US20200203896A1 - Power cable connector, electrical system and method for assembling power cable connector - Google Patents

Power cable connector, electrical system and method for assembling power cable connector Download PDF

Info

Publication number
US20200203896A1
US20200203896A1 US16/657,065 US201916657065A US2020203896A1 US 20200203896 A1 US20200203896 A1 US 20200203896A1 US 201916657065 A US201916657065 A US 201916657065A US 2020203896 A1 US2020203896 A1 US 2020203896A1
Authority
US
United States
Prior art keywords
power cable
cable connector
layer
measuring apparatus
passive wireless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/657,065
Other versions
US11050196B2 (en
Inventor
Fumei Wu
Yibo Zhang
Qing Yang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Schweiz AG
Original Assignee
ABB Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Schweiz AG filed Critical ABB Schweiz AG
Assigned to ABB SCHWEIZ AG reassignment ABB SCHWEIZ AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WU, Fumei, YANG, QING, ZHANG, YIBO
Publication of US20200203896A1 publication Critical patent/US20200203896A1/en
Application granted granted Critical
Publication of US11050196B2 publication Critical patent/US11050196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/024Means for indicating or recording specially adapted for thermometers for remote indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/22Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects
    • G01K11/26Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects of resonant frequencies
    • G01K11/265Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects of resonant frequencies using surface acoustic wave [SAW]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/53Bases or cases for heavy duty; Bases or cases for high voltage with means for preventing corona or arcing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/665Structural association with built-in electrical component with built-in electronic circuit
    • H01R13/6683Structural association with built-in electrical component with built-in electronic circuit with built-in sensor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/08Cable junctions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/02Cable terminations
    • H02G15/04Cable-end sealings
    • H02G15/043Cable-end sealings with end caps, e.g. sleeve closed at one end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/40Arrangements in telecontrol or telemetry systems using a wireless architecture
    • H04Q2209/47Arrangements in telecontrol or telemetry systems using a wireless architecture using RFID associated with sensors

Definitions

  • Example embodiments of the present disclosure generally relate to temperature measurement and more particularly, to a power cable connector, an electrical system and a method for assembling power cable connector.
  • a power cable connector In medium/high voltage power distribution systems, a power cable connector is used to connect medium-voltage/high-voltage conductors with one another.
  • the power cable connector is also referred as power cable joint, power cable accessory, power cable termination, power cable head or insulating plug.
  • Some variable in relation to the power cable connector may incur failure of the power cable connector on site. For example, the temperature of conductors of power cables may increase as currents carried by the power cables increase. As a consequence, the conductor of the power cable connector connecting the power cables normally will overheat in the first place and the fault may firstly appears at this weak point. Thus, measuring the temperature in relation to the power cable connector becomes necessary.
  • CN 106595899A describes a cable connector which comprises a sensor fixed between the screw nut and insulating plug metal insert.
  • CN 106207940A describes a cable connector which comprises a sensor fixed at some locations. The mentioned locations include a closed end of metal insert or a surface of screw nut.
  • the sensors are placed directly in the power cable connector and the integration methods for sensor and cable accessories are integrated directly.
  • the thermal conductive effect on the interface of them is not good enough, which leads to the temperature difference between the real temperature and the output temperature.
  • Example embodiments of the present disclosure propose a solution for measuring temperature of the power cable connector in an electrical device such as switchgear.
  • example embodiments of the present disclosure provide a power cable connector.
  • the power cable connector comprises a housing comprising a first portion adapted to contain a conductive plug inserted therethrough.
  • the power cable connector also comprises a first layer arranged on at least a part of an inner wall of the housing.
  • the power cable connector further comprises a second layer arranged on the first layer so that the first layer is at least partially located between the inner wall of the housing and the second layer.
  • the power cable connector further comprises a passive wireless measuring apparatus embedded into the second layer, wherein in the case that the conductive plug is inserted into the first portion, a surface of the passive wireless measuring apparatus is coupled to the conductive plug.
  • the on-line temperature of the power cable connector can be measured accurately and effectively, thereby improving the reliability and safety of the power cable connector.
  • the conductive plug comprises a plate portion and a cylindrical portion, a first thickness T of the plate portion being less than the first diameter D of the cylindrical portion to form a shoulder on an end of the cylindrical portion adjacent to the plate portion, wherein the passive wireless measuring apparatus is arranged on the shoulder.
  • the passive wireless measuring apparatus can be securely arranged inside the power cable connector, which leads to reliable measurement of the temperature of the conductive plug.
  • the passive wireless measuring apparatus is directly coupled to the second layer, or the passive wireless measuring apparatus is coupled to the second layer via a semi-conductive material. In this way, the possibility of partial discharge can be reduced.
  • the surface of the passive wireless measuring apparatus is directly coupled to the conductive plug, or the surface of the passive wireless measuring apparatus is coupled to the conductive plug by a thermal conductive material. In this way, a precise measurement of the conductive plug may be achieved.
  • the semi-conductive material is selected from a group consisting of EPDM rubber, silicone rubber, acrylic resin, epoxy resin and combination thereof.
  • the thermal conductive material is selected from a group consisting of EPDM rubber, silicone rubber, acrylic resin, epoxy resin and combination thereof.
  • the power cable connector further comprising: a further passive wireless measuring apparatus embedded into the second layer. In this way, a more accurate measurement of the temperature of the conductive plug may be obtained.
  • the conductive plug comprises an opening at an end thereof for receiving a conductor.
  • the conductor may be easily coupled to the conductive plug and its temperature may be conveniently measured.
  • the housing is made of a semi-conductive material. In this way, it can be ensured that the housing is in grounded state.
  • the first layer is made of an insulation material. In this way, a fine insulation performance may be achieved.
  • the second layer is made of a semi-conductive material. In this way, the electric field stress may be effectively controlled.
  • the conductive plug is made of metal. In this way, a better conductivity may be ensured.
  • the power cable connector further comprises a second portion, wherein the first portion comprises an end connected to the second portion so that the first and second portions form a “T” shape.
  • the passive wireless measuring apparatus comprises a radio frequency identification (RFID) tag.
  • RFID radio frequency identification
  • example embodiments of the present disclosure provide an electric system.
  • the electric system comprises a power cable connector of the first aspect, a first antenna; and a reader coupled to the first antenna, wherein the reader is configured to provide wireless radio frequency energy to power the passive wireless measuring apparatus in the power cable connector and receiving temperature data via the first antenna.
  • the power cable connector is configured to fit into a basic insulating plug of a switchgear.
  • the electric system further comprises a further power cable connector of the first aspect.
  • the electric system further comprises a second antenna coupled to the reader, and configured to match an antenna of the further power cable connector.
  • example embodiments of the present disclosure provide an Internet of Things (IoT) system.
  • the IoT system comprises a power cable connector of the first aspect.
  • example embodiments of the present disclosure provide a method for assembling a power cable connector.
  • the method comprises providing a housing comprising a first portion adapted to contain a conductive plug inserted therethrough; arranging a first layer on at least a part of an inner wall of the housing; arranging a second layer on the first layer so that the first layer is at least partially located between the inner wall of the housing and the second layer; and embedding a passive wireless measuring apparatus into the second layer, wherein in the case that the conductive plug is inserted into the first portion, a surface of the passive wireless measuring apparatus is coupled to the conductive plug.
  • the safety of the electrical device such as switchgear in which the power cable connector is used may be ensured. Accordingly, temperature measurement for the power cable connector can conducted appropriately in a reliable and efficient way.
  • FIG. 1 illustrates a schematic diagram of a switchgear in accordance with some example embodiments of the present disclosure
  • FIG. 2 illustrates a cross section view of a power cable connector in accordance with some example embodiments of the present disclosure
  • FIG. 3 illustrates a close-up view of a passive wireless measuring apparatus in accordance with some example embodiments of the present disclosure
  • FIG. 4 illustrates an electric system in accordance with some example embodiments of the present disclosure
  • FIG. 5 illustrates a method for assembling a power cable connector in accordance with some example embodiments of the present disclosure.
  • the term “comprises” or “includes” and its variants are to be read as open terms that mean “includes, but is not limited to.”
  • the term “or” is to be read as “and/or” unless the context clearly indicates otherwise.
  • the term “based on” is to be read as “based at least in part on.”
  • the term “being operable to” is to mean a function, an action, a motion or a state can be achieved by an operation induced by a user or an external mechanism.
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment.”
  • the term “another embodiment” is to be read as “at least one other embodiment.”
  • temperature of conductors in an electrical device such as switchgear
  • switchgear need to be monitored so as to ensure safety and power quality of the electrical device.
  • FIGS. 1-4 Some example embodiments of the present disclosure are described below with respect to FIGS. 1-4 .
  • FIG. 1 illustrates a schematic diagram of switchgear 10 in accordance with some example embodiments of the present disclosure.
  • the switchgear 10 includes, among other components, a power cable connector 100 and a basic insulating plug (BIP) 20 .
  • the power cable connector 100 generally includes terminals 1023 , 1025 for connection. Cables 30 and 40 can be inserted into terminals 1023 , 1025 of the power cable connector 100 for connection.
  • FIG. 2 illustrates a cross section view of a power cable connector 100 in accordance with some example embodiments of the present disclosure.
  • the power cable connector 100 comprises a housing 102 .
  • the housing 102 comprises a first portion 1021 .
  • the first portion 1021 is adapted to contain a conductive plug 103 .
  • the conductive plug 103 is inserted through the first portion 1021 .
  • the power cable connector 100 further comprises a first layer 104 and a second layer 106 .
  • the first layer 104 is arranged on at least a part of an inner wall of the housing 102 and the second layer 106 is arranged on the first layer 104 .
  • the first layer 104 is at least partially located between the inner wall of the housing 102 and the second layer 106 .
  • the power cable connector 100 also comprises a passive wireless measuring apparatus 108 , which is embedded into the second layer 106 .
  • the passive wireless measuring apparatus 108 can be used for sensing temperature of the conductive plug 103 .
  • the passive wireless measuring apparatus 108 is a passive element that requires no wired connection for supplying power. As such, the passive wireless measuring apparatus 108 can be located conveniently at any place as necessary.
  • the major part of the passive wireless measuring apparatus 108 is buried in the second layer 106 , while a surface of the passive wireless measuring apparatus 108 is exposed.
  • the exposed surface of the passive wireless measuring apparatus 108 can be coupled to the conductive plug 103 .
  • the passive wireless measuring apparatus 108 upon coupling to the conductive plug 103 , is capable of sensing the temperature of the conductive plug 103 in real time. In this way, by sensing the on-line temperature of the conductive plug 103 , the failure possibility of cable accessories caused by temperature rising can be effectively prevented or reduced. Therefore, a fast reactive measurement can be achieved.
  • the passive wireless measuring apparatus 108 requires no external power supply, the need of regular removal and recharging is eliminated. The power quality may be improved.
  • the passive wireless measuring apparatus 108 may comprise a temperature sensor configured to measure a temperature of the conductive plug 103 , an integrated circuit (IC) and an antenna.
  • the IC (not shown) is coupled to the temperature sensor and configured to receive a signal indicative of the temperature from the temperature sensor.
  • the electrical power can be supplied to the passive wireless measuring apparatus 108 via the antenna from an electromagnetic generation device.
  • the conductive plug 103 may comprise a plate portion 1031 and a cylindrical portion 1032 , as shown in FIG. 2 .
  • the plate portion 1031 has a first thickness T and the cylindrical portion 1032 has a first diameter D.
  • the first thickness T is less than the first diameter D, thus a shoulder 1033 is formed on an end of the cylindrical portion 1032 .
  • the end is adjacent to the plate portion 1031 .
  • the passive wireless measuring apparatus 108 may be arranged on the shoulder 1033 .
  • the passive wireless measuring apparatus 108 can be securely placed within the power cable connector 100 , and the reliability of the passive wireless measuring apparatus 108 can be guaranteed. Moreover, by easily placing the passive wireless measuring apparatus 108 on the shoulder 1033 , there is no need to significantly change the structure of the power cable connector 100 . As such, the cost of the power cable connector 100 could be effectively controlled.
  • the passive wireless measuring apparatus 108 can be fixed in other places than the shoulder 1033 , as long as the location would not interfere with the operation of other components inside the power cable connector 100 and also enables good contact between the passive wireless measuring apparatus 108 and the conductive plug 103 .
  • the passive wireless measuring apparatus 108 can be fixed on the aperture end 1036 of the conductive plug 103 .
  • the passive wireless measuring apparatus 108 can be fixed on the side of aperture end 1036 of the conductive plug 103 .
  • the passive wireless measuring apparatus 108 may be directly coupled to the second layer 106 . In this way, the passive wireless measuring apparatus 108 may set up an electrical connection with the second layer easily.
  • FIG. 3 illustrates a close-up view of a passive wireless measuring apparatus in accordance with some example embodiments of the present disclosure.
  • the passive wireless measuring apparatus 108 may be coupled to the second layer 106 via a semi-conductive material 110 .
  • the possibility of partial discharge on an interface of the passive wireless measuring apparatus 108 and the second layer 106 may be reduced.
  • the electrical field around the passive wireless measuring apparatus 108 may be made more uniform.
  • the surface of the passive wireless measuring apparatus 108 may be directly coupled to the conductive plug 103 .
  • the passive wireless measuring apparatus 108 can be fitted into a groove on the surface of the conductive plug 103 . In this way, the temperature of the conductive plug 103 may be obtained by means of the passive wireless measuring apparatus 108 in a simpler and cheaper manner.
  • the surface of the passive wireless measuring apparatus 108 may be coupled to the conductive plug 103 by a thermal conductive material 112 .
  • the thermal conductive material 112 may establish a better thermal contact between the conductive plug 103 and the passive wireless measuring apparatus 108 .
  • the temperature deviation between the conductive plug 103 and the passive wireless measuring apparatus 108 may be smaller, and a more accurate measurement of the conductive plug 103 can be obtained.
  • the semi-conductive material 110 may be selected from a group consisting of EPDM rubber, silicone rubber, acrylic resin, epoxy resin and combination thereof. It could be understood that that the material listed herein is only illustrative, rather than restrictive.
  • the semi-conductive material 110 may be any material already known or to be developed in the future, e.g. TPE or other suitable materials, as long as the semi-conductive material 110 used to couple the passive wireless measuring apparatus 108 to the second layer 106 may create a more uniform electrical field around the passive wireless measuring apparatus 108 .
  • the thermal conductive material 112 may be selected from a group consisting of EPDM rubber, silicone rubber, acrylic resin, epoxy resin and combination thereof. It could be understood that the material mentioned herein is only for illustrative purpose.
  • the thermal conductive material 112 may be any material already known or to be developed in the future, e.g. thermal silicone grease or other suitable materials, as long as the thermal conductive material 112 used to couple the surface of the passive wireless measuring apparatus 108 to the conductive plug 103 can reduce the temperature difference the conductive plug 103 and the passive wireless measuring apparatus 108 to ensure precise measurement of the conductive plug 103 .
  • the power cable connector 100 may comprise a further passive wireless measuring apparatus 109 .
  • the further passive wireless measuring apparatus 109 may be located in a different location than the passive wireless measuring apparatus 108 .
  • the further passive wireless measuring apparatus 109 can be fixed on the aperture end 1036 of the conductive plug 103 or on the side of aperture end 1036 of the conductive plug 103 .
  • a more accurate measurement of the temperature of the conductive plug 103 may be obtained by processing the measurement from the plurality of passive wireless measuring apparatus. For example, the temperature of the conductive plug 103 may be calculated by averaging the temperature data obtained from the passive wireless measuring apparatus 108 , 109 .
  • providing a plurality of passive wireless measuring apparatus enables an on-line monitoring of the region of interest on the conductive plug 103 .
  • FIG. 2 Although two passive wireless measuring apparatus are shown in FIG. 2 , it is to be understood that this is merely example without suggesting any limitation as to the scope of the present disclosure. Any other number of the passive wireless measuring apparatus may be also possible, for example, three, four and even more, which may depend on the demand of the user and the size of each passive wireless measuring apparatus.
  • the conductive plug 103 may comprise an opening (not shown) at its end 1035 .
  • the opening may receive a conductor 105 .
  • the conductor 105 may be the conductor of a cable 40 , as illustrated in FIG. 2 .
  • the cable 40 can be coupled to the power cable connector 100 in a simple manner.
  • the conductor 105 couples with the conductive plug 103 , the temperature of the conductor 105 may be monitored in real time to prevent overheat of the conductor 105 .
  • the housing 102 may be made of a semi-conductive material.
  • the housing 102 may be made of various semi-conductive materials, such as epoxy resin, silicone rubber as well as other suitable materials, depending on individual requirement. In this way, it can be ensured that the housing 102 is in grounded state.
  • the first layer 104 may be made of an insulation material. In this way, a fine insulation performance may be achieved.
  • the first layer 104 may be made of various insulation materials, such as silicone as well as other materials, depending on individual requirement.
  • the second layer 106 may be made of a semi-conductive material.
  • the second layer 106 may be made of various semi-conductive materials, such as epoxy resin, silicone rubber as well as other materials, depending on individual requirement. In this way, the electric field stress may be effectively controlled.
  • the second layer 106 may be made of the same material with that of the housing 102 .
  • the second layer 106 may be made of different material than that of the housing 102 .
  • the specific materials are not limited by embodiments of the present disclosure.
  • the conductive plug 103 may be made of metal.
  • the conductive plug 103 may be a conventional solid conductive plug, which may be made of a metal material, such as copper, aluminum and so on. In this way, a better conductivity may be ensured.
  • the power cable connector 100 may further comprise a second portion 1022 .
  • the first portion 1021 comprises an end connected to the second portion 1022 so that the first and second portions 1021 , 1022 form a “T” shape.
  • the end of the first portion 1021 is connected to the second portion 1022 at the middle of the first portion 1021 .
  • the end of the first portion 1021 may be connected to the second portion 1022 at other locations rather than the middle of the first portion 1021 .
  • the end of the first portion 1021 may be connected to the second portion 1022 at a location adjacent to the left terminal 1023 of the first portion 1021 .
  • the end of the first portion 1021 may be connected to the second portion 1022 at a location adjacent to the right terminal 1024 of the first portion 1021 .
  • the specific location is not limited by embodiments of the present disclosure, as long as the first portion 1021 and the second portion 1022 may form a “T” shape.
  • the second portion 1022 may also include a housing, a first layer, and a second layer.
  • the housing of the second portion 1022 may share the same material with the housing 102 of the first portion 1021 .
  • the first layer of the second portion 1022 may share the same material with the first layer 104 of the first portion 1021 .
  • the second layer of the second portion 1022 may share the same material with the second layer 106 of the first portion 1021 .
  • the passive wireless measuring apparatus 108 may comprise a radio frequency identification (RFID) tag.
  • RFID radio frequency identification
  • the passive wireless measuring apparatus 108 may comprise other suitable apparatus rather than the RFID tag, e.g. a surface acoustic wave (SAW) sensor, depending on individual requirement from the user.
  • SAW surface acoustic wave
  • the switchgear 10 may include a plurality of power cable connectors and a plurality of BIPs. Also, it could be understood that the power cable connector could be used for other BIPs, and the numbers of the power cable connectors and the BIPs could be different in the switchgear 10 .
  • FIG. 4 illustrates an electric system 400 in accordance with some example embodiments of the present disclosure.
  • the system 400 comprises a power cable connector 100 .
  • the system 400 further comprises a first antenna 420 and a reader 430 coupled to the first antenna 420 , and the reader 430 is configured to provide wireless radio frequency energy to power the passive wireless measuring apparatus 108 in the power cable connector 100 via the first antenna 420 .
  • the power cable connector 100 comprises a temperature sensor configured to measure a temperature of the conductive plug 103 and a passive wireless communication module configured to transmit the measured temperature.
  • the power cable connector 100 is configured to fit into a basic insulating plug 20 of a switchgear 10 .
  • the power cable connector 100 may be arranged on a cable accessory cabinet of a switchgear 10
  • the first antenna 420 may be arranged on a side wall or a top wall of the cable accessory cabinet so that the wireless communication between the power cable connector 100 and the first antenna 420 can be enhanced.
  • the system 400 may further comprise a further power cable connector 200 , which also may be the power cable connector 100 as discussed above.
  • the system 400 may further comprise a second antenna 440 .
  • the first antenna 420 may be arranged towards the power cable connector 100 while the second antenna 440 may be arranged towards the power cable connector 200 .
  • the system 400 may further comprise an antenna 460 , which may be arranged on a front door of a cable accessory cabinet of the switchgear.
  • the antenna 460 may be a larger antenna and can provide wireless radio frequency energy to power all the temperature sensors in the system 400 .
  • the temperature sensors in power cable connectors 100 and 200 can use the received radio frequency energy to work so as to obtain the temperatures of the power cable connectors.
  • the antennas 420 and 440 are connected to the reader 430 via the lines 425 , 455 such as a coaxial cable configured to receive the measured temperatures from the power cable connectors 100 and 200 .
  • the antenna 460 may be connected to the reader 430 via the line 465 .
  • the antenna 460 may be arranged on a front door of a cable accessory cabinet of the switchgear.
  • the reader 430 may ask all temperature sensors in the power cable connectors 100 , 200 for electronic product codes (EPCs), the temperature sensors in the power cable connectors 100 , 200 return the EPCs to the reader 430 and start to work. Next, the reader 430 starts to obtain temperatures from the temperature sensors of power cable connectors 100 , 200 , and each temperature sensor returns the temperature to the reader 430 in real time.
  • EPCs electronic product codes
  • the antennas and the reader may be tuned so that the power, frequency, direction and so on may be optimal for operations of the temperature sensors in the power cable connectors to have good communication quality.
  • the system 400 may include less or more power cable connectors. Moreover, to improve the communication quality in the case of a large amount of temperature sensors, more antennas located at different locations may be provided in the system 400 .
  • the temperature sensors in the power cable connector of the present disclosure can be used to measure temperature of the power cable connector.
  • the temperature sensors in the power cable connector of the present disclosure can be used to measure temperature of other devices at which the power cable connector is located and having good thermal communication with the power cable connector, according to embodiments of the present disclosure, and thus temperature changes at different locations can be also monitored quickly and accurately.
  • the temperature of the power cable connector can be measured wirelessly and passively.
  • the proposed system can provide a convenient and efficient way to measure the temperature of the power cable connector.
  • the electric system 400 may be deployed as an Internet-of-Things (IoT) system.
  • the reader 430 is connected to a system in a wired or wireless way for on-line monitoring of temperature of conductive plugs 103 , and transmits temperature data collected by the temperature sensors of the power cable connectors 100 to the system 400 for on-line monitoring.
  • FIG. 5 illustrates a method 500 for assembling a power cable connector 100 in accordance with some example embodiments of the present disclosure.
  • the method 500 can be executed manually.
  • the method 500 can be executed automatically.
  • the method 500 can be executed by a robot in a production line.
  • a housing 102 is provided.
  • the housing 102 comprises a first portion 1021 adapted to contain a conductive plug 103 inserted therethrough.
  • a first layer 104 is arranged on at least a part of an inner wall of the housing 102 .
  • a second layer 106 is arranged on the first layer 104 so that the first layer 104 is at least partially located between the inner wall of the housing 102 and the second layer 106 .
  • a passive wireless measuring apparatus 108 is embedded into the second layer 106 , wherein in the case that the conductive plug 103 is inserted into the first portion 1021 , a surface of the passive wireless measuring apparatus 108 is coupled to the conductive plug 103 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Acoustics & Sound (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

Embodiments of present disclosure relate to a power cable connector, an electrical system and a method for assembling a power cable connector. The power cable connector comprises a housing comprising a first portion adapted to contain a conductive plug inserted therethrough. The power cable connector also comprises a first layer arranged on at least a part of an inner wall of the housing. The power cable connector further comprises a second layer arranged on the first layer so that the first layer is at least partially located between the inner wall of the housing and the second layer. The power cable connector further comprises a passive wireless measuring apparatus embedded into the second layer, wherein in the case that the conductive plug is inserted into the first portion, a surface of the passive wireless measuring apparatus is coupled to the conductive plug. According to embodiments of the present disclosure, the on-line monitoring of the temperature of the conductive plug can be obtained and the power failure can be detected in advance.

Description

    FIELD
  • Example embodiments of the present disclosure generally relate to temperature measurement and more particularly, to a power cable connector, an electrical system and a method for assembling power cable connector.
  • BACKGROUND
  • In medium/high voltage power distribution systems, a power cable connector is used to connect medium-voltage/high-voltage conductors with one another. The power cable connector is also referred as power cable joint, power cable accessory, power cable termination, power cable head or insulating plug. Some variable in relation to the power cable connector may incur failure of the power cable connector on site. For example, the temperature of conductors of power cables may increase as currents carried by the power cables increase. As a consequence, the conductor of the power cable connector connecting the power cables normally will overheat in the first place and the fault may firstly appears at this weak point. Thus, measuring the temperature in relation to the power cable connector becomes necessary.
  • Traditionally, the sensors to measure the temperature of the conductor are set in the power cable connector. For example, CN 106595899A describes a cable connector which comprises a sensor fixed between the screw nut and insulating plug metal insert. CN 106207940A describes a cable connector which comprises a sensor fixed at some locations. The mentioned locations include a closed end of metal insert or a surface of screw nut.
  • However, in these approaches, the sensors are placed directly in the power cable connector and the integration methods for sensor and cable accessories are integrated directly. As a result, the thermal conductive effect on the interface of them is not good enough, which leads to the temperature difference between the real temperature and the output temperature.
  • SUMMARY
  • Example embodiments of the present disclosure propose a solution for measuring temperature of the power cable connector in an electrical device such as switchgear.
  • In a first aspect, example embodiments of the present disclosure provide a power cable connector. The power cable connector comprises a housing comprising a first portion adapted to contain a conductive plug inserted therethrough. The power cable connector also comprises a first layer arranged on at least a part of an inner wall of the housing. The power cable connector further comprises a second layer arranged on the first layer so that the first layer is at least partially located between the inner wall of the housing and the second layer. The power cable connector further comprises a passive wireless measuring apparatus embedded into the second layer, wherein in the case that the conductive plug is inserted into the first portion, a surface of the passive wireless measuring apparatus is coupled to the conductive plug.
  • According to embodiments of the present disclosure, the on-line temperature of the power cable connector can be measured accurately and effectively, thereby improving the reliability and safety of the power cable connector.
  • In some embodiments, the conductive plug comprises a plate portion and a cylindrical portion, a first thickness T of the plate portion being less than the first diameter D of the cylindrical portion to form a shoulder on an end of the cylindrical portion adjacent to the plate portion, wherein the passive wireless measuring apparatus is arranged on the shoulder. In this way, the passive wireless measuring apparatus can be securely arranged inside the power cable connector, which leads to reliable measurement of the temperature of the conductive plug.
  • In some embodiments, the passive wireless measuring apparatus is directly coupled to the second layer, or the passive wireless measuring apparatus is coupled to the second layer via a semi-conductive material. In this way, the possibility of partial discharge can be reduced.
  • In some embodiments, the surface of the passive wireless measuring apparatus is directly coupled to the conductive plug, or the surface of the passive wireless measuring apparatus is coupled to the conductive plug by a thermal conductive material. In this way, a precise measurement of the conductive plug may be achieved.
  • In some embodiments, the semi-conductive material is selected from a group consisting of EPDM rubber, silicone rubber, acrylic resin, epoxy resin and combination thereof.
  • In some embodiments, the thermal conductive material is selected from a group consisting of EPDM rubber, silicone rubber, acrylic resin, epoxy resin and combination thereof.
  • In some embodiments, the power cable connector further comprising: a further passive wireless measuring apparatus embedded into the second layer. In this way, a more accurate measurement of the temperature of the conductive plug may be obtained.
  • In some embodiments, the conductive plug comprises an opening at an end thereof for receiving a conductor. In this way, the conductor may be easily coupled to the conductive plug and its temperature may be conveniently measured.
  • In some embodiments, the housing is made of a semi-conductive material. In this way, it can be ensured that the housing is in grounded state.
  • In some embodiments, the first layer is made of an insulation material. In this way, a fine insulation performance may be achieved.
  • In some embodiments, the second layer is made of a semi-conductive material. In this way, the electric field stress may be effectively controlled.
  • In some embodiments, the conductive plug is made of metal. In this way, a better conductivity may be ensured.
  • In some embodiments, the power cable connector further comprises a second portion, wherein the first portion comprises an end connected to the second portion so that the first and second portions form a “T” shape.
  • In some embodiments, the passive wireless measuring apparatus comprises a radio frequency identification (RFID) tag. In this way, the temperature of the conductive plug 103 can be obtained in a reliable manner.
  • In a second aspect, example embodiments of the present disclosure provide an electric system. The electric system comprises a power cable connector of the first aspect, a first antenna; and a reader coupled to the first antenna, wherein the reader is configured to provide wireless radio frequency energy to power the passive wireless measuring apparatus in the power cable connector and receiving temperature data via the first antenna.
  • In some embodiments, the power cable connector is configured to fit into a basic insulating plug of a switchgear.
  • In some embodiments, the electric system further comprises a further power cable connector of the first aspect.
  • In some embodiments, the electric system further comprises a second antenna coupled to the reader, and configured to match an antenna of the further power cable connector.
  • In a third aspect, example embodiments of the present disclosure provide an Internet of Things (IoT) system. The IoT system comprises a power cable connector of the first aspect.
  • In a fourth aspect, example embodiments of the present disclosure provide a method for assembling a power cable connector. The method comprises providing a housing comprising a first portion adapted to contain a conductive plug inserted therethrough; arranging a first layer on at least a part of an inner wall of the housing; arranging a second layer on the first layer so that the first layer is at least partially located between the inner wall of the housing and the second layer; and embedding a passive wireless measuring apparatus into the second layer, wherein in the case that the conductive plug is inserted into the first portion, a surface of the passive wireless measuring apparatus is coupled to the conductive plug.
  • According to embodiments of the present disclosure, the safety of the electrical device such as switchgear in which the power cable connector is used may be ensured. Accordingly, temperature measurement for the power cable connector can conducted appropriately in a reliable and efficient way.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Through the following detailed descriptions with reference to the accompanying drawings, the above and other objectives, features and advantages of the example embodiments disclosed herein will become more comprehensible. In the drawings, several example embodiments disclosed herein will be illustrated in an example and in a non-limiting manner, wherein:
  • FIG. 1 illustrates a schematic diagram of a switchgear in accordance with some example embodiments of the present disclosure;
  • FIG. 2 illustrates a cross section view of a power cable connector in accordance with some example embodiments of the present disclosure;
  • FIG. 3 illustrates a close-up view of a passive wireless measuring apparatus in accordance with some example embodiments of the present disclosure;
  • FIG. 4 illustrates an electric system in accordance with some example embodiments of the present disclosure;
  • FIG. 5 illustrates a method for assembling a power cable connector in accordance with some example embodiments of the present disclosure.
  • Throughout the drawings, the same or corresponding reference symbols refer to the same or corresponding parts.
  • DETAILED DESCRIPTION
  • The subject matter described herein will now be discussed with reference to several example embodiments. These embodiments are discussed only for the purpose of enabling those skilled persons in the art to better understand and thus implement the subject matter described herein, rather than suggesting any limitations on the scope of the subject matter.
  • The term “comprises” or “includes” and its variants are to be read as open terms that mean “includes, but is not limited to.” The term “or” is to be read as “and/or” unless the context clearly indicates otherwise. The term “based on” is to be read as “based at least in part on.” The term “being operable to” is to mean a function, an action, a motion or a state can be achieved by an operation induced by a user or an external mechanism. The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment.” The term “another embodiment” is to be read as “at least one other embodiment.”
  • Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass direct and indirect mountings, connections, supports, and couplings. Furthermore, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings. In the description below, like reference numerals and labels are used to describe the same, similar or corresponding parts in the Figures. Other definitions, explicit and implicit, may be included below.
  • As mentioned above, temperature of conductors in an electrical device, such as switchgear, need to be monitored so as to ensure safety and power quality of the electrical device.
  • Some example embodiments of the present disclosure are described below with respect to FIGS. 1-4.
  • FIG. 1 illustrates a schematic diagram of switchgear 10 in accordance with some example embodiments of the present disclosure. The switchgear 10 includes, among other components, a power cable connector 100 and a basic insulating plug (BIP) 20. The power cable connector 100 generally includes terminals 1023, 1025 for connection. Cables 30 and 40 can be inserted into terminals 1023, 1025 of the power cable connector 100 for connection.
  • FIG. 2 illustrates a cross section view of a power cable connector 100 in accordance with some example embodiments of the present disclosure. With reference to FIG. 2, the power cable connector 100 comprises a housing 102. The housing 102 comprises a first portion 1021. The first portion 1021 is adapted to contain a conductive plug 103. The conductive plug 103 is inserted through the first portion 1021.
  • The power cable connector 100 further comprises a first layer 104 and a second layer 106. As shown in FIG. 2, the first layer 104 is arranged on at least a part of an inner wall of the housing 102 and the second layer 106 is arranged on the first layer 104. The first layer 104 is at least partially located between the inner wall of the housing 102 and the second layer 106. As shown in FIG. 2, the power cable connector 100 also comprises a passive wireless measuring apparatus 108, which is embedded into the second layer 106. The passive wireless measuring apparatus 108 can be used for sensing temperature of the conductive plug 103. The passive wireless measuring apparatus 108 is a passive element that requires no wired connection for supplying power. As such, the passive wireless measuring apparatus 108 can be located conveniently at any place as necessary.
  • With this configuration, the major part of the passive wireless measuring apparatus 108 is buried in the second layer 106, while a surface of the passive wireless measuring apparatus 108 is exposed. When the conductive plug 103 is inserted into the first portion 1021, the exposed surface of the passive wireless measuring apparatus 108 can be coupled to the conductive plug 103.
  • According to embodiments of the present disclosure, upon coupling to the conductive plug 103, the passive wireless measuring apparatus 108 is capable of sensing the temperature of the conductive plug 103 in real time. In this way, by sensing the on-line temperature of the conductive plug 103, the failure possibility of cable accessories caused by temperature rising can be effectively prevented or reduced. Therefore, a fast reactive measurement can be achieved.
  • Moreover, due to the fact that the passive wireless measuring apparatus 108 requires no external power supply, the need of regular removal and recharging is eliminated. The power quality may be improved.
  • In some embodiments, the passive wireless measuring apparatus 108 may comprise a temperature sensor configured to measure a temperature of the conductive plug 103, an integrated circuit (IC) and an antenna. The IC (not shown) is coupled to the temperature sensor and configured to receive a signal indicative of the temperature from the temperature sensor. The electrical power can be supplied to the passive wireless measuring apparatus 108 via the antenna from an electromagnetic generation device.
  • In some embodiments, the conductive plug 103 may comprise a plate portion 1031 and a cylindrical portion 1032, as shown in FIG. 2. The plate portion 1031 has a first thickness T and the cylindrical portion 1032 has a first diameter D. The first thickness T is less than the first diameter D, thus a shoulder 1033 is formed on an end of the cylindrical portion 1032. The end is adjacent to the plate portion 1031. The passive wireless measuring apparatus 108 may be arranged on the shoulder 1033.
  • In this way, the passive wireless measuring apparatus 108 can be securely placed within the power cable connector 100, and the reliability of the passive wireless measuring apparatus 108 can be guaranteed. Moreover, by easily placing the passive wireless measuring apparatus 108 on the shoulder 1033, there is no need to significantly change the structure of the power cable connector 100. As such, the cost of the power cable connector 100 could be effectively controlled.
  • In other embodiments, the passive wireless measuring apparatus 108 can be fixed in other places than the shoulder 1033, as long as the location would not interfere with the operation of other components inside the power cable connector 100 and also enables good contact between the passive wireless measuring apparatus 108 and the conductive plug 103. For example, in alternative embodiments, the passive wireless measuring apparatus 108 can be fixed on the aperture end 1036 of the conductive plug 103. In other embodiments, the passive wireless measuring apparatus 108 can be fixed on the side of aperture end 1036 of the conductive plug 103.
  • In some embodiments, the passive wireless measuring apparatus 108 may be directly coupled to the second layer 106. In this way, the passive wireless measuring apparatus 108 may set up an electrical connection with the second layer easily.
  • FIG. 3 illustrates a close-up view of a passive wireless measuring apparatus in accordance with some example embodiments of the present disclosure. As illustrated in FIG. 3, in some embodiments, the passive wireless measuring apparatus 108 may be coupled to the second layer 106 via a semi-conductive material 110. In this way, the possibility of partial discharge on an interface of the passive wireless measuring apparatus 108 and the second layer 106 may be reduced. Hence, the electrical field around the passive wireless measuring apparatus 108 may be made more uniform.
  • In some embodiments, the surface of the passive wireless measuring apparatus 108 may be directly coupled to the conductive plug 103. For example, the passive wireless measuring apparatus 108 can be fitted into a groove on the surface of the conductive plug 103. In this way, the temperature of the conductive plug 103 may be obtained by means of the passive wireless measuring apparatus 108 in a simpler and cheaper manner.
  • As illustrated in FIG. 3, in some embodiments, the surface of the passive wireless measuring apparatus 108 may be coupled to the conductive plug 103 by a thermal conductive material 112. In this way, the thermal conductive material 112 may establish a better thermal contact between the conductive plug 103 and the passive wireless measuring apparatus 108. Thus, the temperature deviation between the conductive plug 103 and the passive wireless measuring apparatus 108 may be smaller, and a more accurate measurement of the conductive plug 103 can be obtained.
  • In some embodiments, the semi-conductive material 110 may be selected from a group consisting of EPDM rubber, silicone rubber, acrylic resin, epoxy resin and combination thereof. It could be understood that that the material listed herein is only illustrative, rather than restrictive. The semi-conductive material 110 may be any material already known or to be developed in the future, e.g. TPE or other suitable materials, as long as the semi-conductive material 110 used to couple the passive wireless measuring apparatus 108 to the second layer 106 may create a more uniform electrical field around the passive wireless measuring apparatus 108.
  • In some embodiments, the thermal conductive material 112 may be selected from a group consisting of EPDM rubber, silicone rubber, acrylic resin, epoxy resin and combination thereof. It could be understood that the material mentioned herein is only for illustrative purpose. The thermal conductive material 112 may be any material already known or to be developed in the future, e.g. thermal silicone grease or other suitable materials, as long as the thermal conductive material 112 used to couple the surface of the passive wireless measuring apparatus 108 to the conductive plug 103 can reduce the temperature difference the conductive plug 103 and the passive wireless measuring apparatus 108 to ensure precise measurement of the conductive plug 103.
  • In some embodiments, the power cable connector 100 may comprise a further passive wireless measuring apparatus 109. The further passive wireless measuring apparatus 109 may be located in a different location than the passive wireless measuring apparatus 108. As mentioned above, the further passive wireless measuring apparatus 109 can be fixed on the aperture end 1036 of the conductive plug 103 or on the side of aperture end 1036 of the conductive plug 103. With more than one passive wireless measuring apparatus, a more accurate measurement of the temperature of the conductive plug 103 may be obtained by processing the measurement from the plurality of passive wireless measuring apparatus. For example, the temperature of the conductive plug 103 may be calculated by averaging the temperature data obtained from the passive wireless measuring apparatus 108, 109.
  • In case that the temperature distribution on the conductive plug 103 is not uniform, some specific portions of the conductive plug 103 may suffer a different temperature than the other regions of the conductive plug 103. In such an embodiment, providing a plurality of passive wireless measuring apparatus enables an on-line monitoring of the region of interest on the conductive plug 103.
  • Although two passive wireless measuring apparatus are shown in FIG. 2, it is to be understood that this is merely example without suggesting any limitation as to the scope of the present disclosure. Any other number of the passive wireless measuring apparatus may be also possible, for example, three, four and even more, which may depend on the demand of the user and the size of each passive wireless measuring apparatus.
  • In some embodiments, the conductive plug 103 may comprise an opening (not shown) at its end 1035. The opening may receive a conductor 105. The conductor 105 may be the conductor of a cable 40, as illustrated in FIG. 2. In this way, the cable 40 can be coupled to the power cable connector 100 in a simple manner. Hence, as the conductor 105 couples with the conductive plug 103, the temperature of the conductor 105 may be monitored in real time to prevent overheat of the conductor 105.
  • In some embodiments, the housing 102 may be made of a semi-conductive material. Specifically, the housing 102 may be made of various semi-conductive materials, such as epoxy resin, silicone rubber as well as other suitable materials, depending on individual requirement. In this way, it can be ensured that the housing 102 is in grounded state.
  • In some embodiments, the first layer 104 may be made of an insulation material. In this way, a fine insulation performance may be achieved. Specifically, the first layer 104 may be made of various insulation materials, such as silicone as well as other materials, depending on individual requirement.
  • In some embodiments, the second layer 106 may be made of a semi-conductive material. Specifically, the second layer 106 may be made of various semi-conductive materials, such as epoxy resin, silicone rubber as well as other materials, depending on individual requirement. In this way, the electric field stress may be effectively controlled.
  • The second layer 106 may be made of the same material with that of the housing 102. Of course, the second layer 106 may be made of different material than that of the housing 102. The specific materials are not limited by embodiments of the present disclosure.
  • In some embodiments, the conductive plug 103 may be made of metal. For example, the conductive plug 103 may be a conventional solid conductive plug, which may be made of a metal material, such as copper, aluminum and so on. In this way, a better conductivity may be ensured.
  • In some embodiments, the power cable connector 100 may further comprise a second portion 1022. As shown in FIG. 2, the first portion 1021 comprises an end connected to the second portion 1022 so that the first and second portions 1021, 1022 form a “T” shape.
  • As shown in FIG. 2, the end of the first portion 1021 is connected to the second portion 1022 at the middle of the first portion 1021. It is to be understood that this configuration is merely an example without suggesting any limitation as to the scope of the present disclosure. The end of the first portion 1021 may be connected to the second portion 1022 at other locations rather than the middle of the first portion 1021. For example, the end of the first portion 1021 may be connected to the second portion 1022 at a location adjacent to the left terminal 1023 of the first portion 1021. In an alternative embodiment, the end of the first portion 1021 may be connected to the second portion 1022 at a location adjacent to the right terminal 1024 of the first portion 1021. The specific location is not limited by embodiments of the present disclosure, as long as the first portion 1021 and the second portion 1022 may form a “T” shape.
  • Alternatively, similar to the first portion 1021, the second portion 1022 may also include a housing, a first layer, and a second layer. In some embodiments, the housing of the second portion 1022 may share the same material with the housing 102 of the first portion 1021. In alternative embodiment, the first layer of the second portion 1022 may share the same material with the first layer 104 of the first portion 1021. In alternative embodiment, the second layer of the second portion 1022 may share the same material with the second layer 106 of the first portion 1021.
  • In some embodiments, the passive wireless measuring apparatus 108 may comprise a radio frequency identification (RFID) tag. In this way, the temperature of the conductive plug 103 can be obtained in a reliable manner. It is to be understood that the passive wireless measuring apparatus 108 may comprise other suitable apparatus rather than the RFID tag, e.g. a surface acoustic wave (SAW) sensor, depending on individual requirement from the user.
  • Referring back to FIG. 1, although only one power cable connector 100 and one BIP 20 are shown in FIG. 1, it could be understood that the switchgear 10 may include a plurality of power cable connectors and a plurality of BIPs. Also, it could be understood that the power cable connector could be used for other BIPs, and the numbers of the power cable connectors and the BIPs could be different in the switchgear 10.
  • FIG. 4 illustrates an electric system 400 in accordance with some example embodiments of the present disclosure. As shown, the system 400 comprises a power cable connector 100. The system 400 further comprises a first antenna 420 and a reader 430 coupled to the first antenna 420, and the reader 430 is configured to provide wireless radio frequency energy to power the passive wireless measuring apparatus 108 in the power cable connector 100 via the first antenna 420. The power cable connector 100 comprises a temperature sensor configured to measure a temperature of the conductive plug 103 and a passive wireless communication module configured to transmit the measured temperature.
  • Referring to FIG. 1 again, in some embodiments, the power cable connector 100 is configured to fit into a basic insulating plug 20 of a switchgear 10.
  • In some embodiments, the power cable connector 100 may be arranged on a cable accessory cabinet of a switchgear 10, and the first antenna 420 may be arranged on a side wall or a top wall of the cable accessory cabinet so that the wireless communication between the power cable connector 100 and the first antenna 420 can be enhanced.
  • In some embodiments, the system 400 may further comprise a further power cable connector 200, which also may be the power cable connector 100 as discussed above. In some embodiments, the system 400 may further comprise a second antenna 440. In some embodiments, the first antenna 420 may be arranged towards the power cable connector 100 while the second antenna 440 may be arranged towards the power cable connector 200. Moreover, the system 400 may further comprise an antenna 460, which may be arranged on a front door of a cable accessory cabinet of the switchgear. The antenna 460 may be a larger antenna and can provide wireless radio frequency energy to power all the temperature sensors in the system 400.
  • According to embodiments of the present disclosure, the temperature sensors in power cable connectors 100 and 200 can use the received radio frequency energy to work so as to obtain the temperatures of the power cable connectors. The antennas 420 and 440 are connected to the reader 430 via the lines 425, 455 such as a coaxial cable configured to receive the measured temperatures from the power cable connectors 100 and 200. Moreover, the antenna 460 may be connected to the reader 430 via the line 465. For example, the antenna 460 may be arranged on a front door of a cable accessory cabinet of the switchgear.
  • For example, the reader 430 may ask all temperature sensors in the power cable connectors 100, 200 for electronic product codes (EPCs), the temperature sensors in the power cable connectors 100, 200 return the EPCs to the reader 430 and start to work. Next, the reader 430 starts to obtain temperatures from the temperature sensors of power cable connectors 100, 200, and each temperature sensor returns the temperature to the reader 430 in real time.
  • In some embodiments, the antennas and the reader may be tuned so that the power, frequency, direction and so on may be optimal for operations of the temperature sensors in the power cable connectors to have good communication quality.
  • It is to be understood that although two power cable connectors 100, 200 are shown in FIG. 4, the system 400 may include less or more power cable connectors. Moreover, to improve the communication quality in the case of a large amount of temperature sensors, more antennas located at different locations may be provided in the system 400.
  • In some embodiments, the temperature sensors in the power cable connector of the present disclosure can be used to measure temperature of the power cable connector. The temperature sensors in the power cable connector of the present disclosure can be used to measure temperature of other devices at which the power cable connector is located and having good thermal communication with the power cable connector, according to embodiments of the present disclosure, and thus temperature changes at different locations can be also monitored quickly and accurately.
  • By use of the power cable connector according to embodiments of present disclosure, the temperature of the power cable connector can be measured wirelessly and passively. In this way, the proposed system can provide a convenient and efficient way to measure the temperature of the power cable connector.
  • In some embodiments, the electric system 400 may be deployed as an Internet-of-Things (IoT) system. In the system 400, the reader 430 is connected to a system in a wired or wireless way for on-line monitoring of temperature of conductive plugs 103, and transmits temperature data collected by the temperature sensors of the power cable connectors 100 to the system 400 for on-line monitoring.
  • FIG. 5 illustrates a method 500 for assembling a power cable connector 100 in accordance with some example embodiments of the present disclosure. In some embodiments, the method 500 can be executed manually. In some embodiments, the method 500 can be executed automatically. For example, the method 500 can be executed by a robot in a production line.
  • At block 502, a housing 102 is provided. The housing 102 comprises a first portion 1021 adapted to contain a conductive plug 103 inserted therethrough. At block 504, a first layer 104 is arranged on at least a part of an inner wall of the housing 102. At block 506, a second layer 106 is arranged on the first layer 104 so that the first layer 104 is at least partially located between the inner wall of the housing 102 and the second layer 106. At block 508, a passive wireless measuring apparatus 108 is embedded into the second layer 106, wherein in the case that the conductive plug 103 is inserted into the first portion 1021, a surface of the passive wireless measuring apparatus 108 is coupled to the conductive plug 103.
  • It is to be understood that the apparatus, the structure or the process involved in FIG. 5 have been described above with reference to FIGS. 1-4, and the details will not be described hereinafter for the sake of brevity.
  • Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. On the other hand, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
  • Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (20)

1. A power cable connector comprising:
a housing comprising a first portion adapted to contain a conductive plug inserted therethrough;
a first layer arranged on at least a part of an inner wall of the housing;
a second layer arranged on the first layer so that the first layer is at least partially located between the inner wall of the housing and the second layer; and
a passive wireless measuring apparatus embedded into the second layer, wherein in the case that the conductive plug is inserted into the first portion, a surface of the passive wireless measuring apparatus is coupled to the conductive plug.
2. The power cable connector of claim 1, wherein the conductive plug comprises a plate portion and a cylindrical portion, a first thickness of the plate portion being less than a first diameter of the cylindrical portion to form a shoulder on an end of the cylindrical portion adjacent to the plate portion,
wherein the passive wireless measuring apparatus is arranged on the shoulder.
3. The power cable connector of claim 1, wherein:
the passive wireless measuring apparatus is directly coupled to the second layer, or
the passive wireless measuring apparatus is coupled to the second layer via a semi-conductive material.
4. The power cable connector of claim 1, wherein:
the surface of the passive wireless measuring apparatus is directly coupled to the conductive plug, or
the surface of the passive wireless measuring apparatus is coupled to the conductive plug by a thermal conductive material.
5. The power cable connector of claim 3, wherein the semi-conductive material is selected from a group consisting of EPDM rubber, silicone rubber, acrylic resin, epoxy resin and combination thereof.
6. The power cable connector of claim 4, wherein the thermal conductive material is selected from a group consisting of EPDM rubber, silicone rubber, acrylic resin, epoxy resin and combination thereof.
7. The power cable connector of claim 1, further comprising:
a further passive wireless measuring apparatus embedded into the second layer.
8. The power cable connector of claim 1, wherein the conductive plug comprises an opening at an end thereof for receiving a conductor.
9. The power cable connector of claim 1, wherein the housing is made of a semi-conductive material.
10. The power cable connector of claim 1, wherein the first layer is made of an insulation material.
11. The power cable connector of claim 1, wherein the second layer is made of a semi-conductive material.
12. The power cable connector of claim 1, wherein the conductive plug is made of metal.
13. The power cable connector of claim 1, further comprising:
a second portion, wherein the first portion comprises an end connected to the second portion so that the first and second portions form a “T” shape.
14. The power cable connector of claim 1, wherein the passive wireless measuring apparatus comprises a radio frequency identification (RFID) tag.
15. An electrical system, comprising:
a power cable connector of claim 1;
a first antenna; and
a reader coupled to the first antenna, wherein the reader is configured to provide wireless radio frequency energy to power the passive wireless measuring apparatus in the power cable connector and receiving temperature data via the first antenna.
16. The electric system according to claim 15, wherein the power cable connector is configured to fit into a basic insulating plug of a switchgear.
17. The electric system according to claim 15, further comprising:
a further power cable connector of comprising:
a second housing comprising a first portion adapted to contain a conductive plug inserted therethrough;
a first layer arranged on at least a part of an inner wall of the second housing, the first layer is made of an insulation material;
a second layer arranged on the first layer so that the first layer is at least partially located between the inner wall of the second housing and the second layer; and
a second passive wireless measuring apparatus embedded into the second layer, wherein in the case that the conductive plug is inserted into the first portion, a surface of the second passive wireless measuring apparatus is coupled to the conductive plug.
18. The electric system according to claim 14, further comprising:
a second antenna coupled to the reader, and configured to match an antenna of the further power cable connector.
19. An Internet of Things (IoT) system comprising:
a power cable connector of any of claims 1-14.
20. A method for assembling a power cable connector, comprising:
providing a housing comprising a first portion adapted to contain a conductive plug inserted therethrough;
arranging a first layer on at least a part of an inner wall of the housing;
arranging a second layer on the first layer so that the first layer is at least partially located between the inner wall of the housing and the second layer; and
embedding a passive wireless measuring apparatus into the second layer, wherein in the case that the conductive plug is inserted into the first portion, a surface of the passive wireless measuring apparatus is coupled to the conductive plug.
US16/657,065 2018-12-20 2019-10-18 Power cable connector, electrical system and method for assembling power cable connector Active US11050196B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/122411 WO2020124498A1 (en) 2018-12-20 2018-12-20 Power cable connector, electrical system and method for assembling power cable connector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122411 Continuation WO2020124498A1 (en) 2018-12-20 2018-12-20 Power cable connector, electrical system and method for assembling power cable connector

Publications (2)

Publication Number Publication Date
US20200203896A1 true US20200203896A1 (en) 2020-06-25
US11050196B2 US11050196B2 (en) 2021-06-29

Family

ID=71097265

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/657,065 Active US11050196B2 (en) 2018-12-20 2019-10-18 Power cable connector, electrical system and method for assembling power cable connector

Country Status (4)

Country Link
US (1) US11050196B2 (en)
CN (1) CN111542973A (en)
CA (1) CA3069475C (en)
WO (1) WO2020124498A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116745590A (en) * 2021-01-22 2023-09-12 Abb瑞士股份有限公司 Wireless measuring device and cable sleeve comprising same
CN113447857B (en) * 2021-06-29 2023-07-14 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Method and device for evaluating reliability of electric connector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8414326B2 (en) * 2008-11-17 2013-04-09 Rochester Institute Of Technology Internal coaxial cable connector integrated circuit and method of use thereof
CN106207940A (en) * 2016-08-30 2016-12-07 廊坊芳远新合电气有限公司 A kind of cable connector with temp sensing function
US20190316969A1 (en) * 2017-04-13 2019-10-17 Abb Schweiz Ag Measurement apparatus and power cable accessory and system using the same and assembling method therefor

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090170375A1 (en) * 2007-12-26 2009-07-02 Dayan Mervin A Connector apparatus for video and audio signal transfer among multiple devices and system incorporating same
US8591262B2 (en) * 2010-09-03 2013-11-26 Pulse Electronics, Inc. Substrate inductive devices and methods
WO2012062022A1 (en) * 2010-11-11 2012-05-18 浙江图维电力科技有限公司 On-line detection device for inner temperature of power cable joint based on radio frequency technology and method thereof
KR101151989B1 (en) * 2010-12-17 2012-06-01 엘에스산전 주식회사 External connector for solid insulated load break switchs
CN102790304A (en) * 2011-05-19 2012-11-21 无锡中亚电器设备厂 High-voltage insulating solid-encapsulated bus plug and external-shield grounding enclosed isolated bus
CN203300912U (en) * 2013-07-02 2013-11-20 佛山市新基德电子厂有限公司 Leakage protection plug with temperature protection
TWI569541B (en) * 2015-01-30 2017-02-01 勝德國際研發股份有限公司 Power socket
DE102015004313A1 (en) * 2015-04-01 2016-10-06 Müller Plastik GmbH Plug, in particular with a vehicle charging cable of an electric or hybrid vehicle
CN104852169B (en) * 2015-05-19 2018-02-09 深圳市沃尔核材股份有限公司 The accurate thermometric Separable cable connector of intelligence
WO2017006360A1 (en) * 2015-07-05 2017-01-12 Green Seas Ventures, Ltd Plug-in connector
CN105353734A (en) * 2015-11-09 2016-02-24 安徽智芯能源科技有限公司 Passive wireless real-time monitoring system of electrical equipment and environment based on IOT
CN106017701A (en) 2016-07-01 2016-10-12 廊坊芳远新合电气有限公司 Wireless passive real-time temperature measuring sensing apparatus, system, and method for cable joint
CN106197736A (en) * 2016-07-07 2016-12-07 深圳市罗庚电气有限公司 A kind of wireless and passive prefabricated cable unplugg monitor and using method thereof
CN106168511B (en) * 2016-08-27 2019-05-24 保定合力达电缆附件有限公司 A kind of high-tension cable connect-disconnect plug with temp sensing function
CN106595899A (en) 2016-12-13 2017-04-26 廊坊芳远新合电气有限公司 Temperature measurement device of cable joint and cable joint
CN206697617U (en) * 2017-05-31 2017-12-01 廊坊芳远新合电气有限公司 Cable connector applied to below rated voltage 35kV power transmission and distribution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8414326B2 (en) * 2008-11-17 2013-04-09 Rochester Institute Of Technology Internal coaxial cable connector integrated circuit and method of use thereof
CN106207940A (en) * 2016-08-30 2016-12-07 廊坊芳远新合电气有限公司 A kind of cable connector with temp sensing function
US20190316969A1 (en) * 2017-04-13 2019-10-17 Abb Schweiz Ag Measurement apparatus and power cable accessory and system using the same and assembling method therefor

Also Published As

Publication number Publication date
US11050196B2 (en) 2021-06-29
CA3069475A1 (en) 2020-06-20
CA3069475C (en) 2023-02-28
CN111542973A (en) 2020-08-14
WO2020124498A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
US11050196B2 (en) Power cable connector, electrical system and method for assembling power cable connector
KR20160013089A (en) Closure
US11626698B2 (en) Power connector with integrated power monitoring
EP2944969B1 (en) Antenna and cable connection status verification device and verification method
CN113508514A (en) Wiring configuration for a stator, temperature sensor device and system for detecting temperature
US7841898B1 (en) Connector adapter
US11663436B2 (en) Basic insulating plug and electric system
CN111712896B (en) Wireless sensing systems and methods for switching devices
CN109036991B (en) Contact of breaker, breaker and high-tension switch cabinet
WO2020154860A1 (en) Bushing, cable accessory, system, method for assembling bushing and method for assembling cable accessory
EP3752807B1 (en) Bushings, system for temperature measurement and method for installing measuring assembly in bushing in switchgear
US10126328B1 (en) Electrical measurement test fixture
CN113767290A (en) Power cable joint device and electrical system
CN202188915U (en) High pressure electric appliance temperature measurement system based on open frequency range wireless transmission
WO2019140643A1 (en) Apparatus, system and method for temperature measurement for dry-type transformer
CN212721798U (en) Temperature sensor and probe assembly thereof
CN110601125B (en) Cable accessory structure
CN208753240U (en) A kind of omnipotent breaker
EP4312007A1 (en) Apparatus and method for monitoring the temperature of high voltage electrical cable connectors
CN219348009U (en) Temperature sensor
CN109148230A (en) A kind of omnipotent breaker
CN219066568U (en) Reactor and capacitance compensation cabinet
KR20030045864A (en) Temperature dector for underground power cables
CN116209903A (en) Joint for field probe assembly

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: ABB SCHWEIZ AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WU, FUMEI;ZHANG, YIBO;YANG, QING;REEL/FRAME:052503/0579

Effective date: 20190905

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE