US20200188516A1 - Pharmaceutical composition comprising a glp-1 agonist, an insulin and methionine - Google Patents

Pharmaceutical composition comprising a glp-1 agonist, an insulin and methionine Download PDF

Info

Publication number
US20200188516A1
US20200188516A1 US16/666,000 US201916666000A US2020188516A1 US 20200188516 A1 US20200188516 A1 US 20200188516A1 US 201916666000 A US201916666000 A US 201916666000A US 2020188516 A1 US2020188516 A1 US 2020188516A1
Authority
US
United States
Prior art keywords
insulin
ave0010
present
glp
exendin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/666,000
Inventor
Annika Hagendorf
Gerrit Hauck
Werner Mueller
Isabell Schoettle
Verena Siefke-Henzler
Katrin Tertsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanofi Aventis Deutschland GmbH
Original Assignee
Sanofi Aventis Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43629454&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20200188516(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sanofi Aventis Deutschland GmbH filed Critical Sanofi Aventis Deutschland GmbH
Priority to US16/666,000 priority Critical patent/US20200188516A1/en
Publication of US20200188516A1 publication Critical patent/US20200188516A1/en
Priority to US17/366,332 priority patent/US20220133890A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/28Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/2278Vasoactive intestinal peptide [VIP]; Related peptides (e.g. Exendin)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/26Glucagons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • A61K47/183Amino acids, e.g. glycine, EDTA or aspartame
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/20Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing sulfur, e.g. dimethyl sulfoxide [DMSO], docusate, sodium lauryl sulfate or aminosulfonic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/48Drugs for disorders of the endocrine system of the pancreatic hormones
    • A61P5/50Drugs for disorders of the endocrine system of the pancreatic hormones for increasing or potentiating the activity of insulin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/12Antidiuretics, e.g. drugs for diabetes insipidus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/605Glucagons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/62Insulins

Definitions

  • the present application relates to a liquid composition
  • a liquid composition comprising a GLP-1 agonist or/and a pharmacologically tolerable salt thereof, an insulin or/and a pharmacologically tolerable salt thereof, and, optionally, at least one pharmaceutically acceptable excipient, wherein the composition comprises methionine.
  • the present application further relates to the composition according to the present invention for treating diabetes mellitus.
  • the present application further relates to the use of a composition according to the present invention in the manufacture of a pharmaceutical for treating diabetes mellitus.
  • the present application further relates to a method for manufacturing a composition according to the present invention, comprising formulating a GLP-1 agonist or/and a pharmacologically tolerable salt thereof with an insulin or/and a pharmaceutically acceptable salt thereof, methionine, and, optionally, at least one pharmaceutically acceptable excipient.
  • the present application further relates to a method for treating a patient with a composition according to the present invention, comprising administering the composition to the patient.
  • Customary compositions of insulin and GLP-1 compounds comprise an isotonicity agent, a buffer for adjusting the pH, and a preservative.
  • a further frequently used constituent of insulin compositions is zinc, which forms a complex with insulin. This results in a delayed action of insulin being achieved.
  • WO 2003/020201 (Eli Lilly) relates to a liquid pre-mixed formulation comprising a GLP-1 compound and a basal insulin.
  • a specific formulation contains Val 8 -GLP-1 or exendin-4, insulin NPH, glycerol as an isotonicity agent, m-cresol and phenol as preservatives; and a phosphate buffer at a pH of 7.6 or 8.
  • Another formulation comprises exendin-4 or Val 8 -Glu 22 GLP-1(7-37)OH, insulin glargine (Lantus), zinc, glycerol and mannitol as isotonicity agents, m-cresol as a preservative, zinc, and sodium acetate, pH 4.
  • WO 2004/035623 discloses a liquid composition comprising a stabilized exendin, 50 mM histidine, 100 to 200 mM sucrose, mannitol or other acceptable sugar, 20 mM methionine, 20 mM asparagine-glutamine or Asp, at a pH of 5.3. Stabilization is effected by certain modifications of the amino acid building blocks of exendin-4(1-39), for example, at positions Gln13, Met14, Trp25, or Asn28. This composition does not comprise insulin.
  • WO 2005/046716 discloses liquid compositions which comprise liraglutide and insulin aspart, a buffer with a pH of 7.7, poloxamer 188 as a surfactant, phenol, propylene glycol, and, optionally, zinc. Without poloxamer 188, the compositions were unstable. With polysorbate 20, stabilization was achieved.
  • WO 2006/029634 (Novo Nordisk) relates to liquid pharmaceutical compositions which comprise an insulinotropic peptide (GLP-1 agonist), an insulin peptide, and a ligand for His B10 (ligand of His at position 10 of the B chain of insulin).
  • the composition can comprise polysorbate-20 or poloxamer 188 as a surfactant.
  • Specific compositions disclosed in this document comprise human insulin or human B28 Asp insulin (insulin aspart), liraglutide (GLP-1 agonist), glycerol as an isotonicity agent, zinc acetate, pH 7.4 or 7.9. Depending on the amount of insulin used or of liraglutide, these compositions were, in part, already unstable after 15 days of storage at room temperature.
  • compositions Stability of these compositions was achieved by adding a ligand for His B10 .
  • Further formulations consisted of liraglutide, insulin aspart or detemir, propylene glycol, phenol, and phosphate buffer, pH 7.7. These compositions were practically immediately unstable. Adding poloxamer-188 or polysorbate-20 and a ligand for His B10 led to stabilization.
  • WO 2006/051103 discloses liquid compositions which comprise detemir (a basal insulin), liraglutide (GLP-1 compound), and poloxamer 188 or polysorbate 20 as a surfactant. Further constituents are phenol, NaCl, propylene glycol, zinc acetate, and sodium phosphate buffer or glycylglycine buffer (pH 7.7). m-Cresol is present in some of these compositions. By adding poloxamer 188 or polysorbate 20, the compositions could be stabilized.
  • WO 2008/124522 (Biodel) relates to compositions which comprise an insulin, a zinc chelator (e.g., EDTA or EGTA), and a GLP-1 analog.
  • Type II diabetes contrasts with type I diabetes in that there is not always a deficiency of insulin, but in a large number of cases, especially at the advanced stage, treatment with insulin, where appropriate in combination with an oral antidiabetic, is considered the most advantageous form of therapy.
  • intensified insulin therapy this is to be achieved by means of injections, several times a day, of fast-acting and slow-acting insulin preparations.
  • Fast-acting formulations are given at meal times, in order to compensate the postprandial rise in blood glucose.
  • Slow-acting basal insulins are intended to ensure the basic supply of insulin, especially during the night, without leading to hypoglycemia.
  • Insulin is a polypeptide composed of 51 amino acids which are divided between two amino acid chains: the A chain, with 21 amino acids, and the B chain, with 30 amino acids. The chains are linked together by 2 disulfide bridges. Insulin preparations have been employed for many years in diabetes therapy. Such preparations use not only naturally occurring insulins but also, more recently, insulin derivatives and insulin analogs.
  • Insulin analogs are analogs of naturally occurring insulins, namely human insulin or animal insulins, which differ by replacement of at least one naturally occurring amino acid residue by other amino acids and/or by addition/deletion of at least one amino acid residue, from the corresponding, otherwise identical, naturally occurring insulin.
  • the amino acids in question may also be amino acids which do not occur naturally.
  • Insulin derivatives are derivatives of naturally occurring insulin or of an insulin analog which are obtained by chemical modification.
  • the chemical modification may consist, for example, in the addition of one or more defined chemical groups onto one or more amino acids.
  • the activity of insulin derivatives and insulin analogs is somewhat altered as compared with human insulin.
  • EP 0 214 826 Insulin analogs with an accelerated onset of action are described in EP 0 214 826, EP 0 375 437, and EP 0 678 522.
  • EP 0 124 826 relates, among other things, to replacements of B27 and B28.
  • EP 0 678 522 describes insulin analogs which have different amino acids in position B29, preferably proline, but not glutamic acid.
  • EP 0 375 437 encompasses insulin analogs with lysine or arginine at B28, which may optionally also be modified at B3 and/or A21.
  • EP 0 419 504 discloses insulin analogs which are protected from chemical modifications by modification of asparagine in B3 and of at least one further amino acid at positions A5, A15, A18 or A21.
  • WO 92/00321 describes insulin analogs in which at least one amino acid in positions B1-B6 has been replaced by lysine or arginine. Such insulins, according to WO 92/00321, have an extended effect. A delayed effect is also exhibited by the insulin analogs described in EP-A 0 368 187.
  • the commercially available preparations of naturally occurring insulins for insulin replacement differ in the origin of the insulin (e.g., bovine, porcine, human insulin) and also in their composition, and thereby the activity profile (onset and duration of action) may be influenced.
  • the activity profile onset and duration of action
  • Recombinant DNA technology nowadays allows the preparation of modified insulins of this kind. They include insulin glargine (Gly(A21)-Arg(B31)-Arg(B32) human insulin, Lantus), with an extended duration of action.
  • Insulin glargine is injected in the form of a clear, acidic solution, and owing to its dissolution properties is precipitated, in the physiological pH range of the subcutaneous tissue, as a stable hexamer association. Insulin glargine is injected once a day and is notable in comparison with other long-active insulins for its flat serum profile and the associated reduction in the risk of night hypoglycemias (Schubert-Zsilavecz et al., 2:125-130 (2001)).
  • the specific preparation of insulin glargine that leads to the prolonged duration of action is characterized by a clear solution with an acidic pH.
  • Exendins are a group of peptides which can lower blood glucose concentrations. Exendins have a certain similarity to the sequence of GLP-1(7-36) (53%, Goke et al. J. Biol Chem 268, 19650-55). Exendin-3 and exendin-4 stimulate an increase in cellular cAMP production in the acinar cells of the guinea pig pancreas by interacting with exendin receptors (Raufman, 1996, Reg. Peptides 61:1-18). Exendin-3, in contrast to exendin-4, effects an increase in the release of amylase in the acinar cells of the pancreas. Exendins act as GLP-1 agonists.
  • GLP-1 Glucagon-like peptide 1
  • GLP-1 is an endocrine hormone which enhances the insulin response following oral intake of glucose or fat.
  • GLP-1 lowers glucagon concentrations, slows gastric emptying, stimulates (pro)insulin synthesis, enhances sensitivity to insulin, and stimulates insulin-independent glycogen synthesis (Hoist (1999), Curr. Med. Chem 6:1005, Nauck et al. (1997) Exp Clin Endocrinol Diabetes 105: 187, Lopez-Delgado et al. (1998) Endocrinology 139:2811).
  • Human GLP-1 has 37 amino acid residues (Heinrich et al., Endocrinol. 115:2176 (1984), Uttenthal et al., J Olin Endocrinol Metabol (1985) 61:472). Active fragments of GLP-1 include GLP-1 (7-36) and GLP-1(7-37).
  • Exendin-3, exendin-4 and exendin agonists have been proposed for treating diabetes mellitus and preventing hyperglycemia, by reducing gastric motility and gastric emptying (U.S. Pat. No. 5,424,286 and WO98/05351).
  • Exendin analogs can be characterized by amino acid substitutions and/or C-terminal truncation of the native exendin-4 sequence. Such exendin analogs are described in WO 99/07404, WO 99/25727, and WO 99/25728.
  • AVE0010 Solid-phase synthesis of AVE0010 is described in WO 01/04156 A1, AVE0010 has the sequence: desPro 36 exendin-4(1-39)-Lys 6 -NH 2 . This substance is published as SEQ ID NO:93 in WO 01/04156:
  • Exendin-4 (39 AS) has the sequence:
  • Exendin-3 has the sequence (J. Bio. Chem., 267, 1992, 7402-7405):
  • GLP-1 has the sequence:
  • methionine is able to increase the storage stability of a composition comprising a GLP-1 agonist such as AVE0010 and an insulin such as insulin glargine. Methionine does not affect the physical integrity of these compositions.
  • the stability of pharmaceutically active polypeptides can be impaired by various mechanisms. These include pH, temperature, light, and the effects of certain constituents.
  • compositions according to the present invention are therefore preferably free of these constituents.
  • the present invention accordingly provides for a liquid composition
  • a liquid composition comprising a GLP-1 agonist or/and a pharmacologically tolerable salt thereof, an insulin or/and a pharmacologically tolerable salt thereof, and, optionally, at least one pharmaceutically acceptable excipient, wherein the composition comprises methionine.
  • composition according to the present invention preferably comprises methionine in an amount ranging from 0.5 mg/mL to 20 mg/mL, more preferably in an amount ranging from 1 mg/mL to 5 mg/mL, especially preferably in an amount of 3.0 mg/mL.
  • Methionine in the D-form can be used.
  • methionine in the L-form can be used.
  • mixtures of the D-form and the L-form in any desired proportions can be used.
  • the composition according to the present invention is free of surfactants, such as polyols and partial and fatty acid esters and ethers of polyhydric alcohols such as those of glycerol and sorbitol.
  • the compositions according to the present invention are more particularly free of partial and fatty acid esters and ethers of glycerol and sorbitol selected from the group consisting of Span®, Tween®, Myrj®, Brij®, Cremophor®.
  • the compositions according to the present invention are more particularly free of polyols selected from the group consisting of polypropylene glycols, polyethylene glycols, poloxamers, Pluronics, Tetronics. More particularly, the composition according to the present invention is free of at least one substance selected from the group consisting of polysorbate, polysorbate and poloxamer.
  • composition according to the present invention is substantially free, preferably free, of polysorbate, such as, for example, polysorbate 20.
  • composition according to the present invention is substantially free, preferably free, of polysorbate 80.
  • composition according to the present invention is substantially free, preferably free, of poloxamer, such as, for example, poloxamer 188.
  • composition according to the present invention is substantially free, preferably free, of benzalkonium chloride.
  • composition according to the present invention is substantially free, preferably free, of histidine.
  • composition according to the present invention is substantially free, preferably free, of EDTA, more particularly sodium EDTA.
  • composition according to the present invention is substantially free, preferably free, of histidine and sodium EDTA.
  • the composition according to the present invention can comprise one or more substances which are customarily used to buffer the pH (buffer substances).
  • buffer substances are acetate, citrate, and phosphate.
  • the composition according to the present invention can comprise one or more substances which are customarily used to buffer the pH in an amount which is sufficient, for example, as a counterion for the GLP-1 agonist or/and the insulin.
  • the composition according to the present invention can comprise one or more buffer substances, for example, each in an amount of up to 1 mg/ml, up to 0.5 mg/ml, up to 0.1 mg/ml, up to 0.05 mg/ml, up to 0.02 mg/ml, or up to 0.01 mg/ml.
  • the composition according to the present invention can likewise be substantially free of buffer substances.
  • the composition according to the present invention is free of buffer substances.
  • composition according to the present invention can comprise acetate, for example, in an amount of up to 1 mg/ml, up to 0.5 mg/ml, up to 0.1 mg/ml, up to 0.05 mg/ml, up to 0.02 mg/ml, or up to 0.01 mg/ml. These amounts are, for example, sufficient as a counterion for the GLP-1 agonist.
  • the composition according to the present invention can be substantially free of acetate.
  • the composition according to the present invention is free of acetate.
  • composition according to the present invention can comprise citrate, for example, in an amount of up to 1 mg/ml, up to 0.5 mg/ml, up to 0.1 mg/ml, up to 0.05 mg/ml, up to 0.02 mg/ml, or up to 0.01 mg/ml. These amounts are, for example, sufficient as a counterion for the GLP-1 agonist.
  • the composition according to the present invention can be substantially free of citrate.
  • the composition according to the present invention is free of citrate.
  • composition according to the present invention can comprise phosphate, for example, in an amount of up to 1 mg/ml, up to 0.5 mg/ml, up to 0.1 mg/ml, up to 0.05 mg/ml, up to 0.02 mg/ml, or up to 0.01 mg/ml. These amounts are, for example, sufficient as a counterion for the GLP-1 agonist.
  • the composition according to the present invention can be substantially free of phosphate.
  • the composition according to the present invention is free of phosphate.
  • the pharmaceutical composition of the present invention can have an acidic or physiological pH.
  • An acidic pH range is preferably in the range of pH 1-6.8, pH 3.5-6.8, or pH 3.5-5.
  • a physiological pH is preferably in the range of pH 2.5-8.5, more preferably pH 4.0 to 8.5, even more preferably pH 6.0 to 8.5.
  • Especially preferred is a pH of approximately 4.5.
  • physiologically safe dilute acids typically HCl
  • alkalis typically NaOH
  • composition according to the present invention can comprise a suitable preservative.
  • suitable preservatives are, for example, phenol, m-cresol, benzyl alcohol, and/or p-hydroxybenzoate esters. m-Cresol is preferred. However, a preservative can also be omitted.
  • the composition according to the present invention can comprise zinc ions.
  • the concentration of the zinc ions is preferably in the range from 1 ⁇ g/ml to 2 mg/ml, more preferably in the range from 5 ⁇ g to 200 ⁇ g zinc/ml, more particularly at a maximum of 0.06 mg/ml, especially preferably at 0.06 mg/mi.
  • composition according to the present invention can comprise suitable isotonicity agents.
  • suitable isotonicity agents are, for example, glycerol, dextrose, lactose, sorbitol, mannitol, glucose, NaCl, calcium or magnesium compounds such as CaCl 2 etc.
  • concentrations of glycerol, dextrose, lactose, sorbitol, mannitol, and glucose are customarily in the range of 100-250 mM, NaCl in a concentration of up to 150 mM.
  • Glycerol is preferred. More particularly, 85% glycerol at 20.0 mg/ml is preferred.
  • composition according to the present invention can further comprise further additives, such as salts, which retard the release of at least one insulin.
  • the composition is free of these additives.
  • composition is intended for parenteral administration.
  • the composition according to the present invention is preferably an injectable composition, more preferably for subcutaneous injection. More particularly, the composition of the present invention is suitable for injection once a day.
  • the formulation according to the present invention has, after storage for 1 month, 2 months, 4 months, or 6 months at a temperature of +5° C. or 25° C., an activity of at least 80%, at least 90%, at least 95%, or at least 98% of the activity at the start of storage.
  • “activity” can mean the activity of the insulin which is used in the formulation according to the present invention. Methods for determining the activity of insulin are known to a person skilled in the art.
  • “activity” can likewise mean the activity of the GLP-1 agonist which is used in the formulation according to the present invention.
  • Methods for determining the activity of a GLP-1 agonist are known to a person skilled in the art.
  • the formulation according to the present invention exhibits chemical integrity after storage for 1 month, 2 months, 4 months, or 6 months.
  • Chemical integrity means, more particularly, that after storage at a temperature of +5° C., 25° C., or 40° C. the formulation comprises at least 80%, at least 90%, at least 95%, or at least 98% of the active ingredient, compared with the start of storage, in a substantially chemically unchanged form.
  • Chemical integrity can mean the chemical integrity of the GLP-1 agonist.
  • GLP-1 agonists may comprise a methionine residue (e.g. position 14 in AVE0010). Chemical integrity of the GLP-1 agonist means, more particularly, that oxidation of the methionine residue is prevented.
  • Chemical intregrity can likewise mean the chemical integrity of the insulin.
  • chemical integrity means the integrity of the insulin and the GLP-1 agonist.
  • the formulation according to the present invention exhibits physical integrity after storage for 1 month, 2 months, 4 months, or 6 months.
  • Physical integrity means, more particularly, that after storage at a temperature of +5° C., 25° C., or 40° C. the formulation comprises at least 80%, at least 90%, at least 95%, or at least 98% of the active ingredient, compared with the start of storage, in a substantially physically unchanged form.
  • Physical integrity can mean the integrity of the GLP-1 agonist. Likewise, physical integrity can mean the integrity of the insulin. Physical integrity means, more particularly, that the GLP-1 agonist or/and the insulin does/do not form aggregates, such as, for example, fibrils.
  • physical integrity means the integrity of the insulin and the GLP-1 agonist.
  • the GLP-1 agonist is preferably selected from the group consisting of exendin-3 and analogs and derivates thereof, exendin-4 and analogs and derivates thereof, and in which case the GLP-1 agonist is more preferably selected from the group consisting of AVE0010 and exendin-4.
  • Exendin-3, analogs and derivates of exendin-3, exendin-4, and analogs and derivates of exendin-4 can be found in WO 01/04156, WO 98/30231, U.S. Pat. No. 5,424,286, EP application 99 610043.4, and WO 2004/005342. These documents are incorporated herein by reference. The exendin-3, exendin-4, and analogs and derivates thereof described in these documents can be synthesized by means of the methods described therein, after which modifications are optionally carried out.
  • sequences of AVE0010 (SEQ ID NO:1), exendin-4 (SEQ ID NO:2), and exendin-3 (SEQ ID NO:3) show a high degree of similarity.
  • the sequences of AVE0010 and exendin-4 are identical at positions 1-37.
  • Sequence 1-39 from exendin-4 is at 37 of the 39 positions (94%) identical to the exendin-3 sequence at positions 48-86.
  • a person skilled in the art can readily convert the positions specified herein, which relate to a particular sequence (e.g. to the sequence of AVE0010 or exendin-4), to other sequences.
  • Analogs and derivates of exendin-3 or/and exendin-4 contain more particularly a modified amino acid sequence.
  • single amino acids can be deleted (e.g. desPro36, desPro37, desAsp28, desMet(O)14 in exendin-4 and the corresponding positions in exendin-3).
  • single positions can be substituted (e.g.
  • the C-terminus or/and the N-terminus can be modified, for example, by an additional sequence such as -(Lys)-, -(Lys) 2 -, -(Lys) 3 -, -(Lys) 4 -, -(Lys) 5 -, -(Lys) 6 -, -Asn-(Glu) 5 -, in which case -(Lys) 4 -, -(Lys) 5 -, -(Lys) 6 -, -Asn-(Glu) 5 - are preferred.
  • the carboxyl group at the C-terminus is preferably modified to an amide group (—NH 2 ).
  • modification of the C-terminus or/and of the N-terminus is carried out as a further step after completion of synthesis.
  • Pharmaceutically tolerable salts can be manufactured in a further step after completion of the synthesis cycles of the method according to the present invention.
  • the manufacture of pharmaceutically tolerable salts of peptides is known to a person skilled in the art.
  • a preferred pharmaceutically tolerable salt is acetate.
  • the GLP-1 agonist is preferably selected from the group consisting of exendin-4, analogs and derivates of exendin-4, and pharmacologically tolerable salts thereof.
  • a further preferred GLP-1 agonist is an analog of exendin-4 selected from the group consisting of:
  • a further preferred GLP-1 agonist is an analog of exendin-4 selected from the group consisting of:
  • a further preferred GLP-1 agonist is an analog of exendin-4 selected from a group as described in the previous paragraph, wherein the peptide -Lys 6 -NH 2 is attached to the C-termini of the analogs of exendin-4.
  • a further preferred GLP-1 agonist is an analog of exendin-4 selected from the group consisting of:
  • the GLP-1 agonist can be selected from the group consisting of GLP-1 and analogs and derivates of GLP-1.
  • a further preferred GLP-1 agonist is selected from the group consisting of Arg 34 ,Lys 26 (N ⁇ ( ⁇ -glutamyl(N ⁇ -hexadecanoyl)))GLP-1(7-37) [liraglutide] and a pharmacologically tolerable salt thereof.
  • a further preferred GLP-1 agonist is AVE0010.
  • AVE0010 has the sequence desPro 36 exendin-4(1-39)-Lys 6 -NH 2 (SEQ ID NO:1).
  • pharmacologically tolerable salts of AVE0010 are preferred.
  • the GLP-1 agonist for example AVE0010, is more particularly used in an amount ranging from 0.01 mg/ml to 0.5 mg/ml or 0.05 mg/ml to 1.5 mg/ml.
  • insulin encompasses not only unmodified insulins but also insulin analogs, insulin derivatives, and insulin metabolites.
  • the compositions according to the present invention comprise one or more independently selected from the group consisting of insulins (e.g., unmodified insulins), insulin analogs, insulin derivatives, and insulin metabolites, and any desired combinations thereof.
  • the at least one insulin may independently be selected from the group consisting of bovine insulins, analogs, derivatives, and metabolites thereof, porcine insulins, analogs, derivatives, and metabolites thereof, and human insulins, analogs, derivatives, and metabolites thereof.
  • the at least one insulin is independently selected from human insulins, analogs, derivatives, and metabolites thereof.
  • an insulin according to the present invention may be selected independently from unmodified insulins, more particularly from bovine insulins, porcine insulins, and human insulins.
  • the at least one insulin may independently be selected from the group consisting of bovine insulins, porcine insulins, and human insulins. More preferably, the at least one insulin is independently selected from human insulins.
  • An insulin according to the present invention may be selected from unmodified insulins, more particularly from bovine insulins, porcine insulins, and human insulins.
  • Insulin derivatives according to the present invention are derivatives of a naturally occurring insulin and/or an insulin analog, which are obtained by chemical modification.
  • the chemical modification may consist, for example, in the addition of one or more defined chemical groups onto one or more amino acids.
  • Insulin analogs which are described in EP 0 214 826, EP 0 375 437, EP 0 678 522, EP 0 419 504, WO 92/00321, EP-A 0 368 187, and WO2009/063072 may be part of the compositions according to the present invention.
  • the documents EP 0 214 826, EP 0 375 437, EP 0 678 522, EP 0 419 504, WO 92/00321, EP-A 0 368 187, and WO 2009/063072 are included herein by reference.
  • One preferred insulin analog according to the present invention may be selected from the group consisting of Gly(A21)-Arg(B31)-Arg(B32) human insulin (insulin glargine), Lys(B3)-Glu(B29) human insulin; Lys B28 Pro B29 human insulin (insulin lyspro), B28 Asp human insulin (insulin aspart), human insulin in which proline in position B28 has been substituted by Asp, Lys, Leu, Val or Ala and where Lys in position B29 may be substituted by Pro; AlaB26 human insulin; des(B28-B30) human insulin; des(B27) human insulin or B29Lys( ⁇ -tetradecanoyl),des(B30) human insulin (insulin detemir), N ⁇ B29 -tetradecanoyl des(B30) human insulin, N ⁇ B29 —(N ⁇ —(HOOC(CH 2 ) 14 CO)- ⁇ -Glu) desB30 human insulin, Lys B29 (N
  • a preferred insulin derivative according to the present invention may be selected from the group consisting of B29-N-myristoyl-des(B30) human insulin, B29-N-palmitoyl-des(B30) human insulin, B29-N-myristoyl human insulin, B29-N-palmitoyl human insulin, B28-N-myristoyl Lys B28 Pro B29 human insulin, B28-N-palmitoyl-Lys B28 Pro B29 human insulin, B30-N-myristoyl-Thr B29 Lys B30 human insulin, B30-N-palmitoyl-Thr B29 Lys B30 human insulin, B29-N-(N-palmitoyl-Y-glutamyl)-des(B30) human insulin, B29-N-(N-lithocholyl-Y-glutamyl)-des(B30) human insulin, B29-N-( ⁇ -carboxyheptadecanoyl)-des(B30) human insulin and B29-
  • a more highly preferred insulin derivative according to the present invention is selected from the group consisting of Gly(A21)-Arg(B31)-Arg(B32) human insulin, Lys B28 Pro B29 human insulin (insulin lyspro), B28 Asp human insulin (insulin aspart), B29Lys( ⁇ -tetradecanoyl),desB30 human insulin (insulin detemir).
  • compositions according to the present invention contain 60-6000 nmol/ml, preferably 240-3000 nmol/ml, of an insulin as defined herein. Depending on the insulin used, a concentration of 240-3000 nmol/ml corresponds approximately to a concentration of 1.4-35 mg/ml or 40-500 units/ml.
  • the present invention particularly preferably provides a composition as described herein comprising at least one insulin independently selected from Lys B28 Pro B29 human insulin (insulin lyspro), B28 Asp human insulin (insulin aspart), B29Lys( ⁇ -tetradecanoyl),desB30 human insulin (insulin detemir), and insulin glargine (Gly(A21)-Arg(B31)-Arg(B32) human insulin), and comprising AVE0010 and/or a pharmacologically tolerable salt thereof.
  • the present invention further particularly preferably provides a composition as described herein comprising insulin glargine (Gly(A21)-Arg(B31)-Arg(B32) human insulin) and AVE0010 (desPro 36 exendin-4(1-39)-Lys 6 -NH 2 ) and/or a pharmacologically tolerable salt thereof.
  • These particularly preferred compositions preferably have an acidic pH of 1-6.8, more preferably pH 3.5-6.8, even more preferably pH 3.5-4.5.
  • the formulation according to the present invention comprises the following constituents:
  • the formulation according to the present invention consists of the constituents mentioned in (a) to (i).
  • m-cresol can be omitted.
  • the formulation according to the present invention then consists of constituents (a) to (c) and (e) to (i).
  • the present invention further provides a combination of at least two formulations according to the present invention.
  • a first and a second composition and, optionally, at least one further pharmaceutical composition are provided, each comprising the insulin and the GLP-1 agonist.
  • the present invention provides a combination comprising a first pharmaceutical composition and a second pharmaceutical composition, and, optionally, at least one further pharmaceutical composition, each comprising at least one insulin and at least one GLP-1 agonist, and containing the at least one insulin and/or the at least one GLP-1 agonist in different weight fractions relative to the total weight of the composition.
  • At least one further pharmaceutical composition means that the combination according to the present invention, in addition to the first and second pharmaceutical compositions, may comprise at least one further pharmaceutical composition.
  • the combination according to the present invention may comprise, for example, 3, 4, 5, 6, 7, 8, 9, 10 or more pharmaceutical compositions according to the present invention.
  • Preferred combinations are those which comprise a first and a second pharmaceutical composition according to the present invention.
  • combinations which comprise a first, a second, and a third pharmaceutical composition according to the present invention.
  • combinations which comprise a first, a second, a third, and a fourth pharmaceutical composition according to the present invention.
  • combinations which comprise a first, a second, a third, a fourth, and a fifth pharmaceutical composition.
  • the weight fractions of the at least one insulin and of the at least one GLP-1 agonist may be selected in the first pharmaceutical composition, the second pharmaceutical composition, and, where used, the at least one further pharmaceutical composition in such a way that the pharmaceutical compositions contain different ratios of insulin to GLP-1 agonist, based on the weight fraction.
  • the first composition may contain the smallest ratio and the second composition the next-greater ratio. Where at least one further composition is present, it may contain the next-greater ratio. Where a further composition is present as well, it may contain the next-greater ratio in turn.
  • the compositions may therefore contain ratios of insulin to GLP-1 agonist, based on the weight fraction, that increase from the first to the second and, where used, further compositions.
  • the weight fraction of one of the two active ingredients, i.e., of the at least one insulin or of the at least one GLP-1 agonist, in the first pharmaceutical composition, the second pharmaceutical composition, and, where used, the at least one further pharmaceutical composition is preferably selected in each case such that the predetermined dose of this active ingredient can be administered by administering a defined volume of the first, second and/or at least one further composition.
  • this active ingredient is the at least one insulin.
  • the weight fraction of the other of the two active ingredients, i.e., of the at least one insulin or of the at least one GLP-1 agonist, in the first pharmaceutical composition, the second pharmaceutical composition, and, where used, the at least one further pharmaceutical composition is preferably selected such that the ratios of insulin to GLP-1 agonist, based on the weight fraction, increase from the first to the second and, where used, further compositions.
  • this active ingredient is the at least one GLP-1 agonist.
  • the weight fraction of the other of the two active ingredients in the pharmaceutical compositions is determined such that one of the pharmaceutical compositions can be selected in such a way that the dose of the first of the two active ingredients that is to be administered and the dose of the second active ingredient that is to be administered are given in a defined volume.
  • a pharmaceutical composition is selected which contains the desired ratio.
  • a particular number of pharmaceutical compositions is sufficient in order to cover the dosages needed in practice for the two active ingredients.
  • a defined dosage range is defined within a therapeutically rational interval for each of the two active ingredients.
  • the dose to be administered ought hereby to fluctuate essentially within this dosage range for a particular patient, without any overdosing or underdosing.
  • the concentration range of the GLP-1 agonist allows a pharmaceutical composition according to the present invention that contains a defined ratio of at least one insulin to the at least one GLP-1 agonist to cover a therapeutic range of insulin doses simultaneously with the associated, synergistic amount of GLP-1 agonist.
  • the ratio can be selected such that every desired insulin dose has its corresponding dose of the at least one GLP-1 agonist, which is situated within the desired range, e.g.; the synergistic range.
  • the ratios of the first, second, and, where used, at least one further composition of the pharmaceutical may also be chosen such that the ratios increase from the first to the second and, where used, the at least one further composition. If the dose of the GLP-1 agonist at the desired insulin dose of a composition (e.g., of the first composition) is outside (generally above) the desired dosage range of the GLP-1 agonist, then the next composition (e.g., the second composition) or a further composition with a greater ratio of the at least one insulin to the at least one GLP-1 agonist is selected for use, in which the amount of the GLP-1 agonist at the desired insulin dose lies within the desired range.
  • a composition e.g., of the first composition
  • the next composition e.g., the second composition
  • a further composition with a greater ratio of the at least one insulin to the at least one GLP-1 agonist is selected for use, in which the amount of the GLP-1 agonist at the desired insulin dose lies within the desired range.
  • the ratios of the first, second, and, where used, at least one further composition of the combination may further be chosen such that the ranges of the insulin dosages which correspond to the desired dosages of the at least one GLP-1 agonist border one another and/or overlap one another. Preferably, the ranges overlap. Overlapping means more particularly that it is possible to select at least two compositions which, at the desired dose of the at least one insulin, each contain an amount of the at least one GLP-1 agonist which lies within the desired dosage range.
  • compositions are sufficient to adjust the dose of the at least one insulin for an individual patient to a level selected from the range from 15 to 80 units of insulin and at the same time to dose the GLP-1 agonist with an amount within the range from 10 to 20 ⁇ g (see, FIG. 4 ).
  • the ratio is selected such that for each desired dosage of the GLP-1 agonist there is a corresponding dosage of the at least one insulin which lies within the desired range.
  • the ratios of the first, second, and, where used, at least one further composition of the pharmaceutical may also be chosen such that the ranges of the dosages of the GLP-1 agonist that correspond to the desired dosages of the at least one insulin border one another and/or overlap one another. Preferably, the ranges overlap. Overlapping in this context means more particularly that it is possible to select at least two compositions which, at the desired dosage of the at least one GLP-1 agonist, each contain an amount of the at least one insulin that lies within the desired dosage range.
  • the combination according to the present invention contains not more than 10 pharmaceutical compositions as defined above, more preferably not more than 5, not more than 4, not more than 3 or 2 pharmaceutical compositions.
  • compositions according to the present invention may contain the at least one GLP-1 agonist in, in each case, identical or different weight fractions.
  • at least two of the compositions according to the present invention may contain the at least one GLP-1 agonist in a substantially identical weight fraction.
  • composition(s) it is preferred for the first, second, and, where used, further composition(s) to contain the at least one GLP-1 agonist in a substantially identical weight fraction and the at least one insulin in different weight fractions.
  • compositions according to the present invention may, however, also contain the at least one insulin in, in each case, identical or different weight fractions.
  • at least two of the compositions according to the present invention may contain the at least one insulin in a substantially identical weight fraction.
  • composition(s) to contain the at least one insulin in a substantially identical weight fraction and the at least one GLP-1 agonist in different weight fractions.
  • a first preferred composition according to the present invention comprises:
  • a second preferred composition according to the present invention comprises:
  • a third preferred composition according to the present invention comprises:
  • a fourth preferred composition according to the present invention comprises:
  • a combination comprising at least 2, 3, or 4 of the first, second, third, and fourth preferred composition mentioned.
  • “approximately” means that the constituents can be present, for example, within the ranges of ⁇ 10, ⁇ 20, or ⁇ 30 around the specified values in the compositions according to the present invention or/and the combinations; preference is give to ⁇ 10.
  • composition according to the present invention or the combination comprises more than one insulin
  • these insulins are selected independently of one another.
  • composition according to the present invention or the combination comprises more than one GLP-1 agonist
  • these GLP-1 agonists are selected independently of one another.
  • the combination according to the present invention is provided more particularly as a pharmaceutical.
  • the present invention additionally provides a kit comprising a combination according to the present invention comprising at least one, not more than four, composition(s) according to the present invention and also, optionally, Lantus®.
  • the kit according to the present invention may be intended for use by medical staff or by persons without specialist medical training, more particularly by the patients themselves or helpers such as relatives.
  • the individual pharmaceutical compositions comprising the combination according to the present invention are assembled in separate packs, and so the patient is able to select the composition appropriate to the current requirement and to administer an amount in line with that requirement.
  • the kit according to the present invention comprises, for example, the combination according to the present invention in the form of a set of syringes, glass ampoules, and/or pens which contain at least one of the compositions according to the present invention, optionally in combination with the composition of Lantus®.
  • Suitable packaging is a syringe or a glass vessel with a suitable closure, from which individual therapeutically effective doses can be withdrawn as needed.
  • injection pens for administering insulin comprise a container (e.g. a cartridge) which contains a pharmaceutical composition according to the present invention.
  • the kit according to the present invention is an injection pen consisting of two separate containers from which, in each case, individual therapeutic doses can be withdrawn as needed.
  • the kit is a syringe consisting of two containers in which the second container is equipped as a reservoir needle.
  • the kit preferably consists of a combination of a first formulation, which comprises the GLP-1 agonist, an insulin, glycerol, zinc chloride, optionally m-cresol, L-methionine at a pH of 4.5 in water, and a second formulation, which preferably comprises an insulin, glycerol, zinc chloride, and m-cresol at a pH of 4.5 in water.
  • the first formulation may preferably have the following composition:
  • the second formulation may preferably have the following composition:
  • the present invention further provides for a method for treating a patient with a composition according to the present invention, comprising administering the composition to the patient.
  • the present invention yet further provides a method for treating a patient with a combination according to the present invention or with a kit as described herein. More particularly, this method comprises the administration of a combination according to the present invention comprising a first pharmaceutical composition and a second pharmaceutical composition, and, optionally, at least one further pharmaceutical composition, each comprising at least one insulin and at least one GLP-1 agonist, and comprising the at least one insulin and/or the at least one GLP-1 agonist in different weight fractions relative to the total weight of the composition, said method comprising:
  • step (a) and/or step (b) is determined according to the individual requirement of the patients.
  • Step (c) of the treatment method according to the present invention can be carried out by referring to a table.
  • This table may be part of the combination according to the present invention, of the pharmaceutical according to the present invention, or of the kit according to the present invention.
  • Example 2 contains an example of a table according to the present invention.
  • composition according to the present invention is/are intended more particularly for treating diabetes mellitus, more particularly for treating type I or type II diabetes mellitus. Further possible indications are symptoms which are associated with diabetes mellitus.
  • the composition according to the present invention is used to control the fasting, postprandial, or/and postabsorptive plasma glucose concentration, to improve glucose tolerance, to prevent hypoglycemia, to prevent functional loss of the ⁇ -cells of the pancreas, to effect weight loss, or/and to prevent weight gain.
  • the present invention further provides for the use of a composition according to the present invention, a combination according to the present invention, or a kit according to the present invention in the manufacture of a pharmaceutical for treating diabetes mellitus, more particularly type I or type II, or/and the symptoms associated with it, as described herein.
  • the present invention further provides a method for manufacturing a composition according to the present invention, a combination according to the present invention, or/and a kit according to the present invention, comprising formulating a GLP-1 agonist or/and a pharmacologically tolerable salt thereof with an insulin or/and a pharmaceutically acceptable salt thereof, methionine, and, optionally, at least one pharmaceutically acceptable excipient.
  • the present invention further provides a method for manufacturing a composition according to the present invention, comprising formulating a GLP-1 agonist or/and a pharmacologically tolerable salt thereof with methionine and, optionally, at least one pharmaceutically acceptable excipient.
  • the present invention further provides for the use of the compositions according to the invention together with the administration of metformin, insulin glargine, or AVE0010, more particularly in an add-on therapy for administering metformin, insulin glargine, or AVE0010.
  • composition comprises des Pro 36 exendin-4(1-39)-Lys 6 -NH 2 (AVE0010) and/or a pharmacologically tolerable salt thereof, insulin glargine and/or a pharmacologically tolerable salt thereof.
  • the add-on therapy of the preferred composition in type II diabetes patients who cannot be sufficiently controlled with insulin glargine and/or AVE0010. Also contemplated are patients who are younger than 50 years and/or have a body mass index of at least 30.
  • the add-on therapy involves more particularly the treatment of type II diabetes with the composition according to the present invention as a supplement to metformin, AVE0010, and/or insulin glargine.
  • the composition according to the present invention can be added in a time interval of 24 hours (once-a-day dosage).
  • Metformin, insulin glargine, and AVE0010 can be administered by means of different routes of administration. Metformin can be administered orally, AVE0010 and insulin glargine, in each case, subcutaneously.
  • Patients treated with the add-on therapy according to the present invention can have an HbA1c value in the range of 7% to 10%. They are preferably in the age range of 18 to 50 years.
  • the use in the add-on therapy according to the present invention is more particularly applicable to patients in whom type II diabetes cannot be sufficiently controlled with metformin, AVE0010, or insulin glargine alone.
  • the therapy is preferred in the case of insufficient control through insulin glargine or AVE0010.
  • the present invention further provides for the use of the composition according to the present invention as a supplement to a diet in order to control the blood sugar level in type II diabetes patients when the application of insulin glargine and AVE0010 is indicated.
  • metformin is administered as follows: at least 1.0 g/day, preferably at least 1.5 g/day for 3 months.
  • FIG. 1 shows the content of oxidized methionine Met(ox) in AVE0010 after 1 month of storage at different temperatures relative to the start of storage.
  • the frame shows the values for the AVE0010 reference formulation no. 1 and 2.
  • FIG. 2 shows the content of impurities of AVE0010 without Met(ox) after 1 month of storage at different temperatures relative to the start of storage.
  • the frames show the values of the AVE0010 reference formulations at 25° C. and at 40° C.
  • FIG. 3 shows the content of impurities of insulin glargine after 1 month of storage at different temperatures relative to the start of storage.
  • the narrow frames show the values of the insulin glargine reference formulations at 25° C. and at 40° C.
  • the broad frames indicate the formulations having the lowest fractions of AVE0010 impurities.
  • FIG. 4 the “3 pens cover all” concept.
  • compositions comprising a GLP-1 agonist
  • a factor when a factor is mentioned in conjunction with a constituent of a formulation (e.g., 1 ⁇ 2, 1 ⁇ 4, 2 ⁇ , 3 ⁇ , 5 ⁇ , as in 1 ⁇ 2 acetate, 5 ⁇ lysine, 2 ⁇ Lantus, and 3 ⁇ Lantus), the concentrations of the substance concerned were used at a reduced or increased concentration depending on the factor.
  • a constituent of a formulation e.g., 1 ⁇ 2, 1 ⁇ 4, 2 ⁇ , 3 ⁇ , 5 ⁇ , as in 1 ⁇ 2 acetate, 5 ⁇ lysine, 2 ⁇ Lantus, and 3 ⁇ Lantus
  • THT Thioflavin T binds specifically to protein fibrils, which leads to a change in THT fluorescence. THT does not bind to AVE0010 or insulin. The kinetics of fibril formation can be measured in the presence of THT as the change in fluorescence. An increase in fluorescence corresponds to fibril formation. The shape of the curves allows conclusions about the tendency of a formulation to form fibrils.
  • Fluorescence measurements were carried out on a Tecan Infinite 200 fluorescence measurement instrument.
  • a Photomed FluoDia 770 high-temperature fluorescence microplate reader was used for analysis of fibrillation kinetics.
  • the thioflavin T fluorescence spectra were carried out with a Tecan Infinite 200 fluorescence measurement instrument at 23° C. Insulin (900 ⁇ l) was mixed with 10 ⁇ l of thioflavin T (1 mM in H 2 O). The mixture was then distributed into a black V-shaped 96-well plate from Biozym (100 ⁇ l per well).
  • the emission of fluorescence was measured between 470 and 600 nm (in increments of 1 nm) after excitation at 450 nm with a gain of 100, an integration time of 200 ⁇ s, and 25 readings at room temperature.
  • the binding kinetics of thioflavin T were measured on a Photomed FluoDia 770 high-temperature fluorescence microplate reader.
  • the instrument consists essentially of a 50 W quartz halogen lamp for excitation, filter wheels for excitation and emission which can each contain up to 4 filter sets, and a PMT detector.
  • the heating plate for 96-well plates allows very high precision with regard to temperature (better than ⁇ 0.3° C.).
  • Temperature control Standard temperature-control mode
  • the formulations were tested for chemical stability after preparation (t0) or after storage for 1 month at 4° C., 25° C. (60% relative humidity), and 40° C. (75% relative humidity).
  • the measurements were carried out on an HPLC instrument (model: alliance) from Water Systems, using the 100% peak area method.
  • HPLC instrument model: alliance
  • a gradient of 0.1% TFA and acetonitrile as the mobile phase and a C18 reversed-phase column (Jupiter) as the stationary phase were used.
  • the formulation was treated with a zinc acetate solution, which led to precipitation of insulin glargine.
  • the precipitates were centrifuged down, and only the supernatant was analyzed.
  • Impurities of insulin glargine the amount of impurities was determined with an HPLC (Water Systems), using the 100% peak area method. For separation, a sodium phosphate-buffered solution (pH 2.5) with NaCl and acetonitrile gradients was used as the mobile phase. A C18 reversed-phase column (Supersher) was used as the stationary phase.
  • Polysorbate 20 and polysorbate 80 can lead to turbidity, which is detectable in the double refraction test. Hence, both of these substances can lead to physical instability of a formulation of AVE0010 and insulin.
  • the formulations which comprise methionine have the lowest amounts of impurities (overall, approximately 1.2 to 1.5%).
  • the following formulations have low amounts of impurities:
  • Polysorbate 20 has no negative influence on the chemical stability of the formulations.
  • Acetate buffer has no negative influence on chemical stability when it is combined with methionine and polysorbate 20.
  • formulations which comprise polysorbate 80, poloxamer 188, and benzalkonium chloride.
  • the content of oxidized methionine in the formulations was analyzed.
  • the sequence of AVE0010 has one methionine residue at position 14.
  • the sequence of insulin glargine has no methionine residues. Therefore, the content of oxidized methionine is indicative of oxidation of AVE0010 at the methionine residue.
  • the data are summarized in FIG. 1 . Overall, the data show that, without methionine at a pH of 4.5, the fraction of Met(ox) is higher than at pH 4.0. Without methionine as a constituent of the formulations, the fractions of Met(ox) are greatest when the content of insulin glargine is increased or the content of AVE0010 is reduced.
  • the greatest fractions of Met(ox) were measured after storage at 40° C./75% relative humidity.
  • the lowest fractions of Met(ox)-AVE0010 ( ⁇ 1%) are to be found in the formulations 8, 9, 11, 13, 14, 25, 26, 28, 30, and 31.
  • the values of these formulations are in the range of the values for the AVE0010 reference formulations no. 1 and 2 (frame in FIG. 1 ).
  • the impurities of AVE0010 after 1 month without Met(ox) are represented in FIG. 2 .
  • the frames show the values of the AVE0010 reference formulations at 25° C. and at 40° C. Formulations which have the same or better impurity values than the AVE0010 reference formulations are within or below the frames. This is true for the formulations 24, 25, 26, 28, 29, 30, 31, 33, and 34 (40° C.). Impurity values which are above the impurity values of the AVE0010 reference formulations indicate impurities of insulin glargine. Generally, formulations having a pH of 4.5 have fewer impurities than at a pH of 4.0.
  • formulations also belonged to those formulations which have at time point t0 the lowest amounts of AVE0010 impurities. All formulations comprise methionine. Polysorbate 20 has no negative effects on the impurities.
  • the impurities of insulin glargine are represented in FIG. 3 .
  • Formulations 3 and 4 are the reference formulations for insulin glargine. The values of these formulations are indicated as narrow frames. All formulations which were identified with regard to AVE0010 impurities as the best formulations (broad frames, more particularly formulations 25, 26, 28, and 30) are, with regard to insulin glargine impurities, better than the insulin glargine reference formulations (approximately 1.5 to 2.4% at 40° C.).
  • methionine engenders an increased storage stability of a composition comprising an insulin (e.g., Lantus) and a GLP-1 agonist AVE0010).
  • the addition of methionine engenders chemical integrity of this composition.

Abstract

A liquid composition comprising a GLP-1 agonist or/and a pharmacologically tolerable salt thereof, an insulin or/and a pharmacologically tolerable salt thereof, and, optionally, at least one pharmaceutically acceptable excipient, wherein the composition comprises methionine, as add-on therapy with metformin where appropriate.

Description

  • The present application relates to a liquid composition comprising a GLP-1 agonist or/and a pharmacologically tolerable salt thereof, an insulin or/and a pharmacologically tolerable salt thereof, and, optionally, at least one pharmaceutically acceptable excipient, wherein the composition comprises methionine.
  • The present application further relates to the composition according to the present invention for treating diabetes mellitus. The present application further relates to the use of a composition according to the present invention in the manufacture of a pharmaceutical for treating diabetes mellitus. The present application further relates to a method for manufacturing a composition according to the present invention, comprising formulating a GLP-1 agonist or/and a pharmacologically tolerable salt thereof with an insulin or/and a pharmaceutically acceptable salt thereof, methionine, and, optionally, at least one pharmaceutically acceptable excipient. The present application further relates to a method for treating a patient with a composition according to the present invention, comprising administering the composition to the patient.
  • Customary compositions of insulin and GLP-1 compounds comprise an isotonicity agent, a buffer for adjusting the pH, and a preservative. A further frequently used constituent of insulin compositions is zinc, which forms a complex with insulin. This results in a delayed action of insulin being achieved.
  • WO 2003/020201 (Eli Lilly) relates to a liquid pre-mixed formulation comprising a GLP-1 compound and a basal insulin. A specific formulation contains Val8-GLP-1 or exendin-4, insulin NPH, glycerol as an isotonicity agent, m-cresol and phenol as preservatives; and a phosphate buffer at a pH of 7.6 or 8. Another formulation comprises exendin-4 or Val8-Glu22GLP-1(7-37)OH, insulin glargine (Lantus), zinc, glycerol and mannitol as isotonicity agents, m-cresol as a preservative, zinc, and sodium acetate, pH 4.
  • WO 2004/035623 (Zealand Pharmaceuticals) discloses a liquid composition comprising a stabilized exendin, 50 mM histidine, 100 to 200 mM sucrose, mannitol or other acceptable sugar, 20 mM methionine, 20 mM asparagine-glutamine or Asp, at a pH of 5.3. Stabilization is effected by certain modifications of the amino acid building blocks of exendin-4(1-39), for example, at positions Gln13, Met14, Trp25, or Asn28. This composition does not comprise insulin.
  • WO 2005/046716 (Novo Nordisk) discloses liquid compositions which comprise liraglutide and insulin aspart, a buffer with a pH of 7.7, poloxamer 188 as a surfactant, phenol, propylene glycol, and, optionally, zinc. Without poloxamer 188, the compositions were unstable. With polysorbate 20, stabilization was achieved.
  • WO 2006/029634 (Novo Nordisk) relates to liquid pharmaceutical compositions which comprise an insulinotropic peptide (GLP-1 agonist), an insulin peptide, and a ligand for HisB10 (ligand of His at position 10 of the B chain of insulin). The composition can comprise polysorbate-20 or poloxamer 188 as a surfactant. Specific compositions disclosed in this document comprise human insulin or human B28 Asp insulin (insulin aspart), liraglutide (GLP-1 agonist), glycerol as an isotonicity agent, zinc acetate, pH 7.4 or 7.9. Depending on the amount of insulin used or of liraglutide, these compositions were, in part, already unstable after 15 days of storage at room temperature. Stability of these compositions was achieved by adding a ligand for HisB10. Further formulations consisted of liraglutide, insulin aspart or detemir, propylene glycol, phenol, and phosphate buffer, pH 7.7. These compositions were practically immediately unstable. Adding poloxamer-188 or polysorbate-20 and a ligand for HisB10 led to stabilization.
  • WO 2006/051103 (Novo Nordisk) discloses liquid compositions which comprise detemir (a basal insulin), liraglutide (GLP-1 compound), and poloxamer 188 or polysorbate 20 as a surfactant. Further constituents are phenol, NaCl, propylene glycol, zinc acetate, and sodium phosphate buffer or glycylglycine buffer (pH 7.7). m-Cresol is present in some of these compositions. By adding poloxamer 188 or polysorbate 20, the compositions could be stabilized.
  • WO 2008/124522 (Biodel) relates to compositions which comprise an insulin, a zinc chelator (e.g., EDTA or EGTA), and a GLP-1 analog.
  • About 120 million people around the world suffer from diabetes mellitus. These include about 12 million type I diabetics, for whom replacement of the deficient endocrine insulin secretion is the only possible therapy at present. Those affected are dependent on insulin injections for life, usually several times a day. Type II diabetes contrasts with type I diabetes in that there is not always a deficiency of insulin, but in a large number of cases, especially at the advanced stage, treatment with insulin, where appropriate in combination with an oral antidiabetic, is considered the most advantageous form of therapy.
  • In healthy individuals, release of insulin by the pancreas is strictly coupled to the blood glucose concentration. Elevated blood glucose levels, like those occurring after meals, are quickly compensated by a corresponding rise in insulin secretion. In the fasting state, the plasma insulin level falls to a basal value which is sufficient to ensure a continuous supply of glucose to insulin-sensitive organs and tissues, and to keep hepatic glucose production low in the night. The replacement of the endogenous insulin secretion by exogenous, usually subcutaneous administration of insulin does not in general come close to the above-described quality of the physiological regulation of blood glucose. Frequently there are instances of blood glucose being thrown off-track, either upwardly or downwardly, and in their most severe forms these instances may be life-threatening. In addition, however, blood glucose levels which are elevated over years, without initial symptoms, constitute a considerable health risk. The large-scale DCCT study in the USA (The Diabetes Control and Complications Trial Research Group (1993), N. Engl. J. Med. 329, 977-986) showed unambiguously that chronically elevated blood glucose levels are responsible for the development of late diabetic complications. Late diabetic complications are microvascular and macrovascular damage which is manifested in certain circumstances as retinopathy, nephropathy, or neuropathy, and leads to blindness, renal failure, and loss of extremities, and, in addition, is associated with an increased risk of cardiovascular disorders. From this it can be inferred that an improved therapy of diabetes must be aimed primarily at keeping blood glucose as closely as possible within the physiological range. According to the concept of intensified insulin therapy, this is to be achieved by means of injections, several times a day, of fast-acting and slow-acting insulin preparations. Fast-acting formulations are given at meal times, in order to compensate the postprandial rise in blood glucose. Slow-acting basal insulins are intended to ensure the basic supply of insulin, especially during the night, without leading to hypoglycemia.
  • Insulin is a polypeptide composed of 51 amino acids which are divided between two amino acid chains: the A chain, with 21 amino acids, and the B chain, with 30 amino acids. The chains are linked together by 2 disulfide bridges. Insulin preparations have been employed for many years in diabetes therapy. Such preparations use not only naturally occurring insulins but also, more recently, insulin derivatives and insulin analogs.
  • Insulin analogs are analogs of naturally occurring insulins, namely human insulin or animal insulins, which differ by replacement of at least one naturally occurring amino acid residue by other amino acids and/or by addition/deletion of at least one amino acid residue, from the corresponding, otherwise identical, naturally occurring insulin. The amino acids in question may also be amino acids which do not occur naturally.
  • Insulin derivatives are derivatives of naturally occurring insulin or of an insulin analog which are obtained by chemical modification. The chemical modification may consist, for example, in the addition of one or more defined chemical groups onto one or more amino acids. Generally speaking, the activity of insulin derivatives and insulin analogs is somewhat altered as compared with human insulin.
  • Insulin analogs with an accelerated onset of action are described in EP 0 214 826, EP 0 375 437, and EP 0 678 522. EP 0 124 826 relates, among other things, to replacements of B27 and B28. EP 0 678 522 describes insulin analogs which have different amino acids in position B29, preferably proline, but not glutamic acid. EP 0 375 437 encompasses insulin analogs with lysine or arginine at B28, which may optionally also be modified at B3 and/or A21.
  • EP 0 419 504 discloses insulin analogs which are protected from chemical modifications by modification of asparagine in B3 and of at least one further amino acid at positions A5, A15, A18 or A21.
  • WO 92/00321 describes insulin analogs in which at least one amino acid in positions B1-B6 has been replaced by lysine or arginine. Such insulins, according to WO 92/00321, have an extended effect. A delayed effect is also exhibited by the insulin analogs described in EP-A 0 368 187.
  • The commercially available preparations of naturally occurring insulins for insulin replacement differ in the origin of the insulin (e.g., bovine, porcine, human insulin) and also in their composition, and thereby the activity profile (onset and duration of action) may be influenced. Through combination of different insulin products it is possible to obtain any of a very wide variety of activity profiles and to bring about very largely physiological blood sugar values. Recombinant DNA technology nowadays allows the preparation of modified insulins of this kind. They include insulin glargine (Gly(A21)-Arg(B31)-Arg(B32) human insulin, Lantus), with an extended duration of action. Insulin glargine is injected in the form of a clear, acidic solution, and owing to its dissolution properties is precipitated, in the physiological pH range of the subcutaneous tissue, as a stable hexamer association. Insulin glargine is injected once a day and is notable in comparison with other long-active insulins for its flat serum profile and the associated reduction in the risk of night hypoglycemias (Schubert-Zsilavecz et al., 2:125-130 (2001)).
  • The specific preparation of insulin glargine that leads to the prolonged duration of action is characterized by a clear solution with an acidic pH.
  • Exendins are a group of peptides which can lower blood glucose concentrations. Exendins have a certain similarity to the sequence of GLP-1(7-36) (53%, Goke et al. J. Biol Chem 268, 19650-55). Exendin-3 and exendin-4 stimulate an increase in cellular cAMP production in the acinar cells of the guinea pig pancreas by interacting with exendin receptors (Raufman, 1996, Reg. Peptides 61:1-18). Exendin-3, in contrast to exendin-4, effects an increase in the release of amylase in the acinar cells of the pancreas. Exendins act as GLP-1 agonists.
  • Glucagon-like peptide 1 (GLP-1) is an endocrine hormone which enhances the insulin response following oral intake of glucose or fat. In general, GLP-1 lowers glucagon concentrations, slows gastric emptying, stimulates (pro)insulin synthesis, enhances sensitivity to insulin, and stimulates insulin-independent glycogen synthesis (Hoist (1999), Curr. Med. Chem 6:1005, Nauck et al. (1997) Exp Clin Endocrinol Diabetes 105: 187, Lopez-Delgado et al. (1998) Endocrinology 139:2811). Human GLP-1 has 37 amino acid residues (Heinrich et al., Endocrinol. 115:2176 (1984), Uttenthal et al., J Olin Endocrinol Metabol (1985) 61:472). Active fragments of GLP-1 include GLP-1 (7-36) and GLP-1(7-37).
  • Exendin-3, exendin-4 and exendin agonists have been proposed for treating diabetes mellitus and preventing hyperglycemia, by reducing gastric motility and gastric emptying (U.S. Pat. No. 5,424,286 and WO98/05351).
  • Exendin analogs can be characterized by amino acid substitutions and/or C-terminal truncation of the native exendin-4 sequence. Such exendin analogs are described in WO 99/07404, WO 99/25727, and WO 99/25728.
  • Solid-phase synthesis of AVE0010 is described in WO 01/04156 A1, AVE0010 has the sequence: desPro36exendin-4(1-39)-Lys6-NH2. This substance is published as SEQ ID NO:93 in WO 01/04156:
  • (SEQ ID NO: 1)
    H-G-E-G-T-F-T-S-D-L-S-K-Q-M-E-E-E-A-V-R-L-F-I-E-W-
    L-K-N-G-G-P-S-S-G-A-P-P-S-K-K-K-K-K-K-NH2
  • Exendin-4 (39 AS) has the sequence:
  • (SEQ ID NO: 2)
    H-G-E-G-T-F-T-S-D-L-S-K-Q-M-E-E-E-A-V-R-L-F-I-E-W-
    L-K-N-G-G-P-S-S-G-A-P-P-P-S-NH2
  • Exendin-3 has the sequence (J. Bio. Chem., 267, 1992, 7402-7405):
  • (SEQ ID NO: 3)
    H-His-Ser-Asp-Gly-Thr-Phe-Thr-Ser-Asp-Leu-Ser-Lys-
    Gln-Met-Glu-Glu-Glu-Ala-Val-Arg-Leu-Phe-Ile-Glu-
    Trp-Leu-Lys-Asn-Gly-Gly-pro-Ser-Ser-Gly-Ala-Pro-
    Pro-Pro-Ser-NH2
  • GLP-1 has the sequence:
  • (SEQ ID NO: 4)
    H-A-E-G-T-F-T-S-D-V-S-S-Y-L-E-G-Q-A-A-K-E-F-I-A-W-
    L-V-K-G-R-NH2
  • It is an object of the present invention to increase the stability of liquid formulations comprising a GLP-1 agonist and an insulin. More particularly, it is an object of the present invention to improve physical and chemical integrity. We have found that this object is achieved by formulating the GLP-1 agonist and the insulin with methionine.
  • It was found that methionine is able to increase the storage stability of a composition comprising a GLP-1 agonist such as AVE0010 and an insulin such as insulin glargine. Methionine does not affect the physical integrity of these compositions.
  • The stability of pharmaceutically active polypeptides can be impaired by various mechanisms. These include pH, temperature, light, and the effects of certain constituents.
  • In connection with the present invention, it was found that a range of customary constituents of insulin formulations or of formulations of GLP-1 agonists are disadvantageous for the chemical or/and physical integrity and the storage stability of formulations which comprise an insulin and a GLP-1 agonist. These are, for example, acetate, polysorbate 20, polysorbate 80, poloxamer 188, benzalkonium chloride, and lysine. The compositions according to the present invention are therefore preferably free of these constituents.
  • The present invention accordingly provides for a liquid composition comprising a GLP-1 agonist or/and a pharmacologically tolerable salt thereof, an insulin or/and a pharmacologically tolerable salt thereof, and, optionally, at least one pharmaceutically acceptable excipient, wherein the composition comprises methionine.
  • The composition according to the present invention preferably comprises methionine in an amount ranging from 0.5 mg/mL to 20 mg/mL, more preferably in an amount ranging from 1 mg/mL to 5 mg/mL, especially preferably in an amount of 3.0 mg/mL. Methionine in the D-form can be used. Likewise, methionine in the L-form can be used. Likewise, mixtures of the D-form and the L-form in any desired proportions can be used.
  • More particularly, the composition according to the present invention is free of surfactants, such as polyols and partial and fatty acid esters and ethers of polyhydric alcohols such as those of glycerol and sorbitol. The compositions according to the present invention are more particularly free of partial and fatty acid esters and ethers of glycerol and sorbitol selected from the group consisting of Span®, Tween®, Myrj®, Brij®, Cremophor®. Furthermore, the compositions according to the present invention are more particularly free of polyols selected from the group consisting of polypropylene glycols, polyethylene glycols, poloxamers, Pluronics, Tetronics. More particularly, the composition according to the present invention is free of at least one substance selected from the group consisting of polysorbate, polysorbate and poloxamer.
  • More particularly, the composition according to the present invention is substantially free, preferably free, of polysorbate, such as, for example, polysorbate 20.
  • More particularly, the composition according to the present invention is substantially free, preferably free, of polysorbate 80.
  • More particularly, the composition according to the present invention is substantially free, preferably free, of poloxamer, such as, for example, poloxamer 188.
  • More particularly, the composition according to the present invention is substantially free, preferably free, of benzalkonium chloride.
  • More particularly, the composition according to the present invention is substantially free, preferably free, of histidine.
  • More particularly, the composition according to the present invention is substantially free, preferably free, of EDTA, more particularly sodium EDTA.
  • More particularly, the composition according to the present invention is substantially free, preferably free, of histidine and sodium EDTA.
  • The composition according to the present invention can comprise one or more substances which are customarily used to buffer the pH (buffer substances). Examples of such buffer substances are acetate, citrate, and phosphate. More particularly, the composition according to the present invention can comprise one or more substances which are customarily used to buffer the pH in an amount which is sufficient, for example, as a counterion for the GLP-1 agonist or/and the insulin. The composition according to the present invention can comprise one or more buffer substances, for example, each in an amount of up to 1 mg/ml, up to 0.5 mg/ml, up to 0.1 mg/ml, up to 0.05 mg/ml, up to 0.02 mg/ml, or up to 0.01 mg/ml. The composition according to the present invention can likewise be substantially free of buffer substances. Preferably, the composition according to the present invention is free of buffer substances.
  • The composition according to the present invention can comprise acetate, for example, in an amount of up to 1 mg/ml, up to 0.5 mg/ml, up to 0.1 mg/ml, up to 0.05 mg/ml, up to 0.02 mg/ml, or up to 0.01 mg/ml. These amounts are, for example, sufficient as a counterion for the GLP-1 agonist. Likewise, the composition according to the present invention can be substantially free of acetate. Preferably, the composition according to the present invention is free of acetate.
  • The composition according to the present invention can comprise citrate, for example, in an amount of up to 1 mg/ml, up to 0.5 mg/ml, up to 0.1 mg/ml, up to 0.05 mg/ml, up to 0.02 mg/ml, or up to 0.01 mg/ml. These amounts are, for example, sufficient as a counterion for the GLP-1 agonist. Likewise, the composition according to the present invention can be substantially free of citrate. Preferably, the composition according to the present invention is free of citrate.
  • The composition according to the present invention can comprise phosphate, for example, in an amount of up to 1 mg/ml, up to 0.5 mg/ml, up to 0.1 mg/ml, up to 0.05 mg/ml, up to 0.02 mg/ml, or up to 0.01 mg/ml. These amounts are, for example, sufficient as a counterion for the GLP-1 agonist. Likewise, the composition according to the present invention can be substantially free of phosphate. Preferably, the composition according to the present invention is free of phosphate.
  • The pharmaceutical composition of the present invention can have an acidic or physiological pH. An acidic pH range is preferably in the range of pH 1-6.8, pH 3.5-6.8, or pH 3.5-5. A physiological pH is preferably in the range of pH 2.5-8.5, more preferably pH 4.0 to 8.5, even more preferably pH 6.0 to 8.5. Especially preferred is a pH of approximately 4.5. For pH adjustment, physiologically safe dilute acids (typically HCl) and alkalis (typically NaOH) are suitable.
  • The composition according to the present invention can comprise a suitable preservative. Suitable preservatives are, for example, phenol, m-cresol, benzyl alcohol, and/or p-hydroxybenzoate esters. m-Cresol is preferred. However, a preservative can also be omitted.
  • The composition according to the present invention can comprise zinc ions. The concentration of the zinc ions is preferably in the range from 1 μg/ml to 2 mg/ml, more preferably in the range from 5 μg to 200 μg zinc/ml, more particularly at a maximum of 0.06 mg/ml, especially preferably at 0.06 mg/mi.
  • Furthermore, the composition according to the present invention can comprise suitable isotonicity agents. Suitable isotonicity agents are, for example, glycerol, dextrose, lactose, sorbitol, mannitol, glucose, NaCl, calcium or magnesium compounds such as CaCl2 etc. The concentrations of glycerol, dextrose, lactose, sorbitol, mannitol, and glucose are customarily in the range of 100-250 mM, NaCl in a concentration of up to 150 mM. Glycerol is preferred. More particularly, 85% glycerol at 20.0 mg/ml is preferred.
  • The composition according to the present invention can further comprise further additives, such as salts, which retard the release of at least one insulin. Preferably, the composition is free of these additives.
  • More particularly, the composition is intended for parenteral administration. The composition according to the present invention is preferably an injectable composition, more preferably for subcutaneous injection. More particularly, the composition of the present invention is suitable for injection once a day.
  • More particularly, the formulation according to the present invention has, after storage for 1 month, 2 months, 4 months, or 6 months at a temperature of +5° C. or 25° C., an activity of at least 80%, at least 90%, at least 95%, or at least 98% of the activity at the start of storage.
  • In the present application, “activity” can mean the activity of the insulin which is used in the formulation according to the present invention. Methods for determining the activity of insulin are known to a person skilled in the art.
  • In the present application, “activity” can likewise mean the activity of the GLP-1 agonist which is used in the formulation according to the present invention. Methods for determining the activity of a GLP-1 agonist are known to a person skilled in the art.
  • More particularly, the formulation according to the present invention exhibits chemical integrity after storage for 1 month, 2 months, 4 months, or 6 months. Chemical integrity means, more particularly, that after storage at a temperature of +5° C., 25° C., or 40° C. the formulation comprises at least 80%, at least 90%, at least 95%, or at least 98% of the active ingredient, compared with the start of storage, in a substantially chemically unchanged form.
  • Chemical integrity can mean the chemical integrity of the GLP-1 agonist. GLP-1 agonists may comprise a methionine residue (e.g. position 14 in AVE0010). Chemical integrity of the GLP-1 agonist means, more particularly, that oxidation of the methionine residue is prevented.
  • Chemical intregrity can likewise mean the chemical integrity of the insulin.
  • Preferably, chemical integrity means the integrity of the insulin and the GLP-1 agonist.
  • More particularly, the formulation according to the present invention exhibits physical integrity after storage for 1 month, 2 months, 4 months, or 6 months. Physical integrity means, more particularly, that after storage at a temperature of +5° C., 25° C., or 40° C. the formulation comprises at least 80%, at least 90%, at least 95%, or at least 98% of the active ingredient, compared with the start of storage, in a substantially physically unchanged form.
  • Physical integrity can mean the integrity of the GLP-1 agonist. Likewise, physical integrity can mean the integrity of the insulin. Physical integrity means, more particularly, that the GLP-1 agonist or/and the insulin does/do not form aggregates, such as, for example, fibrils.
  • Preferably, physical integrity means the integrity of the insulin and the GLP-1 agonist.
  • The GLP-1 agonist is preferably selected from the group consisting of exendin-3 and analogs and derivates thereof, exendin-4 and analogs and derivates thereof, and in which case the GLP-1 agonist is more preferably selected from the group consisting of AVE0010 and exendin-4.
  • Exendin-3, analogs and derivates of exendin-3, exendin-4, and analogs and derivates of exendin-4 can be found in WO 01/04156, WO 98/30231, U.S. Pat. No. 5,424,286, EP application 99 610043.4, and WO 2004/005342. These documents are incorporated herein by reference. The exendin-3, exendin-4, and analogs and derivates thereof described in these documents can be synthesized by means of the methods described therein, after which modifications are optionally carried out.
  • The sequences of AVE0010 (SEQ ID NO:1), exendin-4 (SEQ ID NO:2), and exendin-3 (SEQ ID NO:3) show a high degree of similarity. The sequences of AVE0010 and exendin-4 are identical at positions 1-37. Sequence 1-39 from exendin-4 is at 37 of the 39 positions (94%) identical to the exendin-3 sequence at positions 48-86. With reference to the sequences, a person skilled in the art can readily convert the positions specified herein, which relate to a particular sequence (e.g. to the sequence of AVE0010 or exendin-4), to other sequences.
  • Analogs and derivates of exendin-3 or/and exendin-4 contain more particularly a modified amino acid sequence. For example, single amino acids can be deleted (e.g. desPro36, desPro37, desAsp28, desMet(O)14 in exendin-4 and the corresponding positions in exendin-3). Likewise, single positions can be substituted (e.g. Met(O)14, Trp(O2)25, IsoAsp28, Asp28 Pro38 in exendin-4 and the corresponding positions in exendin-3), in which case unnatural amino acids such as Met(O) (methionine sulfoxide or methionine sulfone), Trp(O2) (N-formylkynurenine), or/and IsoAsp (β-aspartate or isoaspartate) can also be used. Unnatural amino acids can be readily inserted, in the form of corresponding amino acid building blocks, into the sequence.
  • Furthermore, the C-terminus or/and the N-terminus can be modified, for example, by an additional sequence such as -(Lys)-, -(Lys)2-, -(Lys)3-, -(Lys)4-, -(Lys)5-, -(Lys)6-, -Asn-(Glu)5-, in which case -(Lys)4-, -(Lys)5-, -(Lys)6-, -Asn-(Glu)5- are preferred. The carboxyl group at the C-terminus is preferably modified to an amide group (—NH2). Optionally, modification of the C-terminus or/and of the N-terminus is carried out as a further step after completion of synthesis.
  • Pharmaceutically tolerable salts can be manufactured in a further step after completion of the synthesis cycles of the method according to the present invention. The manufacture of pharmaceutically tolerable salts of peptides is known to a person skilled in the art. A preferred pharmaceutically tolerable salt is acetate.
  • The GLP-1 agonist is preferably selected from the group consisting of exendin-4, analogs and derivates of exendin-4, and pharmacologically tolerable salts thereof.
  • A further preferred GLP-1 agonist is an analog of exendin-4 selected from the group consisting of:
  • H-desPro36-exendin-4-Lys6-NH2,
  • H-des(Pro36,37)-exendin-4-Lys4-NH2,
  • H-des(Pro36,37)-exendin-4-Lys5-NH2 and pharmacologically tolerable salts thereof.
  • A further preferred GLP-1 agonist is an analog of exendin-4 selected from the group consisting of:
  • desPro36[Asp28]exendin-4 (1-39),
  • desPro36[IsoAsp28]exendin-4 (1-39),
  • desPro36[Met(O)14,Asp28]exendin-4 (1-39),
  • desPro36[Met(O)14,IsoAsp28]exendin-4 (1-39),
  • desPro36[Trp(O2)25,Asp28]exendin-2 (1-39),
  • desPro36[Trp(O2)25,IsoAsp28]exendin-2 (1-39),
  • desPro36[Met(O)14Trp(O2)25Asp28]exendin-4 (1-39),
  • desPro36[Met(O)14Trp(O2)25,IsoAsp28]exendin-4(1-39) and pharmacologically tolerable salts thereof.
  • A further preferred GLP-1 agonist is an analog of exendin-4 selected from a group as described in the previous paragraph, wherein the peptide -Lys6-NH2 is attached to the C-termini of the analogs of exendin-4.
  • A further preferred GLP-1 agonist is an analog of exendin-4 selected from the group consisting of:
  • H-(Lys)6-desPro36[Asp28]exendin-4(1-39)-Lys6-NH2,
  • desAsp28Pro36,Pro37,Pro38exendin-4(1-39)-NH2,
  • H-(Lys)6-desPro36,Pro37,Pro38[Asp28]exendin-4(1-39)-NH2,
  • H-Asn-(Glu)5desPro36,Pro37,Pro38[Asp28]exendin-4(1-39)-NH2,
  • desPro36,Pro37,Pro38[Asp28]exendin-4(1-39)-(Lys)6-NH2,
  • H-(Lys)6-desPro36,Pro37,Pro38[Asp28]exendin-4(1-39)-(Lys)6-NH2,
  • H-Asn-(Glu)5-desPro36,Pro37,Pro38[Asp28]exendin-4(1-39)-(Lys)6-NH2,
  • H-(Lys)6-desPro36[Trp(O2)25,Asp28]exendin-4(1-39)-Lys6-NH2,
  • H-desAsp28 Pro36,Pro37,Pro38[Trp(O2)25]exendin-4(1-39)-NH2,
  • H-(Lys)6-desPro36,Pro37,Pro38[Trp(O2)25,Asp28]exendin-4(1-39)-NH2,
  • H-Asn-(Glu)5-desPro36,Pro37,Pro38[Trp(O2)25,Asp28]exendin-4(1-39)-NH2,
  • desPro36,Pro37,Pro38[Trp(O2)25,Asp28]exendin-4(1-39)-(Lys)6-NH2,
  • H-(Lys)6-desPro36,Pro37,Pro38[Trp(O2)25,Asp28]exendin-4(1-39)-(Lys)6-NH2,
  • H-Asn-(Glu)5-desPro36,Pro37,Pro38[Trp(O2)25,Asp28]exendin-4(1-39)-(Lys)6-NH2,
  • H-(Lys)6-desPro36[Met(O)14,Asp28]exendin-4(1-39)-Lys6-NH2,
  • desMet(O)14 Asp28 Pro 36,Pro37,Pro38exendin-4(1-39)-NH2,
  • H-(Lys)6-desPro36,Pro 37,Pro38[Met(O)14,Asp28]exendin-4(1-39)-NH2,
  • H-Asn-(Glu)5-desPro36,Pro37,Pro38[Met(O)14,Asp28]exendin-4(1-39)-NH2,
  • desPro36,Pro37,Pro38[Met(O)14,Asp28]exendin-4(1-39)-(Lys)6-NH2,
  • H-(Lys)6-desPro36,Pro37,Pro38[Met(O)14,Asp28]exendin-4(1-39)-Lys6-NH2,
  • H-Asn-(Glu)5-desPro36,Pro37,Pro38[Met(O)14,Asp28]exendin-4(1-39)-(Lys)6-NH2,
  • H-(Lys)6-desPro36[Met(O)14, Trp(O2)25,Asp281exendin-4(1-39)-Lys6-NH2,
  • desAsp28Pro36,Pro37,Pro38[Met(O)14, Trp(O2)25]exendin-4(1-39)-NH2,
  • H-(Lys)6-desPro36,Pro37,Pro38[Met(O)14, Trp(O2)25,Asp28]exendin-4(1-39)-NH2,
  • H-Asn-(Glu)5-desPro36,Pro37,Pro38[Met(O)14,Asp28] exendin-4(1-39)-NH2,
  • desPro36,Pro37,Pro38[Met(O)14, Trp(O2)25,Asp28]exendin-4(1-39)-(Lys)6-NH2,
  • H-(Lys)6-desPro36,Pro37,Pro38[Met(O)14,Trp(O2)25,Asp28]exendin-4(1-39)-(Lys)6-NH2,
  • H-Asn-(Glu)5-desPro36,Pro37,Pro38[Met(O)14,Trp(O2)25,Asp28]exendin-4(1-39)-(Lys)6-NH2 and pharmacologically tolerable salts thereof.
  • Likewise, the GLP-1 agonist can be selected from the group consisting of GLP-1 and analogs and derivates of GLP-1. A further preferred GLP-1 agonist is selected from the group consisting of Arg34,Lys26(Nε(γ-glutamyl(Nα-hexadecanoyl)))GLP-1(7-37) [liraglutide] and a pharmacologically tolerable salt thereof.
  • A further preferred GLP-1 agonist is AVE0010. AVE0010 has the sequence desPro36exendin-4(1-39)-Lys6-NH2 (SEQ ID NO:1). Likewise, pharmacologically tolerable salts of AVE0010 are preferred.
  • The GLP-1 agonist, for example AVE0010, is more particularly used in an amount ranging from 0.01 mg/ml to 0.5 mg/ml or 0.05 mg/ml to 1.5 mg/ml.
  • In the present application, the term “insulin” encompasses not only unmodified insulins but also insulin analogs, insulin derivatives, and insulin metabolites. The compositions according to the present invention comprise one or more independently selected from the group consisting of insulins (e.g., unmodified insulins), insulin analogs, insulin derivatives, and insulin metabolites, and any desired combinations thereof.
  • The at least one insulin may independently be selected from the group consisting of bovine insulins, analogs, derivatives, and metabolites thereof, porcine insulins, analogs, derivatives, and metabolites thereof, and human insulins, analogs, derivatives, and metabolites thereof. Preferably, the at least one insulin is independently selected from human insulins, analogs, derivatives, and metabolites thereof.
  • Furthermore, an insulin according to the present invention may be selected independently from unmodified insulins, more particularly from bovine insulins, porcine insulins, and human insulins.
  • The at least one insulin may independently be selected from the group consisting of bovine insulins, porcine insulins, and human insulins. More preferably, the at least one insulin is independently selected from human insulins. An insulin according to the present invention may be selected from unmodified insulins, more particularly from bovine insulins, porcine insulins, and human insulins.
  • Insulin derivatives according to the present invention are derivatives of a naturally occurring insulin and/or an insulin analog, which are obtained by chemical modification. The chemical modification may consist, for example, in the addition of one or more defined chemical groups onto one or more amino acids.
  • Insulin analogs which are described in EP 0 214 826, EP 0 375 437, EP 0 678 522, EP 0 419 504, WO 92/00321, EP-A 0 368 187, and WO2009/063072 may be part of the compositions according to the present invention. The documents EP 0 214 826, EP 0 375 437, EP 0 678 522, EP 0 419 504, WO 92/00321, EP-A 0 368 187, and WO 2009/063072 are included herein by reference.
  • One preferred insulin analog according to the present invention may be selected from the group consisting of Gly(A21)-Arg(B31)-Arg(B32) human insulin (insulin glargine), Lys(B3)-Glu(B29) human insulin; LysB28ProB29 human insulin (insulin lyspro), B28 Asp human insulin (insulin aspart), human insulin in which proline in position B28 has been substituted by Asp, Lys, Leu, Val or Ala and where Lys in position B29 may be substituted by Pro; AlaB26 human insulin; des(B28-B30) human insulin; des(B27) human insulin or B29Lys(ε-tetradecanoyl),des(B30) human insulin (insulin detemir), NεB29-tetradecanoyl des(B30) human insulin, NεB29—(Nα—(HOOC(CH2)14CO)-γ-Glu) desB30 human insulin, LysB29(Nε lithocholyl-γ-Glu)-des(B30) human insulin, NεB29-ω-carboxypentadecanoyl-γ-L-glutaylamide desB30 human insulin, and NεB29-ω-carboxypentadecanoyl-γ-amino-butanoyl des(B30) human insulin.
  • A preferred insulin derivative according to the present invention may be selected from the group consisting of B29-N-myristoyl-des(B30) human insulin, B29-N-palmitoyl-des(B30) human insulin, B29-N-myristoyl human insulin, B29-N-palmitoyl human insulin, B28-N-myristoyl LysB28ProB29 human insulin, B28-N-palmitoyl-LysB28ProB29 human insulin, B30-N-myristoyl-ThrB29LysB30 human insulin, B30-N-palmitoyl-ThrB29LysB30 human insulin, B29-N-(N-palmitoyl-Y-glutamyl)-des(B30) human insulin, B29-N-(N-lithocholyl-Y-glutamyl)-des(B30) human insulin, B29-N-(ω-carboxyheptadecanoyl)-des(B30) human insulin and B29-N-(ω-carboxyheptadecanoyl) human insulin, NεB29-tetradecanoyl des(B30) human insulin, NεB29—(Nα—(HOOC(CH2)14CO)-γ-Glu) des B30 human insulin, LysB29(Nε lithocholyl-γ-Glu)-des(B30) human insulin, NεB29-ω-carboxypentadecanoyl-γ-L-glutaylamide desB30 human insulin, and NεB29-ω-carboxypentadecanoyl-γ-amino-butanoyl des(B30) human insulin.
  • A more highly preferred insulin derivative according to the present invention is selected from the group consisting of Gly(A21)-Arg(B31)-Arg(B32) human insulin, LysB28ProB29 human insulin (insulin lyspro), B28 Asp human insulin (insulin aspart), B29Lys(ε-tetradecanoyl),desB30 human insulin (insulin detemir).
  • The compositions according to the present invention contain 60-6000 nmol/ml, preferably 240-3000 nmol/ml, of an insulin as defined herein. Depending on the insulin used, a concentration of 240-3000 nmol/ml corresponds approximately to a concentration of 1.4-35 mg/ml or 40-500 units/ml.
  • The present invention particularly preferably provides a composition as described herein comprising at least one insulin independently selected from LysB28ProB29 human insulin (insulin lyspro), B28 Asp human insulin (insulin aspart), B29Lys(ε-tetradecanoyl),desB30 human insulin (insulin detemir), and insulin glargine (Gly(A21)-Arg(B31)-Arg(B32) human insulin), and comprising AVE0010 and/or a pharmacologically tolerable salt thereof. The present invention further particularly preferably provides a composition as described herein comprising insulin glargine (Gly(A21)-Arg(B31)-Arg(B32) human insulin) and AVE0010 (desPro36exendin-4(1-39)-Lys6-NH2) and/or a pharmacologically tolerable salt thereof. These particularly preferred compositions preferably have an acidic pH of 1-6.8, more preferably pH 3.5-6.8, even more preferably pH 3.5-4.5.
  • In a particular embodiment, the formulation according to the present invention comprises the following constituents:
  • (a) desPro36exendin-4(1-39)-Lys6-NH2,
  • (b) Gly(A21)-Arg(B31)-Arg(B32) human insulin,
  • (c) zinc chloride,
  • (d) m-cresol,
  • (e) L-methionine,
  • (f) glycerol,
  • (g) hydrochloric acid, if adjustment to a pH of approximately 4.5 is required,
  • (h) NaOH solution, if adjustment to a pH of approximately 4.5 is required, and
  • (i) water.
  • More particularly, the formulation according to the present invention consists of the constituents mentioned in (a) to (i). Optionally, m-cresol can be omitted. Hence the formulation according to the present invention then consists of constituents (a) to (c) and (e) to (i).
  • The present invention further provides a combination of at least two formulations according to the present invention. In this case, a first and a second composition and, optionally, at least one further pharmaceutical composition are provided, each comprising the insulin and the GLP-1 agonist.
  • Therefore, the present invention provides a combination comprising a first pharmaceutical composition and a second pharmaceutical composition, and, optionally, at least one further pharmaceutical composition, each comprising at least one insulin and at least one GLP-1 agonist, and containing the at least one insulin and/or the at least one GLP-1 agonist in different weight fractions relative to the total weight of the composition.
  • In the present application, “optionally, at least one further pharmaceutical composition” means that the combination according to the present invention, in addition to the first and second pharmaceutical compositions, may comprise at least one further pharmaceutical composition. Hence, the combination according to the present invention may comprise, for example, 3, 4, 5, 6, 7, 8, 9, 10 or more pharmaceutical compositions according to the present invention.
  • Preferred combinations are those which comprise a first and a second pharmaceutical composition according to the present invention.
  • Likewise preferred are combinations which comprise a first, a second, and a third pharmaceutical composition according to the present invention.
  • Likewise preferred are combinations which comprise a first, a second, a third, and a fourth pharmaceutical composition according to the present invention.
  • Likewise preferred are combinations which comprise a first, a second, a third, a fourth, and a fifth pharmaceutical composition.
  • The weight fractions of the at least one insulin and of the at least one GLP-1 agonist may be selected in the first pharmaceutical composition, the second pharmaceutical composition, and, where used, the at least one further pharmaceutical composition in such a way that the pharmaceutical compositions contain different ratios of insulin to GLP-1 agonist, based on the weight fraction.
  • In this case, the first composition may contain the smallest ratio and the second composition the next-greater ratio. Where at least one further composition is present, it may contain the next-greater ratio. Where a further composition is present as well, it may contain the next-greater ratio in turn. The compositions may therefore contain ratios of insulin to GLP-1 agonist, based on the weight fraction, that increase from the first to the second and, where used, further compositions.
  • The weight fraction of one of the two active ingredients, i.e., of the at least one insulin or of the at least one GLP-1 agonist, in the first pharmaceutical composition, the second pharmaceutical composition, and, where used, the at least one further pharmaceutical composition is preferably selected in each case such that the predetermined dose of this active ingredient can be administered by administering a defined volume of the first, second and/or at least one further composition. With particular preference, this active ingredient is the at least one insulin.
  • The weight fraction of the other of the two active ingredients, i.e., of the at least one insulin or of the at least one GLP-1 agonist, in the first pharmaceutical composition, the second pharmaceutical composition, and, where used, the at least one further pharmaceutical composition is preferably selected such that the ratios of insulin to GLP-1 agonist, based on the weight fraction, increase from the first to the second and, where used, further compositions. With particular preference, this active ingredient is the at least one GLP-1 agonist.
  • Furthermore, the weight fraction of the other of the two active ingredients in the pharmaceutical compositions is determined such that one of the pharmaceutical compositions can be selected in such a way that the dose of the first of the two active ingredients that is to be administered and the dose of the second active ingredient that is to be administered are given in a defined volume. Hence, a pharmaceutical composition is selected which contains the desired ratio.
  • Theoretically, it would be possible to provide a pharmaceutical composition for each individual therapeutically desired ratio of the weight fractions of the at least one insulin to the at least one GLP-1 agonist, in order to obtain an optimum dosage, tailored to requirements, for both active ingredients for every patient.
  • In the present invention, a particular number of pharmaceutical compositions is sufficient in order to cover the dosages needed in practice for the two active ingredients. For each patient, a defined dosage range is defined within a therapeutically rational interval for each of the two active ingredients. The dose to be administered ought hereby to fluctuate essentially within this dosage range for a particular patient, without any overdosing or underdosing.
  • Since it is primarily the amount of insulin that must be adapted and precisely dosed to the individual patient, the concentration range of the GLP-1 agonist allows a pharmaceutical composition according to the present invention that contains a defined ratio of at least one insulin to the at least one GLP-1 agonist to cover a therapeutic range of insulin doses simultaneously with the associated, synergistic amount of GLP-1 agonist. The ratio can be selected such that every desired insulin dose has its corresponding dose of the at least one GLP-1 agonist, which is situated within the desired range, e.g.; the synergistic range. As set out earlier on above, the ratios of the first, second, and, where used, at least one further composition of the pharmaceutical may also be chosen such that the ratios increase from the first to the second and, where used, the at least one further composition. If the dose of the GLP-1 agonist at the desired insulin dose of a composition (e.g., of the first composition) is outside (generally above) the desired dosage range of the GLP-1 agonist, then the next composition (e.g., the second composition) or a further composition with a greater ratio of the at least one insulin to the at least one GLP-1 agonist is selected for use, in which the amount of the GLP-1 agonist at the desired insulin dose lies within the desired range. The ratios of the first, second, and, where used, at least one further composition of the combination may further be chosen such that the ranges of the insulin dosages which correspond to the desired dosages of the at least one GLP-1 agonist border one another and/or overlap one another. Preferably, the ranges overlap. Overlapping means more particularly that it is possible to select at least two compositions which, at the desired dose of the at least one insulin, each contain an amount of the at least one GLP-1 agonist which lies within the desired dosage range.
  • For example, 3 compositions are sufficient to adjust the dose of the at least one insulin for an individual patient to a level selected from the range from 15 to 80 units of insulin and at the same time to dose the GLP-1 agonist with an amount within the range from 10 to 20 μg (see, FIG. 4).
  • It is also possible to provide a combination according to the present invention in which the ratio is selected such that for each desired dosage of the GLP-1 agonist there is a corresponding dosage of the at least one insulin which lies within the desired range. The ratios of the first, second, and, where used, at least one further composition of the pharmaceutical may also be chosen such that the ranges of the dosages of the GLP-1 agonist that correspond to the desired dosages of the at least one insulin border one another and/or overlap one another. Preferably, the ranges overlap. Overlapping in this context means more particularly that it is possible to select at least two compositions which, at the desired dosage of the at least one GLP-1 agonist, each contain an amount of the at least one insulin that lies within the desired dosage range.
  • Preferably, the combination according to the present invention contains not more than 10 pharmaceutical compositions as defined above, more preferably not more than 5, not more than 4, not more than 3 or 2 pharmaceutical compositions.
  • The compositions according to the present invention may contain the at least one GLP-1 agonist in, in each case, identical or different weight fractions. For example, at least two of the compositions according to the present invention may contain the at least one GLP-1 agonist in a substantially identical weight fraction.
  • It is preferred for the first, second, and, where used, further composition(s) to contain the at least one GLP-1 agonist in a substantially identical weight fraction and the at least one insulin in different weight fractions.
  • The compositions according to the present invention may, however, also contain the at least one insulin in, in each case, identical or different weight fractions. For example, at least two of the compositions according to the present invention may contain the at least one insulin in a substantially identical weight fraction.
  • It is especially preferred for the first, second, and, where used, further composition(s) to contain the at least one insulin in a substantially identical weight fraction and the at least one GLP-1 agonist in different weight fractions.
  • A first preferred composition according to the present invention comprises:
  • (a) AVE0010 approximately 0.025 mg
    (b) insulin glargine approximately 3.64 mg
    (c) zinc chloride approximately 0.06 mg
    (d) 85% glycerol approximately 20.0 mg
    (e) m-cresol approximately 2.7 mg
    (f) L-methionine approximately 3.0 mg
    (g) NaOH q.s. pH 4.5
    (h) HCl, 36% q.s. pH 4.5
    (i) water ad 1 mL
  • A second preferred composition according to the present invention comprises:
  • (a) AVE0010 approximately 0.04 mg
    (b) insulin glargine approximately 3.64 mg
    (c) zinc chloride approximately 0.06 mg
    (d) 85% glycerol approximately 20.0 mg
    (e) m-cresol approximately 2.7 mg
    (f) L-methionine approximately 3.0 mg
    (g) NaOH q.s. pH 4.5
    (h) HCl, 36% q.s. pH 4.5
    (i) water ad 1 mL
  • A third preferred composition according to the present invention comprises:
  • (a) AVE0010 approximately 0.066 mg
    (b) insulin glargine approximately 3.64 mg
    (c) zinc chloride approximately 0.06 mg
    (d) 85% glycerol approximately 20.0 mg
    (e) m-cresol approximately 2.7 mg
    (f) L-methionine approximately 3.0 mg
    (g) NaOH q.s. pH 4.5
    (h) HCl, 36% q.s. pH 4.5
    (i) water ad 1 mL
  • A fourth preferred composition according to the present invention comprises:
  • (a) AVE0010 approximately 0.1 mg
    (b) insulin glargine approximately 3.64 mg
    (c) zinc chloride approximately 0.06 mg
    (d) 85% glycerol approximately 20.0 mg
    (e) m-cresol approximately 2.7 mg
    (f) L-methionine approximately 3.0 mg
    (g) NaOH q.s. pH 4.5
    (h) HCl, 36% q.s. pH 4.5
    (i) water ad 1 mL
  • Especially preferred is a combination comprising at least 2, 3, or 4 of the first, second, third, and fourth preferred composition mentioned.
  • In the present application, “approximately” means that the constituents can be present, for example, within the ranges of ±10, ±20, or ±30 around the specified values in the compositions according to the present invention or/and the combinations; preference is give to ±10.
  • When the composition according to the present invention or the combination comprises more than one insulin, these insulins are selected independently of one another.
  • When the composition according to the present invention or the combination comprises more than one GLP-1 agonist, these GLP-1 agonists are selected independently of one another.
  • The combination according to the present invention is provided more particularly as a pharmaceutical.
  • The present invention additionally provides a kit comprising a combination according to the present invention comprising at least one, not more than four, composition(s) according to the present invention and also, optionally, Lantus®. The kit according to the present invention may be intended for use by medical staff or by persons without specialist medical training, more particularly by the patients themselves or helpers such as relatives. In the kit according to the present invention, the individual pharmaceutical compositions comprising the combination according to the present invention are assembled in separate packs, and so the patient is able to select the composition appropriate to the current requirement and to administer an amount in line with that requirement. The kit according to the present invention comprises, for example, the combination according to the present invention in the form of a set of syringes, glass ampoules, and/or pens which contain at least one of the compositions according to the present invention, optionally in combination with the composition of Lantus®.
  • Suitable packaging is a syringe or a glass vessel with a suitable closure, from which individual therapeutically effective doses can be withdrawn as needed. Equally suitable are injection pens for administering insulin; such pens comprise a container (e.g. a cartridge) which contains a pharmaceutical composition according to the present invention.
  • More particularly, the kit according to the present invention is an injection pen consisting of two separate containers from which, in each case, individual therapeutic doses can be withdrawn as needed. Equally, the kit is a syringe consisting of two containers in which the second container is equipped as a reservoir needle.
  • In the present invention, the kit preferably consists of a combination of a first formulation, which comprises the GLP-1 agonist, an insulin, glycerol, zinc chloride, optionally m-cresol, L-methionine at a pH of 4.5 in water, and a second formulation, which preferably comprises an insulin, glycerol, zinc chloride, and m-cresol at a pH of 4.5 in water.
  • The first formulation may preferably have the following composition:
  • (a) AVE0010 approximately 0.4 mg or approximately 0.8 mg
    (b) insulin glargine approximately 3.64 mg
    (c) zinc chloride approximately 0.06 mg
    (d) 85% glycerol approximately 20.0 mg
    (e) m-cresol 0.0 mg or approximately 2.7 mg
    (f) L-methionine approximately 3.0 mg
    (g) NaOH q.s. pH 4.5
    (h) HCl, 36% q.s. pH 4.5
    (i) water ad 1 ml.
  • The second formulation may preferably have the following composition:
  • (a) insulin glargine approximately 3.64 mg
    (b) zinc chloride approximately 0.06 mg
    (c) 85% glycerol approximately 20.0 mg
    (d) m-cresol approximately 2.7 mg
    (e) NaOH q.s. pH 4.5
    (f) HCl, 36% q.s. pH 4.5
    (g) water ad 1 ml.
  • The present invention further provides for a method for treating a patient with a composition according to the present invention, comprising administering the composition to the patient.
  • The present invention yet further provides a method for treating a patient with a combination according to the present invention or with a kit as described herein. More particularly, this method comprises the administration of a combination according to the present invention comprising a first pharmaceutical composition and a second pharmaceutical composition, and, optionally, at least one further pharmaceutical composition, each comprising at least one insulin and at least one GLP-1 agonist, and comprising the at least one insulin and/or the at least one GLP-1 agonist in different weight fractions relative to the total weight of the composition, said method comprising:
      • (a) selecting a dose of the at least one insulin that is to be administered,
      • (b) selecting a dose of the at least one GLP-1 agonist that is to be administered,
      • (c) selecting a composition from the first, second, and, where used, at least one further composition of the pharmaceutical that comprises the doses from (a) and (b) in a concentration such that the doses from (a) and (b) are present in the same volume, and
      • (d) determining and administering an amount which corresponds to the doses from (a) and (b).
  • The dose according to step (a) and/or step (b) is determined according to the individual requirement of the patients.
  • Step (c) of the treatment method according to the present invention can be carried out by referring to a table. This table may be part of the combination according to the present invention, of the pharmaceutical according to the present invention, or of the kit according to the present invention. Example 2 contains an example of a table according to the present invention.
  • The composition according to the present invention, the combination according to the present invention, the pharmaceutical according to the present invention, or/and the kit according to the present invention is/are intended more particularly for treating diabetes mellitus, more particularly for treating type I or type II diabetes mellitus. Further possible indications are symptoms which are associated with diabetes mellitus. Preferably, the composition according to the present invention is used to control the fasting, postprandial, or/and postabsorptive plasma glucose concentration, to improve glucose tolerance, to prevent hypoglycemia, to prevent functional loss of the β-cells of the pancreas, to effect weight loss, or/and to prevent weight gain.
  • The present invention further provides for the use of a composition according to the present invention, a combination according to the present invention, or a kit according to the present invention in the manufacture of a pharmaceutical for treating diabetes mellitus, more particularly type I or type II, or/and the symptoms associated with it, as described herein.
  • The present invention further provides a method for manufacturing a composition according to the present invention, a combination according to the present invention, or/and a kit according to the present invention, comprising formulating a GLP-1 agonist or/and a pharmacologically tolerable salt thereof with an insulin or/and a pharmaceutically acceptable salt thereof, methionine, and, optionally, at least one pharmaceutically acceptable excipient.
  • The present invention further provides a method for manufacturing a composition according to the present invention, comprising formulating a GLP-1 agonist or/and a pharmacologically tolerable salt thereof with methionine and, optionally, at least one pharmaceutically acceptable excipient.
  • The present invention further provides for the use of the compositions according to the invention together with the administration of metformin, insulin glargine, or AVE0010, more particularly in an add-on therapy for administering metformin, insulin glargine, or AVE0010.
  • More particularly, the composition comprises des Pro36 exendin-4(1-39)-Lys6-NH2 (AVE0010) and/or a pharmacologically tolerable salt thereof, insulin glargine and/or a pharmacologically tolerable salt thereof.
  • Especially preferred is the add-on therapy of the preferred composition in type II diabetes patients who cannot be sufficiently controlled with insulin glargine and/or AVE0010. Also contemplated are patients who are younger than 50 years and/or have a body mass index of at least 30.
  • In the present invention, the add-on therapy involves more particularly the treatment of type II diabetes with the composition according to the present invention as a supplement to metformin, AVE0010, and/or insulin glargine. The composition according to the present invention can be added in a time interval of 24 hours (once-a-day dosage). Metformin, insulin glargine, and AVE0010 can be administered by means of different routes of administration. Metformin can be administered orally, AVE0010 and insulin glargine, in each case, subcutaneously.
  • Patients treated with the add-on therapy according to the present invention can have an HbA1c value in the range of 7% to 10%. They are preferably in the age range of 18 to 50 years.
  • The use in the add-on therapy according to the present invention is more particularly applicable to patients in whom type II diabetes cannot be sufficiently controlled with metformin, AVE0010, or insulin glargine alone. The therapy is preferred in the case of insufficient control through insulin glargine or AVE0010.
  • The present invention further provides for the use of the composition according to the present invention as a supplement to a diet in order to control the blood sugar level in type II diabetes patients when the application of insulin glargine and AVE0010 is indicated.
  • More particularly, metformin is administered as follows: at least 1.0 g/day, preferably at least 1.5 g/day for 3 months.
  • The invention is further elucidated by the following figures and examples.
  • FIG. 1 shows the content of oxidized methionine Met(ox) in AVE0010 after 1 month of storage at different temperatures relative to the start of storage. The frame shows the values for the AVE0010 reference formulation no. 1 and 2.
  • FIG. 2 shows the content of impurities of AVE0010 without Met(ox) after 1 month of storage at different temperatures relative to the start of storage.
  • The frames show the values of the AVE0010 reference formulations at 25° C. and at 40° C.
  • FIG. 3 shows the content of impurities of insulin glargine after 1 month of storage at different temperatures relative to the start of storage. The narrow frames show the values of the insulin glargine reference formulations at 25° C. and at 40° C. The broad frames indicate the formulations having the lowest fractions of AVE0010 impurities.
  • FIG. 4: the “3 pens cover all” concept.
  • EXAMPLE 1
  • 1. Purpose of Study
  • The physical and chemical stability of compositions comprising a GLP-1 agonist
  • (AVE0010) and an insulin (insulin glargine, Lantus) was tested.
  • 2. Formulations Used
  • For the formulations tested, the substances were used in the following concentrations/amounts:
  • Amount
    used
    Substance Pharmacopeia Manufacturer Designation [mg/mL]
    Insulin glargine Sanofi-Aventis 3.63
    7.27
    10.67
    AVE0010 Poly Peptide 0.1
    LabTorrance CA, USA 0.025
    Methionine USP MP Biomedicals 3
    Zinc chloride Ph. Eur., USP, BP Merck 0.03
    0.06
    0.09
    Glycerol, 85% Ph. Eur., JP Hedinger, Stuttgart 20
    18
    m-Cresol Ph. Eur., USP Hedinger, Stuttgart 2.7
    Polysorbate 20 Ph. Eur., JP Kolb Tween 20 0.02
    Polysorbate 80 Ph. Eur. SEPPIC Tween 80 0.02
    Poloxamer 188 BASF, Ludwigshafen Lutrol F68 0.02
    Benzalkonium chloride Ph. Eur., JP Sigma-Aldrich 0.02
    L-Lysine Resum, F-Ham, Degussa 1.0
    5.0
    Acetate 1.75
    3.5
    NaOH Ph. Eur., JP Merck 0.1N, for
    adjusting
    to pH 4.0
    or 4.5
    HCl Ph. Eur., JP Merck 0.1N, for
    adjusting
    to pH 4.0
    or 4.5
    Wfl Ad 1 mL
  • When a factor is mentioned in conjunction with a constituent of a formulation (e.g., ½, ¼, 2×, 3×, 5×, as in ½ acetate, 5× lysine, 2× Lantus, and 3× Lantus), the concentrations of the substance concerned were used at a reduced or increased concentration depending on the factor.
  • 3. Test Method
  • 3.1 Physical Stability
  • 3.1.1 THT Test
  • Thioflavin T (THT) binds specifically to protein fibrils, which leads to a change in THT fluorescence. THT does not bind to AVE0010 or insulin. The kinetics of fibril formation can be measured in the presence of THT as the change in fluorescence. An increase in fluorescence corresponds to fibril formation. The shape of the curves allows conclusions about the tendency of a formulation to form fibrils.
  • Fluorescence measurements were carried out on a Tecan Infinite 200 fluorescence measurement instrument. For analysis of fibrillation kinetics, a Photomed FluoDia 770 high-temperature fluorescence microplate reader was used. The thioflavin T fluorescence spectra were carried out with a Tecan Infinite 200 fluorescence measurement instrument at 23° C. Insulin (900 μl) was mixed with 10 μl of thioflavin T (1 mM in H2O). The mixture was then distributed into a black V-shaped 96-well plate from Biozym (100 μl per well). The emission of fluorescence was measured between 470 and 600 nm (in increments of 1 nm) after excitation at 450 nm with a gain of 100, an integration time of 200 μs, and 25 readings at room temperature.
  • The binding kinetics of thioflavin T were measured on a Photomed FluoDia 770 high-temperature fluorescence microplate reader. The instrument consists essentially of a 50 W quartz halogen lamp for excitation, filter wheels for excitation and emission which can each contain up to 4 filter sets, and a PMT detector. The heating plate for 96-well plates allows very high precision with regard to temperature (better than ±0.3° C.).
  • A solution (10 μl) of thioflavin T (10.1 mM in ultrapure water) was added to 1 ml of the formulations and gently mixed by inverting the small tubes several times. The mixture was then distributed into a black V-shaped 96-well plate from Biozym (100 μl per well, 8 wells per sample). All measurements were carried out with the following parameters:
  • Number of cycles: 181
  • Excitation filter: 450 nm
  • Interval: 1 min
  • Emission filter: 486 nm
  • Integration time: 20 ms
  • Temperature control: Standard temperature-control mode
  • Number of averagings: 4
  • Target temperature: 70° C.
  • Attenuation: 4
  • Fluorescence mean values were determined from 8 parallel measurements.
  • 3.2 Chemical Stability
  • The formulations were tested for chemical stability after preparation (t0) or after storage for 1 month at 4° C., 25° C. (60% relative humidity), and 40° C. (75% relative humidity). The measurements were carried out on an HPLC instrument (model: alliance) from Water Systems, using the 100% peak area method. For separation, a gradient of 0.1% TFA and acetonitrile as the mobile phase and a C18 reversed-phase column (Jupiter) as the stationary phase were used. For analysis, the formulation was treated with a zinc acetate solution, which led to precipitation of insulin glargine. The precipitates were centrifuged down, and only the supernatant was analyzed.
  • Impurities of insulin glargine: the amount of impurities was determined with an HPLC (Water Systems), using the 100% peak area method. For separation, a sodium phosphate-buffered solution (pH 2.5) with NaCl and acetonitrile gradients was used as the mobile phase. A C18 reversed-phase column (Supersher) was used as the stationary phase.
  • 4. Summary of Experimental Data on Physical Stability
  • THT
    3 h, 70° C. relative
    Formulation fluorescence intensity
    No. Batch Composition PH at 486 nm
    1 630 AVE0010 standard, 4.5 536
    industrial scale
    2 567 AVE0010 standard, 4 518
    fresh
    3 631 Lantus standard, 4.0 2952
    industrial scale
    4 560 Lantus standard, fresh 4 1566
    5 568 Lantus form., AVE0010 4 2037
    6 569 Lantus form., AVE0010, 4 11763
    ½ acetate buffer
    7 570 Lantus form., AVE0010, 4 69184
    acetate buffer
    8 582 Lantus form., AVE0010, 4 2053
    methionine
    9 583 Lantus form., AVE0010, 4 18814
    ½ acetate buffer,
    methionine
    10 584 Lantus form., AVE0010, 4 8183
    polysorbate 20
    11 585 Lantus form., AVE0010, 4 6731
    polysorbate 20,
    methionine
    12 586 Lantus form., AVE0010, 4 13897
    polysorbate 20,
    ½ acetate buffer
    13 587 Lantus form., AVE0010, 4 22200
    polysorbate 20,
    ½ acetate buffer,
    methionine
    14 588 Lantus form., AVE0010, 4 134093
    polysorbate 20,
    acetate buffer,
    methionine
    15 590 Lantus form., AVE0010, 4 3362
    lysine
    16 591 Lantus form., AVE0010, 4 19677
    lysine,
    ½ acetate buffer
    17 592 Lantus form., AVE0010, 4 30176
    lysine,
    ½ acetate buffer,
    polysorbate 20
    18 593 Lantus form., 4 3107
    ¼ AVE0010
    19 594 Lantus form., 4 74662
    ¼ AVE0010,
    5× lysine
    20 595 2× Lantus AVE0010 4 4504
    21 596 3× Lantus AVE0010 4 30251
    22 604 Lantus form., AVE0010 4.5 4357
    23 605 Lantus form., AVE0010, 4.5 36338
    ½ acetate buffer
    24 606 Lantus form., AVE0010, 4.5 72370
    acetate buffer
    25 607 Lantus form., AVE0010, 4.5 5429
    methionine
    26 608 Lantus form., AVE0010, 4.5 34714
    ½ acetate buffer,
    methionine
    27 609 Lantus form., AVE0010, 4.5 1166
    polysorbate 20
    28 610 Lantus form., AVE0010, 4.5 5564
    polysorbate 20,
    methionine
    29 611 Lantus form., AVE0010, 4.5 12115
    polysorbate 20,
    ½ acetate buffer
    30 612 Lantus form., AVE0010, 4.5 16397
    polysorbate 20,
    ½ acetate buffer,
    methionine
    31 613 Lantus form., AVE0010, 4.5 779
    polysorbate 20,
    acetate buffer,
    methionine
    32 614 Lantus form., AVE0010, 4.5 9726
    lysine
    33 615 Lantus form., AVE0010, 4.5 74027
    lysine,
    ½ acetate buffer
    34 616 Lantus form., AVE0010, 4.5 9520
    lysine,
    ½ acetate buffer,
    polysorbate 20
    35 617 Lantus form., 4.5 3713
    ¼ × AVE0010
    36 6.18 Lantus form., 4.5 83384
    ¼ × AVE0010,
    5× lysine
    37 619 2× Lantus AVE0010 4.5 13120
    38 620 3× Lantus AVE0010 4.5 41684
    39 657 Lantus form., AVE0010, 4 9309
    polysorbate 80,
    methionine
    40 658 Lantus form., AVE0010, 4 767
    poloxamer 188,
    methionine
    41 659 Lantus form., AVE0010, 4 1040
    benzalkonium chloride,
    methionine
    42 660 Lantus form., AVE0010, 4.5 16803
    polysorbate 80,
    methionine
    43 661 Lantus form., AVE0010, 4.5 689
    poloxamer 188,
    methionine
    44 662 Lantus form., AVE0010, 4.5 942
    benzalkonium chloride,
    methionine
  • 5. THT Test
  • Methionine has no influence on the tendency to form fibrils. The formulations
  • Fluorescence
    intensity
    No. Composition at 486 nm
    2 AVE0010 standard 518
    4 Lantus standard 1566
    8 Lantus form., AVE0010, methionine, pH 4 2053
    25 Lantus form., AVE0010, methionine, pH 4.5 5429

    have fluorescence values like the reference formulations (no. 2 and 4). With values below approximately 6000, no tendency to form fibrils is present.
  • When AVE0010, Lantus, and methionine are combined with acetate buffer with or without polysorbate 20 at pH 4, there is a greater tendency to form fibrils:
  • Fluorescence
    intensity
    No. Composition at 486 nm
    2 AVE0010 standard 518
    4 Lantus standard 1566
    9 Lantus form., AVE0010, ½ acetate, Met, pH 4 18814
    13 Lantus form., AVE0010, polysorbate 20, ½ acetate, 22200
    Met, pH 4
    14 Lantus form,, AVE0010, polysorbate 20, 134093
    acetate, Met, pH 4
  • The values for formulations 13 and 14 lie clearly above the threshold for a tendency to form fibrils.
  • 6.1 Summary
  • Polysorbate 20 and polysorbate 80 can lead to turbidity, which is detectable in the double refraction test. Hence, both of these substances can lead to physical instability of a formulation of AVE0010 and insulin.
  • The addition of methionine does not lead to physical instability.
  • 7. Chemical Stability
  • 7.1 Stability at Time Point t0
  • The formulations which comprise methionine (with and without sodium acetate) have the lowest amounts of impurities (overall, approximately 1.2 to 1.5%). The following formulations have low amounts of impurities:
  • 8 Lantus form., AVE0010, methionine, pH 4
    9 Lantus form., AVE0010, ½ acetate buffer, methionine, pH 4
    11 Lantus form., AVE0010, polysorbate 20, methionine, pH 4
    13 Lantus form., AVE0010, ½ acetate buffer, polysorbate 20,
    methionine, pH 4
    14 Lantus form., AVE0010, acetate buffer, polysorbate 20,
    methionine, pH 4
    25 Lantus form., AVE0010, methionine, pH 4.5
    26 Lantus form., AVE0010, ½ acetate buffer, methionine, pH 4.5
    28 Lantus form., AVE0010, polysorbate 20, methionine, pH 4.5
    30 Lantus form., AVE0010, ½ acetate buffer, polysorbate 20,
    methionine, pH 4.5
    31 Lantus form., AVE0010, acetate buffer, polysorbate 20,
    methionine, pH 4.5
  • Formulations which did not comprise methionine showed a higher fraction of impurities.
  • Polysorbate 20 has no negative influence on the chemical stability of the formulations.
  • Acetate buffer has no negative influence on chemical stability when it is combined with methionine and polysorbate 20.
  • When lysine is present in the formulations, the sum of impurities is greater. The same is true for formulations which comprise polysorbate 80, poloxamer 188, and benzalkonium chloride.
  • Determining the impurities of insulin glargine revealed that all formulations had comparable amounts of impurities (0.3 to 0.4%).
  • 7.2 Stability After 1 Month
  • 7.2.1 Impurities of AVE0010
  • The content of oxidized methionine in the formulations was analyzed. The sequence of AVE0010 has one methionine residue at position 14. The sequence of insulin glargine has no methionine residues. Therefore, the content of oxidized methionine is indicative of oxidation of AVE0010 at the methionine residue. The data are summarized in FIG. 1. Overall, the data show that, without methionine at a pH of 4.5, the fraction of Met(ox) is higher than at pH 4.0. Without methionine as a constituent of the formulations, the fractions of Met(ox) are greatest when the content of insulin glargine is increased or the content of AVE0010 is reduced.
  • Generally, the greatest fractions of Met(ox) were measured after storage at 40° C./75% relative humidity. Here, the lowest fractions of Met(ox)-AVE0010 (<1%) are to be found in the formulations 8, 9, 11, 13, 14, 25, 26, 28, 30, and 31. The values of these formulations are in the range of the values for the AVE0010 reference formulations no. 1 and 2 (frame in FIG. 1).
  • The impurities of AVE0010 after 1 month without Met(ox) are represented in FIG. 2. The frames show the values of the AVE0010 reference formulations at 25° C. and at 40° C. Formulations which have the same or better impurity values than the AVE0010 reference formulations are within or below the frames. This is true for the formulations 24, 25, 26, 28, 29, 30, 31, 33, and 34 (40° C.). Impurity values which are above the impurity values of the AVE0010 reference formulations indicate impurities of insulin glargine. Generally, formulations having a pH of 4.5 have fewer impurities than at a pH of 4.0.
  • The following formulations have, after storage for one month at 40° C., the lowest content of Met(ox) and, simultaneously, the lowest content of other impurities (comparison of FIGS. 1 and 2). They are better than or the same as the AVE0010 reference formulations:
  • 25 Lantus form., AVE0010, methionine, pH 4.5
    26 Lantus form., AVE0010, ½ acetate buffer, methionine, pH 4.5
    28 Lantus form., AVE0010, polysorbate 20, methionine, pH 4.5
    30 Lantus form., AVE0010, ½ acetate buffer, polysorbate 20,
    methionine, pH 4.5
  • These formulations also belonged to those formulations which have at time point t0 the lowest amounts of AVE0010 impurities. All formulations comprise methionine. Polysorbate 20 has no negative effects on the impurities.
  • The impurities of insulin glargine are represented in FIG. 3. Formulations 3 and 4 are the reference formulations for insulin glargine. The values of these formulations are indicated as narrow frames. All formulations which were identified with regard to AVE0010 impurities as the best formulations (broad frames, more particularly formulations 25, 26, 28, and 30) are, with regard to insulin glargine impurities, better than the insulin glargine reference formulations (approximately 1.5 to 2.4% at 40° C.).
  • Hence, it can be deduced from this experiment that methionine engenders an increased storage stability of a composition comprising an insulin (e.g., Lantus) and a GLP-1 agonist AVE0010). The addition of methionine engenders chemical integrity of this composition.
  • 8. Conclusions
  • The data described herein lead to the following conclusions:
      • Methionine leads to an increased chemical stability and has no negative effects on the physical stability of formulations of a combination of a GLP-1 agonist, more particularly AVE0010, and an insulin, more particularly Lantus. Therefore, methionine is advantageous as a constituent of these compositions.
      • Acetate can lead to physical instability. This instability is greater with increasing acetate concentration. Therefore, formulations of a combination of a GLP-1 agonist, more particularly AVE0010, and an insulin, more particularly Lantus, which are free of acetate are advantageous compared with corresponding compositions which comprise acetate.
      • Polysorbate 20 has no negative influence on the physical and the chemical stability of formulations of a combination of a GLP-1 agonist, more particularly AVE0010, and an insulin, more particularly Lantus. By combining acetate at lower concentrations (½ acetate) with polysorbate 20, the negative effects of acetate can be partially compensated. In acetate-free compositions, the addition of polysorbate 20 does not lead to any advantages. Therefore, formulations of a combination of a GLP-1 agonist, more particularly AVE0010, and an insulin, more particularly Lantus, should be prepared which are free of polysorbate 20.
      • Lysine (at normal and higher concentrations), benzalkonium chloride, polysorbate 80, and poloxamer 188 already showed chemical instability at the beginning of the studies (t0). For lysine, this is also true for the results of the THT test.
    EXAMPLE 2
  • The “3 pens cover all” concept (FIG. 4)
      • 3 premix pens having 3 different predetermined proportions:
        • (a) Mix A: 100 U Lantus+66.66 μg AVE0010 per mL
        • (b) Mix B: 100 U Lantus+40 μg AVE0010 per mL
        • (c) Mix C: 100 U Lantus+25 μg AVE0010 per mL
      • Use of the 3 premix pens: The exemplary table in FIG. 4 proceeds from a therapeutic range of 15 to 80 U per dose of Lantus and 10 to 20 μg AVE0010. For a particular patient, a dose of Lantus to be administered is set or predetermined. The predetermined dose is looked up in the left-hand column. When a corresponding AVE0010 dose in the range from 10 to 20 μg is mentioned in the columns MIX A-MIX C, the corresponding MIX is selected, metered, and administered. The ranges are overlapping: for example, when 26 to 30 U Lantus is required, Mix A or MIX B (having a higher dose of AVE0010) could be selected. Accordingly, this is true for MIX B and C. If, for example, a dose of 50 U of insulin is determined, then 0.5 ml of MIX B or MIX C is to be metered. This dose contains 20 μg (MIX B) or 12.5 μg (MIX C) of AVE0010.
      • Conclusion: Assuming that a probable AVE0010 effect in the range from 10 to 15 μg and a therapeutic effect in the range from 15 to 22 μg is achieved, almost all patients who take Lantus doses of 15-80 U can likewise receive therapeutic doses of AVE0010 in the range from 10 to 20 μg when they use one of the three premix pens, which contain three different Lantus:AVE0010 ratios (Mix A, B, or C). Due to the broad range of possible ratios of Lantus to AVE0010, the ratios in the pens can be fine-tuned such that a desired dose of AVE0010 is included for every dose of Lantus in at least one pen.

Claims (3)

1. An aqueous liquid composition consisting essentially of the following constituents:
(a) desPro36exendin-4(1-39)-Lys6-NH2,
(b) Gly(A21)-Arg(B31)-Arg(B32) human insulin,
(c) zinc,
(d) m-cresol,
(e) L-methionine,
(f) glycerol, and
(g) water.
2. The composition of claim 1, further comprising hydrochloric acid and sodium hydroxide as needed achieve a pH of 3.5 to 4.5.
3. The composition of claim 1, further comprising hydrochloric acid and sodium hydroxide as needed achieve a pH of about 4.5.
US16/666,000 2009-11-13 2019-10-28 Pharmaceutical composition comprising a glp-1 agonist, an insulin and methionine Abandoned US20200188516A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/666,000 US20200188516A1 (en) 2009-11-13 2019-10-28 Pharmaceutical composition comprising a glp-1 agonist, an insulin and methionine
US17/366,332 US20220133890A1 (en) 2009-11-13 2021-07-02 Pharmaceutical composition comprising a glp-1 agonist, an insulin and methionine

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
DE102009052831.8 2009-11-13
DE102009052831 2009-11-13
DE102010020902 2010-05-18
DE102010020902.3 2010-05-18
PCT/EP2010/067250 WO2011058083A1 (en) 2009-11-13 2010-11-11 Pharmaceutical composition comprising a glp-1 agonist, an insulin, and methionine
US201213509542A 2012-08-02 2012-08-02
US15/803,589 US20180200370A1 (en) 2009-11-13 2017-11-03 Pharmaceutical Composition Comprising a GLP-1 Agonist, an Insulin and Methionine
US16/666,000 US20200188516A1 (en) 2009-11-13 2019-10-28 Pharmaceutical composition comprising a glp-1 agonist, an insulin and methionine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/803,589 Continuation US20180200370A1 (en) 2009-11-13 2017-11-03 Pharmaceutical Composition Comprising a GLP-1 Agonist, an Insulin and Methionine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/366,332 Continuation US20220133890A1 (en) 2009-11-13 2021-07-02 Pharmaceutical composition comprising a glp-1 agonist, an insulin and methionine

Publications (1)

Publication Number Publication Date
US20200188516A1 true US20200188516A1 (en) 2020-06-18

Family

ID=43629454

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/509,542 Active US10029011B2 (en) 2009-11-13 2010-11-11 Pharmaceutical composition comprising a GLP-1 agonist, an insulin and methionine
US15/803,589 Abandoned US20180200370A1 (en) 2009-11-13 2017-11-03 Pharmaceutical Composition Comprising a GLP-1 Agonist, an Insulin and Methionine
US16/666,000 Abandoned US20200188516A1 (en) 2009-11-13 2019-10-28 Pharmaceutical composition comprising a glp-1 agonist, an insulin and methionine
US17/366,332 Pending US20220133890A1 (en) 2009-11-13 2021-07-02 Pharmaceutical composition comprising a glp-1 agonist, an insulin and methionine

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US13/509,542 Active US10029011B2 (en) 2009-11-13 2010-11-11 Pharmaceutical composition comprising a GLP-1 agonist, an insulin and methionine
US15/803,589 Abandoned US20180200370A1 (en) 2009-11-13 2017-11-03 Pharmaceutical Composition Comprising a GLP-1 Agonist, an Insulin and Methionine

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/366,332 Pending US20220133890A1 (en) 2009-11-13 2021-07-02 Pharmaceutical composition comprising a glp-1 agonist, an insulin and methionine

Country Status (42)

Country Link
US (4) US10029011B2 (en)
EP (4) EP2554183B1 (en)
JP (1) JP5832439B2 (en)
KR (2) KR101836070B1 (en)
CN (2) CN102711805A (en)
AR (1) AR080669A1 (en)
AU (1) AU2010317995B2 (en)
BR (1) BR112012011128A2 (en)
CA (2) CA2780460C (en)
CL (1) CL2012001232A1 (en)
CO (1) CO6541565A2 (en)
CR (1) CR20120218A (en)
CY (3) CY1116163T1 (en)
DK (2) DK2554183T3 (en)
DO (1) DOP2012000133A (en)
EC (1) ECSP12011890A (en)
ES (3) ES2534191T3 (en)
FR (1) FR17C0004I2 (en)
GT (1) GT201200144A (en)
HK (1) HK1175409A1 (en)
HR (2) HRP20150353T1 (en)
HU (2) HUE038147T2 (en)
IL (1) IL219723A (en)
LT (2) LT2554183T (en)
MA (1) MA33736B1 (en)
MX (1) MX2012005186A (en)
MY (1) MY180661A (en)
NI (1) NI201200074A (en)
NL (1) NL300883I2 (en)
NO (1) NO2017030I2 (en)
NZ (1) NZ599848A (en)
PE (1) PE20121362A1 (en)
PL (3) PL3417871T3 (en)
PT (3) PT2554183T (en)
RU (1) RU2537239C2 (en)
SI (2) SI2498802T1 (en)
TN (1) TN2012000216A1 (en)
TR (1) TR201809460T4 (en)
TW (1) TWI507190B (en)
UY (1) UY33026A (en)
WO (1) WO2011058083A1 (en)
ZA (1) ZA201203232B (en)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2613152T3 (en) 2008-01-09 2017-05-22 Sanofi-Aventis Deutschland Gmbh New insulin derivatives with extremely delayed time / action profile
LT3228320T (en) 2008-10-17 2020-03-10 Sanofi-Aventis Deutschland Gmbh Combination of an insulin and a glp-1 agonist
TW201113032A (en) * 2009-07-06 2011-04-16 Sanofi Aventis Deutschland Slow-acting insulin preparations
DK2451437T3 (en) * 2009-07-06 2017-02-13 Sanofi Aventis Deutschland Aqueous INSULIN PREPARATIONS CONTAINING METHIONIN
KR101772372B1 (en) 2009-11-13 2017-08-29 사노피-아벤티스 도이칠란트 게엠베하 Pharmaceutical composition comprising a glp-1 agonist and methionine
NZ599848A (en) * 2009-11-13 2013-08-30 Sanofi Aventis Deutschland Pharmaceutical composition comprising a glp-1 agonist, an insulin, and methionine
AU2011202239C1 (en) 2010-05-19 2017-03-16 Sanofi Long-acting formulations of insulins
SG187904A1 (en) 2010-08-30 2013-04-30 Sanofi Aventis Deutschland Use of ave0010 for the manufacture of a medicament for the treatment of diabetes mellitus type 2
WO2012104342A1 (en) * 2011-02-02 2012-08-09 Sanofi-Aventis Deutschland Gmbh Prevention of hypoglycaemia in diabetes mellitus type 2 patients
US9821032B2 (en) * 2011-05-13 2017-11-21 Sanofi-Aventis Deutschland Gmbh Pharmaceutical combination for improving glycemic control as add-on therapy to basal insulin
UA113626C2 (en) 2011-06-02 2017-02-27 A COMPOSITION FOR THE TREATMENT OF DIABETES CONTAINING THE DURABLE INSULIN CON conjugate AND THE DUAL ACTION INSULINOTROPIC PIPIDE
CN108079281A (en) 2011-08-29 2018-05-29 赛诺菲-安万特德国有限公司 For the pharmaceutical composition of the glycemic control in diabetes B patient
TWI559929B (en) 2011-09-01 2016-12-01 Sanofi Aventis Deutschland Pharmaceutical composition for use in the treatment of a neurodegenerative disease
US8901484B2 (en) * 2012-04-27 2014-12-02 Sanofi-Aventis Deutschland Gmbh Quantification of impurities for release testing of peptide products
CA2878695A1 (en) * 2012-07-25 2014-01-30 University Of Cincinnati Method of treating type i diabetes using apolipoprotein aiv
UA116217C2 (en) 2012-10-09 2018-02-26 Санофі Exendin-4 derivatives as dual glp1/glucagon agonists
BR112015014800A2 (en) 2012-12-21 2017-10-10 Sanofi Sa functionalized exendin-4 derivatives
EP2945618B1 (en) * 2013-01-17 2018-06-13 vTv Therapeutics LLC Combinations of a glp1r agonist and metformin and use thereof for the treatment of type 2 diabetes and other disorders
TWI780236B (en) * 2013-02-04 2022-10-11 法商賽諾菲公司 Stabilized pharmaceutical formulations of insulin analogues and/or insulin derivatives
US10130288B2 (en) 2013-03-14 2018-11-20 Cell and Molecular Tissue Engineering, LLC Coated sensors, and corresponding systems and methods
US10405961B2 (en) 2013-03-14 2019-09-10 Cell and Molecular Tissue Engineering, LLC Coated surgical mesh, and corresponding systems and methods
BR112015024659A8 (en) 2013-04-03 2019-12-17 Sanofi Sa aqueous pharmaceutical formulation, its use, method of treating diabetes mellitus and article of manufacture
TW201605489A (en) * 2013-10-25 2016-02-16 賽諾菲公司 Stable formulation of INSULIN GLULISINE
TW201609795A (en) 2013-12-13 2016-03-16 賽諾菲公司 EXENDIN-4 peptide analogues as dual GLP-1/GIP receptor agonists
WO2015086730A1 (en) 2013-12-13 2015-06-18 Sanofi Non-acylated exendin-4 peptide analogues
TW201609797A (en) 2013-12-13 2016-03-16 賽諾菲公司 Dual GLP-1/glucagon receptor agonists
WO2015086729A1 (en) 2013-12-13 2015-06-18 Sanofi Dual glp-1/gip receptor agonists
US9895423B2 (en) 2014-01-09 2018-02-20 Sanofi Stabilized pharmaceutical formulations of insulin aspart
SG11201604710XA (en) 2014-01-09 2016-07-28 Sanofi Sa Stabilized pharmaceutical formulations of insulin analogues and/or insulin derivatives
CA2932875A1 (en) 2014-01-09 2015-07-16 Sanofi Stabilized glycerol free pharmaceutical formulations of insulin analogues and/or insulin derivatives
GB201401706D0 (en) * 2014-01-31 2014-03-19 Midatech Ltd Nanoparticle-insulin and insulin analogue compositions
TW201625670A (en) 2014-04-07 2016-07-16 賽諾菲公司 Dual GLP-1/glucagon receptor agonists derived from EXENDIN-4
TW201625669A (en) 2014-04-07 2016-07-16 賽諾菲公司 Peptidic dual GLP-1/glucagon receptor agonists derived from Exendin-4
TW201625668A (en) 2014-04-07 2016-07-16 賽諾菲公司 Exendin-4 derivatives as peptidic dual GLP-1/glucagon receptor agonists
EP3139948B1 (en) * 2014-05-07 2020-03-04 Novo Nordisk A/S Treatment of diabetes type 1 using glp-1 and anti-il-21
AR100639A1 (en) * 2014-05-29 2016-10-19 Hanmi Pharm Ind Co Ltd COMPOSITION TO TREAT DIABETES THAT INCLUDES CONJUGATES OF PROLONGED INSULIN ANALOGS AND CONJUGATES OF PROLONGED INSULINOTROPIC PEPTIDES
US9932381B2 (en) 2014-06-18 2018-04-03 Sanofi Exendin-4 derivatives as selective glucagon receptor agonists
CN107108715A (en) * 2014-10-24 2017-08-29 默沙东公司 The co-agonists of hyperglycemic factor and the acceptors of GLP 1
AU2015359376B2 (en) 2014-12-12 2021-09-09 Sanofi-Aventis Deutschland Gmbh Insulin glargine/lixisenatide fixed ratio formulation
TWI748945B (en) 2015-03-13 2021-12-11 德商賽諾菲阿凡提斯德意志有限公司 Treatment type 2 diabetes mellitus patients
TW201705975A (en) 2015-03-18 2017-02-16 賽諾菲阿凡提斯德意志有限公司 Treatment of type 2 diabetes mellitus patients
AR105319A1 (en) 2015-06-05 2017-09-27 Sanofi Sa PROPHARMS THAT INCLUDE A DUAL AGONIST GLU-1 / GLUCAGON CONJUGATE HIALURONIC ACID CONNECTOR
AR105284A1 (en) 2015-07-10 2017-09-20 Sanofi Sa DERIVATIVES OF EXENDINA-4 AS SPECIFIC DUAL PEPTIDE AGONISTS OF GLP-1 / GLUCAGÓN RECEPTORS
UY36870A (en) 2015-08-28 2017-03-31 Hanmi Pharm Ind Co Ltd NEW INSULIN ANALOGS
WO2018055539A1 (en) 2016-09-22 2018-03-29 Wockhardt Limited Pharmaceutical composition containing buffered insulin glargine and glp-1 analogue
AU2017332408B2 (en) 2016-09-23 2022-02-10 Hanmi Pharm. Co., Ltd. Insulin analogs with reduced affinity to insulin receptor and use thereof
BR112019019823A2 (en) 2017-03-23 2020-04-22 Hanmi Pharm Ind Co Ltd conjugate, pharmaceutical composition to prevent or treat diabetes and method for treating diabetes
TWI829687B (en) 2018-05-07 2024-01-21 丹麥商諾佛 儂迪克股份有限公司 Solid compositions comprising a glp-1 agonist and a salt of n-(8-(2-hydroxybenzoyl)amino)caprylic acid
GB201917723D0 (en) * 2019-12-04 2020-01-15 Nv Rose Llc Stable liquid formulations of glucagon-like peptide 1 or analogues thereof
EP4090351A4 (en) * 2020-01-16 2023-09-13 Shanghai Benemae Pharmaceutical Corporation Dosing regimen of glp-1
WO2021142733A1 (en) * 2020-01-16 2021-07-22 Shanghai Benemae Pharmaceutical Corporation Combinational therapy comprising glp-1 and/or glp-1 analogs, and insulin and/or insulin analogs
EP4313016A1 (en) * 2021-03-29 2024-02-07 Sanford Health Methods and compositions for treating lysosomal storage disorders

Family Cites Families (392)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB835638A (en) 1956-12-01 1960-05-25 Novo Terapeutisk Labor As Insulin crystal suspensions having a protracted effect
GB840870A (en) 1957-08-03 1960-07-13 Novo Terapeutisk Labor As Improvements in or relating to insulin preparations
US3758683A (en) 1971-04-30 1973-09-11 R Jackson Insulin product
US3868358A (en) 1971-04-30 1975-02-25 Lilly Co Eli Protamine-insulin product
US3984696A (en) 1974-12-11 1976-10-05 Medi-Ray, Inc. Radiation guard for X-ray table
US4153689A (en) 1975-06-13 1979-05-08 Takeda Chemical Industries, Ltd. Stable insulin preparation for nasal administration
GB1554157A (en) 1975-06-13 1979-10-17 Takeda Chemical Industries Ltd Stable insulin preparation for intra nasal administration
GB1527605A (en) 1975-08-20 1978-10-04 Takeda Chemical Industries Ltd Insulin preparation for intranasal administration
JPS6033474B2 (en) 1978-05-11 1985-08-02 藤沢薬品工業株式会社 Novel hyaluronidase BMP-8231 and its production method
US4783441A (en) 1979-04-30 1988-11-08 Hoechst Aktiengesellschaft Aqueous protein solutions stable to denaturation
DE3064888D1 (en) 1979-04-30 1983-10-27 Hoechst Ag Aqueous solutions of proteins stable against denaturization, process for their manufacture, and their utilization
JPS55153712A (en) 1979-05-18 1980-11-29 Kao Corp Insulin pharmaceutical preparation and its production
DE3033127A1 (en) 1980-09-03 1982-04-08 Hoechst Ag, 6000 Frankfurt NEW INSULIN ANALOG
US4367737A (en) 1981-04-06 1983-01-11 George Kozam Multiple barrel syringe
AU558474B2 (en) 1981-07-17 1987-01-29 Nordisk Insulinlaboratorium A stable aqueous, therapeutic insulin preparation and a process for preparing it
NL193099C (en) 1981-10-30 1998-11-03 Novo Industri As Stabilized insulin solution.
DE3326472A1 (en) 1983-07-22 1985-02-14 Hoechst Ag, 6230 Frankfurt NEW INSULIN DERIVATIVES, METHOD FOR THE PRODUCTION AND USE THEREOF AND PHARMACEUTICAL AGENTS FOR TREATING THE DIABETES MELLITUS
DE3326473A1 (en) 1983-07-22 1985-01-31 Hoechst Ag, 6230 Frankfurt PHARMACEUTICAL AGENT FOR TREATING THE DIABETES MELLITUS
DE3327709A1 (en) 1983-07-29 1985-02-07 Hoechst Ag, 6230 Frankfurt INSULIN DERIVATIVE CRYSTAL SUSPENSIONS, METHOD FOR THE PRODUCTION AND USE THEREOF
DE3333640A1 (en) 1983-09-17 1985-04-25 Hoechst Ag, 6230 Frankfurt METHOD FOR THE PRODUCTION OF INSULIN DERIVATIVES, THE B-CHAIN C-TERMINAL EXTENDED, NEW BASICALLY MODIFIED INSULIN DERIVATIVES, THE MEANS CONTAINING THEM AND THEIR USE
US4839341A (en) 1984-05-29 1989-06-13 Eli Lilly And Company Stabilized insulin formulations
CA1244347A (en) 1984-05-29 1988-11-08 Eddie H. Massey Stabilized insulin formulations
DE3576120D1 (en) 1984-06-09 1990-04-05 Hoechst Ag INSULIN PREPARATIONS, METHOD FOR THE PRODUCTION AND USE THEREOF.
DE3440988A1 (en) 1984-11-09 1986-07-10 Hoechst Ag, 6230 Frankfurt METHOD FOR CLEAVING PEPTIDES AND PROTEINS ON THE METHIONYL BOND
US5008241A (en) 1985-03-12 1991-04-16 Novo Nordisk A/S Novel insulin peptides
DK113585D0 (en) 1985-03-12 1985-03-12 Novo Industri As NEW PEPTIDES
DK347086D0 (en) 1986-07-21 1986-07-21 Novo Industri As NOVEL PEPTIDES
CA1274774A (en) 1985-04-15 1990-10-02 Kenneth S. Su Method for administering insulin
US4689042A (en) 1985-05-20 1987-08-25 Survival Technology, Inc. Automatic medicament ingredient mixing and injecting apparatus
DE3526995A1 (en) 1985-07-27 1987-02-05 Hoechst Ag FUSION PROTEINS, METHOD FOR THEIR PRODUCTION AND THEIR USE
PH25772A (en) 1985-08-30 1991-10-18 Novo Industri As Insulin analogues, process for their preparation
US4960702A (en) 1985-09-06 1990-10-02 Codon Methods for recovery of tissue plasminogen activator
US5496924A (en) 1985-11-27 1996-03-05 Hoechst Aktiengesellschaft Fusion protein comprising an interleukin-2 fragment ballast portion
DE3636903A1 (en) 1985-12-21 1987-07-02 Hoechst Ag FUSION PROTEINS WITH EUKARYOTIC BALLASTES
DE3541856A1 (en) 1985-11-27 1987-06-04 Hoechst Ag EUKARYOTIC FUSION PROTEINS, THEIR PRODUCTION AND USE, AND MEANS FOR CARRYING OUT THE PROCESS
CA1275922C (en) 1985-11-28 1990-11-06 Harunobu Amagase Treatment of cancer
DE3544295A1 (en) 1985-12-14 1987-06-19 Bayer Ag THERMOPLASTIC MOLDS WITH HIGH CROSS-CURRENT RESISTANCE
US5614492A (en) 1986-05-05 1997-03-25 The General Hospital Corporation Insulinotropic hormone GLP-1 (7-36) and uses thereof
PH23446A (en) 1986-10-20 1989-08-07 Novo Industri As Peptide preparations
JP2606915B2 (en) 1987-02-25 1997-05-07 ノボ ノルディスク アクティーゼルスカブ New insulin derivatives
US5034415A (en) 1987-08-07 1991-07-23 Century Laboratories, Inc. Treatment of diabetes mellitus
DE3726655A1 (en) 1987-08-11 1989-02-23 Hoechst Ag METHOD FOR ISOLATING BASIC PROTEINS FROM PROTEIN MIXTURES CONTAINING SUCH BASIC PROTEINS
DK257988D0 (en) 1988-05-11 1988-05-11 Novo Industri As NEW PEPTIDES
US6875589B1 (en) 1988-06-23 2005-04-05 Hoechst Aktiengesellschaft Mini-proinsulin, its preparation and use
DE3827533A1 (en) 1988-08-13 1990-02-15 Hoechst Ag PHARMACEUTICAL PREPARATION FOR TREATING THE DIABETES MELLITUS
US4923162A (en) 1988-09-19 1990-05-08 Fleming Matthew C Radiation shield swivel mount
DE3837825A1 (en) 1988-11-08 1990-05-10 Hoechst Ag NEW INSULIN DERIVATIVES, THEIR USE AND A PHARMACEUTICAL PREPARATION CONTAINING THEM
US5225323A (en) 1988-11-21 1993-07-06 Baylor College Of Medicine Human high-affinity neurotransmitter uptake system
HUT56857A (en) 1988-12-23 1991-10-28 Novo Nordisk As Human insulin analogues
US4994439A (en) 1989-01-19 1991-02-19 California Biotechnology Inc. Transmembrane formulations for drug administration
US5514646A (en) 1989-02-09 1996-05-07 Chance; Ronald E. Insulin analogs modified at position 29 of the B chain
IL93282A (en) 1989-02-09 1995-08-31 Lilly Co Eli Insulin analogs
DK134189D0 (en) 1989-03-20 1989-03-20 Nordisk Gentofte INSULIN COMPOUNDS
DK0471036T4 (en) 1989-05-04 2004-07-19 Southern Res Inst encapsulation
US5006718A (en) 1989-07-21 1991-04-09 Lenhart Mark J X-ray shield for X-ray examination table
IL95495A (en) 1989-08-29 1996-10-16 Hoechst Ag Fusion proteins their preparation and use
US5358857A (en) 1989-08-29 1994-10-25 The General Hospital Corp. Method of preparing fusion proteins
US5227293A (en) 1989-08-29 1993-07-13 The General Hospital Corporation Fusion proteins, their preparation and use
US5545618A (en) 1990-01-24 1996-08-13 Buckley; Douglas I. GLP-1 analogs useful for diabetes treatment
CN1020944C (en) 1990-01-30 1993-05-26 阿图尔-费希尔股份公司费希尔厂 Fastening element
DE69129110T2 (en) 1990-05-10 1998-12-10 Bechgaard Int Res PHARMACEUTICAL PREPARATION CONTAINING N-GLYCOFUROLE AND N-ETHYLENE GLYCOL
US5397771A (en) 1990-05-10 1995-03-14 Bechgaard International Research And Development A/S Pharmaceutical preparation
DK155690D0 (en) 1990-06-28 1990-06-28 Novo Nordisk As NEW PEPTIDES
DK10191D0 (en) 1991-01-22 1991-01-22 Novo Nordisk As HIS UNKNOWN PEPTIDES
US5272135A (en) * 1991-03-01 1993-12-21 Chiron Ophthalmics, Inc. Method for the stabilization of methionine-containing polypeptides
CA2038597A1 (en) 1991-03-19 1992-09-20 Jose P. Garzaran A method and a pharmaceutical preparation for treating pain
US5614219A (en) 1991-12-05 1997-03-25 Alfatec-Pharma Gmbh Oral administration form for peptide pharmaceutical substances, in particular insulin
US6468959B1 (en) 1991-12-05 2002-10-22 Alfatec-Pharm Gmbh Peroral dosage form for peptide containing medicaments, in particular insulin
CH682806A5 (en) 1992-02-21 1993-11-30 Medimpex Ets Injection device.
CH682805A5 (en) 1992-02-24 1993-11-30 Medimpex Ets Display device for an injection device.
DK36392D0 (en) 1992-03-19 1992-03-19 Novo Nordisk As USE OF CHEMICAL COMPOUND
DK39892D0 (en) 1992-03-25 1992-03-25 Bernard Thorens PEPTIDE
US5846747A (en) 1992-03-25 1998-12-08 Novo Nordisk A/S Method for detecting glucagon-like peptide-1 antagonists and agonists
US5253785A (en) 1992-04-02 1993-10-19 Habley Medical Technology Corp. Variable proportion dispenser
DK0600372T3 (en) 1992-12-02 1997-08-11 Hoechst Ag Process for the preparation of proinsulin with properly connected cystine bridges.
CA2151134A1 (en) 1992-12-18 1994-07-07 Ronald Eugene Chance Insulin analogs
US5358708A (en) 1993-01-29 1994-10-25 Schering Corporation Stabilization of protein formulations
US5478323A (en) 1993-04-02 1995-12-26 Eli Lilly And Company Manifold for injection apparatus
US5424286A (en) 1993-05-24 1995-06-13 Eng; John Exendin-3 and exendin-4 polypeptides, and pharmaceutical compositions comprising same
DE69416409T2 (en) 1993-06-21 1999-09-16 Novo Nordisk As ASP-B28 INSULIN CRYSTALS
US5506203C1 (en) 1993-06-24 2001-02-06 Astra Ab Systemic administration of a therapeutic preparation
US5534488A (en) 1993-08-13 1996-07-09 Eli Lilly And Company Insulin formulation
PT729353E (en) 1993-11-19 2002-07-31 Alkermes Inc PREPARATION OF BIODEGRADABLE MICROPARTICLES CONTAINING A BIOLOGICALLY ACTIVE AGENT
US5705483A (en) 1993-12-09 1998-01-06 Eli Lilly And Company Glucagon-like insulinotropic peptides, compositions and methods
IT1265271B1 (en) 1993-12-14 1996-10-31 Alcatel Italia BASEBAND PREDISTRITORTION SYSTEM FOR THE ADAPTIVE LINEARIZATION OF POWER AMPLIFIERS
US5595756A (en) 1993-12-22 1997-01-21 Inex Pharmaceuticals Corporation Liposomal compositions for enhanced retention of bioactive agents
DE4405179A1 (en) 1994-02-18 1995-08-24 Hoechst Ag Method of obtaining insulin with correctly connected cystine bridges
DE4405388A1 (en) 1994-02-19 1995-08-24 Hoechst Ag Process for the preparation of polyalkyl-1-oxa-diazaspirodecane compounds
AU689217B2 (en) 1994-03-07 1998-03-26 Novartis Ag Methods and compositions for pulmonary delivery of insulin
US5474978A (en) 1994-06-16 1995-12-12 Eli Lilly And Company Insulin analog formulations
US5559094A (en) 1994-08-02 1996-09-24 Eli Lilly And Company AspB1 insulin analogs
DK0779806T3 (en) 1994-09-09 2000-11-27 Takeda Chemical Industries Ltd Delayed-release preparation containing a metal salt of a peptide
US5879584A (en) 1994-09-10 1999-03-09 The Procter & Gamble Company Process for manufacturing aqueous compositions comprising peracids
US5547929A (en) 1994-09-12 1996-08-20 Eli Lilly And Company Insulin analog formulations
FR2724937B1 (en) 1994-09-28 1997-02-07 Lvmh Rech FUNCTIONALIZED POLYMERS, THEIR SYNTHESIS PROCESS, THEIR USE AS SURFACTANTS IN PARTICULAR IN COSMETIC COMPOSITIONS AND IN PARTICULAR NAIL POLISH
US5707641A (en) 1994-10-13 1998-01-13 Pharmaderm Research & Development Ltd. Formulations comprising therapeutically-active proteins or polypeptides
YU18596A (en) 1995-03-31 1998-07-10 Eli Lilly And Company Analogous formulations of monomer insulin
US5990077A (en) 1995-04-14 1999-11-23 1149336 Ontario Inc. Glucagon-like peptide-2 and its therapeutic use
WO1996034882A1 (en) 1995-05-05 1996-11-07 Eli Lilly And Company Single chain insulin with high bioactivity
US5824638A (en) 1995-05-22 1998-10-20 Shire Laboratories, Inc. Oral insulin delivery
US6143718A (en) 1995-06-07 2000-11-07 Amylin Pharmaceuticals, Inc. Treatment of Type II diabetes mellutis with amylin agonists
WO1996041606A2 (en) 1995-06-08 1996-12-27 Therexsys Limited Improved pharmaceutical compositions for gene therapy
AU6242096A (en) 1995-06-27 1997-01-30 Takeda Chemical Industries Ltd. Method of producing sustained-release preparation
JPH11292787A (en) 1995-08-15 1999-10-26 Asahi Chem Ind Co Ltd Transucosal preparation containing physiologically active peptide
DE19545257A1 (en) 1995-11-24 1997-06-19 Schering Ag Process for the production of morphologically uniform microcapsules and microcapsules produced by this process
US5985309A (en) 1996-05-24 1999-11-16 Massachusetts Institute Of Technology Preparation of particles for inhalation
DE19637230A1 (en) 1996-09-13 1998-03-19 Boehringer Mannheim Gmbh Truncated versions of exendin peptide(s) for treating diabetes
TR199802789T2 (en) 1996-06-05 1999-03-22 Boehringer Mannheim Gmbh Exendin analogues, methods for their production and pharmaceutical preparations containing them.
PL188736B1 (en) 1996-06-20 2005-04-29 Novo Nordisk As Insulin preparations containing carbohydrates
US5948751A (en) 1996-06-20 1999-09-07 Novo Nordisk A/S X14-mannitol
EP0921812B2 (en) 1996-06-20 2011-12-21 Novo Nordisk A/S Insulin preparations containing a halogenide
US6110703A (en) 1996-07-05 2000-08-29 Novo Nordisk A/S Method for the production of polypeptides
DE69740096D1 (en) 1996-08-08 2011-02-17 Amylin Pharmaceuticals Inc Pharmaceutical composition with an exendin-4-peptide
US5783556A (en) 1996-08-13 1998-07-21 Genentech, Inc. Formulated insulin-containing composition
US6006753A (en) 1996-08-30 1999-12-28 Eli Lilly And Company Use of GLP-1 or analogs to abolish catabolic changes after surgery
US6277819B1 (en) 1996-08-30 2001-08-21 Eli Lilly And Company Use of GLP-1 or analogs in treatment of myocardial infarction
ES2283025T3 (en) 1996-08-30 2007-10-16 Novo Nordisk A/S DERIVATIVES OF GLP-1.1.
US6268343B1 (en) 1996-08-30 2001-07-31 Novo Nordisk A/S Derivatives of GLP-1 analogs
UA65549C2 (en) 1996-11-05 2004-04-15 Елі Ліллі Енд Компані Use of glucagon-like peptides such as glp-1, glp-1 analog, or glp-1 derivative in methods and compositions for reducing body weight
ES2247676T3 (en) 1997-01-07 2006-03-01 Amylin Pharmaceuticals, Inc. USE OF THE EXENDINAS AND THE AGONISTS OF THE SAME FOR THE REDUCTION OF FOOD INGESTION.
US7312196B2 (en) 1997-01-08 2007-12-25 Amylin Pharmaceuticals, Inc. Formulations for amylin agonist peptides
AU5850798A (en) 1997-02-05 1998-08-26 1149336 Ontario Inc. Polynucleotides encoding proexendin, and methods and uses thereof
US5846937A (en) 1997-03-03 1998-12-08 1149336 Ontario Inc. Method of using exendin and GLP-1 to affect the central nervous system
HUP0000547A3 (en) 1997-03-20 2002-11-28 Novo Nordisk As Zinc free insulin crystals for use in pulmonary compositions
US6310038B1 (en) 1997-03-20 2001-10-30 Novo Nordisk A/S Pulmonary insulin crystals
US6043214A (en) 1997-03-20 2000-03-28 Novo Nordisk A/S Method for producing powder formulation comprising an insulin
ES2190087T3 (en) 1997-06-13 2003-07-16 Genentech Inc STABILIZED FORMULATION OF AN ANTIBODY.
ZA984697B (en) 1997-06-13 1999-12-01 Lilly Co Eli Stable insulin formulations.
DE19726167B4 (en) 1997-06-20 2008-01-24 Sanofi-Aventis Deutschland Gmbh Insulin, process for its preparation and pharmaceutical preparation containing it
JP2001513512A (en) 1997-08-08 2001-09-04 アミリン・ファーマシューティカルズ,インコーポレイテッド New exendin agonist compounds
DE19735711C2 (en) 1997-08-18 2001-04-26 Aventis Pharma Gmbh Process for the preparation of a precursor to insulin or insulin derivatives with correctly linked cystine bridges
US6444641B1 (en) 1997-10-24 2002-09-03 Eli Lilly Company Fatty acid-acylated insulin analogs
WO1999021578A1 (en) 1997-10-24 1999-05-06 Eli Lilly And Company Insoluble insulin compositions
ZA989744B (en) 1997-10-31 2000-04-26 Lilly Co Eli Method for administering acylated insulin.
AU1375199A (en) 1997-11-12 1999-05-31 Alza Corporation Method for decreasing self-association of polypeptides
DK1032587T4 (en) 1997-11-14 2013-04-08 Amylin Pharmaceuticals Llc New exendin agonist compounds
BR9815670A (en) 1997-11-14 2000-10-17 Amylin Pharmaceuticals Inc Exendin agonist compounds
AU1617399A (en) 1997-12-05 1999-06-28 Eli Lilly And Company Glp-1 formulations
US5981964A (en) 1997-12-22 1999-11-09 Bruce J. McAuley Adjustable X-ray shield and on-line dosimetry system using same
AU1870099A (en) 1998-01-09 1999-07-26 Novo Nordisk A/S Stabilised insulin compositions
CA2320371C (en) 1998-02-13 2012-01-17 Amylin Pharmaceuticals, Inc. Inotropic and diuretic effects of exendin and glp-1
US6197926B1 (en) 1998-02-23 2001-03-06 Neurocrine Biosciences Methods for treatment of diabetes using peptide analogues of insulin
WO1999043708A1 (en) 1998-02-27 1999-09-02 Novo Nordisk A/S Glp-1 derivatives of glp-1 and exendin with protracted profile of action
EP1950224A3 (en) 1998-03-09 2008-12-17 Zealand Pharma A/S Pharmacologically active peptide conjugates having a reduced tendency towards enzymatic hydrolysis
ATE269103T1 (en) 1998-03-13 2004-07-15 Novo Nordisk As STABILIZED AQUEOUS GLUCAGON SOLUTIONS CONTAINING DETERGENTS
WO1999062558A1 (en) 1998-06-05 1999-12-09 Technion Research And Development Foundation Ltd. Insulin supplemented infant formula
EP1119625B1 (en) 1998-10-07 2005-06-29 Medical College Of Georgia Research Institute, Inc. Glucose-dependent insulinotropic peptide for use as an osteotropic hormone
US6284725B1 (en) 1998-10-08 2001-09-04 Bionebraska, Inc. Metabolic intervention with GLP-1 to improve the function of ischemic and reperfused tissue
KR100617286B1 (en) 1998-10-16 2006-08-30 노보 노르디스크 에이/에스 Stable concentrated insulin preparation for pulmonary delivery
WO2000023099A1 (en) 1998-10-16 2000-04-27 Novo Nordisk A/S Insulin preparations for pulmonary delivery containing menthol
US6211144B1 (en) 1998-10-16 2001-04-03 Novo Nordisk A/S Stable concentrated insulin preparations for pulmonary delivery
US6489292B1 (en) 1998-11-18 2002-12-03 Novo Nordisk A/S Stable aqueous insulin preparations without phenol and cresol
AU1263400A (en) 1998-11-18 2000-06-05 Novo Nordisk A/S Stable aqueous insulin preparations without phenol and cresol
EP1140145B2 (en) 1999-01-14 2019-05-15 Amylin Pharmaceuticals, LLC Novel exendin agonist formulations and methods of administration thereof
DE19908041A1 (en) 1999-02-24 2000-08-31 Hoecker Hartwig Covalently bridged insulin dimers
US6248363B1 (en) 1999-11-23 2001-06-19 Lipocine, Inc. Solid carriers for improved delivery of active ingredients in pharmaceutical compositions
JP2000247903A (en) 1999-03-01 2000-09-12 Chugai Pharmaceut Co Ltd Long-term stabilized pharmaceutical preparation
JP2007204498A (en) 1999-03-01 2007-08-16 Chugai Pharmaceut Co Ltd Long-term stabilized formulations
US6227819B1 (en) 1999-03-29 2001-05-08 Walbro Corporation Fuel pumping assembly
US6271241B1 (en) 1999-04-02 2001-08-07 Neurogen Corporation Cycloalkyl and aryl fused aminoalkyl-imidazole derivatives: modulators and GLP-1 receptors
CA2372214A1 (en) 1999-04-30 2000-11-09 Amylin Pharmaceuticals, Inc. Modified exendins and exendin agonists
BR0010750A (en) 1999-05-17 2002-02-26 Conjuchem Inc Long-acting insulinotropic peptides
AU5936400A (en) 1999-06-04 2000-12-28 Delrx Pharmaceutical Corporation Formulations comprising dehydrated particles of pharmaceutical agents and process for preparing the same
US6344180B1 (en) 1999-06-15 2002-02-05 Bionebraska, Inc. GLP-1 as a diagnostic test to determine β-cell function and the presence of the condition of IGT and type II diabetes
CA2369839A1 (en) 1999-06-25 2001-01-04 Minimed, Inc. Compositions of insulin and insulin-related peptide for treating diabetes
US6309663B1 (en) 1999-08-17 2001-10-30 Lipocine Inc. Triglyceride-free compositions and methods for enhanced absorption of hydrophilic therapeutic agents
DE19930631A1 (en) 1999-07-02 2001-01-11 Clemens Micheler Spraying device for injecting at least two liquid therapeutic agents, in particular insulin
EP1076066A1 (en) 1999-07-12 2001-02-14 Zealand Pharmaceuticals A/S Peptides for lowering blood glucose levels
US6528486B1 (en) 1999-07-12 2003-03-04 Zealand Pharma A/S Peptide agonists of GLP-1 activity
KR100801588B1 (en) 1999-09-21 2008-02-05 스키에파마 캐나다 인코포레이티드 Surface Modified Particulate Compositions of Biological Active Substances
DE19947456A1 (en) 1999-10-02 2001-04-05 Aventis Pharma Gmbh New synthetic derivatives of the C-peptide of proinsulin, useful in the preparation of human insulin or insulin analogs in high yield
PL211886B1 (en) 1999-10-04 2012-07-31 Novartis Vaccines & Diagnostic Stabilized liquid polypeptide-containing pharmaceutical compositions
US6720001B2 (en) 1999-10-18 2004-04-13 Lipocine, Inc. Emulsion compositions for polyfunctional active ingredients
CN1450902A (en) 1999-11-03 2003-10-22 布里斯托尔-迈尔斯斯奎布公司 Medicinal composition composed of metformin and glyburide
US7022674B2 (en) 1999-12-16 2006-04-04 Eli Lilly And Company Polypeptide compositions with improved stability
PL355378A1 (en) 1999-12-16 2004-04-19 Eli Lilly And Company Polypeptide compositions with improved stability
EP1523993A1 (en) 1999-12-16 2005-04-20 Eli Lilly &amp; Company Polypeptide compositions with improved stability
US20010012829A1 (en) 2000-01-11 2001-08-09 Keith Anderson Transepithelial delivery GLP-1 derivatives
JP2003519664A (en) 2000-01-11 2003-06-24 ノボ ノルディスク アクティーゼルスカブ Transepithelial delivery of GLP-1 derivatives
US6734162B2 (en) 2000-01-24 2004-05-11 Minimed Inc. Mixed buffer system for stabilizing polypeptide formulations
US6395767B2 (en) 2000-03-10 2002-05-28 Bristol-Myers Squibb Company Cyclopropyl-fused pyrrolidine-based inhibitors of dipeptidyl peptidase IV and method
WO2001093837A2 (en) 2000-06-08 2001-12-13 Eli Lilly And Company Protein powder for pulmonary delivery
US6689353B1 (en) 2000-06-28 2004-02-10 Bayer Pharmaceuticals Corporation Stabilized interleukin 2
US6770620B2 (en) 2000-09-18 2004-08-03 Sanos Bioscience A/S Use of GLP for the treatment, prevention, diagnosis, and prognosis of bone-related and nutrition-related disorders
KR100508695B1 (en) 2001-02-13 2005-08-17 한국과학기술연구원 Formulation for oral delivery of insulin and preparation method thereof
US7060675B2 (en) 2001-02-15 2006-06-13 Nobex Corporation Methods of treating diabetes mellitus
DE10108211A1 (en) 2001-02-20 2002-08-22 Aventis Pharma Gmbh Use of fusion proteins, the N-terminal portion of which consists of a hirudin derivative, for the production of recombinant proteins via secretion by yeast
DE10108100A1 (en) 2001-02-20 2002-08-29 Aventis Pharma Gmbh Use of super-secretable peptides in processes for their preparation and parallel improvement of the export of one or more other polypeptides of interest
DE10108212A1 (en) 2001-02-20 2002-08-22 Aventis Pharma Gmbh Fusion protein for the secretion of valuable protein in bacterial supernatants
WO2002067969A2 (en) * 2001-02-21 2002-09-06 Medtronic Minimed, Inc. Stabilized insulin formulations
US20020177151A1 (en) 2001-02-26 2002-11-28 Millennium Pharmaceuticals, Inc. Methods for the treatment of metabolic disorders, including obesity and diabetes
DE10114178A1 (en) 2001-03-23 2002-10-10 Aventis Pharma Gmbh Zinc-free and low-zinc insulin preparations with improved stability
DE60233722D1 (en) 2001-04-02 2009-10-29 Novo Nordisk As INSULIN PREPARATIONS AND METHOD FOR THE PRODUCTION THEREOF
CN1160122C (en) 2001-04-20 2004-08-04 清华大学 Method of preparing oil-phase oral insulin preparation
US20030026872A1 (en) 2001-05-11 2003-02-06 The Procter & Gamble Co. Compositions having enhanced aqueous solubility and methods of their preparation
AU2002318159A1 (en) 2001-06-29 2003-03-03 The Regents Of The University Of California Biodegradable/bioactive nucleus pulposus implant and method for treating degenerated intervertebral discs
FR2827604B1 (en) 2001-07-17 2003-09-19 Sanofi Synthelabo NOVEL 1-PHENYLSULFONYL-1,3-DIHYDRO-2H-INDOL-2- ONE DERIVATIVES, A PROCESS FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
EP2275117B1 (en) 2001-07-31 2016-10-26 The Government of the United States of America, as represented by the Secretary of the Department of Health and Human Services GLP-1, exendin-4, peptide analogs and uses thereof
US7238663B2 (en) * 2001-08-28 2007-07-03 Eli Lilly And Company Pre-mixes of GLP-1 and basal insulin
US20050123509A1 (en) 2001-10-19 2005-06-09 Lehrman S. R. Modulating charge density to produce improvements in the characteristics of spray-dried proteins
WO2003035051A2 (en) 2001-10-19 2003-05-01 Inhale Therapeutic Systems, Inc. The use of proton sequestering agents in drug formulations
PL210437B1 (en) 2001-11-19 2012-01-31 Novo Nordisk As Process for preparing insulin compounds
EP1455815A4 (en) 2001-12-19 2006-11-02 Millennium Pharm Inc Human diacylglycerol acyltransferase 2 (dgat2)family members and uses therefor
IL161848A0 (en) 2001-12-20 2005-11-20 Lilly Co Eli Insulin moldecule having protracted time action
HUP0402315A3 (en) 2001-12-21 2009-03-30 Novo Nordisk Healthcare Ag Liquid composition of factor vii polypeptides
US8058233B2 (en) 2002-01-10 2011-11-15 Oregon Health And Science University Modification of feeding behavior using PYY and GLP-1
AU2003203146A1 (en) * 2002-02-07 2003-09-02 Novo Nordisk A/S Use of glp-1 compound for treatment of critically ill patients
US20100069293A1 (en) 2002-02-27 2010-03-18 Pharmain Corporation Polymeric carrier compositions for delivery of active agents, methods of making and using the same
TWI351278B (en) 2002-03-01 2011-11-01 Nisshin Pharma Inc Agent for preventing and treating of liver disease
WO2003094951A1 (en) 2002-05-07 2003-11-20 Novo Nordisk A/S Soluble formulations comprising insulin aspart and insulin detemir
WO2003094956A1 (en) 2002-05-07 2003-11-20 Novo Nordisk A/S Soluble formulations comprising monomeric insulin and acylated insulin
US7115563B2 (en) 2002-05-29 2006-10-03 Insignion Holding Limited Composition and its therapeutic use
DE10227232A1 (en) 2002-06-18 2004-01-15 Aventis Pharma Deutschland Gmbh Sour insulin preparations with improved stability
JP5685355B2 (en) 2002-07-04 2015-03-18 ジーランド ファーマ アクティーゼルスカブ GLP-1 and method for treating diabetes
DE10235168A1 (en) 2002-08-01 2004-02-12 Aventis Pharma Deutschland Gmbh Process for the purification of preproinsulin
AU2003273300A1 (en) * 2002-09-06 2004-03-29 Bayer Pharmaceuticals Corporation Modified glp-1 receptor agonists and their pharmacological methods of use
CA2499983A1 (en) 2002-09-27 2004-04-08 Martek Biosciences Corporation Docohexaenoic acid for improved glycemic control
RU2376314C2 (en) 2002-10-02 2009-12-20 Зилэнд Фарма А/С Stabilised compounds of exendin-4
US20050209142A1 (en) 2002-11-20 2005-09-22 Goran Bertilsson Compounds and methods for increasing neurogenesis
WO2004045592A2 (en) 2002-11-20 2004-06-03 Neuronova Ab Compounds and methods for increasing neurogenesis
US6969702B2 (en) 2002-11-20 2005-11-29 Neuronova Ab Compounds and methods for increasing neurogenesis
CN1413582A (en) 2002-11-29 2003-04-30 贵州圣济堂制药有限公司 Dimethyldiguanide hydrochloride enteric solubility tablet and its preparation method
WO2004050115A2 (en) 2002-12-03 2004-06-17 Novo Nordisk A/S Combination treatment using exendin-4 and thiazolidinediones
GB0309154D0 (en) 2003-01-14 2003-05-28 Aventis Pharma Inc Use of insulin glargine to reduce or prevent cardiovascular events in patients being treated for dysglycemia
GB0304822D0 (en) 2003-03-03 2003-04-09 Dca Internat Ltd Improvements in and relating to a pen-type injector
CA2518143A1 (en) 2003-03-04 2004-09-16 The Technology Development Company Ltd. Delivery system for drug and cell therapy
JP2007523842A (en) 2003-03-11 2007-08-23 ノボ ノルディスク アクティーゼルスカブ Pharmaceutical formulation containing acid stabilized insulin
US20040186046A1 (en) 2003-03-17 2004-09-23 Pfizer Inc Treatment of type 1 diabetes with PDE5 inhibitors
DE10315408A1 (en) * 2003-04-04 2004-10-14 Robert Bosch Gmbh Receiving unit and method for receiving an analog received signal
KR20050121748A (en) 2003-04-29 2005-12-27 일라이 릴리 앤드 캄파니 Insulin analogs having protracted time action
KR101293507B1 (en) 2003-06-03 2013-08-06 노보 노르디스크 에이/에스 Stabilized pharmaceutical peptide compositions
DE10325567B4 (en) 2003-06-05 2008-03-13 Mavig Gmbh Radiation protection arrangement with separable enclosure
CA2542372A1 (en) 2003-08-29 2005-03-10 Centocor, Inc. Method of promoting graft survival with anti-tissue factor antibodies
EP1663295A2 (en) 2003-09-01 2006-06-07 Novo Nordisk A/S Stable formulations of peptides
WO2005023291A2 (en) 2003-09-11 2005-03-17 Novo Nordisk A/S Use of glp1-agonists in the treatment of patients with type i diabetes
TW200522976A (en) * 2003-09-19 2005-07-16 Novo Nordisk As Novel plasma protein affinity tags
US20060287221A1 (en) 2003-11-13 2006-12-21 Novo Nordisk A/S Soluble pharmaceutical compositions for parenteral administration comprising a GLP-1 peptide and an insulin peptide of short time action for treatment of diabetes and bulimia
WO2005046716A1 (en) 2003-11-13 2005-05-26 Novo Nordisk A/S Soluble pharmaceutical compositions for parenteral administration comprising a glp-1 peptide and a insulin peptide of short time action for treatment of diabetes and bulimia
WO2005048950A2 (en) 2003-11-17 2005-06-02 Biomune, Inc. Tumor and infectious disease therapeutic compositions
ATE483580T1 (en) 2003-12-22 2010-10-15 Novo Nordisk As CLEAR, FLEXIBLE, WATERPROOF PLASTIC CONTAINER FOR STORING PHARMACEUTICAL LIQUIDS
US20060210614A1 (en) 2003-12-26 2006-09-21 Nastech Pharmaceutical Company Inc. Method of treatment of a metabolic disease using intranasal administration of exendin peptide
US7192919B2 (en) 2004-01-07 2007-03-20 Stelios Tzannis Sustained release compositions for delivery of pharmaceutical proteins
US20070027063A1 (en) 2004-01-12 2007-02-01 Mannkind Corporation Method of preserving the function of insulin-producing cells
US20080090753A1 (en) 2004-03-12 2008-04-17 Biodel, Inc. Rapid Acting Injectable Insulin Compositions
AU2005231359A1 (en) 2004-03-31 2005-10-20 Centocor, Inc. Human GLP-1 mimetibodies, compositions, methods and uses
JP5000493B2 (en) 2004-05-20 2012-08-15 ディアメディカ インコーポレイテッド Pharmaceutical composition for treating insulin resistance, method of using bethanechol and N-acetylcysteine in the preparation of said pharmaceutical composition and kit comprising said pharmaceutical composition
CA2567309A1 (en) 2004-06-01 2005-12-15 Ares Trading S.A. Method of stabilizing proteins
JP2008504275A (en) 2004-06-24 2008-02-14 インサイト・コーポレイション N-substituted piperidines and their use as pharmaceuticals
EP1906991A2 (en) 2004-06-28 2008-04-09 Novo Nordisk A/S Use of glp-1 receptor agonists and/or dpp-iv inhibitors in combination with proton pump inhibitors and ppar agonists for the preparation of a medicament for the treatment of diabetes type i, diabetes type ii and impaired pancreatic beta-cell function
BRPI0512396A (en) 2004-07-21 2008-03-11 Ambrx Inc biosynthetic polypeptides using non-naturally encoded amino acids
ES2309785T3 (en) 2004-08-13 2008-12-16 F. Hoffmann-La Roche Ag MODIFICATION C-TERMINAL OF POLYPEPTIDES.
DE102004043153B4 (en) 2004-09-03 2013-11-21 Philipps-Universität Marburg Invention relating to GLP-1 and exendin
US20060073213A1 (en) 2004-09-15 2006-04-06 Hotamisligil Gokhan S Reducing ER stress in the treatment of obesity and diabetes
EP1791554A2 (en) * 2004-09-17 2007-06-06 Novo Nordisk A/S Pharmaceutical compositions containing insulin and insulinotropic peptide
PL1817048T3 (en) 2004-11-12 2014-07-31 Novo Nordisk As Stable formulations of insulinoptropic peptides
EP1814581B1 (en) 2004-11-12 2016-03-16 Novo Nordisk A/S Stable formulations of peptides comprising an acylated glp-1 analogue and a basal insuline
DE102004058306A1 (en) 2004-12-01 2006-07-27 Sanofi-Aventis Deutschland Gmbh Process for the preparation of carboxy-terminally amidated peptides
SE0402976L (en) 2004-12-03 2006-06-04 Mederio Ag Medical product
KR20070090036A (en) 2004-12-22 2007-09-04 센토코 인코포레이티드 Glp-1 agonists, compositions, methods and uses
US7879361B2 (en) 2005-01-04 2011-02-01 Gp Medical, Inc. Nanoparticles for drug delivery
EP1845105A4 (en) * 2005-01-14 2009-02-18 Wuxi Grandchamp Pharmaceutical Modified exendins and uses thereof
EP1849024A4 (en) 2005-02-01 2015-08-26 Canberra Ind Inc Maximum entropy signal detection method
US20090142338A1 (en) 2005-03-04 2009-06-04 Curedm, Inc. Methods and Compositions for Treating Type 1 and Type 2 Diabetes Mellitus and Related Conditions
CN101193652B (en) 2005-04-08 2011-11-02 安米林药品公司 Pharmaceutical formulations comprising incretin peptide and aprotic polar solvent
US8097584B2 (en) 2005-05-25 2012-01-17 Novo Nordisk A/S Stabilized formulations of insulin that comprise ethylenediamine
EP1888031B1 (en) 2005-06-06 2013-01-23 Camurus Ab Glp-1 analogue formulations
ATE539743T1 (en) 2005-06-27 2012-01-15 Newtree Co Ltd METHOD FOR PREVENTING AND TREATING PPAR-MEDIATED CONDITIONS USING MACELIGNAN
US20080227847A1 (en) 2005-07-07 2008-09-18 Aditech Pharma Ab Novel Salts of Fumaric Acid Monoalkylesters and Their Pharmaceutical Use
JP4616105B2 (en) * 2005-07-20 2011-01-19 株式会社 日立ディスプレイズ Liquid crystal display device
NZ566763A (en) 2005-08-19 2011-06-30 Amylin Pharmaceuticals Inc Exendin-4 for treating diabetes, obesity and reducing body weight
EP1937297A2 (en) 2005-09-08 2008-07-02 Gastrotech Pharma A/S Use of a glp-1 molecule for treatment of biliary dyskinesia and/or biliary pain/discomfort
MY146082A (en) 2005-09-14 2012-06-29 Sanofi Aventis Deutschland Cleavage of precursors of insulins by a variant of trypsin
US8143217B2 (en) 2005-09-20 2012-03-27 Novartis Ag Use of DPP-IV inhibitor to reduce hypoglycemic events
EP1945142B1 (en) 2005-09-26 2013-12-25 Medtronic, Inc. Prosthetic cardiac and venous valves
DE102005046113A1 (en) 2005-09-27 2007-03-29 Sanofi-Aventis Deutschland Gmbh Preparation of C-amidated peptides, useful as pharmaceuticals, by reaction between precursor peptides in presence of enzyme with activity of trypsin, also new reaction products
KR101105871B1 (en) 2005-09-27 2012-01-16 주식회사 엘지생명과학 hFSF Aqueous Formulation
US8084420B2 (en) 2005-09-29 2011-12-27 Biodel Inc. Rapid acting and long acting insulin combination formulations
US20090264732A1 (en) 2005-10-11 2009-10-22 Huntington Medical Research Institutes Imaging agents and methods of use thereof
EP1940243B1 (en) 2005-10-24 2011-08-03 Nestec S.A. Dietary fiber formulation and method of administration
JP2009517410A (en) 2005-11-30 2009-04-30 ジェネレクス ファーマシューティカルズ インコーポレイテッド Oral absorbed pharmaceutical preparation and administration method
US20100029558A1 (en) 2005-12-06 2010-02-04 Bristow Cynthia L Alpha1 proteinase inhibitor peptides methods and use
EP2364735A3 (en) 2005-12-16 2012-04-11 Nektar Therapeutics Branched PEG conjugates of GLP-1
TWI515007B (en) 2006-01-05 2016-01-01 美國猶他大學研究基金會 Methods and compositions related to improving properties of pharmacological agents targeting nervous system
WO2007081824A2 (en) 2006-01-06 2007-07-19 Case Western Reserve University Fibrillation resistant proteins
US20090324701A1 (en) * 2006-01-20 2009-12-31 Diamedica, Inc. Compositions containing (s)-bethanechol and their use in the treatment of insulin resistance, type 2 diabetes, glucose intolerance and related disorders
US20070191271A1 (en) 2006-02-10 2007-08-16 Dow Pharmaceutical Sciences Method for stabilizing polypeptides lacking methionine
EP1986674A4 (en) 2006-02-13 2009-11-11 Nektar Therapeutics Methionine-containing protein or peptide compositions and methods of making and using
US7763582B2 (en) 2006-02-21 2010-07-27 University Of Medicine And Dentistry Of New Jersey Localized insulin delivery for bone healing
EP1996224B1 (en) * 2006-03-15 2012-11-07 Novo Nordisk A/S Mixtures of amylin and insulin
TW200806317A (en) 2006-03-20 2008-02-01 Wyeth Corp Methods for reducing protein aggregation
WO2007113205A1 (en) 2006-04-03 2007-10-11 Novo Nordisk A/S Glp-1 peptide agonists
CN101454019A (en) 2006-04-12 2009-06-10 百达尔公司 Rapid acting and long acting insulin combination formulations
NZ571862A (en) 2006-04-13 2011-10-28 Ipsen Pharma Sas Pharmaceutical composition comprising HGLP-1, a zinc divalent metal ion and a solvent
WO2007140619A1 (en) 2006-06-08 2007-12-13 Diabecore Medical Inc. Derivatized insulin oligomers
DE102006031962A1 (en) 2006-07-11 2008-01-17 Sanofi-Aventis Deutschland Gmbh Amidated insulin glargine
US7411757B2 (en) * 2006-07-27 2008-08-12 Hitachi Global Storage Technologies Netherlands B.V. Disk drive with nonvolatile memory having multiple modes of operation
US8900555B2 (en) 2006-07-27 2014-12-02 Nektar Therapeutics Insulin derivative formulations for pulmonary delivery
EP2057188B1 (en) 2006-08-17 2013-07-31 Amylin Pharmaceuticals, LLC Dpp-iv resistant gip hybrid polypeptides with selectable properties
US20090318353A1 (en) 2006-08-25 2009-12-24 Novo Nordisk A/S Acylated Exendin-4 Compounds
AU2007293885A1 (en) 2006-09-07 2008-03-13 Takeda Gmbh Combination treatment for diabetes mellitus
KR101729986B1 (en) 2006-09-22 2017-04-25 노보 노르디스크 에이/에스 Protease resistant insulin analogues
WO2008124522A2 (en) 2007-04-04 2008-10-16 Biodel, Inc. Amylin formulations
RU2440097C2 (en) * 2007-04-23 2012-01-20 Интарсия Терапьютикс, Инк. Method of treating insulin-independent diabetes and obesity, osmotic delivery system and method for making it
WO2008145323A1 (en) 2007-05-31 2008-12-04 F. Hoffmann-La Roche Ag Pharmaceutical formulation for interferons
WO2008151736A1 (en) 2007-06-14 2008-12-18 Sanofi-Aventis Deutschland Gmbh Dual-chamber carpule with attachment
EP2155303A1 (en) 2007-06-14 2010-02-24 Sanofi-Aventis Deutschland GmbH Dual-chamber carpule
US7615480B2 (en) * 2007-06-20 2009-11-10 Lam Research Corporation Methods of post-contact back end of the line through-hole via integration
US9173991B2 (en) 2007-07-02 2015-11-03 Roche Diabetes Care, Inc. Device for drug delivery
WO2009023566A2 (en) 2007-08-09 2009-02-19 Genzyme Corporation Method of treating autoimmune disease with mesenchymal stem cells
ES2558930T3 (en) 2007-08-13 2016-02-09 Novo Nordisk A/S Fast-acting insulin analogs
CN101366692A (en) 2007-08-15 2009-02-18 江苏豪森药业股份有限公司 Stable Exenatide formulation
GB0717388D0 (en) 2007-09-07 2007-10-17 Uutech Ltd Use of GIP for the treatment of disorders associated with dysfunctional synaptic transmission
GB0717399D0 (en) 2007-09-07 2007-10-17 Uutech Ltd Use of GLP-1 analogues for the treatment of disorders associated with dysfunctional synaptic transmission
WO2009046881A1 (en) 2007-09-11 2009-04-16 Mondobiotech Laboratories Ag Use of a peptide combination including c-peptide, as a therapeutic agent
CN101842083B (en) 2007-11-01 2012-11-14 默克雪兰诺有限公司 LH liquid formulations
JP5715418B2 (en) 2007-11-08 2015-05-07 ノボ・ノルデイスク・エー/エス Insulin derivative
DK2597103T3 (en) 2007-11-16 2017-02-13 Novo Nordisk As Stable pharmaceutical compositions comprising liraglutide and degludec
CN101444618B (en) 2007-11-26 2012-06-13 杭州九源基因工程有限公司 Pharmaceutical preparation containing exenatide
CA2708762A1 (en) * 2007-12-11 2009-06-18 Conjuchem Biotechnologies Inc. Formulation of insulinotropic peptide conjugates
JP5352596B2 (en) 2008-01-04 2013-11-27 バイオデル, インコーポレイテッド Insulin formulation for insulin release as a function of tissue glucose level
CN101970476B (en) 2008-01-09 2014-08-27 塞诺菲-安万特德国有限公司 Novel insulin derivatives having an extremely delayed time-action profile
DE102008003568A1 (en) 2008-01-09 2009-07-16 Sanofi-Aventis Deutschland Gmbh New insulin analogs useful for treating diabetes
ES2613152T3 (en) 2008-01-09 2017-05-22 Sanofi-Aventis Deutschland Gmbh New insulin derivatives with extremely delayed time / action profile
DE102008003566A1 (en) 2008-01-09 2009-07-16 Sanofi-Aventis Deutschland Gmbh New insulin analogs useful for treating diabetes
EP2249869B1 (en) 2008-02-08 2011-09-07 BioGeneriX AG Liquid formulation of fsh
EP2240155B1 (en) 2008-02-13 2012-06-06 Intarcia Therapeutics, Inc Devices, formulations, and methods for delivery of multiple beneficial agents
EP2242767A4 (en) 2008-02-19 2011-04-06 Biocon Ltd A method of obtaining purified heterologous insulins expressed in yeast
TWI394580B (en) * 2008-04-28 2013-05-01 Halozyme Inc Super fast-acting insulin compositions
WO2009143014A1 (en) 2008-05-23 2009-11-26 Amylin Pharmaceuticals, Inc. Glp-1 receptor agonist bioassays
TWI451876B (en) 2008-06-13 2014-09-11 Lilly Co Eli Pegylated insulin lispro compounds
EP3412300A1 (en) 2008-06-27 2018-12-12 Duke University Therapeutic agents comprising elastin-like peptides
US8574214B2 (en) 2008-08-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Cartridge and needle system therefor
WO2010028055A1 (en) 2008-09-02 2010-03-11 Biodel, Inc. Insulin with a basal release profile
JP5705115B2 (en) 2008-09-10 2015-04-22 ジェネンテック, インコーポレイテッド Compositions and methods for prevention of oxidative degradation of proteins
CN101670096B (en) 2008-09-11 2013-01-16 杭州九源基因工程有限公司 Medicinal preparation containing exenatide
CN104013569A (en) 2008-10-15 2014-09-03 精达制药公司 Highly concentrated drug particles, formulations, suspensions and uses thereof
LT3228320T (en) 2008-10-17 2020-03-10 Sanofi-Aventis Deutschland Gmbh Combination of an insulin and a glp-1 agonist
DE102008053048A1 (en) 2008-10-24 2010-04-29 Sanofi-Aventis Deutschland Gmbh Medicament, useful e.g. for treating diabetes, controlling fasting, postprandial or postabsorptive blood glucose concentration in diabetic patients and improving glucose tolerance, comprises insulin and glucagon-like peptide-1 agonist
US9603904B2 (en) 2008-10-30 2017-03-28 Novo Nordisk A/S Treating diabetes melitus using insulin injections with less than daily injection frequency
JP2009091363A (en) 2008-11-21 2009-04-30 Asahi Kasei Pharma Kk Stabilized aqueous injectable solution of pth
BRPI1008836B8 (en) 2009-02-04 2021-06-22 Sanofi Aventis Deutschland medical device and method for providing glycemic control information
EA029759B1 (en) 2009-02-13 2018-05-31 Бёрингер Ингельхайм Интернациональ Гмбх Antidiabetic medications comprising dpp-4 inhibitor (linagliptin) optionally in combination with other antidiabetic agents
WO2010138671A1 (en) 2009-05-28 2010-12-02 Amylin Pharmaceuticals, Inc. Glp-1 receptor agonist compounds for sleep enhancement
TW201113032A (en) * 2009-07-06 2011-04-16 Sanofi Aventis Deutschland Slow-acting insulin preparations
DK2451437T3 (en) * 2009-07-06 2017-02-13 Sanofi Aventis Deutschland Aqueous INSULIN PREPARATIONS CONTAINING METHIONIN
US20120241356A1 (en) 2009-07-06 2012-09-27 Sanofi-Aventis Deutschland Gmbh Heat- and vibration-stable insulin preparations
US8709400B2 (en) 2009-07-27 2014-04-29 Washington University Inducement of organogenetic tolerance for pancreatic xenotransplant
BR112012001988A2 (en) 2009-07-31 2017-05-09 Sanofi Aventis Deutschland long-acting insulin composition
WO2011017554A2 (en) 2009-08-07 2011-02-10 Mannkind Corporation Val (8) glp-1 composition and method for treating functional dyspepsia and/or irritable bowel syndrome
AR078161A1 (en) 2009-09-11 2011-10-19 Hoffmann La Roche VERY CONCENTRATED PHARMACEUTICAL FORMULATIONS OF AN ANTIBODY ANTI CD20. USE OF THE FORMULATION. TREATMENT METHOD
US20110118178A1 (en) 2009-11-13 2011-05-19 Sanofi-Aventis Deutschland Gmbh Method of treatment of diabetes type 2 comprising add-on therapy to insulin glargine and metformin
KR101772372B1 (en) * 2009-11-13 2017-08-29 사노피-아벤티스 도이칠란트 게엠베하 Pharmaceutical composition comprising a glp-1 agonist and methionine
NZ599848A (en) * 2009-11-13 2013-08-30 Sanofi Aventis Deutschland Pharmaceutical composition comprising a glp-1 agonist, an insulin, and methionine
EP2329848B2 (en) 2009-11-13 2019-06-19 Sanofi-Aventis Deutschland GmbH Lixisenatide as add-on therapy to insulin glargine and metformin for treating type 2 diabetes
US20110118180A1 (en) 2009-11-13 2011-05-19 Sanofi-Aventis Deutschland Gmbh Method of treatment of diabetes type 2 comprising add-on therapy to metformin
SI2324853T1 (en) 2009-11-13 2015-12-31 Sanofi-Aventis Deutschland Gmbh Lixisenatide as add-on to metformin in the treatment of diabetes type 2
CN102933200B (en) 2009-12-18 2015-11-25 莱迪杜德制药公司 Comprise the single-phase gels compositions of phospholipid
EP2460527A1 (en) 2010-01-21 2012-06-06 Sanofi Pharmaceutical composition for treating a metabolic syndrome
WO2011103575A1 (en) 2010-02-22 2011-08-25 Case Western Reserve University Long-acting insulin analogue preparations in soluble and crystalline forms
AR081066A1 (en) 2010-04-02 2012-06-06 Hanmi Holdings Co Ltd INSULIN CONJUGATE WHERE AN IMMUNOGLOBULIN FRAGMENT IS USED
TW201141513A (en) 2010-04-14 2011-12-01 Sanofi Aventis Insulin-siRNA conjugates
US8637458B2 (en) 2010-05-12 2014-01-28 Biodel Inc. Insulin with a stable basal release profile
AU2011202239C1 (en) 2010-05-19 2017-03-16 Sanofi Long-acting formulations of insulins
WO2011144674A2 (en) 2010-05-20 2011-11-24 Sanofi-Aventis Deutschland Gmbh PHARMACEUTICAL FORMULATION COMPRISING INSULIN GLARGINE AND SBE4-ß-CYD
EP2389945A1 (en) 2010-05-28 2011-11-30 Sanofi-Aventis Deutschland GmbH Pharmaceutical composition comprising AVE0010 and insulin glargine
US9085757B2 (en) 2010-06-17 2015-07-21 Regents Of The University Of Minnesota Production of insulin producing cells
US8532933B2 (en) 2010-06-18 2013-09-10 Roche Diagnostics Operations, Inc. Insulin optimization systems and testing methods with adjusted exit criterion accounting for system noise associated with biomarkers
US20130137645A1 (en) 2010-07-19 2013-05-30 Mary S. Rosendahl Modified peptides and proteins
SG187904A1 (en) 2010-08-30 2013-04-30 Sanofi Aventis Deutschland Use of ave0010 for the manufacture of a medicament for the treatment of diabetes mellitus type 2
CN103167878A (en) 2010-10-27 2013-06-19 诺沃—诺迪斯克有限公司 Treating diabetes melitus using insulin injections administered with varying injection intervals
WO2012065996A1 (en) 2010-11-15 2012-05-24 Sanofi-Aventis Deutschland Gmbh PHARMACEUTICAL FORMULATION COMPRISING INSULIN GLARGINE AND MALTOSYL-ß-CYCLODEXTRIN
WO2012066086A1 (en) 2010-11-17 2012-05-24 Sanofi-Aventis Deutschland Gmbh PHARMACEUTICAL FORMULATION COMPRISING INSULIN GLARGINE AND SULFOBUTYL ETHER 7-ß-CYCLODEXTRIN
JP2013545782A (en) 2010-12-14 2013-12-26 ノヴォ ノルディスク アー/エス Fast-acting insulin combined with long-acting insulin
WO2012104342A1 (en) 2011-02-02 2012-08-09 Sanofi-Aventis Deutschland Gmbh Prevention of hypoglycaemia in diabetes mellitus type 2 patients
CA3122934A1 (en) 2011-03-11 2012-09-20 Beth Israel Deaconess Medical Center, Inc. Fusion protein comprising a fragment of cd40 and method of producing same
US20120277147A1 (en) 2011-03-29 2012-11-01 Sanofi-Aventis Deutschland Gmbh Prevention of hypoglycaemia in diabetes mellitus type 2 patients
US8735349B2 (en) 2011-05-13 2014-05-27 Sanofi-Aventis Deutschland Gmbh Method for improving glucose tolerance in a diabetes type 2 patient of younger than 50 years and having postprandial plasma glucose concentration of at least 14 mmol/L
SI2707017T1 (en) 2011-05-13 2016-01-29 Sanofi-Aventis Deutschland Gmbh Lixisenatide and metformin for treatment of diabetes type 2
US20130040878A1 (en) 2011-05-13 2013-02-14 Sanofi-Aventis Deutschland Gmbh Pharmaceutical combination for use in the treatment of diabetes type 2 patients
US9821032B2 (en) 2011-05-13 2017-11-21 Sanofi-Aventis Deutschland Gmbh Pharmaceutical combination for improving glycemic control as add-on therapy to basal insulin
CN103906528A (en) 2011-06-24 2014-07-02 安米林药品有限责任公司 Methods of treating diabetes with sustained release formulations of GLP-1 receptor agonists
CN108079281A (en) 2011-08-29 2018-05-29 赛诺菲-安万特德国有限公司 For the pharmaceutical composition of the glycemic control in diabetes B patient
WO2013050378A1 (en) 2011-10-04 2013-04-11 Sanofi-Aventis Deutschland Gmbh Glp-1 agonist for use in the treatment of stenosis or/and obstruction in the biliary tract
DK2763690T3 (en) 2011-10-04 2016-02-15 Sanofi Aventis Deutschland LIXISENATID TO USE FOR TREATMENT OF STENOSIS AND / OR OBSTRUCTION IN THE PANCREASURAL SYSTEM
US20130296236A1 (en) 2011-10-28 2013-11-07 Louise SILVESTRE Treatment protocol of diabetes type 2
US8901484B2 (en) 2012-04-27 2014-12-02 Sanofi-Aventis Deutschland Gmbh Quantification of impurities for release testing of peptide products
US9522235B2 (en) 2012-05-22 2016-12-20 Kaleo, Inc. Devices and methods for delivering medicaments from a multi-chamber container
AR092862A1 (en) 2012-07-25 2015-05-06 Hanmi Pharm Ind Co Ltd LIQUID FORMULATION OF PROLONGED ACTION INSULIN AND AN INSULINOTROPIC PEPTIDE AND PREPARATION METHOD
TWI780236B (en) 2013-02-04 2022-10-11 法商賽諾菲公司 Stabilized pharmaceutical formulations of insulin analogues and/or insulin derivatives
GB201303771D0 (en) 2013-03-04 2013-04-17 Midatech Ltd Nanoparticles peptide compositions
WO2014202483A1 (en) 2013-06-17 2014-12-24 Sanofi-Aventis Deutschland Gmbh Insulin glargine/lixisenatide fixed ratio formulation
TW201605489A (en) 2013-10-25 2016-02-16 賽諾菲公司 Stable formulation of INSULIN GLULISINE

Also Published As

Publication number Publication date
LTC2498802I2 (en) 2018-06-25
CN102711805A (en) 2012-10-03
US20180200370A1 (en) 2018-07-19
JP2013510822A (en) 2013-03-28
DOP2012000133A (en) 2012-09-15
LTPA2017020I1 (en) 2017-07-10
CA3011480A1 (en) 2011-05-19
JP5832439B2 (en) 2015-12-16
EP3831402A1 (en) 2021-06-09
HRP20150353T1 (en) 2015-05-08
DK2554183T3 (en) 2018-07-23
DK2498802T3 (en) 2015-04-13
WO2011058083A1 (en) 2011-05-19
IL219723A (en) 2016-04-21
PT2554183T (en) 2018-07-09
CA3011480C (en) 2021-11-09
AU2010317995B2 (en) 2014-04-17
EP2554183A1 (en) 2013-02-06
KR20180027605A (en) 2018-03-14
PE20121362A1 (en) 2012-10-17
KR101836070B1 (en) 2018-03-09
NL300883I2 (en) 2017-07-20
HK1175409A1 (en) 2013-07-05
EP2554183B1 (en) 2018-04-04
CN107308442A (en) 2017-11-03
MA33736B1 (en) 2012-11-01
US10029011B2 (en) 2018-07-24
ECSP12011890A (en) 2012-07-31
ZA201203232B (en) 2013-01-30
SI2554183T1 (en) 2018-08-31
TN2012000216A1 (en) 2013-12-12
CY2017023I2 (en) 2017-11-14
CO6541565A2 (en) 2012-10-16
FR17C0004I1 (en) 2017-08-09
CN107308442B (en) 2022-10-18
HUE038147T2 (en) 2018-09-28
EP3417871A1 (en) 2018-12-26
CR20120218A (en) 2012-07-24
HRP20181025T1 (en) 2018-08-24
KR20120104233A (en) 2012-09-20
AU2010317995A1 (en) 2012-05-31
CA2780460C (en) 2018-09-04
PT3417871T (en) 2021-02-15
EP2498802B1 (en) 2015-01-07
UY33026A (en) 2011-06-30
PL2498802T3 (en) 2015-06-30
CY1120389T1 (en) 2019-07-10
ES2855146T3 (en) 2021-09-23
CY2017023I1 (en) 2017-11-14
GT201200144A (en) 2013-11-18
TW201138762A (en) 2011-11-16
PT2498802E (en) 2015-04-13
CA2780460A1 (en) 2011-05-19
PL2554183T3 (en) 2018-10-31
NI201200074A (en) 2012-08-16
ES2676373T3 (en) 2018-07-19
NO2017030I2 (en) 2019-01-30
EP2498802A1 (en) 2012-09-19
KR101972301B1 (en) 2019-04-25
EP3417871B1 (en) 2020-12-23
LT2554183T (en) 2018-07-25
FR17C0004I2 (en) 2019-06-07
HUS1700023I1 (en) 2017-06-28
MY180661A (en) 2020-12-04
PL3417871T3 (en) 2021-06-14
ES2534191T3 (en) 2015-04-20
IL219723A0 (en) 2012-07-31
NZ599848A (en) 2013-08-30
MX2012005186A (en) 2012-06-08
SI2498802T1 (en) 2015-05-29
RU2012124069A (en) 2013-12-20
RU2537239C2 (en) 2014-12-27
AR080669A1 (en) 2012-05-02
TR201809460T4 (en) 2018-07-23
BR112012011128A2 (en) 2016-07-05
US20220133890A1 (en) 2022-05-05
CY1116163T1 (en) 2017-02-08
NO2017030I1 (en) 2017-07-04
CL2012001232A1 (en) 2012-10-05
TWI507190B (en) 2015-11-11
US20120295846A1 (en) 2012-11-22

Similar Documents

Publication Publication Date Title
US20220133890A1 (en) Pharmaceutical composition comprising a glp-1 agonist, an insulin and methionine
US20210038514A1 (en) Pharmaceutical composition comprising a glp-1-agonist and methionine
US20240108692A1 (en) Combination of an insulin and a glp-1-agonist
JP5735960B2 (en) Insulin preparations containing methionine
US20120241356A1 (en) Heat- and vibration-stable insulin preparations

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION