)

What is claimed is:
1. A method for wireless communications comprising:
communicating, by an access point (AP), with a leader of a user equipment (UE) cluster contending for a virtual station (V-STA) transmit opportunity (TXOP) on behalf of the UE cluster;
granting, by the AP, the V-STA TXOP to the UE cluster; and
receiving, by the AP, data from the UE cluster within the V-STA TXOP.
2. The method of claim 1, wherein communicating with the leader of the UE cluster comprises communicating with a first UE in the UE cluster.
3. The method of claim 1, wherein communicating with the leader of the UE cluster comprises communicating with a base station (BS) coordinating UEs in the UE cluster.
4. The method of claim 1, wherein communicating with the leader comprises using a carrier sense multiple access with collision avoidance (CSMA-CA) procedure.
5. The method of claim 1, wherein a transmission mechanism in the V-STA TXOP is selected from the group consisting of orthogonal frequency division multiple access (OFDMA), single carrier FDMA (SC-FDMA), and scheduled multiple access.
6. The method of claim 1, further comprising forcing, by the AP, other stations (STAs) not in the UE cluster to be silent during the V-STA TXOP.
7. The method of claim 6, wherein forcing the other STAs to be silent comprises transmission of timing information in a physical (PHY) or media access control (MAC) header to the other STAs to silence the other STAs for a period of time.
8. The method of claim 7, further comprising including an identifier of the UE cluster in the PHY or MAC header to instruct the UE cluster to remain active for the V-STA TXOP.
9. An access point (AP) comprising:
a non-transitory memory storage comprising instructions; and
one or more processors in communication with the non-transitory memory storage, wherein the one or more processors execute the instructions to:
communicate with a leader of a user equipment (UE) cluster contending for a virtual station (V-STA) transmit opportunity (TXOP) on behalf of the UE cluster;
grant the V-STA TXOP to the UE cluster; and
receive data from the UE cluster within the V-STA TXOP.
10. The AP of claim 9, wherein the one or more processors executing the instructions to communicate with the leader of the UE cluster comprises the one or more processors executing the instructions to communicate with a first UE in the UE cluster.
11. The AP of claim 9, wherein the one or more processors executing the instructions to communicate with the leader of the UE cluster comprises the one or more processors executing the instructions to communicate with a base station (BS) coordinating UEs in the UE cluster.
12. The AP of claim 9, wherein the one or more processors executing the instructions to communicate with the leader comprises the one or more processors executing the instructions to use a carrier sense multiple access with collision avoidance (CSMA-CA) procedure.
13. The AP of claim 9, wherein a transmission mechanism in the V-STA TXOP is selected from the group consisting of orthogonal frequency division multiple access (OFDMA), single carrier FDMA (SC-FDMA), and scheduled multiple access.
14. The AP of claim 9, wherein the one or more processors execute the instructions to force other stations (STAs) not in the UE cluster to be silent during the V-STA TXOP.
15. The AP of claim 14, wherein the one or more processors executing the instructions to force the other STAs to be silent comprises transmission of timing information in a physical (PHY) or media access control (MAC) header to the other STAs to silence the other STAs for a period of time.
16. The AP of claim 15, wherein the one or more processors executing the instructions to include an identifier of the UE cluster in the PHY or MAC header to instruct the UE cluster to remain active for the V-STA TXOP.
17. A method for providing cellular wireless transmission in an unlicensed band and coexistent with wireless-fidelity (Wi-Fi) devices, comprising:
performing, by a first user equipment (UE) in conjunction with other UEs in a first group of UEs each supporting both a cellular air interface and a wireless-fidelity (Wi-Fi) air interface, first synchronous data transmission in accordance with cellular timing information within a transmit opportunity (TXOP) of a virtual station (V-STA), coordination between the first group of UEs being performed via a cellular control channel in response to one of the first group of UEs being selected as a leader; and
performing, by the first UE in conjunction with other UEs in a second group of UEs each supporting both the cellular air interface and the Wi-Fi air interface, second synchronous data transmission in accordance with the cellular timing information within a TXOP of a V-STA, coordination between the second group of UEs being performed via direct communication between an access point (AP) and a base station (BS) in response to the BS being selected as the leader.
18. The method of claim 17, wherein the first UE is the selected leader.
19. A first user equipment (UE) comprising:
a non-transitory memory storage comprising instructions; and
one or more processors in communication with the non-transitory memory storage, wherein the one or more processors execute the instructions to:
perform, in conjunction with other UEs in a first group of UEs each supporting both a cellular air interface and a wireless-fidelity (Wi-Fi) air interface, first synchronous data transmission in accordance with cellular timing information within a transmit opportunity (TXOP) of a virtual station (V-STA), coordination between the first group of UEs being performed via a cellular control channel in response to one of the first group of UEs being selected as a leader; and
perform, in conjunction with other UEs in a second group of UEs each supporting both the cellular air interface and the Wi-Fi air interface, second synchronous data transmission in accordance with the cellular timing information within a TXOP of a V-STA, coordination between the second group of UEs being performed via direct communication between an access point (AP) and a base station (BS) in response to the BS being selected as the leader.
20. The first UE of claim 17, wherein the first UE is the selected leader.
US16/808,008 2013-05-15 2020-03-03 Systems and Methods for Operation of Wireless User Devices with Cellular and Wi-Fi Interfaces Abandoned US20200205105A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/808,008 US20200205105A1 (en) 2013-05-15 2020-03-03 Systems and Methods for Operation of Wireless User Devices with Cellular and Wi-Fi Interfaces

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361823732P 2013-05-15 2013-05-15
US14/279,038 US10616844B2 (en) 2013-05-15 2014-05-15 Systems and methods for operation of wireless user devices with cellular and Wi-Fi interfaces
US16/808,008 US20200205105A1 (en) 2013-05-15 2020-03-03 Systems and Methods for Operation of Wireless User Devices with Cellular and Wi-Fi Interfaces

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/279,038 Division US10616844B2 (en) 2013-05-15 2014-05-15 Systems and methods for operation of wireless user devices with cellular and Wi-Fi interfaces

Publications (1)

Publication Number Publication Date
US20200205105A1 true US20200205105A1 (en) 2020-06-25

Family

ID=51895730

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/279,038 Active 2035-11-13 US10616844B2 (en) 2013-05-15 2014-05-15 Systems and methods for operation of wireless user devices with cellular and Wi-Fi interfaces
US16/808,008 Abandoned US20200205105A1 (en) 2013-05-15 2020-03-03 Systems and Methods for Operation of Wireless User Devices with Cellular and Wi-Fi Interfaces

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/279,038 Active 2035-11-13 US10616844B2 (en) 2013-05-15 2014-05-15 Systems and methods for operation of wireless user devices with cellular and Wi-Fi interfaces

Country Status (4)

Country Link
US (2) US10616844B2 (en)
EP (1) EP2995152B1 (en)
CN (1) CN105191469B (en)
WO (1) WO2014186602A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3318079B1 (en) * 2015-07-01 2020-11-18 Telefonaktiebolaget LM Ericsson (PUBL) Dynamic allocation of radio resources in a wireless networks
CN105142118B (en) * 2015-08-11 2019-02-19 电子科技大学 The quick accidental access method of TD-LTE group system user
WO2018218590A1 (en) * 2017-06-01 2018-12-06 华为技术有限公司 Service processing method, access point and station
WO2019008149A1 (en) * 2017-07-06 2019-01-10 Sony Corporation Spatial reuse for scheduled data transfer periods
US11116009B2 (en) * 2017-08-03 2021-09-07 Qualcomm Incorporated Synchronous clear to send signaling
US10805979B2 (en) * 2017-11-21 2020-10-13 Qualcomm Incorporated Dual band discontinuous reception
US11464054B2 (en) 2019-07-24 2022-10-04 Sony Group Corporation RTA contention collision avoidance
US11564257B2 (en) * 2020-04-01 2023-01-24 Sony Group Corporation Coordinated WiFi stations with shared TXOP in time domain
JP2023538916A (en) * 2020-08-18 2023-09-12 オムニフィ インク. Wi-Fi virtualization

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120108255A1 (en) * 2009-06-23 2012-05-03 Lg Electronics Inc. Apparatus for transmitting a signal using scheduling information in a mobile communication system and method for same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7623589B2 (en) * 2006-07-14 2009-11-24 Intel Corporation Cooperative multiple-access using user-clustering and space-time-frequency coding techniques for higher reliability reception
US8036241B2 (en) * 2007-03-09 2011-10-11 Samsung Electronics Co., Ltd. Method and system for contention resolution in telecommunication networks
KR101321295B1 (en) * 2007-04-10 2013-10-25 엘지전자 주식회사 Method for transmitting data of multiple antenna system
US8576772B2 (en) 2007-06-18 2013-11-05 Intel Corporation Cooperative multiple access in wireless networks
US7894371B2 (en) 2007-07-31 2011-02-22 Motorola, Inc. System and method of resource allocation within a communication system
EP2213758A1 (en) 2009-01-16 2010-08-04 Galva Power Group N.V. Flux and fluxing bath for hot dip galvanization, process for the hot dip galvanization of an iron or steel article
KR101837706B1 (en) * 2009-12-09 2018-03-13 마벨 월드 트레이드 리미티드 Frame padding for wireless communications
US9025521B2 (en) * 2010-11-18 2015-05-05 Samsung Electronics Co., Ltd. Method for enabling collaboration among terminals in a wireless network
US9002393B2 (en) * 2011-03-09 2015-04-07 Interdigital Patent Holdings, Inc. Desynchronized network access in M2M networks
US9113483B2 (en) * 2011-04-12 2015-08-18 Broadcom Corporation Methods and apparatus of spectrum sharing for cellular-controlled offloading using unlicensed band
US20140094183A1 (en) * 2011-05-25 2014-04-03 Broadcom Corportion Resource allocation for d2d communication
US9461792B2 (en) * 2011-07-28 2016-10-04 Broadcom Corporation Signaling and procedure design for cellular cluster contending on license-exempt bands
US10071584B2 (en) 2012-07-09 2018-09-11 Apple Inc. Process for creating sub-surface marking on plastic parts
US8902907B2 (en) 2012-10-05 2014-12-02 Futurewei Technologies, Inc. Terminal based grouping virtual transmission and reception in wireless networks

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120108255A1 (en) * 2009-06-23 2012-05-03 Lg Electronics Inc. Apparatus for transmitting a signal using scheduling information in a mobile communication system and method for same

Also Published As

Publication number Publication date
CN105191469A (en) 2015-12-23
WO2014186602A3 (en) 2015-01-29
WO2014186602A2 (en) 2014-11-20
US10616844B2 (en) 2020-04-07
US20140341129A1 (en) 2014-11-20
CN105191469B (en) 2020-02-14
EP2995152A2 (en) 2016-03-16
EP2995152B1 (en) 2020-05-06
EP2995152A4 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
US20200205105A1 (en) Systems and Methods for Operation of Wireless User Devices with Cellular and Wi-Fi Interfaces
JP6775546B2 (en) Systems and methods for WLAN / OFDMA design of uplink and downlink transmission
US10893524B2 (en) System and method for OFDMA resource management in WLAN
US10009922B2 (en) Channel frame structures for high efficiency wireless LAN (HEW)
US11736328B2 (en) Wireless communication method and wireless communication terminal
JP2023065556A (en) Communication method and non-legacy communication terminal
US20200252960A1 (en) Wireless communication method for saving power and wireless communication terminal using same
US9992801B2 (en) Controller device and method for channel contention between virtual access points (VAP) and virtual stations (VSTA)

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION