US20200200792A1 - Integrated Resonant Accelerometer Using Optical Strain Sensor - Google Patents

Integrated Resonant Accelerometer Using Optical Strain Sensor Download PDF

Info

Publication number
US20200200792A1
US20200200792A1 US16/747,710 US202016747710A US2020200792A1 US 20200200792 A1 US20200200792 A1 US 20200200792A1 US 202016747710 A US202016747710 A US 202016747710A US 2020200792 A1 US2020200792 A1 US 2020200792A1
Authority
US
United States
Prior art keywords
tether
ring resonator
sensing
photonic
accelerometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/747,710
Inventor
Suraj Deepak Bramhavar
Paul William Juodawlkis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Massachusetts Institute of Technology
Original Assignee
Massachusetts Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Massachusetts Institute of Technology filed Critical Massachusetts Institute of Technology
Priority to US16/747,710 priority Critical patent/US20200200792A1/en
Assigned to MASSACHUSETTS INSTITUTE OF TECHNOLOGY reassignment MASSACHUSETTS INSTITUTE OF TECHNOLOGY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRAMHAVAR, SURAJ DEEPAK, JUODAWLKIS, Paul William
Publication of US20200200792A1 publication Critical patent/US20200200792A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/093Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by photoelectric pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/03Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses by using non-electrical means
    • G01P15/032Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses by using non-electrical means by measuring the displacement of a movable inertial mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups

Definitions

  • An accelerometer is a very common measurement device found in a multitude of systems. In the automotive industry, for instance, acceleration sensing is commonly used for airbag deployment. The computer industry utilizes accelerometers to protect hard disks from large shocks, and the aerospace industry employs inertial measurement units comprising multiple accelerometers and gyroscopes for sensing and navigation. Accelerometers are currently found in many personal handheld devices as well, where they are used to detect the general orientation of the device. In many high volume applications, the majority of accelerometer devices are made using microelectromechanical systems (MEMS) fabrication technologies.
  • MEMS microelectromechanical systems
  • FIG. 1 shows an example of such a MEMS-based accelerometer.
  • the resonant frequencies of two vibrating sensing tethers 102 are detected and used to calculate the acceleration experienced by a large proof-mass 104 , onto which the tethers are attached.
  • the two vibrating sensing tethers 102 are excited and detected using electro-static comb drives 106 .
  • These comb drives 106 can be used to both excite motion in the tether 102 , typically at its natural mechanical resonant frequency, as well as to detect this induced motion.
  • the purpose of the comb-drive detection is to precisely measure the resonant frequency of the tethers, acting as a small strain gauge.
  • the tethers are attached to the large proof mass 104 , which experiences displacement as a result of applied acceleration. This proof mass displacement pulls one of the tethers 102 into tension while pushing the other tether 102 into compression, altering the resonant frequencies of the tethers 102 as a result.
  • the resonant frequency shifts have equal magnitudes, but opposite sign, only if the proof mass acceleration occurs in the desired axis. Any acceleration, and resulting displacement, experienced in orthogonal dimensions, forces the tether resonant frequencies to shift together, which allows for a differential measurement and a cancellation of unwanted signals.
  • the parameter associated with resonant accelerometer sensitivity is the scale factor, which is the amount of frequency shift experienced by an individual tether as a result of a given acceleration of the proof mass attached thereto.
  • the scale factor may be expressed in units of Hz/g.
  • a larger scale factor is generally desirable, not only to increase system sensitivity, but also to reduce the impact of unwanted drifts in the sensor signal due to temperature and other fluctuations in the surrounding environment over time. For example, in the case where the scale factor is equal to 10 Hz/g and the tether resonant frequency is stable to within 1 Hz over long periods of time, the measured signal, in units of measured acceleration, will drift by 0.1 g over this time.
  • acceleration measurements need to be integrated twice to retrieve position, measurement errors and/or noise in the original signal can produce significant errors in final assumed position. Consequently, there is a large effort to improve performance of these devices to reduce this measurement error.
  • accelerometers with improved performance typically come at the expense of size and power, moving away from MEMS fabrication technologies to take advantage of a larger proof-mass in order to achieve higher sensitivity and long term stability. There is a need to break this trade-off and develop accelerometers with excellent sensitivity and long-term stability, while maintaining the low SWaP-C of MEMS devices.
  • a photonic accelerometer which combines the desirable attributes of microelectromechanical systems (MEMS) accelerometers with a photonic integrated circuit (PIC) technology.
  • MEMS microelectromechanical systems
  • PIC photonic integrated circuit
  • the embodiments herein describe a sensing element formed on a proof mass tether, which facilitates direct sensing of strain in the tether due to acceleration experienced by the proof mass.
  • the embodiments further describe a wavelength locking loop to facilitate a stable resonance bias, and a scale factor calibrator to stabilize the scale factor associated with the photonic accelerometer, either or both of which may be associated with the sensing element.
  • the invention is an accelerometer, comprising a proof mass, and a first tether, mechanically coupled to a first side of the proof mass and mechanically coupled to a first anchor site.
  • a first photonic ring resonator is formed on the first tether to form a first sensing tether, such that the first photonic ring resonator undergoes strain along with the first tether.
  • the first photonic ring resonator and the first tether are configured such that a strain sustained by the first sensing tether causes a change of a first resonance condition of the first photonic ring resonator.
  • An embodiment further comprises an excitation and detection system, operably coupled to the first photonic ring resonator, to sense the resonance condition of the first photonic ring resonator and to produce a first detection signal corresponding to the resonance condition of the first photonic ring resonator.
  • the excitation and detection system may comprise at least a laser, a first waveguide configured to convey light energy from the laser to the photonic ring resonator, a photodiode, and a second waveguide configured to convey light energy from photonic ring resonator to the photodiode.
  • the excitation and detection system may further comprise a wavelength locking loop configured to adaptively maintain a center frequency of the light energy substantially at a resonant frequency of the first photonic ring resonator.
  • the wavelength locking loop may be a Pound-Drever-Hall feedback loop.
  • the excitation and detection system may further comprise a scale factor calibrator configured to stabilize a scale factor associated with the accelerometer.
  • the accelerometer may further comprise a detection processor configured to receive the detection signal and produce an acceleration signal therefrom, the acceleration signal corresponding to an amount of change of the resonance condition with respect to a reference resonance condition.
  • the excitation and detection system may be integrated on a monolithic platform along with the proof mass and the sensing tether.
  • the cross-sectional dimensions, W ⁇ L, of the sensing tether may be at least one of W ⁇ 5 ⁇ and L ⁇ 5 ⁇ .
  • the proof mass may comprise a full thickness of a bulk silicon wafer upon which the accelerometer is fabricated.
  • the first tether may comprise silicon dioxide.
  • the accelerometer may further comprise a second tether, mechanically coupled to a second side of the proof mass and mechanically coupled to a second anchor site.
  • the second side may be an opposing side of the proof mass with respect to the first side.
  • a second photonic ring resonator may be formed on the second tether to form a second sensing tether.
  • the second photonic ring resonator and the second tether may be configured such that a strain sustained by the second sensing tether causes a change of a resonance condition of the second photonic ring resonator.
  • the excitation and detection system may be further operably coupled to the second photonic ring resonator, configured to convey light energy from the laser to the second photonic ring resonator, to sense the resonance condition of the second photonic ring resonator, and to produce a second detection signal corresponding to the resonance condition of the second photonic ring resonator.
  • the accelerometer may further comprise a detection processor configured to receive the first detection signal and the second detection signal, and produce an acceleration signal therefrom.
  • the acceleration signal may correspond to an amount of change of the resonance condition of the first photonic ring resonator and an amount of change of the resonance condition of the second photonic ring resonator, with respect to a reference resonance condition.
  • the detection processor may be further configured to cancel an effect of thermal drift as a function of opposing detection signals produced by the first photonic ring resonator and the second photonic ring resonator.
  • the invention is a method of fabricating an accelerometer, comprising defining at least one of a photonic waveguide and a photonic ring resonator on a silicon-on-insulator (SOI) substrate.
  • SOI substrate may have an insulator layer and a silicon layer.
  • the method may further comprise integrating one or more active components on the SOI substrate, defining at least one sensing tether by etching partially through the insulator layer of the SOI substrate, defining a proof mass by etching through the silicon layer of the SOI substrate, and releasing the at least one sensing tether by selectively etching the insulating layer of the SOI substrate.
  • the one or more active components may comprise at least one of (i) a photodiode, (ii) a laser, (iii) a phase tuner, and (iv) a photonic ring resonator.
  • the one or more active components may further comprise at least one of a scale factor calibrator and a wavelength locking loop.
  • FIG. 1 shows an example of such a MEMS-based accelerometer.
  • FIG. 2A illustrates an example embodiment of a photonic accelerometer according to the invention.
  • FIG. 2B shows an expanded view of the sensing tether of the photonic accelerometer shown in FIG. 2A .
  • FIG. 2C is a graph plotting the magnitude of the optical energy transmitted through the waveguides and ring resonator as a function of the wavelength of the optical energy.
  • FIG. 2D shows a simplified view of the photonic accelerometer 200 of FIG. 2A .
  • FIGS. 3A through 3E show an example process flow for fabricating a photonic accelerometer according to the described embodiments.
  • FIG. 4 illustrates an example embodiment of a wavelength locking circuit according to the invention.
  • FIG. 5 shows an example embodiment of a photonic accelerometer, as described herein with respect to FIGS. 2A through 4 , in cooperation with a detection processor.
  • FIG. 6 shows an example internal structure of a processing system that may be used to implement one or more of the described embodiments.
  • FIG. 7 shows an embodiment of a method 700 of fabricating an accelerometer according to the invention.
  • the described embodiments are directed to a photonic accelerometer which combines the desirable attributes of microelectromechanical systems (MEMS) accelerometers with a photonic integrated circuit (PIC) technology and components.
  • the described embodiments further comprise a sensing element integrated with a proof mass tether, which facilitates direct sensing of strain in the tether due to acceleration experienced by the proof mass.
  • Related application US 2016/0349283 (the '238 Application) describes a resonator separated from a vibrating proof mass tether, and evanescent coupling between the resonator and tether to sense vibration of the tether.
  • the embodiments described herein include a resonator formed on (e.g., embedded in) the tether itself. Accordingly, in the described embodiments, the resonator itself experiences mechanical strain due to proof mass acceleration directly, along with the tether, and resonant frequency of the resonator varies as a direct result of resonator strain.
  • higher sensitivity is a desirable attribute of an accelerometer, which corresponds to a large scale factor.
  • the size of the sensing tethers is typically limited by the electro-static comb drives required to both excite and detect their motion.
  • the amount of tether size reduction is limited due to practical considerations. For example, smaller tethers suffer from reduced detection sensitivity, which is dependent on the surface area of the electro-static comb drive.
  • the reduced sensitivity combined with smaller displacement amplitudes, makes it very difficult to detect acceleration of an associated proof mass using tethers with cross-sectional dimensions of less than 10 microns (10 ⁇ ). This limits the achievable scale factor in conventional MEMS-based resonant accelerometers.
  • optical transduction techniques of the described embodiments may dramatically increase the scale factor, relative to devices described with respect to FIG. 1 , as they have demonstrated the capability of accurately measuring strain in very small mechanical structures. These techniques have also been demonstrated on integrated chip-scale platforms, where the requisite optoelectronic devices (e.g., lasers, detectors, etc.) can be integrated on the same monolithic platform.
  • the requisite optoelectronic devices e.g., lasers, detectors, etc.
  • the device of the described embodiments may comprise a standard resonant accelerometer where strain in the sensing tethers is detected using a photonic integrated circuit instead of electro-static comb drives.
  • the sensing tethers may have cross sectional dimensions of approximately 1 ⁇ m, allowing for scale factors that are over 20 dB greater than existing MEMS devices.
  • a silicon proof mass may be defined with a 4 ⁇ m ⁇ 70 ⁇ m tether attached to one side and another 4 ⁇ m ⁇ 70 ⁇ m tether attached to the opposite side.
  • the silicon proof mass may be the full thickness of the bulk silicon wafer, allowing for a higher total mass and thus higher sensitivity.
  • the small tethers may be made of silicon dioxide, with 200 nm thick silicon photonic waveguides buried within the silicon dioxide tether.
  • Displacement of the mass in the sensing direction will result in equal and opposite strain applied to the two tethers, and this strain is measured by monitoring the resonance frequency of optical resonators fabricated within each sensing tether. Any change in tether strain results in a change in its refractive index due to the photoelastic effect, and translates directly to a shift in the tether resonance frequency. When probed at the appropriate incident optical wavelength, this shift corresponds to a change in the transmitted optical power measured with a photodiode. Measuring the opposing resonance shifts in each tether allows for acceleration in the desired direction to be decoupled from temperature variations, which affect both tethers substantially the same. Temperature variations typically dominate long-term drifts in accelerometers. The opposing signals from the two tethers cancel out errors due to thermal drift. Acceleration signals derived from the different tethers are of opposing sign, since the tethers are on opposite sides of the proof mass.
  • FIG. 2A illustrates an example embodiment of a photonic accelerometer 200 according to the invention.
  • FIG. 2B shows an expanded view of the sensing tether 204 of the photonic accelerometer 200 shown in FIG. 2A .
  • FIG. 2C is a graph plotting the magnitude of the optical (light) energy transmitted through the waveguides 210 and photonic ring resonator 208 as a function of the wavelength of the optical energy.
  • FIG. 2D shows a simplified view of the photonic accelerometer 200 of FIG. 2A .
  • the photonic accelerometer 200 of this example embodiment includes a proof mass 202 , and a pair of sensing tethers 204 coupled to the proof mass 202 at opposite sides of the proof mass 202 .
  • the proof mass 202 depicted in the example embodiments of FIGS. 2A and 2D are rectangular, but in alternative embodiments the proof mass 202 may be square, round, elliptical, polygonal, other shapes suitable to the particular form factor required by the application using the photonic accelerometer 200 .
  • a photonic ring resonator 208 is formed on (e.g., embedded in) the tether element that connects the proof mass 202 to the main body 209 of the photonic accelerometer 200 , so as to form a combined, integrated unit, referred to herein as the sensing tether 204 .
  • the silicon waveguides 210 convey light energy to and from the photonic ring resonator 208 by evanescent coupling.
  • the term light energy refers to electromagnetic energy having a wavelength that falls within the propagation bandwidth of the silicon waveguides 210 .
  • a light beam at a wavelength close to the resonant wavelength of the ring resonator 208 can be transmitted through the waveguide 210 . At least a portion of the light beam is coupled into the ring resonator 208 due to the evanescent coupling between the waveguide 210 and the ring resonator 208
  • One or more phase tuners 212 a , 212 b may be used to adjust the phase of the light energy conveyed by the silicon waveguides 210 and propagating through the ring resonator.
  • a laser 214 generates light energy and directs the light energy to the ring resonator 208 by way of the silicon waveguides 210 .
  • a photodiode 216 receives light energy, through the silicon waveguides 210 , after the light passes the ring resonator 208 .
  • the laser and the waveguides 210 that convey light energy to the ring resonator 208 , together with the photodiode 216 and the waveguides 210 that convey light energy from the ring resonator 208 , are referred to herein as the excitation and detection system.
  • the graph in FIG. 2C shows optical transmission of the light energy, from the laser to the photodiode, as a function of optical wavelength.
  • the graph demonstrates that the ring resonator 208 causes a notch (i.e., an abrupt drop in amplitude) at a particular frequency. This notch occurs at the resonant frequency of the ring resonator 208 .
  • the solid trace 220 demonstrates the notch as it occurs when the resonator 208 is not experiencing strain. Light energy at ⁇ 0 intersects the solid trace 200 at point 222 .
  • the sensing tether 204 i.e., the integrated tether element and ring resonator 208
  • the notch frequency shifts, as shown by dotted trace 224 .
  • the shift is due to a change in the refractive index experienced by the light energy as the light energy passes through the ring resonator 208 .
  • the ring resonator 208 is integrated with the tether element, its refractive index changes directly with respect to the strain experienced by the sensing tether 204 , rather than through an indirect coupling between the tether element and the ring resonator (e.g., evanescent coupling).
  • the optical transmission output may therefore be used to detect strain in the sensing tether.
  • the amount of the shift of the notch frequency may be used to determine strain experienced by the sensing tether, and thus the acceleration of the proof mass.
  • the photodiodes 216 produce a signal corresponding to the optical transmission of the light energy.
  • a detection processor (not shown in FIGS. 2A-2D ) may receive and evaluate the signals from the photodiodes 216 to produce an acceleration signal that conveys a value corresponding to the acceleration experienced by the proof mass 202 .
  • FIGS. 3A through 3D An example process flow for fabricating a photonic accelerometer according to the described embodiments is shown in FIGS. 3A through 3D . It should be understood that, for brevity, this example process flow describes only several major steps in the overall process flow, and that other steps may be required to complete the fabrication process.
  • an example photonic accelerometer may be fabricated beginning with a silicon-on-insulator (SOI) wafer substrate 302 , comprising a bulk silicon (Si) layer 304 and a silicon dioxide (SiO 2 ) insulator layer 306 .
  • SOI silicon-on-insulator
  • a thin silicon epitaxial layer 308 is grown in the SiO 2 layer 306 .
  • the photonic waveguides 310 and the ring resonator 312 are etched into the epitaxial layer 308 .
  • Active components 314 such as the photodiode and the phase tuner, may also be integrated in the epitaxial layer 308 using standard fabrication techniques known in the art. It should be understood that the components implemented into the epitaxial layer 308 are shown generally, as descriptive examples, and that placement within FIGS. 3A-3D are not necessarily shown to scale or situationally correct.
  • the epitaxial layer 308 may be covered with a second SiO 2 layer 316 .
  • One or more sensing tethers 318 may be defined by etching 320 through second layer of SiO 2 and the 2 ⁇ m (in the example embodiment) of buried silicon dioxide 306 until nearly reaching the silicon substrate 316 , leaving only a thin strip 322 of SiO 2 .
  • FIGS. 3B and 3C are taken along a cross-section line B-B, in FIG. 2D , having right angles to show cross sections through the tether and the proof mass.
  • the large proof mass 324 can then be defined by etching fully through 326 the 700 ⁇ m thick (in the example embodiment) silicon substrate 304 from the back side, using a deep reactive ion etch (DRIE). DRIE is a common tool used in MEMS fabrication techniques. Finally, the proof mass 324 can be released by using a timed hydrofluoric acid (HF) etch 320 to remove the small amount of silicon dioxide 322 left on the front side of the wafer substrate 302 .
  • FIG. 3D is taken along a line D-D of FIG. 2D to show the proof mass suspended by the sensing tether.
  • FIG. 3E is taken along line E-E of FIG. 2D to show only the proof mass and not the supporting tethers.
  • a wavelength locking control circuit is implemented to maintain the incident optical wavelength at a particular value with respect to the optical resonance of the sensing tether.
  • a Pound-Drever-Hall (PDH) feedback loop is a specific type of wavelength locking circuit, which may be implemented using electro-optic phase modulators, photodiodes, and standard radio-frequency (RF) electronics.
  • An example embodiment of such a feedback loop 402 a , 402 b is shown in FIG. 4 , one associated with each sensing tether 204 a , 204 b , respectively.
  • the PDH feedback loops 402 a , 402 b shown in FIG. 4 , are simplified depictions, and that one skilled in the art would understand that certain components, which are not shown for the sake of brevity, would be required to implement the PDH feedback loop.
  • the electro-optical modulator (EOM) 406 a together with the reference oscillator 414 a dithers the light energy from the tunable laser 408 a (or the scale factor calibrator 404 a ) across a range of wavelengths.
  • the mixer 416 a together with the reference oscillator 414 a , removes the dithering from the signal generated by the photodiode 418 a to produce signal out 412 a .
  • the tunable laser 408 a uses signal out 412 a to adjust the wavelength of the light that the tunable laser 408 a produces.
  • the wavelength locking loop 402 a operates to maintain the light energy produced by the tunable laser 408 a at or near the resonant frequency of the ring resonator (i.e., at the bottom of the notch).
  • the frequency to which the laser is controlled indicates the resonant frequency, and thus the strain of the resonator on the tether.
  • Operation of the wavelength locking loop 402 b is substantially the same as described with respect to wavelength locking loop 402 a.
  • Embodiments may include scale factor calibrators 404 a , 404 b , shown in FIG. 4 , to stabilize the scale factor associated with each sensing tether of the photonic accelerometer 200 .
  • Scale factor stability or the ability to maintain constant acceleration sensitivity, can be obtained by including an electro-optic modulator (EOM) 406 b to phase modulate the input light from a tunable laser 408 .
  • EOM electro-optic modulator
  • This provides a calibrated signal dictated solely by the frequency of modulation, which can be very accurately controlled.
  • a dashed line 410 shows the signal path from the tunable laser 408 during normal accelerometer operation, without the use of the scale factor calibrator 404 .
  • the EOM 406 b together with the reference oscillator 414 b dithers the light energy from the tunable laser 408 a across a range of wavelengths. Doing so causes the wavelength of the light energy to fall across different portions of the resonant notch of the ring resonator described with reference to FIG. 2C , thus facilitating characterization of the slope and depth of the notch. Operation of the scale factor calibrator 404 b is substantially the same as described with respect to scale factor calibrator 404 a.
  • Example embodiments may include a wavelength loop 402 a and a scale factor calibrator 404 a associated with a sensing tether 204 a , and each wavelength loop 402 a producing a signal out 412 a.
  • FIG. 5 shows an example embodiment of a photonic accelerometer 200 , as described herein with respect to FIGS. 2A through 4 , in cooperation with a detection processor 502 .
  • the detection processor 502 receives a signal out 412 a associated with the first sensing tether of the photonic accelerometer 200 and a signal out 412 b associated with the second sensing tether of the photonic accelerometer 200 .
  • the detection processor 502 evaluates the signals 412 a , 412 b , to generate an acceleration signal 504 based on the signals 412 a , 412 b .
  • Embodiments may implement the detection processor with a state machine comprising logical components, a processing system comprising a processor executing instruction code stored in memory, or other processing systems know in the art.
  • FIG. 6 is a diagram of an example internal structure of a processing system 600 that may be used to implement one or more of the embodiments herein.
  • Each processing system 600 contains a system bus 602 , where a bus is a set of hardware lines used for data transfer among the components of a computer or processing system.
  • the system bus 602 is essentially a shared conduit that connects different components of a processing system (e.g., processor, disk storage, memory, input/output ports, network ports, etc.) that enables the transfer of information between the components.
  • a processing system e.g., processor, disk storage, memory, input/output ports, network ports, etc.
  • Attached to the system bus 602 is a user I/O device interface 604 for connecting various input and output devices (e.g., keyboard, mouse, displays, printers, speakers, etc.) to the processing system 600 .
  • a network interface 606 allows the computer to connect to various other devices attached to a network 608 .
  • Memory 610 provides volatile and non-volatile storage for information such as computer software instructions used to implement one or more of the embodiments of the present invention described herein, for data generated internally and for data received from sources external to the processing system 600 .
  • a central processor unit 612 is also attached to the system bus 602 and provides for the execution of computer instructions stored in memory 610 .
  • the system may also include support electronics/logic 614 , and a communications interface 616 .
  • the communications interface may receive the signals 412 a and 412 b from the photonic accelerometer 200 , as described herein with reference to FIGS. 2A through 5 .
  • the information stored in memory 610 may comprise a computer program product, such that the memory 610 may comprise a non-transitory computer-readable medium (e.g., a removable storage medium such as one or more DVD-ROM's, CD-ROM's, diskettes, tapes, etc.) that provides at least a portion of the software instructions for the invention system.
  • the computer program product can be installed by any suitable software installation procedure, as is well known in the art.
  • at least a portion of the software instructions may also be downloaded over a cable communication and/or wireless connection.
  • FIG. 7 shows an embodiment of a method 700 of fabricating an accelerometer according to the invention.
  • the process begins by defining 702 at least one of a photonic waveguide and a ring resonator on a silicon-on-insulator (SOI) substrate, the SOI substrate having an insulator layer and a silicon layer.
  • the ring resonator is formed in the region that will ultimately be etched to form the sensing tether.
  • the method further comprises integrating 704 one or more active components on the SOI substrate, and defining 706 at least one sensing tether by etching partially through the insulator layer of the SOI substrate.
  • the process further comprises defining 708 a proof mass by etching through the silicon layer of the SOI substrate, and releasing 710 the at least one sensing tether by selectively etching the insulating layer of the SOI substrate.
  • the sensing element (the ring resonator of the example embodiment) directly experiences the strain induced by the acceleration of the proof mass. This attribute is due to the fact that the sensing element is integrated on the tether that connects the proof mass to an anchor point.
  • the photonic accelerometer may be implemented in a fully integrated, chip-scale manner by integrating the proof mass, silicon waveguides, and all of the optoelectronic components such as lasers, electro-optic phase shifters, and photodetectors onto the same silicon photonic platform. This allows for the passive sensor as well as the optoelectronic circuit used for stability control to be constructed in a monolithically integrated device.
  • the detection processor which receives and evaluates the signals from the photodiodes to produce an acceleration value corresponding to the acceleration experienced by the proof mass, may also be integrated onto the same platform via wafer-level three-dimensional (3D) bonding of CMOS electronics to photonics wafers.
  • Photonic integrated resonant accelerometers facilitate improvements in many device parameters with respect to conventional MEMS devices. Such parameters include sensitivity, scale factor stability, bias stability, dynamic range, and bandwidth, among others. Many of these limitations stem from the electro-static transduction technique used by conventional accelerometer devices, as described herein.
  • the novel optical system of the described embodiments overcomes these limitations, while still providing a chip-scale system that can be batch-fabricated and maintain low size, weight, power, and cost.
  • the potential applications for this technology have a broad range from industrial sensors to inertial navigation, or any application where the robustness and sensitivity of current accelerometers needs to be improved.
  • certain embodiments of the example embodiments described herein may be implemented as logic that performs one or more functions.
  • This logic may be hardware-based, software-based, or a combination of hardware-based and software-based.
  • Some or all of the logic may be stored on one or more tangible, non-transitory, computer-readable storage media and may include computer-executable instructions that may be executed by a controller or processor.
  • the computer-executable instructions may include instructions that implement one or more embodiments of the invention.
  • the tangible, non-transitory, computer-readable storage media may be volatile or non-volatile and may include, for example, flash memories, dynamic memories, removable disks, and non-removable disks.

Abstract

An accelerometer may comprise a proof mass, a first tether mechanically coupled to the side of the proof mass and to an anchor, and a ring resonator integrated with the tether to form a sensing tether. The ring resonator and the tether may be configured such that a strain sustained by the sensing tether causes a change of a resonance condition of the ring resonator. The accelerometer may comprise a wavelength locking loop configured to adaptively maintain a center frequency of the light energy at a resonant frequency of the sensing element, and a scale factor calibrator configured to stabilize a scale factor associated with the accelerometer. The accelerometer may further include a detection processor configured to receive the detection signal and produce an acceleration signal therefrom. The acceleration signal may correspond to an amount of change of the resonance condition with respect to a reference resonance condition.

Description

    RELATED APPLICATIONS
  • This application is a divisional of U.S. application Ser. No. 15/807,531, filed Nov. 8, 2017 which claims the benefit of U.S. Provisional Application No. 62/419,524, filed on Nov. 9, 2016, and is related to U.S. application Ser. No. 15/166,599, filed on May 27, 2016. The entire teachings of the above applications are incorporated herein by reference.
  • GOVERNMENT SUPPORT
  • This invention was made with government support under FA8721-05-C-0002 from U.S. Air Force. The government has certain rights in the invention.
  • BACKGROUND
  • An accelerometer is a very common measurement device found in a multitude of systems. In the automotive industry, for instance, acceleration sensing is commonly used for airbag deployment. The computer industry utilizes accelerometers to protect hard disks from large shocks, and the aerospace industry employs inertial measurement units comprising multiple accelerometers and gyroscopes for sensing and navigation. Accelerometers are currently found in many personal handheld devices as well, where they are used to detect the general orientation of the device. In many high volume applications, the majority of accelerometer devices are made using microelectromechanical systems (MEMS) fabrication technologies.
  • These techniques allow for the devices to be batch fabricated in a CMOS process flow, enabling dramatic reductions in size, weight, power, and cost (SWaP-C) while maintaining adequate performance for a variety of applications. Examples of such techniques may be found in [1] Seshia, et al., “A Vacuum Packaged Surface Micromachined Resonant Accelerometer,”, JMEMS, Sys., Vol. 11, No. 6, (2002), [2] R. Hopkins, et al., “The silicon oscillating accelerometer: a high-performance MEMS accelerometer for precision navigation and strategic guidance applications,” ION NTM 2005, San Diego, Calif., pp. 970-979, (2005) and [3] A. Trusov, et al., “Silicon Accelerometer With Differential Frequency Modulation And Continuous Self-Calibration,” 2013 IEEE MEMS Conf., Taipei, Taiwan, pp. 29-32, (2013).
  • FIG. 1 shows an example of such a MEMS-based accelerometer. The resonant frequencies of two vibrating sensing tethers 102 are detected and used to calculate the acceleration experienced by a large proof-mass 104, onto which the tethers are attached. In standard resonant MEMS accelerometers, the two vibrating sensing tethers 102 are excited and detected using electro-static comb drives 106. These comb drives 106 can be used to both excite motion in the tether 102, typically at its natural mechanical resonant frequency, as well as to detect this induced motion.
  • The purpose of the comb-drive detection is to precisely measure the resonant frequency of the tethers, acting as a small strain gauge. The tethers are attached to the large proof mass 104, which experiences displacement as a result of applied acceleration. This proof mass displacement pulls one of the tethers 102 into tension while pushing the other tether 102 into compression, altering the resonant frequencies of the tethers 102 as a result. The resonant frequency shifts have equal magnitudes, but opposite sign, only if the proof mass acceleration occurs in the desired axis. Any acceleration, and resulting displacement, experienced in orthogonal dimensions, forces the tether resonant frequencies to shift together, which allows for a differential measurement and a cancellation of unwanted signals.
  • For inertial navigation applications, however, there is a general desire to improve upon the sensitivity of accelerometers, while simultaneously improving the stability of the measured signals over long time periods.
  • The parameter associated with resonant accelerometer sensitivity is the scale factor, which is the amount of frequency shift experienced by an individual tether as a result of a given acceleration of the proof mass attached thereto. The scale factor may be expressed in units of Hz/g. A larger scale factor is generally desirable, not only to increase system sensitivity, but also to reduce the impact of unwanted drifts in the sensor signal due to temperature and other fluctuations in the surrounding environment over time. For example, in the case where the scale factor is equal to 10 Hz/g and the tether resonant frequency is stable to within 1 Hz over long periods of time, the measured signal, in units of measured acceleration, will drift by 0.1 g over this time. If instead the scale factor is increased to 10 kHz/g (a factor of 1000) and the tether frequency stability stays exactly the same, the measured signal will now drift by only 0.1 mg (a factor of 1/1000). This scale factor is dependent on the ratio of the size of the proof mass to the size of the tether, where larger proof masses and smaller tethers result in larger scale factors.
  • Since acceleration measurements need to be integrated twice to retrieve position, measurement errors and/or noise in the original signal can produce significant errors in final assumed position. Consequently, there is a large effort to improve performance of these devices to reduce this measurement error. To date, accelerometers with improved performance typically come at the expense of size and power, moving away from MEMS fabrication technologies to take advantage of a larger proof-mass in order to achieve higher sensitivity and long term stability. There is a need to break this trade-off and develop accelerometers with excellent sensitivity and long-term stability, while maintaining the low SWaP-C of MEMS devices.
  • SUMMARY
  • A photonic accelerometer is described which combines the desirable attributes of microelectromechanical systems (MEMS) accelerometers with a photonic integrated circuit (PIC) technology. The embodiments herein describe a sensing element formed on a proof mass tether, which facilitates direct sensing of strain in the tether due to acceleration experienced by the proof mass. The embodiments further describe a wavelength locking loop to facilitate a stable resonance bias, and a scale factor calibrator to stabilize the scale factor associated with the photonic accelerometer, either or both of which may be associated with the sensing element.
  • In one aspect, the invention is an accelerometer, comprising a proof mass, and a first tether, mechanically coupled to a first side of the proof mass and mechanically coupled to a first anchor site. A first photonic ring resonator is formed on the first tether to form a first sensing tether, such that the first photonic ring resonator undergoes strain along with the first tether. The first photonic ring resonator and the first tether are configured such that a strain sustained by the first sensing tether causes a change of a first resonance condition of the first photonic ring resonator.
  • An embodiment further comprises an excitation and detection system, operably coupled to the first photonic ring resonator, to sense the resonance condition of the first photonic ring resonator and to produce a first detection signal corresponding to the resonance condition of the first photonic ring resonator. The excitation and detection system may comprise at least a laser, a first waveguide configured to convey light energy from the laser to the photonic ring resonator, a photodiode, and a second waveguide configured to convey light energy from photonic ring resonator to the photodiode. The excitation and detection system may further comprise a wavelength locking loop configured to adaptively maintain a center frequency of the light energy substantially at a resonant frequency of the first photonic ring resonator. The wavelength locking loop may be a Pound-Drever-Hall feedback loop. The excitation and detection system may further comprise a scale factor calibrator configured to stabilize a scale factor associated with the accelerometer. The accelerometer may further comprise a detection processor configured to receive the detection signal and produce an acceleration signal therefrom, the acceleration signal corresponding to an amount of change of the resonance condition with respect to a reference resonance condition.
  • The excitation and detection system may be integrated on a monolithic platform along with the proof mass and the sensing tether. The cross-sectional dimensions, W×L, of the sensing tether may be at least one of W<5μ and L<5μ. The proof mass may comprise a full thickness of a bulk silicon wafer upon which the accelerometer is fabricated. The first tether may comprise silicon dioxide.
  • The accelerometer may further comprise a second tether, mechanically coupled to a second side of the proof mass and mechanically coupled to a second anchor site. The second side may be an opposing side of the proof mass with respect to the first side. A second photonic ring resonator may be formed on the second tether to form a second sensing tether. The second photonic ring resonator and the second tether may be configured such that a strain sustained by the second sensing tether causes a change of a resonance condition of the second photonic ring resonator. The excitation and detection system may be further operably coupled to the second photonic ring resonator, configured to convey light energy from the laser to the second photonic ring resonator, to sense the resonance condition of the second photonic ring resonator, and to produce a second detection signal corresponding to the resonance condition of the second photonic ring resonator. The accelerometer may further comprise a detection processor configured to receive the first detection signal and the second detection signal, and produce an acceleration signal therefrom. The acceleration signal may correspond to an amount of change of the resonance condition of the first photonic ring resonator and an amount of change of the resonance condition of the second photonic ring resonator, with respect to a reference resonance condition. The detection processor may be further configured to cancel an effect of thermal drift as a function of opposing detection signals produced by the first photonic ring resonator and the second photonic ring resonator.
  • In another aspect, the invention is a method of fabricating an accelerometer, comprising defining at least one of a photonic waveguide and a photonic ring resonator on a silicon-on-insulator (SOI) substrate. The SOI substrate may have an insulator layer and a silicon layer. The method may further comprise integrating one or more active components on the SOI substrate, defining at least one sensing tether by etching partially through the insulator layer of the SOI substrate, defining a proof mass by etching through the silicon layer of the SOI substrate, and releasing the at least one sensing tether by selectively etching the insulating layer of the SOI substrate.
  • In an embodiment, the one or more active components may comprise at least one of (i) a photodiode, (ii) a laser, (iii) a phase tuner, and (iv) a photonic ring resonator. The one or more active components may further comprise at least one of a scale factor calibrator and a wavelength locking loop.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing will be apparent from the following more particular description of example embodiments, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating embodiments.
  • FIG. 1 shows an example of such a MEMS-based accelerometer.
  • FIG. 2A illustrates an example embodiment of a photonic accelerometer according to the invention.
  • FIG. 2B shows an expanded view of the sensing tether of the photonic accelerometer shown in FIG. 2A.
  • FIG. 2C is a graph plotting the magnitude of the optical energy transmitted through the waveguides and ring resonator as a function of the wavelength of the optical energy.
  • FIG. 2D shows a simplified view of the photonic accelerometer 200 of FIG. 2A.
  • FIGS. 3A through 3E show an example process flow for fabricating a photonic accelerometer according to the described embodiments.
  • FIG. 4 illustrates an example embodiment of a wavelength locking circuit according to the invention.
  • FIG. 5 shows an example embodiment of a photonic accelerometer, as described herein with respect to FIGS. 2A through 4, in cooperation with a detection processor.
  • FIG. 6 shows an example internal structure of a processing system that may be used to implement one or more of the described embodiments.
  • FIG. 7 shows an embodiment of a method 700 of fabricating an accelerometer according to the invention.
  • DETAILED DESCRIPTION
  • A description of example embodiments follows.
  • The teachings of all patents, published applications and references cited herein are incorporated by reference in their entirety.
  • The described embodiments are directed to a photonic accelerometer which combines the desirable attributes of microelectromechanical systems (MEMS) accelerometers with a photonic integrated circuit (PIC) technology and components. The described embodiments further comprise a sensing element integrated with a proof mass tether, which facilitates direct sensing of strain in the tether due to acceleration experienced by the proof mass. Related application US 2016/0349283 (the '238 Application) describes a resonator separated from a vibrating proof mass tether, and evanescent coupling between the resonator and tether to sense vibration of the tether. By contrast, the embodiments described herein include a resonator formed on (e.g., embedded in) the tether itself. Accordingly, in the described embodiments, the resonator itself experiences mechanical strain due to proof mass acceleration directly, along with the tether, and resonant frequency of the resonator varies as a direct result of resonator strain.
  • As set forth herein, higher sensitivity is a desirable attribute of an accelerometer, which corresponds to a large scale factor. For the previously-described resonant or FM accelerometers as shown in FIG. 1, the size of the sensing tethers is typically limited by the electro-static comb drives required to both excite and detect their motion. The amount of tether size reduction is limited due to practical considerations. For example, smaller tethers suffer from reduced detection sensitivity, which is dependent on the surface area of the electro-static comb drive. The reduced sensitivity, combined with smaller displacement amplitudes, makes it very difficult to detect acceleration of an associated proof mass using tethers with cross-sectional dimensions of less than 10 microns (10μ). This limits the achievable scale factor in conventional MEMS-based resonant accelerometers.
  • The optical transduction techniques of the described embodiments may dramatically increase the scale factor, relative to devices described with respect to FIG. 1, as they have demonstrated the capability of accurately measuring strain in very small mechanical structures. These techniques have also been demonstrated on integrated chip-scale platforms, where the requisite optoelectronic devices (e.g., lasers, detectors, etc.) can be integrated on the same monolithic platform.
  • The device of the described embodiments may comprise a standard resonant accelerometer where strain in the sensing tethers is detected using a photonic integrated circuit instead of electro-static comb drives. The sensing tethers may have cross sectional dimensions of approximately 1 μm, allowing for scale factors that are over 20 dB greater than existing MEMS devices. In an example embodiment of the device, a silicon proof mass may be defined with a 4 μm×70 μm tether attached to one side and another 4 μm×70 μm tether attached to the opposite side. The silicon proof mass may be the full thickness of the bulk silicon wafer, allowing for a higher total mass and thus higher sensitivity. The small tethers may be made of silicon dioxide, with 200 nm thick silicon photonic waveguides buried within the silicon dioxide tether.
  • Displacement of the mass in the sensing direction will result in equal and opposite strain applied to the two tethers, and this strain is measured by monitoring the resonance frequency of optical resonators fabricated within each sensing tether. Any change in tether strain results in a change in its refractive index due to the photoelastic effect, and translates directly to a shift in the tether resonance frequency. When probed at the appropriate incident optical wavelength, this shift corresponds to a change in the transmitted optical power measured with a photodiode. Measuring the opposing resonance shifts in each tether allows for acceleration in the desired direction to be decoupled from temperature variations, which affect both tethers substantially the same. Temperature variations typically dominate long-term drifts in accelerometers. The opposing signals from the two tethers cancel out errors due to thermal drift. Acceleration signals derived from the different tethers are of opposing sign, since the tethers are on opposite sides of the proof mass.
  • FIG. 2A illustrates an example embodiment of a photonic accelerometer 200 according to the invention. FIG. 2B shows an expanded view of the sensing tether 204 of the photonic accelerometer 200 shown in FIG. 2A. FIG. 2C is a graph plotting the magnitude of the optical (light) energy transmitted through the waveguides 210 and photonic ring resonator 208 as a function of the wavelength of the optical energy. FIG. 2D shows a simplified view of the photonic accelerometer 200 of FIG. 2A.
  • The photonic accelerometer 200 of this example embodiment includes a proof mass 202, and a pair of sensing tethers 204 coupled to the proof mass 202 at opposite sides of the proof mass 202. The proof mass 202 depicted in the example embodiments of FIGS. 2A and 2D are rectangular, but in alternative embodiments the proof mass 202 may be square, round, elliptical, polygonal, other shapes suitable to the particular form factor required by the application using the photonic accelerometer 200.
  • As shown in the exploded view of FIG. 2B, a photonic ring resonator 208 is formed on (e.g., embedded in) the tether element that connects the proof mass 202 to the main body 209 of the photonic accelerometer 200, so as to form a combined, integrated unit, referred to herein as the sensing tether 204. The silicon waveguides 210 convey light energy to and from the photonic ring resonator 208 by evanescent coupling. As used herein, the term light energy refers to electromagnetic energy having a wavelength that falls within the propagation bandwidth of the silicon waveguides 210. In operation, a light beam at a wavelength close to the resonant wavelength of the ring resonator 208 can be transmitted through the waveguide 210. At least a portion of the light beam is coupled into the ring resonator 208 due to the evanescent coupling between the waveguide 210 and the ring resonator 208
  • One or more phase tuners 212 a, 212 b, may be used to adjust the phase of the light energy conveyed by the silicon waveguides 210 and propagating through the ring resonator. A laser 214 generates light energy and directs the light energy to the ring resonator 208 by way of the silicon waveguides 210. A photodiode 216 receives light energy, through the silicon waveguides 210, after the light passes the ring resonator 208. The laser and the waveguides 210 that convey light energy to the ring resonator 208, together with the photodiode 216 and the waveguides 210 that convey light energy from the ring resonator 208, are referred to herein as the excitation and detection system.
  • The graph in FIG. 2C shows optical transmission of the light energy, from the laser to the photodiode, as a function of optical wavelength. The graph demonstrates that the ring resonator 208 causes a notch (i.e., an abrupt drop in amplitude) at a particular frequency. This notch occurs at the resonant frequency of the ring resonator 208. The solid trace 220 demonstrates the notch as it occurs when the resonator 208 is not experiencing strain. Light energy at λ0 intersects the solid trace 200 at point 222. As the sensing tether 204 (i.e., the integrated tether element and ring resonator 208) experiences strain due to acceleration of the proof mass, the notch frequency shifts, as shown by dotted trace 224. The shift is due to a change in the refractive index experienced by the light energy as the light energy passes through the ring resonator 208. Because the ring resonator 208 is integrated with the tether element, its refractive index changes directly with respect to the strain experienced by the sensing tether 204, rather than through an indirect coupling between the tether element and the ring resonator (e.g., evanescent coupling). Light energy intersects the dotted trace 224 at point 226, at a lower optical transmission value than point 222. Thus, as the sensing tether undergoes strain, the optical transmission output changes (in this example, drops). The optical transmission output may therefore be used to detect strain in the sensing tether.
  • The amount of the shift of the notch frequency may be used to determine strain experienced by the sensing tether, and thus the acceleration of the proof mass. The photodiodes 216 produce a signal corresponding to the optical transmission of the light energy. A detection processor (not shown in FIGS. 2A-2D) may receive and evaluate the signals from the photodiodes 216 to produce an acceleration signal that conveys a value corresponding to the acceleration experienced by the proof mass 202.
  • An example process flow for fabricating a photonic accelerometer according to the described embodiments is shown in FIGS. 3A through 3D. It should be understood that, for brevity, this example process flow describes only several major steps in the overall process flow, and that other steps may be required to complete the fabrication process.
  • Referring to FIG. 3A, an example photonic accelerometer may be fabricated beginning with a silicon-on-insulator (SOI) wafer substrate 302, comprising a bulk silicon (Si) layer 304 and a silicon dioxide (SiO2) insulator layer 306. A thin silicon epitaxial layer 308 is grown in the SiO2 layer 306. The photonic waveguides 310 and the ring resonator 312 are etched into the epitaxial layer 308. Active components 314, such as the photodiode and the phase tuner, may also be integrated in the epitaxial layer 308 using standard fabrication techniques known in the art. It should be understood that the components implemented into the epitaxial layer 308 are shown generally, as descriptive examples, and that placement within FIGS. 3A-3D are not necessarily shown to scale or situationally correct.
  • Referring to FIG. 3B, the epitaxial layer 308 may be covered with a second SiO2 layer 316. One or more sensing tethers 318 may be defined by etching 320 through second layer of SiO2 and the 2 μm (in the example embodiment) of buried silicon dioxide 306 until nearly reaching the silicon substrate 316, leaving only a thin strip 322 of SiO2. FIGS. 3B and 3C are taken along a cross-section line B-B, in FIG. 2D, having right angles to show cross sections through the tether and the proof mass.
  • Referring to FIG. 3C, the large proof mass 324 can then be defined by etching fully through 326 the 700 μm thick (in the example embodiment) silicon substrate 304 from the back side, using a deep reactive ion etch (DRIE). DRIE is a common tool used in MEMS fabrication techniques. Finally, the proof mass 324 can be released by using a timed hydrofluoric acid (HF) etch 320 to remove the small amount of silicon dioxide 322 left on the front side of the wafer substrate 302. FIG. 3D is taken along a line D-D of FIG. 2D to show the proof mass suspended by the sensing tether. FIG. 3E is taken along line E-E of FIG. 2D to show only the proof mass and not the supporting tethers.
  • Beyond the sensitivity of the device, two important metrics in accelerometer performance include the long term stability in scale factor (i.e., system sensitivity) and bias (i.e., measured signal with no inertial input). In order to maintain very good long term bias stability, a wavelength locking control circuit is implemented to maintain the incident optical wavelength at a particular value with respect to the optical resonance of the sensing tether.
  • A Pound-Drever-Hall (PDH) feedback loop is a specific type of wavelength locking circuit, which may be implemented using electro-optic phase modulators, photodiodes, and standard radio-frequency (RF) electronics. An example embodiment of such a feedback loop 402 a, 402 b is shown in FIG. 4, one associated with each sensing tether 204 a, 204 b, respectively. It should be understood that the PDH feedback loops 402 a, 402 b, shown in FIG. 4, are simplified depictions, and that one skilled in the art would understand that certain components, which are not shown for the sake of brevity, would be required to implement the PDH feedback loop.
  • Referring to the wavelength locking loop 402 a, the electro-optical modulator (EOM) 406 a together with the reference oscillator 414 a dithers the light energy from the tunable laser 408 a (or the scale factor calibrator 404 a) across a range of wavelengths. The mixer 416 a, together with the reference oscillator 414 a, removes the dithering from the signal generated by the photodiode 418 a to produce signal out 412 a. The tunable laser 408 a uses signal out 412 a to adjust the wavelength of the light that the tunable laser 408 a produces. The wavelength locking loop 402 a operates to maintain the light energy produced by the tunable laser 408 a at or near the resonant frequency of the ring resonator (i.e., at the bottom of the notch). The frequency to which the laser is controlled indicates the resonant frequency, and thus the strain of the resonator on the tether. Operation of the wavelength locking loop 402 b is substantially the same as described with respect to wavelength locking loop 402 a.
  • Embodiments may include scale factor calibrators 404 a, 404 b, shown in FIG. 4, to stabilize the scale factor associated with each sensing tether of the photonic accelerometer 200. Scale factor stability, or the ability to maintain constant acceleration sensitivity, can be obtained by including an electro-optic modulator (EOM) 406 b to phase modulate the input light from a tunable laser 408. This provides a calibrated signal dictated solely by the frequency of modulation, which can be very accurately controlled. In the example embodiment of FIG. 4, a dashed line 410 shows the signal path from the tunable laser 408 during normal accelerometer operation, without the use of the scale factor calibrator 404.
  • Referring to scale factor calibrator 404 a, the EOM 406 b together with the reference oscillator 414 b dithers the light energy from the tunable laser 408 a across a range of wavelengths. Doing so causes the wavelength of the light energy to fall across different portions of the resonant notch of the ring resonator described with reference to FIG. 2C, thus facilitating characterization of the slope and depth of the notch. Operation of the scale factor calibrator 404 b is substantially the same as described with respect to scale factor calibrator 404 a.
  • Example embodiments may include a wavelength loop 402 a and a scale factor calibrator 404 a associated with a sensing tether 204 a, and each wavelength loop 402 a producing a signal out 412 a.
  • FIG. 5 shows an example embodiment of a photonic accelerometer 200, as described herein with respect to FIGS. 2A through 4, in cooperation with a detection processor 502. The detection processor 502 receives a signal out 412 a associated with the first sensing tether of the photonic accelerometer 200 and a signal out 412 b associated with the second sensing tether of the photonic accelerometer 200. The detection processor 502 evaluates the signals 412 a, 412 b, to generate an acceleration signal 504 based on the signals 412 a, 412 b. Embodiments may implement the detection processor with a state machine comprising logical components, a processing system comprising a processor executing instruction code stored in memory, or other processing systems know in the art.
  • FIG. 6 is a diagram of an example internal structure of a processing system 600 that may be used to implement one or more of the embodiments herein. Each processing system 600 contains a system bus 602, where a bus is a set of hardware lines used for data transfer among the components of a computer or processing system. The system bus 602 is essentially a shared conduit that connects different components of a processing system (e.g., processor, disk storage, memory, input/output ports, network ports, etc.) that enables the transfer of information between the components.
  • Attached to the system bus 602 is a user I/O device interface 604 for connecting various input and output devices (e.g., keyboard, mouse, displays, printers, speakers, etc.) to the processing system 600. A network interface 606 allows the computer to connect to various other devices attached to a network 608. Memory 610 provides volatile and non-volatile storage for information such as computer software instructions used to implement one or more of the embodiments of the present invention described herein, for data generated internally and for data received from sources external to the processing system 600.
  • A central processor unit 612 is also attached to the system bus 602 and provides for the execution of computer instructions stored in memory 610. The system may also include support electronics/logic 614, and a communications interface 616. The communications interface may receive the signals 412 a and 412 b from the photonic accelerometer 200, as described herein with reference to FIGS. 2A through 5.
  • In one embodiment, the information stored in memory 610 may comprise a computer program product, such that the memory 610 may comprise a non-transitory computer-readable medium (e.g., a removable storage medium such as one or more DVD-ROM's, CD-ROM's, diskettes, tapes, etc.) that provides at least a portion of the software instructions for the invention system. The computer program product can be installed by any suitable software installation procedure, as is well known in the art. In another embodiment, at least a portion of the software instructions may also be downloaded over a cable communication and/or wireless connection.
  • FIG. 7 shows an embodiment of a method 700 of fabricating an accelerometer according to the invention. The process begins by defining 702 at least one of a photonic waveguide and a ring resonator on a silicon-on-insulator (SOI) substrate, the SOI substrate having an insulator layer and a silicon layer. The ring resonator is formed in the region that will ultimately be etched to form the sensing tether. The method further comprises integrating 704 one or more active components on the SOI substrate, and defining 706 at least one sensing tether by etching partially through the insulator layer of the SOI substrate. The process further comprises defining 708 a proof mass by etching through the silicon layer of the SOI substrate, and releasing 710 the at least one sensing tether by selectively etching the insulating layer of the SOI substrate.
  • One significant attribute of the photonic accelerometer of the described embodiments is that the sensing element (the ring resonator of the example embodiment) directly experiences the strain induced by the acceleration of the proof mass. This attribute is due to the fact that the sensing element is integrated on the tether that connects the proof mass to an anchor point.
  • Another significant attribute of the photonic accelerometer of the described embodiments is that the photonic accelerometer may be implemented in a fully integrated, chip-scale manner by integrating the proof mass, silicon waveguides, and all of the optoelectronic components such as lasers, electro-optic phase shifters, and photodetectors onto the same silicon photonic platform. This allows for the passive sensor as well as the optoelectronic circuit used for stability control to be constructed in a monolithically integrated device. In other embodiments, the detection processor, which receives and evaluates the signals from the photodiodes to produce an acceleration value corresponding to the acceleration experienced by the proof mass, may also be integrated onto the same platform via wafer-level three-dimensional (3D) bonding of CMOS electronics to photonics wafers.
  • Photonic integrated resonant accelerometers according to the described embodiments facilitate improvements in many device parameters with respect to conventional MEMS devices. Such parameters include sensitivity, scale factor stability, bias stability, dynamic range, and bandwidth, among others. Many of these limitations stem from the electro-static transduction technique used by conventional accelerometer devices, as described herein. The novel optical system of the described embodiments overcomes these limitations, while still providing a chip-scale system that can be batch-fabricated and maintain low size, weight, power, and cost. The potential applications for this technology have a broad range from industrial sensors to inertial navigation, or any application where the robustness and sensitivity of current accelerometers needs to be improved.
  • It will be apparent that one or more embodiments described herein may be implemented in many different forms of software and hardware. Software code and/or specialized hardware used to implement embodiments described herein is not limiting of the embodiments of the invention described herein. Thus, the operation and behavior of embodiments are described without reference to specific software code and/or specialized hardware—it being understood that one would be able to design software and/or hardware to implement the embodiments based on the description herein.
  • Further, certain embodiments of the example embodiments described herein may be implemented as logic that performs one or more functions. This logic may be hardware-based, software-based, or a combination of hardware-based and software-based. Some or all of the logic may be stored on one or more tangible, non-transitory, computer-readable storage media and may include computer-executable instructions that may be executed by a controller or processor. The computer-executable instructions may include instructions that implement one or more embodiments of the invention. The tangible, non-transitory, computer-readable storage media may be volatile or non-volatile and may include, for example, flash memories, dynamic memories, removable disks, and non-removable disks.
  • While example embodiments have been particularly shown and described, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the embodiments encompassed by the appended claims.

Claims (11)

What is claimed is:
1. A method of fabricating an accelerometer, comprising:
defining at least one of a photonic waveguide and a photonic ring resonator on a silicon-on-insulator (SOI) substrate, the SOI substrate having an insulator layer and a silicon layer;
integrating one or more active components on the SOI substrate;
defining at least one sensing tether by etching partially through the insulator layer of the SOI substrate;
defining a proof mass associated with the at least one sensing tether by etching through the silicon layer of the SOI substrate;
releasing the at least one sensing tether by selectively etching the insulating layer of the SOI substrate.
2. The method of claim 1, wherein the one or more active components comprises at least one of (i) a photodiode, (ii) a laser, (iii) a phase tuner, and (iv) a photonic ring resonator.
3. The method of claim 2, wherein the one or more active components further comprises at least one of a scale factor calibrator and a wavelength locking loop.
4. The method of claim 1, wherein defining at least one sensing tether further comprises forming the at least one sensing tether to have cross-sectional dimensions, W×L, of at least one of W<5μ and L<5μ.
5. The method of claim 1, wherein integrating one or more active components on the SOI substrate further comprises forming a photonic ring resonator on a first tether of the at least one sensing tether to form a first sensing tether, such that the photonic ring resonator undergoes strain along with the first tether.
6. The method of claim 1, further comprising coupling an excitation and detection system to the photonic ring resonator, the excitation and detection system configured to sense the resonance condition of the photonic ring resonator and to produce a detection signal corresponding to the resonance condition of the photonic ring resonator.
7. The method of claim 6, further comprising integrating the excitation and detection system on the SOI substrate.
8. The method of claim 6, further comprising integrating a scale factor calibrator on the SOI substrate, the scale factor calibrator configured to stabilize a scale factor associated with the accelerometer.
9. The method of claim 1, wherein defining the proof mass further comprises fashioning the proof mass from a full thickness of a bulk silicon wafer upon which the accelerometer is fabricated.
10. The method of claim 1, wherein defining the at least one sensing further comprises defining a first tether mechanically coupled to a first side of the proof mass and mechanically coupled to a first anchor site, and defining a second tether mechanically coupled to a second side of the proof mass and mechanically coupled to a second anchor site.
11. The method of claim 10, wherein integrating one or more active components on the SOI substrate further comprises:
(i) forming a first photonic ring resonator on a first tether of the at least one sensing tether to form a first sensing tether, such that the first photonic ring resonator undergoes strain along with the first tether, and
(ii) forming a second photonic ring resonator on a second tether of the at least one sensing tether to form a second sensing tether, such that the second photonic ring resonator undergoes strain along with the second tether.
US16/747,710 2016-11-09 2020-01-21 Integrated Resonant Accelerometer Using Optical Strain Sensor Abandoned US20200200792A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/747,710 US20200200792A1 (en) 2016-11-09 2020-01-21 Integrated Resonant Accelerometer Using Optical Strain Sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662419524P 2016-11-09 2016-11-09
US15/807,531 US10571483B2 (en) 2016-11-09 2017-11-08 Integrated resonant accelerometer using optical strain sensor
US16/747,710 US20200200792A1 (en) 2016-11-09 2020-01-21 Integrated Resonant Accelerometer Using Optical Strain Sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/807,531 Division US10571483B2 (en) 2016-11-09 2017-11-08 Integrated resonant accelerometer using optical strain sensor

Publications (1)

Publication Number Publication Date
US20200200792A1 true US20200200792A1 (en) 2020-06-25

Family

ID=62063815

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/807,531 Active 2038-02-23 US10571483B2 (en) 2016-11-09 2017-11-08 Integrated resonant accelerometer using optical strain sensor
US16/747,710 Abandoned US20200200792A1 (en) 2016-11-09 2020-01-21 Integrated Resonant Accelerometer Using Optical Strain Sensor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/807,531 Active 2038-02-23 US10571483B2 (en) 2016-11-09 2017-11-08 Integrated resonant accelerometer using optical strain sensor

Country Status (1)

Country Link
US (2) US10571483B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023192659A1 (en) * 2022-04-02 2023-10-05 Emcore Corporation Self-compensating resonantly vibrating accelerometer driven in multiple vibrational modes
US11959935B2 (en) 2022-06-04 2024-04-16 Emcore Corporation Resonantly vibrating accelerometer with cross-coupling signal suppression

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10488429B2 (en) * 2017-02-28 2019-11-26 General Electric Company Resonant opto-mechanical accelerometer for use in navigation grade environments
US10928589B2 (en) * 2018-02-20 2021-02-23 Honeywell International Inc. Metallic blinder between optical waveguides to reduce cross talk
CN109239399B (en) * 2018-08-27 2021-10-26 中国计量大学 Resonant accelerometer based on double-fork resonant beam
US11493534B1 (en) * 2019-01-04 2022-11-08 Hrl Laboratories, Llc Continuous online self-calibrating resonant FM microelectromechanical systems (MEMS) accelerometer
US11079227B2 (en) 2019-04-01 2021-08-03 Honeywell International Inc. Accelerometer system enclosing gas
US11119116B2 (en) * 2019-04-01 2021-09-14 Honeywell International Inc. Accelerometer for determining an acceleration based on modulated optical signals
US10956768B2 (en) 2019-04-22 2021-03-23 Honeywell International Inc. Feedback cooling and detection for optomechanical devices
US10705112B1 (en) 2019-04-22 2020-07-07 Honeywell International Inc. Noise rejection for optomechanical devices
CN110308306B (en) * 2019-06-28 2020-11-03 东南大学 MOEMS accelerometer based on fully-differential two-dimensional photonic crystal cavity structure and processing method thereof
US11119114B2 (en) * 2019-07-17 2021-09-14 Honeywell International Inc. Anchor structure for securing optomechanical structure
US11408911B2 (en) * 2019-07-17 2022-08-09 Honeywell International Inc. Optomechanical structure with corrugated edge
US11408912B2 (en) 2019-08-13 2022-08-09 Honeywell International Inc. Feedthrough rejection for optomechanical devices
US11150264B2 (en) 2019-08-13 2021-10-19 Honeywell International Inc. Feedthrough rejection for optomechanical devices using elements
US11372019B2 (en) 2019-08-13 2022-06-28 Honeywell International Inc. Optomechanical resonator stabilization for optomechanical devices
US11630123B2 (en) 2020-08-18 2023-04-18 Honeywell International Inc. Opto-mechanical resonator with two or more frequency modes

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900918A (en) * 1987-08-06 1990-02-13 Allied-Signal Inc. Resonant fiber optic accelerometer with noise reduction using a closed loop feedback to vary pathlength
US7929143B2 (en) * 2008-12-08 2011-04-19 Honeywell International Inc. Integrated resonating gyro accelerometer in a semiconductor substrate
US9528829B2 (en) * 2011-07-14 2016-12-27 Cornell University Gyroscopes based on optomechanical sensing
US8923352B2 (en) * 2012-08-10 2014-12-30 Honeywell International Inc. Laser with transmission and reflection mode feedback control
WO2015084332A1 (en) * 2013-12-03 2015-06-11 Intel Corporation Monolithic physically displaceable optical waveguides
US10126321B2 (en) * 2015-01-30 2018-11-13 Kazem ZANDI Micro-opto-electromechanical systems (MOEMS) device
US9927458B2 (en) * 2015-05-29 2018-03-27 Massachusetts Institute Of Technology Apparatus and methods for photonic integrated resonant accelerometer
US20180038890A1 (en) * 2016-08-08 2018-02-08 Khalifa University of Science and Technology Optically enabled mems inertial sensors on integrated photonic platforms

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023192659A1 (en) * 2022-04-02 2023-10-05 Emcore Corporation Self-compensating resonantly vibrating accelerometer driven in multiple vibrational modes
US11953514B2 (en) 2022-04-02 2024-04-09 Emcore Corporation Self-compensating resonantly vibrating accelerometer driven in multiple vibrational modes
US11959935B2 (en) 2022-06-04 2024-04-16 Emcore Corporation Resonantly vibrating accelerometer with cross-coupling signal suppression
US11965907B2 (en) 2022-06-04 2024-04-23 Emcore Corporation Resonantly vibrating accelerometer driven in multiple vibrational modes

Also Published As

Publication number Publication date
US10571483B2 (en) 2020-02-25
US20180128850A1 (en) 2018-05-10

Similar Documents

Publication Publication Date Title
US20200200792A1 (en) Integrated Resonant Accelerometer Using Optical Strain Sensor
US11493530B2 (en) Apparatus and methods for photonic integrated resonant accelerometers
US9069004B2 (en) Optomechanical sensors based on coupling between two optical cavities
US9618531B2 (en) Optomechanical accelerometer
US10254304B2 (en) Opto-mechanical physical sensor with an improved sensitivity
US9389079B2 (en) Optomechanical disk vibratory gyroscopes
JP5474282B2 (en) Integrated optical rotation sensor and method for detecting rotation rate
WO2000071981A1 (en) Micromachined displacement sensors and actuators
Ciminelli et al. A new integrated optical angular velocity sensor
EP3771888B1 (en) Switching sbs gyro with fixed pump separation
US20160327390A1 (en) Method and apparatus for decoupling environmental and modal dependencies in inertial measurement devices
Liang et al. Whispering gallery mode optical gyroscope
US11656241B2 (en) Micro-fabricated optical motion sensor
Vannahme et al. Integrated optical Ti: LiNbO3 ring resonator for rotation rate sensing
Bao et al. An optomechanical accelerometer with a high-finesse hemispherical optical cavity
KR101682993B1 (en) Integrated silicon optomechanical gyroscopes (omgs)
Mahmoud et al. Acousto-optic gyroscope
Menéndez IFOG and IORG Gyros: a study of comparative performance
US11624615B2 (en) Ring waveguide based integrated photonics optical gyroscope with balanced detection scheme
Ma et al. Sensitivity improvement of waveguide-type optical passive ring resonator gyroscope by carrier suppression
JP2001050753A (en) Semiconductor laser gyro
US11566900B2 (en) MEMS rotation rate sensor
GB2608647A (en) Chip-scale inertial sensor and inertial measurement unit
Hudson et al. Microfabrication technologies for missile components

Legal Events

Date Code Title Description
AS Assignment

Owner name: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRAMHAVAR, SURAJ DEEPAK;JUODAWLKIS, PAUL WILLIAM;REEL/FRAME:051579/0471

Effective date: 20171114

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION